
WebSphere® Application Server Network Deployment for IBM i, Version 7.0

Administering WebSphere applications

���

Note

Before using this information, be sure to read the general information under “Notices” on page 2519.

Compilation date: September 24, 2008

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . xvii

Changes to serve you more quickly . xix

Chapter 1. Web applications . 1

Tuning URL invocation cache . 1

Developing servlet applications using asynchronous request dispatcher 1

Asynchronous request dispatcher . 2

Asynchronous request dispatcher application design considerations 3

Asynchronous request dispatching settings . 8

Task overview: Managing HTTP sessions . 9

Sessions . 9

HTTP session migration . 10

Session security support . 10

Session management support . 11

Session tracking options . 12

Distributed sessions . 14

Session recovery support . 14

Memory-to-memory replication . 15

Memory-to-memory session partitioning . 18

Clustered session support . 18

Session management tuning . 19

HTTP sessions: Resources for learning . 19

Scheduled invalidation . 20

Base in-memory session pool size . 20

HTTP session invalidation . 21

Write operations . 22

Tuning parameter settings . 22

Tuning parameter custom settings . 23

Best practices for using HTTP sessions . 24

HTTP session manager troubleshooting tips . 27

HTTP session problems . 29

Modifying the default Web container configuration . 32

Web container settings . 33

Web container custom properties . 33

Web module deployment settings . 39

Context root for Web modules settings . 40

Environment entries for Web modules settings . 40

Web container troubleshooting tips . 41

Disabling servlet pooling: Best practices and considerations 42

Task overview: Developing and deploying Web applications 42

Web applications . 43

Web modules . 43

web.xml file . 44

Default Application . 46

Servlets . 47

JavaServer Pages . 47

User profiles and authorities . 83

Web application deployment troubleshooting tips . 84

Web applications: Resources for learning . 85

Configuring session management by level . 86

Session management settings . 86

Configuring session tracking . 89

© Copyright IBM Corp. 2008 iii

Serializing access to session data . 90

Cookie settings . 90

Session management custom properties . 91

Configuring session tracking for Wireless Application Protocol (WAP) devices 94

Configuring for database session persistence . 95

Switching to a multirow schema . 96

Configuring tablespace and page sizes for DB2 session databases 97

Creating a table for session persistence . 97

Database settings . 99

Configuring memory-to-memory replication for the peer-to-peer mode (default memory-to-memory

replication) . 99

Memory-to-memory replication settings . 100

Configuring memory-to-memory replication for the client/server mode 101

Configuring Web module class loaders . 102

Task overview: Assembling applications using remote request dispatcher 104

Remote request dispatcher . 106

Configuring Web applications to dispatch remote includes 108

Configuring Web applications to service remote includes 108

Configuring remote request dispatcher caching . 109

Remote dispatcher property settings . 109

Remote request dispatcher considerations . 110

Servlet extension interfaces . 111

Backing up and recovering servlets . 114

Backing up and recovering JavaServer Pages files . 115

Chapter 2. Portlet applications . 117

Task overview: Managing portlets . 117

Portlets . 117

Portlet container . 118

Portlet container settings . 118

Portlet aggregation using JavaServer Pages . 118

Portlet Uniform Resource Locator (URL) addressability 124

Portlet preferences . 126

Example: Configuring the extended portlet deployment descriptor to disable PortletServingServlet 128

Portlet container custom properties . 128

Portlet and PortletApplication MBeans . 129

Portlet URL security . 130

Developing console modules . 134

Overview of Integrated Solutions Console . 135

Example: Console module samples . 137

Setting up the development environment . 138

Developing your first console module . 138

Developing the portlet . 139

Creating the descriptors for the console module . 140

Packaging a console module . 143

Deploying a console module . 144

Testing a console module . 146

Removing a console module . 146

Adding advanced API features . 146

Developing portlets . 146

Launching pages . 147

Passing properties to other portlets . 149

Launching Eclipse-based help . 151

Support for bidirectional characters . 152

Developing your first console module . 152

Developing the portlet . 153

iv Administering WebSphere applications

Creating the descriptors for the console module . 154

Packaging a console module . 158

Deploying a console module . 158

Testing a console module . 160

Removing a console module . 160

Adding advanced API features . 161

Developing portlets . 161

Launching pages . 161

Passing properties to other portlets . 163

Launching Eclipse-based help . 165

Support for bidirectional characters . 167

Chapter 3. EJB applications . 169

Task overview: Using enterprise beans in applications 169

Enterprise beans . 169

EJB modules . 171

EJB containers . 171

Enterprise beans back up and recovery best practices 174

EJB method Invocation Queuing . 174

Enterprise bean and EJB container troubleshooting tips 175

Enterprise bean cannot be accessed from a servlet, a JSP file, a stand-alone program, or another

client . 176

Using access intent policies . 179

Access intent policies . 179

Applying access intent policies to beans . 184

Configuring read-read consistency checking with an assembly tool 185

Access intent service . 187

Applying access intent policies to methods . 188

Using the AccessIntent API . 189

Access intent exceptions . 191

Access intent troubleshooting tips . 192

Managing EJB containers . 193

EJB container settings . 193

EJB container system properties . 195

Changing enterprise bean types to initialize at application start time using the administrative

console . 196

Stateful session bean failover for the EJB container 196

Enabling or disabling stateful session bean failover with the EJB container panel 200

Enabling or disabling stateful session bean failover with the enterprise applications panel 201

Enabling or disabling stateful session bean failover with the EJB modules panel 201

Tuning the EJB cache using the trace service . 202

EJB cache settings . 204

Container interoperability . 205

EJB 2.1 container tuning . 206

Deploying EJB modules . 210

EJB 3.0 deployment overview . 210

EJBDEPLOY relationships – troubleshooting tips 211

EJB module settings . 212

Chapter 4. Client applications . 213

Using application clients . 213

Application Client for WebSphere Application Server 213

Application client troubleshooting tips . 221

clientUpgrade script . 226

Running application clients . 227

launchClient tool . 228

Contents v

Specifying the directory for an expanded EAR file 232

Using Java Web Start . 232

Running the IBM Thin Client for Enterprise JavaBeans (EJB) 244

Running application clients . 246

launchClient tool . 248

Specifying the directory for an expanded EAR file 251

Using Java Web Start . 252

Running the IBM Thin Client for Enterprise JavaBeans (EJB) 264

Installing Application Client for WebSphere Application Server 266

Best practices for installing Application Client for WebSphere Application Server 267

Installing Application Client for WebSphere Application Server silently 267

Installing Application Client for WebSphere Application Server from a Windows workstation 269

Uninstalling Application Client for WebSphere Application Server 270

Uninstalling IBM Application Client for WebSphere Application server on i5/OS 271

Deploying J2EE application clients on workstation platforms 273

Resource Adapters for the client . 273

Configuring resource adapters . 274

Resource adapter settings . 278

Starting the Application Client Resource Configuration Tool and opening an EAR file 279

Data sources for the Application Client . 279

Data source properties for application clients . 279

Configuring new data source providers (JDBC providers) for application clients 280

Configuring new data sources for application clients 282

Configuring mail providers and sessions for application clients 282

Configuring new mail sessions for application clients 286

URLs for application clients . 286

URL providers for the Application Client Resource Configuration Tool 286

Configuring new URL providers for application clients 287

Configuring new URLs with the Application Client Resource Configuration Tool 289

Asynchronous messaging in WebSphere Application Server using JMS 290

Java Message Service providers for clients . 290

Configuring Java messaging client resources . 291

Configuring new JMS connection factories for application clients 343

Configuring new JMS destinations for application clients 344

Configuring new resource environment providers for application clients 344

Configuring new resource environment entries for application clients 345

Managing application clients . 346

Chapter 5. Web services . 351

Task overview: Implementing Web services applications 351

Service-oriented architecture . 355

Web services . 358

Web services migration scenarios: JAX-RPC to JAX-WS and JAXB 410

Web services migration best practices . 419

WebSphere Application Server roles and goals . 421

Deploying Web services applications onto application servers 421

Provide options to perform the Web services deployment settings 423

wsdeploy command . 424

JAX-WS application deployment model . 426

Deploying Web services applications onto application servers 427

Provide options to perform the Web services deployment settings 429

wsdeploy command . 430

JAX-WS application deployment model . 432

Using the UDDI registry . 433

Overview of the Version 3 UDDI registry . 434

UDDI registry terminology . 436

vi Administering WebSphere applications

UDDI registry management interfaces . 439

Java API for XML Registries (JAXR) provider for UDDI 472

Planning to use Web services . 478

Learning about the Web Services Invocation Framework (WSIF) 480

Goals of WSIF . 480

WSIF Overview . 482

Setting up and deploying a new UDDI registry . 484

Database considerations for production use of the UDDI registry 485

Setting up a default UDDI node . 486

Setting up a customized UDDI node . 495

Using the UDDI registry Installation Verification Program (IVP) 506

Changing the UDDI registry application environment after deployment 506

Configuring Web services applications using scripting 512

Querying Web services with the wsadmin tool . 513

WebServicesAdmin command group for the AdminTask object 515

Configuring application and system policy sets for Web services using scripting 520

Creating policy sets using the wsadmin tool . 522

Updating policy set attributes using the wsadmin tool 524

Adding and removing policies using the wsadmin tool 526

Editing policy configurations using the wsadmin tool 529

Enabling secure conversation using the wsadmin tool 531

Managing WS-Security distributed cache configurations using the wsadmin tool 534

Configuring custom policies and bindings for security tokens using the wsadmin tool 536

Creating policy set attachments using the wsadmin tool 538

Managing policy set attachments using the wsadmin tool 541

Configuring general, cell-wide bindings for policies using the wsadmin tool 545

Configuring Version 6.1 server-specific default bindings for policies using the wsadmin tool 549

Configuring application-specific and system bindings using the wsadmin tool 552

Creating application-specific and trust service-specific bindings using the wsadmin tool 556

Deleting application-specific bindings from your configuration using the wsadmin tool 560

Importing and exporting policy sets to client or server environments using scripting 562

Removing policy set bindings using the wsadmin tool 563

Removing policy set attachments using the wsadmin tool 566

Deleting policy sets using the wsadmin tool . 569

Refreshing policy set configurations using scripting 571

Policy configuration properties for all policies . 572

WSSecurity policy and binding properties . 572

WSReliableMessaging policy and binding properties 580

WSAddressing binding properties . 582

SSLTransport policy and binding properties . 583

HTTPTransport policy and binding properties . 585

JMSTransport policy and binding properties . 587

SecureConversation command group for the AdminTask object (Deprecated) 589

WSSCacheManagement command group for the AdminTask object 592

PolicySetManagement command group for the AdminTask object 596

WS-Policy commands for the AdminTask object . 628

Configuring secure sessions between clients and services using the wsadmin tool 636

Querying the trust service using scripting . 637

Managing existing token providers with scripting . 638

Adding and removing token provider custom properties using scripting 640

Associating token providers with endpoint services (targets) using scripting 643

STSManagement command group for the AdminTask object 645

Adding assured delivery to Web services through WS-ReliableMessaging 657

Learning about WS-ReliableMessaging . 658

Configuring endpoints to only support clients that use WS-ReliableMessaging 669

Building a reliable Web service application . 669

Contents vii

Configuring a WS-ReliableMessaging policy set using the administrative console 677

Attaching and binding a WS-ReliableMessaging policy set to a Web service application using the

administrative console . 681

Detecting and fixing problems with WS-ReliableMessaging 684

WS-ReliableMessaging roles and goals . 693

WS-ReliableMessaging - requirements for interaction with other implementations 694

WS-ReliableMessaging - administrative console panels 695

Using WS-Transaction policy to coordinate transactions or business activities for Web services . . . 712

Learning about WS-Transaction . 713

Configuring a JAX-WS client for WS-Transaction context 730

Configuring a JAX-WS Web service for WS-Transaction context 731

Configuring a WS-Transaction policy set using the wsadmin tool 732

Configuring Web Services Transaction support in a secure environment 732

Configuring an intermediary node for Web services transactions 734

Enabling WebSphere Application Server to use an intermediary node for Web services transactions 736

Configuring a server to use business activity support 736

Creating an application that uses the Web Services Business Activity support 739

Business activity API . 741

Using WS-Policy to exchange policies in a standard format 743

Learning about WS-Policy . 743

Configuring a service provider to share its policy configuration 749

Configuring the client policy using a service provider policy 753

Configuring security for a WS-MetadataExchange request 757

Administering deployed Web services applications . 758

Overview of service and endpoint listeners . 759

Administration of service and endpoint listeners . 760

Viewing service providers at the cell level using the administrative console 760

Viewing service providers at the application level using the administrative console 763

Viewing the detail of a service provider and managing policy sets using the administrative console 765

Managing policy sets and bindings for service providers at the application level using the

administrative console . 772

Viewing WSDL document using the administrative console 779

Viewing service clients at the cell level using the administrative console 780

Viewing service clients at the application level using the administrative console 781

Viewing detail of a service client and managing policy sets using the administrative console . . . 783

Managing policy sets and bindings for service clients at the application level using the

administrative console . 789

Viewing Web services deployment descriptors in the administrative console 797

Configuring the scope of a Web service port . 797

Making deployed Web services applications available to clients 799

Configuring Web services client bindings . 800

Configuring endpoint URL information for HTTP bindings 803

Configuring endpoint URL information for JMS bindings 806

Configuring endpoint URL information to directly access enterprise beans 808

Publishing WSDL files using the administrative console 809

Publishing WSDL files using a URL . 811

Creating a monitor for WebSphere Application Server for WSDM resources (deprecated) 812

Web Services Distributed Management . 819

Web Services Distributed Management resource management 820

WSDM manageability capabilities for WebSphere Application Server resource types 821

Web Services Distributed Management support in the application server 828

Web Services Distributed Management in a standalone application server instance 830

Web Services Distributed Management in a Network Deployment cell 830

Web Services Distributed Management in an administrative agent environment 831

Notifications from the application server Web Services Distributed Management resources 831

Managing policy sets using the administrative console 832

viii Administering WebSphere applications

Viewing policy sets using the administrative console 834

Creating policy sets using the administrative console 835

Importing policy sets using the administrative console 845

Modifying policy sets using the administrative console 849

Deleting policy sets using the administrative console 851

Defining and managing policy set bindings . 853

Attaching a policy set to a service artifact . 930

Managing policies in a policy set using the administrative console 931

Exporting policy sets using the administrative console 982

Application policy sets collection . 983

Application policy set settings . 984

Search attached applications collection . 986

Securing message parts using the administrative console 986

Web services policy sets . 990

Overview of migrating policy sets and bindings . 996

Installing and managing WSIF . 997

wsif.properties file - Initial contents . 998

Enabling security for WSIF . 998

Web Services Invocation Framework troubleshooting tips 999

Trace and logging for WSIF . 1005

Getting started with the UDDI registry . 1006

Removing and reinstalling the UDDI registry . 1007

Removing a UDDI registry node . 1007

Reinstalling the UDDI registry application . 1009

Applying an upgrade to the UDDI registry . 1015

Configuring SOAP API and GUI services for the UDDI registry 1015

Managing the UDDI registry . 1017

UDDI node collection . 1017

Backing up and restoring the UDDI registry database 1031

Enabling Web services through the service integration bus 1032

Installing and configuring the SDO repository . 1033

Configuring Web services for a service integration bus 1040

Administering the bus-enabled Web services core resources 1069

Creating a new WS-Security binding . 1095

Creating a new WS-Security configuration . 1099

Passing SOAP messages with attachments through the service integration bus 1103

Using WS-Notification for publish and subscribe messaging for Web services 1107

Accomplishing common WS-Notification tasks . 1108

Configuring WS-Notification resources . 1134

Chapter 6. Service integration . 1181

Service integration technologies . 1181

Service integration buses . 1182

Messaging engines . 1182

Managing data stores . 1183

Bus destinations . 1183

Mediations . 1183

Managing messaging with the default messaging provider 1183

Security . 1184

Auditing the service integration security infrastructure 1185

High availability and workload sharing for service integration technologies 1187

Enabling Web services through the service integration bus 1187

Service integration topologies . 1189

The service integration environment backup . 1190

Planning a bus topology . 1191

Planning issues common to all bus topologies . 1192

Contents ix

Planning a single-server bus topology . 1193

Planning a multiple-server bus without clustering 1193

Planning a multiple-server bus with clustering . 1194

Planning a multiple-bus topology . 1194

Planning a topology that includes WebSphere MQ 1195

Enabling or disabling service integration notification events 1195

Service integration buses . 1196

Configuring buses . 1196

Operating buses . 1261

Managing service integration buses with administrative commands 1262

Messaging engines . 1263

Configuring messaging engines . 1263

Starting a messaging engine . 1274

Stopping a messaging engine . 1275

Displaying the runtime properties of a messaging engine 1275

Displaying the runtime properties of a service integration bus link 1276

Managing messaging engines with administrative commands 1276

Message stores . 1276

Considerations when choosing between a file store and a data store 1277

Message store high availability considerations . 1278

Managing file stores . 1278

Managing data stores . 1281

Avoiding message store errors when creating a messaging engine 1292

Avoiding errors when creating a messaging engine with a file store or a data store by using the

wsadmin tool . 1292

Bus destinations . 1293

Configuring bus destinations . 1293

Managing bus destinations with administrative commands 1321

Configuring message points . 1322

Managing messages on message points . 1323

Administering durable subscriptions . 1324

Mediations . 1327

Securing mediations . 1327

Configuring mediations . 1329

Configuring mediation points . 1339

Managing mediations with administrative commands 1341

Operating mediations at mediation points . 1341

Administering messages on mediation points . 1343

Example: Using mediations to trace, monitor and log messages 1344

Security . 1344

Securing buses . 1345

Enabling client SSL authentication . 1352

Adding unique names to the bus authorization policy 1354

Administering authorization permissions . 1355

Administering permitted transports for a bus . 1380

Configuring bus security using an administrative console panel 1383

Securing messages between messaging buses 1384

Securing access to a foreign bus . 1385

Securing links between messaging engines . 1386

Controlling which foreign buses can link to your bus 1387

Securing database access . 1387

Securing mediations . 1387

Chapter 7. Data access resources . 1389

Task overview: Accessing data from applications . 1389

Resource adapters . 1389

x Administering WebSphere applications

JDBC providers . 1393

Data sources . 1393

Data access beans . 1394

Connection management architecture . 1395

Cache instances . 1410

Data access: Resources for learning . 1411

Configuring data access with scripting . 1412

Configuring a JDBC provider using scripting . 1412

Configuring new data sources using scripting . 1414

Configuring new connection pools using scripting 1415

Changing connection pool settings with the wsadmin tool 1416

Configuring new data source custom properties using scripting 1422

Configuring new Java 2 Connector authentication data entries using scripting 1423

Configuring new WAS40 data sources using scripting 1425

Configuring new WAS40 connection pools using scripting 1425

Configuring new WAS40 custom properties using scripting 1427

Configuring new J2C resource adapters using scripting 1428

Configuring custom properties for J2C resource adapters using scripting 1430

Configuring new J2C connection factories using scripting 1431

Configuring new J2C activation specifications using scripting 1432

Configuring new J2C administrative objects using scripting 1434

Managing the message endpoint lifecycle using scripting 1436

Testing data source connections using scripting 1437

JDBCProviderManagement command group for the AdminTask object 1438

Configuring Persistence Provider support in the application server 1443

Configuring the Java Persistence API (JPA) default persistence provider 1443

Using third-party persistence providers . 1446

Task overview: Data Studio pureQuery . 1448

Associating persistence units and data sources . 1454

Configuring OpenJPA caching to improve performance 1456

Troubleshooting Java Persistence API (JPA) applications 1459

Logging with the Java Persistence API (JPA) and the application server 1462

Troubleshooting Java Persistence API (JPA) deadlocks and transaction time-outs 1468

wsjpaversion command . 1470

Using object cache instances . 1471

Administering data access applications . 1472

Configuring Java EE Connector connection factories in the administrative console 1473

Installing a resource adapter archive . 1491

Configuring resource adapters . 1494

Updating a resource adapter archive . 1500

J2EE connector security . 1501

Mapping resource references to references . 1504

Managing messages with message endpoints . 1505

Configuring a JDBC provider and data source . 1507

Configuring data access for the Application Client 1606

Resource references . 1608

Mapping-configuration alias . 1610

Select a J2C authentication alias . 1611

Considerations for isolated resource providers . 1611

Configuring data access security . 1612

Passing client information to a database . 1614

About Apache Derby . 1617

Verifying the Cloudscape automatic migration . 1618

Upgrading Cloudscape manually . 1621

Database performance tuning . 1623

DB2 Universal Database performance tips . 1624

Contents xi

Managing resources through JCA lifecycle management operations 1624

Data access problems . 1626

JDBC trace configuration . 1650

Configuring the connection validation timeout . 1651

Deploying data access applications . 1652

Available resources . 1653

Map data sources for all 1.x CMP beans . 1654

Map default data sources for modules containing 1.x entity beans 1655

Map data sources for all 2.x CMP beans settings 1656

Map data sources for all 2.x CMP beans . 1658

Chapter 8. Messaging resources . 1661

Managing messaging with the default messaging provider 1661

Configuring resources for the default messaging provider 1662

Interoperating with a WebSphere MQ network . 1691

Managing WebSphere Application Server Version 5.1 JMS use of messaging resources in later

versions of the product . 1725

Configuring the messaging engine selection process for JMS applications 1735

Managing messages and subscriptions for JMS destinations 1737

Using JMS from standalone clients to interoperate with service integration resources 1738

Using JMS from a third party application server 1745

Choosing a messaging provider . 1756

JMS providers collection . 1758

Select JMS resource provider . 1758

Activation specification collection . 1759

Connection factory collection . 1759

Queue connection factory collection . 1760

Queue collection . 1761

Topic connection factory collection . 1761

Topic collection . 1762

Choosing messaging providers for a mixed environment 1763

Service integration and WebSphere MQ messaging - a comparison 1768

Other ways of managing messaging . 1769

Managing messaging with a third-party messaging provider 1769

Maintaining Version 5 default messaging resources 1779

Administering listener ports and activation specifications for message-driven beans 1809

Choosing messaging providers for a mixed environment 1831

Service integration and WebSphere MQ messaging - a comparison 1836

Other ways of managing messaging . 1837

Managing messaging with a third-party messaging provider 1838

Maintaining Version 5 default messaging resources 1847

Administering listener ports and activation specifications for message-driven beans 1877

Learning about messaging with WebSphere Application Server 1899

Types of messaging providers . 1899

Styles of messaging in applications . 1904

JMS interfaces - explicit polling for messages . 1904

Message-driven beans - automatic message retrieval 1906

WebSphere Application Server cloning and WebSphere MQ clustering 1911

Asynchronous messaging - security considerations 1913

Messaging: Resources for learning . 1914

Configuring messaging with scripting . 1914

Configuring the message listener service using scripting 1915

Configuring new JMS providers using scripting . 1916

Configuring new JMS destinations using scripting 1917

Configuring new JMS connections using scripting 1918

Configuring new WebSphere queue connection factories using scripting 1920

xii Administering WebSphere applications

Configuring new WebSphere topic connection factories using scripting 1921

Configuring new WebSphere queues using scripting 1922

Configuring new WebSphere topics using scripting 1923

Configuring a new connection factory for the WebSphere MQ messaging provider using scripting 1924

Configuring a new queue connection factory for the WebSphere MQ messaging provider using

scripting . 1926

Configuring a new topic connection factor for the WebSphere MQ messaging provider using

scripting . 1928

Configuring a new queue for the WebSphere MQ messaging provider using scripting 1930

Configuring a new topic for the WebSphere MQ messaging provider using scripting 1931

JCAManagement command group for the AdminTask object 1932

Managing messaging with the WebSphere MQ messaging provider 1940

Configuring JMS resources for the WebSphere MQ messaging provider 1941

Listing JMS resources for the WebSphere MQ messaging provider 1958

WMQAdminCommands command group for the AdminTask object 2043

Mapping of administrative console panel names to command names and WebSphere MQ names 2092

Chapter 9. Mail, URLs, and other J2EE resources 2099

Using mail . 2099

JavaMail API . 2100

Mail providers and mail sessions . 2101

JavaMail security permissions best practices . 2101

Mail: Resources for learning . 2103

JavaMail support for IPv6 . 2103

Using URL resources within an application . 2104

URLs . 2104

URL provider collection . 2105

URL provider settings . 2105

URL collection . 2106

URL configuration settings . 2106

URLs: Resources for learning . 2107

Mapping logical names of environment resources to their physical names 2107

Resource environment providers and resource environment entries 2108

Resource environment provider collection . 2108

Resource environment entries collection . 2109

Referenceables collection . 2111

Resource environment references . 2112

Configuring mail providers and sessions . 2113

Mail provider collection . 2115

Mail provider settings . 2115

Protocol providers collection . 2116

Protocol providers settings . 2116

Mail session collection . 2116

Mail session settings . 2117

JavaMail system properties . 2119

Configuring mail, URLs, and resource environment entries with scripting 2120

Configuring new mail providers using scripting . 2121

Configuring new mail sessions using scripting . 2122

Configuring new protocols using scripting . 2123

Configuring new custom properties using scripting 2124

Configuring new resource environment providers using scripting 2125

Configuring custom properties for resource environment providers using scripting 2126

Configuring new referenceables using scripting 2127

Configuring new resource environment entries using scripting 2128

Configuring custom properties for resource environment entries using scripting 2129

Configuring new URL providers using scripting . 2130

Contents xiii

Configuring custom properties for URL providers using scripting 2132

Configuring new URLs using scripting . 2133

Configuring custom properties for URLs using scripting 2134

Provider command group for the AdminTask object 2135

Chapter 10. Security (omitted) . 2139

Chapter 11. Naming and directory . 2141

Using naming . 2141

Naming . 2142

Namespace logical view . 2142

Initial context support . 2145

Lookup names support in deployment descriptors and thin clients 2145

JNDI support in WebSphere Application Server 2148

Configured name bindings . 2148

Namespace federation . 2150

Naming roles . 2151

Foreign cell bindings . 2153

Naming and directories: Resources for learning 2153

Configuring name servers . 2154

Name server settings . 2154

Configuring namespace bindings . 2155

Name space binding collection . 2157

Specify binding type settings . 2158

String binding settings . 2160

EJB binding settings . 2161

CORBA object binding settings . 2162

Indirect lookup binding settings . 2163

Other context properties settings . 2164

Configuring foreign cell bindings . 2164

Migrating bootstrap addresses . 2166

Foreign cell binding collection . 2167

Foreign cell binding settings . 2167

Bootstrap address collection . 2167

Developing applications that use JNDI . 2168

Example: Getting the default initial context . 2172

Example: Getting an initial context by setting the provider URL property 2175

Example: Setting the provider URL property to select a different root context as the initial context 2177

Example: Looking up an EJB home or business interface with JNDI 2178

JNDI interoperability considerations . 2182

JNDI caching . 2183

JNDI cache settings . 2183

JNDI to CORBA name mapping considerations 2185

Chapter 12. Object Request Broker . 2187

Managing Object Request Brokers . 2187

Object Request Brokers . 2187

Logical pool distribution . 2188

Object Request Broker tuning guidelines . 2188

Object Request Broker service settings . 2191

Object Request Broker custom properties . 2194

Object Request Broker communications trace . 2201

Client-side programming tips for the Object Request Broker service 2204

Character code set conversion support for the Java Object Request Broker service 2206

Object Request Brokers: Resources for learning 2208

Object request broker troubleshooting tips . 2208

xiv Administering WebSphere applications

Enabling HTTP tunneling . 2222

Enabling HTTP tunneling . 2225

Chapter 13. Transactions . 2229

Using the transaction service . 2229

Transaction support in WebSphere Application Server 2229

Local transaction containment considerations . 2251

Transaction service exceptions . 2253

Configuring transaction properties for an application server 2254

Transaction service settings . 2256

Configuring transaction properties for peer recovery 2266

Configuring manual peer recovery for the transaction service 2267

Configuring automated peer recovery for the transaction service 2269

Managing manual peer recovery of the transaction service 2271

Managing active and prepared transactions . 2272

Managing active and prepared transactions using scripting 2273

Managing transaction logging for optimum server availability 2276

Configuring transaction aspects of servers for optimum availability 2277

Moving a transaction log from one server to another 2279

Restarting an application server on a different host 2279

Interoperating transactionally between application servers 2280

Chapter 14. Learn about WebSphere programming extensions 2283

ActivitySessions . 2283

Configuring the default ActivitySession timeout for an application server 2283

Disabling or enabling the ActivitySession service 2284

Application profiling . 2285

Task overview: Application profiling . 2285

Managing application profiles . 2294

Asynchronous beans . 2297

Using asynchronous beans . 2297

Configuring timer managers . 2308

Configuring work managers . 2311

Dynamic cache . 2315

Task overview: Using the dynamic cache service to improve performance 2315

Using the dynamic cache service . 2328

Configuring cache replication . 2350

Configuring cacheable objects with the cachespec.xml file 2352

Configuring command caching . 2367

Configuring the Web services client cache . 2369

Using the DistributedMap and DistributedObjectCache interfaces for the dynamic cache 2375

Disabling template-based invalidations during JSP reloads 2393

Using object cache instances . 2393

Displaying cache information . 2394

Using servlet cache instances . 2398

Dynamic query . 2405

Using EJB query . 2405

Using the dynamic query service . 2431

Using the dynamic query service . 2437

Internationalization . 2443

Task overview: Globalizing applications . 2443

Task overview: Internationalizing interface strings (localizable-text API) 2447

Task overview: Internationalizing application components (internationalization service) 2447

Working with locales and character encodings . 2449

Administering the internationalization service . 2449

Object pools . 2454

Contents xv

Using object pools . 2454

MBeans for object pool managers and object pools 2460

MBeans for object pool managers and object pools 2461

Scheduler . 2462

Using schedulers . 2462

Installing default scheduler calendars . 2466

Managing schedulers . 2468

Startup beans . 2494

Using startup beans . 2494

Enabling startup beans in the administrative console 2496

Work area . 2496

Task overview: Implementing shared work areas 2496

Managing the UserWorkArea partition . 2503

Configuring work area partitions . 2505

Appendix. Directory conventions . 2517

Notices . 2519

Trademarks and service marks . 2521

xvi Administering WebSphere applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 xvii

xviii Administering WebSphere applications

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The

information center is the official delivery format for IBM WebSphere Application Server documentation. If

you use the PDF books primarily for convenient printing, it is now easier to print various parts of the

information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon

is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation

tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a

separate browser window as one HTML file. The HTML file includes each of the topics in the section,

with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a

preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book

delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF

format more frequently. During a temporary transition phase, you might experience broken links. During

the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2008 xix

xx Administering WebSphere applications

Chapter 1. Web applications

Tuning URL invocation cache

The URL invocation cache holds information for mapping request URLs to servlet resources. A cache of

the requested size is created for each worker thread that is available to process a request. The default

size of the invocation cache is 50. If more than 50 unique URLs are actively being used (each JavaServer

Page is a unique URL), you should increase the size of the invocation cache.

Before you begin

A larger cache uses more of the Java™ heap, so you might also need to increase the maximum Java heap

size. For example, if each cache entry requires 2KB, maximum thread size is set to 25, and the URL

invocation cache size is 100; then 5MB of Java heap are required.

The invocation cache is now Web container based instead of thread-based, and shared for all Web

container threads.

About this task

To change the size of the invocation cache:

1. In the administrative console, click Servers → Server Types → WebSphere application servers and

select the application server that you are tuning.

2. Click Java and Process Management.

3. Click Process Definition under Additional Properties.

4. Click Java Virtual Machine under Additional Properties.

5. Click Custom Properties under Additional Properties.

6. Specify invocationCacheSize in the Name field and the size of the cache in the Value field. The

default size for the invocation cache is 500 entries. Since the invocation cache is no longer

thread-based, the invocation cache size specified by the user is multiplied by ten to provide similar

function from previous releases. For example, if you specify an invocation cache size of 50, the Web

container will create a cache size of 500.

7. Click Apply and then Save to save your changes.

8. Stop and restart the application server.

Results

The new cache size is used for the URL invocation cache.

Developing servlet applications using asynchronous request

dispatcher

Web modules can dispatch requests concurrently on separate threads. Requests can be dispatched by the

server or client.

Before you begin

For additional information about the AsyncRequestDispatcherConfig and the AsyncRequestDispatcher

interfaces, review the com.ibm.websphere.webcontainer.async package in the application programming

interfaces (API) documentation. The generated API documentation is available in the information center

table of contents from the path Reference > APIs - Application Programming Interfaces.

© Copyright IBM Corp. 2008 1

Review the asynchronous request dispatcher application (ARD) design considerations topic before

completing the following steps.

About this task

Concurrent dispatching can improve servlet response time. If operations are dependant on each other, do

not enable asynchronous request dispatching, therefore, select Disabled. Concurrent dispatching might

result in errors when operations are dependant. Select Server side to enable the server to aggregate

requests dispatched concurrently. Select Client side to enable the client to aggregate requests dispatched

concurrently.

1. Logically separate resource intensive operations.

2. Develop servlets that use an asynchronous request dispatcher to include these operations.

3. Enable asynchronous request dispatching on an application server.

4. Deploy the application in an application server that has asynchronous request dispatching enabled.

5. Select an aggregation type for the application that needs ARD.

6. Optional: Configure the AsyncRequestDispatcherWorkManager work manager that is used for the

request dispatch threads.

7. Restart the application server.

What to do next

Restart the modified applications if already installed or start newly installed applications to enable ARD on

each application.

Asynchronous request dispatcher

Asynchronous request dispatcher (ARD) can improve Servlet response time when slow operations can be

logically separated and performed concurrently with other operations required to complete the response.

ARD enables Java™ servlet programmers to perform standard javax.servlet.RequestDispatcher include

calls for the same request concurrently on separate threads. These javax.servlet.RequestDispatcher

include calls are completed sequentially on the same thread. ARD is also useful in low CPU, long wait

situations like waiting for a database connection.

If there are large CPU or memory requirements, ARD alone does not alleviate those issues. However, in

combination with the remote request dispatcher, operations driven by one servlet request that can be

performed concurrently on multiple application servers, alleviating resource demand on a single server and

decreasing the risk of a system down situation.

Servlets, portlets, and JavaServer Pages (JSP) files can all utilize ARD. This functionality is an extension

beyond the requirements of the Java Servlet Specification , which only describes synchronous request

dispatching. ARD requires a new channel, called the ARD channel, between the HTTP and Web container

channels to form a new channel chain. These new chains correspond only to the existing default host

chains and reuse the same ports.

Each include can write output to the client and because ordering is important for valid results, there must

be some aggregation of the data written. Typically, a servlet writes data to a buffer and once full, it is

flushed to client. For server-side aggregation, the ARD channel cannot flush until any includes that had

placeholders written to the current buffer are finished.

Client-side aggregation of the asynchronous include is also supported. Web 2.0 programmers often use

Asynchronous JavaScript™ and XML (Ajax) in the Web browser of the client to dynamically retrieve and

aggregate remote resources. Unfortunately, this puts the burden on the programmer to aggregate the

contents and learn new technologies. Client-side aggregation automatically adds the necessary JavaScript

2 Administering WebSphere applications

to dynamically update the page. For non-JavaScript clients, you can switch ARD to server-side

aggregation, which gives equivalent results. You can deny non-JavaScript clients when using client-side

aggregation.

ARD uses the Web container APIs to plug in unique request dispatching logic. It interacts with WCCM to

read in configuration information for enablement status per enterprise application as well as a global

appserver setting. You can use the administrative console and wsAdmin to enable or disable ARD.

Servlets, portlets, and JSP files can all utilize ARD.

Related tasks

“Developing servlet applications using asynchronous request dispatcher” on page 1
Web modules can dispatch requests concurrently on separate threads. Requests can be dispatched by the

server or client.

Related reference

“Asynchronous request dispatcher application design considerations”
Asynchronous request dispatcher (ARD) is not a one-size-fits-all solution to servlet programming. You must

evaluate the needs of your application and the caveats of using ARD. Switching all includes to start

asynchronously is not the solution for every scenario, but when used wisely, ARD can increase response

time. This article contains important details about the ARD implementation and issues to consider when

you design an application that leverages ARD.

Related information

Asynchronous request dispatcher application design considerations

Asynchronous request dispatcher (ARD) is not a one-size-fits-all solution to servlet programming. You must

evaluate the needs of your application and the caveats of using ARD. Switching all includes to start

asynchronously is not the solution for every scenario, but when used wisely, ARD can increase response

time. This article contains important details about the ARD implementation and issues to consider when

you design an application that leverages ARD.

Asynchronous request dispatcher client-side implementation

v JavaScript is dynamically written to the response output.

v This JavaScript results in Ajax requests back to a server-side results provider.

v Because of the Asynchronous Input/Output (AIO) features of the channel, the Ajax request does not tie

up a thread and instead is notified for completion through an include callback.

v The client only makes one request at a time for the asynchronous includes because of browser

limitations in the number of connections.

v Original connection has to be valid for the lifetime of the includes. It cannot be reused for the Ajax

requests.

v Comment nodes, such as following,

<!--uniquePlaceholderID--><!--1-->

are placed in the browser object model since comment nodes have no effect on the page layout.

v Whenever a complete fragment exists, a response can be sent to the client and the comment node with

the same ID is replaced. Requests are made until all the fragments are retrieved.

v Verify applications on all supported browsers when using client-side aggregation. Object oriented

JavaScript principles are used so that applications only need avoid using the method name

getDynamicDataIBMARD. Any previously specified window.onload is started before the ARD onload

method.

Chapter 1. Web applications 3

Asynchronous request dispatcher channel results service

Requests for include data from the asynchronous JavaScript code are sent to known Uniform Resource

Identifiers, URIs also known as URLs, that the ARD channel can intercept to prevent traveling through

Web container request handling. These URIs are unique for the each server restart.

For example, /IBMARD01234567/asyncInclude.js is the URI for the JavaScript that forces the retrieval of

the results, and /IBMARD01234567/IBMARDQueryStringEntries?=12000 is used to retrieve the results for the

entry with ID 12000.

To prevent unauthorized results access, unique IDs are generated for the service URI and for the ARD

entries. A common ID generator is shared among the session and ARD, so uniqueness is configurable

through session configuration. Session IDs are considered secure, but they are not as secure as using a

Lightweight Third-Party Authentication (LTPA) token.

Custom client-side aggregation

If you want to perform your own client-side aggregation, the isUseDefaultJavascript method must return as

false. The isUseDefaultJavascript method is part of the AsyncRequestDispatcherConfig method, which is

set on the AsyncRequestDispatcher or for the AsyncRequestDispatcherConfigImpl.getRef method. The

AsyncRequestDispatcherConfigImpl.getRef method is the global configuration object. You might want to

perform your own client-side aggregation if the back button functionality is problematic. You must remove

the results from the generic results service to prevent memory leaks, so that multiple requests with the

same response results through an XMLHttpRequest fail. To facilitate proper location of position,

placeholders are still written in the code as

<!--uniquePlaceholderID--><!--x-->

where x is the order of the includes. The endpoint to retrieve results are retrieved from the request

attribute com.ibm.websphere.webcontainer.ard.endpointURI.

When making a request to the endpoint, ARD sends as many response fragments as possible when the

request is made. Therefore, the client needs to re-request if all fragments are not initially returned. Trying

to display the results directly in a browser without using an XMLHttpRequest can result in errors related to

non well-formed XML. The response data is returned in the following format with a content type of text/xml:

<div id="2">
Servlet 3--dispatcher3 requesting Servlet3 to sleep for 0 seconds at: 1187967704265

 Servlet 3--Okay, all done! This should print pop up: third at: 1187967704281 </div>

For additional information about the AsyncRequestDispatcherConfig and the AsyncRequestDispatcher

interfaces, review the com.ibm.websphere.webcontainer.async package in the application programming

interfaces (API) documentation. The generated API documentation is available in the information center

table of contents from the path Reference → APIs - Application Programming Interfaces.

Server-side aggregation

Like client-side aggregation, server-side aggregation uses the ARD channel as a results service. The ARD

channel knows which asynchronous includes have occurred for certain set of buffers. Those buffers can

then be searched for an include placeholder. Because of the issues of JSP buffering, the placeholder for

the include might not be in the searched buffers. If this occurs, the next set of buffers must also look for

any include placeholders missed in the previous set. ARD attempts to iteratively aggregate as includes

return so that response content can be sent to the client as soon as possible.

Asynchronous beans

An AsynchBeans work manager is used to start the includes. If the number of currently requested includes

is greater than the work manager maximum thread pool size and this size is not growable, it starts the

work on the current thread and skips the placeholder write. Utilizing AsynchBeans suppports propagation

4 Administering WebSphere applications

of the J2EE context of the original thread including work area, internationalization, application profile,

z/OS® operation system work load management, security, transaction, and connection context.

Timer

A single timer is used for ARD and timer tasks are created for all the timeout types of ARD requests. Tasks

registered with the timer are not guaranteed to run at the exact time specified because the timer runs on a

single thread, therefore one timeout might have to wait for the other timeout actions to complete. The timer

is used as a last resort.

Remote request dispatcher

Optionally, ARD can be used in concert with the remote request dispatcher. The remote request dispatcher

was introduced in WebSphere® Application Server Network Deployment 6.1. The remote request

dispatcher runs the include on a different application server in a core group by serializing the request

context into a SOAP message and using Web services to call the remote server. This is useful when the

expense of creating and sending a SOAP message through Web services is outweighed by issuing the

request locally. For more information, see this developerWorks article.

Exceptions

In the case of an exception in an included servlet, the Web container goes through the error page

definitions mapped to exception types. So an error page defined in the deployment descriptor shows up as

a portion of the aggregated page. Insert logic into the error page itself if behavior is different for an

include. Because the include runs asynchronously, there is no guarantee that the top level servlet is still in

service, therefore the exception is not propagated back from an asynchronous include like a normal

include. Other includes finish so that partial pages can be displayed.

If the ARD work manager runs out of worker threads, the include is processed like a synchronous include.

This is the default setting, but the work manager can also grow such that it does not result in this

condition. This change in processing is invisible to the user during processing but is noted once in the

system logs as a warning message and the rest of the time in the trace logs when enabled. Other states

that can trigger the include to occur synchronously are reaching the maximum percentage of expired

requests over a time interval and reaching the maximum size of the results store.

There are cases where exceptions happen outside of the scope of normal error page handling. For

example, work can be rejected by the work manager. A timer can expire waiting for an include response to

return. The ARD channel, acting as a generic service to retrieve the results, might receive an ID that is not

valid. In these cases, there is no path to the error page handling because the context is missing, such as

ServletRequest, ServletResponse, and ServletContext, for the request to work. To mitigate these issues,

you can use the AsyncRequestDispatcherConfig interface to provide custom error messages. Defaults are

provided and internationalized as needed.

Exceptions can also occur outside the scope of the request the custom configuration was set on, such as

on the subsequent client-side XMLHttpRequests. In this case, the global configuration must be altered.

This can be retrieved through com.ibm.wsspi.ard.AsyncRequestDispatcherConfigImpl.getRef().

Include start

The work manager provides a timeout for how long to wait for an include to start. Since this

typically happens immediately, there is not a programmatic way to enable this. However, this is

configurable in the work manager settings. By default, you will not encounter this because of the

maximum thread check before scheduling the work. Work can be retried if setRetriable(true) is

called on the in use AsyncRequestDispatcherConfig.

Include finish

The initiated timeout starts after the work is accepted. It can be configured through the console or

programmatically through the AsyncRequestDispatcherConfig.setExecutionTimeoutOverride

Chapter 1. Web applications 5

http://www.ibm.com/developerworks/websphere/techjournal/0608_hesmer/0608_hesmer.html

method; The default value is 60000 ms, or one minute. In place of the include results, the

message from the AsyncRequestDispatcherConfig.setExecutionTimeoutMessage is sent. If this

intiated timeout is reached, but the actual include results are ready when the data can be flushed,

preference is given to the actual results. Also, this does not apply to insertFragmentBlocking calls

which always wait until the include is completed.

Expiration of results

Since the client-side has to hold the results in a service to send for the Ajax request, we want a

way to expire the results if the client goes down and never retrieves the entry. The default of a

minute is sufficient for a typical request because the Ajax request would come in immediately after

sending the response. The timer can be configured programmatically via the

setExpirationTimeoutOverride method the of AsyncRequestDispatcherConfig. The message from

the getOutputRetrievalFailureMessage method of AsyncRequestDispatcherConfig is displayed

when someone tries to access an entry that has expired and been removed from cache. This

message is the same message that is sent to someone requesting a result with an ID that never

existed.

Includes versus fragments

Consider which operations can be done asynchronously and when they can start. Ideally, all the includes

are completed when the getFragment calls are made at the beginning of the request so that the includes

can have more time to complete, and upon inserting the fragments, there would be less extra buffering

and aggregating if they have completed. However, simply calling an asynchronous include is easier

because it follows the same pattern as a normal request dispatcher include.

Web container

ServletContext

When doing cross-context includes, the context that is a target of the include must also have ARD

enabled because the Web application must have been initialized for ARD for its servlet context to

have valid methods to retrieve an AsyncRequestDispatcher. The aggregation type is determined by

the original context’s configuration because you cannot mix aggregation types.

ServletRequest

You must clone the request for each include. Otherwise, conflicts between threads might occur.

Because applications can wrap the default request objects, your wrappers must implement the

com.ibm.wsspi.webcontainer.servlet.IServletRequest interface, which has one method, the public

Object clone method, which creates the CloneNotSupportedException.

 Unwrapping occurs until a request wrapper that implements this interface is found.

Non-implementing wrappers are lost; however, a servlet filter configured for the include can rewrap

the response.

Changes made to the ServletRequest are not propagated back to the top level servlet unless

transferState on the AsyncRequestDispatcherConfig is enabled and insertFragmentBlocking is

called.

ServletResponse

A wrapped response extending com.ibm.websphere.servlet.response.StoredResponse is created

by ARD and sent to the includes because the response output must be retrievable beyond the

lifecycle of the original response.

 Internal headers set in asynchronous includes are not supported due to lifecycle restrictions unless

transferState on the AsyncRequestDispatcher config is enabled and insertFragmentBlocking is

called. Normal headers are not supported in a synchronous include as specified by the servlet

specification.

Include filters can rewrap the new response and must flush upon completion.

6 Administering WebSphere applications

ServletInputStream

An application reading parameters using getParameter is not problematic.Parsing of parameters is

forced before the first asynchronous include to prevent concurrent access to the input stream.

HttpSession

Initial getSession calls that result in a Set-Cookie header must be called from the top level servlet

because it is unpredictable when the includes are started and if the headers have already been

flushed. The exception is when transferState on the AsyncRequestDispatcherConfig is enabled

and an insertFragmentBlocking is called. This normally creates an exception when you add the

header.

Filters If there is a filter for an include, the filter is issued on the asynchronous thread.

Nested asynchronous includes

Nested asynchronous includes are not supported because they complicate aggregation. However,

an asynchronous include can have nested synchronous includes. Any attempt to perform a nested

asynchronous include reverts back to a synchronous include.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed

transactions in typical enterprise beans. The runtime starts a local transaction before invoking the method.

The asynchronous bean method can start its own global transaction if this transaction is possible for the

calling J2EE component.

If the asynchronous bean method creates an exception, any local transactions are rolled back. If the

method returns normally, any incomplete local transactions are completed according to the unresolved

action policy configured for the bean. If the asynchronous bean method starts its own global transaction

and does not commit this global transaction, the transaction is rolled back when the method returns.

Connection management

An asynchronous bean method can use the connections that its creating servlet obtained using java:comp

resource references. However, the bean method must access those connections using a get, use or close

pattern. There is no connection caching between method calls on an asynchronous bean. The connection

factories or data sources can be cached, but the connections must be retrieved on every method call,

used, and then closed. While the asynchronous bean method can look up connection factories using a

global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following

reasons:

v The JNDI name is hard coded in the application, for example, as a property or string literal.

v The connection factories are not shared because there is no way to specify a sharing scope.

Evaluate high load scenarios because asynchronous includes might increase the number of threads

waiting on the connection.

Performance

Because includes are completed asynchronously, the total performance data for a request must take into

consideration the performance of the asynchronous includes. The total time of the request could previously

be understood by the time for the top level servlet to complete, but now that servlet is exiting before the

includes are completed. The top level servlet still accounts for much of the additional setup time required

for each include.

Therefore, a new ARD performance metric was added to the Performance Monitoring Infrastructure to

measure the time for a complete request through the ARD channel. The granularity of these metrics is at

the request URI level.

Chapter 1. Web applications 7

Since ARD is an optional feature that has to be enabled, no performance decline is seen when not utilizing

ARD. However, non-ARD applications that reside on an ARD-enabled application server would suffer from

the extra layer of the ARDChannel. The channel layer does not know to which application it is going so it

is either on or off for all applications in a channel chain. These are defined per virtual host.

Security

Security is not invoked on synchronous include dispatches according to the servlet specification. However,

security context is passed along through AsynchBeans to support programmatic usage of the isUserInRole

and getUserPrincipal methods on the ServletRequest. This security context can also be propagated across

to a remote request dispatch utilizing Web services security.

Related concepts

“Asynchronous request dispatcher” on page 2
Asynchronous request dispatcher (ARD) can improve Servlet response time when slow operations can be

logically separated and performed concurrently with other operations required to complete the response.

ARD enables Java™ servlet programmers to perform standard javax.servlet.RequestDispatcher include

calls for the same request concurrently on separate threads. These javax.servlet.RequestDispatcher

include calls are completed sequentially on the same thread. ARD is also useful in low CPU, long wait

situations like waiting for a database connection.

Related tasks

“Developing servlet applications using asynchronous request dispatcher” on page 1
Web modules can dispatch requests concurrently on separate threads. Requests can be dispatched by the

server or client.

Asynchronous request dispatching settings

Use this page to enable the asynchronous request dispatcher (ARD), which enables servlets and JSP

pages to make standard include calls concurrently on separate threads.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Web Container Settings → Web container → Asynchronous request

dispatching.

Additionally, the initiation and the insertion of the include contents can be separated so that the include

has more time to execute before it needs to be written to the response. ARD requires aggregation of the

include contents with the original response. The application server can aggregate the contents in memory

or the client browser can aggregate the contents through AJAX. Aggregation type is configurable at the

application level.

Related concepts

“Asynchronous request dispatcher” on page 2
Asynchronous request dispatcher (ARD) can improve Servlet response time when slow operations can be

logically separated and performed concurrently with other operations required to complete the response.

ARD enables Java™ servlet programmers to perform standard javax.servlet.RequestDispatcher include

calls for the same request concurrently on separate threads. These javax.servlet.RequestDispatcher

include calls are completed sequentially on the same thread. ARD is also useful in low CPU, long wait

situations like waiting for a database connection.

Related tasks

“Developing servlet applications using asynchronous request dispatcher” on page 1
Web modules can dispatch requests concurrently on separate threads. Requests can be dispatched by the

server or client.

Allow Asynchronous Request Dispatching

Enables applications installed on this server to use asynchronous request dispatching.

8 Administering WebSphere applications

Asynchronous include timeout

Specifies the default timeout in milliseconds to complete asynchronous includes.

 Data type Integer

Units Milliseconds

Default 60000

Range

Maximum expired requests per minute

Specifies the maximum percentage of expired response versus total response in one minute before

switching to synchronous requests.

 Data type Integer

Units Percentage

Default 15

Range

Maximum memory size of results store

Specifies the maximum size of store for client side requests.

 Data type Integer

Units Megabytes

Default 100

Range

Task overview: Managing HTTP sessions

IBM® WebSphere Application Server provides a service for managing HTTP sessions, Session Manager.

The key activities for session management are summarized in this topic.

About this task

Before you begin these steps, make sure you are familiar with the programming model for accessing

HTTP session support in the applications following the Servlet 2.5 API.

1. Plan your approach to session management, which could include session tracking, session recovery,

and session clustering.

2. Create or modify your own applications to use session support to maintain sessions on behalf of Web

applications.

3. Assemble your application.

4. Deploy your application.

5. Ensure the administrator appropriately configures session management in the administrative domain.

6. Adjust configuration settings and perform other tuning activities for optimal use of sessions in your

environment.

Sessions

A session is a series of requests to a servlet, originating from the same user at the same browser.

Sessions allow applications running in a Web container to keep track of individual users.

For example, a servlet might use sessions to provide ″shopping carts″ to online shoppers. Suppose the

servlet is designed to record the items each shopper indicates he or she wants to purchase from the Web

Chapter 1. Web applications 9

site. It is important that the servlet be able to associate incoming requests with particular shoppers.

Otherwise, the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives with each request. If the

user’s browser is cookie-enabled, the session ID is stored as a cookie. As an alternative, the session ID

can be conveyed to the servlet by URL rewriting, in which the session ID is appended to the URL of the

servlet or JavaServer Pages (JSP) file from which the user is making requests. For requests over HTTPS

or Secure Sockets Layer (SSL), another alternative is to use SSL information to identify the session.

Session tracking using the SSL ID is deprecated in WebSphere Application Server version 7.0. You can

configure session tracking to use cookies or modify the application to use URL rewriting.

HTTP session migration

There are no programmatic changes required to migrate from version 5.x to version 6.x. This article

describes features that are available after migration.

Migration from Version 5.x

Note: In Version 5 and later, default write frequency mode is TIME_BASED_WRITES, which is different

from Version 4.0.x default mode of END_OF_SERVICE.

Session security support

You can integrate HTTP sessions and security in WebSphere Application Server. When security integration

is enabled in the session management facility and a session is accessed in a protected resource, you can

access that session only in protected resources from then on.

You cannot mix secured and unsecured resources accessing sessions when security integration is turned

on. Security integration in the session management facility is not supported in form-based login with

SWAM.

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future

release.

Security integration rules for HTTP sessions

Only authenticated users can access sessions created in secured pages and are created under the

identity of the authenticated user. Only this authenticated user can access these sessions in other secured

pages. To protect these sessions from unauthorized users, you cannot access them from an unsecured

page.

Programmatic details and scenarios

WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the com.ibm.websphere.servlet.session.IBMSession interface, is

associated with a session. An unauthenticated identity is denoted by the user name anonymous.

WebSphere Application Server includes the

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class, which is used when a

session is requested without the necessary credentials.

The session management facility uses the WebSphere Application Server security infrastructure to

determine the authenticated identity associated with a client HTTP request that either retrieves or creates

a session. WebSphere Application Server security determines identity using certificates, LPTA, and other

methods.

10 Administering WebSphere applications

After obtaining the identity of the current request, the session management facility determines whether to

return the session requested using a getSession call.

The following table lists possible scenarios in which security integration is enabled with outcomes

dependent on whether the HTTP request is authenticated and whether a valid session ID and user name

was passed to the session management facility.

 Unauthenticated HTTP request is

used to retrieve a session

HTTP request is authenticated, with

an identity of ″FRED″ used to

retrieve a session

No session ID was passed in for

this request, or the ID is for a

session that is no longer valid

A new session is created. The user

name is anonymous

A new session is created. The user

name is FRED

A session ID for a valid session is

passed in. The current session

user name is ″anonymous″

The session is returned. The session is returned. session

management changes the user name to

FRED

A session ID for a valid session is

passed in. The current session

user name is FRED

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

The session is returned.

A session ID for a valid session is

passed in. The current session

user name is BOB

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error is created to the

servlet.

Session management support

WebSphere Application Server provides facilities, grouped under the heading Session Management, that

support the javax.servlet.http.HttpSession interface described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the session management facility supports session

scoping by Web modules. Only servlets in the same Web module can access the data associated with a

particular session. Multiple requests from the same browser, each specifying a unique Web application,

result in multiple sessions with a shared session ID. You can invalidate any of the sessions that share a

session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application timeout value of 0 (the

default value) means that the invalidation timeout value from the session management facility is used.

When an HTTP client interacts with a servlet, the state information associated with a series of client

requests is represented as an HTTP session and identified by a session ID. Session management is

responsible for managing HTTP sessions, providing storage for session data, allocating session IDs, and

tracking the session ID associated with each client request through the use of cookies or URL rewriting

techniques. Session management can store session-related information in several ways:

v In application server memory (the default). This information cannot be shared with other application

servers.

v In a database. This storage option is known as database persistent sessions.

The last two options are referred to as distributed sessions. Distributed sessions are essential for using

HTTP sessions for the failover facility. When an application server receives a request associated with a

session ID that it currently does not have in memory, it can obtain the required session state by accessing

the external store (database or memory-to-memory). If distributed session support is not enabled, an

application server cannot access session information for HTTP requests that are sent to servers other than

Chapter 1. Web applications 11

the one where the session was originally created. Session management implements caching optimizations

to minimize the overhead of accessing the external store, especially when consecutive requests are routed

to the same application server.

Storing session states in an external store also provides a degree of fault tolerance. If an application

server goes offline, the state of its current sessions is still available in the external store. This availability

enables other application servers to continue processing subsequent client requests associated with that

session.

Saving session states to an external location does not completely guarantee their preservation in case of a

server failure. For example, if a server fails while it is modifying the state of a session, some information is

lost and subsequent processing using that session can be affected. However, this situation represents a

very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the session state in an

external location can use valuable system resources. session management can improve system

performance by caching the session data at the server level. Multiple consecutive requests that are

directed to the same server can find the required state data in the cache, reducing the number of times

that the actual session state is accessed in external store and consequently reducing the overhead

associated with external location access.

Session tracking options

HTTP session support also involves session tracking. You can use cookies, URL rewriting, or Secure

Sockets Layer (SSL) information for session tracking.

the following tracking methods are available:

v Session tracking with cookies

v Session tracking with URL rewriting

v Session tracking with Secure Sockets Layer (SSL) information

Session tracking with cookies

Tracking sessions with cookies is the default. No special programming is required to track sessions with

cookies.

Session tracking with URL rewriting

An application that uses URL rewriting to track sessions must adhere to certain programming guidelines.

The application developer needs to do the following:

v Program servlets to encode URLs

v Supply a servlet or JavaServer Pages (JSP) file as an entry point to the application

Using URL rewriting also requires that you enable URL rewriting in the session management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use cookies as a session

tracking mechanism. Applications can use URL rewriting as a substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting them, include either the

encodeURL method or the encodeRedirectURL method in the servlet code. Examples demonstrating what

to replace in your current servlet code follow.

Rewrite URLs to return to the browser

Suppose you currently have this statement:

out.println("catalog<a>");

12 Administering WebSphere applications

Change the servlet to call the encodeURL method before sending the URL to the output stream:

out.println("<a href=\"");

out.println(response.encodeURL ("/store/catalog"));

out.println("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:

response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:

response.sendRedirect (response.encodeRedirectURL ("http://myhost/store/catalog"));

The encodeURL method and encodeRedirectURL method are part of the HttpServletResponse object.

These calls check to see if URL rewriting is configured before encoding the URL. If it is not configured, the

calls return the original URL.

If both cookies and URL rewriting are enabled and the response.encodeURL method or

encodeRedirectURL method is called, the URL is encoded, even if the browser making the HTTP request

processed the session cookie.

You can also configure session support to enable protocol switch rewriting. When this option is enabled,

the product encodes the URL with the session ID for switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application, such as the initial screen presented, may not require the use of

sessions. However, if the application in general requires session support (meaning some part of it, such as

a servlet, requires session support), then after a session is created, all URLs are encoded to perpetuate

the session ID for the servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:

<%

response.encodeURL ("/store/catalog");

%>

Session tracking with SSL information (Deprecated)

Note: Session tracking using the SSL ID is deprecated in WebSphere Application Server version 7.0. You

can configure session tracking to use cookies or URL rewriting.

No special programming is required to track sessions with Secure Sockets Layer (SSL) information.

To use SSL information, turn on Enable SSL ID tracking in the session management property page.

Because the SSL session ID is negotiated between the Web browser and HTTP server, this ID cannot

survive an HTTP server failure. However, the failure of an application server does not affect the SSL

session ID if an external HTTP server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only. You can control the

lifetime of an SSL session ID by configuring options in the Web server. For example, in the IBM HTTP

Server, set the configuration variable SSLV3TIMEOUT to provide an adequate lifetime for the SSL session

ID. An interval that is too short can cause a premature termination of a session. Also, some Web browsers

might have their own timers that affect the lifetime of the SSL session ID. These Web browsers may not

leave the SSL session ID active long enough to serve as a useful mechanism for session tracking. The

internal HTTP Server of WebSphere Application Server also supports SSL tracking.

Chapter 1. Web applications 13

When using the SSL session ID as the session tracking mechanism in a cloned environment, use either

cookies or URL rewriting to maintain session affinity. The cookie or rewritten URL contains session affinity

information that enables the Web server to properly route a session back to the same server for each

request.

Distributed sessions

In a distributed environment, you can save sessions in a database using database session persistence or

you can store sessions in multiple WebSphere Application Server instances using memory-to-memory

session replication.

WebSphere Application Server provides the following session mechanisms in a distributed environment:

v Database session persistence, where sessions are stored in the database specified.

v Memory-to-memory session replication, where sessions are stored in one or more specified

WebSphere Application Server instances or profiles.

When a session contains attributes that implement HttpSessionActivationListener, notification occurs

anytime the session is activated (that is, session is read to the memory cache) or passivated (that is,

session leaves the memory cache). Passivation can occur because of a server shutdown or when the

session memory cache is full and an older session is removed from the memory cache to make room for a

newer session. It is not guaranteed that a session is passivated in one application server prior to activation

in another application.

Session recovery support

For session recovery support, WebSphere Application Server provides distributed session support in the

form of database sessions and memory-to-memory replication. You can use session recovery support

when the user’s session data must be maintained across a server restart or when the user’s session data

is too valuable to lose through an unexpected server failure.

All the attributes set in a session must implement java.io.Serializable if the session requires external

storage. In general, consider making all objects held by a session serialized, even if immediate plans do

not call for session recovery support. If the Web site grows, and session recovery support becomes

necessary, the transition occurs transparently to the application if the sessions only hold serialized objects.

If not, a switch to session recovery support requires coding changes to make the session contents

serialized.

Distributed environment settings

Use this page to specify a type for saving a session in a distributed environment.

To view this administrative console page at the Web container level, click Servers → Server Types →

WebSphere application servers → server_name → Session management → Distributed environment

settings.

Note that the distributed environment settings can be overridden at the application level.

Distributed sessions:

Specifies the type of distributed environment to be used for saving sessions.

 None Specifies that the session management facility discards

the session data when the server shuts down.

Database Specifies that the session management facility stores

session information in the data source specified by the

data source connection settings. Click Database to

change these data source settings.

14 Administering WebSphere applications

Memory-to-memory replication Specifies that the session management facility stores the

session information in a data source in memory. The

session information is copied to other session

management facilities for failure recovery. Click

Memory-to-memory replication to change these data

source settings.

Memory-to-memory replication

Memory-to-memory session replication is the session replication to another WebSphere Application Server.

In this mode, sessions can replicate to one or more Application Servers to address HTTP Session single

point of failure (SPOF).

The WebSphere Application Server profile in which the session is currently processed is referred to as the

owner of the session. In a clustered environment, session affinity in the WebSphere Application Server

plug-in routes the requests for a given session to the same server. If the current owner server profile of the

session fails, then the WebSphere Application Server plug-in routes the requests to another appropriate

server in the cluster. In a peer-to-peer cluster, the hot failover feature causes the plug-in to failover to a

server that already contains the backup copy of the session, avoiding the overhead of session retrieval

from another server containing the backup. In a client/server cluster, the server retrieves the session from

a server that has the backup copy of the session. The server now becomes the owner of the session and

affinity is now maintained to this server.

There are three possible modes to run in:

v Server mode: Only store backup copies of other WebSphere Application Server sessions and not to

send out copies of any session created in that particular server

v Client mode: Only broadcast or send out copies of the sessions it owns and not to receive backup

copies of sessions from other servers

v Both mode: Simultaneously broadcast or send out copies of the sessions it owns and act as a backup

table for sessions owned by other WebSphere Application Server profiles.

You can select the replication mode of server, client, or both when configuring the session management

facility for memory-to-memory replication. The default is both. This storage option is controlled by the

mode parameter.

The memory-to-memory replication function is accomplished by the creation of a data replication service

instance in an application server that talks to other data replication service instances in remote application

servers. You must configure this data replication service instance as a part of a replication domain. Data

replication service instances on disparate application servers that replicate to one another must be

configured as a part of the same domain. You must configure all session managers connected to a

replication domain to have the same topology. If one session manager instance in a domain is configured

to use the client/server topology, then the rest of the session manager instances in that domain must be a

combination of servers configured as Client only and Server only. If one session manager instance is

configured to use the peer-to-peer topology, then all session manager instances must be configured as

Both client and server. For example, a server only data replication service instance and a both client and

server data replication service instance cannot exist in the same replication domain. Multiple data

replication service instances that exist on the same application server due to session manager

memory-to-memory configuration at various levels that are configured to be part of the same domain must

have the same mode.

With respect to mode, the following are the primary examples of memory-to-memory replication

configuration:

v Peer-to-peer replication

v Client/server replication

Chapter 1. Web applications 15

Although the administrative console allows flexibility and additional possibilities for memory-to-memory

replication configuration, only the configurations provided above are officially supported.

There is a single replica in a cluster by default. You can modify the number of replicas through the

replication domain.

Memory-to-memory topology: Peer-to-peer function

The basic peer-to-peer (both client and server function, or both mode) topology is the default configuration

and has a single replica. However, you can also add additional replicas by configuring the replication

domain.

 In this basic peer-to-peer topology, each server Java Virtual Machine (JVM) can:

v Host the Web application leveraging the HTTP session

v Send out changes to the HTTP session that it owns

v Receive backup copies of the HTTP session from all of the other servers in the cluster

This configuration represents the most consolidated topology, where the various system parts are

collocated and requires the fewest server processes. When using this configuration, the most stable

implementation is achieved when each node has equal capabilities (CPU, memory, and so on), and each

handles the same amount of work.

It is also important to note that when using the peer-to-peer topology, that one session replication backup

must run at all times for invalidation to occur. For example, if you have a cluster of 2 application servers,

server1 and server2, that are both configured in the peer-to-peer mode and server2 goes down. All of

backup information for server1 is lost and those sessions are no longer invalidated properly.

Memory-to-memory topology: Client/server function

The client/server configuration, used to attain session affinity, consists of a cluster of servers that are

configured as client only and server only. Using the client/server configuration has benefits such as

HTTP servers
with affinity

HTTP servers
with affinity

Local

Backup

Local

Backup

Local

Backup

Replication Domain

16 Administering WebSphere applications

isolating the handling of backup data from local data, recycling backup servers without affecting the

servers running the application, and removing the need for a one-to-one correspondence between servers

to attain session affinity.

The following figure depicts the client/server mode. There is a tier of applications servers that host Web

applications using HTTP sessions, and these sessions are replicated out as they are created and updated.

There is a second tier of servers without a Web application installed, where the session manager receives

updates from the replication clients.

 Benefits of the client/server configuration include:

Isolation for failure recovery

In this case we are isolating the handling of backup data from local data; aside from isolating the

moving parts in case of a catastrophic failure in one of them, you again free up memory and

processing in the servers processing the Web application.

Isolation for stopping and starting

You can recycle a backup server without affecting the servers running the application (when there

are two or more backups, failure recovery is possible), and conversely recycle an application JVM

without potentially losing that backup data for someone.

Consolidation

There is most likely no need to have a one-to-one correspondence between servers handling

backups and those processing the applications; hence, you are again reducing the number of

places to which you transfer the data.

Disparate hardware:

While you run your Web applications on cheaper hardware, you may have one or two more

powerful computers in the back end of your enterprise that have the capacity to run a couple of

HTTP servers
with affinity

HTTP servers
with affinity

Local

Local

Local

Replication Domain

Backup

Backup

WebSphere Application Server

servers including HTTP sessions
with local tables.

WebSphere Application Server

servers including HTTP sessions
with backup tables.

Chapter 1. Web applications 17

session managers in replication server mode; allowing you to free up your cheaper Web

application hardware to process the Web application.

Timing consideration: Start the backup application servers first to avoid unexpected timing windows. The

clients attempt to replicate information and HTTP sessions to the backup servers as soon as they come

up. As a result, HTTP sessions that are created prior to the time at which the servers come up might not

replicate successfully.

Memory-to-memory session partitioning

Session partitioning gives the administrator the ability to filter or reduce the number of destinations that the

session object gets sent to by the replication service. You can also configure session partitioning by

specifying the number of replicas on the replication domain. The Single replica option is chosen by default.

Since the number of replicas is global for the entire replication domain, all the session managers

connected to the replication domain use the same setting.

Single replica

You can replicate a session to only one other server, creating a single replica. When this option is

chosen, a session manager picks another session manager that is connected to the same

replication domain to replicate the HTTP session to during session creation. All updates to the

session are only replicated to that single server. This option is set at the replication domain level.

When this option is set, every session manager connected to this replication domain creates a

single backup copy of HTTP session state information on a backup server.

Full group replica

Each object is replicated to every application server that is configured as a consumer of the

replication domain. However, in the peer-to-peer mode, this topology is the most redundant

because everyone replicates to everyone and as you add servers, more overhead (both CPU and

memory) is needed to deal with replication. This mode is most useful for dynamic caching

replication. Redundancy does not affect the client/server mode because clients only replicate to

servers that are set to server mode.

Specific number of replicas

You can specify a specific number of replicas for any entry that is created in the replication

domain. The number of replicas is the number of application servers that the user wants to use to

replicate in the domain. This option eliminates redundancy that occurs in a full group replica and

also provides additional backup than a single replica. In peer-to-peer mode, the number of

replicas cannot exceed the total number of application servers in the cluster. In the client/server

mode, the number of replicas cannot exceed the total number of application servers in the cluster

that are set to server mode.

Clustered session support

A clustered environment supports load balancing, where the workload is distributed among the application

servers that compose the cluster.

In a cluster environment, the same Web application must exist on each of the servers that can access the

session. You can accomplish this setup by installing an application onto a cluster definition. Each of the

servers in the group can then access the Web application

In a clustered environment, the session management facility requires an affinity mechanism so that all

requests for a particular session are directed to the same application server instance in the cluster. This

requirement conforms to the Servlet 2.3 specification in that multiple requests for a session cannot coexist

in multiple application servers. One such solution provided by IBM WebSphere Application Server is

session affinity in a cluster; this solution is available as part of the WebSphere Application Server plug-ins

for Web servers. It also provides for better performance because the sessions are cached in memory. In

clustered environments other than WebSphere Application Server clusters, you must use an affinity

mechanism (for example, IBM WebSphere Edge Server affinity).

18 Administering WebSphere applications

If one of the servers in the cluster fails, it is possible for the request to reroute to another server in the

cluster. If distributed sessions support is enabled, the new server can access session data from the

database or another WebSphere Application Server instance. You can retrieve the session data only if a

new server has access to an external location from which it can retrieve the session.

Session management tuning

WebSphere Application Server session support has features for tuning session performance and operating

characteristics, particularly when sessions are configured in a distributed environment. These options

support the administrator flexibility in determining the performance and failover characteristics for their

environment.

The following table summarizes the features, including whether they apply to sessions tracked in memory,

in a database, with memory-to-memory replication, or all. Some features are easily manipulated using

administrative settings; others require code or database changes.

 Feature or option Goal Applies to sessions in memory,

database, or memory-to-memory

Write frequency Minimize database write operations. Database and Memory-to-Memory

Session affinity Access the session in the same

application server instance.

All

Multirow schema Fully utilize database capacities. Database

Base in-memory session pool size Fully utilize system capacity without

overburdening system.

All

Write contents Allow flexibility in determining what

session data to write

Database and Memory-to-Memory

Scheduled invalidation Minimize contention between session

requests and invalidation of sessions

by the Session Management facility.

Minimize write operations to database

for updates to last access time only.

Database and Memory-to-Memory

Tablespace and row size Increase efficiency of write operations

to database.

Database (DB2® only)

HTTP sessions: Resources for learning

Use the following links to find relevant supplemental information about HTTP sessions. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks® that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

Programming model and decisions

v Improving session persistence performance with DB2

Programming instructions and examples

v Java Servlet documentation, tutorials, and examples site

Chapter 1. Web applications 19

http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://java.sun.com/products/servlet/docs.html

Programming specifications

v Java Servlet 2.4 API specification download site

v J2EE 1.4 specification download site

Scheduled invalidation

Instead of relying on the periodic invalidation timer that runs on an interval based on the session timeout

parameter, you can set specific times for the session management facility to scan for invalidated sessions

in a distributed environment.

When used with distributed sessions, this feature has the following benefits:

v You can schedule the scan for invalidated sessions for times of low application server activity, avoiding

contention between invalidation scans of database or another WebSphere Application Server instance

and read and write operations to service HTTP session requests.

v Significantly fewer external write operations can occur when running with the End of Service Method

Write mode because the last access time of the session does not need to be written out on each HTTP

request. (Manual Update options and Time Based Write options already minimize the writing of the last

access time.)

Usage considerations

v The session manager invalidates sessions only at the scheduled time, therefore sessions are available

to an application if they are requested before the session is invalidated.

v With scheduled invalidation configured, HttpSession timeouts are not strictly enforced. Instead, all

invalidation processing is handled at the configured invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation times unless the

HttpSession.invalidate method is explicitly called.

v The HttpSession.invalidate method immediately invalidates the session from both the session cache and

the external store.

v The periodic invalidation thread still runs with scheduled invalidation. If the current hour of the day does

not match one of the configured hours, sessions that have exceeded the invalidation interval are

removed from cache, but not from the external store. Another request for that session results in

returning that session back into the cache.

v When the periodic invalidation thread runs during one of the configured hours, all sessions that have

exceeded the invalidation interval are invalidated by removal from both the cache and the external

store.

v The periodic invalidation thread can run more than once during an hour and does not necessarily run

exactly at the top of the hour.

v If you specify the interval for the periodic invalidation thread using the HttpSessionReaperPollInterval

custom property, do not specify a value of more than 3600 seconds (1 hour) to ensure that invalidation

processing happens at least once during each hour.

Base in-memory session pool size

The base in-memory session pool size number depends on the session support configuration.

v With in-memory sessions, session access is optimized for up to this number of sessions.

v With distributed sessions, when sessions are stored in a database or in another WebSphere Application

Server instance,; the pool size also specifies the cache size and the number of last access time

updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and a new session is

requested, the Session Management facility removes the least recently used session from the cache to

make room for the new one.

General memory requirements for the hardware system, and the usage characteristics of the e-business

site, determines the optimum value.

20 Administering WebSphere applications

http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

Note that increasing the base in-memory session pool size can necessitate increasing the heap sizes of

the Java processes for the corresponding WebSphere Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base in-memory session pool

size. If you do not wish to place a limit on the number of sessions maintained in memory and allow

overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory and even allow for

system sabotage. Someone could write a malicious program that continually hits your site and creates

sessions, but ignores any cookies or encoded URLs and never utilizes the same session from one HTTP

request to the next.

When overflow is disallowed, the Session Management facility still returns a session with the

HttpServletRequest getSession(true) method when the memory limit is reached, and this is an invalid

session that is not saved.

With the WebSphere Application Server extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true if the session is such

an invalid session. An application can check this status and react accordingly.

HTTP session invalidation

HTTP sessions are invalidated by calling the invalidate method on the session object or by specifying a

specific time interval using the MaxInactiveInterval property.

Sessions that are invalidated explicitly by application code are invalidated immediately. Sessions that are

not invalidated by application code are invalidated by the session manager. Session invalidation occurs

regardless of session persistence configuration.

A session is a candidate for invalidation if it has not been accessed for a period that is longer than the

specified session timeout, specified by the MaxInactiveInterval value. The session manager has an

invalidation process thread that runs every X seconds to invalidate sessions that are eligible for

invalidation.

The session manager uses a formula to determine the value of X, specified by the ReaperInterval

property. The value of X is calculated based on the MaxInactiveInterval value that is specified in the

session manager.

For example, for a maximum inactive interval less than 15 minutes, the ReaperInterval value is

approximately 60 to 90 seconds. For a maximum inactive interval greater than 15 minutes, the

ReaperInterval value is approximately 300 to 360 seconds.

A session is invalidated when the MaxInactiveInterval is exceeded and the ReaperInterval passes. After a

session is eligible for invalidation, the invalidation thread must run for the session to be invalidated.

Therefore, a session might not be invalidated for the sum of the MaxInactiveInterval and ReaperInterval

value in seconds.

A session that has exceeded the MaxInactiveInterval but is not yet removed by the invalidation thread is

still available for use. If that session is requested then it is returned to the client.

You can specify whether the session is invalidated immediately or after a specified time interval. For

immediate invalidation the application should call the invalidate method. To invalidate a session at a

specific time, you can set the ReaperInterval Web container custom property in seconds to specify the

frequency of the invalidation thread.

Chapter 1. Web applications 21

Write operations

You can manually control when modified session data is written out to the database or to another

WebSphere Application Server instance by using the sync method in the

com.ibm.websphere.servlet.session.IBMSession interface. The manual update, end of service servlet and

the time based write frequency modes are available to tune write frequency of session data.

This interface extends the javax.servlet.http.HttpSession interface. By calling the sync method from the

service method of a servlet, you send any changes in the session to the external location. When manual

update is selected as the write frequency mode, session data changes are written to an external location

only if the application calls the sync method. If the sync method is not called, session data changes are

lost when a session object leaves the server cache. When end of service servlet or time based is the write

frequency mode, the session data changes are written out whenever the sync method is called. If the sync

method is not called, changes are written out at the end of service method or on a time interval basis

based on the write frequency mode that is selected.

 IBMSession iSession = (IBMSession) request.getSession();

 iSession.setAttribute("name", "Bob");

 //force write to external store

 iSession.sync()

If the database is down or is having difficulty connecting during an update to session values, the sync

method always makes three attempts before it finally creates a BackedHashtable.getConnectionError error.

For each connection attempt that fails, the BackedHashtable.StaleConnectionException is created and can

be found in the sync method. If the database opens during any of these three attempts, the session data

in the memory is then persisted and committed to the database.

However, if the database is still not up after the three attempts, then the session data in the memory is

persisted only after the next check for session invalidation. Session invalidation is checked by a separate

thread that is triggered every five minutes. The data in memory is consistent unless a request for session

data is issued to the server between these events. For example, if the request for session data is issued

within five minutes, then the previous persisted session data is sent.

Sessions are not transactional resources. Because the sync method is associated with a separate thread

than the client, the exception that is created does not propagate to the client, which is running on the

primary thread. Transactional integrity of data can be maintained through resources such as enterprise

beans.

Related reference

“Session management tuning” on page 19
WebSphere Application Server session support has features for tuning session performance and operating

characteristics, particularly when sessions are configured in a distributed environment. These options

support the administrator flexibility in determining the performance and failover characteristics for their

environment.

Tuning parameter settings

Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Session management → Distributed environment settings → Custom tuning

parameters.

Tuning level

Specifies that the session management facility provides certain predefined settings that affect

performance.

22 Administering WebSphere applications

Select one of these predefined settings or customize a setting. To customize a setting, select one of the

predefined settings that comes closest to the setting desired, click Custom settings, make your changes,

and then click OK.

Very high (optimize for performance)

 Write frequency Time based

Write interval 300 seconds

Write contents Only updated attributes

Schedule sessions cleanup true

First time of day default 0

Second time of day default 2

High

 Write frequency Time based

Write interval 300 seconds

Write contents All session attributes

Schedule sessions cleanup false

Medium

 Write frequency End of servlet service

Write contents Only updated attributes

Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service

Write contents All session attributes

Schedule sessions cleanup false

Custom settings

 Write frequency default Time based

Write interval default 10 seconds

Write contents default All session attributes

Schedule sessions cleanup default false

Tuning parameter custom settings

Use this page to customize tuning parameters for distributed sessions.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Session management → Distributed environment settings → Custom tuning

parameters → Custom settings.

Write frequency

Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another WebSphere

Application Server instance after the servlet completes

execution.

Chapter 1. Web applications 23

Manual update A programmatic sync on the IBMSession object is required

to write the session data to the database or another

WebSphere Application Server instance.

Time based Session data writes to the database or another

WebSphere Application Server instance based on the

specified Write interval value. Default: 10 seconds

Write contents

Specifies whether updated attributes are only written to the external location or all of the session attributes

are written to the external location, regardless of whether or not they changed. The external location can

be either a database or another application server instance.

 Only updated attributes Only updated attributes are written to the persistent store.

All session attribute All attributes are written to the persistent store.

Schedule sessions cleanup

Specifies when to clean the invalid sessions from a database or another application server instance.

 Specify distributed sessions cleanup schedule Enables the scheduled invalidation process for cleaning

up the invalidated HTTP sessions from the external

location. Enable this option to reduce the number of

updates to a database or another application server

instance required to keep the HTTP sessions alive. When

this option is not enabled, the invalidator process runs

every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a

day for the process to clean up the invalidated sessions in

the external location. Specify the times when there is the

least activity in the application servers. An external

location can be either a database or another application

server instance.

First Time of Day (0 - 23) Indicates the first hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Best practices for using HTTP sessions

This topic presents best practices for the implementation of HTTP sessions.

Note: Browse the following recommendations for implementing HTTP sessions.

v Enable Security integration for securing HTTP sessions

HTTP sessions are identified by session IDs. A session ID is a pseudo-random number generated at the

runtime. Session hijacking is a known attack HTTP sessions and can be prevented if all the requests

going over the network are enforced to be over a secure connection (meaning, HTTPS). But not every

configuration in a customer environment enforces this constraint because of the performance impact of

SSL connections. Due to this relaxed mode, HTTP session is vulnerable to hijacking and because of

this vulnerability, WebSphere Application Server has the option to tightly integrate HTTP sessions and

WebSphere Application Server security. Enable security in WebSphere Application Server so that the

sessions are protected in a manner that only users who created the sessions are allowed to access

them.

24 Administering WebSphere applications

v Release HttpSession objects using javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the Web container until:

– The application explicitly and programmatically releases it using the

javax.servlet.http.HttpSession.invalidate method; quite often, programmatic invalidation is part of an

application logout function.

– WebSphere Application Server destroys the allocated HttpSession when it expires (default = 1800

seconds or 30 minutes). The WebSphere Application Server can only maintain a certain number of

HTTP sessions in memory based on session management settings. In case of distributed sessions,

when maximum cache limit is reached in memory, the session management facility removes the

least recently used (LRU) one from cache to make room for a session.

.

v Avoid trying to save and reuse the HttpSession object outside of each servlet or JSP file.

The HttpSession object is a function of the HttpRequest (you can get it only through the req.getSession

method), and a copy of it is valid only for the life of the service method of the servlet or JSP file. You

cannot cache the HttpSession object and refer to it outside the scope of a servlet or JSP file.

v Implement the java.io.Serializable interface when developing new objects to be stored in the

HTTP session.

Serializability of a class is enabled by the class implementing the java.io.Serializable interface.

Implementing the java.io.Serializable interface allows the object to properly serialize when using

distributed sessions. Classes that do not implement this interface will not have their states serialized or

deserialized. Therefore, if a class does not implement the Serializable interface, the JVM cannot persist

its state into a database or into another JVM. All subtypes of a serializable class are serializable. An

example of this follows:

 public class MyObject implements java.io.Serializable {...}

Make sure all instance variable objects that are not marked transient are serializable. You cannot cache

a non-serializable object.

In compliance with the Java Servlet specification, the distributed servlet container must create an

IllegalArgumentException for objects when the container cannot support the mechanism necessary for

migration of the session storing them. An exception is created only when you have selected

distributable.

v The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of an attribute in a failover

scenario or when session affinity is broken. Use transactional aware resources like enterprise Java

beans to guarantee the transaction integrity required by your application.

v Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the correct class path (the

application class path if utilizing sharing across Web modules in an enterprise application, or the Web

module class path if using the Servlet 2.2-complaint session sharing) or in the directory containing other

servlets used in WebSphere Application Server. In the case of session clustering, this action applies to

every node in the cluster.

Because the HttpSession object is shared among servlets that the user might access, consider adopting

a site-wide naming convention to avoid conflicts.

v Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session data. However, by storing

the data in the HttpSession object as one large object, an application forces WebSphere Application

Server to process all of it each time.

v Utilize Session Affinity to help achieve higher cache hits in the WebSphere Application Server.

WebSphere Application Server has functionality in the HTTP Server plug-in to help with session affinity.

The plug-in reads the cookie data (or encoded URL) from the browser and helps direct the request to

the appropriate application or clone based on the assigned session key. This functionality increases use

of the in-memory cache and reduces hits to the database or another WebSphere Application Server

instance

v Maximize use of session affinity and avoid breaking affinity.

Chapter 1. Web applications 25

Using session affinity properly can enhance the performance of the WebSphere Application Server.

Session affinity in the WebSphere Application Server environment is a way to maximize the in-memory

cache of session objects and reduce the amount of reads to the database or another WebSphere

Application Server instance. Session affinity works by caching the session objects in the server instance

of the application with which a user is interacting. If the application is deployed in multiple servers of a

server group, the application can direct the user to any one of the servers. If the users starts on server1

and then comes in on server2 a little later, the server must write all of the session information to the

external location so that the server instance in which server2 is running can read the database. You can

avoid this database read using session affinity. With session affinity, the user starts on server1 for the

first request; then for every successive request, the user is directed back to server1. Server1 has to

look only at the cache to get the session information; server1 never has to make a call to the session

database to get the information.

You can improve performance by not breaking session affinity. Some suggestions to help avoid breaking

session affinity are:

– Combine all Web applications into a single application server instance, if possible, and use modeling

or cloning to provide failover support.

– Create the session for the frame page, but do not create sessions for the pages within the frame

when using multi-frame JSP files. (See discussion later in this topic.)
v When using multi-framed pages, follow these guidelines:

– Create a session in only one frame or before accessing any frame sets. For example, assuming

there is no session already associated with the browser and a user accesses a multi-framed JSP file,

the browser issues concurrent requests for the JSP files. Because the requests are not part of any

session, the JSP files end up creating multiple sessions and all of the cookies are sent back to the

browser. The browser honors only the last cookie that arrives. Therefore, only the client can retrieve

the session associated with the last cookie. Creating a session before accessing multi-framed pages

that utilize JSP files is recommended.

– By default, JSP files get a HTTPSession using request.getSession(true) method. So by default

JSP files create a new session if none exists for the client. Each JSP page in the browser is

requesting a new session, but only one session is used per browser instance. A developer can use

<% @ page session=″false″ %> to turn off the automatic session creation from the JSP files that do

not access the session. Then if the page needs access to the session information, the developer can

use <%HttpSession session = javax.servlet.http.HttpServletRequest.getSession(false); %> to

get the already existing session that was created by the original session creating JSP file. This

action helps prevent breaking session affinity on the initial loading of the frame pages.

– Update session data using only one frame. When using framesets, requests come into the HTTP

server concurrently. Modifying session data within only one frame so that session changes are not

overwritten by session changes in concurrent frameset is recommended.

– Avoid using multi-framed JSP files where the frames point to different Web applications. This action

results in losing the session created by another Web application because the JSESSIONID cookie

from the first Web application gets overwritten by the JSESSIONID created by the second Web

application.
v Secure all of the pages (not just some) when applying security to servlets or JSP files that use

sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make sense to protect access to

session state only part of the time. When security integration is enabled in the session management

facility, all resources from which a session is created or accessed must be either secured or unsecured.

You cannot mix secured and unsecured resources.

The problem with securing only a couple of pages is that sessions created in secured pages are

created under the identity of the authenticated user. Only the same user can access sessions in other

secured pages. To protect these sessions from use by unauthorized users, you cannot access these

sessions from an unsecured page. When a request from an unsecured page occurs, access is denied

and an UnauthorizedSessionRequestException error is created. (UnauthorizedSessionRequestException

is a runtime exception; it is logged for you.)

v Use manual update and either the sync() method or time-based write in applications that read

session data, and update infrequently.

26 Administering WebSphere applications

With END_OF_SERVICE as write frequency, when an application uses sessions and anytime data is

read from or written to that session, the LastAccess time field updates. If database sessions are used, a

new write to the database is produced. This activity is a performance hit that you can avoid using the

Manual Update option and having the record written back to the database only when data values

update, not on every read or write of the record.

To use manual update, turn it on in the session management service. (See the tables above for location

information.) Additionally, the application code must use the

com.ibm.websphere.servlet.session.IBMSession class instead of the generic HttpSession. Within the

IBMSession object there is a sync method. This method tells the WebSphere Application Server to write

the data in the session object to the database. This activity helps the developer to improve overall

performance by having the session information persist only when necessary.

Note: An alternative to using the manual updates is to utilize the timed updates to persist data at

different time intervals. This action provides similar results as the manual update scheme.

v Implement the following suggestions to achieve high performance:

– If your applications do not change the session data frequently, use Manual Update and the sync

function (or timed interval update) to efficiently persist session information.

– Keep the amount of data stored in the session as small as possible. With the ease of using sessions

to hold data, sometimes too much data is stored in the session objects. Determine a proper balance

of data storage and performance to effectively use sessions.

– If using database sessions, use a dedicated database for the session database. Avoid using the

application database. This helps to avoid contention for JDBC connections and allows for better

database performance.

– If using memory-to-memory sessions, employ partitioning (either group or single replica) as your

clusters grow in size and scaling decreases.

– Verify that you have the latest fix packs for the WebSphere Application Server.
v Utilize the following tools to help monitor session performance.

– Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug servlet. - To run this

servlet, you must have the servlet invoker running in the Web application you want to run this from.

Or, you can explicitly configure this servlet in the application you want to run.

– Use the WebSphere Application Server Resource Analyzer which comes with WebSphere Application

Server to monitor active sessions and statistics for the WebSphere Application Server environment.

– Use database tracking tools such as ″Monitoring″ in DB2. (See the respective documentation for the

database system used.)

HTTP session manager troubleshooting tips

This article provides troubleshooting tips for problems creating or using HTTP sessions with your Web

application hosted by WebSphere Application Server.

Here are some steps to take:

v See HTTP session aren’t getting created or are getting dropped to see if your specific problem is

discussed.

v View the JVM logs for the application server which hosts the problem application:

– first, look at messages written while each application is starting. They will be written between the

following two messages:

Starting application: application

.....................

Application started: application

– Within this block, look for any errors or exceptions containing a package name of

com.ibm.ws.webcontainer.httpsession. If none are found, this is an indication that the session

manager started successfully.

– Error ″SRVE0054E: An error occurred while loading session context and Web application″

indicates that SessionManager didn’t start properly for a given application.

Chapter 1. Web applications 27

– Look within the logs for any Session Manager related messages. These messages will be in the

format SESNxxxxE and SESNxxxxW for errors and warnings, respectively, where xxxx is a number

identifying the precise error. Look up the extended error definitions in the Session Manager message

table.
v See the Best practices for using HTTP Sessions section in the Developing and deploying applications

PDF books for more details.

v To dynamically view the number of sessions as a Web application is running, enable performance

monitoring for HTTP sessions. This will give you an indication as to whether sessions are actually being

created.

v To learn how to view the HTTP session counters as the application runs, read the Monitoring

performance with Tivoli® Performance Viewer chapter of the Administering applications and their

environment PDF book.

v Alternatively, a special servlet can be invoked that displays the current configuration and statistics

related to session tracking. This servlet has all the counters that are in performance monitor tool and

has some additional counters.

– Servlet name: com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– It can be invoked from any Web module which is enabled to serve by class name. For example,

using default_app, http://localhost:9080/servlet/
com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– If you are viewing the module via the serve-by-class-name feature, be aware that it may be viewable

by anyone who can view the application. You may wish to map a specific, secured URL to the servlet

instead and disable the serve-servlets-by-classname feature.
v Enable tracing for the HTTP Session Manager component:

– Use the trace specification com.ibm.ws.session.*=all=enabled. Follow the instructions for dumping

and browsing the trace output to narrow the origin of the problem.

– If you are using persistent sessions based on memory replication, also enable trace for

com.ibm.ws.drs.*.
v If you are using database-based persistent sessions, look for problems related to the data source

the Session Manager relies on to keep session state information. For details on diagnosing database

related problems see the Errors accessing a datasource or connection pool in the Administering

applications and their environment PDF book

Error message SRVE0079E Servlet host not found after you define a port

Error message SRVE0079E can occur after you define the port in WebContainer > HTTP Transports for a

server, indicating that you do not have the port defined in your virtual host definitions. To define the port,

1. On the administrative console, go to Environment > Virtual Hosts > default_host> Host Aliases> New

2. Define the new port on host ″*″

The application server gets EC3 - 04130007 ABENDs

To prevent an EC3 - 04130007 abend from occuring on the application server, change the HTTP Output

timeout value. The custom property ConnectionResponseTimeout specifies the maximum number of

seconds the HTTP port for an individual server can wait when trying to read or write data. For instructions

on how to set ConnectionResponseTimeout, see HTTP transport custom properties section of the

Administering applications and their environment PDF book.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

28 Administering WebSphere applications

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

HTTP session problems

This article provides troubleshooting information related to creating or using Hypertext Transfer Protocol

(HTTP) sessions.

To view and update the session manager settings discussed here, use the administrative console. Select

the application server that hosts the problem application, then under Additional properties, select Web

Container, then Session manager.

What kind of problem are you having?

v HTTP Sessions are not getting created, or are lost between requests.

v HTTP Sessions are not persistent (session data lost when application server restarts, or not shared

across cluster).

v Session is shared across multiple browsers on same client machine.

v Session is not getting invalidated immediately after specified session timeout interval.

v Unwanted sessions are being created by JavaServer Pages.

v Session data intended for one client is seen by another client.

v A ClassCastException error occurs during failover of a session that contains an Enterprise JavaBeans™

(EJB) reference.

v Users are not logged out after HTTP session timer expires

If your problem is not described here, or none of these steps fixes the problem:

v Review “HTTP session manager troubleshooting tips” on page 27 for general steps on debugging

session-manager related problems.

v Review Task overview: Managing HTTP sessions in the Administering applications and their

environment PDF book for information on how to configure the session manager, and best practices for

using it.

v Check to see if the problem has been identified and documented by looking at the available online

support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support.

HTTP sessions are not getting created, or are lost between requests

By default, the session manager uses cookies to store the session ID on the client between requests.

Unless you intend to avoid cookie-based session tracking, ensure that cookies are flowing between

WebSphere Application Server and the browser:

v Make sure the Enable cookies check box is checked under the Session tracking Mechanism

property.

v Make sure cookies are enabled on the browser you are testing from or from which your users are

accessing the application.

v Check the Cookie domain specified on the SessionManager (to view the or update the cookie settings,

in the Session tracking mechanism->enable cookies property, click Modify).

– For example, if the cookie domain is set as ″.myCom.com″, resources should be accessed using that

domain name. Example: http://www.myCom.com/myapp/servlet/sessionservlet.

– If the domain property is set, make sure it begins with a dot (.). Certain versions of Netscape do not

accept cookies if domain name doesn’t start with a dot. Internet Explorer honors the domain with or

without a dot. For example, if the domain name is set to mycom.com, change it to .mycom.com so

that both Netscape and Internet Explorer honor the cookie.

Note: When the servers are on different hosts, ensure that session cookies flow to all the servers by

configuring a front-end router such as a Web server with the plug-in or setting the Cookie

domain.

Chapter 1. Web applications 29

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS&q=mustgather

v Check the Cookie path specified on the SessionManager. Check whether the problem URL is

hierarchically below the Cookie path specified. If not correct the Cookie path.

v If the Cookie maximum age property is set, ensure that the client (browser) machine’s date and time is

the same as the server’s, including the time zone. If the client and the server time difference is over the

″Cookie maximum age″ then every access would be a new session, since the cookie expires after the

access.

v If you have multiple Web modules within an enterprise application that track sessions:

– If you want to have different session settings among Web modules in an enterprise application,

ensure that each Web module specifies a different cookie name or path, or

– If Web modules within an enterprise application use a common cookie name and path, ensure that

the HTTP session settings, such as Cookie maximum age, are the same for all Web modules.

Otherwise cookie behavior is unpredictable, and depends upon which application creates the

session. Note that this does not affect session data, which is maintained separately by Web module.
v Check the cookie flow between browser and server:

1. On the browser, enable ″cookie prompt″. Hit the servlet and make sure cookie is being prompted.

2. On the server, enable SessionManager trace. Enable tracing for the HTTP session manager

component, by using the trace specification ″com.ibm.ws.session.*=all=enabled″. After trace is

enabled, exercise your session-using servlet or JSP, then follow the instructions for dumping and

browsing the trace output .

3. Access the session servlet from the browser.

4. The browser prompts for the cookie; note the jsessionid.

5. Reload the servlet, note down the cookie if a new cookie is sent.

6. Check the session trace and look for the session ID and trace the request by the thread. Verify that

the session is stable across Web requests:

– Look for getIHttpsession(...) which is start of session request.

– Look for releaseSession(..) which is end of servlet request.
v If you are using URL rewriting instead of cookies:

– Ensure there are no static HTML pages on your application’s navigation path.

– Ensure that your servlets and JSP files are implementing URL rewriting correctly. For details and an

example see the Session tracking options section in the Developing and deploying applications PDF

book.
v

Note: Session tracking using the SSL ID is deprecated in WebSphere Application Server version 7.0.

You can configure session tracking to use cookies or modify the application to use URL rewriting.
If you are using SSL as your session tracking mechanism:

– Ensure that you have SSL enabled on your IBM HTTP Server or iPlanet HTTP server.

– Review the Session tracking options section in the Developing and deploying applications PDF

book..
v If you are in a clustered (multiple node) environment, ensure that you have session persistence

enabled.

HTTP Sessions are not persistent

If your HTTP sessions are not persistent, that is session data is lost when the application server restarts or

is not shared across the cluster:

v Check the data source.

v Check the session manager’s persistence settings properties:

– If you intend to take advantage of session persistence, verify that Persistence is set to Database.

– Persistence could also be set to Memory-to-Memory Replication.

– If you are using Database-based persistence:

- Check the JNDI name of the data source specified correctly on SessionManager.

- Specify correct userid and password for accessing the database.

Note that these settings have to be checked against the properties of an existing data source in

the administrative console. The session manager does not automatically create a session

database for you.

30 Administering WebSphere applications

- The data source should be non-JTA, for example, non XA enabled.

- Check the JVM logs for appropriate database error messages.

- With DB2, for row sizes other than 4k make sure specified row size matches the DB2 page size.

Make sure tablespace name is specified correctly.
– If you are using memory-based persistence (available only in a network deployment environment):

- Review the Memory-to-memory replication section of the Developing and deploying applications

PDF book.

- Review the Internal Replication Domains properties of your session manager.

Session is shared across multiple browsers on same client machine

This behavior is browser-dependent. It varies between browser vendors, and also may change according

to whether a browser is launched as a new process or as a subprocess of an existing browser session (for

example by hitting Ctl-N on Windows®).

The Cookie maximum age property of the session manager also affects this behavior, if cookies are used

as the session-tracking mechanism. If the maximum age is set to some positive value, all browser

instances share the cookies, which are persisted to file on the client for the specified maximum age time.

Session is not getting invalidated immediately after specified session timeout

interval

The SessionManager invalidation process thread runs every x seconds to invalidate any invalid sessions,

where x is determined based on the session timeout interval specified in the session manager properties.

For the default value of 30 minutes , x is around 300 seconds. In this case, it could take up to 5 minutes

(300 seconds) beyond the timeout threshold of 30 minutes for a particular session to become invalidated.

Unwanted sessions are being created by JavaServer Pages

As required by the JavaServer Pages (JSP) specification, JSP pages by default perform a

request.getSession(true), so that a session is created if none exists for the client. To prevent JSP pages

from creating a new session, set the session scope to false in the .jsp file using the page directive as

follows:

<% @page session="false" %>

Session data intended for one client is seen by another client

In rare situations, usually due to application errors, session data intended for one client might be seen by

another client. This situation is referred to as session data crossover. When the DebugSessionCrossover

custom property is set to true, code is enabled to detect and log instances of session data crossover.

Checks are performed to verify that only the session associated with the request is accessed or

referenced. Messages are logged if any discrepancies are detected. These messages provide a starting

point for debugging this problem. This additional checking is only performed when running on the

WebSphere-managed dispatch thread, not on any user-created threads.

For additional information on how to set this property, see article, Web container custom properties in the

Administering applications and their environment PDF book.

Users are not logged out after the HTTP session timer expires

If users of WebSphere Application Server log onto an application and sit idle longer than the specified

HTTP session timeout value, the user information is not invalidated and user credentials stay active until

LTPA token timeout occurs.

After you apply PK25740, complete the following steps to log out users from the application after the

HTTP session has expired.

Chapter 1. Web applications 31

1. In the administrative console, click Security > Global security.

2. Under Custom properties, click New.

3. In the Name field, enter com.ibm.ws.security.web.logoutOnHTTPSessionExpire.

4. In the Values field, enter true.

5. Click Apply and Save to save the changes to your configuration.

6. Resynchronize and restart the server.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/servers/eserver/support/iseries/allproducts/index.html

Modifying the default Web container configuration

About this task

A Web container handles requests for servlets, JavaServer Pages (JSP) files, and other types of files that

include server-side code. The Web container creates servlet instances, loads and unloads servlets,

creates and manages request and response objects, and performs other servlet management tasks. The

Web server plug-ins, provided by the product, help supported Web servers to pass servlet requests to

Web containers.

If the property to start servlets during application server startup is enabled, part of its startup process calls

the Servlet.init method on its servlets when you start the Web container. Therefore, when the Web

container starts and calls the init method, other components such as Naming and Work Load Management

might not be fully started yet. As a result, application server related calls may not work because all of the

application server components might not be ready yet. Once the application server is ’ready for

e-business’, it is completely ready. If application server related calls fail during Servlet.init method, you can

either:

v Start the servlet manually when the server is ready for e-business instead of starting the servlet upon

startup or

v You can choose not to make application server related calls in the servlet’s init method.

The Web container is created initially with default properties values suitable for simple Web applications.

However, these values might not be appropriate for more complex Web applications.

Your application is considered complex if it requires any of the following features:

v Additional virtual host aliases

v Servlet caching

v Persistent HTTP session support

v Session tracking support with URL rewriting

v Special Web container transport chain settings

v Asynchronous or remote dispatching

v No request or response pooling

Make the following configuration changes if you have a complex application:

1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name. Then under Web container settings, click on one of the following:

a. Web container, if your Web application requires a virtual host, other than the default_host, or

requires servlet caching.

b. Web container transport chains, if you need to reconfigure your HTTP connections.

32 Administering WebSphere applications

http://www.ibm.com/servers/eserver/support/iseries/allproducts/index.html

2. If your application handles special client request loads, in the administrative console, click Servers →

Server Types → WebSphere application servers → server_name. Then under Additional Properties,

click Thread pools to modify your thread pool settings.

3. If your application requires global settings for internal servlets for Web archive (WAR) files packaged

by third-party tools, in the administrative console, click Servers → Server Types → WebSphere

application servers → server_name → Web Container Settings → Web container. Then under

Additional Properties, click Custom properties and enter the appropriate custom property.

Web container settings

Use this page to configure the Web container settings.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Web Container Settings → Web container.

Default virtual host

Specifies a virtual host that enables a single host machine to resemble multiple host machines. Resources

associated with one virtual host cannot share data with resources associated with another virtual host,

even if the virtual hosts share the same physical machine.

Select a virtual host option:

default_host

The product provides a default virtual host with some common aliases such as the machine IP

address, short host name, and fully qualified host name. The alias comprises the first part of the

path for accessing a resource such as a servlet. For example, it is localhost:9080 in the request

http://localhost:9080/myServlet.

admin_host

This is another name for the application server; also known as server1 in the base installation.

This process supports the use of the administrative console.

proxy_host

The virtual host called proxy_host, includes default port definitions, port 80 and 443, which are

typically initialized as part of the proxy server initialization. Use this proxy host as appropriate with

routing rules associated with the proxy server.

Enable servlet caching

Specifies that if a servlet is invoked once and it generates output to be cached, a cache entry is created

containing not only the output, but also side effects of the invocation. These side effects can include calls

to other servlets or JavaServer Pages (JSP) files, as well as metadata about the entry, including timeout

and entry priority information.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet fragment

caching automatically enables servlet caching. Disabling servlet caching automatically disables portlet

fragment caching.

Disable servlet request and response pooling

Specifies to disable the pooling of servlet request and servlet response objects that are pooled by the Web

container. When you disable pooling of servlet request and servlet response objects, new servlet request

and servlet response objects are created for each request.

When you disable pooling of servlet request and servlet response objects, new servlet request and servlet

response objects are created for each request, which can negatively affect performance, but provides

protection from any unforeseen pooling bugs.

Web container custom properties

You can configure name-value pairs of data, where the name is a property key and the value is a string

value that you can use to set internal system configuration properties. Defining a new property enables

Chapter 1. Web applications 33

you to configure a setting beyond that which is available in the administrative console. The following is a

list of some of the available Web container custom properties.

To specify Web container custom properties:

1. In the administrative console click Servers → Server Types → WebSphere application servers →

server_name → Web Container Settings → Web container.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the name of the custom property that you want to configure in the Name

field and the value that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

The following is a list of custom properties provided with the Application Server. “JavaServer Pages

specific Web container custom properties” on page 80 and HTTP transport custom properties are listed in

a separate topic.

com.ibm.ws.webcontainer.disallowAllFileServing

This property is for disabling file serving on all applications on a specific application server. You can enable

file serving on a global level across a given application server by using the fileServingEnabled custom

property. However, the fileServingEnabled property is overridden by the specific deployment information of

each application. Therefore, the current fileServingEnabled custom property only applies as a backup in

case an application does not define the fileServingEnabled setting itself. To globally override this setting on

a specific application server to prevent the application server from serving static files regardless of their

individual deployment settings, set the com.ibm.ws.webcontainer.disallowAllFileServing Web container

custom property to true using the following name-value pair.

 Name Value

com.ibm.ws.webcontainer.disallowAllFileServing true

Disallow the use of the serving servlets by class name

When the serveServletsByClassnameEnabled property is enabled, it is possible to access servlets directly,

resulting in a possible security exposure. Define the following custom property to disallow the use of the

serveServletsByClassnameEnabled property across the entire application server level.

 Name Value

com.ibm.ws.webcontainer.disallowserveservletsbyclassname true

Defining classes that cannot be served by class name

The com.ibm.ws.webcontainer.donotservebyclassname custom property specifies a list of classes that

cannot be served by the class name.

 Name Value

com.ibm.ws.webcontainer.donotservebyclassname A semi-colon delimited list of classes to be completely disallowed

from being served by class name.

Writing chunks of data using synchronous writes

By default, the Web container uses asynchronous writes to write response data in chunks up to the

response buffer size. For larger responses that are greater than the response buffer size, the Web

container continues to buffer response data into memory while waiting for an asynchronous write of a

response data chunk to complete. This can result in part of a large response held in memory, which can

34 Administering WebSphere applications

lead to high memory usage and potentially an out of memory error. An application server hang may also

occur when a server is simultaneously processing more requests than Web container defined threads.

If the com.ibm.ws.webcontainer.channelwritetype property is set to sync, synchronous writing is used,

otherwise asynchronous writing is used by default. With synchronous writing, response data are written

synchronously in chunks of up to the value of responsebuffersize and no response data are buffered into

memory while waiting for a synchronous write of a response data chunk to complete. As a result, the

approximate maximum amount of response data that is held in memory is equal to the responsebuffersize

multiplied by the number of Web container threads. The maximum number of requests that can be

processed simultaneously by the Web container is limited by the number of Web container threads.

Additional requests are queued, waiting for a request that is in process to complete.

The responsebuffersize Web container custom property defines the maximum amount of response data

written by the Web container in a single chunk, and is 32k by default. As a result, it is used to change the

number of writes needed by the Web container to send complete response data. However, if an

application flushes response data, any response data held by the Web container is immediately written

irrespective of the responsebuffersize.

Use the following name-value pair to write chunks of data using synchronous writes.

 Name Value

com.ibm.ws.webcontainer.channelwritetype sync

Recognizing filter mappings to ″*″ as a mapping to ″/*″

When processing a request, the Web container recognizes servlet mappings to ″*″ as the same as servlet

mappings to ″/*″. To provide the same behavior with filter mapping, set the

com.ibm.ws.webcontainer.mapFiltersToAsterisk custom property to true. Setting the

com.ibm.ws.webcontainer.mapFiltersToAsterisk custom property to true causes the Web container to

recognize filter mappings to ″*″ as a filter mapping to ″/*″ . This custom property is not case sensitive.

 Name Value

com.ibm.ws.webcontainer.mapFiltersToAsterisk true

Suppressing the HTML output of error text

During a recursive error that an application specified error page cannot handle, the stack trace and error

message are outputted as an HTML page. This information includes class names and program information

that the application developer does not want expose to the user.

You can set the com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput Web container custom

property to suppress the HTML output of the error text, without changing the internal logging of the

message. Set the custom property com.ibm.ws. webcontainer.suppressHtmlRecursiveErrorOutput to true

to disable the HTML output of the error message to the user and present the user with blank page with a

500 error code.

 Name Value

com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput true

DebugSessionCrossover

The DebugSessionCrossover custom property enables code to perform additional checks to verify that

only the session associated with the request is accessed or referenced. Messages are logged if any

discrepancies are detected.

Note: The use of the DebugSessionCrossover property as a Web container custom property is

deprecated. You can now define it as a session management custom property.

Chapter 1. Web applications 35

To enable session data crossover detection, use the following name-value pair:

 Name Value

DebugSessionCrossover true

See article, “HTTP session problems” on page 29, for additional information.

DecodeUrlAsUTF8

The UTF-8 encoded URL feature, which provides UTF-8 encoded Uniform Resource Locators (URLs) to

support the double-byte characters in URLs is enabled by default. You can prevent the Web container from

explicitly decoding URLs in UTF-8 and have them use the ISO-8859 standard as per the current HTTP

specification by using the following name-value pair.

 Name Value

DecodeUrlAsUTF8 false

enableInProcessConnections

Use the enableInProcessConnections custom property to reduce response times and to reduce the

number of threads that are used to service a request, which reduces the potential for a deadlock. There is

an optimized communication path between a Web services client application and a Web container that are

located in the same application server process. Requests from the Web services client that are normally

sent to the Web container using a network connection are delivered directly to the Web container using an

optimized local path. The local path is available because the Web services client application and the Web

container are running in the same process. This optimized communication path is disabled by default.

Before enabling this property, make sure that wild cards are not specified for the Web container ports. Use

specific ports for the Web container when the optimized communication path is enabled. To enable the

optimized communication path, use the following name-value pair:

 Name Value

enableInProcessConnections true

See article, Web services client to Web container optimized communication, for additional information.

fileServingEnabled

fileServingEnabled, directoryBrowsingEnabled, and similar properties are global settings for internal

servlets. Web application archive (WAR) files that are packaged using third-party tools cannot specify

behavior for the services that are exposed by the Web container internal servlets. You can globally enable

and disable internal servlets for all Web applications at the Web container level by creating name-value

pairs.

 Name Value

fileServingEnabled true

directoryBrowsingEnabled true

serveServletsByClassnameEnabled true

Settings that are defined in an assembly tool take precedence over the global settings that are set through

the custom properties at the Web container level.

Web application deployment extensions continue to hold configuration information for the services that are

provided by the internal servlets, and take precedence over the global settings that are set through the

custom properties at the Web container level.

36 Administering WebSphere applications

Invalidating sessions after specified time has elapsed

The ForceSessionInvalidationMultiple custom property indicates whether the session manager should wait

indefinitely for a request to complete before attempting to invalidate the session, or attempt to invalidate a

session after the specified time limit has elapsed. The default value for this property is 1.

v If you specify 0 (zero) for this custom property, the session manager waits indefinitely until a request is

complete before attempting to invalidate the session.

If your requests normally are not bound by a response time limit, specify 0 for this property.

v If you specify a positive integer, such as 1, 2, or 3 for this custom property, even if a session is not

known to have completed, the session manager attempts to invalidate the session if the indicated time

period since the last access occurred has elapsed. This time period is the result of multiplying the value

specified for this property and the value specified for the Session Timeout property. For example, if you

specify 2 minutes for the Session Timeout property and 2 for the ForceSessionInvalidationMultiple

property, the session manager attempts to invalidate the session after 4 minutes.

If you want to invalidate your sessions after a certain amount of time has elapsed, specify the

appropriate positive integer for this property.

 Name Value

ForceSessionInvalidationMultiple 1

httpsIndicatorHeader

The custom property httpsIndicatorHeader manages HTTPS requests that are forwarded to an application

server from an SSL offloader that is used in front of WebSphere Application Server. When an HTTPS

request is received by a SSL offloader it is redirected over HTTP to an application server using

WebSphere Application Server. The SSL offloader adds a header indicating the original request was over

HTTP. The httpsIndicatorHeader property specifies the header name added by the SSL box. The

application server checks this indicator to determine if SSL is required. If it determines the request is SSL

over HTTP, an HTTPS scheme is chosen.

 Name Value

httpsIndicatorHeader Request header key name

HttpSessionIdReuse

The custom property HttpSessionIdReuse determines whether the session manager can use the session

ID sent from a browser to preserve session data across Web applications that are running in an

environment that is not configured for session persistence. In a multi-JVM environment that is not

configured for session persistence setting this property to true enables the session manager to use the

same session information for all of a user’s requests even if the Web applications that are handling these

requests are governed by different JVMs. The default value for this property is false.

Note: The use of the HttpSessionIdReuse property as a Web container custom property is deprecated.

You can now define it as a session management custom property.

To enable the session manager ton use the session ID sent from a browser to preserve session data

across Web applications that are running in an environment that is not configured for session persistence,

use the following name-value pair:

 Name Value

HttpSessionIdReuse true

Global configuration of servlet listeners

The servlet specification supports applications registering listeners for servlet-related events on an

individual application basis through the web.xml descriptor. However, using the listeners custom property, a

server can listen to servlet events across Web applications. To implement global listening, a listener is

Chapter 1. Web applications 37

registered at the Web container level and is propagated to all of the installed and new Web applications.

This global behavior of internal servlet listeners is controlled by the listeners custom property by using the

following name-value pair format.

 Name Value

listeners listener_class

The values for this property is a string specifying a comma separated list of listener classes. The listener

supplied must implement standard listener classes from the Java Servlet API or IBM listener extension

classes.

Using Uniform Resource Locators (URLs) without leading front slashes (/)

WebSphere Application Server 5.x supports Uniform Resource Locators (URLs) without leading front

slashes (/) and to preserve compatibility, You can set the custom property, prependSlashToResource to

true. To ignore the specification and consider URLs without the leading front slash, use the following

name-value pair.

 Name Value

prependSlashToResource true

UseOracleBLOB

The UseOracleBLOB custom property creates the HTTP session database table using the Binary Large

Object (BLOB) data type for the medium column. This property increases performance of persistent

sessions when Oracle databases are used. Due to an Oracle restriction, BLOB support requires use of the

oci database driver for Oracle for more than 4000 bytes of data. You must also ensure that a new

sessions table is created before the server is restarted by dropping your old sessions table or by changing

the datasource definition to reference a database that does not contain a sessions table.

Note: The use of the UseOracleBLOB property as a Web container custom property is deprecated. You

can now define it as a session management custom property.

To create a sessions table using the BLOB data type, use the following name-value pair:

 Name Value

UseOracleBLOB true

Convert start and end attributes of the repeat tag to strings

Set the com.ibm.wsspi.jsp.convertAttrValueToString Web container custom property to true to convert start

and end attributes of the repeat tag to strings before they are used.

 Name Value

com.ibm.wsspi.jsp.convertAttrValueToString true

Disable the commons-el expression cache

Set the com.ibm.wsspi.jsp.disableElCache Web container custom property to true to disable the

commons-el expression cache if you are experiencing out of memory conditions because the hash maps

are held by the expression evaluator.

 Name Value

com.ibm.wsspi.jsp.disableElCache true

38 Administering WebSphere applications

Create a FileNotFoundException exception when a JSP file is not found

Set the com.ibm.ws.webcontainer.throwMissingJspException custom property to true to create a

FileNotFoundException when a resource that is included by a JSP file is missing. If this property is not set

to true, an error page is displayed.

 Name Value

com.ibm.ws.webcontainer.throwMissingJspException true

com.ibm.ws.webcontainer.suppressServletExceptionLogging

If a servlet creates an exception, it is logged in the systemErr log file. For some applications, this is

undesirable as it may fill up the log. In WebSphere Application Server Version 5, servlet exceptions are

created but they are not logged in the systemErr log file. Beginning with WebSphere Application Server

Version 6.0.2, all servlet exceptions are logged. You can use the following custom property to specify that

the Web container does not log the servlet exceptions that are created in the systemErr file:

 Name Value

com.ibm.ws.webcontainer.suppressServletExceptionLogging true

Invoke global session listeners

If a system application is the first to start, and the application attempts to load a global listener in a shared

library that is associated with the server classloader, the application does not load that listener and

prevents the listener from being loaded or invoked by a later non-system application. Set the

com.ibm.ws.webcontainer.disableSystemAppGlobalListenerLoading custom property to true to prevent

system applications from loading global listeners. When this property is set to true, the system application

does not attempt to load the global listeners and later non-system applications can load them from a

shared library associated with a server class loader.

 Name Value

com.ibm.ws.webcontainer.disableSystemAppGlobalListenerLoading true

Controlling active request completion time

By default, when an application is stopped the Web container waits up to 60 seconds for each active

request for a resource of that application to complete. You can now define the

com.ibm.ws.webcontainer.ServletDestroyWaitTime Web container custom property to control the amount of

time that the Web container waits for an active request to complete when the owning application is

stopped.

Set the com.ibm.ws.webcontainer.ServletDestroyWaitTime custom property to an integer value, which

specifies the number of seconds to wait for a request to complete. The default value is 60 seconds.

 Name Value

com.ibm.ws.webcontainer.ServletDestroyWaitTime integer

Web module deployment settings

Use this page to configure an instance of Web module deployment.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Manage Modules → Web_module_instance.

URI

Specifies the relative location of the module within the application enterprise archive (EAR) file.

Chapter 1. Web applications 39

Alternate deployment descriptor

Specifies the alternate deployment descriptor for the module as defined in the application deployment

descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Starting weight

Specifies the order that modules are started. Lower weighted modules are started before higher weighted

modules.

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and product class loaders is Classes

loaded with parent class loader first. By specifying Classes loaded with application class loader

first, your application can override classes contained in the parent class loader, but this action can

potentially result in ClassCastException or LinkageErrors if you have mixed use of overridden classes and

non-overridden classes.

The options are Classes loaded with parent class loader first and Classes loaded with local class

loader first (parent last) . The default is to search in the parent class loader before searching in the

application class loader to load a class.

 Data type String

Default Classes loaded with parent class loader first

Context root for Web modules settings

Use this page to specify the context root for Web modules during or after installation of an application onto

a WebSphere Application Server deployment target.

To view this administrative console panel, click Applications → Application Types → WebSphere

enterprise applications → application_name → Context root for Web modules. This panel is the same

as the Context root for Web modules panel on the application installation and update wizards.

Web module

Specifies the name of a Web module in the application that you are installing or that you are viewing after

installation.

URI

Specifies the location of the module relative to the root of the application EAR file.

Context root

Specifies the context root of the Web application (WAR).

A context root for each Web module is defined in the application deployment descriptor during application

assembly. Use this field to assign a different context root to a Web module. The context root is combined

with the defined servlet mapping (from the WAR file) to compose the full URL that users type to access

the servlet. For example, if the context root is /gettingstarted and the servlet mapping is MySession, then

the URL is http://host:port/gettingstarted/MySession.

Environment entries for Web modules settings

Use this page to configure the environment entries of Web modules such as servlets and JavaServer

Pages (JSP) files.

To view this administrative console panel, click Applications → Application Types → WebSphere

enterprise applications → application_name → Environment entries for Web modules. This page is the

same as the Environment entries for Web modules panel on the application installation and update

wizards.

40 Administering WebSphere applications

Module

Specifies the name of a module in the web.xml Web application.

URI

Specifies the location of the module relative to the root of the application (EAR file).

Name

Specifies the name of the environment entry that you are editing or viewing. The environment entry is the

Env-entry property in the module web.xml file.

Type

Specifies a data type for the environment entry defined by the Env-entry property in the module web.xml

file.

Description

Specifies information on the environment entry.

Value

Specifies an editable value for the environment entry defined by the Env-entry property in the module

web.xml file.

Web container troubleshooting tips

If you are having problems starting a Web module, or accessing resources within a particular Web module:

v View the JVM logs and process logs for the application server which hosts the problem Web modules,

and look for messages in the JVM output file which indicate that the web module has started

successfully. You should see messages similar to the following:

WebContainer A SRVE0161I: IBM WebSphere Application Server - Web Container.

Copyright IBM Corp. 1998-2002

WebContainer A SRVE0169I: Loading Web Module: [module_name]

ApplicationMg A WSVR0221I: Application started: [application_name]

HttpTransport A SRVE0171I: Transport http is listening on port [port_number]

[server_name] open for e-business in profile_root/logs/[server_name]/SystemOut.log

v For specific problems that can cause servlets, HTML files, and JavaServer Pages (JSP) files not to be

served, see Web resource (JSP file, servlet, HTML file, image) does not display .

v For a detailed trace of the run-time behavior of the Web container, enable trace for the component

com.ibm.ws.webcontainer using com.ibm.ws.webcontainer*=all.

If application server related calls fail during Servlet.init method, you can either:

v Initialize the servlet manually by making a single request to that servlet in your browser when the server

is ready for e-business instead of starting the servlet upon startup or

v You can choose not to make application server related calls in the servlet’s init method.

If the property to start servlets during application server startup is enabled, part of its startup process calls

the Servlet.init method on its servlets when you start the Web container. Therefore, when the Web

container is starts and calls the init method, other components such as Naming and Work Load

Management may not be fully started yet. As a result, application server related calls may not work since

all of the application server components may not be ready yet. Once the application server is ’ready for

e-business’, it is completely ready.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, tech notes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

Chapter 1. Web applications 41

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Disabling servlet pooling: Best practices and considerations

This topic provides usage examples of when you may want to disable servlet pooling. You may want to

disable request and response pooling if your application is creating threads inside of the application or if

you are concerned about the Web container reusing request and response objects.

Disabling request and response pooling

v Application is creating threads inside of the application.

The Servlet 2.4 specification states the following:

SRV.4.10 Lifetime of the Request Object Each request object is valid only within the scope of a

servlet’s service method, or within the scope of a filter’s doFilter method. Containers commonly

recycle request objects in order to avoid the performance overhead of request object creation. The

developer must be aware that maintaining references to request objects outside the scope

described above is not recommended as it may have indeterminate results.

SRV.5.6 Lifetime of the Response Object Each response object is valid only within the scope of

a servlet’s service method, or within the scope of a filter’s doFilter method. Containers commonly

recycle response objects in order to avoid the performance overhead of response object creation.

The developer must be aware that maintaining references to response objects outside the scope

described above may lead to non-deterministic behavior.

v If you are concerned about the Web container reuse of reusing request and response objects. Since

these objects are reused, there is the potential for two requests in two separate applications to have

access to the same request or response object as described in the Thread Safety section of Servlet 2.4.

SRV.2.3.3.3 Thread Safety Implementations of the request and response objects are not

guaranteed to be thread safe. This means that they should only be used within the scope of the

request handling thread.

References to the request and response objects should not be given to objects executing in other

threads as the resulting behavior may be nondeterministic. If the thread created by the application

uses the container-managed objects, such as the request or response object, those objects must

be accessed only within the servlet’s service life cycle and such thread itself should have a life

cycle within the life cycle of the servlet’s service method because accessing those objects after the

service method ends may cause undeterministic problems. Be aware that the request and

response objects are not thread safe. If those objects were accessed in the multiple threads, the

access should be synchronized or be done through the wrapper to add the thread safety, for

instance, synchronizing the call of the methods to access the request attribute, or using a local

output stream for the response object within a thread.

It is important to note that disabling pooling prevents the Web container from recycling the servlet request

and servlet response objects for subsequent requests. This creates additional overhead as a result of an

increase in request and response object creation and the subsequent garbage collection of these

discarded objects.

Task overview: Developing and deploying Web applications

About this task

A developer creates the files comprising a Web application, and then assembles the Web application

components into a Web module. Next, the deployer (typically the developer in a unit-testing environment

or the administrator in a production environment) installs the Web application on the server.

42 Administering WebSphere applications

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

1. (Optional) Migrate existing Web applications to run in the new version of WebSphere Application

Server.

2. Design the Web application and develop its code artifacts: Servlets, JavaServer Pages (JSP) files, and

static files, as for example, images and Hyper Text Markup Language (HTML) files. See the “Web

applications: Resources for learning” on page 85 topic for links to design documentation.

JavaServer Pages programming tips:

v Disable session state of JavaServer Pages files using <%@ page language="java"

contentType="text/html" session="false" %> instead of <%@ page language="java"

contentType="text/html" %>

v Replace setProperties calls in your JavaServer Pages files with direct calls to the appropriate setxxx

methods.

3. Develop the Web application, using WebSphere Application Server extensions to enhance its

functionality.

4. Assemble the Web application into a Web module using an assembly tool. Web module assembly

properties might include the ability to:

v Configure servlet page lists.

v Configure servlet filters.

v Serve servlets by class name.

Serving servlets by name or class name is triggered by setting the

serveServletsbyclassnameEnabled property within IBM extensions. Use the invoker.patterns attribute

to specify the patterns that trigger invocation of the server component and allows the serving of

servlets by name or by class name. This value is a list separated by either a space, colon, or

semicolon.

v Enable file serving.

In file serving, Web applications can serve static file types, such as HTML. File-serving attributes are

used by the servlet that implements file-serving behavior.

5. Deploy the Web module or application module that contains the Web application.

Following deployment, you might find it handy to use the tool that enables batch compiling of the JSP

files for quicker initial response times.

6. (Optional) Troubleshoot your Web application.

7. (Optional) Modify the default Web container configuration in the application server in which you

deployed the Web module or application module containing the Web application.

8. (Optional) Manage the deployed Web application.

Web applications

A Web application is comprised of one or more related servlets, JavaServer Pages technology (JSP files),

and Hyper Text Markup Language (HTML) files that you can manage as a unit.

The files in a Web application are related in that they work together to perform a business logic function.

The Web application is a concept supported by the Java Servlet Specification. Web applications are

typically packaged as .war files.

Web modules

A Web module represents a Web application. A Web module is created by assembling servlets,

JavaServer Pages (JSP) files, and static content such as Hypertext Markup Language (HTML) pages into

a single deployable unit. Web modules are stored in Web archive (WAR) files, which are standard Java

archive files.

A Web module contains:

v One or more servlets, JSP files, and HTML files.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

Chapter 1. Web applications 43

The file, named web.xml, declares the contents of the module. It contains information about the structure

and external dependencies of Web components in the module and describes how the components are

used at run time.

You can create Web modules as stand-alone applications, or you can combine Web modules with other

modules to create Java Platform, Enterprise Edition (Java EE) applications. You can also install and run a

Web module in the Web container of an application server.

web.xml file

The web.xml file provides configuration and deployment information for the Web components that

comprise a Web application. Examples of Web components are servlet parameters, servlet and

JavaServer Pages (JSP) definitions, and Uniform Resource Locators (URL) mappings.

The Java Servlet specification defines the web.xml deployment descriptor file in terms of an XML schema

document. For backwards compatibility of applications written to the Java Servlet 2.2 Specification, Web

containers are also required to support the Java Servlet 2.2 specification. For backwards compatibility of

applications written to the Java Servlet 2.3 specification, Web containers are also required to support the

Java Servlet 2.3 specification.

If you use Rational® Application Developer version 6 to create your portlets, you must remove the following

reference to the std-portlet.tld from the web.xml file:

<taglib id="PortletTLD">

 <taglib-uri>http://java.sun.com/portlet</taglib-uri>

 <taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

 </taglib>

Location

The web.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories that

exist for a Web application.

For example, if the application is client.war, then the web.xml file is placed in the profile_root/
installedApps/cellName/client.ear/client.war/WEB-INF directory (in a default installation), where the

edition is either Base or Network Deployment, depending on which edition you are using.

Usage notes

v Is this file read-only?

No

v Is this file updated by a product component?

This file is updated by the assembly tool.

v If so, what triggers its update?

The assembly tool updates the web.xml file when you assemble Web components into a Web module,

or when you modify the properties of the Web components or the Web module.

v How and when are the contents of this file used?

WebSphere Application Server functions use information in this file during the configuration and

deployment phases of Web application development.

Sample file entry

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Servlet 2.4 application</display-name>

 <filter>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <filter-class>tests.Filter.DoFilter_Filter</filter-class>

44 Administering WebSphere applications

<init-param>

 <param-name>attribute</param-name>

 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-pattern>/DoFilterTest</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-pattern>/IncludedServlet</url-pattern>

 <dispatcher>INCLUDE</dispatcher>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-pattern>ForwardedServlet</url-pattern>

 <dispatcher>FORWARD</dispatcher>

 </filter-mapping>

 <listener>

 <listener-class>tests.ContextListener</listener-class>

 </listener>

 <listener>

 <listener-class>tests.ServletRequestListener.RequestListener</listener-class>

 </listener>

 <servlet>

 <servlet-name>welcome</servlet-name>

 <servlet-class>WelcomeServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ServletErrorPage</servlet-name>

 <servlet-class>tests.Error.ServletErrorPage</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>IncludedServlet</servlet-name>

 <servlet-class>tests.Filter.IncludedServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ForwardedServlet</servlet-name>

 <servlet-class>tests.Filter.ForwardedServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>welcome</servlet-name>

 <url-pattern>/hello.welcome</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ServletErrorPage</servlet-name>

 <url-pattern>/ServletErrorPage</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>IncludedServlet</servlet-name>

 <url-pattern>/IncludedServlet</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ForwardedServlet</servlet-name>

 <url-pattern>/ForwardedServlet</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>hello.welcome</welcome-file>

 </welcome-file-list>

 <error-page>

 <exception-type>java.lang.ArrayIndexOutOfBoundsException</exception-type>

 <location>/ServletErrorPage</location>

 </error-page>

</web-app>

Chapter 1. Web applications 45

Default Application

WebSphere Application Server provides a default configuration that administrators can use to easily verify

that the Application Server is running. When the product is installed, it includes an application server called

server1 and an enterprise application called Default Application.

Default Application contains a Web module called DefaultWebApplication and an enterprise bean Java

archive (JAR) file called Increment. The Default Application provides a number of servlets, described

below. These servlets are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and install the Samples

Gallery by viewing the Samples Gallery reference page.

Snoop servlet

Use the Snoop servlet to retrieve information about a servlet request. This servlet returns the following

information:

v Servlet initialization parameters

v Servlet context initialization parameters

v URL invocation request parameters

v Preferred client locale

v Context path

v User principal

v Request headers and their values

v Request parameter names and their values

v HTTPS protocol information

v Servlet request attributes and their values

v HTTP session information

v Session attributes and their values

The Snoop servlet includes security configuration so that when WebSphere Security is enabled, clients

must supply a user ID and password to initiate the servlet.

The URL for the Snoop servlet is: http://your.server.name:9080/HitCount.jsp.

HelloHTML servlet

Use the HelloHTML pervasive servlet to exercise the PageList support provided by the WebSphere Web

container. This servlet extends the PageListServlet, which provides APIs that allow servlets to call other

Web resources by name or, when using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most Wireless Application

Protocol (WAP) enabled browsers using the URL: http://your.server.name:9080/HitCount.jsp.

Note: The PageList Servlet custom extension is deprecated in WebSphere Application Server Version 7.0

and will be removed in a future release. Re-architect your legacy applications to use

javax.servlet.filter classes instead of com.ibm.servlet classes. Starting from the Servlet 2.3

specification, javax.servlet.filter classes you can intercept requests and examine responses. You

can also use javax.servlet.filter classes to achieve chaining functionality, as well as embellishing or

truncating responses.

HitCount application

Use the HitCount demonstration application to demonstrate how to increment a counter using a variety of

methods, including:

v A servlet instance variable

46 Administering WebSphere applications

v An HTTP session

v An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction that you can commit or

roll back. If the transaction is committed, the counter is incremented. If the transaction is rolled back, the

counter is not incremented.

The enterprise bean method uses a container-managed persistence enterprise bean that persists the

counter value to an Apache Derby database. This enterprise bean is configured to use the Default

Datasource, which is set to the DefaultDB database.

When using the enterprise bean method, you can instruct the servlet to look up the enterprise bean, either

in the WebSphere global namespace, or in the namespace local to the application.

The URL for the HitCount application is: http://your.server.name:9080/HitCount.jsp.

Servlets

Servlets are Java programs that use the Java Servlet Application Programming Interface (API). You must

package servlets in a Web archive (WAR) file or Web module for deployment to the application server.

Servlets run on a Java-enabled Web server and extend the capabilities of a Web server, similar to the way

applets run on a browser and extend the capabilities of a browser.

Servlets can support dynamic Web page content, provide database access, serve multiple clients at one

time, and filter data.

In the application server, discussions of servlets focus on HTTP servlets, which serve Web-based clients.

You can define servlets as welcome files. Non-servlet resources are served only when the

fileServingEnabled attribute is set to true in the IBM extensions XMI file, ibm-web-ext.xmi, located in each

Web module WEB-INF directory or by using an assembly tool to set the property in the source .war file.

Serving welcome files is connected to serving static content. Therefore the fileServingEnabled attribute is

set in the Web module.

Context parameters

A servlet context defines the server view of the Web application within which the servlet is running. The

context also supports a servlet to access its available resourcest. Using the servlet context, a servlet can

log events, obtain URL references to resources, and set and store attributes for other servlets in the

context to use. These properties declare the parameters for the context of a Web application. The

properties convey setup information, such as the e-mail address for the Webmaster or the name of a

system with critical data.

Servlet mappings

A servlet mapping is a correspondence between a client request and a servlet. Web containers use URL

paths to map client requests to servlets, and follow the URL path-mapping rules as specified in the Java

Servlet specification. The container uses the Uniform Resource Identifier (URI) from the request, minus the

context path, as the path to map to a servlet. The container chooses the longest matching available

context path from the list of Web applications that it hosts.

JavaServer Pages

JavaServer Pages (JSP) are application components coded to the JavaServer Pages Specification.

JavaServer Pages enable the separation of the Hypertext Markup Language (HTML) code from the

business logic in Web pages so that HTML programmers and Java programmers can more easily

collaborate in creating and maintaining pages.

Chapter 1. Web applications 47

JSP files support a division of roles:

HTML authors

Develop JSP files that access databases and reusable Java components, such as servlets and

beans.

Java programmers

Create the reusable Java components and provide the HTML authors with the component names

and attributes.

Database administrators

Provide the HTML authors with the name of the database access and table information.

 WebSphere Application Server Version 7.0 supports the JSP 2.1 specification.

JSP class file generation

At runtime, the WebSphere Application Server JavaServer Pages (JSP) engine loads JSP class files from

either the WebSphere Application Server temp directory or a Web module’s WEB-INF/classes directory. The

JSP engine first searches for a class file in the temp directory and then it searches in the Web module’s

WEB-INF/classes directory.

In a default installation, the WebSphere Application Server temp directory is typically profile_root/temp.

Figure 1 shows the processing logic of the JSP engine at runtime.

No No

No

Yes
Yes

Yes

Yes

Request for a JSP.

Is the class file found in

WebSphere Application Server

temp directory?

Is the class file found in

WEB-INF/classes

Is the class file outdated?

Generate the class file

into WebSphere

Application Server

temp directory.

Load the class file.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp

directory and a Web module’s WEB-INF/classes directory, depending on the type of batch compiler target.

In addition, the batch compiler enables the generation of class files into any directory on the filesystem,

outside of the target application. Generating class files into a Web module’s WEB-INF/classes directory

enables you to deploy the Web module as a self-contained Web archive (WAR) file, or a WAR file inside

an enterprise archive (EAR) file. The following table shows the batch compiler’s behavior when compiling

class files.

48 Administering WebSphere applications

http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;

compileToWebInf not

supplied, or is true

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the Web

module’s WEB-INF/classes directory.

compileToDir not supplied;

compileToWebInf is false

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the

WebSphere Application Server temp directory,

usually profile_root/temp.

compileToDir is supplied;

compileToWebInf not

supplied, or is either true or

false

The class files are compiled into the

directory indicated by compileToDir.

The class files are compiled into the directory

indicated by compileToDir.

Packages and directories for generated .java and .class files

By default, the .java files for all JavaServer Pages (JSP) files are generated with the package statement,

package com.ibm._jsp;. The JSP engine’s class loader knows how to load JSP classes when they are all

in the same package. The .java files are located in the filesystem within a directory structure mirroring the

JSP source directory structure.

If the JSP engine configuration parameter useFullPackageNames is set to true, the .java files are

generated with the package statement

Package _ibmjsp.<directory structure in which the jsp is located>;

The usage of full package names enables the configuration of a JSP as a servlet in the web.xml file. See

“JSP class loading settings” on page 51 for more information. The table below gives examples of

packages and directory structures for generated .java and .class files.

 Java package Location of .java or .class files in file

system

JSP file default useFullPackageNames=true default useFullPackageNames=true

/myJsp.jsp com.ibm._jsp _ibmjsp / /_ibmjsp

/jspFiles/
jspOne.jsp

com.ibm._jsp _ibmjsp.jspFiles /jspFiles /_ibmjsp/jspFiles

/dir with

spaces/jspTwo.jsp

com.ibm._jsp _ibmjsp.dir_20_with_20_spaces /dir with

spaces

/_ibmjsp/
dir_20_with_20_spaces

Generated .java files:

When the JSP engine’s keepgenerated configuration parameter is set to true, the .java file that is

generated for JavaServer Pages (JSP) is retained. The .java file contains information that is useful in

debugging.

 Dependency information

In the .java file, immediately following the class declaration, an array of dependent files is defined, if the

source JSP has any dependencies. There are three types of files that are tracked as dependencies:

1. Files that are statically included in the JSP

2. Tag files that are used by the JSP, but only tag files that are not in Java Archive (JAR) files

3. TLD files that are used by the JSP, but only TLDs that are not in JAR files

This array is always generated, but the JSP engine uses it, in determining whether a JSP needs to be

recompiled, only when the trackDependencies parameter is set to true.

Chapter 1. Web applications 49

In the example below, three JSP fragments, one TLD and one tag file are dependencies of the JSP

jsp1.jsp. There are three parts to each array entry:

1. The path to the dependency, relative to the Web module’s context root. For example:

/dir1/frag1.jspf

2. The long value representing the time the file was last modified. For example: 1082407108000

3. The String representation of the long value. For example: Mon Apr 19 16:38:28 EDT 2004
public final class _jsp1 extends com.ibm.ws.jsp.runtime.HttpJspBase

 implements com.ibm.ws.jsp.runtime.JspClassInformation {

 private static String[] _jspx_dependants;

 static {

 _jspx_dependants = new String[5];

 _jspx_dependants[0] = "/Banner.jspf^1082407108000^Mon Apr 19 16:38:28 EDT 2004";

 _jspx_dependants[1] = "/Footer.jspf^1077657462000^Tue Feb 24 16:17:42 EST 2004";

 _jspx_dependants[2] = "/dir1/frag1.jspf^1035396680000^Wed Oct 23 14:11:20 EDT 2002";

 _jspx_dependants[3] = "/utility.tld^1080069938000^Tue Mar 23 14:25:38 EST 2004";

 _jspx_dependants[4] = "/WEB-INF/tags/top.tag^1065440490000^Mon Oct 06 07:41:30 EDT 2003";

 }

Version, JSP engine options, and WEB.XML information

The generated .java source contains a comment that lists information about the file which is located at the

bottom of the generated file. This information includes:

v The date and time the .java file was generated

v The version, build number and build date of the WebSphere Application Server on which the .java file

was generated

v The values of the JSP engine configuration parameters that were in effect when the file was generated

v The values of any <jsp-config> elements in the web.xml file that pertained to the source JSP file.
/*

profile_root/installedApps/MyCell/sampleApp.ear/examples.war/WEB-INF/classes/_ibmjsp/_jsp1.java

was generated @ Wed May 03 10:05:56 EDT 2006IBM WebSphere Application Server - ND, 6.1.0.0

 Build Number: o0441.04

 Build Date: 05/01/06**

The JSP engine configuration parameters were set as follows:

classDebugInfo = [false]

debugEnabled = [false]

deprecation = [false]

compileWithAssert = [false]

jdkSourceLevel = [13]disableJspRuntimeCompilation =[false]

extendedDocumentRoot = [null]

ieClassId = [clsid:8AD9C840-044E-11D1-B3E9-00805F499D93]

keepGenerated = [true]

outputDir = [/QIBM/UserData/WebSphere/AppServer/V6/ND/profiles/AppSrv01/installedApps/MyCell/

 sampleApp.ear/examples.war/WEB-INF/classes]

reloadEnabled = [true]

reloadEnabledSet = [true]

reloadInterval = [5000]

trackDependencies = [false]

usePageTagPool = [false]

useThreadTagPool = [true]

useImplicitTagLibs = [true]

verbose = [false]

looseLibMap = [null]

useJikes = [false]

useFullPackageNames = [true]

translationContextClass = [null]

50 Administering WebSphere applications

extensionProcessorClass = [null]

javaEncoding = [UTF-8]

autoResponseEncoding = [false]

**

The following JSP Configuration Parameters were obtained from web.xml:

prelude list = [[]]

coda list = [[]]

elIgnored = [false]

pageEncoding = [null]

isXML = [false]

scriptingInvalid = [false]

*/

JSP class loading settings

You can configure a JavaServer Pages (JSP) class to be loaded by either the JSP engine’s class loader or

by the Web module’s class loader.

By default, a JSP class is loaded by a unique instance of the JSP engine’s class loader. The JSP engine’s

class loader enables reloading at runtime of a JSP class when the JSP source or one of its dependents is

modified. This allows you to reload a single JSP class when necessary, without affecting any other loaded

JSP classes.

JSP classes are loaded by the Web module’s class loader under either of the following scenarios.

1. The JSP engine configuration parameter useFullPackageNames is set to true, and the JSP file is

configured as a servlet in the web.xml file using the <servlet-class> scenario in the table below.

2. The JSP engine configuration parameters useFullPackageNames and disableJspRuntimeCompilation

are both set to true. In this case, you do not need to configure a JSP file does as a servlet in the

web.xml file.

Configuring JSP files as Servlets

You can configure a JSP file as a servlet in the web.xml file. There are two ways to do this. They are

described in the table below.

Before you configure a JSP file as a servlet, consider the following.

1. Reloading capability - If runtime reloading of JavaServer Pages files is desired, requests for

JavaServer Pages files must be handled by the JSP engine. The <servlet-class> scenario in the table

below disables runtime JSP file reloading, while the <jsp-file> scenario is compatible with reloading.

2. Reducing the number of class loaders - If you do not require runtime reloading of modified JSP pages

and you want to reduce the number of class loader instances, then you can use the <servlet-class>

scenario in the table below. Similarly, scenario 2 in section 1 above can be used without having to

configure a JSP file as a servlet.

 Scenario Example compatible

with runtime

reloading

multiple class

loaders used?

useFullPackageNames

<jsp-file> <servlet>

<servlet-name>jspOne</servlet-
name>

<jsp-file>jspOne.jsp</jsp-file>

</servlet>

Yes Yes Can be true or false

Chapter 1. Web applications 51

<servlet-class> <servlet>

<servlet-name>jspTwo</servlet-
name>

<servlet-class>_ibmjsp.jspTwo</
servlet-class>

</servlet>

No No Must be true

The JSP batch compiler tool helps you configure JavaServer Pages files as servlets. When

useFullPackageNames is true, the JSP batch compiler generates <servlet> and <servlet-mapping>

elements for each JSP file that it successfully translates and compiles. The elements are written to a

web.xml fragment file named generated_web.xml which is located in the binaries WEB-INF directory of a

Web module processed by the JSP file batch compiler (this directory is located within the deployed

application’s ear file). You can copy and paste all or some of these elements into the web.xml file to

configure JavaServer Pages files as servlets.

Take note of the location of the web.xml that is used by the application server. The application specific

configuration is obtained from either the application binaries (the application’s ear file) or from the

configuration repository. If an application is deployed into WebSphere Application Server with the flag Use

Binary Configuration set to true, then the WEB-INF/web.xml file is looked for in a Web module’s binaries

directory, not in the configuration repository. Below are examples of these two locations.

v An example of a configuration repository directory is profile_root/config/cells/cellName/
applications/enterpriseAppName/deployments/deployedName/webModuleName

v An example of an application binaries directory is: profile_root/installedApps/nodeName/
EnterpriseAppName/WebModuleName/

If the JSP batch compiler is executed on a pre-deployed application then the web.xml file is in the Web

module’s WEB-INF directory.

JavaServer Pages (JSP) runtime reloading settings

JavaServer Pages files can be translated and compiled at run time when the JSP file or its dependencies

are modified. This is known as JSP reloading.

JSP reloading is enabled through the reloadEnabled JSP engine parameter in the WEB-INF/ibm-web-
ext.xmi file:

<jspAttributes xmi:id="JSPAttribute_1" name="reloadEnabled" value="true"/>

The following table contains reload settings for production and development environments.

 Settings

Configuration Attribute Production Environment Development Environment

reloadEnabled false true

reloadInterval n/a (ignored if reloadEnabled is

false)

approximately 5 seconds

trackDependencies n/a (ignored if reloadEnabled is

false)

true Alternatively, set this to false to

improve response time if

dependencies are not changing

disableJspRuntimeCompilation true - Alternatively, set this to false if

JSP files are not pre-compiled and

therefore need to be compiled on

the first request.

false

52 Administering WebSphere applications

If the reloadEnabled parameter is set to true, a JSP file is reloaded at run time if the JSP file and its class

file do not have the same timestamp. In addition, if trackDependencies is set to true then the JSP file is

reloaded if the timestamp of any of its dependencies has changed since the JSP class file was last

generated. If the reloadEnabled parameter is set to false, a JSP file is still compiled if necessary on the

first request to it unless the parameter disableJspRuntimeCompilation is true. For example, when

disableJspRuntimeCompilation is false and reloadEnabled is false, a JSP file is compiled on the first

request if the class file is outdated. It would not compiled on subsequent requests even if the JSP source

file is modified or the class file is deleted unless reloadEnabled is true

Reload interval

The reload interval is set through the reloadInterval JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="reloadInterval" value="5"/>

If reloading is enabled, the reloadInterval parameter value determines the delay between checks to see if

a JSP file is outdated. For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is

outdated only when the last such check was done more than five seconds prior to the current request for

the JSP file. Once the reloadInterval is exceeded, reload checking is performed and the reload interval

timer is reset to 0 for that JSP file. The larger the reloadInterval, the less frequently the JSP engine

checks for the need to reload a JSP file.

Dependency tracking

Dependency tracking is set through the trackDependencies JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="trackDependencies" value="true"/>

If reloading is enabled, the trackDependencies parameter value determines whether the JSP engine

tracks modifications to the requested JSP file dependencies as well as to the JSP file itself. The three

types of dependencies tracked by the JSP engine are:

v files statically included in the JSP file

v tag files that are referenced in the JSP file (excluding tag files that are in JAR files)

v TLDs that are referenced in the JSP file (excluding TLDs that are in JAR files)

Dependency tracking information is always included in the generated class file even if trackDependencies

is false. The information is not used by the JSP engine or batch compiler unless the trackDependencies

parameter is true. This means that you can enable dependency tracking without having to recompile JSP

files.

For example, the toplevel.jsp file statically includes the footer.jspf file. When the toplevel.jsp file is

compiled, the path to the footer.jspf file and its timestamp are stored in the toplevel.jsp’s class file. As

a result, the footer.jspf file is modified and the toplevel.jsp file is requested. Now that the reload

interval for the toplevel.jsp file has been exceeded, the JSP engine compares the timestamp stored in

the class file with the footer.jspf file timestamp on disk. Because the timestamps are different, the

toplevel.jsp file is compiled, picking up the modification to the footer.jspf file. In order for dependency

tracking to work, the trackDependencies value must be set to true at the time a JSP file is requested at

run time or is processed by the batch compiler.

Disabling compilation

Disablement of run time compilation of JavaServer Pages is set via the disableJspRuntimeCompilation

JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="disableJspRuntimeCompilation" value="true"/>

If the disableJspRuntimeCompilation parameter is set to true, the JSP engine at run time does not

translate and compile JSP files; the JSP engine loads only precompiled class files. JSP source files do not

Chapter 1. Web applications 53

need to be present in order for the class files to be loaded. With this option set to true, an application can

be installed without JSP source, but must have precompiled class files. There is a Web container custom

property of the same name that can be used to determine the behavior of all web modules installed in a

server. If both the Web container custom property and the JSP engine option are set, the JSP engine

option takes precedence. Setting the disableJspRuntimeCompilation parameter to true automatically

sets reloadEnabled to false.

Reload processing sequence

The processing sequence pertaining to JSP file reloading when trackDependencies is false is shown in

Figure 1.

When trackDependencies is true, the JSP engine does additional file system processing to determine if

any of a JSP file’s dependencies have changed since the JSP file was last translated and compiled.

Figure 2 shows the additional processes that are performed on the ’No’ path of flow chart labeled ″is JSP

class file outdated?″. You can see that the path taken when disableJspRuntimeCompilation is true is the

most efficient path.

No

Request for a JSP.

disable

JspRuntime

Compilation?

First request to

this JSP?

No

Is reloadEnabled?

Classfile exists?

Yes
Attempt to

load classfile

Yes

Return error

to browser

No

Is reloadedInterval

exceeded?

Yes Is JSP

classfile

outdated?

Yes Yes
Translate and

compile JSP

Successful

translation

and

compilation?

Return error

to browser

No

Attempt to load

classfile

Yes

NoNo No

Figure 1. Reload processing sequence when trackDependencies is false.

54 Administering WebSphere applications

JSP and JSF option settings

Use this panel to configure the class reloading of Web modules such as JavaServer Pages (JSP) files and

to select a JSF implementation to use with this application.

To view this administrative console panel, click Applications → Application Types → WebSphere

enterprise applications → application_name → JSP and JSF options. This panel is the same as the

Provide JSP reloading options for Web modules panel on the application installation and update

wizards.

Web module:

Specifies the name of a Web module in the installed or deployed application.

URI:

Specifies the location of the module relative to the root of the application (EAR file).

JSP enable class reloading:

Specifies whether to enable class reloading when JSP files are updated.

 A Web container reloads JSP files only when the IBM extension reloadEnabled in the jspAttributes of the

ibm-web-ext.xmi file is set to true.

J2EE 5 applications IBM extension files are in .xml file format. For applications versions earlier than J2EE

5, they are in the .xmi file format.

JSP reload interval in seconds:

Specifies the number of seconds to scan the application’s file system for updated JSP files. The default is

the value of the reloading interval attribute in the IBM extension (META-INF/ibm-web-ext.xmi) file of the

Web module.

 To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). The default reload

interval is 5. To disable reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

No

Is JSP

classfile

outdated?

Has any

dependent

file been

modified?

No

Translate and

compile JSP

Attempt to load

classfile

Yes

Yes

Figure 2. Additional reload processing performed when trackDependencies is true.

Chapter 1. Web applications 55

J2EE 5 applications IBM extension files are in .xml file format. For applications versions earlier than J2EE

5, they are in the .xmi file format.

Sun Reference Implementation 1.2:

Select this option to use the Sun Reference Implementation 1.2 JSF implementation. This is the default

JSF implementation.

 If you change the JSF implementation that you are using for your application, you must delete any

previously compiled JSP files. If you precompiled your application, you must recompile. If you did not

precompile, but have already requested JSP files from this application, you must delete the JSP files from

the temp directory of your profile.

You can set the JSF engine configuration paramater, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to

automatically mark the JSP files to recompile at application startup.

MyFaces 1.2:

Select this option to use the MyFaces 1.2 JSF implementation.

 If you change the JSF implementation that you are using for your application, you must delete any

previously compiled JSP files. If you precompiled your application, you must recompile. If you did not

precompile, but have already requested JSP files from this application, you must delete the JSP files from

the temp directory of your profile.

You can set the JSF engine configuration paramater, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to

automatically mark the JSP files to recompile at application startup.

JSP run time compilation settings

By default, the JavaServer Pages (JSP) engine translates a requested JSP file, compiles the .java file,

and loads the compiled servlet into the run time environment. You can change the JSP engine default

behavior by indicating that a JSP file must not be translated or compiled at run time, even when a .class

file does not exist.

If run time compilation is disabled, you must precompile the JSP files, which provides the following

advantages:

v Reduces compilation related disk operations.

v Minimizes disk storage requirements necessary for handling temporary .java files generated during a

run time compilation.

v Allows you to not include the JSP source files in the application.

v Allows verification that a JSP file compiled successfully before deploying and installing the application in

the product

You can disable run time JSP file compilation on a global or an individual Web application basis:

v To disable the translation and compilation of JSP files for all Web applications, in the administrative

console, click Servers > Server Types > WebSphere application servers > server_name. Then, in the

Container Settings section, click Web container settings > Web container > Custom properties.

If the disableJspRuntimeCompilation property appears in the list of defined custom properties, but is set

to false, click the property name, and then set the property to true.

If this property is not included in the list of defined custom properties, click New, and then specify

disableJspRuntimeCompilation in the Name field and true in the Value field.

Valid settings for this property are true or false. When this property is set to true, translation and

compilation of the JSP files is disabled at run time for all Web applications.

56 Administering WebSphere applications

v To disable the translation and compilation of JSP files for a specific Web application, set the JSP engine

initialization parameter disableJspRuntimeCompilation to true. This setting, if enabled, determines the

run time behavior of the JSP engine and overrides the Web container custom property setting.

Set this parameter through the JavaServer Pages attribute assembly settings page in the

Assembling applications.

Valid values for this setting are true or false. If this parameter is set to true, then, for that specific Web

application, translation and compilation of the JSP files is disabled at run time, and the JSP engine only

loads precompiled files.

v If neither the Web container custom property nor the JSP parameter is set, the first request for a JSP

file results in the translation and compilation of the JSP file when the .class file does not exist or is

outdated. Subsequent requests for the file also result in translations and compilations, but only if the

following conditions are met:

– Translations are required because the .class file is outdated.

– Reloading is enabled for the Web module.

– Reload interval is exceeded.

If you disable run time compilation and a request arrives for a JSP file that does not have a matching

.class file, the JSP engine returns the following 404 error to the browser:

Error 404: SRVE0200E: Servlet [org.apache.jsp._jsp1]: Could not find required servlet class - _jsp1.class

In this case, an exception is written to the System Out (SYSOUT) and First Failure Data Capture (FFDC)

logs. .

If a JSP file has a matching .class file but that file is out of date, the JSP engine still loads the .class file

into memory.

Provide options to compile JavaServer Pages settings

Use this panel to specify options to be used by the JavaServer Pages (JSP) compiler.

This administrative console panel is a step in the application installation and update wizards. To view this

panel, you must select Precompile JavaServer Pages files on the Select Installation options panel.

Thus, to view this panel, click Applications → New application application_path > Show me all

installation options and parameters > Next > Next > Precompile JavaServer Pages files > Next >

Step: Provide options to compile JSPs.

You can specify the JSP compiler options on this panel only when installing or updating an application that

contains Web modules. After the application is installed, you must edit the JSP engine configuration

parameters of a Web module’s WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Web module:

Specifies the name of a module within the application.

URI:

Specifies the location of the module relative to the root of the application (EAR file).

JSP class path:

Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application

installation. This class path is not saved when the application installation is complete and is not used when

the application is running. This class path is used only to identify resources outside of the application

which are necessary for JSP compilation and which will be identified by other means (such as shared

libraries) after the application is installed. In network deployment configurations, this class path is specific

to the deployment manager machine.

Chapter 1. Web applications 57

To specify that multiple Web modules use the same class path:

1. In the list of Web modules, select the Select check box beside each Web module that you want to use

a particular class path.

2. Expand Apply Multiple Mappings.

3. Specify the desired class path.

4. Click Apply.

Use full package names:

Specifies whether the JSP engine generates and loads JSP classes using full package names.

 When full package names are used, precompiled JSP class files can be configured as servlets in the

web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP

classes are generated in the same package, which has the benefit of smaller file-system paths.

When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class

loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xml

file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level:

Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,

and 15. The default value is 13, which specifies source level 1.3.

Disable JSP runtime compilation:

Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file

does not exist.

 When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the

JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load

class files. You can install an application without JSP source, but the application must have precompiled

class files.

For a single Web application class loader to load all JSP classes, this compiler option and the Use full

package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

JSP batch compilation

As an IBM enhancement to JavaServer Pages (JSP) support, IBM WebSphere Application Server provides

a batch JSP compiler that allows JSP page compilation before application deployment. The batch compiler

validates the syntax of JSP pages, translates the JSP pages into Java source files, and compiles the Java

source files into Java servlet class files. The batch compiler also validates tag files and generates their

Java implementation classes.

Batch compilation of JSP pages in a predeployed application simplifies the deployment process and

improves the runtime performance of JSP page by eliminating first-request compilations. The batch

compiler also operates on enterprise applications that have been deployed into WebSphere Application

Server.

The JSP batch compiler works on Web modules that support Servlet 2.2 and later. The batch compiler

works on JSP pages written to the JSP 2.1 specification or previous specifications back to JSP 1.0. It

recognizes a Servlet 2.5 deployment descriptor, web.xml, and can use any jsp-config elements that it may

58 Administering WebSphere applications

contain. In a Servlet 2.3 (JSP 1.2) or Servlet 2.2 (JSP 1.1) deployment descriptor the batch compiler

recognizes and uses any taglib elements that the descriptor may contain.

Batch compiling makes the first request for a JSP page much faster because the JSP page is already

translated and compiled into a servlet. Batch compiling is also useful as a fast way to resynchronize all of

the JSP pages for an application.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp

directory and a Web module’s WEB-INF/classes directory, depending on the type of batch compiler target.

In addition, the batch compiler enables generation of class files into any directory on the filesystem,

outside the target application. Generating class files into a Web module’s WEB-INF/classes directory

enables the Web module to be deployed as a self-contained WAR file, or a WAR inside an EAR.

Also, you can use shared libraries with the JSP batch complier. When you use the JSP batch compiler,

you must either add the JAR to the WAR in the <WEB-INF>/lib directory, or add the JAR to the JVM class

path to use shared libraries.

You can use the pre-touch tool for batch compilation, which can compile and load JSP class files into the

application server JVM. This tool offers improved performance over the JSP batch compiler on iSeries®

servers. See “Pre-touch tool for compiling and loading JSP files” on page 70 for more information.

JSPBatchCompiler command:

The batch compiler validates the syntax of JavaServer Pages, translates the JSP pages into Java source

files, and compiles the Java source files into Java Servlet class files. The batch compiler also validates tag

files and generates their Java implementation classes. Use this function to batch compile your JSP files

and thereby enable faster responses to the initial client requests for the JSP files on your production Web

server.

 The batch compiler can be executed against compressed or expanded enterprise archive (EAR) files and

Web application archive (WAR) files, as well as enterprise applications and Web modules that have been

deployed into WebSphere Application Server. When the target is a deployed enterprise application, the

server does not need to be running to execute the batch compiler. If the batch compiler is executed while

the target sever is running, the server is not aware of an updated class file and does not load that class

file unless the enterprise application is restarted. When the target is a compressed EAR file or WAR file,

the batch compiler must expand it before executing.

Processing of Web modules

The batch compiler operates on one Web module at a time. If the target is either an EAR file or an

installed enterprise application that contains more than one Web module, the batch compiler operates on

each Web module individually. This is done because JSP pages are configured on a Web module basis,

through the Web module’s web.xml deployment descriptor file. Within a Web module, the batch compiler

processes one directory at a time. It validates and translates each JSP page individually, and then invokes

the Java compiler for the entire group of generated Java sources files in that directory. If one JSP page

fails during the Java compilation phase, the Java compiler might not create class files for most or all of the

JSP pages that successfully compiled in that directory.

JSP file extensions

The batch compiler uses four things to determine what file extensions it should process:

1. Standard JSP file extensions

v *.jsp

v *.jspx

v *.jsw

Chapter 1. Web applications 59

v *.jsv

2. The url-pattern property of the jsp-property-group elements in the deployment descriptor file in Servlet

2.4 Web modules

3. The jsp.file.extensions JSP engine configuration parameter (for pre-Servlet 2.4 Web modules)

4. The batch compiler configuration parameter jsp.file.extensions

The standard extensions are always used by the batch compiler. If the Web module contains a Servlet 2.4

deployment descriptor, the batch compiler also processes any url-patterns found within the jsp-config

element. If the batch compiler target contains the JSP engine configuration parameter jsp.file.extensions,

then those extensions are also processed. If the batch compiler configuration parameter

jsp.file.extensions is present, the extensions given are also processed and will override the JSP engine

configuration parameter jsp.file.extensions.

It is a good idea to give JSP ’fragments’ an extension that is not processed by the batch compiler.

Statically-included fragments that do not stand alone generate translation or compilation errors if

processed. The JSP 2.0 Specification suggests that you use the extension .jspf for such files.

Batch compiler command

The JspBatchCompiler script for running the batch compiler from the Qshell command line is found in the

app_server_root/bin directory. An Ant task is also available for executing the batch compiler using Ant.

See the topic, Batch Compiler Ant Task for additional information.

The batch compiler target is the only required parameter. The target is one of -ear.path, -war.path or

-enterpriseapp.name.

JspBatchCompiler -ear.path | -war.path | -enterpriseapp.name <name>

 [-response.file <filename>]

 [-webmodule.name <name>]

 [-filename <jsp name | directory name>

 [-recurse <true | false>]

 [-config.root <path>]

 [-cell.name <name>]

 [-node.name <name>]

 [-server.name <name>]

 [-profileName <name>]

 [-extractToDir <path>]

 [-compileToDir <path>]

 [-compileToWebInf <true | false>]

 [-translate <true | false>]

 [-compile <true | false>]

 [-removeTempDir <true | false>]

 [-forceCompilation <true | false>]

 [-useFullPackageNames <true | false>]

 [-trackDependencies <true | false>]

 [-createDebugClassfiles <true | false>]

 [-keepgenerated <true | false>]

 [-keepGeneratedclassfiles <true | false>]

 [-usePageTagPool <true | false>]

 [-useThreadTagPool <true | false>]

 [-classloader.parentFirst <true | false>]

 [-classloader.singleWarClassloader <true | false>]

 [-additional.classpath <classpath to additional JAR files and classes>]

 [-verbose <true | false>]

 [-deprecation <true | false>]

 [-javaEncoding <encoding>

 [-jdkSourceLevel <13 | 14 | 15>]

 [-compilerOptions <space-separated list of java compiler options>]

 [-useJikes <true | false>]

 [-jsp.file.extensions <file extensions to process>]

 [-log.level <SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF>]

60 Administering WebSphere applications

*** See batchcompiler.properties.default in app_server_root/bin for more information. ***

 *** See JspCBuild.xml in app_server_root/bin for information about the public WebSphere Ant task JspC. ***

The batch compiler is aware of three groups of configuration parameters:

1. JSP engine configuration parameters for a Web module.

See the topic, JSP engine configuration parameters.

2. Batch compiler response file configuration parameters.

These are the parameters that are found in a batch compiler response file. See -response.file, below.

3. Batch compiler command line configuration parameters.

These are the parameters entered on the command line when running the batch compiler.

The batch compiler looks at all three groups of configuration parameters in order to determine which value

for a parameter is used when compiling JSP pages. When resolving the value for a given parameter, the

precedence is:

1. If the parameter is found on the command line, its value is used.

2. If the parameter is not found on the command line, the batch compiler looks for the parameter in a

response file named on the command line.

3. If no response file is named, or if the parameter is not found therein, the batch compiler looks for the

parameter in the Web module’s JSP engine configuration parameters.

If a configuration parameter is not found among these three groups, then a default value is used. The

default values for the configuration parameters are given below along with the description of the

parameters.

With one exception, these parameters are not case sensitive; -profileName is case sensitive. If the values

specified for these arguments are comprised of two or more words separated by spaces, you must add

quotation marks around the values.

The batch compiler does not create, or set the values of, equivalent JSP engine parameters. This means

that if a JSP page in a deployed Web module is modified and is recompiled by the JSP engine at run time,

the JSP engine’s configuration parameters will determine the engine’s behavior. For example, if you use

the batch compiler to compile a Web module and you use the -useFullPackageNames true option, the JSP

files will be compiled to support that option. But the JSP engine parameter useFullPackageNames must

also be set to true in order for the JSP runtime to be able to load the compiled JSP pages. If JSP pages

are modified in a deployed Web module, then the engine’s parameters should be set to the same values

used in batch compilation.

To use the JSP batch compiler, enter one of the following commands on a single line at an operating

system command prompt.:

v ear.path | war.path | enterpriseapp.name

Represents the full path to a single compressed or expanded enterprise application archive (EAR) file or

Web application archive (WAR) file, or the name of the deployed enterprise application that you want to

compile. For example:

– JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear

– JspBatchCompiler -war.path /home/wasuser/wars/examples.war

– JspBatchCompiler -enterpriseapp.name myEnterpriseApp -webmodule.name my.war -filename

mydirectory/main.jsp
v response.file

Specifies the path to a file that contains configuration parameters used by the batch compiler. The

response.file is used only if it is given on the command line; it is ignored if it is present in a response

file.

The template response file, batchcompiler.properties.default, is found in the app_server_root/properties

directory. Copy this template to create your own response files containing defaults for the parameters in

Chapter 1. Web applications 61

which you are interested. You can configure all the required and optional parameters, except the

response.file in a response file.For example: JspBatchCompiler -response.file /home/wasuser/
myproject/batchc.props

Default : null

v webmodule.name

Represents the name of the specific Web module that you want to batch compile. If this argument is not

set, all Web modules in the enterprise application are compiled. This parameter is used only when

ear.path or enterpriseapp.name is given. This parameter is useful when JSP pages in a specific Web

module within a deployed enterprise application need to be regenerated, because all shared library

dependencies are picked up.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -webmodule.name myWebModule.war

Default: All Web modules in an EAR file or enterprise application are compiled if this parameter is not

given.

v filename

Represents the name of a single JSP file that you want to compile. If this argument is not set, all files in

the Web module are compiled. Alternatively, if filename is set to the name of a directory, only the JSP

files in that directory and that directory’s child directories are complied. The name is relative to the

context root of the Web module.

Example 1: If you want to compile the file, myTest.jsp, and it is found in /subdir/myJSPs, you would

enter -filename /subdir/myJSPs/myTest.jsp.

Example 2: If you want to compile all JSP files in /subdir/myJSPs and its child directories, you would

enter -filename subdir/myJSPs.

Default: All JSP files in the Web module are compiled. Entering -filename / is equivalent to the

default.

v recurse

Determines whether subdirectories beneath the target directory are processed. This parameter is used

only when the filename parameter is given. Set value to false to process only the directory named

filename parameter; and not its subdirectories.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -filename /subdir1 -recurse false.

Default: true; All directories beneath the target directory are processed.

v config.root

Specifies the location of the WebSpehere Application Server configuration directory. This parameter is

used only when enterpriseapp.name is given.

Default: profile_root/config

v cell.name

Specifies the name of the cell in which the application is deployed. This parameter is used only when

enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable

is WAS_CELL.

v node.name

Specifies the name of the node in which the application is deployed. This parameter is used only when

enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable

is WAS_NODE.

v server.name

Represents the name of the server in which the application is deployed. This parameter is used only

when enterpriseapp.name is given.

Default: server1

v profileName

Specifies the name of the profile you want to use. This parameter is used only when

enterpriseapp.name is given.

62 Administering WebSphere applications

Example: JspBatchCompiler -enterpriseApp.name sampleApp -profileName AppServer-3

Default: The default profile is used. This is obtained from the setupCmdLine script in the

app_server_root/bin directory. The symbolic name is DEFAULT_PROFILE_SCRIPT.

v extractToDir

Specifies the directory into which predeployed enterprise archive (EAR) files and Web application

archive (WAR) files will be extracted before the batch compiler operates on them. This parameter is

ignored when enterpriseapp.name is given. The extractToDir parameter is used as described in the

table below.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -extractToDir /home/wasuser/
mytempdir.

Use-case: You must extract a compressed archive before it is batch compiled. You can also extract an

expanded archive to a new directory as well. In both cases, extraction leaves the original archive

untouched, which may be useful while development is underway.

Default values:

 Expanded archive Compressed archive

extractToDir supplied The batch compiler extracts the archive to extractToDir before operating on it.

If a file or directory of the same name as the archive already exists in the

extractToDir, the batch compiler removes the archive completely before

extracting that archive. If the batch compiler exits with no errors, it

compresses the archive in place in the extractToDir, even if the original EAR

file or WAR file was expanded. If errors are encountered during compilation,

the EAR file or WAR file is left in the expanded state even if the original EAR

file or WAR file was compressed.

extractToDir not supplied The batch compiler operates on the

EAR file or WAR file in place (does

not extract it to another directory) and

the archive remains expanded after

the batch compiler finishes.

The batch compiler extracts the

archive to the directory returned by

the JVM property ″java.io.tmpdir″. The

rest of the behavior described above,

when extractToDir is supplied, is the

same in this case.

The default is server1.

v compileToDir

Specifies the directory into which JSP pages are translated into Java source files and compiled into

class files. This directory can be anywhere on the filesystem, but the batch compiler’s default behavior

is usually adequate. The batch compiler’s behavior when compiling class files is described in the table

below

Example:: JspBatchCompiler -enterpriseApp.name sampleApp -compileToDir /home/wasuser/
myTargetDir

Use-case: This parameter enables you to generate the Java and class files into a directory outside of

the target, which may be useful if you want to compare the newly generated files with their previous

versions which remain untouched within the target.

Default values:

 ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;

compileToWebInf not supplied, or is

true

The class files are compiled into the

Web module’s WEB-INF/classes

directory

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

compileToDir not supplied;

compileToWebInf is false

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the

WebSphere Application Server temp

directory (usually profile_root/temp).

Chapter 1. Web applications 63

compileToDir is supplied;

compileToWebInf not supplied, or is

either true or false

The class files are compiled into the

directory indicated by compileToDir.

The class files are compiled into the

directory indicated by compileToDir.

v compileToWebInf

Specifies whether the target directory for the compiled JSP class files should be the Web module’s

WEB-INF/classes directory. This parameter is used only when enterpriseApp.name is given, and it is

overridden by compileToDir if compileToDir is given.

The batch compiler’s default behavior is to compile to the Web module’s WEB-INF/classes directory. The

batch compiler’s behavior when compiling class files is described in the table above.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compileToWebInf false.

Use-case: Set this parameter to false when enterpriseApp.name is supplied and you want the class

files to be compiled to the WebSphere Application Server temp directory instead of the Web module’s

WEB-INF/classes directory. Recommendation: if this parameter is set to false, set forceCompilation to

true if there are any JSP class files in the WEB-INF/classes directory.

Default: true; see the table above.

v forceCompilation

Specifies whether the batch compiler is forced to recompile all JSP resources regardless or whether the

JSP page is outdated.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -forceCompilation true.

Use-case: Especially useful when creating an archive for deployment, to make sure all JSP classes are

up to date.

Default: false

v useFullPackageNames

Specifies whether the batch compiler generates full package names for JSP classes. The default is to

generate all JSP classes in the same package. The JSP engine’s class loader knows how to load JSP

classes when they are all in the same package. The default has the benefit of generating smaller

file-system paths. Full package names have the benefit of enabling the configuration of precompiled

JSP class files as servlets in the web.xml file without use of the jsp-file attribute, resulting in a single

class loader (the Web application’s class loader) being used to load all such JSP classes. Similarly,

when the JSP engine’s configuration attributes useFullPackageNames and

disableJspRuntimeCompilation are both true, a single class loader is used to load all JSP classes,

even if the JSP pages are not configured as servlets in the web.xml file.

When useFullPackageNames is set to true, the batch compiler generates a file called

generated_web.xml in the Web module’s WEB-INF directory. This file contains servlet configuration

information for each JSP page that is successfully translated and compiled. The information can

optionally be copied into the Web module’s web.xml file so that the JSP pages are loaded as servlets by

the Web container. Note that if a JSP page is configured as a servlet in this way, no reloading of the

JSP page is done at run time if the JSP page is modified. This is because the JSP page is treated as a

regular servlet and requests for it do not pass through the JSP engine.

Example: JspBatchCompiler –enterpriseApp.name sampleApp –useFullPackageNames true

Use-case: Enables JSP classes to be loaded by a single class loader.

Default: false

v removeTempDir

Specifies whether the Web module’s temp directory is removed. The batch compiler by default

generates JSP class files into a Web module’s WEB-INF/classes directory. JSP class files are generated

into the temp directory at run time if a JSP page is modified and JSP reloading is enabled. By batch

compiling all the JSP pages in a Web module and also removing the temp directory, disk resources are

preserved. You can only use the removeTempDir parameter when -enterpriseApp.name is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -removeTempDir true.

Use-case: Free up disk space by clearing out a Web application’s temp directory.

64 Administering WebSphere applications

Default: false

v translate

Specifies whether JSP pages are translated and compiled. Set translate to false if you do not want JSP

pages to be translated and compiled. You must use this option in conjunction with -removeTempDir to tell

the batch compiler to remove only the temp directory and to do no further processing.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -translate false -removeTempDir true.

Use-case: Free up disk space by clearing out a Web application’s temp directory, without invoking JSP

processing.

Default: true

v compile

Specifies whether JSP pages go through the Java compilation phase. Set compile to false if you do not

want JSP pages to go through the Java compilation phase.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compile false

Use-case: If you only want JSP pages to be syntax-checked, set -compile to false. You can set

-keepgenerated to true if you want to see the .java files that are generated during the translation

phase.

Default: true

v trackDependencies

Specifies whether the batch compiler recompiles a JSP page when any of its dependencies have

changed, even if the JSP page itself has not changed. Tracking dependencies incurs a significant

runtime performance penalty because the JSP Engine checks the filesystem on every request to a JSP

page to see if any of its dependencies have changed. The dependencies tracked by WebSphere

Application Server are :

1. Files statically included in the JSP page

2. Tag files used by the JSP page (excluding tag files that are in JAR files)

3. TLD files used by the JSP page (excluding TLD files that are in JAR files)

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -trackDependencies

true.

Use-case: Useful in a development environment.

Default: false

v createDebugClassfiles

Specifies whether the batch compiler generates class files that contain SMAP information, as per JSR

45, Debugging support for Other Languages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -createDebugClassfiles true

Use-case: Use this parameter when you want to be able to debug JSP pages in your JSR 45-compliant

IDE.

Default: false

v keepgenerated

Specifies whether the batch compiler saves or erases the generated Java source files created during

the translation phase.

If set to true, WebSphere Application Server saves the generated .java files used for compilation on

your server. By default, this argument is set to false and the .java files are erased after the class files

have compiled.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -keepgenerated true

Use-case: Use this parameter when you want to review the Java code generated by the batch compiler.

Default: false

v keepGeneratedclassfiles

Specifies whether the batch compiler saves or erases the class files generated during the compilation of

Java source files.

Chapter 1. Web applications 65

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear

-keepGeneratedclassfiles false -keepgenerated false

Use-case: Set this parameter to false if you only want to see if there are any translation or compilation

errors in your JSP pages. If paired with -keepgenerated false, this parameter results in all generated

files being removed before the batch compiler completes.

Default: true

v usePageTagPool

Enables or disables the reuse of custom tag handlers on an individual JSP page basis.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -usePageTagPool true

Use-case: Use this parameter to enable JSP-page-based reuse of tag handlers.

Default: false

v useThreadTagPool

Enables or disables the reuse of custom tag handlers on a per request thread basis per Web module.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -useThreadTagPool

true

Use-case: Use this parameter to enable Web module-based reuse of tag handlers.

Default: false

v classloader.parentFirst

Specifies the search order for loading classes by instructing the batch compiler to search the parent

class loader prior to application class loader. This parameter is only used when ear.path or

enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -classloader.parentFirst

false

Use-case: Set this parameter to false when your Web module contains a JAR file that is also found in

the server lib directory, and you want your Web module’s JAR file to be picked up first.

Default: true

v classloader.singleWarClassloader

Specifies whether to use one class loader per enterprise archive (EAR) file or one class loader per Web

application archive (WAR) file. Used only when ear.path or enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear

-classloader.singleWarClassloader true

Use-case: Set this parameter to true when a Web module depends on JAR files and classes in another

Web module in the same enterprise application.

Default: false; One class loader is created per WAR file with no visibility of classes in other Web

modules.

v additional.classpath

Specifies additional class path entries to be used when parsing and compiling JSP pages. This

parameter is used only when war.path is given. When war.path is the target, WebSphere Shared

Libraries are not picked up by the batch compiler. Therefore, if your WAR file relies on, for example, a

JAR file that is configured in WebSphere Application Server as a shared library, then use this option to

point to that JAR file. In addition, if you give war.path and also use the -extractToDir parameter, then

any JAR files that are in the WAR file’s manifest class-path is not added to the class path (since the

WAR file has now been extracted by itself outside the EAR file in which it resides). Use

-additional.classpath in this case to point to the necessary JAR files. Add the full path to needed

resources, separated by your system-dependent path separator.

Example: JspBatchCompiler -war.path /home/wasuser/myproject/examples.war -additional.classpath

/home/wasuser/myJars/someJar.jar:/home/wasuser/myClasses

Use-case: Use this parameter to add to the class path JAR files and classes outside of your WAR file.

At run time, these same JAR files and classes have to be made available through the standard

WebSphere Application Server configuration mechanisms.

66 Administering WebSphere applications

Default: null

v verbose

Specifies whether the batch compiler should generate verbose output while compiling the generated

sources.

Example: JspBatchCompiler -war.path /home/wasuser/myproject/examples.war -verbose true

Use-case: Set this parameter to true when you want to see Java compiler class loading and other

messages.

Default: false

v deprecation

Indicates the compiler should generate deprecation warnings while compiling the generated sources.

Example: JspBatchCompiler -war.path /home/wasuser/myproject/examples.war -deprecation true

Use-case: Set this parameter to true when you want to see Java compiler deprecation messages.

Default: false

v javaEncoding

Specifies the encoding that will be used when the .java file is generated, and when it is compiled by the

Java compiler. When -javaEncoding is set, that encoding is passed to the java compiler via the

-encoding argument. Note that encoding is not supported by Jikes.

Example: JspBatchCompiler -war.path/home/wasuser/myproject/examples.war -javaEncoding Shift-JIS

Use-case: Set this parameter when the page encoding of your JSP pages is not UTF-8 compatible.

Default value: UTF-8.

v jdkSourceLevel

This is a new JSP engine parameter which was introduced in WebSphere Application Server version 6.1

to support JDK 5. This parameter should be used instead of the compileWithAssert parameter, although

compile WithAssert still works in version 6.1.

The default value for this parameter is 13. This parameter requires regeneration of Java source. The

following are jdkSourceLevel paramater values:

– 13 (default) - This value will disable all new language features of JDK 1.4 and JDK 5.0.

– 14 - This value will enable the use of the assertion facility and will disable all new language features

of JDK 5.0.

– 15 - This value will enable the use of the assertion facility and all new language features of JDK 5.0.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -jdkSourceLevel 14

Use-case: Set this parameter when you want to enable or disable the language features of JDK 1.4

and JDK 5.0

Default value: 13

v compilerOptions

Specifies a list of strings to be passed on the Java compiler command. This is a space-separated list of

the form ″arg1 arg2 argn″.

Example: JspBatchCompiler -war.path /home/wasuser/myproject/examples.war -compilerOptions ″

-bootclasspath <path>″

Use-case: Use this parameter if you need Java compiler arguments other than verbose, deprecation

and Assert facility support.

Default: null

v useJikes

Specifies whether Jikes should be used for compiling Java sources. NOTE: Jikes is not shipped with

WebSphere Application Server.

Example: JspBatchCompiler -ear.path /home/wasuser/myproject/sampleApp.ear -useJikes true

Use-case: Set this parameter to true in order for the batch compiler to use Jikes as the Java compiler.

Chapter 1. Web applications 67

Default value: false

v jsp.file.extensions

Specifies the file extensions to be processed by the batch compiler. This is a semicolon- or

colon-separated list of the form ″*.ext1;*.ext2:*.extn″. Note that this parameter is not necessary for

Servlet 2.4 Web applications because the url-pattern property of the jsp-property-group elements in the

deployment descriptor can be used to identify extensions that should be treated as JSP pages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -jsp.file.extensions *jspz;*.jspt

Use-case: Use this parameter to add additional extensions to the be processed by the batch compiler.

Default: null. See section, ″JSP file extensions″, in this topic for additional information.

v log.level

Specifies the level of logging that is directed to the console during batch compilation. Values are

SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF

Example: JspBatchCompiler -enterpriseApp.name sampleApp -log.level FINEST

Use-case: Set this parameter higher or lower to control logging output. FINEST generates the most

output useful for debugging.

Default: CONFIG

Batch compiler ant task:

The ant task JspC exposes all the batch compiler configuration options. It executes the batch compiler

under the covers. It is backward compatible with the WebSphere Application Server 5.x version of the

JspC ant task. The following table lists all the ant task attribute and their batch compiler equivalents.

 JspC attribute Equivalent batch complier parameter

earPath -ear.path

warPath -war.path

src

Same as warPath, for backward compatiblity

-war.path

enterpriseAppName -enterpriseapp.name

responseFile -response.file

webmoduleName -webmodule.name

fileName -filename -config.root

configRoot -config.root

cellName -cell.name

nodeName -node.name

serverName -server.name

profileName -profileName

extractToDir -extractToDir

compileToDir

same as compileToDir, for backward compatibility

-compileToDir -compileToDir

compileToWebInf -compileToWebInf

compilerOptions -compilerOptions

recurse -recurse

removeTempDir -removeTempDir

translate -translate

68 Administering WebSphere applications

compile -compile

forceCompilation -forceCompilation

useFullPackageNames -useFullPackageNames

trackDependencies -trackDependencies

createDebugClassfiles -createDebugClassfiles

keepgenerated -keepgenerated

keepGeneratedclassfiles -keepGeneratedclassfiles

usePageTagPool -usePageTagPool

useThreadTagPool -useThreadTagPool

classloaderParentFirst -classloader.parentFirst

classloaderSingleWarClassloader -classloader.singleWarClassloader

additionalClasspath -additional.classpath

classpath

same as additionalClasspath, for backward compatibility

-additional.classpath

verbose -verbose

deprecation -deprecation

javaEncoding -javaEncoding

compileWithAssert -compileWithAssert

useJikes -useJikes

jspFileExtensions -jsp.file.extensions

logLevel -log.level

wasHome none

Classpathref none

jdkSourceLevel -jdkSourceLevel

Below is an example of a build script with multiple targets, each with different attributes. The following

commands are used to execute the script:

On Windows:

ws_ant -Dwas.home=%WAS_HOME% -Dear.path=%EAR_PATH% -Dextract.dir=%EXTRACT_DIR%

ws_ant jspc2 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME%

ws_ant jspc3 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME% -Ddir.name=%DIR_NAME%

On UNIX® or i5/OS®:

ws_ant -Dwas.home=$WAS_HOME -Dear.path=$EAR_PATH -Dextract.dir=$EXTRACT_DIR

ws_ant jspc2 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME

ws_ant jspc3 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME -Ddir.name=$DIR_NAME

Example build.xml Using the JspC Task

<project name="JSP Precompile" default="jspc1" basedir=".">

 <taskdef name="wsjspc" classname="com.ibm.websphere.ant.tasks.JspC"/>

 <target name="jspc1" description="example using a path to an EAR, and extracting the EAR to a directory">

 <wsjspc wasHome="${was.home}"

 earpath="${ear.path}"

 forcecompilation="true"

 extractToDir="${extract.dir}"

 useThreadTagPool="true"

 keepgenerated="true"

Chapter 1. Web applications 69

/>

 </target>

 <target name="jspc2" description="example using an enterprise app and webmodule">

 <wsjspc wasHome="${was.home}"

 enterpriseAppName="${app.name}"

 webmoduleName="${webmodule.name}"

 removeTempDir="true"

 forcecompilation="true"

 keepgenerated="true"

 />

 </target>

 <target name="jspc3" description="example using an enterprise app, webmodule and specific directory">

 <wsjspc wasHome="${was.home}"

 enterpriseAppName="${app.name}"

 webmoduleName="${webmodule.name}"

 fileName="${dir.name}"

 recurse="false"

 forcecompilation="true"

 keepgenerated="true"

 />

 </target>

</project>

Pre-touch tool for compiling and loading JSP files:

When enabled, the pre-touch mechanism causes all JavaServer Pages (JSP) files to be compiled within

the Web module for which they are configured. You can also configure some or all JSP files to be class

loaded and JIT-compiled.

 To enable the pre-touch mechanism, use Rational Application Developer to specify the following JSP

attributes, which are Assembly Property Extensions for your Web module:

v prepareJSPs (Required)

When this attribute is present, all JSP files are compiled at application server startup. This activity runs

in a separate thread, allowing the application server to finish other startup actions in parallel. The

numeric attribute value represents the minimum size in kilobytes that a JSP file must be in order to also

be class loaded and JIT-compiled. The default is 0, which causes all JSP files to be class loaded and

JIT-compiled.

Note: JSP file compilation is different from JIT compilation. JSP compilation generates bytecodes,

whereas JIT translates the bytecodes into machine code at run time.

v prepareJSPAttribute (Optional)

The pre-touch mechanism compiles and JIT-compiles JSP files by directly invoking the JSP service

method, thus making the JSP file susceptible to incurring exceptions because it is called out of context.

Such exceptions are avoided by immediately checking the value of this attribute, causing a quick exit

from the service method when the JSP was prepared by this tool. This attribute value is added as a

request parameter and is composed of alphanumeric characters that your JSP files do not expect to use

during normal initiation.

v prepareJSPThreadCount (Optional)

Set this numeric attribute to the number of threads that you would like this mechanism to start up to

compile your JSP files. Since a thread makes use of just one processor, multi-processor systems may

better utilize this pre-touch mechanism by specifying a value greater than 1. The default setting for this

attribute is 1, representing the number of threads that are created to perform pre-touch processing for

this Web module.

v prepareJSPClassload (Optional)

70 Administering WebSphere applications

Set this attribute to either a whole number or the word changed. By entering changed, only those JSP

filess that have been updated or not previously touched, for example, those JSP files that need to be

converted from a .jsp file to a .java file, are class loaded. By entering a numerical value, for example,

1000, the pre-touch tool starts class loading at the 1000th JSP that it processes and all subsequent JSP

files. This is convenient in the event that the application server is stopped when starting the pre-touch

tool. You can then check the server logs to see how many JSP files have been processed and update

the prepareJSPClassload value accordingly to avoid duplicating work. If a JSP file is not class loaded, it

cannot be JIT compiled. As a result, if a JSP file does not satisfy the requirements of the

prepareJSPClassload attribute, but satisfies the requirements of the prepareJSPs attribute, the JSP file

is compiled if it has been updated, but is not class loaded or JIT compiled.

Batch compiler class path:

The batch compiler builds its class path as shown in the table below. When the batch compiler target is a

Web archive (WAR) file and war.path is supplied, the configuration additional.classpath parameter is used

to give extra class path information.

 Batch compiler target

Location added to class path enterpriseapp.name ear.path war.path

WebSphere Application Server

JAR files and classes

yes yes yes

JAR files listed in manifest class

path for a Web module

yes yes yes, when the target WAR is inside

an EAR and –extractToDir is not

used; otherwise, no.

Shared libraries yes no no

Web module JAR files and classes yes yes yes

additional.classpath parameter to

batch compiler

no no yes

Global tag libraries (deprecated)

JavaServer Pages (JSP) tag libraries contain classes for common tasks such as processing forms and

accessing databases from JSP files.

Tag libraries encapsulate, as simple tags, core functionality common to many Web applications. The Java

Standard Tag Library (JSTL) supports common programming tasks such as iteration and conditional

processing, and provides tags for:

v manipulating XML documents

v supporting internationalization

v using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page development, and

include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a Java archive (JAR) file.

tsx:dbconnect tag JavaServer Pages syntax (deprecated):

Use the <tsx:dbconnect> tag to specify information needed to make a connection to a database through

Java DataBase Connectivity (JDBC) or Open Database Connectivity (ODBC) technology.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

Chapter 1. Web applications 71

The <tsx:dbconnect> syntax does not establish the connection. Use the <tsx:dbquery> and <tsx:dbmodify>

syntax instead to reference a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file to establish

the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding for the

<tsx:dbconnect> syntax to the servlet service() method, which means a new database connection is

created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.

<tsx:dbconnect id="connection_id"

 userid="db_user" passwd="user_password"

 url="jdbc:subprotocol:database"

 driver="database_driver_name"

 jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:

v id

Represents a required identifier. The scope is the JSP file. This identifier is referenced by the

connection attribute of a <tsx:dbquery> tag.

v userid

Represents an optional attribute that specifies a valid user ID for the database that you want to access.

Specify this attribute to add the attribute and its value to the request object.

Although the userid attribute is optional, you must provide the user ID. See <tsx:userid> and

<tsx:passwd> for an alternative to hard coding this information in the JSP file.

v passwd

Represents an optional attribute that specifies the user password for the userid attribute. (This attribute

is not optional if the userid attribute is specified.) If you specify this attribute, the attribute and its value

are added to the request object.

Although the passwd attribute is optional, you must provide the password. See <tsx:userid> and

<tsx:passwd> for an alternative to hard coding this attribute in the JSP file.

v url and driver

Respresents a required attribute if you want to establish a database connection. You must provide the

URL and driver.

The application server supports connection to JDBC databases and ODBC databases.

– For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the

subprotocol name, and the name of the database to access. An example for a connection to the

Sample database included with IBM DB2 is:

url="jdbc:db2:sample"

driver="com.ibm.db2.jdbc.app.DB2Driver"

– For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in their Java2 Software

Developers Kit (SDK) or another vendor’s ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the

driver to use in establishing the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC

bridge. If you want to use an ODBC driver, refer to the driver documentation for instructions on

specifying the database location with the url attribute and the driver name.

If you use the bridge, the url syntax is jdbc:odbc:database. An example follows:

url="jdbc:odbc:autos"

driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the ODBC Data Source

Administrator to add the ODBC data source to the System DSN configuration. To access the ODBC

Administrator, click the ODBC icon on the Windows NT® Control Panel.
v jndiname

72 Administering WebSphere applications

Represents an optional attribute that identifies a valid context in the application server Java Naming and

Directory Interface (JNDI) naming context and the logical name of the data source in that context. The

Web administrator configures the context using an administrative client such as the WebSphere

Administrative Console.

If you specify the jndiname attribute, the JSP processor ignores the driver and url attributes on the

<tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax (deprecated):

Use the <tsx:dbquery> tag to establish a connection to a database, submit database queries, and return

the results set.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

The <tsx:dbquery> tag does the following:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

the tag provides to determine the database URL and driver. You can also obtain the user ID and

password from the <tsx:dbconnect> tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection

3. Retrieves and caches data in the results object.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.

<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%>

<%-- Any other syntax, including HTML comments, are not valid. --%>

<tsx:dbquery id="query_id" connection="connection_id" limit="value" >

</tsx:dbquery>

where:

v id

Represents the identifier of this query. The scope is the JSP file. Use id to reference the query. For

example, from the <tsx:getProperty> tag, use id to display the query results.

The id is a tsx reference to the bean and can be used to retrieve the bean from the page contect. For

example, if id is named mySingleDBBean, instead of using:

– if (mySingleDBBean.getValue(″UISEAM″,0).startsWith(″N″))

use:

– com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults bean =

(com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults)pageContext. findAttribute(″mySingleDBBean″); if

(bean.getValue(″UISEAM″,0).startsWith(″N″)). . .

The bean properties are dynamic and the property names are the names of the columns in the results

set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT

command. In the following example, the database table contains columns named FNAME and LNAME,

but the SELECT statement uses the AS keyword to map those column names to FirstName and

LastName in the results set:

Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the

database URL, driver name, and optionally, the user ID and password for the connection.

v limit

Chapter 1. Web applications 73

Represents an optional attribute that constrains the maximum number of records returned by a query. If

this attribute is not specified, no limit is used. In such a case, the effective limit is determined by the

number of records and the system caching capability.

v SELECT command and JSP syntax

Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must return a results set.

Refer to your database documentation for information about the SELECT command. See other articles

in this section for a description of JSP syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax (deprecated):

The <tsx:dbmodify> tag establishes a connection to a database and then adds records to a database

table.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

The <tsx:dbmodify> tag does the following:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

provided by that tag to determine the database URL and driver.

Note: You can also obtain the user ID and password from the <tsx:dbconnect> tag if those values are

provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.

3. Updates a table in the database.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.

<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->

<%-- Any other syntax, including HTML comments, are not valid. -->

<tsx:dbmodify connection="connection_id">

</tsx:dbmodify>

where:

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the

database URL, driver name, and (optionally) the user ID and password for the connection.

v Database commands

Represents valid database commands. Refer to your database documentation for details

In the following example, a new employee record is added to a database. The values of the fields are

based on user input from this JavaServer Pages (JSP) file and referenced in the database commands

using the <tsx:getProperty> tag.

<tsx:dbmodify connection="conn" >

insert into EMPLOYEE

 (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)

values

(’<tsx:getProperty name="request" property=request.getParameter("EMPNO") />’,

’<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />’,

’<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />’,

’<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />’,

’<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />’,

<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)

</tsx:dbmodify>

tsx:getProperty tag JavaServer Pages syntax and examples (deprecated):

The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer Pages (JSP) file.

74 Administering WebSphere applications

Note: Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere

Application Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from

the JavaServer Pages Standard Tag Library (JSTL).

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the <jsp:getProperty> function

and adds the ability to introspect a database bean created using the IBM extension <tsx:dbquery> or

<tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated as output from this

tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:

<tsx:getProperty name="bean_name"

 property="property_name" />

where:

v name

Represents the name of the bean declared by the id attribute of a <tsx:dbquery> syntax within the JSP

file. See <tsx:dbquery> for an explanation. The value of this attribute is case-sensitive.

v property

Represents the property of the bean to access for substitution. The value of the attribute is

case-sensitive and is the locale-independent name of the property.

Tag example:

<tsx:getProperty name="userProfile" property="username" />

tsx:userid and tsx:passwd tag JavaServer Pages syntax (deprecated):

With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user ID and password in the

<tsx:dbconnect> tag.

 Note: Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere

Application Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from

the JavaServer Pages Standard Tag Library (JSTL).

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and then add that data to

the request object. You can access the request object with a JavaServer Pages (JSP) file, such as the

JSPEmployee.jsp example that requests the database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.

<tsx:dbconnect id="connection_id"

 <userid>

 <tsx:getProperty name="request" property=request.getParameter("userid") />

 </userid>

 <passwd>

 <tsx:getProperty name="request" property=request.getParameter("passwd") />

 </passwd>

 url="protocol:database_name:database_table"

 driver="JDBC_driver_name">

</tsx:dbconnect>

where:

v <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.

Chapter 1. Web applications 75

v userid

Represents a reference to the request parameter that contains the user ID. You must add the parameter

to the request object that passes to this JSP file. You can set the attribute and its value in the request

object, using an HTML form or a URL query string to pass the user-specified request parameters.

v passwd

Represents a reference to the request parameter that contains the password. Add the parameter to the

request object that passes to this JSP file. You can set the attribute and its value in the request object,

using an HTML form or a URL query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax (deprecated):

The <tsx:repeat> tag repeats a block of HTML tagging.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

Use the <tsx:repeat> syntax to iterate over a database query results set. The <tsx:repeat> syntax iterates

from the start value to the end value until one of the following conditions is met:

v The end value is reached.

v An exception is thrown.

If an exception of the types ArrayIndexOutOfBoundsException or NoSuchElementException is created

before a block completes, output is written only for the iterations up to and not including the iteration

during which the exception was created. All other exceptions results in no output being written for that tag

instance.

This section describes the syntax of the <tsx:repeat> tag:

<tsx:repeat index="name" start="starting_index" end="ending_index">

</tsx:repeat>

where:

v index

Represents an optional name used to identify the index of this repeat block. The scope of the index is

NESTED. Its type must be integer.

v start

Represents an optional starting index value for this repeat block. The default is 0.

v end

Represents an optional ending index value for this repeat block. The maximum value is 2,147,483,647.

If the value of the end attribute is less than the value of the start attribute, the end attribute is ignored.

Combining tsx:repeat and tsx:getProperty JavaServer Pages tags (deprecated)

Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

The following code snippet shows you how to code these tags:

<tsx:repeat>

<tr>

 <td><tsx:getProperty name="empqs" property="EMPNO" />

 <tsx:getProperty name="empqs" property="FIRSTNME" />

 <tsx:getProperty name="empqs" property="WORKDEPT" />

76 Administering WebSphere applications

<tsx:getProperty name="empqs" property="EDLEVEL" />

 </td>

</tr>

</tsx:repeat>

Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set (deprecated):

The <tsx:repeat> tag iterates over a results set. The results set is contained within a bean. The bean can

be a static bean, for example, a bean created by using the IBM WebSphere Studio database wizard, or a

dynamically generated bean, for example, a bean generated by the <tsx:dbquery> syntax.

 Note: Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere

Application Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from

the JavaServer Pages Standard Tag Library (JSTL).

The following table is a graphic representation of the contents of a bean called, myBean:

 col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:

v The column names in the database table become the property names of the bean. The <tsx:dbquery>

section describes a technique for mapping the column names to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.

v The query results are in the rows. The <tsx:repeat> tag iterates over the rows, beginning at the start

row.

The following table compares using the <tsx:repeat> tag to iterate over a static bean, versus a dynamically

generated bean:

Chapter 1. Web applications 77

Static Bean Example <tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data

 Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>

 <tsx:getProperty name="myBean"

 property="col1(abc)" />

</tsx:repeat>

Notes®:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties is

myBean.get(property(index)).

v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You

can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag iterates over the bean properties

row by row, beginning with the start row.

JSP file

<tsx:dbconnect id="conn"

userid="alice"passwd="test"

url="jdbc:db2:sample"

driver="COM.ibm.db2.jdbc.app.DB2Driver">

</tsx:dbconnect >

<tsx:dbquery id="dynamic"

 connection="conn" >

 Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>

 <tsx:getProperty name="dynamic"

 property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (dynamic) is generated by the <tsx:dbquery>

tag and does not exist until the syntax executes.

v The method to access the bean properties is

dynamic.getValue(″property″, index).

v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You

can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag syntax iterates over the bean

properties row by row, beginning with the start row.

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce the same output if all

indexed properties have 300 or fewer elements. If there are more than 300 elements, Examples 1 and 2

display all elements, while Example 3 shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The bean with the smallest

number of indexed properties restricts the number of times the loop repeats.

<table>

<tsx:repeat>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="address" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone" />

 </tr></td>

</tsx:repeat>

</table>

Example 2 shows indexing, starting index, and ending index:

<table>

<tsx:repeat index=myIndex start=0 end=2147483647>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=city(myIndex) />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) />

</tr></td>

</tsx:repeat>

</table>

78 Administering WebSphere applications

Example 3 shows explicit indexing and ending index with implicit starting index. Although the index

attribute is specified, you can still implicitly index the indexed property city because the (myIndex) tag is

not required.

<table>

<tsx:repeat index=myIndex end=299>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t>

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone(myIndex)" />

 </tr></td>

</tsx:repeat>

</table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability is useful for

interleaving properties on two beans, or properties that have subproperties. In the example, two

<tsx:repeat> blocks are nested to display the list of songs on each compact disc in the user’s shopping

cart.

<tsx:repeat index=cdindex>

 <h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1>

 <table>

 <tsx:repeat>

 <tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />

 </td></tr>

 </tsx:repeat>

 </table>

 </tsx:repeat>

JavaServer Pages migration best practices and considerations

The standard JavaServer Pages (JSP) tags from JSP 1.1 such as jsp:include, jsp:useBean, and <%@

page %>, a will migrate successfully to JSP 2.0. However, there are several areas that must be

considered when migrating JavaServer Pages. This topic discusses the areas that you must consider

when migrating JavaServer Pages.

Classes from the unnamed or default package

As of JSP 2.0, referring to any classes from the unnamed or default package is not allowed. This can

result in a translation error on some containers, specifically those that run in a JDK 1.4 or greater

environment which will also break compatibility with some older JSP applications. However, as of JDK 1.4,

importing classes from the unnamed package is not valid. See Java 2 Platform, Standard Edition Version

1.4.2 Compatibility with Previous Releases for details. Therefore, for forwards compatibility, applications

must not rely on the unnamed package. This restriction also applies for all other cases where classes are

referenced, such as when specifying the class name for a tag in a Tag Library Descriptor (TLD) file.

Page encoding for JSP documents

There have been noticeable differences in internationalization behavior on some containers as a result of

ambiguity in the JSP 1.2 specification. However, steps were taken to minimize the impact on backwards

compatibility and overall, the internationalization abilities of JSP files have been greatly improved.

In JSP specification versions prior to JSP 2.0, JSP pages in XML syntax, JSP documents, and those in

standard syntax determined their page encoding in the same fashion, by examining the pageEncoding or

contentType attributes of their page directive, defaulting to ISO-8859-1 if neither was present.

As of JSP 2.0, the page encoding for JSP documents is determined as described in section 4.3.3 and

appendix F.1 of the XML specification, and the pageEncoding attribute of those pages is only checked to

make sure it is consistent with the page encoding determined as per the XML specification. As a result of

Chapter 1. Web applications 79

http://java.sun.com/j2se/1.4/compatibility.html#source
http://java.sun.com/j2se/1.4/compatibility.html#source

this change, JSP documents that rely on their page encoding to be determined from their pageEncoding

attribute are no longer decoded correctly. These JSP documents must be changed to include an

appropriate XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on translation unit basis whereas in JSP 2.0,

page encodings are determined on the basis of each file. Therefore, if the a.jsp file statically includes the

b.jsp file, and a page encoding is specified in the a.jsp file but not in the b.jsp file, in JSP 1.2 the encoding

for the a.jsp file is used for the b.jsp file, but in JSP 2.0, the default encoding is used for the b.jsp file.

web.xml file version

The JSP container uses the version of the web.xml file to determine whether you are running a JSP 1.2

application or a JSP 2.0 application. Various features can behave differently depending on the version of

the web.xml file. The following is a list of things JSP developers should be aware of when upgrading their

web.xml file from version Servlet 2.3 to version Servlet 2.4:

1. EL expressions are ignored by default in JSP 1.2 applications. When you upgrade a Web application to

JSP 2.0, EL expressions are interpreted by default. You can use the escape sequence \$ to escape EL

expressions that should not be interpreted by the container. Alternatively, you can use the isELIgnored

page directive attribute, or the <el-ignored> configuration element to deactivate EL for entire translation

units. Users of JSTL 1.0 must upgrade their taglib imports to the JSTL 1.1 uris or use the _rt versions

of the tags, for example, use c_rt instead of c or fmt_rt instead of fmt.

2. Web applications that contain files with an extension of .jspx will have those files interpreted as JSP

documents, by default. You can use the JSP configuration element <is-xml> to treat .jspx files as

regular JSP pages, but there is no way to disassociate .jspx from the JSP container.

3. The escape sequence \$ was not reserved in JSP 1.2. The output for any template text or attribute

value that appeared as \$ in JSP 1.2 was \$, however, the output now is just $.

jsp:useBean tag

WebSphere Application Server version 5.1 and later enforces more strict adherence to the specification for

the jsp:useBean tag: with type and class attributes. Specifically, you should use the type attribute should

be used to specify a Java type that cannot be instantiated as a JavaBean. For example, a Java type that

is an abstract class, interface, or a class with no public no-args constructor. If the class attribute is used

for a Java type that cannot be instantiated as a JavaBean, the WebSphere Application Server JSP

container produces a unrecoverable translation error at translation time.

Generated packages for JSP classes

Any reliance on generated packages for JSP classes will result in non-portable JSP files. Packages for

generated classes are implementation-specific and therefore you should not rely on these packages.

JspServlet class

Any reliance on the existence of a JspServlet class will cause unrecoverable error problems. WebSphere

Application Server version 6.0 and later no longer uses a JspServlet class.

JavaServer Pages specific Web container custom properties

You can configure name-value pairs of data, where the name is a property key and the value is a string

value that you can use to set internal system configuration properties. Defining a new property enables

you to configure a setting beyond what is available in the administrative console. The following is a list of

the available JavaServer Pages custom properties. The JavaServer Pages custom properties are case

sensitive.

com.ibm.wsspi.jsp.allowjspoutputelementmismatch:

80 Administering WebSphere applications

CTS requirements in previous releases was not applicable to the product, therefore the JSP container

supported multiple occurrences of properties in the jsp:output element. In the current release, CTS

compliance requires that the JSP container strictly enforces rules about multiple occurrences of properties

in the jsp:output element. You can use the com.ibm.wsspi.jsp.allowjspoutputelementmismatch custom

property to relax the enforcement of the rule for backward compatibility.

 Name Value

com.ibm.wsspi.jsp.allowjspoutputelementmismatch true

com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition:

CTS compliance requires that a tag library directive that defines a prefix must occur before that prefix is

used in a custom tag. Because CTS requirements in previous releases were not required, this rule was not

enforced; however, you can use the com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition custom property

to relax the enforcement of the rule for backward compatibility.

 Name Value

com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition true

com.ibm.wsspi.jsp.allowtaglibprefixredefinition:

CTS compliance requires that if a tag library prefix is already defined with a different URI within a JSP, the

product must create a translation error. Because CTS requirements in previous releases were not required,

this rule was not enforced; however, you can use the com.ibm.wsspi.jsp.allowtaglibprefixredefinition

custom property to relax the enforcement of the rule for backward compatibility.

 Name Value

com.ibm.wsspi.jsp.allowtaglibprefixredefinition true

com.ibm.wsspi.jsp.allowunmatchedendtag:

In version 5 of the product, improper termination of end tags was ignored whereas in version 6, a

translation exception is created. This change of behavior in version 6 causes problems to users who are

migrating their applications, which had improperly terminated end tags, to version 6. In version 6, to

facilitate migration, a WebContainer property, com.ibm.wsspi.jsp.allowunmatchedendtag, and a

JSPAttribute, allowUnmatchedEndTag),are provided. Enabling these properties provides the version 5

behavior.

 Name Value

com.ibm.wsspi.jsp.allowunmatchedendtag true

com.ibm.wsspi.jsp.userepeatint:

The custom property com.ibm.wsspi.jsp.userepeatint

 Name Value

com.ibm.wsspi.jsp.userepeatint true

com.ibm.wsspi.jsp.usescriptvardupinit:

Chapter 1. Web applications 81

The code generated for a JSP file assumed that the same tag variables to be declared twice in an If-Else

condition even if the variable had a ’page’ scope. The custom property

com.ibm.wsspi.jsp.usescriptvardupinit is used to enable this feature for all the applications deployed on a

particular server. If the compatibility feature is required only for a specific application then the JSPAttribute

useScriptVarDupInit needs to be enabled. If both the options are set then the JSPAttribute takes

preference over the webcontainer property.

 Name Value

com.ibm.wsspi.jsp.usescriptvardupinit true

com.ibm.wsspi.jsp.usestringcast:

The com.ibm.wsspi.jsp.usestringcast property explicitly adds a ’String cast’ to the relative path before

inclusion when you migrate version 5.1 applications. In version 6.0.x, the generated Java source for the

JSP file did not add the ″implicit″ cast, for return types of type String when the request.getAttribute method

is called. When a JSP file includes a resource whose relative path does not evaluate to a String, then the

include fails as the include takes only a String as a relative path of the resource. You can set the

com.ibm.wsspi.jsp.usestringcast custom property, which would affect all the deployed applications or you

can set the property as a JSPAttribute, useStringCast, in the extensions file, which affects only the

application for which the property is set.

 Name Value

com.ibm.wsspi.jsp.usestringcast true

com.ibm.wsspi.jsp.usecdatatrim:

You can use the com.ibm.wsspi.jsp.usecdatatrim custom property to trim the text before creating CDATA

section which eliminates the extra whitespaces addedUsers Affected: WebSphere Application server

version 6 users who are migrating their applications from version 5 to version 6 and whose JSPs make

use of nesting tags in separate lines. Problem Description: JSP files that make use of nesting tags have

extra lines in the code generated for this section. In version 6, you could eliminate the extra spaces by

appending all the lines into one as in: ’’ The extra line is added in the Java code generated because the

text is not trimmed before creating the CDATA section. Therefore, a switch is provided to enable the

trimming of the text before creating the CDATA section. You can set the JSP attribute, useCDataTrim, at

the Web module level or set the com.ibm.wsspi.jsp.usecdatatrim Web container property at the Web

container level using the following name-value pair.

 Name Value

com.ibm.wsspi.jsp.usecdatatrim

com.ibm.ws.jsp.getparameterreturnemptystring:

This property is for returning an empty string for actions not set in a JSP file. If a JSP file contains an

action and that property has not been set, the JSP engine returns null on WebSphere Application Server

versions 6.0 and 6.1. However, in WebSphere Application Server version 5.1 an empty string is returned.

This custom property was added to provide backwards compatibility. When it is set to true, the value

returned on a call to jsp:getProperty is an empty string instead of null for versions 6.0 and 6.1.

 Name Value

com.ibm.ws.jsp.getparameterreturnemptystring true

com.ibm.wsspi.jsp.evalquotedandescapedexpression:

82 Administering WebSphere applications

This property is for compiling functions that contain an expression. The JSP translation code was modified

to handle escape characters and quotations properly when determining whether to evaluate an expression

or to treat it as a literal string. To apply this behavior globally across all Web applications, add the following

name-value pair as a Web container custom property.

 Name Value

com.ibm.wsspi.jsp.evalquotedandescapedexpression true

To enable this new behavior for a single application, you must also add the

evalquotedandescapedexpression JSP attribute to the ibm-web-ext.xmi file of the failing application and set

the value to true. An example entry is:

<jspAttributes xmi:id="JSPAttribute_1" name="evalquotedandescapedexpression" value="true"/>

The attribute id value must be unique.

com.ibm.ws.jsp.jdksourcelevel:

This property is for setting the JDK source level through the administrative console. A JSP engine

parameter can be configured for different levels of JDK, but this requires that you set the jdksourcelevel

JSP attribute in the Web extension file for each Web module. However, you can use the

com.ibm.ws.jsp.jdkjdksourcelevel custom property to set the JSP attribute globally using the Web container

custom property. If this attribute is also defined in the Web extension file, the property defined in the Web

extension file supersedes the custom property for that particular application. This custom property is not

case sensitive. The default value is 13.

 Name Value

com.ibm.ws.jsp.jdksourcelevel 13, 14, or 15

com.ibm.wsspi.jsp.recompilejsponrestart:

This property forces JSP files that were compiled at runtime to be recompiled every time the application is

restarted. This is helpful if you switch the underlying JSF implementation. This property is best used on

development environments.

 Name Value

com.ibm.wsspi.jsp.recompilejsponrestart true

com.ibm.wsspi.jsp.modifyPageContextVariable:

During the translation phase of a tag file that is compiled, the JSP container implicitly uses the

pageContext variable for the PageContext object. The use of the pageContext variable as an implicit

variable name in tag files does not comply with the JSP Specification.

 If compilation errors occur for applications that use a local pageContext variable in their tag file, set the

com.ibm.wsspi.jsp.modifyPageContextVariable custom property totrue to remove the use of the

pageContext variable name in the generated Java code for tag files.

 Name Value

com.ibm.wsspi.jsp.modifyPageContextVariable true

User profiles and authorities

WebSphere Application Server uses two OS/400® user profiles by default, QEJB and QEJBSVR.

Chapter 1. Web applications 83

The QEJB user profile is shipped as part of the operating system. This user profile is used only when

accessing validation list objects used for storing the encoded passwords used with WebSphere Application

Server. For more information on using validation list objects to store encoded passwords, see Restoring or

replacing damaged validation list objects

The QEJBSVR user profile is created on your iSeries server when you install WebSphere Application

Server. This profile is the default profile under which all application servers run. Directories and files used

by WebSphere Application Server are normally owned by user profile QEJBSVR. The WebSphere

Application Server runtime, administration tools, and Qshell scripts sets the ownership and authorities

correctly on any objects created. If you create objects manually outside of the WebSphere Application

Server tools, or if you modify the authorities on objects used by WebSphere Application Server, you must

ensure QEJBSVR has the correct authorities to these objects.

You can also use the grtwasaut script and the rvkwasaut script to modify authorities on integrated file

system objects. When you create new directories for WebSphere Application Server, the QEJBSVR user

profile must have read and execute authorities (*RX) to those directories.

If you have specified another user profile to run your application servers, it is recommended that you

specify QEJBSVR for its group profile. See Running application servers under specific user profiles for

more information.

Web application deployment troubleshooting tips

Deployment of a Web application is successful if you can access the application by typing a Uniform

Resource Locator (URL) in a browser or if you can access the application by following a link. If you cannot

access your application, follow these steps to eliminate some common errors that can occur during

migration or deployment.

Web module does not run in WebSphere Application Server Version 5.x or 6.x

 Symptom Your Web module does not run when you migrate it to Version 5.x or 6.x

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.

In Versions 5.x and 6.x, you must use class loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility settings in the class loader

policies.

See Class loaders and Class loading for more information.

Web module does not run in WebSphere Application Server Version 6.1

 Symptom Your Web module does not run when you migrate it to Version 6.1.

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.

In Version 6.1, you must use class loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility settings in the class loader

policies.

See Class loaders and Class loading for more information.

Welcome page is not visible.

 Symptom You cannot access an application with a Web path of:

 /webapp/myapp

Problem The default welcome page for a Web application is assumed to be index.html. You

cannot access the default page of the myapp application unless it is named index.html.

84 Administering WebSphere applications

Recommended response To identify a different welcome page, modify the properties of the Web module during

assembly, see the topic, Assembling Web applications for more information in the

Developing and deploying applications PDF book.

HTML files are not found.

 Symptom Your Web application ran successfully on prior versions, but now you encounter errors

that the welcome page (typically index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html

Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web application URLs are now case-sensitive on

all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">

<HTML>

<TITLE>

Insurance Home Page

</TITLE>

 <frameset rows="18,80">

 <frame src="Banner.html" name="BannerFrame" SCROLLING=NO>

 <frame src="HomeContent.html" name="HomeContentFrame">

 </frameset>

</HTML>

However the actual file names in the \WebSphere\AppServer\installedApps\...

directory where the application is deployed are:

banner.html

homecontent.html

Recommended response To correct this problem, modify the index.html file to change the names Banner.html

and HomeContent.html to banner.html and homecontent.html to match the names of

the files in the deployed application.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Web applications: Resources for learning

Use the following links to find relevant supplemental information about Web applications. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming model and decisions

v J2EE BluePrints for Web applications

v Redbook on the design and implementation of Servlets, JSP files, and enterprise beans

Programming instructions and examples

v WebSphere Studio Application Developer Programming Guide

v Sun’s JavaTM Tutorial on Servlets and JavaServer Pages

Chapter 1. Web applications 85

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://www.redbooks.ibm.com/abstracts/SG246585.html?Open
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

v Web delivered samples in the Samples Gallery

Programming specifications

v Java 2 Software Development Kit (SDK)

v Servlet 2.4 Specification

v JavaServer Pages 2.0 Specification

v Differences between JavaScript and ECMAScript

v ISO 8859 Specifications

v Java 2 Platform, Standard Edition (J2SE)

Configuring session management by level

When you configure session management at the Web container level, all applications and the respective

Web modules in the Web container normally inherit that configuration, setting up a basic default

configuration for the applications and Web modules below it. However, you can set up different

configurations individually for specific applications and Web modules that vary from the Web container

default. These different configurations override the default for these applications and Web modules only.

About this task

Note: When you overwrite the default session management settings on the application level, all the Web

modules below that application inherit this new setting unless they too are set to overwrite these

settings.

1. Open the administrative console.

2. Select the level that this configuration applies to:

v For the Web container level:

a. Click Servers → Server Types → WebSphere application servers → server_name → Web

Container Settings → Web container → Session management.
v For the enterprise application level:

a. Click Applications → Application Types → WebSphere enterprise applications →

application_name → Session management.
v For the Web module level:

a. Click Applications → Application Types → WebSphere enterprise applications →

application_name → Manage Modules.

b. Select a Web module from the list of Web modules defined for this application.

c. Click > Session Management.

3. Manage sessions by configuring session tracking, session timeouts and serializing access.

4. If you are working on the Web module or application level and want these settings to override the

inherited Session Management settings, under General Properties, select Override session

management.

5. Click Apply and Save.

Session management settings

Use this page to manage HTTP session support. This support includes specifying a session tracking

mechanism, setting maximum in-memory session count, controlling overflow, and configuring session

timeout.

To view this administrative console page at the Web container level, click Servers → Server Types →

WebSphere application servers → server_name → Session management .

Note that the session management settings can be overridden at the application level.

Session tracking mechanism

Specifies a mechanism for HTTP session management.

86 Administering WebSphere applications

http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://www.jcp.org/en/jsr/detail?id=154
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://java.sun.com/j2se/index.jsp

Mechanism Function Default

Enable SSL ID Tracking Note: This feature is deprecated in

WebSphere Application Server version

7.0. You can reconfigure session

tracking to use cookies or modify the

application to use URL rewriting.

Specifies that session tracking uses

Secure Sockets Layer (SSL)

information as a session ID. Enabling

SSL tracking takes precedence over

cookie-based session tracking and

URL rewriting.

There are two parameters available if

you enable SSL ID tracking:

SSLV3Timeout and Secure

Authentication Service (SAS).

SSLV3Timeout specifies the time

interval after which SSL sessions are

renegotiated. This is a high setting

and modification does not provide any

significant impact on performance.

The SAS parameter establishes an

SSL connection only if it goes out of

the Java Virtual Machine (JVM) to

another JVM. If all the beans are

co-located within the same JVM, the

SSL used by SAS does not hinder

performance.

These are set by editing the

sas.server.properties and

sas.client.props files located in the

product_installation_root\properties

directory, where

product_installation_root is the

directory where WebSphere

Application Server is installed.

Note: SAS is supported only between

Version 6.0.x and previous version

servers that have been federated in a

Version 6.1 cell.

9600 seconds

Chapter 1. Web applications 87

Enable cookies Specifies that session tracking uses

cookies to carry session IDs. If

cookies are enabled, session tracking

recognizes session IDs that arrive as

cookies and tries to use cookies for

sending session IDs. If cookies are

not enabled, session tracking uses

Uniform Resource Identifier (URL)

rewriting instead of cookies (if URL

rewriting is enabled).

Enabling cookies takes precedence

over URL rewriting. Click Enable

cookies to change these settings.

Application level session management

settings override the server level

session management settings.

Because session management is

defined at the application level,

enabling cookies for the administration

console is handled in the

deployment.xml file.

Enable URL rewriting Specifies that the session

management facility uses rewritten

URLs to carry the session IDs. If URL

rewriting is enabled, the session

management facility recognizes

session IDs that arrive in the URL if

the encodeURL method is called in

the servlet.

Enable protocol switch rewriting This option is only available when

Enable URL rewriting is selected.

This option specifies that the session

ID is added to a URL when the URL

requires a switch from HTTP to

HTTPS or from HTTPS to HTTP. If

rewriting is enabled, the session ID is

required to go between HTTP and

HTTPS.

Maximum in-memory session count

Specifies the maximum number of sessions to maintain in memory.

The meaning differs depending on whether you are using in-memory or distributed sessions. For

in-memory sessions, this value specifies the number of sessions in the base session table. Use the Allow

overflow property to specify whether to limit sessions to this number for the entire session management

facility or to allow additional sessions to be stored in secondary tables. For distributed sessions, this value

specifies the size of the memory cache for sessions. When the session cache has reached its maximum

size and a new session is requested, the session management facility removes the least recently used

session from the cache to make room for the new one.

Note: Do not set this value to a number less than the maximum thread pool size for your server.

Allow overflow

Specifies that the number of sessions in memory can exceed the value specified by the Max in-memory

session count property. This option is valid only in non-distributed sessions mode.

88 Administering WebSphere applications

Session timeout

Specifies how long a session can go unused before it is no longer valid. Specify either Set timeout or No

timeout. Specify the value in minutes greater than or equal to two.

The value specified in a Web module deployment descriptor file takes precedence over the administrative

console settings. However, the value of this setting is used as a default when the session timeout is not

specified in a Web module deployment descriptor. Note that to preserve performance, the invalidation

timer is not accurate to the second. When the write frequency is time based, ensure that this value is least

twice as large as the write interval.

Security integration

Specifies that when security integration is enabled, the session management facility associates the identity

of users with their HTTP sessions

Serialize session access

Specifies that concurrent session access in a given server is not allowed.

 Maximum wait time Specifies the maximum amount of time a servlet request

waits on an HTTP session before continuing execution.

This parameter is optional and expressed in seconds. The

default is 5 seconds. Under normal conditions, a servlet

request waiting for access to an HTTP session gets

notified by the request that currently owns the given HTTP

session when the request finishes.

Allow access on timeout Specifies whether the servlet is started normally or

aborted in the event of a timeout. If this box is checked,

the servlet is started normally. If this box is not checked,

the servlet execution aborts and error logs are generated.

Configuring session tracking

About this task

Review the Session tracking options to plan your approach to session management. To configure session

tracking, complete the following:

1. Go to the appropriate level of Session Management.

2. Specify the session tracking mechanism that you want to pass the session ID between the browser

and the servlet:

v To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.

v To track sessions with URL rewriting, click Enable URL Rewriting.

If you want to enable protocol switch rewriting, click Enable protocol switch rewriting.

v To track sessions with SSL information, click Enable SSL ID tracking.

Note: Session tracking using the SSL ID is deprecated in WebSphere Application Server version

7.0. You can reconfigure session tracking to use cookies or modify the application to use

URL rewriting.

3. Click Apply.

4. Click Save.

5. Define the “Distributed environment settings” on page 14 to specify how to save a session in a

distributed environment.

Chapter 1. Web applications 89

Serializing access to session data

The Servlet API supports concurrent access to a session in a given server instance. WebSphere

Application Server provides an option to prevent the concurrent access to a session in a given server

instance so that concurrent modification of a session does not occur in a given server instance.

About this task

Preventing concurrent access to a session is achieved by synchronizing the requests based on session.

When this feature is turned on, a session is obtained for the request before invoking the servlet and

requests are synchronized by locking the session for the servlet initiation time. Note that synchronization is

based on the memory copy of session. So this feature cannot serialize requests across servers based on

session when session affinity fails.

You can also use the serializing access to session data feature to synchronize session objects inside of

servlets or JavaServer pages. Applications cannot synchronize session objects inside of their servlets or

JavaServer Pages because a deadlock with the session manager may occur. The deadlock occurs

because the session manager does not expect the use of more than one locking mechanism. You can

ensure that only one request can access the session at a time through the use of the configuration option,

Allow serial access.

Use this feature only when concurrent modification of the same session data is possible and is not

desirable by the application. This feature has overhead of serializing the requests based on a session.

Do the following to synchronize session access:

1. Select the level of Session Management on which you want to serialize session access.

2. Under Serialize Session access, click Allow serial access.

3. In the Maximum wait time box, type the amount of time, in milliseconds, a servlet waits on a session

before continuing execution. The default is 120000 milliseconds or two minutes.

4. Select Allow access on timeout if you want the servlet to gain access to the session and continue

normal execution even if the session is still locked by another servlet. If you do not select this box, the

servlet execution will abort when the session request times out.

5. Click Apply.

6. Click Save.

Cookie settings

Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Session management → Enable cookies.

Cookie name

Specifies a unique name for the session management cookie. The servlet specification requires the name

JSESSIONID. However, for flexibility, you can configure this value.

Restrict cookies to HTTPS sessions

Specifies that the session cookies include the secure field. Enabling this feature restricts the exchange of

cookies to HTTPS sessions only.

Cookie domain

Specifies the domain field of a session tracking cookie. This value controls whether or not a browser

sends a cookie to particular servers. For example, if you specify a particular domain, session cookies are

sent to hosts in that domain. The default domain is the server.

90 Administering WebSphere applications

Cookie path

Specifies that a cookie is sent to the URL designated in the path. Specify any string representing a path

on the server. ″/″ indicates root directory. Specify a value to restrict the paths to which the cookie is sent.

By restricting paths, you prevent the cookie from going to certain URLs on the server. If you specify the

root directory, the cookie is sent no matter which path on the given server is accessed.

Cookie maximum age

Specifies the amount of time that the cookie lives on the client browser. Specify that the cookie lives only

as long as the current browser session, or to a maximum age. If you choose the maximum age option,

specify the age in seconds. This value corresponds to the Time to Live (TTL) value described in the

Cookie specification.

Default is the current browser session which is equivalent to setting the value to -1.

Session management custom properties

You can specify additional settings for session management through setting custom properties.

Session management properties, like the session management configuration, can be configured at the

server, application, or Web module level. The following steps are for setting the custom properties for

session management at the server level.

1. In the administrative console click Servers → Server Types → WebSphere application servers →

server_name → Session management.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the property that you want to configure in the Name field and the value

that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

CloneSeparatorChange

Use this property to maintain session affinity. The clone ID of the server is appended to session identifier

separated by colon. On some Wireless Application Protocol (WAP) devices, a colon is not allowed. Set this

property to ″true″ to change clone separator to a plus sign (+).

HttpSessionCloneId

Use this property to change the clone ID of the cluster member. Within a cluster, this name must be

unique to maintain session affinity. When set, this name overwrites the default name generated by

WebSphere Application Server.

Default clone ID length: 40

HttpSessionIdLength

Use this property to configure the session identifier length. Do not use an extremely low value; using a low

value results in reduced number of combinations possible, thereby increasing risk of guessing the session

identifier. In a cluster, all cluster members should be configured with same ID length. Allowed range: 8 to

128. Default length: 23.

HttpSessionReaperPollInterval

Use this property to set a wake-up interval for the process that removes invalid sessions. Setting this

property overrides the default installation value, which is between 30 and 360 seconds. If the maximum

inactive interval is less than 2 minutes, the reaper poll interval may be as short as 30 seconds. If the

maximum inactive interval is more than 15 minutes, the reaper poll interval can be as long as 6 minutes.

Because the default timeout and maximum inactive interval is 30 minutes, the reaper interval is usually

Chapter 1. Web applications 91

between 5 and 6 minutes. Set this property if you want to ensure that the reaper process runs at a specific

interval. Use this property when you want the installation timed out sessions invalidated more frequently

than 5 to 6 minutes. For example, setting HttpSessionReaperPollInterval=120 ensures that sessions are

invalidated within 2 minutes of timing out. The minimum value for this property is 30 seconds. If a value

less than the minimum is entered, the specified property is ignored and an appropriate value is

automatically determined and used. The maximum inactive interval is the session timeout. The default is

based on maximum inactive interval set in session management.

 Data type Integer

Units Seconds

NoAdditionalSessionInfo

Set this value to ″true″ to force removal of information that is not needed in session identifiers.

NoAffinitySwitchBack

Set this property to ″true″ to maintain affinity to the new member even after original one comes back up.

When a cluster member fails, its requests routed to a different cluster member, and sessions are activated

in that other member. Thus, session affinity is maintained to the new member, and when failed cluster

member comes back up, the requests for sessions that were created in the original cluster member are

routed back to it. Allowed values, true or false. Default: false.

Set this property to ″true″ when you have distributed sessions configured with time-based write. Note that

this property has no affect on the behavior when distributed sessions is not enabled.

SessionIdentifierMaxLength

Use this value to set maximum length that a session identifier can grow.

In a cluster, because of fail-over when a request goes to new cluster member, session management

appends a new clone ID to the existing clone ID. In a large cluster, if for some reason servers are failing

more often, then it is possible that the session identifier length can be more than expected reducing room

for URL. This property helps to find out the condition and take appropriate action to address servers

fail-over. When this is specified, message is logged when specified maximum length is reached. Allowed

value: integer.

SessionRewriteIdentifier

Use this property to change the key used with URL rewriting. Default key: jsessionid.

Servlet21SessionCompatibility

Set this custom property to true to enable global session behavior. In Servlet 2.2 and later, sessions are

scoped at the Web module level. The default is false.

Note: This property is deprecated. The IBMApplicationSession method replaces the function of the

Servlet21SessionCompatibility custom property.

SessionTableName

Use this custom property to set the database table name. Allowed value: String. The default value is

SESSIONS.

Some applications may rely on method ejbCreate(...) to have created the entity bean in the database. For

such a requirement, setting the JVM property com.ibm.websphere.ejbcontainer.allowEarlyInsert to true

overrides the default behavior.

UseInvalidatedId

Set this custom property to true to reuse the incoming ID if the session with that ID was recently

invalidated. This is a performance optimization because it prevents checking the persistent store. The

default value is true.

92 Administering WebSphere applications

UseOracleBLOB

The UseOracleBLOB custom property creates the HTTP session database table using the Binary Large

Object (BLOB) data type for the medium column. This property increases performance of persistent

sessions when Oracle databases are used. Due to an Oracle restriction, BLOB support requires use of the

Oracle’s oci database driver for more than 4000 bytes of data. You must also ensure that a new sessions

table is created before the server is restarted by dropping your old sessions table or by changing the

datasource definition to reference a database that does not contain a sessions table.

To create a sessions table using the BLOB data type, use the following name-vaule pair:

 Name Value

UseOracleBLOB true

DebugSessionCrossover

The DebugSessionCrossover custom property enables code to perform additional checks to verify that

only the session associated with the request is accessed or referenced. Messages are logged if any

discrepancies are detected.

To enable session data crossover detection, use the following name-vaule pair:

 Name Value

DebugSessionCrossover true

See article, “HTTP session problems” on page 29, for additional information.

HttpSessionIdReuse

The custom property HttpSessionIdReuse determines whether the session manager can use the session

ID sent from a browser to preserve session data across Web applications that are running in an

environment that is not configured for session persistence.

In a multi-JVM environment that is not configured for session persistence setting this property to true

enables the session manager to use the same session information for all of a user’s requests even if the

Web applications that are handling these requests are governed by different JVMs. The default value for

this property is false. To enable the session manager ton use the session ID sent from a browser to

preserve session data across Web applications that are running in an environment that is not configured

for session persistence, use the following name-value pair:

 Name Value

HttpSessionIdReuse true

OptimizeCacheIdIncrements

Set the OptimizeCacheIdIncrements custom property to true to make the session manager assess whether

the in-memory session is older than the copy in persistent store. Setting this property resolves the

continually increasing cache ID.

If HTTP session management is configured to use session persistence and the user’s browser session is

moving back and forth across multiple Web applications you might see extra persistent store activity as the

in-memory sessions are refreshed from the persistent store. As a result, the cache IDs are continually

increasing and the in-memory session attributes are overwritten by those of the persistent copy. To prevent

the cache IDs from continually increasing, use the following name-value pair:

 Name Value

OptimizeCacheIdIncrements true

Chapter 1. Web applications 93

If the configuration is a cluster, ensure that the system times of each cluster member is identical as

possible.

AlwaysEncodeURL

The Servlet 2.5 specification specifies to not encode the URL on a response.encodeURL call if it is not

necessary. To support backward compatibility when URL encoding is enabled, set the AlwaysEncodeURL

custom property to true to call the encodeURL method. The URL is always encoded, even if the browser

supports cookies. Use the following name-value pair to encode all URLs:

 Name Value

AlwaysEncodeURL true

UsingApplicationSessionsAndInvalidateAll

When the invalidateAllSet method is called, not all IBMApplicationSessions objects are checked. If you are

using both the IBMApplicationSessions object and the invalidateAll call, use the following name-value pair:

 Name Value

UsingApplicationSessionsAndInvalidateAll true

ForceSessionInvalidationMultiple

The ForceSessionInvalidationMultiple custom property indicates whether the session manager should wait

indefinitely for a request to complete before attempting to invalidate the session, or should attempt to

invalidate a session after the specified time limit has elapsed. The default value for this property is 1.

v If you specify 0 (zero) for this custom property, the session manager waits indefinitely until a request is

complete before attempting to invalidate the session.

If your requests normally are not bound by a response time limit, pecify 0 for this property.

v If you specify a positive integer, such as 1, 2, or 3, for this custom property, even if a session is not

known to have completed, the session manager attempts to invalidate the session, if the indicated time

period since the last access occurred has elapsed. This time period is the result of multiplying the value

specified for this property and the value specified for the Session Timeout property. For example, if you

specify 2 minutes for the Session Timeout property and 2 for the ForceSessionInvalidationMultiple

property, the session manager attempts to invalidate the session after 4 minutes.

If you want to invalidate your sessions after a certain amount of time has elapsed, specify the

appropriate positive integer for this property.

 Name Value

ForceSessionInvalidationMultiple 1

Configuring session tracking for Wireless Application Protocol (WAP)

devices

Applications that run in a Web container use sessions to keep track of individual users. Because most

Wireless Application Protocol (WAP) devices do not support cookies, you can configure WAP devices to

use URL rewriting to track sessions.

About this task

On most WAP devices, the maximum URL length is 128 characters. With URL rewriting, a session

identifier is added to the URL itself, effectively decreasing the space available for the actual URL and the

number of parameters that can be sent on a request.

94 Administering WebSphere applications

To reduce the length of session identifier, you can configure key (jsessionid), session ID length and clone

ID. To make these configuration changes, complete the following steps.

1. Open the administrative console.

2. Click Servers → Server Types → WebSphere application servers → server_name → Web Container

Settings → Web container.

3. Under Additional Properties, click Custom properties.

4. Add the appropriate properties from the following list:

v HttpSessionIdLength

v SessionRewriteIdentifier

v HttpSessionCloneId

v CloneSeparatorChange

v NoAdditionalSessionInfo

v SessionIdentifierMaxLength

5. Click Apply and Save.

Configuring for database session persistence

You can configure a database to collect session data for database session persistence.

About this task

To configure the session management facility for database session persistence, complete the following

steps.

 1. Create and configure a JDBC provider.

 2. Create a data source pointing to a database.

Use the JDBC provider that you defined: Resources > JDBC > JDBC Providers > JDBC_provider >

Data Sources > New. The data source should be non-JTA, for example, non-XA enabled. Note the

JNDI name of the data source.

Point to an existing database.

 3. Verify that the correct database is listed under Resources > JDBC Providers > JDBC_provider >

Data Sources > datasource_name. If necessary, contact your database administrator to verify the

correct database name.

 4. Go to the appropriate level of Session Management.

 5. Under Additional Properties, click Distributed Environment Settings

 6. Select and click Database.

 7. Specify the Data Source JNDI name from a previous step. The database user ID and password are

case-sensitive.

 8. Specify the database user ID and password that is used to access the database and for table

creation. When you created your data source, you might have specified a Container Managed

Authentication Alias or a Component Managed Authentication Alias; however, these two settings are

not used by the session manager for session persistence. The session manager uses the userId and

password specified in this step for session persistence.

 9. Optional: Append the schema name in the session User ID field if you want to have more than one

instance of the session table. The session manager uses the schema name to qualify the session

table name for all database operations. If only the userid is specified without the schema name, the

schema name defaults to NULL and therefore a table name with NULL as the schema name, for

example, NULL.SESSIONS, is created. You can pass the create multiple session tables with different

schema names, other than NULL, and access them separately by modifying the user name to contain

the appropriate schema name. Use the following format to pass the schema name:

userid::schemaName.

10. Retype the password for confirmation.

Chapter 1. Web applications 95

11. Configure a table space and page sizes for DB2 session databases.

12. Switch to a multirow schema.

13. Click OK.

14. If you want to change the tuning parameters, click Custom Tuning Parameters under Additional

properties and select a setting or customize a setting.

15. Click Apply.

16. Click Save.

Switching to a multirow schema

The multirow schema configuration supports storing an unlimited amount of data that is only bounded by

the database capacities in an application. The application can read individual fields instead of the whole

record, which can help to improve performance by avoiding unnecessary Java object serialization.

Configure the session management facility to store each attribute in a session object in its own row in the

database by using the multirow schema configuration.

About this task

The only practical limit that remains is the size of the session attribute object. The multirow schema

potentially has performance benefits in certain usage scenarios, such as when larger amounts of data are

stored in the session but only small amounts are specifically accessed during a given servlet processing of

an HTTP request. In such a scenario, avoiding unneeded Java object serialization is beneficial to

performance.

In addition to allowing larger session records, using multirow schema can yield performance benefits.

However, it requires a little work to switch from single-row to multirow schema, as shown in the following

table.

By default, a single session maps to a single row in the database table used to hold sessions. With this

setup, there are hard limits to the amount of user-defined, application-specific data that WebSphere

Application Server can access.

Consider configuring direct single-row usage to one database and multirow usage to another database

while you verify which option suits your application needs. Do this in code by switching the data source

used; then monitor performance.

 Programming issue Application scenario

Reasons to use single-row v You can read or write all values with just one record

read and write.

v This takes up less space in a database because you

are guaranteed that each session is only one record

long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multirow v The application can store an unlimited amount of data;

that is, you are limited only by the size of the database

and a 2-megabyte-per-record limit.

v The application can read individual fields instead of the

whole record. When large amounts of data are stored

in the session but only small amounts are specifically

accessed during servlet processing of an HTTP

request, multirow sessions can improve performance

by avoiding unneeded Java object serialization.

Reasons not to use multirow If data is small in size, you probably do not want the extra

overhead of multiple row reads when you can store

everything in one row.

96 Administering WebSphere applications

In the case of multirow usage, design your application data objects not to have references to each other,

to prevent circular references. For example, suppose you are storing two objects A and B in the session

using HttpSession.put(..) method, and A contains a reference to B. In the multirow case, because objects

are stored in different rows of the database, when objects A and B are retrieved later, the object graph

between A and B is different than stored. A and B behave as independent objects.

1. Modify the Session Management facility properties to switch from single to multirow schema.

2. Manually drop the table.

To drop the table:

a. Determine which data source configuration Session Management is using.

b. In the data source configuration, look up the database name.

c. Use the database facilities to connect to the database.

d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session databases

If you are using DB2 for session persistence, you can increase the page size to optimize performance for

writing large amounts of data to the database. Page sizes of 8K, 16K, and 32K are supported.

About this task

To use a page size other than the default (4K), complete the following steps.

1. If the SESSIONS table already exists, drop it from the DB2 database.

2. Create a new DB2 buffer pool and table space, specifying the same page size (8K, 16K or 32K) for

both, and assign the new buffer pool to this table space.

DB2 Connect to session

DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K

DB2 Connect reset

DB2 Connect to session

DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM

 USING (’D:\DB2\NODE0000\SQL00005\sessionTS.0’) BUFFERPOOL sessionBP

DB2 Connect reset

Refer to DB2 product documentation for details.

3. Configure the correct table space name and page size in the Session Management facility. Page size

is referred to as row size on the Session Management page.)

Results

When the product is restarted, the Session Management facility creates the new SESSIONS table in the

specified tablespace based on the indicated page size.

Creating a table for session persistence

You can use a database table to collect and store session data. If you are using a database table for

session persistence, you must create and define a database table that is associated with the application

server.

About this task

Whenever the session manager is set for database persistence, the session manager creates a table for

its use. If you want to expand the column size limits to make it more appropriate for your Web site, you

can create the table externally. If the external table is specified as the target table in the session manger

database persistence configuration, then during the session manager start up, the external table is used.

In most cases it is better to let the session manager create the table during startup.

Chapter 1. Web applications 97

To create a table for collecting session data, do the following:

1. Have your administrator create a database table for storing your session data using one of the

following data definition language (DDL): For DB2:

CREATE TABLE <SchemaName>.sessions (

 ID VARCHAR(128) NOT NULL ,

 PROPID VARCHAR(128) NOT NULL ,

 APPNAME VARCHAR(128) NOT NULL,

 LISTENERCNT SMALLINT ,

 LASTACCESS BIGINT,

 CREATIONTIME BIGINT,

 MAXINACTIVETIME INTEGER ,

 USERNAME VARCHAR(256) ,

 SMALL VARCHAR(3122) FOR BIT DATA ,

 MEDIUM LONG VARCHAR FOR BIT DATA ,

 LARGE BLOB(2M)

)

For Oracle:

CREATE TABLE SESSIONS (

 ID VARCHAR(128) NOT NULL ,

 PROPID VARCHAR(128) NOT NULL ,

 APPNAME VARCHAR(128) NOT NULL,

 LISTENERCNT SMALLINT ,

 LASTACCESS INTEGER,

 CREATIONTIME INTEGER,

 MAXINACTIVETIME INTEGER ,

 USERNAME VARCHAR(256) ,

 SMALL RAW(2000),

 MEDIUM LONG RAW ,

 LARGE RAW(1)

)

If the Web container custom property UseOracleBLOB is set to true then:

CREATE TABLE SESSIONS (

 ID VARCHAR(128) NOT NULL ,

 PROPID VARCHAR(128) NOT NULL ,

 APPNAME VARCHAR(128) NOT NULL,

 LISTENERCNT SMALLINT ,

 LASTACCESS INTEGER,

 CREATIONTIME INTEGER,

 MAXINACTIVETIME INTEGER ,

 USERNAME VARCHAR(256) ,

 SMALL RAW(2000),

 MEDIUM BLOB,

 LARGE RAW(1)

)

Note:

a. At run time, the session manager accesses the target table using the identity of the J2EE

server in which the owning Web application is deployed. Any Web container that is

configured to use persistent sessions must have both read and update access to the subject

database table.

b. HTTP session processing uses the index defined using the CREATE INDEX statement to

avoid database deadlocks. In some situations, such as when a relatively small table size is

defined for the database, DB2 may decide not to use this index. When the index is not

used, database deadlocks can occur. If database deadlocks occur, see the DB2

Administration Guide for the version of DB2 you are using for recommendations on how to

calculate the space required for an index and adjust the size of the tables that you are using

accordingly.

98 Administering WebSphere applications

c. It might be necessary to tune DB2 to make efficient use of the sessions database table and

to avoid deadlocks when accessing it. Your DB2 administrator should refer to the DB2

Administration Guide for specific information about tuning the version of DB2 that you are

using.

2. .

Database settings

Use this page to specify the settings for database session support.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Session management → Distributed environment settings → Database.

Datasource JNDI name

Specifies the datasource description.

The JNDI name of the non-XA enabled datasource from which session management obtains database

connections. For example, if the JNDI name of the datasource is ″jdbc/sessions″, specify ″jdbc/sessions.″

The datasource represents a pool of database connections and a configuration for that pool (such as the

pool size). The datasource must already exist as a configured resource in the environment.

User ID

Specifies the user ID for database access.

Password

Specifies the password for database access.

DB2 row size

Specifies the table space page size configured for the sessions table, if using a DB2 database. Possible

values are 4, 8, 16, and 32 kilobytes (KB). The default row size is 4KB.

The default row size is 4KB. In DB2, it can be updated to a larger value. This can help database

performance in some environments. When this value is other than 4, you must specify table space name

to use this property. For 4KB pages, the table space name is optional.

Table space name

Specifies that table space to be used for the sessions table.

This value is required when the DB2 page size is other than 4KB.

Use multi row schema

Specifies that each session data attribute is placed in a separate row in the database, allowing larger

amounts of data to be stored for each session. This action can yield better performance when session

attributes are very large and few changes are required to the session attributes. If use multi row schema is

not enabled, instances of application data can be placed in the same row.

Configuring memory-to-memory replication for the peer-to-peer mode

(default memory-to-memory replication)

You can use the peer-to-peer configuration to attain session affinity using a combination of servers that are

configured as both client and server. The peer-to-peer configuration contains a single replica by default.

About this task

To configure the session management facility for memory-to-memory session replication for peer-to-peer

functions (both client and server function, or both mode) with a single replica, complete the following steps:

Chapter 1. Web applications 99

1. Create an application cluster. This cluster is used to deploy the application.

a. Go to the Server Cluster page. Click Servers → Server Types → Clusters → Clusters.

b. Click New.

c. Type a cluster name for this application cluster.

d. Define a replication domain. Select the Create a replication domain for this cluster check box.

e. Click Next.

f. Define each cluster member server. Type a cluster member name.

g. Click Apply. Repeat steps f through g for each server created in this cluster.

h. Click Next and review the summary of changes.

i. Click Finish to complete the configuration.

You have now created a cluster that contains the deployed application and the replication domain.

2. Enable memory-to-memory session replication for each server.

a. Go to the appropriate level of session management for the Web container level. Click Servers →

Server Types → WebSphere application servers → server_name → Web Container Settings →

Web container → Session management.

b. Click Distributed environment settings under Additional Properties.

c. Click Memory-to-memory replication.

d. Select the Replication domain that you want to use for the replication of sessions.

e. Select the both client and server Replication mode. You must configure all session managers

connected to a replication domain to have the same topology. If one session manager instance in a

domain is configured to use the client/server topology, then the rest of the session manager

instances in that domain must be a combination of servers configured as ″Client only″ and ″Server

only″. If one session manager instance is configured to use the peer-to-peer topology, then all

session manager instances must be configured as ″Both client and server″.

f. Click OK on the Memory-to-memory replication page.

g. Optional: If you want to change the tuning parameters, click Custom tuning parameters and

select a setting or customize one. Click OK. Click Save.

Note: Using the default tuning parameter custom settings, which specifies time based write interval

of 10 seconds, may result in data loss when an application server in your cluster fails.

However, this is just a small opportunity for lost data when compared to the significant

improvement in performance.

h. Click OK the Distributed environment settings page.

i. Click OK the Session management page.

j. Repeat a through i for each server.

Memory-to-memory replication settings

Use this page to configure memory-to-memory sessions for failure recovery.

To view the Memory-to-memory sessions page, click Servers → Server Types → WebSphere application

servers → server_name → Session management → Distributed environment settings →

Memory-to-memory replication.

The memory-to-memory replication settings can be overridden at the application level.

Replication domain

Specifies the replication domain in which HTTP sessions are replicated.

100 Administering WebSphere applications

Replication mode

Specifies the mode that is used for replication. The mode specifies whether data is only sent (client), only

received (server), or both. Select client if sessions need to be replicated. Select server if sessions need to

be stored. Select both client and server if sessions need to be replicated and stored. The default is both.

Configuring memory-to-memory replication for the client/server mode

You can use the client/server configuration to attain session affinity using a combination of servers that are

configured as client only and server only.

About this task

To configure the session management facility for memory-to-memory replication using the clients/server

mode, complete the following steps:

1. Create an application cluster. This cluster is used to deploy the application.

a. Go to the Server Cluster page. Click Servers > Clusters.

b. Click New.

c. Type a cluster name for this application cluster.

d. Click Next.

e. Define each cluster member server. Type a cluster member name.

f. Click Apply. Complete steps e and f for each server created in this cluster.

g. Click Next and review the summary of changes.

h. Click Finish to complete the configuration.

Do not create a replication domain for the application cluster. You have now created a cluster that

contains the deployed application.

2. Create a cluster of session manager replication servers that you want to use as the backup cluster.

a. Go to the Server Cluster page. Click Servers → Server Types → Clusters → Clusters.

b. Click New.

c. Type a cluster name for the cluster of session manager replication servers.

d. Define a replication domain. Select the Create a replication domain for this cluster check box.

e. Click Next.

f. Define each cluster member server. Type a cluster member name.

g. Click Apply. Complete steps f through g for each server created in this cluster.

h. Click Next and review the summary of changes.

i. Click Finish to complete the configuration.

This step creates a cluster of backup session manager replication servers and associates a replication

domain with that cluster.

3. Enable memory-to-memory session replication for each cluster member server in the application

cluster.

a. Go to the appropriate level of session management for the Web container level. Click Servers →

Server Types → WebSphere application servers → server_name → Web Container Settings →

Web container → Session management

b. Click Distributed environment settings under Additional Properties.

c. Click Memory-to-memory replication.

d. Select the Replication domain that you want to use for the replication of sessions.

e. Select the Client only Replication mode. You must configure all session managers connected to a

replication domain to have the same topology. If one session manager instance in a domain is

configured to use the client/server topology, then the rest of the session manager instances in that

Chapter 1. Web applications 101

domain must be a combination of servers configured as Client only and Server only. If one session

manager instance is configured to use the peer-to-peer topology, then all session manager

instances must be configured as Both client and server. Alternatively, if one DRS Instance is

configured in the client only mode then all DRS Instances in the domain must be configured in

either the client only or the server only modes.

f. Click OK on the Memory-to-memory replication page.

g. Optional: If you want to change the tuning parameters, click Custom tuning parameters and

select a setting or customize one. Click OK. Click Save.

Note: Using the default tuning parameter custom settings, which specifies time based write interval

of 10 seconds, may result in data loss when an application server in your cluster fails.

However, this is just a small opportunity for lost data when compared to the significant

improvement in performance.

h. Click OK the Distributed environment settings page.

i. Click OK the Session management page.

j. Repeat a through i for each server.

4. Enable memory-to-memory session replication for each cluster member server in the replication

cluster.

a. Go to the appropriate level of session management for the Web container level. Click Servers >

Application Servers > server_name > Container Settings > Web Container Settings > Session

management

b. Click Distributed Environment Settings under Additional Properties.

c. Click Memory-to-memory replication.

d. Select the Replication domain that you want to use for the replication of sessions.

e. Select the Server only Replication mode. You must configure all session managers connected to

a replication domain to have the same topology. If one session manager instance in a domain is

configured to use the client/server topology, then the rest of the session manager instances in that

domain must be a combination of servers configured as Client only and Server only. If one session

manager instance is configured to use the peer-to-peer topology, then all session manager

instances must be configured as Both client and server. Alternatively, if one DRS Instance is

configured in the client only mode then all DRS Instances in the domain must be configured in

either the client only or the server only modes.

f. Click OK on the Memory-to-memory replication page.

g. Optional: If you want to change the tuning parameters, click Custom tuning parameters and

select a setting or customize one. Click OK. Click Save.

Note: Using the default tuning parameter custom settings, which specifies time based write interval

of 10 seconds, may result in data loss when an application server in your cluster fails.

However, this is just a small opportunity for lost data when compared to the significant

improvement in performance.

h. Click OK the Distributed environment settings page.

i. Click OK the Session management page.

j. Repeat a through i for each server.

Configuring Web module class loaders

You can set values that control the class-loading behavior of an installed Web module.

Before you begin

This topic assumes that you installed a Web module on an application server.

102 Administering WebSphere applications

About this task

Configure the class loader order value of an installed Web module. By default, a Web module has its own

Web application archive (WAR) class loader to load the contents of the Web module, which are in the

WEB-INF/classes and WEB-INF/lib directories.

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an

application class loader determines whether the WAR class loader or the application class loader is used

to load the contents of the Web module.

The default WAR class loader policy value is Class loader for each WAR file in application. If the

policy is set to Class loader for each WAR file in application, then each Web module receives its own

class loader whose parent is the application class loader. If the policy is set to Single class loader for

application on the settings page of an application class loader, then the application class loader loads the

Web module contents as well as the enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Thus, the

configuration of the parent application class loader affects the WAR class loader.

Use the administrative console to configure the application and WAR class loaders.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. If you have not done so already, configure the application class loader.

Settings such as Override class reloading settings for Web and EJB modules, Polling interval for

updated files and WAR class loader policy can affect Web module class loading.

If WAR class loader policy is set to Class loader for each WAR file in application, then the Web

module receives its own class loader and the WAR class-loader policy of the Web module defines the

mode for a WAR class loader. If the policy is set to Single class loader for application, then the

application class loader loads the Web module contents.

2. Specify the class loader order for the installed Web module.

The Web module class-loader mode specifies whether the class loader searches in the parent

application class loader or in the WAR class loader first to load a class. The default is to search in the

parent application class loader before searching in the WAR class loader to load a class.

Chapter 1. Web applications 103

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent

application class loader first to load a class. This is the

standard for Development Kit class loaders and

WebSphere Application Server class loaders.

Note: If classes and resources needed by the Web

module cannot be accessed by the application class

loader, but can be accessed by the WAR class loader,

specify Classes loaded with local class loader first

(parent last). If the application class loader cannot find

a class, the class loader delegates the request to find the

class to its parent, the WebSphere Application Server

extensions class loader. If the WebSphere Application

Server extensions class loader cannot find the class, the

class loader delegates the request to its parent, the

bootstrap, extensions, and CLASSPATH class loaders

created by the Java virtual machine. Requests can only

go to a parent class loader; they cannot go to a child

class loader. Thus, if Classes loaded with parent class

loader first is specified, the WAR class loader never

receives a request to load a class.

Classes loaded with local class loader first (parent

last)

Causes the class loader to search in the WAR class

loader first to load a class. By specifying Classes loaded

with local class loader first (parent last), your

WAR class loader can override classes contained in the

parent application class loader.

Note: Specifying the Classes loaded with local class

loader first (parent last) value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

3. Click OK.

What to do next

Save the changes to the administrative configuration.

Task overview: Assembling applications using remote request

dispatcher

Remote request dispatcher (RRD) is a pluggable extension to the Web container which allows application

frameworks, servlets and JavaServer Pages (JSP) to include content from outside the currently executing

resource’s Java Virtual Machine (JVM) as part of the response sent to the client.

Before you begin

You must have WebSphere Application Server Network Deployment installed to use remote request

dispatcher function. You should also familiarize yourself the limitations of remote request dispatcher. See

article, “Remote request dispatcher considerations” on page 110 for details.

1. Installing enterprise application files with the console

2. Configure the sending of include requests between the application and remote resources.

v “Configuring Web applications to dispatch remote includes” on page 108

v “Configuring Web applications to service remote includes” on page 108

104 Administering WebSphere applications

3. Optional: Modify your application to locate resources located in two different contexts using the servlet

programming model.

The Servlet Programming Model for including resources remotely does not require you to use any

non-Java 2 Platform, Enterprise Edition (J2EE) Servlet Application Programming Interfaces (APIs). The

remote request dispatcher (RRD) component follows the same rules to obtain a ServletContext and a

remote resource. By using JavaServer Pages standard tag library (JSTL), your application is further

removed from obtaining a ServletContext object or RequestDispatcher that is required in the framework

example in the following step because the JSTL custom tag does this implicitly. Study the following

example of a sample JavaServer Pages application to learn how to locate resources that are in two

different contexts, investments and banking.

<HEAD>

<%@ page

language="java"

contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8059-1"

isELIgnored="false"

%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" $>

</HEAD>

<BODY>

<%--

Programming example using JavaServer Pages and JavaSever Pages

Standard Tag Library (JSTL).

JSTL provides a custom tag to import contents (in servlet and JSP

terms include) in the scope of the same request from outside of

the current Web module context by specifying a context parameter.

JSTL restriction: The Web module that is imported

must run inside of the same JVM as the calling resource

if imported URL is not fully qualified.

RRD extends this functionality by permitting the Web module to

be located within the scope of the current WebSphere Application

Server core group versus the scope of the JVM.

--%>

<hr size="5"/>

<%-- Include resource investmentSummary.jsp located in the

 Web application with context root of /investments. --%>

<c:import url="investmentSummary.jsp" context="/investments"/>

<hr size="5"/>

<%-- Include resource accountSummary.jsp located in the

 Web application with context root of /banking. --%>

<c:import url="accountSummary.jsp" context="/banking"/>

<hr size="5"/>

</BODY>

</HTML>

4. Optional: Modify your application to locate resources located in two different contexts using the

framework programming model.

The Framework Programming Model for including resources remotely does not require you to use any

non-Java 2 Platform, Enterprise Edition (J2EE) Servlet Application Programming Interfaces (APIs).

When a request is initiated for a ServletContext name that is not presently running inside of the current

Web container, the remote request dispatcher (RRD) component returns a ServletContext object that

can locate a resource that exists anywhere inside a WebSphere Application Sever Network

Chapter 1. Web applications 105

Deployment environment provided that the resource exists and RRD is enabled for that ServletContext

object. Study the following sample framework snippet that demonstrates how to locate resources

located in two different contexts, investments and banking.

/*

Programming example using a generic framework.

Servlet Specification provides an API to obtain

a servlet context in the scope of the same request

different from the current Web module context by

specifying a context parameter.

Servlet Specification restriction: The Web module that obtain

must run inside of the same JVM as the calling resource.

RRD extends this functionality by permitting the Web module to be located

within the scope of the current WebSphere Application Server core group

versus the scope of the JVM.

*/

protected void frameworkCall (ServletContext context, HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException(

 PrintWriter writer = response.getWriter();

 writer.write("<HTML>");

 writer.write("<HEAD>");

 writer.write("</HEAD>");

 writer.write("<BODY>");

 writer.write("<hr size=\"5/">);

 //Include resource investmentSummary.jsp located in Web application

 //with context root of /investments.

 RequestDispatcher rd = getRequestDispatcher (context, "/investments", "/investmentSummary.jsp");

 rd.include(request, response);

 writer.write("<hr size=\"5/">);

 //Include resource accountSummary.jsp located in Web application

 //with context root of /banking.

 rd = getRequestDispatcher (context, "/banking", "/accountSummary.jsp");

 rd.include(request, response);

 writer.write("</BODY>");

 writer.write("</HTML>");

}

private RequestDispatcher getRequestDispatcher (ServletContext context, String contextName, String resource) {

 return context.getContext(contexName).getRequestDispatcher(resource);

}

Results

After enabling at least one enterprise application to dispatch remote includes and at least one enterprise

application to service remote includes, RRD is now enabled.

What to do next

Restart the modified applications if already installed or start newly installed applications to enable RRD on

each application.

Remote request dispatcher

Remote Request Dispatcher (RRD) is a pluggable extension to the Web container that allows application

frameworks, servlets and JavaServer Pages to include content from outside of the current executing

resource’s Java virtual machine (JVM) as part of the response sent to the client.

106 Administering WebSphere applications

Remote request dispatcher is an extensible infrastructure to allow other components and stack products to

add custom extensions like generators and handlers, to the RRD extension. The remote request

dispatcher extension enhances the standard J2EE javax.servlet.RequestDispatcher implementation to

be aware of locating remote resources using Web services to communicate between machines within a

Network Deployment (ND) core group. The remote request dispatcher extension reports any errors that

occur on the remote server back to the originating server. It can also leverage SSL for secure

communications and WS-Security security context propagation between servers. See rrdSecurity.props file

for more information.

RRD portlet support carries forward the remote request dispatcher concept to portlets and enhances the

portlet container to allow invocation of portlets outside of the current executing resource’s JVM.

By utilizing the RRD extension, you can share request load across multiple machines and JVMs by

including remote servers within the cell. If RRD resource is memory or processor intensive, the calling

resource is not affected as much as a standard RequestDispatcher running within the same JVM. RRD

solves this problem by separating resources into a different JVM.

Capabilities

v Requests on remote server are treated as include requests. Filters and request listeners are invoked as

if the dispatch type is INCLUDE.

v Serializable request attributes and query parameters are sent to remote server.

v Security context is sent to a remote server through LTPA tokens.

v Servlet parameters and OutputStream

Request parameters are passed to remote server.

v Response headers that are set by the remotely included resource are ignored similar to includes on a

local server. Internal headers such as Set-Cookie can still be set and are propagated back.

v All original request headers are passed to remote server

– Similar to WebSphere Application Server’s plugin

– Method calls return the state as if they are on local server. For example, getServer returns the local

server name or isSecure returns whether the request to the ‘local’ server has been secure.

v Cookies and sessions

– Cookies are passed to the remote server as part of headers.

– Sessions in local and remote servers use the same cookie or session id for a given client which is

similar to includes in the same server. If a session exists on a remote server, the session cookie

contains the information for both the servers to maintain the affinity to the remote server.

v Exceptions

– If there is a exception on the remote server, the server returns an RRD specific Web services fault

which wraps the original exception created by the application.

– Attempt to recreate the original exception on the local server if the exception class exists on both

servers. If the original exception cannot be recreated, an RRD specific ServletException is

constructed and used instead.

– The exception is recreated by the local server for error handling purposes.

v Dynamic cache

When dynamic cache is enabled, caching is performed on the local and remote machine.

v Security

You can use SSL to encrypt RRD messages between application servers. This is enabled by default,

however, you must also pass security context needs through RRD to ensure that the security state is

available in the remote machine. RRD leverages WS-Security to pass this information, but this security

context propagation is disabled by default. See the topic, rrdSecurity.props file, for additional

information.

Chapter 1. Web applications 107

Configuring Web applications to dispatch remote includes

You can configure Web modules in an application as remote request dispatcher clients to dispatch include

requests to resources across Web modules that are in different Java virtual machines in a managed node

environment through the standard request dispatcher.

Before you begin

You must have WebSphere Application Server for Network Deployment installed to use remote request

dispatcher function. You should also familiarize yourself the limitations of remote request dispatcher. See

article, “Remote request dispatcher considerations” on page 110 for details.

About this task

You can also configure this property when you install the application installation. See Installing enterprise

application files with the console

1. In the administrative console, click Applications → Application Types → WebSphere enterprise

applications → application_name → Request dispatcher properties.

2. Select Allow dispatching includes to remote resources.

Results

Web modules included in this application are enabled as remote request dispatcher clients that can

dispatch remote includes.

What to do next

You must enable remote request dispatcher on both the remote server and local server to use remote

request dispatcher. If you have not yet enabled remote request dispatcher on the remote server that

includes the resource that you want to include, see article, “Configuring Web applications to service

remote includes.”

Configuring Web applications to service remote includes

You can configure Web modules in an application as remote request dispatcher servers that are remotely

included by other Web applications.

Before you begin

You must have WebSphere Application Server Network Deployment installed to use remote request

dispatcher function. You should also familiarize yourself the limitations of remote request dispatcher. See

article, “Remote request dispatcher considerations” on page 110 for details.

About this task

The purpose of this task is to specify whether an application can service an include request from another

application. You can also configure this property when you install the application installation. Some

statement about the process used to arrive here. See Installing enterprise application files with the console

1. In the administrative console, click Applications → Application Types → WebSphere enterprise

applications → application_name → Request dispatcher properties.

2. Select Allow servicing includes from remote resources.

Results

Web modules included in this application are enabled as remote request dispatcher servers that are

resolved to service remote includes from another application.

108 Administering WebSphere applications

What to do next

You must enable remote request dispatcher on both the remote server and local server to use remote

request dispatcher. If you have not yet enabled remote request dispatcher on the local server to include a

remote resource, see article, “Configuring Web applications to dispatch remote includes” on page 108.

Configuring remote request dispatcher caching

The creation and handling of the remote request dispatcher (RRD) message and the transfer of this data

across a network creates substantial overhead. To improve performance, the local machine can receive

the cache rules of the remote server and know when to cache the response locally to prevent the RRD

call altogether.

About this task

Unsupported rules are cached remotely. However, remote request dispatcher does not support the entire

set of rules of the cachespec.xml file for local caching. The following rules for the cachespec.xml file are

supported for local caching.

parameters

Retrieves the named parameter value.

cookie

Retrieves the named cookie value.

header

Retrieves the named request header.

locale

Retrieves the request locale.

requestType

Retrieves the HTTP request method from the request.

Complete the following steps to enable RRD dynamic cache support.

1. Enable servlet caching on the local server See “Configuring servlet caching” on page 2333 for more

information

2. Construct and install an application with a valid “cachespec.xml file” on page 2354 policy with RRD

supported rules. See the article, “Configuring cacheable objects with the cachespec.xml file” on page

2352, for additional information.

3. Enable servlet caching on the remote server. See “Configuring servlet caching” on page 2333 for more

information

4. Restart WebSphere Application Server. See Managing application servers for more information.

Results

To verify that dynamic cache is enabled locally, you can enable RRD trace and verify that there is a

CACHE HIT printed out for multiple requests to a resource that has an appropriate cache policy. You also

have the option to use CacheMonior instead of turning on tracing. If the CacheMonitor on the remote

machine is not receiving cache hits, then the response is cached locally. The local CacheMonitor will not

receive hits because RRD uses its own custom cache.

Remote dispatcher property settings

Use this page to configure the sending of include requests between the application and remote resources.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Request dispatcher properties.

Chapter 1. Web applications 109

Allow dispatching includes to remote resources

Specifies whether an application can dispatch include requests to resources across Web modules that are

in different Java virtual machines in a managed node environment through the standard request

dispatcher.

 Data type Boolean

Default false

Allow servicing includes from remote resources

Specifies whether an application can service an include request from another application.

 Data type Boolean

Default false

Asynchronous request dispatching type

Changes the behavior of the servlet request dispatcher to support cross-JVM dispatching and

asynchronous dispatching.

 Disabled Specifies that asynchronous request dispatching is not supported for this

application

Server side Specifies that the response content is aggregated on the server

Client side Specifies that the response content is aggregated on the client/browser

Remote request dispatcher considerations

This topic presents some considerations of which you need to be aware when using remote request

dispatcher.

v If an application expects parameters in certain encoding, the application should set character encoding,

as in a normal include, before the remote request dispatch (RRD) occurs.

– ServletInputStream data of local server is not available to remote server. The local server parses

POST data prior to sending the RRD request to the remote server and include parameters as

request parameters. Multipart form data is inaccessible to remote server. An

UnsupportedOperationException is created if the remote server attempts to obtain inputstream from

the request.

– No access to original request reference on the remote server.

– Request and response wrappers created in the local server are not available in remote server. This

cannot be done due to ServletRequestWrappers and WebSphere internal ServletRequest objects not

implementing Serializable.

v Request attributes need to be serializable.

– Class definition of attributes need to be available in both local and remote servers.

– Request attributes are propagated to the remote server and back to the local server.

v HTTP Sessions

– You cannot have cross session access between different Web applications when Web applications

are remote.

– When all Web applications are in a local server, an application can share sessions across Web

applications by storing the session in a table that is accessible to multiple Web applications. This is

not possible with RRD and not recommended in local case either.

– Servlet Programming Model: You cannot access sessions in different Web applications.

– Normal programming model in local case as well as remote case.

– In local mode, application can cache away reference and share the session across the Web

applications, which is not feasible in RRD case.

110 Administering WebSphere applications

– A session object that is stored as request attribute is not available on remote server as the Session

class does not implement Serializable.

v Thread local variables that are set on the local server are not available on the remote server.

v Not all methods defined on ServletContext object are available for the RRD ServletContext object. See

the SPI documentation for com.ibm.wsspi.rrd.context.RemoteServletContext for details.

v The remote server does not have access to output of local server when using RRD.

v Cookies and ServletRequestWrappers

If customer application wrappers the HttpServletRequest.getCookies method and returns additional

cookies or removes cookies, the modified cookies are not sent to the remote server because

javax.servlet.http.Cookie does not implement Serializable. Cookies from the original request headers are

sent to the remote server.

Servlet extension interfaces

You can use extension generators and handlers to add content to the remote message for servlet and

portlets calls. The servlet extension can also modify existing behavior by leveraging the filter concept. The

Remote Request Dispatcher (RRD) extension framework relies on extension generators, which attach

arbitrary data to an outbound RRD request, and extension handlers, which consume the data and perform

actions based on the data received.

v “ Extension generators”

v “Extension handlers” on page 112

v “Extension delegators” on page 113

v “Custom EMF packages” on page 113

For more information on the com.ibm.wsspi.rrd.extension package, see Additional Application

Programming Interfaces (APIs) for administrators.

Extension generators

Extension generators, which are part of an extension generator chain, are invoked prior to initiating an

RRD request. This extension generator chain is defined in the com.ibm.wsspi.rrd.generators extension

point of the plugin.xml file, which can reside in one of the following locations:

v Another OSGI Bundle.

v Any shared library. For example, a shared library bound to a server class loader.

v In the WEB-INF directory of an RRD-enabled local Web application.

Each extension generator is defined by a generator element, which contains an id attribute, which is used

to assign a unique identifier to the extension generator such that any extension generator can be targeted

by extensions added to RRD response data. The class attribute is used to specify the class name of the

extension generator, which must implement the

com.ibm.wsspi.rrd.extension.generator.ExtensionGenerator interface. Each extension generator can

also have an execution order associated with it via the order attribute, which is useful for enforcing

extension generator execution order in an environment where multiple extension generator descriptor files

are present. Additionally, a generator has a mandatory attribute called type that defines the type of the

generator. For servlet RRD, the value is “servlet” and the class must implement the

com.ibm.wsspi.rrd.extension.generator.ExtensionGenerator interface.

Additionally, each extension generator may be provided with an arbitrary number of initialization

parameters, which are specified by including zero or more init-param elements as children of the

generator element. An example extension generator declaration follows:

<extension point="com.ibm.wsspi.rrd.generators">

 <generator id="int1"

 class="com.ibm.ws.rrd.example.extension.IntExtensionGenerator"

 order="1"

Chapter 1. Web applications 111

type=”servlet”>

 <init-param>

 <param-name>intValue</param-name>

 <param-value>100</param-value>

 </init-param>

 </generator>

 <generator id="string1"

 class="com.ibm.ws.rrd.example.extension.StringExtensionGenerator"

 order="2"

 type=”servlet”>

 <init-param>

 <param-name>stringValue</param-name>

 <param-value>This is an example string</param-value>

 </init-param>

 </generator>

 <generator id="int2"

 class="com.ibm.ws.rrd.example.extension.IntExtensionGenerator"

 order="3"

 type=”servlet”>

 <init-param>

 <param-name>intValue</param-name>

 <param-value>200</param-value>

 </init-param>

 </generator>

</extension>

For more information on the com.ibm.wsspi.rrd.extension.generator package, see Additional Application

Programming Interfaces (APIs) for administrators.

Extension handlers

Extension handlers, which are part of an extension handler chain, are invoked after an RRD request has

been received. This extension handler chain is defined in the com.ibm.wsspi.rrd.handlers extension point

of the plugin.xml file, which can reside in one of the following locations:

v Another OSGI Bundle.

v Any shared library. For example, a shared library bound to a server class loader.

v In the WEB-INF directory of an RRD-enabled local Web application.

Each extension handler is defined by a handler element, which contains namespaceURI and localName

attributes, the combination of which defines the qualified name of the extension data that the extension

handler can process. Each extension handler additionally requires a unique identifier, specified by the id

attribute. The value specified by this attribute must correspond to an extension generator, which generates

extension data of a matching qualified name and identifier. The class attribute is used to specify the class

name of the extension handler, which must implement the

com.ibm.wsspi.extension.handler.ExtensionHandler interface. Additionally a handler has a mandatory

attribute called type that defines the type of the handler. The value is “servlet” and the class must

implement the com.ibm.wsspi.rrd.extension.handler.ExtensionHandler interface.

Additionally, each extension handler may be provided with an arbitrary number of initialization parameters,

which are specified by including zero or more init-param elements as children of the handler element. An

example extension handler declaration follows:

 <extension point="com.ibm.wsspi.rrd.handlers">

 <handler id="int1"

 class="com.ibm.ws.rrd.example.extension.IntExtensionHandler"

 namespaceURI="http://www.ibm.com/ws/rrd/ext/types"

 localName="SimpleType" order="1"

 type=”servlet”/>

 <handler id="string1"

 class="com.ibm.ws.rrd.example.extension.StringExtensionHandler"

 namespaceURI="http://www.ibm.com/ws/rrd/ext/types"

 localName="SimpleType" order="2"

112 Administering WebSphere applications

type=”servlet”/>

 <handler id="int2"

 class="com.ibm.ws.rrd.example.extension.IntExtensionHandler"

 namespaceURI="http://www.ibm.com/ws/rrd/ext/types"

 localName="SimpleType" order="3"

 type=”servlet”/>

</extension>

For more information on the com.ibm.wsspi.rrd.extension.handler package, see Additional Application

Programming Interfaces (APIs) for administrators.

Extension delegators

An extension delegator enables RRD to handle arbitrary servlet containers by allowing users to specify the

specific extension generator and handler chain instances that are to be used during an RRD call. RRD

maintains a user-extendable list of extension delegators and selects an appropriate delegator at runtime

based on the type of servlet request being issued.

Custom extension delegators may be defined in the com.ibm.wsspi.rrd.rrd-extension-delegator

extension point of the plugin.xml file, which can reside in one of the following locations:

v Another OSGI Bundle.

v Any shared library. For example, a shared library bound to a server class loader.

v In the WEB-INF directory of an RRD-enabled local Web application.

Each extension delegator is defined by an ExtensionDelegator element, which contains a priority attribute

for defining the relative order in which an extension delegator is initiated, and a classname attribute that

defines the implementing class for a particular extension delegator, which must implement the

com.ibm.wsspi.rrd.extension.factory.ExtensionDelegator interface. Note that the execution order of two

or more extension delegators with the same priority is not predictable. An example extension delegator

declaration follows:

<extension point="com.ibm.wsspi.rrd.rrd-extension-delegator">

 <ExtensionDelegatorRegistration>

 <ExtensionDelegator priority="1" classname="com.ibm.ws.rrd.extension.PortletExtensionDelegator"/>

 <ExtensionDelegator priority="2" classname="com.ibm.ws.rrd.extension.ServletExtensionDelegator"/>

 </ExtensionDelegatorRegistration>

</extension>

Custom EMF packages

Extension data produced by an extension generator and consumed by an extension handler is serialized

using the Eclipse Modeling Framework (EMF). Users intending to use custom extension data should utilize

the com.ibm.wsspi.rrd.rrd-emf-packages extension point in order to ensure that the proper EMF

packages are initialized prior to use by RRD. This extension point is part of the plugin.xml file, which can

reside in one of the following locations:

v Another OSGI Bundle.

v Any shared library. For example, a shared library bound to a server class loader.

v In the WEB-INF directory of an RRD-enabled local Web application.

Each EMF package is defined by an emfPackage element, which contains a className element that must

point to the generated EMF factory implementation class for a particular EMF package (the generated

model class which implements org.eclipse.emf.ecore.impl.EFactoryImpl). An example EMF package

declaration follows:

<extension point="com.ibm.wsspi.rrd.rrd-emf-packages">

 <emfPackages>

 <emfPackage className="com.ibm.ws.rrd.webservices.types.emf.impl.TypesFactoryImpl" />

 </emfPackages>

</extension>

Chapter 1. Web applications 113

Note: If the same generated EMF model code is shared among multiple Web applications that the EMF

model code must be part of a shared server library, but only in the case that all Web applications

are running in the same application server. In production, this is usually not the case, and common

EMF model code may exist at the Web application level.

Related tasks

“Task overview: Assembling applications using remote request dispatcher” on page 104
Remote request dispatcher (RRD) is a pluggable extension to the Web container which allows application

frameworks, servlets and JavaServer Pages (JSP) to include content from outside the currently executing

resource’s Java Virtual Machine (JVM) as part of the response sent to the client.

Backing up and recovering servlets

Servlet source and class files, user profile data, Hypertext Transfer Protocol (HTTP) configuration, and

administrative configuration should be considered for backup when using servlets. You should consider

saving your HTTP configuration because changes to the HTTP configuration are often made to enable

WebSphere Application Server to serve servlets and JSP requests, and to enable WebSphere Application

Server security. You should consider backing up the user proifle data if you use the User Profile function of

WebSphere Application Server.

v Backup servlet source and class files. Application code and configuration such as bindings, is located by

default in the profile_root/installedApps directory. By saving this directory, you save your installed

applications, including HTML, servlets, JavaServer Pages (JSP) files, and enterprise beans. Normally,

each application is located in a separate subdirectory, so you can choose to save all applications or a

subset.

1. Save all installed applications. The commands below have been wrapped for display purposes.

Enter each as a single command.

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

 OBJ((’/profile_root/installedApps’))

2. Saves the sampleApp application only. The commands below have been wrapped for display

purposes. Enter each as a single command.

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

 OBJ((’/profile_root/installedApps/cellName/sampleApp.ear’))

If you have located utility or general purpose classes in other directories, such as profile_root/lib/app or

profile_root/lib/ext, be sure to include those locations in your backup plan as well.

v Save your HTTP configuration.

Note: The following information applies to IBM HTTP Server for iSeries (powered by Apache). If you

are using Lotus® Domino® HTTP Server, see the Notes.net Documentation Library.

1. Save the HTTP server instances for IBM HTTP Server for iSeries (powered by Apache). The HTTP

server instances for IBM HTTP Server for iSeries (powered by Apache) are members of the

QATMHINSTC file in the library QUSRSYS. An example save command for this file could be the

following: SAVOBJ OBJ(QATMHINSTC) LIB(QUSRSYS) DEV(*SAVF) OBJTYPE(*FILE)

SAVF(WSALIB/WSASAVF)

2. Save the HTTP configurations for IBM HTTP Server for iSeries (powered by Apache). The HTTP

configurations for IBM HTTP Server for iSeries (powered by Apache) are stored in the integrated file

system in a subdirectory, chosen when the configuration was created. The recommended location is

within the WebSphere instance directory. You can determine this file location by inspecting HTTP

server instance member in the QATMHINSTC file in library QUSRSYS. An example save command

for this file could be the following: SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’) OBJ((’profile_root/
profile/apache/conf’) (’profile_root/profile/htdocs’)) where profile is the name of your instance. The

default instance name is default.

114 Administering WebSphere applications

http://www.notes.net/notesua.nsf?OpenDatabase

Backing up and recovering JavaServer Pages files

JavaServer Pages source and generated servlet classes, Hypertext Transfer Protocol (HTTP)

configuration, and administrative configuration should be considered for backup when using JavaServer

Pages files.

v Save installed applications. Application code and configuration such as bindings, is located by default in

the profile_root/installedApps directory. By saving this directory, you save your installed applications,

including HTML, servlets, JavaServer Pages (JSP) files, and enterprise beans. Normally, each

application is located in a separate subdirectory, so you can choose to save all applications or a subset.

1. Save all installed applications. The command below has been wrapped for display purposes. Enter

the following as a single command, with a space between the end of DEV parameter and OBJ.

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

 OBJ((’/profile_root/installedApps’))

2. Save the sampleApp application only. The command below has been wrapped for display purposes.

Enter the following as a single command with a space between the end of DEV parameter and OBJ.

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

 OBJ((’/profile_root/installedApps/cellName/sampleApp.ear’))

v Save and restore your JSP files. When JSP files are run, a servlet class is generated, compiled, and

then run. When saving and restoring your JSP files, you can elect to save only the JSP source or the

generated files as well.

– If you save and restore only the JSP source, the servlet source and class files are regenerated when

they are invoked. This is a simpler, smaller save and restore operation. Note that regeneration slows

the first requests, and default optimization is done on the generated Java programs.

– If you save and restore the source and generated files, no regeneration is done. If you have

optimized Java programs to levels other than the default, this optimization is preserved.

Example

WebSphere Application Server places the generated files (.class, .java, and optionally, .dat) in a temporary

directory under the WebSphere Application Server instance. For example, the default instance stores the

generated files in this directory:

/profile_root/temp/node_name/application_server/enterprise_app/web_module

In this example:

v profile is the name of your instance. The default instance name is default.

v node_name is the name of the iSeries server or partition on which your WebSphere Application Server

instance is running

v application_server is the name of your WebSphere Application Server

v enterprise_app is the name of the enterprise application to which the JSP file belongs

v web_module is the Web module that contains your JSP file.

Note: A .dat file is a helper file used by the generated servlet.

Chapter 1. Web applications 115

116 Administering WebSphere applications

Chapter 2. Portlet applications

Task overview: Managing portlets

You can use this task to manage deployed portlet applications.

Before you begin

Before you begin this task, you must have a portlet application installed. See Installing enterprise

application files for additional information.

About this task

You can complete the following steps to manage portlets.

v Render a portlet.

– Access a single portlet using “Portlet Uniform Resource Locator (URL) addressability” on page 124.

– Access multiple portlets using “Portlet aggregation using JavaServer Pages” on page 118.

– Access portlets using “Remote request dispatcher” on page 106.

v Change the location of “Portlet preferences” on page 126. By default, portlet preferences for each

portlet window are stored in a cookie. However, you can change the location of where to store portlet

preferences.

v Disable URL addressability. By default, you can access a portlet through an Uniform Resource Locator

(URL), however, you can disable this feature.

v Enable portlet fragment caching. Portlet fragment caching is disabled by default.

Portlets

Portlets are reusable Web modules that provide access to Web-based content, applications, and other

resources. Portlets can run on WebSphere Application Server because it has an embedded JSR 286

Portlet container. The JSR 286 API provides backwards compatibility. You can assemble portlets into a

larger portal page, with multiple instances of the same portlet displaying different data for each user.

From a user’s perspective, a portlet is a window on a portal site that provides a specific service or

information, for example, a calendar or news feed. From an application development perspective, portlets

are pluggable Web modules that are designed to run inside a portlet container of any portal framework.

You can either create your own portlets or select portlets from a catalog of third-party portlets.

Each portlet on the page is responsible for providing its output in the form of markup fragments to be

integrated into the portal page. The portal is responsible for providing the markup surrounding each portlet.

In HTML, for example, the portal can provide markup that gives each portlet a title bar with minimize,

maximize, help, and edit icons.

You can also include portlets as fragments into servlets or JavaServer Pages files. This provides better

communication between portlets and the Java Platform, Enterprise Edition (Java EE) Web technologies

provided by the application server.

If you use Rational Application Developer version 6 (RAD) to create your portlets, you must remove the

following reference to the std-portlet.tld from the web.xml file to run the portlets outside of RAD:

<taglib id="PortletTLD">

 <taglib-uri>http://java.sun.com/portlet</taglib-uri>

 <taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

</taglib>

© Copyright IBM Corp. 2008 117

Also if you use RAD version 6 to create portlets, note that portlets created by using the Struts Portlet

Framework are not supported on WebSphere Application Server.

Portlet applications

If the portlet application is a valid Web application written to the Java Portlet API, the portlet application

can operate on both the Portal Server and the WebSphere Application Server without requiring any

changes. JSR 168 and JSR 286 compliant portlet applications must not use extended services provided by

WebSphere Portal to operate on the WebSphere Application Server.

Portlet container

The portlet container is the runtime environment for portlets using the JSR 286 Portlet specification, in

which portlets are instantiated, used, and finally destroyed. The JSR 286 Portlet API provides standard

interfaces for portlets and backwards compatibility for JSR 168 portlets. Portlets based on this JSR 286

Portlet Specification are referred to as standard portlets.

A simple portal framework is provided by the PortletServingServlet servlet. The PortletServingServlet

servlet registers itself for each Web application that contains portlets. You can use the

PortletServingServlet servlet to directly render a portlet into a full browser page by a URL request and

invoke each portlet by its context root and name. See “Portlet Uniform Resource Locator (URL)

addressability” on page 124 for additional information. If you want to aggregate multiple portlets on the

page, you need to use the aggregation tag library. See the article “Portlet aggregation using JavaServer

Pages” for additional information. The PortletServingServlet servlet can be disabled in an extended portlet

deployment descriptor called the ibm-portlet-ext.xmi file.

Remote request dispatcher support for portlets

The remote request dispatcher (RRD) support allows the invocation of portlets outside of the current Java

virtual machine (JVM) within an Network Deployment single core group environment. The request related

data is passed to the remote JVM where the portlet is invoked. The response is transmitted back and

processed on the local JVM. Thus it guarantees that URLs contained in the portlet markup are created

according to the local portal context. The remote request dispatcher support is only provided for JSR 168

compliant portlets.

Portlet container settings

Use this page to configure and manage the portlet container of this application server.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Portlet Container Settings → Portlet container.

Enable portlet fragment cache

Specifies whether to create a cached entry when a portlet is invoked, similar to servlet caching of the Web

container settings.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet fragment

caching automatically enables servlet caching. Disabling servlet caching automatically disables portlet

fragment caching.

Portlet aggregation using JavaServer Pages

The aggregation tag library generates a portlet aggregation framework to address one or more portlets on

one page If you write JavaServer Pages, you can aggregate multiple portlets on one page using the

aggregation tag library. This tag library does not provide full featured portal aggregation implementation,

but provides a good migration scenario if you already have aggregating servlets and JavaServer Pages

and want to switch to portlets.

118 Administering WebSphere applications

To allow the customer to create a simple portal aggregation, the aggregation tag library also provides the

following features.

v Invoke a portlet’s action method

v Render multiple portlets on one page

v Provide links to change the portlet’s mode or window state

v Display the portlet’s title

v Retain the portlet cookie state

The aggregation tag library and JavaServer Pages that use the aggregation tag library will only work with

the WebSphere Application Server portlet container implementation because the protocol between the tags

and the container is not standardized.

The following diagram depicts how an HTML page would look like and what tags are used in order to

create the page. See “Aggregation tag library attributes” on page 120 for information on the aggregation

tag library attributes.

<portlet:init portletURLPrefix="
http://localhost/hello/framework/"
portletURLSuffix="/something"
portletURLQueryParams="p1=v1&p2=v2">

<table>

<portlet:insert url="demo/weather"
contentVar="weather.content"
titleVar="weather.title"/>

<portlet:state url="demo/weather" portletMode="view"
var="weather.view"/>

<portlet:state url="demo/weather" portletMode="edit"
var="weather.edit"/>

<portlet:insert url="demo/time" contentVar="time.content"
titleVar="time.title"/>

<portlet:state url="demo/time" mode="view"
var="time.view"/>

<portlet:state url="demo/time" mode="edit"
var="time.edit"/>

<tr><td>{$weather.title}</td>
<td>view</td>
<td>edit</td>

<td>{$time.title}</td>
<td>view</td>
<td>edit</td>

</tr>

<tr><td colspan="3">
{$weather.content}

</td><td colspan="3">
{$time.content}

</td></tr>

</table>

</portlet:init>

HTML Page

table

column column

title title

portlet

content

portlet

content

v e v
e

When you use the aggregation tag library, you must set the portletUrlPrefix attribute of the init tag to the

aggregating application. You need to:

v Ensure that the portletUrlPrefix attribute is set to the following in the aggregator page.

"http://" + <server_address> + ":" + <server_port> + "/" + <aggregator context> + "/" <aggregator mapping>

v Reference the aggregation JSP page within the web.xml file through a servlet mapping ending with /*.

For example, /aggregation/*

When aggregating multiple portlets on a single page, special care must be used with the naming

conventions of form attribute names in your portlets. Because your portlets are all on the same page, they

all share the same HttpServletRequest. When one portlet is viewed the entire page is refreshed and form

Chapter 2. Portlet applications 119

data is re-posted. Therefore, if there are multiple portlets that are aggregated on a single page with the

same form attribute names, there could be logic corruption when form data is re-posted.

Aggregation tag library attributes

The aggregation tag library is used to aggregate multiple portlets on one page. This topic describes the

attributes within the aggregation tag library.

Supported arguments include:

init

This tag initializes the portlet framework and has to be used in the beginning of the JSP. All other tags

described in this section are only valid in the body of this tag, therefore the init tag usually encloses

the whole body of a JSP. In case the current URL contains an action flag the action method of the

corresponding portlet is called. The state and insert tags are sub-tags of the init tag.

 The init tag has the following attributes:

v portletURLPrefix = ”<any string>”

This URL defines the prefix used for PortletURLs. Portlet URLs are created either by the state tag

or within a portlet’s render method, which is called by using the insert tag. This is a required

attribute.

v portletURLSuffix = ”<any string>”

This URL defines the suffix used for PortletURLs. Portlet URLs are created either by the state tag or

within a portlet’s render method, which is called by using the insert tag. This is attribute optional.

v portletURLQueryParams = ”<any string>”

This URL defines the query parameters used for PortletURLs. Portlet URLs are created either by

the state tag or within a portlet’s render method, which is called by using the insert tag. This is

attribute optional.

scope, portlet

The scope tag and portlet tag are used to provide information that is necessary when a portlet

application is installed under a multiple part context root, for example, /context1/context2. These tags

add a render parameter to the newly created URL.

 The urlParam tag has the following attributes:

v context = ″/<context1>/<context2>″

Specifies the context root of the portlet application in which the portlet is deployed. This attribute is

required.

v portletname = ″<portlet-name>″

Specifies the portlet-name. This attribute is required.

v windowId = ”<any string>”

Defines the window ID for the concrete portlet instance. This attribute is required.

The following is an example of how to use the scope and portlet tags:

<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>

<portlet:scope>

 <portlet:portlet context="/myportletcontext1/myportletcontext2” portletname="MyPortlet" windowId="sample"/>

</portlet:scope>

<portlet:init portletURLPrefix="/myportalcontext/ ">

....

</portlet:init>

state

The state tag creates a URL pointing to the given portlet using the given state. You can place this URL

either into a variable specified by the var attribute or you can write it directly to the output stream. This

120 Administering WebSphere applications

tag is useful to create URLs for HTML buttons, images, and other items such that when the URL is

invoked, the state changes defined in the URL are applied to the given portlet.

 The state tag has the following attributes:

v url = ”<context>/<portlet-name>”

Identifies the portlet for this tag by using the context and portlet-name to address the portlet. This

attribute is required.

v windowId = ”<any string>”

Defines the window ID for the portlet URL created by this tag. This is attribute optional.

v var = ”<any string>”

If defined the URL is written into a variable with the given scope and name, not to the output

stream. This is attribute optional.

v scope = ”page|request|session|application”

This attribute is only valid if the var attribute is specified. If defined, the URL is not written to the

output stream but a variable is created in the given scope with the given name. The default is page.

This is attribute optional.

v portletMode = ”view|help|edit|<custom>”

This attribute sets the portlet mode.

v portletWindowState = ”maximized|minimized|normal|<custom>”

This attribute sets the window state.

v action = ”true/false”

This attribute defines whether this is an action URL. This is attribute optional. The default is false.

urlParam

Adds a render parameter to the newly created URL.

 The urlParam tag has the following attributes:

v name = ”<any string>”

Indicates the name of the parameter. This is attribute required.

v value = ”<any string>”

Indicates the value of the parameter. This is attribute required.

insert

This tag calls the render method of the portlet and retrieves the content as well as the title. You can

optionally place the content and title of the specified portlet into variables using the contentVar and

titleVar attributes.

 The insert tag has the following attributes:

v url = ”<context>/<portlet-name>” (mandatory) Identifies the portlet for this tag by using the context

and portlet-name to address the portlet

This is attribute required.

v windowId = ”<any string>”

Defines the window ID of the portlet. This is attribute optional.

v contentVar = ”<any string>”

If defined, the portlet’s content is not written to the output stream but written into a variable with the

given scope and name. This is attribute optional.

v contentScope = ”page|request|session|application”

This attribute is only valid if the contentVar tag is used. If defined, the portlet’s content is written into

a variable with the given scope and name, not to the output stream. The default is page. This is

attribute optional.

v titleVar = ”<any string>”

Chapter 2. Portlet applications 121

If defined the portlet’s title is written into a variable with the given scope and name. If it is not

defined, the title is ignored and not written to the output stream. This is attribute optional.

v titleScope = ”page|request|session|application”

This attribute is only valid if titleVar tag is used. If defined, the portlet’s title is written into a variable

with the given scope and name, not to the output stream. The default is page. This is attribute

optional.

Example: Using the portlet aggregation tag library

You can use the aggregation tag library to aggregate multiple portlets to have multiple and different

content on one page. The library can be used by every JavaServer Pages (JSP) file that has been

included by a servlet.

To use the portlet aggregation tag library, you must declare the tag-lib at the top of the JSP file using, <%@

taglib uri=″http://ibm.com/portlet/aggregation″ prefix=″portlet″ %>, as in the following example.

The following JSP file example shows how to aggregate portlets on one page.

<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>

<%@ page isELIgnored="false" import="java.util.Enumeration"%>

<portlet:init portletURLPrefix="/dummy/portletTagTest/" portletURLSuffix="/more" portletURLQueryParams="p1=v1&p2=v2">

 <portlet:insert url="worldclock/StdWorldClock" contentVar="worldclockcontent" titleVar="worldclocktitle"/>

 <portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockview"

 portletWindowState="maximized">

 <portlet:urlParam name="namea" value="valuea"/>

 <portlet:urlParam name="nameb" value="valueb"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" portletMode="edit" var="worldclockedit" portletWindowState="normal">

 <portlet:urlParam name="name1" value="value1"/>

 <portlet:urlParam name="name2" value="value2"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockmin"

 portletWindowState="minimized">

 <portlet:urlParam name="namemin" value="valuemin"/>

 <portlet:urlParam name="namemin" value="valuemin"/>

 </portlet:state>

 <portlet:insert url="worldclock/StdWorldClock" windowId="min" contentVar="simplecontent" titleVar="simpletitle"/>

 <portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simpleview"

 portletWindowState="maximized">

 <portlet:urlParam name="name3" value="value3"/>

 <portlet:urlParam name="name4" value="value4"/>

 <portlet:urlParam name="name5" value="value5"/>

 <portlet:urlParam name="name5" value="value5a"/>

 <portlet:urlParam name="name5" value="value5b"/>

 <portlet:urlParam name="name5" value="value5c"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="edit" var="simpleedit"

 action="true" portletWindowState="normal">

 <portlet:urlParam name="name6" value="value6"/>

 <portlet:urlParam name="name6" value="value6z"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simplemin"

 portletWindowState="minimized">

 <portlet:urlParam name="name1" value="value1"/>

 <portlet:urlParam name="name2" value="value2"/>

 </portlet:state>

 <portlet:insert url="test/TestPortlet1" contentVar="testcontent" titleVar="testtitle"/>

 <portlet:state url="test/TestPortlet1" portletMode="view" var="testview" portletWindowState="maximized"/>

 <portlet:state url="test/TestPortlet1" portletMode="edit" var="testedit" portletWindowState="maximized"/>

122 Administering WebSphere applications

<!-- This table is the outtermost table for creating two-column portal layout -->

<TABLE border="0" CELLPADDING="3" CELLSPACING="8" WIDTH="100%">

<TR>

<TD VALIGN="top">

<!-- This table is the top portlet in the first column -->

 <table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top left">

 <tr><td class="portletTitle" NOWRAP>worldclock title:${worldclocktitle}</td>

 <td CLASS="portletTitleControls" NOWRAP>

 view

 edit

 minimize

 </td>

 </tr>

 <tr>

 <td CLASS="portletBody" COLSPAN="2">

 ${worldclockcontent}

 </td>

 </tr>

 </table>

<!-- This table is the bottom portlet in the first column -->

 <table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet bottom left">

 <tr>

 <td class="portletTitle" NOWRAP>test title:${testtitle}</td>

 <td CLASS="portletTitleControls" NOWRAP>

 view

 edit

 </td>

 </tr>

 <tr>

 <td CLASS="portletBody" COLSPAN="2">

 ${testcontent}

 </td>

 </tr>

 </table>

 </TD>

 <TD VALIGN="top">

<!-- This table is the top portlet in the second column -->

 <table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top right">

 <tr>

 <td class="portletTitle" NOWRAP>simple title:${simpletitle}</td>

 <td CLASS="portletTitleControls" NOWRAP>

 view

 edit

 minimize

 </td>

 </tr>

 <tr>

 <td CLASS="portletBody" COLSPAN="2">

 ${simplecontent}

 </td>

 </tr>

 </table>

Chapter 2. Portlet applications 123

</TD>

 </TR>

 </table>

</portlet:init>

You can include the following formatting to the previous example JSP file immediately after declaring the

tag library.

<STYLE TYPE="TEXT/CSS">

BODY {

 font-family:Verdana,sans-serif; font-size:70%

}

.portletTitle {

 text-align: left;border-top: #000000 1px solid; border-bottom: #000000 1px solid; FONT-SIZE: 60.0%;

 COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; BACKGROUND-COLOR: #5495d5;

}

.portletTitleControls {

 text-align: right;border-top: #000000 1px solid; border-right: #000000 1px solid; border-bottom: #000000

 1px solid; FONT-SIZE: 60.0%; COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif;

 BACKGROUND-COLOR: #5495d5;

}

.portletTitleControls A {

 COLOR: #ffffff; text-decoration:none; border:#5495d5 1px solid;border-left:white 1px solid;

 padding-left:0.5em; padding-right:0.5em;

}

.portletTitleControls A:hover {

 COLOR: #ffffff; text-decoration:none; border-top:white 1px solid;

 border-bottom:white 1px solid;border-right:white 1px solid;

}

.minimizeControl {

 font-weight:bold; font-size:100%;

}

.portletTable {

 border-left: gray 1px solid;

 border-bottom: gray 1px solid;

 border-right: gray 1px solid;

}

.portletBody {

 font-family:Verdana,sans-serif; font-size:70%

}

</STYLE>

Portlet Uniform Resource Locator (URL) addressability

You can request a portlet directly through a Uniform Resource Locator (URL) to display its content without

portal aggregation. The PortletServingServlet servlet registers each Web application that contains portlets.

It is similar to the FileServingServlet servlet of the Web container that serves resources. The

PortletServingServlet servlet supports direct rendering of portlets into a full browser page by a URL

request.

You can invoke each portlet by its context root and name with the URL mapping /<portlet-name> that is

created for each portlet. The context root and name has the following format:

http://<host>:<port>/<context-root>/<portlet-name> For example,

 http://localhost:9080/portlets/TestPortlet1

The context root identifies the Web archive (WAR) file that contains the portlet. The portlet name uniquely

identifies the portlet with a portlet application of a WAR file. The DefaultDocumentFilter servlet only

supports HTML, UTF8 encoding and an extended URL form based on the basic URL form as shown

above.

124 Administering WebSphere applications

You can only display one portlet at a time using the PortletServingServlet servlet. If you want to aggregate

multiple portlets on the page, you need to use the aggregation tag library. See the article “Portlet

aggregation using JavaServer Pages” on page 118 for additional information.

Because a portlet only delivers fragment output whereas a servlet usually delivers document output, a

mechanism is introduced to convert the fragment into a document, called the PortletDocumentFilter filter.

By default, the PortletDocumentFilter filter only supports converting HTML. The conversion is implemented

using a servlet filter before the PortletServingServlet servlet is initiated to return the portlet‘s content inside

of a document. This default document servlet filter only applies to URL requests, not for includes or

forwards using the RequestDispatcher method. You can create servlet filters to support other markups

additional document servlet filters. See the article, Converting portlet fragments to an HTML document, for

additional information.

The PortletServingServlet servlet does not persist portlet preferences in a XML file or database. It places

the portlet preferences directly into a cookie to store the preferences persistently. See the article, “Portlet

preferences” on page 126, for additional information on how to change this behavior.

Portlet URL syntax

You can add additional portal context such as portlet mode or window state. You can access the

PortletServingServlet servlet by using a URL mapping that has the following structure:

http://host:port/context/portlet-name [/portletwindow[/ver [/action |

 /resource[/id=custom-id][/cacheability]] [/mode] [/state] [rparam][/?name]]]

Any differing URL structure results in a com.ibm.wsspi.portletcontainer.InvalidURLException exception.

Empty strings are not permitted as parameter values and creates an InvalidURLException exception. The

following is a list of valid parameters:

http:// host:port/context/portlet-name

This is the minimum URL required to access a portlet. A default portlet window called ‘default’ is

created. The portlet-name variable is case-sensitive.

/portletwindow

This parameter identifies the portlet window. You must set this parameter if you choose to add

more portal context information to the URL.

/ver=major.minor

This optional parameter is used to define the version of the portlet API that is used. You must set

this parameter if you choose to add more portal context information to the URL. Only versions ’1.0’

and ’2.0’ are supported. Any other version creates an InvalidURLException exception.

/action

This is a required parameter if you call the action method of the portlet. The action parameter

causes the action process of the portlet to be called. After the action has been completed, a

redirect is automatically issued to call the render process. To control the subsequent render

process, a document servlet filter can set a request attribute with name

’com.ibm.websphere.portlet.action’ and value ’redirect’ to specify that the portlet serving servlet

directly returns after action without calling the render process.

/mode=view | edit | help | custom-mode

This optional parameter defines the portlet mode that is used to render the portlet. The default

mode is ‘view’. The value is not case-sensitive. For example, ‘View’, ‘view’ or ‘VIEW’ results in the

same mode.

/state=normal | maximized | minimized | custom-state

This optional parameter defines the window state that is used to render the portlet. The default

state is ‘normal’. The value is not case-sensitive, for example, ‘Normal’, ‘normal’, or ‘NORMAL’

results in the same state.

Chapter 2. Portlet applications 125

* [/rparam=name *[=value]]

This optional parameter specifies render parameters for the portlet. Repeat this parameter chain to

provide more than one render parameter. For example, /rparam=invitation/
rparam=days=Monday=Tuesday.

?name=value&name2=value2 ...

Query parameters may follow optionally. They are not explicitly supported by the portlet container,

but they do not invalidate the URL format.

/action | /resource

This parameter defines the methods of the portlet that is called. Valid values are no, action or

resource parameter. No specific method defined calls the render method. The resource parameter

is only supported for JSR 286 portlets.

/resource [/id=custom-id] [/cacheability=cacheLevelFull | cacheLevelPortlet | cacheLevelPage]

Set this parameter to define the method of the portlet to be called. No redirection occurs. No other

method of the portlet is called. To control the resource parameter, you can add an additional ID

parameter to provide a resource serving identifier that is passed through to the portlet. The

cacheability parameter defines the cache level of this resource URL. This parameter is only

supported with JSR 286 portlets .

The following list includes examples of valid JSR 168 and JSR 286 URLs:

v http:// your.server.name:9080/sample/WorldClock

v http:// your.server.name:9080/sample/WorldClock/myPortlet/ver=1.0/mode=edit/rparam=timezone=UTC

v http:// your.server.name:9080/sample/WorldClock/myPortlet/ver=1.0/action/
state=maximized?timezone=UTC

v http://your.server.name:9080/sample/WorldClock/myPortlet/ver=2.0/resource/id=somePicture.jpg

Portlet preferences

Preferences are set by portlets to store customized information. By default, the PortletServingServlet

servlet stores the portlet preferences for each portlet window in a cookie. However, you can change the

location to store them in either a session, an .xml file, or a database.

Storing portlet preferences in cookies

The attributes of the cookie are defined as follows:

Path

context/portlet-name/portletwindow

Name:

The name of the cookie has the fixed value of PortletPreferenceCookie.

Value

The value of the cookie contains a list of preferences by mapping to the following structure:

*[’/’ pref-name *[’=’ pref-value]]

 All preferences start with ’/’ followed by the name of the preference. If the preference has one or more

values, the values follow the name separated by the ’=’ character. A null value is represented by the

string ’#*!0_NULL_0!*#’. As an example, the cookie value may look like, /locations=raleigh=boeblingen/
regions=nc=bw

Customizing the portlet preferences storage

You can override how the cookie is handled to store preferences in a session, an .xml file or database. To

customize the storage, you must create a filter, servlet or JavaServer Pages file as new entry point that

126 Administering WebSphere applications

wraps the request and response before calling the portlet. Examine the following example wrappers to

understand how to change the behavior of the PortletServingServlet to store the preferences in a session

instead of cookies.

The following is an example of how the main servlet manages the portlet invocation.

public class DispatchServlet extends HttpServlet

{

 ...

 public void service(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException

 {

 response.setContentType("text/html");

 // create wrappers to change preference storage

 RequestProxy req = new RequestProxy(request);

 ResponseProxy resp = new ResponseProxy(request, response);

 // create url prefix to always return to this servlet

 ...

 req.setAttribute("com.ibm.wsspi.portlet.url.prefix", urlPrefix);

 // prepare portlet url

 String portletPath = request.getPathInfo();

 ...

 // include portlet using wrappers

 RequestDispatcher rd = getServletContext().getRequestDispatcher(modifiedPortletPath);

 rd.include(req, resp);

 }

}

In the following example, the request wrapper changes the cookie handling to retrieve the preferences out

of the session.

public class RequestWrapper extends HttpServletRequestWrapper

{

 ...

 public Cookie[] getCookies() {

 Cookie[] cookies = (Cookie[]) session.getAttribute("SessionPreferences");

 return cookies;

 }

}

In the following example, the response wrapper changes the cookie handling to store the preferences in

the session:

public class ResponseProxy extends HttpServletResponseWrapper

{

 ...

 public void addCookie(Cookie cookie) {

 Cookie[] oldCookies = (Cookie[]) session.getAttribute("SessionPreferences");

 int newPos = (oldCookies == null) ? 0 : oldCookies.length;

 Cookie[] newCookies = new Cookie[newPos+1];

 session.setAttribute("SessionPreferences", newCookies);

 if (oldCookies != null) {

 System.arraycopy(oldCookies, 0, newCookies, 0, oldCookies.length);

 }

 newCookies[newPos] = cookie;

 }

}

Chapter 2. Portlet applications 127

Example: Configuring the extended portlet deployment descriptor to

disable PortletServingServlet

Portlet URL serving supports direct access to all functions and states of a portlet by creating the

appropriate URLs. In a production setup where the portlet is served through an enterprise portal

application that applies its own access control, is considered a security risk. By setting the

portletServingEnabled property to false, an administrator can ensure that a sensitive portlet is never

accessed by direct URL serving.

Extensions for the portlet deployment descriptor are defined within a file called ibm-portlet-ext.xmi. This

deployment descriptor is an optional descriptor that you can use to configure WebSphere extensions for

the portlet application and its portlets. For example, you can disable the PortletServingServlet servlet for

the portlet application in the extended portlet deployment descriptor.

The ibm-portlet-ext.xmi extension file is loaded during application startup. If there are no extension files

specified with this setting, the default values of the portlet container are used.

The default for the portletServingEnabled attribute is true. The following is an example of how to configure

the application so that a PortletServingServlet servlet is not created for any portlet on the portlet

application.

<?xml version="1.0" encoding="UTF-8"?>

<portletappext:PortletApplicationExtension xmi:version="1.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:portletappext="portletapplicationext.xmi"

 xmlns:portletapplication="portletapplication.xmi"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmi:id="PortletApp_ID_Ext"

 portletServingEnabled="false">

 <portletappext:portletApplication href="WEB-INF/portlet.xml#myPortletApp"/>

</portletappext:PortletApplicationExtension>

Portlet container custom properties

You can configure name-value pairs of data, where the name is a property key and the value is a string

value that you can use to set internal system configuration properties. Defining a new property enables

you to configure a setting beyond that which is available in the administrative console. The following is a

list of the available Portlet container custom properties.

To specify Portlet container custom properties:

1. In the administrative console click Servers → Server Types → WebSphere application servers →

server_name → Portlet Container Settings → Portlet container.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the name of the custom property that you want to configure in the Name

field and the value that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

Following is a list of custom properties provided with the Application Server.

Using short names for Portlet and PortletApplication MBeans

Portlet MBeans are registered by both their short name and full name. To enable the use of short MBean

names, create the following name-value pair:

128 Administering WebSphere applications

Name Value

useShortMBeanNames true

The default is false.

MBeans registered by the full identifiable name, have the following format:

<ApplicationName>#<WARfilename.war>_portlet.<portlet_name> for the Portlet MBean

<ApplicationName>#<WARfilename.war>_portlet for the PortletApplication MBean

where <..> is replaced by the corresponding application data. For example,

SampleApplication#SamplePortlet.war_portlet.SamplePortlet.

Portlet and PortletApplication MBeans

The MBeans of type portlet and portletapplication provide information about a given portlet application and

its portlets. Through the MBean of type portletapplication, you can retrieve a list of names of all portlets

that belong to a portlet application. By querying the MBean of type portlet with a given portlet name, you

can retrieve portlet specific information from the MBean of type portlet.

Each MBean that corresponds to a portlet or portlet application is uniquely identifiable by its name. Portlet

applications are not required to have a name set within the portlet.xml. The MBean name for MBeans of

the portletapplication type is the enterprise archive (EAR) file name followed by ″#″ and the Web module

name concatenated with the string ″_portlet″. For example, portletapplication type MBeans have the

following format:

<EarFileName>#<WarFileName>_portlet

The name chosen for the MBean of type portlet is the name of the MBean of type portletapplication that

the portlet belongs to, concatenated with the portlet name:

<EarFileName>#<WarFileName>_portlet.<portletname>

The following is an example of the resulting PortletApplication MBean name and portlet names:

EarName SampleEar

WebModule SampleWar.war

PortletApplication MBean name: SampleEar#SampleWar_portlet

Portlet: SampleEar#SampleWar_portlet.BookmarkPortlet

The MBean names have been changed compared to version 6.1, because the old naming patterns are not

unique and can lead to problems under certain circumstances. If you rely on the old naming pattern, you

can set the portlet container custom property, useShortMBeanNames, to true to activate the previous known

MBean names. Because this is a performance impact, you might not want to activate the old naming

pattern if it is not necessary.

A full stop separates the preceding Web module name from the portlet name. Review the Portlet and

PortletApplication MBean type API documentation for additional information. The generated API

documentation is available in the information center table of contents from the path, Reference >

Administrator > API documentation > MBean interfaces.

The following code is an example of how to invoke the MBean of type portletapplication for an application

with the name, SampleWar.

String myPortletApplicationName = "SampleEar#SampleWar_portlet";

This name is composed by the Ear file name followed by "#" and

the Web module name concatenated with the substring "_portlet"

com.ibm.websphere.management.AdminService adminService =

Chapter 2. Portlet applications 129

com.ibm.websphere.management.AdminServiceFactory.getAdminService();

javax.management.ObjectName on =

 new ObjectName("WebSphere:type=PortletApplication,name=" + myPortletApplicationName + ",*");

Iterator onIter = adminService.queryNames(on, null).iterator();

while(onIter.hasNext())

{

 on = (ObjectName)onIter.next();

}

String ctxRoot = (java.lang.String)adminService.getAttribute(on, "webApplicationContextRoot");

In the previous example, the MBeanServer is first queried for an MBean of type portletapplication. If this

query is successful, the webApplicationContextRoot attribute is retrieved on that MBean or the first MBean

that is found. The result is stored in the ctxRoot variable. This variable now contains the context root of the

Web application that contains the portlet application that was searched. The variable is similar to

″/bookmark″.

The next code example demonstrates how to invoke the MBean of type portlet for a portlet with the name,

BookmarkPortlet.

String myPortletName = "SampleEar#SampleWar_portlet.BookmarkPortlet";

This name is composed by the name of the MBean of type portletapplication and

the portlet name, separated by a full stop because the same portlet name may

be used within different Web modules, but must be unique within the system.

com.ibm.websphere.management.AdminService adminService =

 com.ibm.websphere.management.AdminServiceFactory.getAdminService();

javax.management.ObjectName on =

 new ObjectName("WebSphere:type=Portlet,name=" + myPortletName + ",*");

Iterator iter = adminService.queryNames(on, null).iterator();

while(iter.hasNext())

{

 on = (ObjectName)iter.next;

}

java.util.Locale locale = (java.util.Locale) adminService.getAttribute(on, "defaultLocale");

The locale returned by the method getAttribute method for the MBean is the default locale defined for this

portlet.

Full names for Portlet and PortletApplication MBeans

MBeans are also registered by the full identifiable name:

<ApplicationName>#<WARfilename.war>_portlet.<portlet_name> for the Portlet MBean

<ApplicationName>#<WARfilename.war>_portlet for the PortletApplication MBean

where <..> is replaced by the corresponding application data. For example,

SampleApplication#SamplePortlet.war_portlet.SamplePortlet. You can enable the short MBean names

by setting the useShortMBeanNames portlet container custom property to true.

Portlet URL security

WebSphere Application Server enables direct access to portlet Uniform Resource Locators (URLs), just

like servlets. This section describes security considerations when accessing portlets using URLs.

For security purposes, portlets are treated similar to servlets. Most portlet security uses the underlying

servlet security mechanism. However, portlet security information resides in the portlet.xml file, while the

130 Administering WebSphere applications

servlet and JavaServer Pages files reside in the web.xml file. Also, when you make access decisions for

portlets, the security information, if any, in the web.xml file is combined with the security information in the

portlet.xml file.

Portlet security must support both programmatic security, that is isUserInRole, and declarative security.

The programmatic security is exactly the same as for servlets. However, for portlets, the isUserInRole

method uses the information from the security-role-ref element in portlet.xml. The other two methods

used by programmatic security, getRemoteUser and getUserPrincipal, behave the same way as they do

when accessing a servlet. Both of these methods return the authenticated user information accessing the

portlet.

The declarative security aspect of the portlets is defined by the security-constraint information in the

portlet.xml file. This is similar to the security-constraint information used for the servlets in the web.xml

file with the following differences:

v The auth-constraint element, which lists the names of the roles that can access the resources, does not

exist in the portlet.xml file. The portlet.xml file contains only the user-data-constraint element, which

indicates what type of transport layer security (HTTP or HTTPS) is required to access the portlet.

v The security-constraint information in the portlet.xml file contains the portlet-collection element, while

the web.xml file contains the web-resource-collection element. The portlet-collection element contains

only a list of simple portlet names, while the web-resource-collection contains the url-patterns as well as

the HTTP methods that need protection.

The portlet container does not deal with the user authentication directly. For example, it does not prompt

you to collect the credential information. The portlet container must, instead, use the underlying servlet

container for the user authentication mechanism. As a result, there is no auth-constraint element in the

security-constraint information in the portlet.xml file.

In WebSphere Application Server, when a portlet is accessed using a URL, the user authentication is

processed based on the security-constraint information for that portlet in the web.xml file. This implies that

to authenticate a user for a portlet, the web.xml file must contain the security-constraint information for that

portlet with the relevant auth-constraints contained in it. If a corresponding auth-constraint for the portlet

does not exist in the web.xml file, it indicates that the portlet is not required to have authentication. In this

case, unauthenticated access is permitted just like a URL pattern for a servlet that does not contain any

auth-constraints in the web.xml file. An auth-constraint for a portlet can be specified directly by using the

portlet name in the url-pattern element, or indirectly by a url-pattern that implies the portlet.

Note: You cannot have a servlet or JSP with the same name as a portlet for WebSphere Application

Server security to work with portlet.

The following examples demonstrate how the security-constraint information contained in the portlet.xml

and web.xml files in a portlet application are used to make security decisions for portlets. The

security-role-ref element, which is used for isUserInRole calls, is not discussed here because it is used the

same way for servlets.

In the examples below (unless otherwise noted), there are four portlets (MyPortlet1, MyPortlet2,

MyPortlet3, MyPortlet4) defined in portlet.xml. The portlets are secured by combining the information, if

any, in the web.xml file when they are accessed directly through URLs.

All of the examples show the contents of the web.xml and portlet.xml files. Use the correct tools when

creating these deployment descriptor files as you normally would when assembling a portlet application.

Example 1: The web.xml file does not contain any security-constraint data

In the following example, the security-constraint information is contained in portlet.xml:

Chapter 2. Portlet applications 131

<security-constraint>

 <display-name>Secure Portlets</display-name>

 <portlet-collection>

 <portlet-name>MyPortlet1</portlet-name>

 <portlet-name>MyPortlet3</portlet-name>

 </portlet-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

In this example, when you access anything under MyPortlet1 and MyPortlet3, and these portlets are

accessed using the unsecured HTTP protocol, you are redirected through the secure HTTPS protocol. The

transport-guarantee is set to use secure connections. For MyPortlet2 and MyPortlet4, unsecured (HTTP)

access is permitted because the transport-guarantee is not set. There is no corresponding

security-constraint information for all four portlets in the web.xml file. Therefore, all of the portlets can be

accessed without any user authentication and role authorization. The only security involved in this instance

is the transport-layer security using Secure Sockets Layer (SSL) for MyPortlet1 and MyPortlet3.

The following table lists the security constraints that are applicable to the individual portlets.

 URL Transport Protection User Authentication Role Based Authorization

/MyPortlet1/* HTTPS None None

/MyPortlet2/* None None None

/MyPortlet3/* HTTPS None None

/MyPortlet4/* None None None

Example 2: The web.xml file contains portlet specific security-constraint data

In the following example, the security-constraint information that corresponds to the portlet is contained in

web.xml. The portlet.xml file is the same as that shown in the previous example.

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/MyPortlet1/*</url-pattern>

 <url-pattern>/MyPortlet2/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Employee</role-name>

 </auth-constraint>

</security-constraint>

The security-constraint information contained in the web.xml file in this example indicates that the user

authentication must be performed when accessing anything under the MyPortlet1 and MyPortlet2 portlets.

When you attempt to access these portlets directly using URLs, and there is no authentication information

available, you are prompted to enter their credentials. After you are authenticated, the authorization check

is performed to see if you are listed in the Employee role. The user/group to role mapping is assigned

during the portlet application deployment. In the web.xml file listed above, note the following:

v Because the web.xml file uses url-pattern, the portlet names have been modified slightly. MyPortlet1 is

now /MyPortlet1/*, which indicates that everything under the MyPortlet1 URL is protected. This matches

the information in the portlet.xml file because the security runtime code converts the portlet-name

element in the portlet.xml file to url-pattern (for example, MyPortlet1 to /MyPortlet1/*), even for the

transport-guarantee.

v The http-method element in the web.xml file is not used in the example because all HTTP methods must

be protected.

132 Administering WebSphere applications

The following table lists the new security constraints that are applicable to the individual portlets.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS Yes Yes (Employee)

MyPortlet2/* None Yes Yes (Employee)

MyPortlet3/* HTTPS None None

MyPortlet4/* None None None

Example 3: The web.xml file contains generic security-constraint data implying all portlets.

In the following example, the security-constraint information is contained in the web.xml file that

corresponds to the portlet. The portlet.xml file is the same as that shown in the first example.

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

In this example, /* implies that all resources that do not contain their own explicit security-constraints

should be protected by the Manager role as per the URL pattern matching rules. Because the portlet.xml

file contains explicit security-constraint information for MyPortlet1 and MyPortlet3, these two portlets are

not protected by the Manager role, only by the HTTPS transport. Because the portlet.xml file cannot

contain the auth-constraint information, any portlets that contain security-contraints in it are rendered

unprotected when an implying URL (/* for example) is listed in the web.xml file because of the URL

matching rules.

In the case above, both MyPortlet1 and MyPortlet3 can be accessed without user authentication. However,

because MyPortlet2 and MyPortlet4 do not have security-constraints in the portlet.xml file, the /* pattern

is used to match these portlets and are protected by the Manager role, which requires user authentication.

The following table lists the new security constraints that are applicable to the individual portlets with this

setup.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS None None

MyPortlet2/* None Yes Yes (Manager)

MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

If in the example above, if you must also protect a portlet contained in the portlet.xml file (for example,

MyPortlet1), the web.xml file should contain an explicit security-constraint entry in addition to /* as shown

in the following example:

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

Chapter 2. Portlet applications 133

</security-constraint>

 <security-constraint id="SecurityConstraint_2">

 <web-resource-collection id="WebResourceCollection_2">

 <web-resource-name>Protection for MyPortlet1</web-resource-name>

 <url-pattern>/MyPortlet1/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

In this case, MyPortlet1 is protected by the Manager role and requires authentication. The data-constraint

of CONFIDENTIAL is also applied to it because the information in the web.xml file and the portlet.xml file

are combined. Because MyPortlet3 is not explicitly listed in the web.xml file, it is still not protected by the

Manager role and does not require user authentication.

The following table shows the effect of this change.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS Yes Yes (Manager)

MyPortlet2/* None Yes Yes (Manager)

MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

Developing console modules

Console modules are Web applications that are accessed from Integrated Solutions Console. Console

modules provide the business logic and transaction processes that enable administration functions.

About this task

The following skills are essential for developing and testing console modules.

v Java Platform, Enterprise Edition (Java EE)

v XML

v Portlet development using the Java Portlet Specification (JSR 168)

The console also supports existing modules that have been developed using Struts and Tiles APIs. This is

only for legacy support. New console modules are supported only if they are developed using standard

portlet APIs.

v Review the console module samples. The sample console modules provide examples of portal

application archives and how to use the APIs and other features.

v Set up the development environment. You need an integrated development environment (IDE) that

supports Java development to quickly develop, test, and deploy your portlet applications.

v Develop your first console module. This topic is for developers new to console module development. It

is assumed that you already have an IDE prepared. The topics in this section take you through the

process of creating a simple console module. The console module in this exercise consists of a single

portlet which is deployed to a single page as a member of the sample console modules provided by

IBM. Be sure you have successfully deployed the sample console modules before starting.

v Adding advanced API features. The class files for console modules are developed using the portlet API

of the Java Portlet Specification (JSR 168). Integrated Solutions Console includes additional APIs for

launching pages, passing properties to other console modules, and launching Eclipse-based help. This

topic provides information about the APIs available to console modules.

134 Administering WebSphere applications

Overview of Integrated Solutions Console

Integrated Solutions Console offers several advantages for implementing administration functions, as

described in this topic.

Integrated Solutions Console provides a single, common interface for system administration. It provides

the main platform on which IBM and non-IBM products can build administrative user interfaces as

individual plug-ins to a common console framework. Standardizing product administration functions to run

on the Integrated Solutions Console platform gives them a more common look and feel and a more

consistent behavior, thereby reducing the learning curve and adoption as new management components

are introduced. Administrators can interact with multiple IBM and non-IBM products from a single

browser-based console.

Consistency across administrative interfaces

Integrated Solutions Console provides a common appearance (for example, theme, layout and banner)

and behavior (for example, navigation and authentication) to enable consistent user interaction for

administering software products.

A standards-based architecture

Integrated Solutions Console provides a standards-based architecture for Web administration. Each

Integrated Solutions Console module consists of one or more Web applications that have access to

services within the Java Platform, Enterprise Edition (Java EE) environment provided by WebSphere

Application Server. The help interface is implemented using the Eclipse open standard. Console modules

are developed using the Java Portlet Specification.

Easy deployment of product administration consoles

The Integrated Solutions Console framework provides an XML-based interface for deploying console

modules to a console installation. XML descriptors provide the information needed to deploy the portlet,

resources, and setup the page layout and navigation in the console. A console module can be easily

removed without impact to the remaining console modules.

Accelerated development of solutions

Using Integrated Solutions Console enables products to reduce the time required to develop solutions that

require administration functions. The standards-based architecture, common framework, and support for

existing investment help reduce the time required to implement solutions.

Improved administration efficiency

Customers invest significant resources in training administrative personnel. Providing a common interface

across IBM products enables customers to reduce training time and expense.

Integrated Solutions Console components

This topic describes the components of the administrative console.

This figure illustrates the Integrated Solutions Console platform.

Chapter 2. Portlet applications 135

Custom console
modules

Administrative
modules

Runtime

PAA deployment

Console
EAR

Portlet
container

Servlet
container

Eclipse help Portlet
Struts
Tiles

Aggregation

Console
APIs

Portlet
API

J2EE

XML file-based respository

The following components and features support console modules running in Integrated Solutions Console.

v A common console

Provides a common appearance and navigation behavior for console modules. For example, each

portlet is rendered using a common skin, rendering the same title bar icons for actions such as editing

preferences, maximizing, or requesting help for the portlet.

v Built-in administration console modules

Provide security, log and trace, and other functions that apply to the entire the Integrated Solutions

Console installation.

v A portlet container

Supports portlets developed using the Java Portlet Specification. The current specification as of this

writing is JSR 168.

v PAA deployment

XML descriptors are provided for the developer to specify pages, navigation nodes, and access control

for the console module, which are created at deployment. The descriptor can also register the following

information about the console module.

– Custom roles for the application in addition to the roles provided by the application server

– An about page with links to useful information and resources for a product

– A pointer to another console module that is the lead application for the product

– Prerequisite applications and console modules that should be already deployed

– Portlets that are already deployed on the server that should be reused for the console module

– Multiple entities of a single portlet definition that can be used on different pages

– External URLs that can be launched from the console navigation

– Row and column layout of a page

– Windows that contain portlets on the page

– Empty windows on a page that are filled at runtime depending on the user’s navigation selection

– The order and nesting of navigation nodes used by the console module

– Parent navigation nodes under which the navigation tree for the current console module are placed

– Navigation nodes from other products that should be included under the current console module’s

navigation

136 Administering WebSphere applications

v An application server

Provides a complete Java runtime environment for console modules.

v APIs for console modules

Supports the following actions:

– Passing properties between portlets

– Launching a page from a portlet

– Invoking Eclipse-based help

v Eclipse Help

Eclipse Help is provided as a Web application running on the same server as Integrated Solutions

Console. Eclipse Help serves help documents for a single module as well as for the entire console.

What is new in Integrated Solutions Console

Learn about changes to the administrative console since the last release of WebSphere Application Server.

Customizing the banner

You can change the console banner to display custom text in the greeting. This could be useful,

for example, in environments where you have multiple application servers and you want to make

sure console users can determine which server they are administering. The same text is also

displayed in the title bar of the browser window.

Administrative agent console

In environments that use the administrative agent to administer multiple application server nodes,

you have a choice to select when logging in to the console. You can choose to log into the

administrative agent or one of its registered profiles.

Example: Console module samples

The sample console modules provide examples of portal application archives and how to use the APIs and

other features. These samples are available from the Samples for WebSphere Application Server page at

the following location

http://www.ibm.com/developerworks/websphere/library/samples/index.html

These samples help understand the structure of a console module WAR package and the portal

application descriptors that distinguish the application as a console module. After downloading the

samples, follow the instructions in “Deploying a console module” on page 144. The following table lists the

samples that are ready for deployment.

 Sample Description

Page layout (pagelayout.war) Demonstrates how to specify the layout of console

modules on a page using the elements of the portal

topology descriptor. This sample shows how the lead

application of a product provides an about page, which

contains helpful information and resources about the

product. The about page can be accessed from the

console Welcome page. This module also demonstrates

how to reuse a portlet from another module (Tree merge).

Tree merge (TreeMerge.war) Demonstrates how a subordinate application deploys into

the lead application for a product. The <PAA-ref/>

element indicates the page layout sample as the lead

application. Also, the <requires/> element indicates the

page layout sample as a prerequisite that must already

be deployed. The <parent-tree/> element merges the

navigation nodes for the tree merge sample into the page

layout navigation tree.

Chapter 2. Portlet applications 137

http://www.ibm.com/developerworks/websphere/library/samples/index.html

Sample Description

Portlet context (PortletContext.war) Demonstrates how to use the Dynamic UI Manager APIs

to launch a page and how to pass properties to other

console modules. The module receiving these properties

can be on the same page or on another page.

Modes (Modes.war) Demonstrates how to implement the Edit and Help modes

in a module and how to invoke Eclipse-based help.

Basic module (Basicmodule.war) Demonstrates how to implement basic module

components.

Setting up the development environment

Set up your integrated development environment (IDE) for developing and debugging console modules.

You can use the Integrated Solutions Console Visual Designer feature to create the portal topology and

security deployment descriptors needed to enable portlet applications to run in the administrative console

environment. Visual Designer is available for download at http://www.ibm.com/support/docview.wss?rs=180
&uid=swg24011666. This feature is supported using one of the following IDEs.

v IBM Application Server Toolkit, Version 6.1.1

v IBM Rational Application Developer, Version 7.0

After you download Visual Designer, you can install it to your development environment like any other

feature. Refer to the documentation for your IDE for more information.

As you test your console modules, you might discover that changes that you make to the JSP files are not

rendered when you log in to the application server. If so, you probably need to check the

reloadingEnabled attribute in the extended deployment descriptor for the module (ibm-web-ext.xmi) Make

sure this value is set to true to enable the JSP file to reload each time you deploy a new change. See the

″Hot deployment and dynamic reloading″ topic in the Developing and deploying applications PDF for more

information.

Developing your first console module

Follow these steps if you are new to console module development.

Before you begin

You should have an integrated development environment (IDE) that supports Java programming setup.

See “Setting up the development environment” for more information.

The topics in this section take you through the process of creating a simple console module. The sample

console module consists of a single portlet which is deployed to a single page as part of the set of sample

console modules provided by IBM. Be sure you have successfully deployed the sample console modules

before starting.

v “Developing the portlet” on page 139

v “Creating the descriptors for the console module” on page 140

v “Packaging a console module” on page 143

v “Deploying a console module” on page 144

v “Testing a console module” on page 146

v “Removing a console module” on page 146

138 Administering WebSphere applications

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24011666
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24011666

Developing the portlet

This topic is intended for developers who are unfamiliar with portlet development. A simple Java class and

JSP are provided.

Developing the source Java class file

The following example shows the Java code for a portlet in its simplest form.

package com.ibm.isclite.samples.basicmodule;

import java.io.*;

import javax.portlet.*;

public class BasicModule extends GenericPortlet {

 public void doView(RenderRequest request, RenderResponse response)

 throws PortletException, IOException {

 // Set the MIME type for the render response

 response.setContentType("text/html");

 // Invoke the JSP to render

 PortletRequestDispatcher rd = getPortletContext().getRequestDispatcher("/jsp/basicView.jsp");

 rd.include(request,response);

 }

}

The portlet code must extend the GenericPortlet class and output for the response in the doView()

method. Portlets are rendered in different modes. The initial mode when a portlet is called to render is the

view mode. The response output is provided by a JSP, which provides markup that can be aggregated into

a larger HTML page. The package name in this example is consistent with the console module samples.

Developing the JSP

The following shows a portlet JSP for view mode in its simplest form.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1" session="false" buffer="none"%>

<%@ page import="javax.portlet.*" %>

<%@ taglib uri="http://java.sun.com/portlet" prefix="portletAPI" %>

<portletAPI:defineObjects />

<%

 PortletPreferences prefs = renderRequest.getPreferences();

 String URL = prefs.getValue("website","");

%>

<p><a name="<portletAPI:namespace/>basicAnchor">Basic contents</p>

<p>

 <a href="<%=URL%>" target="_blank">

 <img src=’<%=renderResponse.encodeURL(renderRequest.getContextPath() + "/images/logo.gif")%>’

 alt="logo" />

</p>

<p>Company logo with link.</p>

The taglib directive specifies the portlet tags from the Java Portlet Specification. The following tags are

used in this example.

namespace

Uniquely qualifies named HTML tags or JavaScript functions to prevent clashes with other portlets

on the page using the same name.

Chapter 2. Portlet applications 139

defineObjects

Makes the RenderRequest, RenderResponse, and PortletConfig objects available to the JSP. This

tag is used in this example so that the image can be rendered using the encodeURL() method of

the render response, and to allow the JSP to read preferences in the portlet descriptor.

Creating the descriptors for the console module

Before you begin

The following descriptors are required for the console module.

v Web application descriptor (web.xml). This descriptor is required and described by the Java Servlet

Specification.

v Portlet application descriptor (portlet.xml). This descriptor is required and described by the Java Portlet

Specification. Refer to the console module samples for examples of how to create the portlet.xml.

v Portal topology descriptor (ibm-portal-topology.xml). This descriptor is unique to console modules and

defines the portlets and resources in the module, how it is laid out on the page, and how it is accessed

from the navigation.

v Portal security descriptor (ibm-portal-security.xml). This descriptor is unique to console modules and

defines roles and access to navigation nodes and portlets.

About this task

The topology and security descriptors are the main component of console module packages that

distinguish them from other portal application WAR files. The console module samples include these

descriptors and demonstrate their features. The sample descriptors provide inline comments that explain

the elements and how they are used.

For your first console module, you should use the Visual Designer plugin to the Application Server Toolkit

to develop the descriptors. If you prefer to create them manually to become familiar with the structure of

the XML, the steps in this topic show how to create simple descriptors that can be used to deploy an

application into the samples provided by IBM. After following these steps, you should refer to the samples

and the reference topics for the console module schemas for more complete information.

Portal topology descriptor

About this task

To follow these steps, open a file with the name ibm-portal-topology.xml in a text or XML editor and save

each change at the end of each step.

1. Copy the following elements into ibm-portal-topology.xml. Some information is split on multiple lines for

printing purposes.

<?xml version="1.0" encoding="UTF-8"?>

<ibm-portal-topology

 xmlns="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-topology.xsd"

 xmlns:base="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-base.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-topology.xsd

ibm-portal-topology.xsd">

 <application-definition appID="com.ibm.isclite.samples.basicModule" version="6.1">

 </application-definition>

 <PAA-ref>com.ibm.isclite.samples.PageLayout</PAA-ref>

</ibm-portal-topology>

v The elements in this step provide the top level content of the topology descriptor.

140 Administering WebSphere applications

v Most of the content for this descriptor will be placed inside the <application-definition/> element.

v The value of the appID attribute is consistent with the naming convention used by the sample

console modules. The version attribute matches the version used by the sample console modules.

v The <PAA-ref/> element specifies the appID of the page layout sample, which is the lead application

to which this application will be deployed.

v The following convention is used for unique name for all of the elements in the descriptor.

namespace + element_type + identifier

2. Create a title for your application. The title is the first element in the application definition element.

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

3. Place the component tree after the <requires/> element as shown.

<component-tree uniqueName="com.ibm.isclite.samples.basicModule.appTree">

 <portlet-definition uniqueName="com.ibm.isclite.samples.basicModule.portletDefinition.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 <resource-link name="basicModule"

 portletApplication="com.ibm.isclite.samples.basicmodule.BasicModule.01a"

 type="static"/>

 </portlet-definition>

 <portlet-entity uniqueName="com.ibm.isclite.samples.basicModule.portletEntity.A"

 portletDefinitionRef="com.ibm.isclite.samples.basicModule.portletDefinition.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 </portlet-entity>

</component-tree>

v The name attribute of the <resource-link/> element must specify the <portlet-name/> from the portlet

deployment descriptor.

v The portletApplication attribute of the <resource-link/> element must specify the id attribute of the

<portlet-app/> element from the portlet deployment descriptor.

v The portletDefinitionRef attribute of the <portlet-entity/> element references the unique name of

the <portlet-definition/>. Subsequent elements in this descriptor use the unique name of the

<portlet-entity/> to invoke the portlet. Multiple portlet entities can point to the same portlet definition.

For the purpose of this exercise, a single portlet definition is provided with a single portlet entity.

v The portlet title that is rendered in this example is derived from the title in the portlet entity. If that

value is not provided, the portlet title is rendered by the title provided by the <window/> element in

the layout tree. If that value is also not provided, the title is obtained from the <portlet-name/>

element in the portlet.xml for the portlet indicated by the <resource-link/>.

4. Place the layout tree after the component tree as shown.

<layout-tree>

 <layout-element uniqueName="com.ibm.isclite.samples.basicModule.layoutElement.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 <simple-container orientation="row"

 uniqueName="com.ibm.isclite.samples.basicModule.container.A">

 <window uniqueName="com.ibm.isclite.samples.basicModule.window.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 <component-definition-ref>

 com.ibm.isclite.samples.basicModule.portletEntity.A

 </component-definition-ref>

Chapter 2. Portlet applications 141

</window>

 </simple-container>

 </layout-element>

</layout-tree>

v Each layout element in the layout tree defines the layout of a page in the console.

v Each page can have nested containers, and each simple container can have multiple windows.

Each simple container has either a row or column orientation. The nesting of these containers can

create a complex table structure for the page layout.

v The <component-definition-ref/> element specifies the unique name of the portlet entity that provides

the content of this window.

5. Create the navigation element after the layout tree as shown.

<navigation-element uniqueName="com.ibm.isclite.samples.navigationElement.basicModule"

 layoutElementRef="com.ibm.isclite.samples.basicModule.layoutElement.A">

 <title>

 <base:nls-string lang="en">Basic Module Sample</base:nls-string>

 </title>

 <preference name="ProductFilter">

 <base:value>

 <base:string>com.ibm.isclite.samples.PageLayout</base:string>

 </base:value>

 </preference>

 <parent-tree parentTreeRef="com.ibm.isclite.samples.navigationElement.Samples"/>

</navigation-element>

v Each navigation element defines a node in the console navigation. If you nest the navigation

elements, it creates a hierarchical tree structure that is reflected in the console navigation. For the

purpose of this exercise, only a single navigation element is provided. The layoutElementRef

attribute indicates the unique name of the layout element that is rendered on the page that is

displayed when this element is selected by the console user.

v The content of the ProductFilter preference indicates the appID of the lead application. This is

used to render this navigation element when the lead product is selected by the console user for

filtering the navigation.

v The content of the parentTreeRef element indicates the unique name of the parent navigation

element for this element.

The following figure shows how this navigation element is rendered with the page layout sample. In

this figure, the user has selected Integrated Solutions Console Sample from the View selection list to

filter the navigation.

View: Integrated Solutions Console Sample

Samples

Topology Variations

Page Layout Samples

Resource Reuse Sample

External URL Sample

My basic module

Figure 3. Sample console module navigation

142 Administering WebSphere applications

What to do next

When you have finished, save and close the file and store in the /WEB-INF directory of your console

module project.

Portal security descriptor

Before you begin

To follow these steps, open a file with the name ibm-portal-security.xml in a text or XML editor and save

each change at the end of each step.

1. Copy the following elements into ibm-portal-security.xml. Some information is split on multiple lines for

printing purposes.

<?xml version="1.0" encoding="UTF-8"?>

<ibm-portal-security

 xmlns="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-security.xsd"

 xmlns:base="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-base.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-topology.xsd

ibm-portal-topology.xsd

 http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-base.xsd ibm-portal-base.xsd

 http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-security.xsd ibm-portal-security.xsd">

 </ibm-portal-security>

2. Add the <application-role/> element as the content of the <ibm-portal-security/> element.

<application-role uniqueName="monitor">

</application-role>

This sample identifies the administrative role, monitor, for access rights. See Portal security schema

for a complete description of this element and the uniqueName attribute.

3. Add the following <portal-role/> elements as the content of the application role.

<portal-role object-ref="com.ibm.isclite.samples.navigationElement.basicModule"/>

<portal-role object-ref="com.ibm.isclite.samples.basicModule.navigationElement.A"/>

<portal-role object-ref="com.ibm.isclite.samples.basicModule.portletEntity.A"

 role-type="Privileged User"/>

This sample assigns permission to a user with monitor access to view two navigation elements and to

view, edit, and access help for one portlet. See Portal security schema for a complete description of

this element and its attributes.

What to do next

When you have finished, save and close the file and store in the /WEB-INF directory of your console

module project.

Packaging a console module

Before you begin

Before you start this task, be sure your Java sources compiles without errors and the XML descriptors

have been validated against the corresponding schemas.

About this task

An Integrated Solutions Console module must be packaged as a WAR file for deployment. For best

results, use a comprehensive development tool such as Rational Application Developer. Otherwise, you

can follow these steps to package your console module resources into the WAR file.

Chapter 2. Portlet applications 143

1. Create a working directory to collect all of the files that need to be packaged in the WAR file.

2. Organize your portlets and other resource files in the prescribed directory structure for portlet WAR

files using the following steps:

a. Place the following deployment descriptors in the directory /WEB-INF directory:

v ibm-portal-topology.xml (topology descriptor)

v ibm-portal-security.xml (security descriptor)

v portlet.xml (portlet descriptor)

v web.xml (Web application descriptor)

b. Place individual Java classes for your portlets in the directory /WEB-INF/classes. Use a directory

structure that reflects the fully-qualified class name of your portlet, for example,

/com/ibm/isclite/samples/basicModule.

c. Put JAR files in the directory /WEB-INF/lib.

d. If the console module supports multiple languages, place the properties file that contains the

translated strings (the resource bundles) in the directory /WEB-INF/classes/nls.

e. Put any JavaServer Pages that must be served directly by the client in a directory that is not under

the /WEB-INF directory (such /jsp). Resources in the /WEB-INF directory are protected and are not

URL-addressable. JavaServer Pages that are accessed only by the portlets in the console module

can be placed in the /WEB-INF path.

f. If the console module has help files, copy the Eclipse help plug-in files to the directory

/help/plugin_name, where plugin_name is the name of the Eclipse help plug-in, such as

com.ibm.myprod.help.doc.

3. Use the Java JAR utility to create the WAR file. For instructions, see the Java Tutorial at

http://java.sun.com/docs/books/tutorial/jar/basics/index.html . You can also use an assembly tool like

Rational Application Developer to create the WAR file for the console module.

Deploying a console module

After you create the WAR file for a console module, you can deploy the console module to a system

where the runtime for Integrated Solutions Console is installed and then test that the console module

works correctly. Only one instance of a console module can be deployed on an Integrated Solutions

Console installation. This rule applies even if the versions of the console module are different.

About this task

If you need to update the version of a console module, you must perform these steps.

1. Remove the console module.

2. Update the module with the required changes.

3. Reissue the deploy command.

To deploy a console module on a system where the runtime for Integrated Solutions Console is installed,

perform the following procedure:

1. Go to the machine where the Integrated Solutions Console runtime is installed. You can also use a

machine that has remote access to the drive where the runtime is installed.

2. Copy the console module WAR file to the app_server_root/systemApps/isclite.ear directory. As an

alternative, you can extract the WAR file into a subdirectory of this location using the WAR file name

for the subdirectory. For example, you would extract pagelayout.war to the app_server_root/
systemApps/isclite.ear/pagelayout.war directory.

3. Grant the QEJBSVR profile the authority needed to complete the task. From an i5/OS command

prompt, issue this command:

CHGAUT OBJ(’path_to_war’) USER(QEJBSVR) DTAAUT(*RWX) OBJAUT(*ALL)

4. Start the wsadmin scripting client. If the server is not running, use the -conntype NONE option to run in

local mode.

144 Administering WebSphere applications

http://java.sun.com/docs/books/tutorial/jar/basics/index.html

5. At the wsadmin command prompt, enter the command syntax. The following example presents the

syntax:

$AdminApp update isclite modulefile {

-operation add

-contents path_to_war

-contenturi war_filename

-custom paavalidation=true

-custom containWebServices=true|false

-usedefaultbindings -contextroot /context

-MapWebModToVH {{.* .* admin_host}}

-MapModulesToServers {{.* .*.war,.* WebSphere:cell=cellname,node=nodename,server=servername}}}

Note:

v The values of the -contents and -contenturi options are case sensitive and should match the

war file name that you are ready to deploy.

v Specifying -custom paavalidation=true causes the deployment to validate the XML

descriptors for the console module package before deployment. This is optional.

v Set the option -custom containWebServices=true only if the package contains a Web service.

This setting invokes more deployment processing to locate and setup the Web service. The

default for this option is true. If the package does not contain any Web services, be sure to

set this option to false for more efficient deployment.

v Use the -MapModulesToServers option when deploying to an agent profile.

For example:

$AdminApp update isclite modulefile {

-operation add

-contents app_server_root/systemApps/isclite.ear/pagelayout.war

-contenturi pagelayout.war

-custom paavalidation=true

-custom containWebServices=false

-usedefaultbindings -contextroot /ibm/pagelayout

-contextroot /pagelayout

-MapWebModToVH {{.* .* admin_host}}

-MapModulesToServers {{.* .*.war,.* WebSphere:cell=cell_A,node=node_B,server=server_C}}}

The following messages are displayed if the deployment is successful.

Update of isclite has started.

ADMA5009I: An application archive is extracted at profile_root/wstemp/wstemp/app_10793d84b8e/ext/pagelayout.war

ADMA5064I: FileMergeTask completed successfully for isclite.

ADMA5005I: The application isclite is configured in the WebSphere Application Se

rver repository.

ADMA5005I: The application isclite is configured in the WebSphere Application Se

rver repository.

ADMA5110I: The application isclite is installed as a hidden application and will

 not be exposed via administrative interfaces such as GUI client, wsadmin or MBe

an Java API. In order to perform management operations on this application, the

 application name must be known.

CWLAA10001I: The Integrated Solutions Console module was deployed successfully.

ADMA5005I: The application isclite is configured in the WebSphere Application Se

rver repository.

ADMA5011I: The cleanup of the temp directory for application isclite is complete

.

Update of isclite has ended.

6. After the deployment has completed successfully, save your work by issuing the following command:

 $AdminConfig save

Results

If the deployment is successful, the WAR file contents are extracted to the /systemApps/isclite.war

directory and the module metadata is copied to the following directory:

Chapter 2. Portlet applications 145

profile_root/config/cells/cellname/applications/isclite.ear/deployments/isclite

To view your console module, you must log back in to the console. Make sure the navigation is updated

correctly. If so, select the new navigation nodes verify that the new pages and console modules are

rendered correctly.

Testing a console module

About this task

Use the following checklist to test your console module after it has been deployed.

1. Log in to Integrated Solutions Console as an administrator.

2. If the module includes an <about-page/> element in the topology descriptor, verify that your suite and

its version are listed in the table on the Welcome page. Also confirm that the product is listed in the

View selection list for the navigation.

3. Verify that the console navigation tree contains all of the organizational nodes and pages that were

defined. Verify that each node is at the correct level in the tree.

4. For each page, verify that the portlets on the page work correctly. If a portlet on the page launches a

new page in work area, verify that the launching works correctly.

5. To test the access permissions specified in the console module descriptor, logout and then log in as a

different user to verify that the correct pages are accessible.

6. If the console module included a help plug-in, make sure you can launch the help.

7. If the console module contains errors, refer to the SystemOut.log and SystemErr.log for any errors or

messages. These logs are located in the following directory:

 profile_root/logs/server1

Removing a console module

About this task

Follow these steps to delete a console module.

1. Ensure that the server is started. You do not need to log in to the console.

2. Start the wsadmin scripting client.

3. Enter the following command from the wsadmin command prompt.

$AdminApp update isclite modulefile {-operation delete -contenturi module_file_name.war}

4. Save your configuration changes.

$AdminConfig save

5. Exit the wsadmin command environment.

quit

Adding advanced API features

The class files for console modules are developed using the Java Portlet Specification. Integrated

Solutions Console includes additional APIs for launching pages, passing properties to other portlets, and

launching Eclipse-based help. This section provides information about the APIs available to console

modules.

Developing portlets

Console modules are portlets that run in the portlet container of WebSphere Application Server.

Integrated Solutions Console supports console modules written to the Java Portlet Specification. A

packaged console module WAR file contains one or more portlets or reuses portlets from other modules.

According to the JSR 168 specification, a portlet is a Java technology based Web component, managed

146 Administering WebSphere applications

by a portlet container, that processes requests and generates content that contributes to the overall portal

page. Portlets share many of the same characteristics as servlets. However, portlets also exhibit

differences. For example, portlets cannot set HTTP headers and can contribute only markup fragments to

the portal page. The portlet specification leverages the functionality of the servlet specification as much as

possible, and many parts of the Java Portlet Specification have been modeled after the servlet

specification.

The application server includes a JSR 168-compliant portlet container to support deploying and running

console modules in Integrated Solutions Console. The JSR 168 portlet container relies on the Java

Platform, Enterprise Edition (Java EE) architecture implemented by the application server. Consequently,

an Integrated Solutions Console module and its portlets are packaged and deployed similar to Java EE

Web applications. In addition to the Web application descriptor and the portlet descriptor, the WAR file for

an Integrated Solutions Console module includes additional descriptors needed to deploy the application to

a console installation.

The following Web resources can useful for learning more about portlet development.

 Resource Web site URL

Portlet Specification 1.0 http://jcp.org/jsr/detail/168.jsp

Portlet Specification 2.0 http://jcp.org/en/jsr/detail?id=286

WebSphere Portal Zone http://www.ibm.com/developerworks/websphere/zones/
portal/

Best practices: Developing portlets using JSR 168 and

WebSphere Portal

http://www.ibm.com/developerworks/websphere/library/
techarticles/0403_hepper/0403_hepper.html

WebSphere Portal external newsgroup news://news.software.ibm.com/
ibm.software.websphere.portal-server

Develop a Faces JSR 168 portlet using IBM Rational

Application Developer 6.0 for autonomic computing

http://www.ibm.com/developerworks/edu/ac-dw-ac-jsfisc-
i.html

Introduction to JSR 168 - The Portlet Specification http://developers.sun.com/prodtech/portalserver/reference/
techart/jsr168/index.html

Launching pages

Typically, users of the console launch pages using the links in the console navigation. However, portlets in

a console module also launch pages directly using the Dynamic UI Manager API.

The DynamicUI Manager APIs are provided by 3 services: PropertyFactory,

DynamicUIManagerFactoryService, and URLGeneratorFactoryService. To use these services the portlet

must first perform a JNDI lookup to get the PortletServiceHome object which you then can use to get the

actual service interface object. This is demonstrated in the GetApps portlet of the PortletContext sample..

The following code is placed in a try block of the portlet’s init() method.

Some information is split on multiple lines for printing purposes.

Context ctx = new InitialContext(com.ibm.portal.jndi.Constants.ENV);

// get propertyfactory service

propertyFactoryServiceHome = (PortletServiceHome)ctx.lookup("iscportletservice/com.ibm.portal.

propertybroker.service.PropertyBrokerService");

if (propertyFactoryServiceHome == null)

 logger.log(Level.FINE, "no PropertyBrokerService propertyFactoryServiceHome");

else

 propertyFactoryService =

 (PropertyFactory)propertyFactoryServiceHome.getPortletService(com.ibm.portal.

propertybroker.service.PropertyBrokerService.class);

logger.log(Level.FINE, "propertyBrokerService="+propertyFactoryService);

Chapter 2. Portlet applications 147

http://jcp.org/jsr/detail/168.jsp
http://jcp.org/en/jsr/detail?id=286
http://www.ibm.com/developerworks/websphere/zones/portal/
http://www.ibm.com/developerworks/websphere/zones/portal/
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_hepper/0403_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_hepper/0403_hepper.html
news://news.software.ibm.com/ibm.software.websphere.portal-server
news://news.software.ibm.com/ibm.software.websphere.portal-server
http://www.ibm.com/developerworks/edu/ac-dw-ac-jsfisc-i.html
http://www.ibm.com/developerworks/edu/ac-dw-ac-jsfisc-i.html
http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/index.html
http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/index.html

// get dynamicUIManagerFactory service

dynamicUIManagerFactoryServiceHome =

 (PortletServiceHome)ctx.lookup("iscportletservice/com.ibm.portal.portlet.service.DynamicUIManagerFactoryService");

if (dynamicUIManagerFactoryServiceHome == null)

 logger.log(Level.FINE, "no dynamicUIManagerFactoryService propertyFactoryServiceHome");

else

 dynamicUIManagerFactoryService =

 (DynamicUIManagerFactoryService)dynamicUIManagerFactoryServiceHome.getPortletService

(com.ibm.portal.portlet.service.DynamicUIManagerFactoryService.class);

logger.log(Level.FINE, "dynamicUIManagerFactoryService="+dynamicUIManagerFactoryService);

// get urlGeneratorFactory service

urlGeneratorFactoryServiceHome =

 (PortletServiceHome)ctx.lookup("iscportletservice/com.ibm.portal.portlet.service.URLGeneratorFactoryService");

if (urlGeneratorFactoryServiceHome == null)

 logger.log(Level.FINE, "no urlGeneratorFactoryService propertyFactoryServiceHome");

else

 urlGeneratorFactoryService =

 (URLGeneratorFactoryService) urlGeneratorFactoryServiceHome.getPortletService

(com.ibm.portal.portlet.service.URLGeneratorFactoryService.class);

logger.log(Level.FINE, "urlGeneratorFactoryService="+urlGeneratorFactoryService);

A portlet can launch a new page using the dynamicUICtrl interface, passing the object ID of the page

definition for the new page. The object ID is determined by performing a JNDI lookup on the unique name

of the navigation element that launches the page. If you are planning to launch a navigation element, the

navigation node must point to a layout element. In other words the navigation element must contain the

layoutElementRef attribute. The addPage() method returns the object ID of the page instance, which

should be saved by the portlet to create a URL and launch the page. The following excerpt from the

PortletContext sample demonstrates how this works. The portlet GetApps.java includes a launchPage()

method with this code.

Context ctx;

ObjectID pageDefinitionID = null;

String pagename="com.ibm.isclite.portletcontext.navigationElement.B";

logger.log(Level.FINE, "launch page=" + pagename);

PortletSession ps = request.getPortletSession(false);

try {

 ctx = new InitialContext();

 pageDefinitionID =(ObjectID)ctx.lookup("portal:uniquename/"+pagename);

} catch (NamingException ne) {

 return;

}

try {

 PropertyController cproperty = propertyFactoryService.createProperty(myconfig);

 PropertyController cproperty2 = propertyFactoryService.createProperty(myconfig);

 cproperty.setType("String");

 cproperty.setName("servername");

 cproperty2.setType("String");

 cproperty2.setName("appDeployed");

 PropertyValue[] propertyValues = new PropertyValue[2];

 propertyValues[0] =

 propertyFactoryService.createPropertyValue(request, cproperty, serverName);

 propertyValues[1] =

 propertyFactoryService.createPropertyValue(request, cproperty2, appDeployed);

 DynamicUICtrl dmanagerCtrl =

 dynamicUIManagerFactoryService.getDynamicUICtrl(request, response, "isc.tasklaunch");

 ObjectID newPageID =

 dmanagerCtrl.addPage(pageDefinitionID, null, propertyValues);

 RedirectURLGenerator urlGenerator =

 urlGeneratorFactoryService.getURLGenerator(request, response);

148 Administering WebSphere applications

EngineURL redirectURL = urlGenerator.createPageURL(newPageID);

 response.sendRedirect(redirectURL.toString());

} catch ...

v The pagename String is created with the unique name of the navigation element (from the topology

descriptor) that launches the page.

v The object ID is found by performing a JNDI lookup on this Context instance using this String:

"portal:uniquename/"+pagename

The String portal:uniquename/ is required to obtain the object ID for the navigation element.

v Properties are created to be passed to the portlets on the page. The property names are servername

and appDeployed.

v In addition to the request and response, you must include the String isc.tasklaunch as the

configuration name on the getDynamicUICtrl() method.

v Use the addPage() method of the new DynamicUICtrl instance to create and instance of the page. Any

properties that need to be passed to portlets on the new page must be provided in this method. The

addPage() method does not launch the page, but it returns the object ID of the page instance. The next

two methods, getURLGenerator() and createPageURL(), are used to construct the URL that opens the

page. The URL contains property names and values if they have been provided.

v The URL to open the page is provided on the sendRedirect() method of the response.

Passing properties to other portlets

This topic describes how portlets can exchange properties. You should be familiar with the concepts for

launching console pages before reading this topic.

Information can be provided to portlets on the same page using the addSharedPortlet() method. Property

values are of the type com.ibm.portal.propertybroker.property.PropertyValue. The example in “Launching

pages” on page 147 shows these properties passed to the page using an instance of the PropertyValue

interface (propertyValues) and shows how that object was created using the PropertyFactory interface.

The SetServer.java source from the PortletContext sample shows how to pass properties to a portlet on

the same page. It is assumed that the portlet has already performed a JNDI lookup to determine that the

PropertyFactory, DynamicUIManagerFactoryService, and URLGeneratorFactoryService services are

available. This is described in “Launching pages” on page 147

v In this example, the portlet that is the source of the properties needs the object ID of the target portlet.

The object ID is determined by performing a JNDI lookup using the values from the portlet’s

<resource-link/> element in the topology descriptor.

v The property, cproperty, is created using the PropertyController interface and the createProperty()

method of the PropertyFactory interface. The data type for the property must be a String.

v Prior to sending the property, the source portlet creates an instance of the DynamicUICtrl interface,

passing the string ″isc.tasklaunch″ as the configuration name.

v The addSharedPortlet() method sends the properties to the target portlet on the request. After the action

phase, the target portlet updates the output for the response.
Context ctx = null;

ObjectID portletDefinitionID1 = null;

ObjectID portletDefinitionID2 = null;

String portletname1="com.ibm.isclite.samples.PortletContext/PortletGetPerformance";

String portletname2="com.ibm.isclite.samples.PortletContext/PortletGetApps";

PortletSession ps = request.getPortletSession(false);

try

 {

Chapter 2. Portlet applications 149

ctx = new InitialContext(com.ibm.portal.jndi.Constants.ENV);

 portletDefinitionID1 =

 (ObjectID)ctx.lookup("portal:config/portletdefinition/"+portletname1);

 portletDefinitionID2 =

 (ObjectID)ctx.lookup("portal:config/portletdefinition/"+portletname2);

 } catch (NamingException ne)

 {

 logger.log(Level.FINE, "portletdefinitionID not found - Naming exception:"+ne.getMessage());

 return;

 }

logger.log(Level.FINE, "portletdefinitionID="+portletDefinitionID1.toString());

try

{

 PropertyController cproperty =

 propertyFactoryService.createProperty(myconfig);

 cproperty.setType("String");

 PropertyValue[] propertyValues = new PropertyValue[1];

 propertyValues[0] =

 propertyFactoryService.createPropertyValue(request, cproperty, serverName);

 DynamicUICtrl dmanagerCtrl =

 dynamicUIManagerFactoryService.getDynamicUICtrl(request, response, "isc.tasklaunch");

 ObjectID newPortletID1 =

 dmanagerCtrl.addSharedPortlet(portletDefinitionID1, null, propertyValues);

 ObjectID newPortletID2 =

 dmanagerCtrl.addSharedPortlet(portletDefinitionID2, null, propertyValues);

 logger.log(Level.FINE, "portlet ID created:"+newPortletID1.getOID());

 } catch ...

In some cases, the target portlet might be on a separate page. In this case, the properties are passed

using the addPage() method. The target portlet receives the properties only when the page is launched

that contains the portlet. If a property value is set multiple times before the page is launched, the value

that was set last for the property is passed to the portlets on the page. You can use the

URLGeneratorFactoryService interface to redirect the console to the page for the target portlet. This is

demonstrated in the GetApps portlet of the PortletContext sample.

ObjectID newPageID = dmanagerCtrl.addPage(pageDefinitionID, null, propertyValues);

RedirectURLGenerator urlGenerator = urlGeneratorFactoryService.getURLGenerator(request, response);

EngineURL redirectURL = urlGenerator.createPageURL(newPageID);

response.sendRedirect(redirectURL.toString());

To use the URLGeneratorFactoryService, the portlet must first perform a JNDI lookup for this portlet

service. Refer to the GetApps.java source to see how to obtain a reference to the portlet service.

Receiving properties

To receive properties, the target portlet must provide the com.ibm.portal.pagecontext.enable preference

parameter in the portlet.xml with a value of true. If the portlet should receive any subsequent updates, the

com.ibm.portal.context.enable read-only preference should also be set to true. Only String property

types are supported and the context is passed as parameters of the action request. The following example

shows how the GetApps portlet receives properties passed by the SetServer portlet.

public void processAction(ActionRequest request, ActionResponse response)

 throws PortletException, IOException {

 PortletSession ps = request.getPortletSession(true);

 appDeployed = request.getParameter("appDeployed");

 serverName=request.getParameter("servername");

 ps.setAttribute("servername",serverName);

150 Administering WebSphere applications

ps.setAttribute("appDeployed",appDeployed);

 launchPage(request, response);

 }

A target portlet can check com.ibm.portal.action parameter of the request during action processing to

determine if any properties have been passed. If properties are being passed to the portlet, the value of

this parameter is com.ibm.portal.pagecontext.receive. For example:

 String action = req.getParameter(com.ibm.portal.action.name);

 if (action!=null && action.equalsIgnoreCase("com.ibm.portal.pagecontext.receive")) {

 // code to get the properties as a parameter on the request

 }

Launching Eclipse-based help

If your console module contains a portlet that requires a help page, follow the instructions in this topic to

implement help for the portlet.

About this task

To implement portlet help, you use the portlet’s doHelp() method, the EclipseHelp class, and the help

setting in the portlet.xml file. Inside the doHelp() method, link to the target help topic in your Eclipse help

plug-in by using the portletHelp() method of the EclipseHelp class. By including a doHelp() method in your

portlet and adding the help setting to the portlet.xml file, you enable the portlet help mode. When portlet

help mode is enabled, the

icon is displayed on the portlet title bar. When a user clicks the icon, a

separate browser window opens and displays only that help topic.

The Modes sample (modes.war) demonstrates how a console module can provide user assistance or help.

This sample is described in “Example: Console module samples” on page 137.

1. Add the doHelp() method to your portlet.

a. In the portlet Java file, include the following import statement:

import com.ibm.portal.help.EclipseHelp;

b. Implement the doHelp() method in the portlet.

 public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException, IOException {

 }

c. Create a String in the deHelp() method to contain the help topic. The syntax for specifying a help

topic is pluginID/file_path/file_name, where pluginID is the Eclipse help plug-in ID as specified in its

plugin.xml file, file_path is the sub-directory path (if any), and file_name is the filename and

extension of the help content file.

 public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException, IOException {

 String topic = "com.ibm.isc.help.modes/help_mode.html";

 }

d. Call the method EclipseHelp.portletHelp() passing in the request, response, and topic as shown in

the code snippet below.

 public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException, IOException{

 String topic = "com.ibm.isc.help.modes/help_mode.html";

 EclipseHelp.portletHelp(request, response, topic);

 }

Chapter 2. Portlet applications 151

2. Set help mode in the portlet.xml file.

a. Use a text editor to open the portlet deployment descriptor (the portlet.xml file). See topics under

Developing portlets for more information about creating a portlet.xml file.

b. Inside the <portlet-app> element, locate the <portlet> element for the portlet that implements the

doHelp() method.

3. Inside the <supports> sub-element, add a <portlet-mode> element like the one shown in the following

example.

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"

 version="1.0" id="com.ibm.isclite.samples.Modes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

 <portlet id="Modes_Portlet" >

 <portlet-name>ModesPortlet</portlet-name>

 <display-name>Modes portlet1 (JSR 168)</display-name>

 <display-name xml:lang="en">Modes portlet1 (JSR 168)</display-name>

 <portlet-class>com.ibm.isclite.samples.Modes</portlet-class>

 <expiration-cache>0</expiration-cache>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>VIEW</portlet-mode>

 <portlet-mode>EDIT</portlet-mode>

 <portlet-mode>HELP</portlet-mode>

 </supports>

 <supported-locale>en</supported-locale>

 <resource-bundle>nls.HTML</resource-bundle>

 </portlet>

</portlet-app>

4. When packaging the console module, place the Eclipse help plugin in the /help directory of the WAR

file. See “Packaging a console module” on page 143 for more information.

Support for bidirectional characters

Integrated Solutions Console supports bidirectional text. If your console module provides support for

Hebrew, it must provide two identical resource bundles for the translated Strings. The file name for one

resource bundle must be appended with the _iw suffix and the other resource bundle must be appended

with the _he suffix. For example:

portlet_iw.properties

portlet_he.properties

Developing your first console module

Follow these steps if you are new to console module development.

Before you begin

You should have an integrated development environment (IDE) that supports Java programming setup.

See “Setting up the development environment” on page 138 for more information.

The topics in this section take you through the process of creating a simple console module. The sample

console module consists of a single portlet which is deployed to a single page as part of the set of sample

console modules provided by IBM. Be sure you have successfully deployed the sample console modules

before starting.

v “Developing the portlet” on page 139

v “Creating the descriptors for the console module” on page 140

152 Administering WebSphere applications

v “Packaging a console module” on page 143

v “Deploying a console module” on page 144

v “Testing a console module” on page 146

v “Removing a console module” on page 146

Developing the portlet

This topic is intended for developers who are unfamiliar with portlet development. A simple Java class and

JSP are provided.

Developing the source Java class file

The following example shows the Java code for a portlet in its simplest form.

package com.ibm.isclite.samples.basicmodule;

import java.io.*;

import javax.portlet.*;

public class BasicModule extends GenericPortlet {

 public void doView(RenderRequest request, RenderResponse response)

 throws PortletException, IOException {

 // Set the MIME type for the render response

 response.setContentType("text/html");

 // Invoke the JSP to render

 PortletRequestDispatcher rd = getPortletContext().getRequestDispatcher("/jsp/basicView.jsp");

 rd.include(request,response);

 }

}

The portlet code must extend the GenericPortlet class and output for the response in the doView()

method. Portlets are rendered in different modes. The initial mode when a portlet is called to render is the

view mode. The response output is provided by a JSP, which provides markup that can be aggregated into

a larger HTML page. The package name in this example is consistent with the console module samples.

Developing the JSP

The following shows a portlet JSP for view mode in its simplest form.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1" session="false" buffer="none"%>

<%@ page import="javax.portlet.*" %>

<%@ taglib uri="http://java.sun.com/portlet" prefix="portletAPI" %>

<portletAPI:defineObjects />

<%

 PortletPreferences prefs = renderRequest.getPreferences();

 String URL = prefs.getValue("website","");

%>

<p><a name="<portletAPI:namespace/>basicAnchor">Basic contents</p>

<p>

 <a href="<%=URL%>" target="_blank">

 <img src=’<%=renderResponse.encodeURL(renderRequest.getContextPath() + "/images/logo.gif")%>’

 alt="logo" />

</p>

<p>Company logo with link.</p>

Chapter 2. Portlet applications 153

The taglib directive specifies the portlet tags from the Java Portlet Specification. The following tags are

used in this example.

namespace

Uniquely qualifies named HTML tags or JavaScript functions to prevent clashes with other portlets

on the page using the same name.

defineObjects

Makes the RenderRequest, RenderResponse, and PortletConfig objects available to the JSP. This

tag is used in this example so that the image can be rendered using the encodeURL() method of

the render response, and to allow the JSP to read preferences in the portlet descriptor.

Creating the descriptors for the console module

Before you begin

The following descriptors are required for the console module.

v Web application descriptor (web.xml). This descriptor is required and described by the Java Servlet

Specification.

v Portlet application descriptor (portlet.xml). This descriptor is required and described by the Java Portlet

Specification. Refer to the console module samples for examples of how to create the portlet.xml.

v Portal topology descriptor (ibm-portal-topology.xml). This descriptor is unique to console modules and

defines the portlets and resources in the module, how it is laid out on the page, and how it is accessed

from the navigation.

v Portal security descriptor (ibm-portal-security.xml). This descriptor is unique to console modules and

defines roles and access to navigation nodes and portlets.

About this task

The topology and security descriptors are the main component of console module packages that

distinguish them from other portal application WAR files. The console module samples include these

descriptors and demonstrate their features. The sample descriptors provide inline comments that explain

the elements and how they are used.

For your first console module, you should use the Visual Designer plugin to the Application Server Toolkit

to develop the descriptors. If you prefer to create them manually to become familiar with the structure of

the XML, the steps in this topic show how to create simple descriptors that can be used to deploy an

application into the samples provided by IBM. After following these steps, you should refer to the samples

and the reference topics for the console module schemas for more complete information.

Portal topology descriptor

About this task

To follow these steps, open a file with the name ibm-portal-topology.xml in a text or XML editor and save

each change at the end of each step.

1. Copy the following elements into ibm-portal-topology.xml. Some information is split on multiple lines for

printing purposes.

<?xml version="1.0" encoding="UTF-8"?>

<ibm-portal-topology

 xmlns="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-topology.xsd"

 xmlns:base="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-base.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-topology.xsd

ibm-portal-topology.xsd">

 <application-definition appID="com.ibm.isclite.samples.basicModule" version="6.1">

154 Administering WebSphere applications

</application-definition>

 <PAA-ref>com.ibm.isclite.samples.PageLayout</PAA-ref>

</ibm-portal-topology>

v The elements in this step provide the top level content of the topology descriptor.

v Most of the content for this descriptor will be placed inside the <application-definition/> element.

v The value of the appID attribute is consistent with the naming convention used by the sample

console modules. The version attribute matches the version used by the sample console modules.

v The <PAA-ref/> element specifies the appID of the page layout sample, which is the lead application

to which this application will be deployed.

v The following convention is used for unique name for all of the elements in the descriptor.

namespace + element_type + identifier

2. Create a title for your application. The title is the first element in the application definition element.

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

3. Place the component tree after the <requires/> element as shown.

<component-tree uniqueName="com.ibm.isclite.samples.basicModule.appTree">

 <portlet-definition uniqueName="com.ibm.isclite.samples.basicModule.portletDefinition.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 <resource-link name="basicModule"

 portletApplication="com.ibm.isclite.samples.basicmodule.BasicModule.01a"

 type="static"/>

 </portlet-definition>

 <portlet-entity uniqueName="com.ibm.isclite.samples.basicModule.portletEntity.A"

 portletDefinitionRef="com.ibm.isclite.samples.basicModule.portletDefinition.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 </portlet-entity>

</component-tree>

v The name attribute of the <resource-link/> element must specify the <portlet-name/> from the portlet

deployment descriptor.

v The portletApplication attribute of the <resource-link/> element must specify the id attribute of the

<portlet-app/> element from the portlet deployment descriptor.

v The portletDefinitionRef attribute of the <portlet-entity/> element references the unique name of

the <portlet-definition/>. Subsequent elements in this descriptor use the unique name of the

<portlet-entity/> to invoke the portlet. Multiple portlet entities can point to the same portlet definition.

For the purpose of this exercise, a single portlet definition is provided with a single portlet entity.

v The portlet title that is rendered in this example is derived from the title in the portlet entity. If that

value is not provided, the portlet title is rendered by the title provided by the <window/> element in

the layout tree. If that value is also not provided, the title is obtained from the <portlet-name/>

element in the portlet.xml for the portlet indicated by the <resource-link/>.

4. Place the layout tree after the component tree as shown.

<layout-tree>

 <layout-element uniqueName="com.ibm.isclite.samples.basicModule.layoutElement.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

 </title>

 <simple-container orientation="row"

 uniqueName="com.ibm.isclite.samples.basicModule.container.A">

 <window uniqueName="com.ibm.isclite.samples.basicModule.window.A">

 <title>

 <base:nls-string lang="en">My basic module</base:nls-string>

Chapter 2. Portlet applications 155

</title>

 <component-definition-ref>

 com.ibm.isclite.samples.basicModule.portletEntity.A

 </component-definition-ref>

 </window>

 </simple-container>

 </layout-element>

</layout-tree>

v Each layout element in the layout tree defines the layout of a page in the console.

v Each page can have nested containers, and each simple container can have multiple windows.

Each simple container has either a row or column orientation. The nesting of these containers can

create a complex table structure for the page layout.

v The <component-definition-ref/> element specifies the unique name of the portlet entity that provides

the content of this window.

5. Create the navigation element after the layout tree as shown.

<navigation-element uniqueName="com.ibm.isclite.samples.navigationElement.basicModule"

 layoutElementRef="com.ibm.isclite.samples.basicModule.layoutElement.A">

 <title>

 <base:nls-string lang="en">Basic Module Sample</base:nls-string>

 </title>

 <preference name="ProductFilter">

 <base:value>

 <base:string>com.ibm.isclite.samples.PageLayout</base:string>

 </base:value>

 </preference>

 <parent-tree parentTreeRef="com.ibm.isclite.samples.navigationElement.Samples"/>

</navigation-element>

v Each navigation element defines a node in the console navigation. If you nest the navigation

elements, it creates a hierarchical tree structure that is reflected in the console navigation. For the

purpose of this exercise, only a single navigation element is provided. The layoutElementRef

attribute indicates the unique name of the layout element that is rendered on the page that is

displayed when this element is selected by the console user.

v The content of the ProductFilter preference indicates the appID of the lead application. This is

used to render this navigation element when the lead product is selected by the console user for

filtering the navigation.

v The content of the parentTreeRef element indicates the unique name of the parent navigation

element for this element.

The following figure shows how this navigation element is rendered with the page layout sample. In

this figure, the user has selected Integrated Solutions Console Sample from the View selection list to

filter the navigation.

156 Administering WebSphere applications

What to do next

When you have finished, save and close the file and store in the /WEB-INF directory of your console

module project.

Portal security descriptor

Before you begin

To follow these steps, open a file with the name ibm-portal-security.xml in a text or XML editor and save

each change at the end of each step.

1. Copy the following elements into ibm-portal-security.xml. Some information is split on multiple lines for

printing purposes.

<?xml version="1.0" encoding="UTF-8"?>

<ibm-portal-security

 xmlns="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-security.xsd"

 xmlns:base="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-base.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-topology.xsd

ibm-portal-topology.xsd

 http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-base.xsd ibm-portal-base.xsd

 http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-security.xsd ibm-portal-security.xsd">

 </ibm-portal-security>

2. Add the <application-role/> element as the content of the <ibm-portal-security/> element.

<application-role uniqueName="monitor">

</application-role>

This sample identifies the administrative role, monitor, for access rights. See Portal security schema

for a complete description of this element and the uniqueName attribute.

3. Add the following <portal-role/> elements as the content of the application role.

<portal-role object-ref="com.ibm.isclite.samples.navigationElement.basicModule"/>

<portal-role object-ref="com.ibm.isclite.samples.basicModule.navigationElement.A"/>

<portal-role object-ref="com.ibm.isclite.samples.basicModule.portletEntity.A"

 role-type="Privileged User"/>

This sample assigns permission to a user with monitor access to view two navigation elements and to

view, edit, and access help for one portlet. See Portal security schema for a complete description of

this element and its attributes.

View: Integrated Solutions Console Sample

Samples

Topology Variations

Page Layout Samples

Resource Reuse Sample

External URL Sample

My basic module

Figure 4. Sample console module navigation

Chapter 2. Portlet applications 157

What to do next

When you have finished, save and close the file and store in the /WEB-INF directory of your console

module project.

Packaging a console module

Before you begin

Before you start this task, be sure your Java sources compiles without errors and the XML descriptors

have been validated against the corresponding schemas.

About this task

An Integrated Solutions Console module must be packaged as a WAR file for deployment. For best

results, use a comprehensive development tool such as Rational Application Developer. Otherwise, you

can follow these steps to package your console module resources into the WAR file.

1. Create a working directory to collect all of the files that need to be packaged in the WAR file.

2. Organize your portlets and other resource files in the prescribed directory structure for portlet WAR

files using the following steps:

a. Place the following deployment descriptors in the directory /WEB-INF directory:

v ibm-portal-topology.xml (topology descriptor)

v ibm-portal-security.xml (security descriptor)

v portlet.xml (portlet descriptor)

v web.xml (Web application descriptor)

b. Place individual Java classes for your portlets in the directory /WEB-INF/classes. Use a directory

structure that reflects the fully-qualified class name of your portlet, for example,

/com/ibm/isclite/samples/basicModule.

c. Put JAR files in the directory /WEB-INF/lib.

d. If the console module supports multiple languages, place the properties file that contains the

translated strings (the resource bundles) in the directory /WEB-INF/classes/nls.

e. Put any JavaServer Pages that must be served directly by the client in a directory that is not under

the /WEB-INF directory (such /jsp). Resources in the /WEB-INF directory are protected and are not

URL-addressable. JavaServer Pages that are accessed only by the portlets in the console module

can be placed in the /WEB-INF path.

f. If the console module has help files, copy the Eclipse help plug-in files to the directory

/help/plugin_name, where plugin_name is the name of the Eclipse help plug-in, such as

com.ibm.myprod.help.doc.

3. Use the Java JAR utility to create the WAR file. For instructions, see the Java Tutorial at

http://java.sun.com/docs/books/tutorial/jar/basics/index.html . You can also use an assembly tool like

Rational Application Developer to create the WAR file for the console module.

Deploying a console module

After you create the WAR file for a console module, you can deploy the console module to a system

where the runtime for Integrated Solutions Console is installed and then test that the console module

works correctly. Only one instance of a console module can be deployed on an Integrated Solutions

Console installation. This rule applies even if the versions of the console module are different.

About this task

If you need to update the version of a console module, you must perform these steps.

1. Remove the console module.

158 Administering WebSphere applications

http://java.sun.com/docs/books/tutorial/jar/basics/index.html

2. Update the module with the required changes.

3. Reissue the deploy command.

To deploy a console module on a system where the runtime for Integrated Solutions Console is installed,

perform the following procedure:

1. Go to the machine where the Integrated Solutions Console runtime is installed. You can also use a

machine that has remote access to the drive where the runtime is installed.

2. Copy the console module WAR file to the app_server_root/systemApps/isclite.ear directory. As an

alternative, you can extract the WAR file into a subdirectory of this location using the WAR file name

for the subdirectory. For example, you would extract pagelayout.war to the app_server_root/
systemApps/isclite.ear/pagelayout.war directory.

3. Grant the QEJBSVR profile the authority needed to complete the task. From an i5/OS command

prompt, issue this command:

CHGAUT OBJ(’path_to_war’) USER(QEJBSVR) DTAAUT(*RWX) OBJAUT(*ALL)

4. Start the wsadmin scripting client. If the server is not running, use the -conntype NONE option to run in

local mode.

5. At the wsadmin command prompt, enter the command syntax. The following example presents the

syntax:

$AdminApp update isclite modulefile {

-operation add

-contents path_to_war

-contenturi war_filename

-custom paavalidation=true

-custom containWebServices=true|false

-usedefaultbindings -contextroot /context

-MapWebModToVH {{.* .* admin_host}}

-MapModulesToServers {{.* .*.war,.* WebSphere:cell=cellname,node=nodename,server=servername}}}

Note:

v The values of the -contents and -contenturi options are case sensitive and should match the

war file name that you are ready to deploy.

v Specifying -custom paavalidation=true causes the deployment to validate the XML

descriptors for the console module package before deployment. This is optional.

v Set the option -custom containWebServices=true only if the package contains a Web service.

This setting invokes more deployment processing to locate and setup the Web service. The

default for this option is true. If the package does not contain any Web services, be sure to

set this option to false for more efficient deployment.

v Use the -MapModulesToServers option when deploying to an agent profile.

For example:

$AdminApp update isclite modulefile {

-operation add

-contents app_server_root/systemApps/isclite.ear/pagelayout.war

-contenturi pagelayout.war

-custom paavalidation=true

-custom containWebServices=false

-usedefaultbindings -contextroot /ibm/pagelayout

-contextroot /pagelayout

-MapWebModToVH {{.* .* admin_host}}

-MapModulesToServers {{.* .*.war,.* WebSphere:cell=cell_A,node=node_B,server=server_C}}}

The following messages are displayed if the deployment is successful.

Update of isclite has started.

ADMA5009I: An application archive is extracted at profile_root/wstemp/wstemp/app_10793d84b8e/ext/pagelayout.war

ADMA5064I: FileMergeTask completed successfully for isclite.

ADMA5005I: The application isclite is configured in the WebSphere Application Se

rver repository.

Chapter 2. Portlet applications 159

ADMA5005I: The application isclite is configured in the WebSphere Application Se

rver repository.

ADMA5110I: The application isclite is installed as a hidden application and will

 not be exposed via administrative interfaces such as GUI client, wsadmin or MBe

an Java API. In order to perform management operations on this application, the

 application name must be known.

CWLAA10001I: The Integrated Solutions Console module was deployed successfully.

ADMA5005I: The application isclite is configured in the WebSphere Application Se

rver repository.

ADMA5011I: The cleanup of the temp directory for application isclite is complete

.

Update of isclite has ended.

6. After the deployment has completed successfully, save your work by issuing the following command:

 $AdminConfig save

Results

If the deployment is successful, the WAR file contents are extracted to the /systemApps/isclite.war

directory and the module metadata is copied to the following directory:

 profile_root/config/cells/cellname/applications/isclite.ear/deployments/isclite

To view your console module, you must log back in to the console. Make sure the navigation is updated

correctly. If so, select the new navigation nodes verify that the new pages and console modules are

rendered correctly.

Testing a console module

About this task

Use the following checklist to test your console module after it has been deployed.

1. Log in to Integrated Solutions Console as an administrator.

2. If the module includes an <about-page/> element in the topology descriptor, verify that your suite and

its version are listed in the table on the Welcome page. Also confirm that the product is listed in the

View selection list for the navigation.

3. Verify that the console navigation tree contains all of the organizational nodes and pages that were

defined. Verify that each node is at the correct level in the tree.

4. For each page, verify that the portlets on the page work correctly. If a portlet on the page launches a

new page in work area, verify that the launching works correctly.

5. To test the access permissions specified in the console module descriptor, logout and then log in as a

different user to verify that the correct pages are accessible.

6. If the console module included a help plug-in, make sure you can launch the help.

7. If the console module contains errors, refer to the SystemOut.log and SystemErr.log for any errors or

messages. These logs are located in the following directory:

 profile_root/logs/server1

Removing a console module

About this task

Follow these steps to delete a console module.

1. Ensure that the server is started. You do not need to log in to the console.

2. Start the wsadmin scripting client.

3. Enter the following command from the wsadmin command prompt.

$AdminApp update isclite modulefile {-operation delete -contenturi module_file_name.war}

4. Save your configuration changes.

160 Administering WebSphere applications

$AdminConfig save

5. Exit the wsadmin command environment.

quit

Adding advanced API features

The class files for console modules are developed using the Java Portlet Specification. Integrated

Solutions Console includes additional APIs for launching pages, passing properties to other portlets, and

launching Eclipse-based help. This section provides information about the APIs available to console

modules.

Developing portlets

Console modules are portlets that run in the portlet container of WebSphere Application Server.

Integrated Solutions Console supports console modules written to the Java Portlet Specification. A

packaged console module WAR file contains one or more portlets or reuses portlets from other modules.

According to the JSR 168 specification, a portlet is a Java technology based Web component, managed

by a portlet container, that processes requests and generates content that contributes to the overall portal

page. Portlets share many of the same characteristics as servlets. However, portlets also exhibit

differences. For example, portlets cannot set HTTP headers and can contribute only markup fragments to

the portal page. The portlet specification leverages the functionality of the servlet specification as much as

possible, and many parts of the Java Portlet Specification have been modeled after the servlet

specification.

The application server includes a JSR 168-compliant portlet container to support deploying and running

console modules in Integrated Solutions Console. The JSR 168 portlet container relies on the Java

Platform, Enterprise Edition (Java EE) architecture implemented by the application server. Consequently,

an Integrated Solutions Console module and its portlets are packaged and deployed similar to Java EE

Web applications. In addition to the Web application descriptor and the portlet descriptor, the WAR file for

an Integrated Solutions Console module includes additional descriptors needed to deploy the application to

a console installation.

The following Web resources can useful for learning more about portlet development.

 Resource Web site URL

Portlet Specification 1.0 http://jcp.org/jsr/detail/168.jsp

Portlet Specification 2.0 http://jcp.org/en/jsr/detail?id=286

WebSphere Portal Zone http://www.ibm.com/developerworks/websphere/zones/
portal/

Best practices: Developing portlets using JSR 168 and

WebSphere Portal

http://www.ibm.com/developerworks/websphere/library/
techarticles/0403_hepper/0403_hepper.html

WebSphere Portal external newsgroup news://news.software.ibm.com/
ibm.software.websphere.portal-server

Develop a Faces JSR 168 portlet using IBM Rational

Application Developer 6.0 for autonomic computing

http://www.ibm.com/developerworks/edu/ac-dw-ac-jsfisc-
i.html

Introduction to JSR 168 - The Portlet Specification http://developers.sun.com/prodtech/portalserver/reference/
techart/jsr168/index.html

Launching pages

Typically, users of the console launch pages using the links in the console navigation. However, portlets in

a console module also launch pages directly using the Dynamic UI Manager API.

Chapter 2. Portlet applications 161

http://jcp.org/jsr/detail/168.jsp
http://jcp.org/en/jsr/detail?id=286
http://www.ibm.com/developerworks/websphere/zones/portal/
http://www.ibm.com/developerworks/websphere/zones/portal/
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_hepper/0403_hepper.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0403_hepper/0403_hepper.html
news://news.software.ibm.com/ibm.software.websphere.portal-server
news://news.software.ibm.com/ibm.software.websphere.portal-server
http://www.ibm.com/developerworks/edu/ac-dw-ac-jsfisc-i.html
http://www.ibm.com/developerworks/edu/ac-dw-ac-jsfisc-i.html
http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/index.html
http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/index.html

The DynamicUI Manager APIs are provided by 3 services: PropertyFactory,

DynamicUIManagerFactoryService, and URLGeneratorFactoryService. To use these services the portlet

must first perform a JNDI lookup to get the PortletServiceHome object which you then can use to get the

actual service interface object. This is demonstrated in the GetApps portlet of the PortletContext sample..

The following code is placed in a try block of the portlet’s init() method.

Some information is split on multiple lines for printing purposes.

Context ctx = new InitialContext(com.ibm.portal.jndi.Constants.ENV);

// get propertyfactory service

propertyFactoryServiceHome = (PortletServiceHome)ctx.lookup("iscportletservice/com.ibm.portal.

propertybroker.service.PropertyBrokerService");

if (propertyFactoryServiceHome == null)

 logger.log(Level.FINE, "no PropertyBrokerService propertyFactoryServiceHome");

else

 propertyFactoryService =

 (PropertyFactory)propertyFactoryServiceHome.getPortletService(com.ibm.portal.

propertybroker.service.PropertyBrokerService.class);

logger.log(Level.FINE, "propertyBrokerService="+propertyFactoryService);

// get dynamicUIManagerFactory service

dynamicUIManagerFactoryServiceHome =

 (PortletServiceHome)ctx.lookup("iscportletservice/com.ibm.portal.portlet.service.DynamicUIManagerFactoryService");

if (dynamicUIManagerFactoryServiceHome == null)

 logger.log(Level.FINE, "no dynamicUIManagerFactoryService propertyFactoryServiceHome");

else

 dynamicUIManagerFactoryService =

 (DynamicUIManagerFactoryService)dynamicUIManagerFactoryServiceHome.getPortletService

(com.ibm.portal.portlet.service.DynamicUIManagerFactoryService.class);

logger.log(Level.FINE, "dynamicUIManagerFactoryService="+dynamicUIManagerFactoryService);

// get urlGeneratorFactory service

urlGeneratorFactoryServiceHome =

 (PortletServiceHome)ctx.lookup("iscportletservice/com.ibm.portal.portlet.service.URLGeneratorFactoryService");

if (urlGeneratorFactoryServiceHome == null)

 logger.log(Level.FINE, "no urlGeneratorFactoryService propertyFactoryServiceHome");

else

 urlGeneratorFactoryService =

 (URLGeneratorFactoryService) urlGeneratorFactoryServiceHome.getPortletService

(com.ibm.portal.portlet.service.URLGeneratorFactoryService.class);

logger.log(Level.FINE, "urlGeneratorFactoryService="+urlGeneratorFactoryService);

A portlet can launch a new page using the dynamicUICtrl interface, passing the object ID of the page

definition for the new page. The object ID is determined by performing a JNDI lookup on the unique name

of the navigation element that launches the page. If you are planning to launch a navigation element, the

navigation node must point to a layout element. In other words the navigation element must contain the

layoutElementRef attribute. The addPage() method returns the object ID of the page instance, which

should be saved by the portlet to create a URL and launch the page. The following excerpt from the

PortletContext sample demonstrates how this works. The portlet GetApps.java includes a launchPage()

method with this code.

Context ctx;

ObjectID pageDefinitionID = null;

String pagename="com.ibm.isclite.portletcontext.navigationElement.B";

logger.log(Level.FINE, "launch page=" + pagename);

PortletSession ps = request.getPortletSession(false);

try {

 ctx = new InitialContext();

 pageDefinitionID =(ObjectID)ctx.lookup("portal:uniquename/"+pagename);

} catch (NamingException ne) {

 return;

}

162 Administering WebSphere applications

try {

 PropertyController cproperty = propertyFactoryService.createProperty(myconfig);

 PropertyController cproperty2 = propertyFactoryService.createProperty(myconfig);

 cproperty.setType("String");

 cproperty.setName("servername");

 cproperty2.setType("String");

 cproperty2.setName("appDeployed");

 PropertyValue[] propertyValues = new PropertyValue[2];

 propertyValues[0] =

 propertyFactoryService.createPropertyValue(request, cproperty, serverName);

 propertyValues[1] =

 propertyFactoryService.createPropertyValue(request, cproperty2, appDeployed);

 DynamicUICtrl dmanagerCtrl =

 dynamicUIManagerFactoryService.getDynamicUICtrl(request, response, "isc.tasklaunch");

 ObjectID newPageID =

 dmanagerCtrl.addPage(pageDefinitionID, null, propertyValues);

 RedirectURLGenerator urlGenerator =

 urlGeneratorFactoryService.getURLGenerator(request, response);

 EngineURL redirectURL = urlGenerator.createPageURL(newPageID);

 response.sendRedirect(redirectURL.toString());

} catch ...

v The pagename String is created with the unique name of the navigation element (from the topology

descriptor) that launches the page.

v The object ID is found by performing a JNDI lookup on this Context instance using this String:

"portal:uniquename/"+pagename

The String portal:uniquename/ is required to obtain the object ID for the navigation element.

v Properties are created to be passed to the portlets on the page. The property names are servername

and appDeployed.

v In addition to the request and response, you must include the String isc.tasklaunch as the

configuration name on the getDynamicUICtrl() method.

v Use the addPage() method of the new DynamicUICtrl instance to create and instance of the page. Any

properties that need to be passed to portlets on the new page must be provided in this method. The

addPage() method does not launch the page, but it returns the object ID of the page instance. The next

two methods, getURLGenerator() and createPageURL(), are used to construct the URL that opens the

page. The URL contains property names and values if they have been provided.

v The URL to open the page is provided on the sendRedirect() method of the response.

Passing properties to other portlets

This topic describes how portlets can exchange properties. You should be familiar with the concepts for

launching console pages before reading this topic.

Information can be provided to portlets on the same page using the addSharedPortlet() method. Property

values are of the type com.ibm.portal.propertybroker.property.PropertyValue. The example in “Launching

pages” on page 147 shows these properties passed to the page using an instance of the PropertyValue

interface (propertyValues) and shows how that object was created using the PropertyFactory interface.

The SetServer.java source from the PortletContext sample shows how to pass properties to a portlet on

the same page. It is assumed that the portlet has already performed a JNDI lookup to determine that the

PropertyFactory, DynamicUIManagerFactoryService, and URLGeneratorFactoryService services are

available. This is described in “Launching pages” on page 147

Chapter 2. Portlet applications 163

v In this example, the portlet that is the source of the properties needs the object ID of the target portlet.

The object ID is determined by performing a JNDI lookup using the values from the portlet’s

<resource-link/> element in the topology descriptor.

v The property, cproperty, is created using the PropertyController interface and the createProperty()

method of the PropertyFactory interface. The data type for the property must be a String.

v Prior to sending the property, the source portlet creates an instance of the DynamicUICtrl interface,

passing the string ″isc.tasklaunch″ as the configuration name.

v The addSharedPortlet() method sends the properties to the target portlet on the request. After the action

phase, the target portlet updates the output for the response.
Context ctx = null;

ObjectID portletDefinitionID1 = null;

ObjectID portletDefinitionID2 = null;

String portletname1="com.ibm.isclite.samples.PortletContext/PortletGetPerformance";

String portletname2="com.ibm.isclite.samples.PortletContext/PortletGetApps";

PortletSession ps = request.getPortletSession(false);

try

 {

 ctx = new InitialContext(com.ibm.portal.jndi.Constants.ENV);

 portletDefinitionID1 =

 (ObjectID)ctx.lookup("portal:config/portletdefinition/"+portletname1);

 portletDefinitionID2 =

 (ObjectID)ctx.lookup("portal:config/portletdefinition/"+portletname2);

 } catch (NamingException ne)

 {

 logger.log(Level.FINE, "portletdefinitionID not found - Naming exception:"+ne.getMessage());

 return;

 }

logger.log(Level.FINE, "portletdefinitionID="+portletDefinitionID1.toString());

try

{

 PropertyController cproperty =

 propertyFactoryService.createProperty(myconfig);

 cproperty.setType("String");

 PropertyValue[] propertyValues = new PropertyValue[1];

 propertyValues[0] =

 propertyFactoryService.createPropertyValue(request, cproperty, serverName);

 DynamicUICtrl dmanagerCtrl =

 dynamicUIManagerFactoryService.getDynamicUICtrl(request, response, "isc.tasklaunch");

 ObjectID newPortletID1 =

 dmanagerCtrl.addSharedPortlet(portletDefinitionID1, null, propertyValues);

 ObjectID newPortletID2 =

 dmanagerCtrl.addSharedPortlet(portletDefinitionID2, null, propertyValues);

 logger.log(Level.FINE, "portlet ID created:"+newPortletID1.getOID());

 } catch ...

In some cases, the target portlet might be on a separate page. In this case, the properties are passed

using the addPage() method. The target portlet receives the properties only when the page is launched

that contains the portlet. If a property value is set multiple times before the page is launched, the value

that was set last for the property is passed to the portlets on the page. You can use the

URLGeneratorFactoryService interface to redirect the console to the page for the target portlet. This is

demonstrated in the GetApps portlet of the PortletContext sample.

164 Administering WebSphere applications

ObjectID newPageID = dmanagerCtrl.addPage(pageDefinitionID, null, propertyValues);

RedirectURLGenerator urlGenerator = urlGeneratorFactoryService.getURLGenerator(request, response);

EngineURL redirectURL = urlGenerator.createPageURL(newPageID);

response.sendRedirect(redirectURL.toString());

To use the URLGeneratorFactoryService, the portlet must first perform a JNDI lookup for this portlet

service. Refer to the GetApps.java source to see how to obtain a reference to the portlet service.

Receiving properties

To receive properties, the target portlet must provide the com.ibm.portal.pagecontext.enable preference

parameter in the portlet.xml with a value of true. If the portlet should receive any subsequent updates, the

com.ibm.portal.context.enable read-only preference should also be set to true. Only String property

types are supported and the context is passed as parameters of the action request. The following example

shows how the GetApps portlet receives properties passed by the SetServer portlet.

public void processAction(ActionRequest request, ActionResponse response)

 throws PortletException, IOException {

 PortletSession ps = request.getPortletSession(true);

 appDeployed = request.getParameter("appDeployed");

 serverName=request.getParameter("servername");

 ps.setAttribute("servername",serverName);

 ps.setAttribute("appDeployed",appDeployed);

 launchPage(request, response);

 }

A target portlet can check com.ibm.portal.action parameter of the request during action processing to

determine if any properties have been passed. If properties are being passed to the portlet, the value of

this parameter is com.ibm.portal.pagecontext.receive. For example:

 String action = req.getParameter(com.ibm.portal.action.name);

 if (action!=null && action.equalsIgnoreCase("com.ibm.portal.pagecontext.receive")) {

 // code to get the properties as a parameter on the request

 }

Launching Eclipse-based help

If your console module contains a portlet that requires a help page, follow the instructions in this topic to

implement help for the portlet.

About this task

To implement portlet help, you use the portlet’s doHelp() method, the EclipseHelp class, and the help

setting in the portlet.xml file. Inside the doHelp() method, link to the target help topic in your Eclipse help

plug-in by using the portletHelp() method of the EclipseHelp class. By including a doHelp() method in your

portlet and adding the help setting to the portlet.xml file, you enable the portlet help mode. When portlet

help mode is enabled, the

icon is displayed on the portlet title bar. When a user clicks the icon, a

separate browser window opens and displays only that help topic.

The Modes sample (modes.war) demonstrates how a console module can provide user assistance or help.

This sample is described in “Example: Console module samples” on page 137.

1. Add the doHelp() method to your portlet.

a. In the portlet Java file, include the following import statement:

import com.ibm.portal.help.EclipseHelp;

b. Implement the doHelp() method in the portlet.

Chapter 2. Portlet applications 165

public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException, IOException {

 }

c. Create a String in the deHelp() method to contain the help topic. The syntax for specifying a help

topic is pluginID/file_path/file_name, where pluginID is the Eclipse help plug-in ID as specified in its

plugin.xml file, file_path is the sub-directory path (if any), and file_name is the filename and

extension of the help content file.

 public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException, IOException {

 String topic = "com.ibm.isc.help.modes/help_mode.html";

 }

d. Call the method EclipseHelp.portletHelp() passing in the request, response, and topic as shown in

the code snippet below.

 public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException, IOException{

 String topic = "com.ibm.isc.help.modes/help_mode.html";

 EclipseHelp.portletHelp(request, response, topic);

 }

2. Set help mode in the portlet.xml file.

a. Use a text editor to open the portlet deployment descriptor (the portlet.xml file). See topics under

Developing portlets for more information about creating a portlet.xml file.

b. Inside the <portlet-app> element, locate the <portlet> element for the portlet that implements the

doHelp() method.

3. Inside the <supports> sub-element, add a <portlet-mode> element like the one shown in the following

example.

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"

 version="1.0" id="com.ibm.isclite.samples.Modes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

 <portlet id="Modes_Portlet" >

 <portlet-name>ModesPortlet</portlet-name>

 <display-name>Modes portlet1 (JSR 168)</display-name>

 <display-name xml:lang="en">Modes portlet1 (JSR 168)</display-name>

 <portlet-class>com.ibm.isclite.samples.Modes</portlet-class>

 <expiration-cache>0</expiration-cache>

 <supports>

 <mime-type>text/html</mime-type>

 <portlet-mode>VIEW</portlet-mode>

 <portlet-mode>EDIT</portlet-mode>

 <portlet-mode>HELP</portlet-mode>

 </supports>

 <supported-locale>en</supported-locale>

 <resource-bundle>nls.HTML</resource-bundle>

 </portlet>

</portlet-app>

4. When packaging the console module, place the Eclipse help plugin in the /help directory of the WAR

file. See “Packaging a console module” on page 143 for more information.

166 Administering WebSphere applications

Support for bidirectional characters

Integrated Solutions Console supports bidirectional text. If your console module provides support for

Hebrew, it must provide two identical resource bundles for the translated Strings. The file name for one

resource bundle must be appended with the _iw suffix and the other resource bundle must be appended

with the _he suffix. For example:

portlet_iw.properties

portlet_he.properties

Chapter 2. Portlet applications 167

168 Administering WebSphere applications

Chapter 3. EJB applications

Task overview: Using enterprise beans in applications

This article provides an overview of the tasks you must perform to use enterprise beans in a Java-based

application.

About this task

Use the following steps to develop an Enterprise JavaBeans (EJB) application:

 1. EJB 3.0 beans: Design a Java Platform, Enterprise Edition (Java EE) application and the enterprise

beans that it needs.

 2. EJB 2.x beans: Design a Java 2 Platform, Enterprise Edition (J2EE) application and the enterprise

beans that it needs.

 3. Develop any enterprise beans that your application uses.

 4. Prepare for assembly. For your EJB 2.x-compliant entity beans, decide on an appropriate access

intent policy.

 5. Assemble the beans into one or more EJB modules using one of the assembly tools. This process

includes setting security. For your EJB 2.x-compliant entity beans, you might also want to designate

container-managed persistence (CMP) sequence groups.

 6. EJB 3.0 beans: Assemble the beans into one or more EJB 3.0 modules using one of the assembly

tools.

 7. Assemble the modules into a J2EE application using the assembly tool.

 8. For a given application server, update the EJB container configuration if needed for the application to

be deployed.

 9. For a given application server, update the EJB container configuration if needed for the application to

be deployed, and determine if you want to batch commands or defer commands for

container-managed persistence.

10. Deploy the application in an application server.

11. Test the modules.

v As needed, debug problems with the container.

v Debug access problems.

12. Assemble the production application using one of the assembly tools

13. Deploy the application to a production environment.

14. Manage the application:

a. Manage installed EJB modules. After an application has been installed, you can manage its EJB

modules individually through assembly tools.

b. Manage other aspects of the Java application.

15. Update the module and redeploy it using one of the assembly tools.

16. Tune the performance of the application. See Best practices for developing enterprise beans.

Enterprise beans

An enterprise bean is a Java component that can be combined with other resources to create Java

applications. There are three types of enterprise beans, entity beans, session beans, and message-driven

beans.

All beans reside in Enterprise JavaBeans (EJB) containers, which provide an interface between the beans

and the application server on which they reside.

© Copyright IBM Corp. 2008 169

EJB 2.1 and earlier versions of the specification define entity beans as a means to store permanent data,

so they require connections to a form of persistent storage. This storage might be a database, an existing

legacy application, a file, or another type of persistent storage.

The EJB 3.0 specification deprecates EJB 1.1-style entity beans. The Java Persistence API (JPA)

specification is intended to replace the deprecated enterprise beans. While the JPA replacement is called

an entity class, it should not be confused with entity enterprise beans. A JPA entity is not an enterprise

bean and is not required to run in an EJB container.

Session beans typically contain the high-level and mid-level business logic for an application. Each method

on a session bean performs a particular high-level operation. For example, submitting an order or

transferring money between accounts. Session beans often invoke methods on entity beans in the course

of their business logic.

Session beans can be either stateful or stateless. A stateful bean instance is intended for use by a single

client during its lifetime, where the client performs a series of method calls that are related to each other in

time for that client. One example is a shopping cart where the client adds items to the cart over the course

of an online shopping session. In contrast, a stateless bean instance is typically used by many clients

during its lifetime, so stateless beans are appropriate for business logic operations that can be completed

in the span of a single method invocation. Stateful beans should be used only where absolutely necessary.

Using stateless beans improves the ability to debug, maintain, and scale the application.

The EJB 3.0 specification supports stateless and stateful session beans. They follow a simple pattern such

as:

v Define the business interface.

v Define the class that implements it.

v Add metadata with annotations or with XML deployment descriptors.

The end result of a simple EJB 3.0 stateful session bean looks like the following:

package ejb3demo;

@Stateful

public class Cart3Bean implements ShoppingCart {

 private ArrayList contents = new ArrayList();

public void addToCart (Object o) {

 contents.add(o);

 }

public Collection getContents() {

 return contents;

 }

}

EJB components can use annotations such as @EJB and other injectable @Resource references if the

module is an EJB 3.0 module.

Web application clients and application clients can use deployment descriptor-defined EJB references. If

the reference is for an EJB 3.0 session bean without a home interface, the reference should be defined

with a null <home> or <local-home> setting in the deployment descriptor.

Web application clients and application clients can also use @EJB injections for references to EJB session

beans within the same enterprise archive (EAR) file, but the binding must either use the AutoLink support

within the container or the annotation must use the name of the reference that is defined by the

deployment descriptor and bound when the application is installed. For more information about AutoLink,

see the topic, ″EJB 3.0 application bindings support.″

170 Administering WebSphere applications

Message-driven beans enable asynchronous message servicing.

v The EJB container and a Java Message Service (JMS) provider work together to process messages.

When a message arrives from another application component through JMS, the EJB container forwards

it through an onMessage method call to a message-driven bean instance, which then processes the

message. In other respects, message-driven beans are similar to stateless session beans.

v The EJB container and a Java Connector Architecture (JCA) resource adapter work together to process

messages from an enterprise information system (EIS). When a message arrives from an EIS, the

resource adapter receives the message and forwards it to a message-driven bean, which then

processes the message. The message-driven bean is provided services such as transaction support by

the EJB container in the same way that other enterprise beans are provided service.

Beans that require data access use data sources, which are administrative resources that define pools of

connections to persistent storage mechanisms.

EJB modules

An Enterprise JavaBeans (EJB) module is used to assemble one or more enterprise beans into a single

deployable unit. An EJB module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:

v One or more deployable enterprise beans.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file. This file declares the

contents of the module, defines the structure and external dependencies of the beans in the module,

and describes how the beans are to be used at run time.

It is not necessary to use XML deployment descriptors in EJB 3.0 modules, although XML descriptors

are supported. Instead of deployment descriptors, you can use annotations to provide component

metadata.

You can deploy an EJB module as a stand alone application, or combine it with other EJB modules or with

Web modules to create a Java application. An EJB module is installed and run in an enterprise bean

container.

If you want to package an EJB 3.0 module with a deployment descriptor, there are several ways to do it.

You can package an EJB 3.0 module with an EJB 3.0 style session and/or message-driven beans

exclusively; with an EJB 2.1 style session and/or message-driven beans exclusively, or a combination of

2.1 and 3.0 style beans. The XML deployment descriptor must be a Version 3.0 deployment descriptor. It

is required that 2.1 entity beans are packaged in modules with 2.1 deployment descriptors.

EJB modules that contain EJB 3.0 beans must be at the EJB 3.0 specification level when running on the

product. To set the EJB module to support EJB 3.0 beans, you can set the ejb-jar.xml deployment

descriptor level to 3.0, or you can make sure that the module does not contain an ejb-jar.xml deployment

descriptor. If the module level is EJB 2.1 or earlier, no EJB 3.0 functions, including annotation scanning or

resource injection is performed at runtime.

For more information about packaging and deployment of EJB 3.0 beans, see the topic EJB 3.0 module

packaging overview.

EJB containers

An Enterprise JavaBeans (EJB) container provides a run-time environment for enterprise beans within the

application server. The container handles all aspects of an enterprise bean’s operation within the

application server and acts as an intermediary between the user-written business logic within the bean and

the rest of the application server environment.

One or more EJB modules, each containing one or more enterprise beans, can be installed in a single

container.

Chapter 3. EJB applications 171

The EJB container provides many services to the enterprise bean, including the following:

v Beginning, committing, and rolling back transactions as necessary.

v Maintaining pools of enterprise bean instances ready for incoming requests and moving these instances

between the inactive pools and an active state, ensuring that threading conditions within the bean are

satisfied.

v Most importantly, automatically synchronizing data in an entity bean’s instance variables with

corresponding data items stored in persistent storage.

By dynamically maintaining a set of active bean instances and synchronizing bean state with persistent

storage when beans are moved into and out of active state, the container makes it possible for an

application to manage many more bean instances than could otherwise simultaneously be held in the

application server’s memory. In this respect, an EJB container provides services similar to virtual memory

within an operating system.

WebSphere Application Server provides significant flexibility in the management of database data with

entity beans. The Entity EJBs Activate at and Load at configuration settings specify how and when to load

and cache data from the corresponding database row data of an enterprise bean. These configuration

settings provide the capability to specify enterprise bean caching Options A, B or C, as specified in the

EJB 1.1 specifications. You can configure these settings with assembly tools. To read more about how to

use the assembly tools see the assembly tool information center.

Between transactions, the state of an entity bean can be cached. The EJB container supports option A, B,

and C caching.

v With option A caching, the application server assumes that the entity bean is used within a single

container. Clients of that bean must direct their requests to the bean instance within that container. The

entity bean has exclusive access to the underlying database, which means that the bean cannot be

cloned or participate in workload management if option A caching is used.

If you intend to use read-only scenarios, the product provides an alternate, higher-performance variation

of option A entity beans. This caching option is called Multithreaded Read-Only. Similar to standard

option A behavior, the EJB container continues to activate the bean just once and leave it active until

the EJB container needs space in its active instance cache. However, the EJB container differs from

standard option A in the following behaviors:

– It reloads the state of the bean from persistent storage periodically in response to the user invoking a

method on it to pick up any changes that may have been made to the persistent store since the last

time the bean was loaded. You can configure this function through a Reload Interval setting in the

bean’s deployment descriptor. For more information, see Developing read-only entity beans.

– The state of the bean is not written to persistent store by the EJB container at the end of the

transaction, nor is the bean’s ejbStore() method be invoked.

– The EJB container permits method invocations from more than one client (thread) on the same bean

instance. This differs from the standard EJB component for the internals of a bean. You must keep

this aspect in mind when developing your bean, and ensure that any logic in the bean’s business

methods is overall thread-safe.
v With option B caching, the entity bean remains active in the cache throughout the transaction but is

reloaded at the start of each method call.

v With option C caching (the default), the entity bean is always reloaded from the database at the

beginning of each transaction. A client can attempt to access the bean and start a new transaction on

any container that has been configured to host that bean. This is similar to the session clustering facility

described for HTTP sessions in that the entity bean’s state is maintained in a shared database that can

be accessed from any server when required.

Option A provides maximum enterprise bean performance by caching database data outside of the

transaction scope. Generally, Option A is only applicable where the EJB container has exclusive access to

the given database. Otherwise, data integrity is compromised. Option B provides more aggressive caching

of Entity EJB object instances, which can result in improved performance over Option C, but also results in

greater memory usage. Option C is the most common real-world configuration for Entity EJBs and is the

default setting.

172 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/index.jsp?topic=

The Activate at setting specifies the point at which an enterprise bean is activated and placed in the

cache. Removal from the cache and passivation are also governed by this setting. Valid values are Once

and Transaction. The Once setting indicates that the bean is activated when it is first accessed in the

server process, and passivated (and removed from the cache) at the discretion of the container, for

example when the cache becomes full. The Transaction setting indicates that the bean is activated at the

start of a transaction and passivated (and removed from the cache) at the end of the transaction. The

default value is Transaction.

The Load at setting specifies when the bean loads its state from the database. The value of this property

implies whether the container has exclusive or shared access to the database. Valid values are Activation

and Transaction. Activation indicates the bean is loaded when it is activated and implies that the container

has exclusive access to the database. Transaction indicates that the bean is loaded at the start of a

transaction and implies that the container has shared access to the database. The default is Transaction.

The settings of the Activate at and Load at properties govern which commit options are used. For Option A

(exclusive database access), use Activate at = Once and Load at = Activation. This option reduces

database input/output by avoiding calls to the ejbLoad function, but serializes all transactions accessing

the bean instance. Option A can increase memory usage by maintaining more objects in the cache, but

can provide better response time if bean instances are not generally accessed concurrently by multiple

transactions.

Note: When using WebSphere Network Deployment and workload management is enabled, Option A

cannot be used.

You must use settings that result in the use of Options B or C. For Option B (shared database access),

use Activate at = Once and Load at = Transaction. Option B can increase memory usage by maintaining

more objects in the cache. However, because each transaction creates its own copy of an object, there

can be multiple copies of an instance in memory at any given time (one per transaction), requiring the

database be accessed at each transaction. If an enterprise bean contains a significant number of calls to

the ejbActivate function, using Option B can be beneficial because the required object is already in the

cache. Otherwise, this option does not provide significant benefit over Option A. For Option C (shared

database access), use Activate at = Transaction and Load at = Transaction. Load at = Transaction. This

option can reduce memory usage by maintaining fewer objects in the cache. However, there can be

multiple copies of an instance in memory at any given time (one per transaction). This option can reduce

transaction contention for enterprise bean instances that are accessed concurrently but not updated.

This product supports the cloning of stateful session bean home objects among multiple application

servers. However, it does not support the cloning of a specific instance of a stateful session bean. Each

instance of a particular stateful session bean can exist in just one application server and can be accessed

only by directing requests to that particular application server. State information for a stateful session bean

cannot be maintained across multiple members of a server cluster. However, enabling stateful session

bean failover and configuring the EJB container to use memory-to-memory replication does enable stateful

session bean failover to be replicated to other servers in the cluster so that failover can occur to the

backup server if the primary server for a stateful session bean stops for some reason. For more

information about stateful session bean failover, see “Stateful session bean failover for the EJB container”

on page 196.

By default, an EJB container runs in the quick start mode. The EJB container startup logic delays the

loading and processing of all EJB types except Message Driven Beans, because message driven beans

must exist before messages are posted for them; Startup Beans, which must be processed when the

server starts; and EJB types that you specify to initialize when the server starts. .

All other EJB initialization is delayed until the first use of the EJB type. When using local interfaces, the

first use is when you perform an InitialContext.lookup method for the type. For remote interfaces, it is

when you call the first method on an EJB or its Home.

Chapter 3. EJB applications 173

Enterprise beans back up and recovery best practices

The following items should be considered for backup when using enterprise beans.

Database data

Enterprise beans often use a database for back-end persistence. Container-managed persistence (CMP)

entity beans always use a database for back-end persistence. This data should be backed up the same as

any of your business data.

The collection for container-managed entity beans persistence is determined by either the schema name

specified during deployment, or the schema specified on the data source associated with the enterprise

bean. Any persistent store used by session and bean-managed beans is defined by the bean

implementation. For database tables, you can choose to save the entire collection or an individual table as

shown with the following commands, respectively:

SAVLIB LIB(EJB) DEV(*SAVF) SAVF(WSALIB/WSASAVF)

SAVOBJ OBJ(MYBEANTBL) LIB(EJB) DEV(*SAVF) OBJTYPE(*FILE) SAVF(WSALIB/WSASAVF)

It might be possible to save database objects while the product is active, if the save operation can obtain a

snapshot of the data store. You may have to shut down if a snapshot cannot be obtained. This occurs if

there are requests that obtain locks or have open transactions against the database being saved.

Enterprise JavaBeans (EJB) source code, class files, and deployed code

When you deploy enterprise beans, a WebSphere Application Server-specific implementation of the

enterprise beans is generated. Save these deployed Java(TM) Archive (JAR) files to avoid redeploying,

and to preserve any binding information that was specified during the application installation. The JAR

files, application code and configuration, such as bindings, are located by default in the

profile_root/installedApps directory. By saving this directory, you save your installed applications, including

HTML, servlets, JavaServer Pages(TM) (JSP(TM)) files, and enterprise beans. Normally, each application

is located in a separate subdirectory, so you can choose to save all applications or a subset.

Note: The commands below have been wrapped for display purposes. Enter each as a single command.

This command saves all installed applications:

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

 OBJ((’/profile_root/installedApps’))

This command saves the sampleApp application only:

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

 OBJ((’/profile_root/installedApps/cellName/sampleApp.ear’))

If you have located utility or general purpose classes in other directories, such as /profile_root/lib/app or

/profile_root/lib/ext, be sure to include those locations in your backup plan as well.

Administrative configuration

For more information, see Introduction: Administrative configuration data.

EJB method Invocation Queuing

Method invocations to enterprise beans are only queued for remote clients making the method call. An

example of a remote client is an Enterprise JavaBeans (EJB) client running in a separate Java virtual

machine (JVM) (another address space) from the enterprise bean. In contrast, no queuing occurs if the

EJB client, either a servlet or another enterprise bean, is installed in the same JVM on which the EJB

method runs, and on the same thread of execution as the EJB client.

174 Administering WebSphere applications

Remote enterprise beans communicate by using the Remote Method Invocation over Internet Inter-ORB

Protocol (RMI-IIOP). Method invocations initiated over RMI-IIOP are processed by a server-side object

request broker (ORB). The thread pool acts as a queue for incoming requests. However, if a remote

method request is issued and there are no more available threads in the thread pool, a new thread is

created. After the method request completes the thread is destroyed. Therefore, when the ORB is used to

process remote method requests, the EJB container is an open or closed queue, due to the use of

unbounded threads.

The following illustration depicts the two queuing options of enterprise beans.

EJB Queuing

Request queued
in the Servlet Engine

Threads

Request
queued
in the ORB
Thread Pool

EJB Client

Servlet

Servlet Engine

EJB Container

ORB Thread Pool

REMOTE

WebSphere

Application Server

WebSphere

Application Server

Enterprise bean and EJB container troubleshooting tips

If you are having problems starting an Enterprise JavaBeans (EJB) container, or encounter error

messages or exceptions that appear to be generated on by an EJB container, follow these steps to resolve

the problem:

v Use the administrative console to verify that the application server which hosts the container is running.

v Browse the JVM log files for the application server which hosts the container. Look for the message

server server_name open for e-business in the SystemOut.log . If it does not appear, or if you see the

message problems occurred during startup, browse the SystemErr.log for details.

v Browse the system log files for the application server which hosts the container.

v Enable tracing for the EJB container component, by using the following trace specification

EJBContainer=all=enabled. Follow the instructions for dumping and browsing the trace output to narrow

the origin of the problem.

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning. If you do not see a problem that

resembles yours, or if the information provided does not solve your problem, contact IBM support for

further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Chapter 3. EJB applications 175

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSCMPAH&rs=180&q=mustgather

Application client log error indicates missing JAR file

The following error message appears in the client log file because a Java archive (JAR) file is missing

from the classpath on the client machine. The Object Request Broker (ORB) needs this file to unmarshal

the nested exception that is part of the EJB exception, returned by the server to the client application. For

example, if the EJB returns a DB2® JCC SQL exception nested inside of the EJB exception that it returns

to the client, the ORB is not able to unmarshal the nested exception if the db2jcc.jar file that contains the

DB2 SQL exception is not in the client classpath.

java.rmi.MarshalException: CORBA MARSHAL 0x4942f89a No; nested exception is:

org.omg.CORBA.MARSHAL: Unable to read value

from underlying bridge : Custom marshaling (4) Sender’s class does not match

local class vmcid: 0x4942f000 minor code: 2202 completed: No*

To avoid this error, include the JAR file that contains the class for the nested exception that is returned in

the EJB exception.

Enterprise bean cannot be accessed from a servlet, a JSP file, a

stand-alone program, or another client

Use these troubleshooting tips for problems related to accessing enterprise beans.

What kind of error are you seeing?

v javax.naming.NameNotFoundException: Name name not found in context ″local″ message when

access is attempted

v BeanNotReentrantException is thrown

v CSITransactionRolledbackException / TransactionRolledbackException is thrown

v Call fails, Stack trace beginning EJSContainer E Bean method threw exception [exception_name]

found in JVM log file.

v Call fails, ObjectNotFoundException or ObjectNotFoundLocalException when accessing stateful

session EJB found in JVM log file.

v Attempt to start container managed persistence (CMP) Enterprise JavaBeans (EJB) module fails with

javax.naming.NameNotFoundException: dataSourceName

v Transaction [tran ID] has timed out after 120 seconds error accessing EJB.

v

v Symptom: CNTR0001W: A Stateful SessionBean could not be passivated

v Symptom: org.omg.CORBA.BAD_PARAM: Servant is not of the expected type. minor code:

4942F21E completed: No returned to client program when attempting to execute an EJB method

If the client is remote to the enterprise bean, which means, running in a different application server or as a

stand-alone client, browse the JVM logs of the application server hosting the enterprise bean, as well as

log files of the client.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, perform these steps:

1. If the problem appears to be name-service related, which means that you see a

NameNotFoundException error, or a message ID beginning with NMSV, see these topics for more

information:

v Application access problems

v Naming service troubleshooting tips
2. Check to see if the problem is identified and documented using the links in Diagnosing and fixing

problems: Resources for learning.

If you still cannot fix your problem, seeTroubleshooting help from IBM for further assistance.

176 Administering WebSphere applications

ObjectNotFoundException or ObjectNotFoundLocalException when accessing

stateful session EJB

A possible cause of this problem is that the stateful session bean timed out and was removed by the

container. This event must be addressed in the code, according to the EJB 2.1 and later specification. You

can review the EJB 2.1 and 3.0 specifications at http://java.sun.com/products/ejb/docs.html.

Stack trace beginning ″EJSContainer E Bean method threw exception

[exception_name]″ found in JVM log file

If the exception name indicates an exception thrown by an IBM class that begins with ″com.ibm...″, then

search for the exception name within the information center, and in the online help as described below. If

″exception name″ indicates an exception thrown by your application, contact the application developer to

determine the cause.

javax.naming.NameNotFoundException: Name name not found in context ″local″

A possible reason for this exception is that the enterprise bean is not local (not running in the same Java

virtual machine [JVM] or application server) to the client JSP, servlet, Java application, or other enterprise

bean, yet the call is to a ″local″ interface method of the enterprise bean . If access worked in a

development environment but not when deployed to WebSphere Application Server, for example, it might

be that the enterprise bean and its client were in the same JVM in development, but are in separate

processes after deployment.

To resolve this problem, contact the developer of the enterprise bean and determine whether the client call

is to a method in the local interface for the enterprise bean. If so, have the client code changed to call a

remote interface method, or to promote the local method into the remote interface.

References to enterprise beans with local interfaces are bound in a name space local to the server

process with the URL scheme of local:. To obtain a dump of a server local: name space, use the name

space dump utility described in the article ″Namespace dump utility for java:, local: and server

namespaces.″

BeanNotReentrantException is thrown

This problem can occur because client code, typically a servlet or JSP file, is attempting to call the same

stateful SessionBean from two different client threads. This situation often results when an application

stores the reference to the stateful session bean in a static variable, uses a global (static) JSP variable to

refer to the stateful SessionBean reference, or stores the stateful SessionBean reference in the HTTP

session object. The application then has the client browser issue a new request to the servlet or JSP file

before the previous request has completed.

To resolve this problem, ask the developer of the client code to review the code for these conditions.

CSITransactionRolledbackException / TransactionRolledbackException is thrown

An enterprise bean container creates these high-level exceptions to indicate that an enterprise bean call

did not complete. When this exception is thrown, browse the JVM logs to determine the underlying cause.

Some possible causes include:

v The enterprise bean might throw an exception that was not declared as part of its method signature.

The container is required to roll back the transaction in this case. Common causes of this situation are

where the enterprise bean or code that it calls creates a NullPointerException,

ArrayIndexOutOfBoundsException, or other Java runtime exception, or where a BMP bean encounters a

JDBC error. The resolution is to investigate the enterprise bean code and resolve the underlying

exception, or to add the exception to the problem method signature.

Chapter 3. EJB applications 177

http://java.sun.com/products/ejb/docs.html

v A transaction might attempt to do additional work after being placed in a ″Marked Rollback″,

″RollingBack″, or ″RolledBack″ state. Transactions cannot continue to do work after they are set to one

of these states. This situation occurs because the transaction has timed out which, often occurs

because of a database deadlock. Work with the application database management tools or

administrator to determine whether database transactions called by the enterprise bean are timing out.

v A transaction might fail on commit due to dangling work from local transactions. The local transaction

encounters some ″dangling work″ during commit. When a local transactions encounters an ″unresolved

action″ the default action is to ″rollback″. You can adjust this action to ″commit″ in an assembly tool.

See the assembly tool information center on how to adjust

Attempt to start EJB module fails with ″javax.naming.NameNotFoundException

dataSourceName_CMP″exception

This problem can occur because:

v When the DataSource resource was configured, container managed persistence was not selected.

– To confirm this problem, in the administrative console, browse the properties of the data source given

in the NameNotFoundException. On the Configuration panel, look for a check box labeled Container

Managed Persistence.

– To correct this problem, select the check box for Container Managed Persistence.
v If container managed persistence is selected, it is possible that the CMP DataSource was not bound

into the namespace.

– Look for additional naming warnings or errors in the status bar, and in the hosting application server

JVM logs. Check any further naming-exception problems that you find by looking at the topic

Application access problems.

Transaction [tran ID] has timed out after 120 seconds accessing an enterprise

bean

This error can occur when a client executes a transaction on a CMP or BMP enterprise bean.

v The default timeout value for enterprise bean transactions is 120 seconds. After this time, the

transaction times out and the connection closes.

v If the transaction legitimately takes longer than the specified timeout period, go to Manage Application

Servers > server_name, select the Transaction Service properties page, and look at the property

Total transaction lifetime timeout. Increase this value if necessary and save the configuration.

Symptom:CNTR0001W: A Stateful SessionBean could not be passivated

This error can occur when a Connection object used in the bean is not closed or nulled out.

To confirm this is the problem, look for an exception stack in the JVM log for the EJB container that hosts

the enterprise bean, and looks similar to:

[time EDT] <ThreadID> StatefulPassi W CNTR0001W:

A Stateful SessionBean could not be passivated: StatefulBeanO

(BeanId(XXX#YYY.jar#ZZZZ, <ThreadID>),

state = PASSIVATING) com.ibm.ejs.container.passivator.StatefulPassivator@<ThreadID>

java.io.NotSerializableException: com.ibm.ws.rsadapter.jdbc.WSJdbcConnection

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at java.io.ObjectOutputStream.outputClassFields((Compiled Code))

 at java.io.ObjectOutputStream.defaultWriteObject((Compiled Code))

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at com.ibm.ejs.container.passivator.StatefulPassivator.passivate((Compiled Code))

 at com.ibm.ejs.container.StatefulBeanO.passivate((Compiled Code)

 at com.ibm.ejs.container.activator.StatefulASActivationStrategy.atUnitOfWorkEnd

 ((Compiled Code))

 at com.ibm.ejs.container.activator.Activator.unitOfWorkEnd((Compiled Code))

 at com.ibm.ejs.container.ContainerAS.afterCompletion((Compiled Code)

178 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html

where XXX,YYY,ZZZ is the Bean’s name, and <ThreadID> is the thread ID for that run.

To correct this problem, the application must close all connections and set the reference to null for all

connections. Typically this activity is done in the ejbPassivate() method of the bean. Also, note that the

bean must have code to reacquire these connections when the bean is reactivated. Otherwise, there are

NullPointerExceptions when the application tries to reuse the connections.

Symptom: org.omg.CORBA.BAD_PARAM: Servant is not of the expected type.

minor code: 4942F21E completed: No

This error can be returned to a client program when the program attempts to execute an EJB method.

Typically this problem is caused by a mismatch between the interface definition and implementation of the

client and server installations, respectively.

Another possible cause is when an application server is set up to use a single class loading scheme. If an

application is uninstalled while the application server remains active, the classes of the uninstalled

application are still loaded in the application server. If you change the application, redeploy and reinstall it

on the application server, the previously loaded classes become back level. The back level classes cause

a code version mismatch between the client and the server.

To correct this problem:

1. Change the application server class loading scheme to multiple.

2. Stop and restart the application server and try the operation again.

3. Make sure the client and server code version are the same.

Using access intent policies

You can use access intent policies to help the product runtime environment manage various aspects of

Enterprise JavaBeans (EJB) persistence.

About this task

You apply access intent policies to EJB Version 2.0 and 2.1 entity beans, and their methods, by using an

assembly tool. A set of default access intent policies comes with the assembly tool. The Rational

Application Developer product provides supported assembly tools. Entity beans are not supported in EJB

3.0 modules.

1. Apply default access intent to CMP entity beans. For more information, see the online help available

with the assembly tools.

2. Apply access intent policies to methods of container managed persistence entity beans.

Access intent policies

An access intent policy is a named set of properties or access intents that govern data access for

Enterprise JavaBeans (EJB) persistence. You can assign policies to an entity bean and to individual

methods on an entity bean’s home, remote, or local interfaces during assembly. You can set access

intents only within EJB Version 2.x-compliant and later modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations of read intent and

concurrency control; the pessimistic and update policy can be qualified further. The selected policy

determines the appropriate isolation level and locking strategy used by the run time environment.

Note: Access intent policies are specifically designed to supplemant the use of isolation level and access

intent method-level modifiers found in the extended deployment descriptor for EJB version 1.1

enterprise beans. You cannot specify isolation level and read-only modifiers for EJB version 2.x and

later enterprise beans.

Chapter 3. EJB applications 179

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html

Access intent policies configured on an entity basis define the default access intent for that entity. The

default access intent controls the entity unless you specify a different access intent policy based on either

method-level configuration or application profiling.

Note: Method level access intents were deprecated in Version 6.x.

You can use application profiling or method level access intent policies to control access intent more

precisely. Method-level access intent policies are named and defined at the module level. A module can

have one or many policies. Policies are assigned, and apply, to individual methods of the declared

interfaces of entity beans and their associated home interfaces. A method-based policy is acted upon by

the combination of the EJB container and persistence manager when the method causes the entity to

load.

For entity beans that are backed by tables with nullable columns, use an optimistic policy with caution. The

top down default mapping excludes nullable fields. You can override this when doing a meet-in-the-middle

mapping. The fields used in overqualified updates are specified in the ejb-rdb mapping. If nullable columns

are selected as overqualified columns, partial update should also be selected.

An entity that is configured with a read-only policy that causes a bean to be activated can cause problems

if updates are attempted within the same transaction. Those changes are not committed, and the process

displays an exception because data integrity might be compromised.

Concurrency control

Concurrency control is the management of contention for data resources. A concurrency control scheme is

considered pessimistic when it locks a given resource early in the data-access transaction and does not

release it until the transaction is closed. A concurrency control scheme is considered optimistic when locks

are acquired and released over a very short period of time at the end of a transaction.

The objective of optimistic concurrency is to minimize the time that a given resource is unavailable for use

by other transactions. This is especially important with long-running transactions, which under a

pessimistic scheme would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read operation and released

immediately after. Update locks are obtained immediately before an update operation and held until the

end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to test if the

underlying data source has been updated by another transaction since the beginning of the current

transaction. With this scheme, the columns marked for update and their original values are added explicitly

through a WHERE clause in the UPDATE statement so that the statement fails if the underlying column

values have been changed. As a result, this scheme can provide column-level concurrency control;

pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a transaction. If the underlying

columns have not been updated since the beginning of the transaction, pending updates to

container-managed persistence fields are committed and the locks are released. If locks cannot be

acquired or if some other transaction has updated the columns since the beginning of the current

transaction, the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction isolation levels. Enterprise

beans that participate in the same transaction and require different concurrency control schemes cannot

operate on the same underlying data connection.

Note: Whether to use optimistic concurrency depends on the type of transaction. Transactions with a high

penalty for failure might be better managed with a pessimistic scheme. A high-penalty transaction is

one for which recovery is risky or resource-intensive. For low-penalty transactions, it is often worth

180 Administering WebSphere applications

the risk of failure to gain efficiency through the use of an optimistic scheme. In general, optimistic

concurrency is more efficient when update collisions are expected to be infrequent; pessimistic

concurrency is more efficient when update collisions are expected to occur often.

Read-ahead hints

Read-ahead schemes enable applications to minimize the number of database round trips by retrieving a

working set of container-managed persistence (CMP) beans for the transaction within one query.

Read-ahead involves activating the requested CMP beans and caching the data for their related beans,

which ensures that data is present for the beans that an application most likely needs next. A read-ahead

hint is a representation of the related beans to read. The hint is associated with the findByPrimaryKey

method for the requested bean type, which must be an EJB 2.x-compliant CMP entity bean.

A read-ahead hint takes the form of a character string. You do not have to provide the string; the wizard

generates it for you based on the container-managed relationships (CMRs) that are defined for the bean.

The following example is provided as supplemental information only. Suppose a CMP bean type A has a

finder method that returns instances of bean A. A read-ahead hint for this method is specified using the

following notation: RelB.RelC; RelD

Interpret the preceding notation as follows:

v Bean type A has a CMR with bean types B and D.

v Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B and D beans and its

indirectly-related C beans are also retrieved. The order of the retrieved bean data columns in each row of

the result set is the same as the order in the read-ahead hint: an A bean, a B bean (or null), a C bean (or

null), a D bean (or null). For hints in which the same relationship is mentioned more than once, for

example, RelB.RelC;RelB.RelE, the data columns for a bean occur only once in the result set, at the

position the bean first occupies in the hint.

The tokens shown in the notation, like RelB, must be CMR field names for the relationships, as defined in

the deployment descriptor for the bean. In indirect relationships such as RelB.RelC, RelC is a CMR field

name that is defined in the deployment descriptor for bean type B.

A single read-ahead hint cannot refer to the same bean type in more than one relationship. For example, if

a Department bean has an employees relationship with the Employee bean and also has a manager

relationship with the Employee bean, the read-ahead hint cannot specify both employees and manager.

For more information about how to set read-ahead hints, see the documentation for the Rational

Application Developer product.

Run-time behaviors of read-ahead hints

When developing your read-ahead hints, consider the following tips and limitations:

v Read-ahead hints on long or complex paths can result in a query that is too complex to be useful.

Read-ahead hints on root or leaf inheritance mappings need particular care. Add up the number of

tables that potentially comprise a read-ahead preload to gauge the complexity of the join operations that

are required. Consider if the resulting statement constitutes a reasonable query on your target

database.

v Read-ahead hints do not work in the following cases:

– Preload paths across M:N relationships

– Preload paths across recursive enterprise bean relationships or recursive fk relationships

– When a read-head hint applies to a SELECT FOR UPDATE statement that requires a table join in a

database that does not support the combination of those two operations.

Generally, the persistence manager issues a SELECT FOR UPDATE statement for a bean only if the

bean has an access intent that enforces strict locking policies. Strict locking policies require SELECT

Chapter 3. EJB applications 181

FOR UPDATE statements for database select queries. If the database table design requires a join

operation to fulfill the statement, many databases issue exceptions because these databases do not

support table joins with SELECT FOR UPDATE statements. In those cases, WebSphere Application

Server does not implement a read-ahead hint. If the database does provide that support, Application

Server implements the read-ahead hints that you configure.

Database deadlocks caused by lock upgrades

To avoid databse deadlocks caused by lock upgrades, you can change the access intent policy for entity

beans from the default of wsPessimisticUpdate-WeakestLockAtLoad to wsPessimisticUpdate, or you can

use an optimistic locking approach.

When concurrently accessing data, ensure that the application is prepared for database locking that must

occur to secure the integrity of the data.

If an entity bean performs a findByPrimaryKey method, which by default obtains a Read lock in the

database, and the entity bean is updated within the same transaction, a lock upgrade to Exclusive.

If this scenario occurs concurrently on multiple threads, a deadlock can happen. This is because multiple

read locks can be obtained at the same time but one exclusive lock can only be obtained when the other

locks are dropped. Since all transactions are attempting the lock upgrade in this scenario, the one

exclusive lock cannot be obtained.

To avoid this problem, you can change the access intent policy for the entity bean from the default of

wsPessimisticUpdate-WeakestLockAtLoad method to wsPessimisticUpdate method. This change enables

the application to inform the product and the database that the transaction has updated the enterprise

bean. The Update lock is immediately obtained on the findByPrimaryKey method. This avoids the lock

upgrade when the update is performed at a later time.

The preferred technique to define access intent policies is to change the access intent for the entire entity

bean. You can change the access intent for the findByPrimaryKey method, but this was deprecated in

Version 6. You might want to change the access intent for an individual method if, for example, the entity

bean is involved in some transactions that are read only.

An alternative technique is to use an optimistic approach, where the findByPrimaryKey method does not

hold a read lock, so there is no lock upgrade. However, this requires that the application is coded for this

in order to handle rollbacks. Optimistic locking is intended for applications that do not expect database

contention on a regular basis.

To change the access intent policy for an entity bean, you can use the assembly tool to set the bean level,

as described in “Applying access intent policies to beans” on page 184.

Access intent assembly settings

Access intent policies contain data-access settings for use by the persistence manager. Default access

intent policies are configured on the entity bean.

These settings are applicable only for EJB 2.x and EJB 3.0-compliant entity beans that are packaged in

EJB 2.x and EJB 3.0-compliant modules. Connection sharing between beans with bean-managed

persistence and those with container-managed persistence is possible if they all use the same access

intent policy.

Name:

Specifies a name for a mapping between an access intent policy and one or more methods.

Description:

182 Administering WebSphere applications

Contains text that describes the mapping.

Methods - name:

Specifies the name of an enterprise bean method, or the asterisk character (*). The asterisk is used to

denote all of the methods of an enterprise bean’s remote and home interfaces.

Methods - enterprise bean:

Specifies which enterprise bean contains the methods indicated in the Name setting.

Methods - type:

Used to distinguish between a method with the same signature that is defined in both the home and

remote interface. Use Unspecified if an access intent policy applies to all methods of the bean.

 Data type String

Range Valid values are Home, Remote,Local, LocalHome or

Unspecified

Methods - parameters:

Contains a list of fully qualified Java type names of the method parameters. This setting is used to identify

a single method among multiple methods with an overloaded method name.

Applied access intent:

Specifies how the container must manage data access for persistence. Configurable both as a default

access intent for an entity and as part of a method-level access intent policy.

 Data type String

Default wsPessimisticUpdate-WeakestLockAtLoad. With Oracle,

this is the same as wsPessimisticUpdate.

Range Valid settings are wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision, wsPessimisticUpdate-
Exclusive, wsPessimisticUpdate-WeakestLockAtLoad,

wsPessimisticRead, wsOptimisticUpdate, or

wsOptimisticRead. Only wsPessimisticRead and

wsOptimisticRead are valid when class-level caching is

enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating through the collection

(next()) does not trigger a remote method call to retrieve the next remote reference. Two policies

(wsPessimisticUpdate and wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment

size is set to 1 to avoid overlocking the application. The other policies have a collection increment size of

25.

If an entity is not configured with an access intent policy, the run-time environment typically uses

wsPessimisticUpdate-WeakestLockAtLoad by default. If, however, the Lifetime in cache property is set on

the bean, the default value of Applied access intent is wsOptimisticRead; updates are not permitted.

Chapter 3. EJB applications 183

Additional information about valid settings follows:

 Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead (Note 1) pessimistic read For Oracle, read committed.

Otherwise, repeatable read

wsPessimisticUpdate (Note

2)

pessimistic update For Oracle, read committed.

Otherwise, repeatable read

wsPessimisticUpdate-

Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-

NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-

WeakestLockAtLoad (Note

5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note

6)

optimistic update read committed

Notes:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. A plain SELECT query is generated. No locks are held, but updates are permitted. Use cautiously. This intent

enables execution without concurrency control.

5. Where supported by the backend, the generated SELECT query does not include FOR UPDATE; locks are

escalated by the persistent store at storage time if updates were made. Otherwise, the same as

wsPessimisticUpdate.

6. Generated overqualified-update query forces failure if CMP column values have changed since the beginning of

the transaction.

Be sure to review the rules for forming overqualified-update query predicates. Certain column types (for example,

BLOB) are ineligible for inclusion in the overqualified-update query predicate and might affect your design.

Applying access intent policies to beans

You can apply an access intent policy to an application’s entity beans through the assembly tool.

About this task

Container-managed persistence (CMP) developers can use access intent to provide hints on how the

application server run time should manage the details of persistence without having to explicitly manage

any of the persistence logic from within their application.

Using the access intent service is also an option for programmers who develop bean-managed persistence

(BMP) entity beans. Because the only meaningful difference between BMP and CMP components is the

mechanism that provides the persistence logic, BMP beans leverage access intent hints in the same

manner as the EJB container manages accent intent for CMP beans. This ability becomes especially

important when BMP entities and CMP entities want to share connections. BMP beans configured with the

same concurrency as the CMP beans and implemented to the same isolation level mapping as the CMP

can share connections.

Developers can apply access intent policies to BMP entity beans as well as to CMP entity beans. It is

expected that BMP developers use only those access intent attributes that are important to a particular

BMP bean. The access intent service interface is bound into the java:comp namespace for each particular

BMP bean. The access intent policy retrieved from the access intent service is current from the time that

the ejbLoad process is called until the time that the ejbStore process completes its invocation.

184 Administering WebSphere applications

Note: This is the preferred technique to define access intent policies. Method-level access intent is

deprecated in Version 6.0.

 1. Start an assembly tool.

 2. Optional: Open the Java EE perspective to work with Java EE projects. Click Window > Open

Perspective > Other > Java EE.

 3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another

helpful view is the Navigator view (Window > Show View > Navigator).

 4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR

file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the

New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

 5. In the Project Explorer view of the J2EE perspective, right-click Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 6. Select the Access tab.

 7. In the Access Intent for Entities 2.x (Bean Level) panel, select the name of the bean.

 8. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add

Access Intent panel displays.

 9. In the Access intent name field, select wsPessimisticUpdate from the drop-down list.

10. Optional: Enter a Description to help you remember what this policy does.

11. Optional: Change the Persistence Option setting

12. Click Finish. The access intent policy for the entity bean is shown in the Access Intent for Entities

2.x (Bean Level) panel

Configuring read-read consistency checking with an assembly tool

Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another

transaction. For the Access Intents that are for repeatable read (RR), this means the product checks that

the data is consistent with that in the data store, and ensures that no one updates it after the checking.

About this task

For the access intents that are for read committed (RC), this means the product checks that the data is

consistent at the point of checking, it does not guarantee that the data does not change after the

checking. This makes the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

To perform this checking, you need to configure CMP entity beans with read-read consistency checking.

You can do this using an assembly tool. To learn how to complete this task see the topic, ″Adding

bean-level access intent for entity beans 2.x″ in the assembly tool documentation at http://
publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html

Example: Read-read consistency checking

Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another

transaction.

Chapter 3. EJB applications 185

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html
http://publib.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/topic/com.ibm.jee5.doc/topics/cejb3.html

Usage scenario

For the access intents that are for repeatable read (RR), this means the product checks that the data is

consistent with that in the data store and ensures that no one updates it after the checking. For the Access

Intents that are for read committed (RC), this means the product checks that the data is consistent at the

point of checking, but it does not guarantee that the data does not change after the checking. This makes

the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

You have three options for setting consistency checking, as shown in the following scenarios concerning

the calculation of interest in ″Ann’s″ bank account. In each case, the data store is shared by this

Enterprise JavaBeans (EJB) container managed persistence (CMP) application to calculate the interest

and other applications, such as EJB bean managed persistence (BMP) , Java Database Connectivity

(JDBC), or legacy applications. Also in each case, the EJB account is configured as a long-lifetime bean.

NONE

v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann’s data is read from

cache, with a balance of $100.

v Calculate Ann’s interest, but the result might not be correct because of the data integrity issue.

Read-read checking AT_TRAN_BEGIN

v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann’s data is read from

cache, with a balance of $100.

v PM performs read-read check on Ann’s account and finds that the balance of 100 is changed. It issues

a database query to retrieve balance of $120, and Ann’s data in the cache is refreshed.

v Calculate Ann’s interest, proceed with the transaction because data integrity is protected.

Read-read checking AT_TRAN_END

v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann’s data is read from

database, with balance of $100.

v Calculate Ann’s interest.

v During end of transaction 2, PM performs read-read check on Ann’s account and finds that the balance

of 100 is changed.

v PM rolls back the transaction and invalidates the cache. The transaction fails and again data integrity is

protected.

186 Administering WebSphere applications

Access intent service

Access intent is a WebSphere Application Server runtime service that enables you to precisely manage an

application’s persistence.

The access intent service defines a set of declarative annotations used by the Enterprise JavaBeans (EJB)

container and its agents to make performance optimizations for entity bean access. These annotations are

organized into sets called access intent policies.

Access intent policies contain a set of annotations considered as hints by the EJB container and its

agents. Most access intent policies are hints representing high-level abstractions that can be mapped to a

specific back end resource manager. It is the responsibility of the EJB persistence machinery to ensure the

necessary concurrency control, connection, and cache management when carrying out the persistence

details. The EJB persistence manager can use access intent hints to make better performance decisions

when carrying out its assigned task. A smaller number of access intents are hints to the EJB container,

influencing the management of EJB collections.

Typically, you configure bean level access intent for your applications. You can also apply access intent

policies to beans within the scope of application profiles. Consequently, you can configure beans with

multiple and opposing access intent policies. The application profiling documentation explains in more

detail how to configure an application to apply a particular access intent policy to a bean for one request,

then apply another access intent policy to the same bean for a different request.

Support for applying access intent policies at the method level is deprecated in WebSphere Application

Server Version 6.0. In this practice of configuring access intent, you apply a policy to methods within the

scope of an EJB module so that the policy becomes the default access intent for all requests upon those

methods.

Access intent design considerations

Note: Refrain from over-tuning an application. You can introduce errors by incorrectly using the access

intent service. For example, misuse of the wsPessimisticUpdate-NoCollision policy can result in lost

updates; inappropriately setting the collection increment value can introduce performance issues;

and problem determination is more difficult when an application is configured with multiple access

intent policies.

Note: Clarity and simplicity should be your guiding principles when using the access intent service. This is

even more important when applying access intent polices within the scope of application profiles.

Even though access intent policies can be configured on any method of an entity bean, some attributes of

a policy can only be leveraged by the runtime environment under certain conditions. For example,

concurrency and access intent are only used for CMP entity beans when the ejbLoad method is driven to

open a connection and read data from a given resource; that data is cached and used to drive the proper

queries during invocation of the ejbStore method. Read-ahead hints are only used during the execution of

a finder for a bean. The collection increment and resource manager prefetch increment are only used on

multi-object finders. Configuring policies on methods that do not use the policy is not an error. Only certain

attributes of any policy are used, even when the policy is appropriately applied to a method. However,

configuring policies unnecessarily throughout an application obscures the design of the application and

complicates the maintenance of the application.

Access intent with BMP entity beans

Access intent’s declarative functionality provides great power to you as a CMP entity bean developer. You

can provide hints on how the product should manage the details of persistence without having to explicitly

manage any of the persistence logic in the application. There are situations, however, in which you might

need to develop BMP entity beans. Since the only meaningful difference between BMP and CMP

Chapter 3. EJB applications 187

components is who provides the persistence logic, BMP entity beans should be able to leverage access

intent hints just as the product does on behalf of CMP entity beans. BMP entity beans that use the access

intent service participate in application profiling; that is, the value of the access intent attributes can differ

from request to request, allowing the BMP entity bean to seamlessly modify its persistence strategy.

You can apply access intent policies to BMP entity bean methods as well as CMP entity bean methods.

Because access intent hints are not contractual in nature, there is no obligation for a BMP entity bean to

exploit them. BMP entity beans are expected to use only those access intent attributes that are important

to that particular bean.

The current access intent policy is bound into the java:comp namespace for a particular BMP entity bean.

That policy is current only for the duration of the method call during which the access intent policy was

retrieved. In a typical scenario, you would cache the access type during invocation of the ejbLoad method

so that appropriate actions can be taken during invocation of the ejbStore method.

Access intent best practices

When applying access intent policies to EJB methods, consider the following issues.

v Start by configuring the default access intent policy for an entity. After your application is built and

started, you can tune certain access paths in your application using application profiling or method-level

access intent.

v Don’t mix access types. Avoid using both pessimistic and optimistic policies in the same transaction.

For most databases, pessimistic and optimistic policies use different isolation levels. This can result in

multiple database connections, which prevents you from taking advantage of the performance benefits

possible through connection sharing.

v Take care when applying the wsPessimisticUpdate-NoCollision policy. This policy does not ensure

data integrity. No database locks are held, so concurrent transactions can overwrite each other’s

updates. Use this policy only if you can be sure that only one transaction attempts to update persistent

store at any time.
For further information on Java Persistence API (JPA) Access intent, see the topic on JPA Access intent.

Applying access intent policies to methods

You apply an access intent policy to a method, or set of methods, in an application’s entity beans through

the assembly tool.

About this task

Note: Method-level access intent is deprecated in Version 6.0.

 1. Start an assembly tool.

 2. Optional: Open the Java EE perspective to work with Java EE projects. Click Window > Open

Perspective > Other > Java EE.

 3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another

helpful view is the Navigator view (Window > Show View > Navigator).

 4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR

file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the

New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

188 Administering WebSphere applications

5. In the Project Explorer view of the J2EE perspective, right-click the Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 6. Select the Access tab.

 7. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add

Access Intent panel displays.

 8. Specify the Name for your new intent policy.

 9. Select the Access intent name from the drop-down list.

10. Enter a Description to help you remember what this policy does.

11. Optional: Select Read Ahead Hint. A single access intent read ahead hint might not refer to the same

bean type in more than one relationship. For example, if a Department enterprise bean has a

relationship employees with the Employee enterprise bean, and also has a relationship manager with

the Employee enterprise bean, then a read ahead hint cannot specify both employees and manager.

12. Click Next. The next Add Access Intent panel displays, with optional attributes.

13. Optional: Decide whether or not to overwrite these optional access intent attributes. Click on those

you want to change.

14. Click Next. The next Add Access Intent panel, with a list of Enterprise Beans, displays.

15. Select one or more Enterprise Beans from the list.

Note: If you selected Read Ahead Hint in an earlier step, you can only select ONE bean at this

step.

16. Click Next. The next Add Access Intent panel, with a list of methods, displays.

17. Select the methods you want to use.

18. If you DID NOT select Read Ahead Hint in an earlier step, click Finish. If you DID select the Read

Ahead Hint option, you can click Next to specify your Read Ahead Hint for the specified bean. The

next Add Access Intent panel, with a list of EJB preload paths, displays.

19. Edit the EJB preload path by selecting relationship roles from the Relationship roles: window.

20. Click Finish. A new entry is created in the Access Intent for Entities 2.x (Method Level) panel

Using the AccessIntent API

This task describes how to programmatically retrieve and call the AccessIntent API during the execution of

bean managed persistence (BMP) entity bean methods.

1. Look up the access intent service from the namespace. For example:

InitialContext ic = new InitialContext();

AccessIntentService aiService = ic.lookup("java:comp/websphere/AppProfile/AccessIntentService");

2. From a method of the remote or local component interface of the BMP, get the current AccessIntent

object using the javax.ejb.EntityContext. This is passed to the BMP when the container calls the

setEntityContext method. Assume the EntityContext was stored in a variable named myEntityCtx. For

example:

AccessIntent ai = aiService.getAccessIntent (myEntityCtx);

3. Use the get() methods of AccessIntent interface to obtain the desired information. For example:

int concurrency = ai.getConcurrencyControl();

int accessType = ai.getAccessType();

if ((concurrency == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

 && (accessType == AccessIntent.ACCESS_TYPE_UPDATE)) {

 int exclusive = ai.getPessimisticUpdateLockHint();

 // . . .

}

// . . .

For a detailed example of the use of the AccessIntent API, see Example: Using IBM extended APIs to

share connections between CMP beans and BMP beans.

Chapter 3. EJB applications 189

Results

Note: The access intent object reference retrieved from the java:comp lookup is current for the duration of

the method in which the reference was looked up. Depending on how you configured the

application profile, subsequent calls of the same method might not retrieve the same access intent

reference. You can only look up the object reference during the call of a BMP entity bean’s method;

the reference does not exist during a request on a container managed persistence (CMP) entity

bean. Therefore, access intent object references should not be cached beyond, or used outside of,

the scope of the execution of any given BMP method.

AccessIntent interface

The AccessIntent interface is available to bean-managed persistence (BMP) entity beans.

A BMP entity bean can get and use an instance of the AccessIntent interface. For more information see

“Using the AccessIntent API” on page 189.

AccessIntent interface

package com.ibm.websphere.appprofile.accessintent;

/**

* This interface defines the essential access intents

* available at run time.

*/

public interface AccessIntent {

/**

* Returns the concurrency control intent, which indicates

* the application prefers either pessimistic or optimistic

* concurrency control when accessing the current component

* in the context of the current transaction.

*/

public int getConcurrencyControl();

public final int CONCURRENCY_CONTROL_PESSIMISTIC = 1;

public final int CONCURRENCY_CONTROL_OPTIMISTIC = 2;

/**

* Returns access type intent, which indicates the application

* intends either update or read access of the current component

* in the context of the current transaction.

*/

public int getAccessType();

public final int ACCESS_TYPE_UPDATE= 1;

public final int ACCESS_TYPE_READ = 2;

/**

* Returns an integer value that indicates that the run time should

* assume that there will be no collision on retrieved rows.

*/

public int getPessimisticUpdateLockHint();

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

/*

* Returns an integer value that indicates that the run time should

* assume that there will be collisions on retrieved rows.

*/

public int getPessimisticUpdateLockHint();

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

190 Administering WebSphere applications

/**

* Returns the collection access intent, which indicates the

* application intends to access the objects returned by the

* currently executing finder in either serial or random fashion.

*/

public int getCollectionAccess();

public final int COLLECTION_ACCESS_RANDOM = 1;

public final int COLLECTION_ACCESS_SERIAL = 2;

/**

* Returns the collection scope, which indicates the maximum

* lifespan of a lazy collection.

*/

public int getCollectionScope();

public final int COLLECTION_SCOPE_TRANSACTION = 1;

public final int COLLECTION_SCOPE_ACTIVITYSESSION = 2;

public final int COLLECTION_SCOPE_TIMEOUT = 3;

/**

* Returns the timeout value in seconds when collectionScope is Timeout.

*/

public int getCollectionTimeout();

/**

* Returns the number of elements the application requests be contained

* in each segment of the element collection returned by the currently

* executing finder.

*/

public int getCollectionIncrement();

/**

* Returns the ReadAheadHint requested by the application for the currently

* executing finder.

*/

public ReadAheadHint getReadAheadHint();

/**

* Returns the number of elements the application requests be contained in

* each segment of a query made on a database.

*/

public int getResourceManagerPreFetchIncrement();

}

Access intent exceptions

The exceptions thrown in response to the application of access intent policies are listed.

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If the method that drives the ejbLoad() method is configured to be read-only but updates are then

made within the transaction that loaded the bean’s state, an exception is thrown during invocation

of the ejbStore() method, and the transaction is rolled back. Likewise, the ejbRemove() method

cannot succeed in a transaction that is set as read-only. If an update hint is applied to methods of

entity beans with bean-managed persistence, the same behavior and exception results. The

forwarded exception object contains the message string PMGR1103E: update instance level read

only bean beanName

 This exception is also thrown if the applied access intent policy cannot be honored because a

finder, ejbSelect, or container-managed relationship (CMR) accessor method returns an inherently

read-only result. The forwarded exception object contains the message string PMGR1001: No such

DataAccessSpec - methodName

The most common occurrence of this error is when a custom finder that contains a read-only EJB

Query Language (EJB QL) statement is called with an applied access intent of

wsPessimisticUpdate or wsPessimisticUpdate-Exclusive. These policies require the use of a USE

Chapter 3. EJB applications 191

AND KEEP UPDATE LOCKS clause on the SQL SELECT statement to be executed, but a

read-only query cannot support USE AND KEEP UPDATE LOCKS. Other examples of read-only

queries include joins; the use of ORDER BY, GROUP BY, and DISTINCT keywords.

To eliminate the exception, edit the EJB query so that it does not return an inherently read-only

result or change the access intent policy being applied.

v If an update access is required, change the applied access intent setting to

wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.

v If update access is not truly required, use wsPessimisticRead or wsOptimisticRead.

v If connection sharing between entity beans is required, use wsPessimisticUpdate-
WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If a lazy collection is driven after it is no longer in scope, and beyond what has already been

locally buffered, a CollectionCannotBeFurtherAccessed exception is thrown.

com.ibm.ws.exception.RuntimeWarning

If an application is configured incorrectly, a run-time warning exception is thrown as the application

starts; startup is ended. You can validate an application’s configuration by choosing the verify

function. Some examples of misconfiguration include:

v A method configured with two different access intent policies

v A method configured with an undefined access intent policy

Access intent troubleshooting tips

The following frequently asked questions involving access intent are answered.

Oracle database fails when no access policies are applied

No access intent policies have been applied and the application runs with a DB2 database, but it fails with

an Oracle database with the following message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1001E: No such DataAccessSpec

:FindAllCustomers. The backend datastore does not support the SQLStatement needed by this

AccessIntent: (pessimistic update-weakestLockAtLoad)(collections: transaction/25) (resource

manager prefetch: 0) (AccessIntentImpl@d23690a).

If you have not configured access intent, all of your data is accessed under the default access intent policy

(wsPessimisticUpdate-WeakestLockAtLoad). On DB2 the weakest lock is share. On Oracle databases,

however, the weakest lock is update; this means that the SQL query must contain a FOR UPDATE clause.

To avoid this problem, try to apply an access intent policy that supports optimistic concurrency.

Calling a finder method displays an InconsistentAccessIntentException at run time

This can occur when you use method-level access intent policies to apply more control over how a bean

instance is loaded. This exception indicates that the entity bean was previously loaded in the same

transaction. This could happen if you called a multifinder method that returned the bean instance with

access intent policy X applied; you are now trying to load the second bean again by calling its

findByPrimaryKey method with access intent Y applied. Both methods must have the same access intent

policy applied.

Likewise, if the entity was loaded once in the transaction using an access intent policy configured on a

finder, you might have called a container-managed relationship (CMR) accessor method that returned the

entity bean configured to load using that entity’s default access intent.

To avoid this problem, ensure that your code does not load the same bean instance twice within the same

transaction with different access intent policies applied. Avoid the use of method-level access intent unless

absolutely necessary.

192 Administering WebSphere applications

An InconsistentAccessIntentException displays in a container-managed

relationship with two beans

There are two beans in a container-managed relationship. The findByPrimaryKey method is called on the

first bean and then the getBean2 method is called and a CMR accessor method is called, on the returned

instance and an InconsistentAccessIntentException displays.

You are probably using read-ahead. When you loaded the first bean, you caused the second bean to be

loaded under the access intent policy applied to the finder method for the first bean. However, you have

configured your CMR accessor method from the first bean to the second with a different access intent

policy. CMR accessor methods are really finder methods in disguise; the run-time environment behaves as

if you were trying to change the access intent for an instance you have already read from persistent store.

To avoid this problem, beans configured in a read-ahead hint are all driven to load with the same access

intent policy as the bean to which the read-ahead hint is applied.

A bean with a one-to-many relationship to a second bean displays an

UpdateCannotProceedWithIntegrityException error when an instance of the

second bean is added to the first bean’s collection

A bean with a one-to-many relationship to a second bean displays an

UpdateCannotProceedWithIntegrityException error when an instance of the second bean is added to the

first bean’s collection. The first bean has a pessimistic-update intent policy applied.

The second bean probably has a read intent policy applied. When you add the second bean to the first

bean’s collection, you are not updating the first bean’s state, you are implicitly modifying the second

bean’s state. The second bean contains a foreign key to the first bean, which is modified.

To avoid this problem, ensure that both ends of the relationship have an update intent policy applied if you

expect to change the relationship at run time.

Managing EJB containers

Each application server can have a single Enterprise JavaBeans (EJB) container; one is created

automatically for you when the application server is created. The following steps are to be performed only

as needed to improve performance after the EJB application has been deployed.

1. Adjust EJB container settings.

2. Adjust EJB cache settings.

What to do next

If adjustments do not improve performance, consider adjusting access intent policies for entity beans,

reassembling the module, and redeploying the module in the application.

EJB container settings

Use this page to configure and manage the EJB container of this application server.

To view this administrative console page, click Servers → WebSphere application servers → server →

EJB Container Settings → EJB container.

Passivation directory

Specifies the directory into which the container saves the persistent state of passivated stateful session

beans. This directory must already exist. It is not automatically created.

Chapter 3. EJB applications 193

Stateful session beans with an activation policy of TRANSACTION are passivated at the end of the

transaction in which they are enlisted, and stateful session beans with an activation policy of ONCE

(default) are passivated when the number of active bean instances becomes greater than the cache size

specified in the container configuration. When a stateful bean is passivated, the container serializes the

bean instance to a file in the passivation directory and discards the instance from the bean cache. If, at a

later time, a request arrives for the passivated bean instance, the container retrieves it from the

passivation directory, deserializes it, returns it to the cache, and dispatches the request to it. If any step

fails (for example, if the bean instance is no longer in the passivation directory), the method invocation

fails.

Inactive pool cleanup interval

Specifies the interval at which the container examines the pools of available bean instances to determine if

some instances can be deleted to reduce memory usage. This setting is for all bean pools. Attention:

Stateful session beans are NOT pooled, so this applies to stateless session and entity bean pools.

 Data type Integer

Default 30000

Units Milliseconds

Range 0 to 2 147 483 647

Default data source JNDI name

Specifies the JNDI name of a data source to use if no data source is specified during application

deployment. This setting is not applicable for EJB 2.x-compliant CMP beans.

Servlets and enterprise beans use data sources to obtain these connections. When configuring a

container, you can specify a default data source for the container. This data source becomes the default

data source used by any entity beans installed in the container that use container-managed persistence

(CMP).

The default data source for a container is secure. When specifying it, you must provide a user ID and

password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the container has a data source

specified in its configuration. If a default data source is not specified and a CMP entity bean is installed in

the container without specifying a data source for that bean, applications cannot use that CMP entity bean.

Enable stateful session bean failover using memory-to-memory replication

Specifies that failover is enabled for all stateful session beans installed in this EJB container.

This checkbox is disabled until you define a replication domain. This selection has a hyperlink to help you

configure the replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel where you

can select the replication settings to be used by the EJB container.

 Data type Checkbox

Default Unselected

Range Selected or unselected.

Initial state

Specifies the execution state requested when the server first starts.

 Data type String

Default Started

Range Valid values are Started and Stopped

194 Administering WebSphere applications

EJB container system properties

In addition to the settings accessible from the administrative console, you can set the following system

property by command-line scripting.

com.ibm.websphere.ejbcontainer.poolSize

Specifies the size of the pool for the specified bean type. This property applies to stateless,

message-driven and entity beans. If you do not specify a default value, the container defaults of 50 and

500 are used.

Set the pool size for a given entity bean as follows:

beantype= [H]

min,[H]

max [:beantype=

[H]min,

[H]max...]

beantype is the Java EE name of the bean, formed by concatenating the application name, the #

character, the module name, the # character, and the name of the bean, that is, the string assigned to the

<ejb-name> field in the bean’s deployment descriptor. min and max are the minimum and maximum pool

sizes, respectively, for that bean type. Do not specify the square brackets shown in the previous prototype;

they denote optional additional bean types that you can specify after the first. Each bean-type specification

is delimited by a colon (:).

Use an asterisk (*) as the value of beantype to indicate that all bean types are to use those values unless

overridden by an exact bean-type specification somewhere else in the string, as follows:

*=30,100

To specify that a default value be used, omit either min or max but retain the comma (,) between the two

values, as follows (split for publication):

SMApp#PerfModule#TunerBean=54,

 :SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

You can designate the maximum configured EJB pool size as a hard limit by inserting the character H

directly in front of the max value. Without the H, the maximum value indicates how many EJB instances

can be pooled, and does not limit the number of EJB instances that can be created or in use. Inserting the

H before the max value indicates that it is a hard limit, and the EJB Container blocks creation of more

instances when that limit is reached. Further threads must wait until an instance becomes available or until

the transaction times out.

You can designate the minimum configured EJB pool size as a hard limit by inserting the character H

directly in front of the min value. Without the H, the minimum value indicates how many EJB instances are

maintained in the pool when the EJB type is not actively in use, but does not pre-load the pool when the

application is started. Normally, the minimum pool size is not reached until the minimum number of EJB

instances has been accessed concurrently by the application. Inserting the H before the min value

indicates that it is a hard limit, and the EJB Container pre-loads the pool with the minimum number of EJB

instances when the application is started.

As an example, if you want to indicate that no more than 200 EJB instances are created, and that

additional requests must wait for an instance and might time out while waiting, you enter:

SMApp#SMModule#TypeBean=100,H200

If you want to indicate that the EJB Container pre-load the pool with a minimum of 100 EJB instances

when the application is started, you enter:

SMApp#SMModule#TypeBean=H100,200

Chapter 3. EJB applications 195

Note: The hard limit indicator is only available to EJB Version 2.0 or later Stateless Session beans.

com.ibm.websphere.ejbcontainer.allowEarlyInsert

This property is applicable to CMP 1.1 beans only. By default, the EJB Container creates the entity bean

representation in the database only after the method ejbPostCreate(...) is called.

Note: CMP beans are not supported in EJB 3.0 modules.

Some applications may rely on method ejbCreate(...) to have created the entity bean in the database. For

such a requirement, setting the JVM property com.ibm.websphere.ejbcontainer.allowEarlyInsert to true

overrides the default behavior.

Changing enterprise bean types to initialize at application start time

using the administrative console

All Enterprise JavaBeans (EJB) types within a server can be forced to initialize at application start time by

setting a system property within the administrative console.

About this task

If the value of this property is set to true, then all beans within the server are initialized at each

application’s start time.

However, by default, the product’s EJB container delays the initialization (loading of classes and

processing of deployment descriptor metadata) of most EJB types until they are needed during run time.

This delay helps to speed up the application start time.

 1. Open the administrative console.

 2. Select Servers.

 3. Select Application Servers.

 4. Select the server you want to configure.

 5. In the Server Infrastructure area, select Java and Process Management.

 6. In the Server Infrastructure area, select Process Definition.

 7. In the Additional Properties area, select Java Virtual Machine.

 8. In the Additional Properties area, select Custom Properties.

 9. Select the New box.

10. In the Name entry field, type com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup.

11. In the Value entry field, type true. Entering true causes all Enterprise JavaBeans to initialize when

your application starts. Entering false causes initialization of all beans to be delayed.

Note: Setting com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup to either true or false takes

precedence over any Start EJB at Application Start settings made on individual EJB types.

12. Select OK.

What to do next

This task can also be done by using an assembly tool.

Stateful session bean failover for the EJB container

WebSphere Application Server Version 6.0 and later versions enable you to construct applications with the

assumption that your applications using stateful session beans are not limited by unexpected server

failures. The product utilizes the functions of the Data Replication Service (DRS) and Workload

Management (WLM) so you can enable stateful session bean failover.

196 Administering WebSphere applications

Because you might not want to enable failover for every single stateful session bean installed in the EJB

container, you can override the EJB container settings at either the application or EJB module level. You

can either enable or disable failover at each of these levels. For example, consider the following situations:

v You want to enable failover for all applications except for a single application. To do this, you enable

failover at the EJB container level and override the setting at the application level to disable failover on

the single application.

v You want to enable failover for a single installed application. To do this, disable failover at the EJB

container level and then override the setting at the application level to enable failover on the single

application.

v You want to enable failover for all applications except for a single module of an application. To do this,

enable failover at the EJB container level, then override the setting at the module application level to

disable failover on the single module.

v You want to enable failover for a single installed EJB module. To do this, disable failover at the EJB

container level and then override the setting at the EJB module level to enable failover on the single

EJB module.

For information about enabling stateful session bean failover from the administrative console, see

“Enabling or disabling stateful session bean failover with the EJB container panel” on page 200, “Enabling

or disabling stateful session bean failover with the enterprise applications panel” on page 201, and

“Enabling or disabling stateful session bean failover with the EJB modules panel” on page 201.

Stateful session bean activation policy with failover enabled

The product enables you to specify an activation policy to use for stateful session beans during application

assembly. It is important to consider that the only time the EJB container prepares for failover, by

replicating the stateful session bean data using DRS, is when the stateful session bean is passivated. If

you configure the bean with an activate once policy, the bean is essentially never passivated. If you

configure the activate at transaction boundary policy, the bean is passivated whenever the transaction that

the bean is enlisted in completes. For stateful session bean failover to be useful, the activate at

transaction boundary policy is required.

Rather than forcing you to edit the deployment descriptor of every stateful session bean and reinstall the

bean, the EJB container simply ignores the configured activation policy for the bean when you enable

failover. The container automatically uses the activate at transaction boundary policy.

Stateful session bean use of container managed units of work or bean managed

units of work with failover enabled

The relevant ″units of work″ in this case are transactions and activity sessions. The product supports

stateful session bean failover for container managed transactions (CMT), bean managed transactions

(BMT), container managed activity sessions (CMAS), and bean managed activity sections (BMAS).

However, in the container managed cases, preparation for failover only occurs if trying to send a request

for an enterprise bean method invocation results in no connection to the server. Also, if the server fails

after a request is sent to it and acknowledged, failover does not occur. When a failure occurs in the middle

of a request or unit of work, WLM cannot safely fail over to another server without some compensation

code being executed by the application. When that happens, the application receives a Common Object

Request Broker Architecture (CORBA) exception and minor code telling it that transparent failover could

not occur because the failure happened during execution of a unit of work. The application should be

written to check for the CORBA exception and minor code, and compensate for the failure. After the

compensation code executes, the application can retry the requests and if a path exists to a backup server

WLM routes the new request to a new primary server for the stateful session bean.

For more information, see CORBA minor codes and Workload management for all platforms except z/OS.

Chapter 3. EJB applications 197

The same is true for bean managed units of work like transactions or activity sessions. However, bean

managed work introduces a new possibility that needs to be considered.

For bean managed units of work, the failover process is not always able to detect that a BMT or BMAS

started by a stateful session bean method has not completed. Thus, it is possible that failover to a new

server can occur despite the unit of work failing during the middle of a transaction or session. Because the

unit of work is implicitly rolled back, WLM behaves as if it is safe to transparently fail over to another

server, when in fact some compensation code might be required. When this happens, the EJB container

detects this on the new server and initiates an exception. This exception occurs under the following

scenario:

1. A method of a stateful session bean using bean managed transaction or activity session calls begins

on a UserTransaction it obtained from the SessionContext. The method does some work in the started

unit of work, but does not complete the transaction or session before returning to the caller of the

method.

2. After invocation of the method started in step 1, the EJB container suspends the work started by the

method. This is the action required by Enterprise JavaBeans specification for bean managed units of

work when the bean is a stateful session bean.

3. The client starts several other methods on the stateful session bean. Each invocation causes the EJB

container to resume the suspended transaction or activity session, dispatch the method invocation, and

then suspend the work again before returning to the caller.

4. The client calls a method on the stateful session bean that completes the transaction or session

started in step 1.

This scenario depicts a sticky bean managed unit of work. The transaction or activity session sticks around

for more than a single stateful session bean method. If an application uses a sticky BMT or BMAS, and

the server fails after a sticky unit of work completes and before another sticky unit of work starts, failover

is successful. However, if the server fails before a sticky transaction or activity session completes, the

failover is not successful. Instead, when the failover process routes the stateful session bean request to a

new server, the EJB container detects that the failure occurred during an active sticky transaction or

activity session. At that time, the EJB container initiates an exception.

Essentially, this means that failover for both container managed and bean managed units of work is not

successful if the transaction or activity session is still active. The only real difference is the exception that

occurs.

Application design considerations

You should consider the following when designing applications that use the stateful session bean failover

process:

v To avoid the possibility described in the section above, you are encouraged to write your application to

configure stateful session beans to use container managed transactions (CMT) rather than bean

managed transactions (BMT).

v If you desire immediate failover, and your application creates either an HTTP session or a stateful

session bean that stores a reference to another stateful session bean, then the administrator must

ensure the HTTP session and stateful session bean are configured to use the same data replication

service (DRS) replication domain.

v Do Not use a local and a remote reference to the same stateful session bean.

Normally a stateful session bean instance with a given primary key can only exist on a single server at

any given moment in time. Failover might cause the bean to be moved from one server to another, but

it never exists on more than one server at a time. However, there are some unlikely scenarios that can

result in the same bean instance (same primary key) existing on more than one server concurrently.

When that happens, each copy of the bean is unaware of the other and no synchronization occurs

between the two instances to ensure they have the same state data. Thus, your application receives

unpredictable results.

198 Administering WebSphere applications

Note: To be sure to avoid this situation you must remember that with failover enabled, your application

should never get both a local (EJBLocalObject) and remote (EJBObject) reference to the same

stateful session bean instance.

Stateful session beans failover settings (applications)

Each (EJB) Enterprise JavaBeans container provides a method for stateful session beans to fail over to

other servers. This enables you to specify whether failover occurs for the stateful session beans in this

module. You can also override the parent object’s stateful session bean replication settings for this module.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application → Stateful session bean failover settings.

Note: These settings are ignored for 5.x application targets.

Enable stateful session bean failover using memory to memory replication:

Specifies whether the EJB container attempts failover for all of the stateful session beans in this

application.

 This checkbox overrides the default stateful session bean failover setting that the administrator configured

for an EJB container. De-selecting this checkbox disables failover for this application.

 Data type Checkbox

Range Selected or unselected.

Use replication settings from the EJB container:

Specifies that the replication settings configured for the EJB container are used for this application. If you

select this option and you want the application to use stateful session bean failover, you must define

memory to memory replication for the EJB container on each server you want to use failover.

 Data type Radio button

Range Selected or unselected.

Use application replication settings:

Specifies that the replication settings configured for this application are used for memory to memory

replication of the stateful session bean data.

 If you select this button, you override the EJB container settings. This button is disabled until you define a

replication domain. This selection has a hyperlink to help you configure the replication settings. If no

replication domains are configured, the link takes you to a panel where you can create one. If at least one

domain is configured, the link takes you to a panel where you can select the replication settings to be

used by the application.

 Data type Radio button

Range Selected or unselected.

Stateful session beans failover settings (EJB modules)

Each Enterprise JavaBeans (EJB) container provides a method for stateful session beans to fail over to

other servers. This enables you to specify whether failover occurs for the stateful session beans in this

module. You can also override the parent object’s stateful session bean replication settings for this module.

Chapter 3. EJB applications 199

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application → Manage Modules → .jar → Stateful session bean failover

settings .

Note: These settings are ignored for 5.x application targets.

Enable stateful session bean failover using memory to memory replication:

Specifies whether the EJB container attempts failover for all of the stateful session beans in this module.

 This checkbox overrides the default stateful session bean failover setting that the administrator configured

for an EJB container or the module’s application. De-selecting this checkbox disables failover for this

module.

 Data type Checkbox

Range Selected or unselected.

Use application or EJB container replication settings:

Specifies that the replication settings configured for the EJB container or application are used for this

module. If you select this option and you want the application to use stateful session bean failover, you

must define memory to memory replication for the EJB container on each server you want to use failover.

 Data type Radio button

Range Selected or unselected.

Use EJB module replication settings:

Specifies that the replication settings configured for this EJB module are used for memory to memory

replication of the stateful session bean data.

 If you select this button, you override the replication settings for the EJB container and application. This

button is disabled until you define a replication domain. This selection has a hyperlink to help you

configure the replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel where you

can select the replication settings to be used by the EJB container.

 Data type Radio button

Range Selected or unselected.

Enabling or disabling stateful session bean failover with the EJB

container panel

You can use the Enterprise JavaBeans (EJB) container administrative console panel to enable stateful

session bean failover. Select the check box on the panel to configure whether the failover is active for all

stateful session beans in the specified EJB container.

1. Start the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to work with.

5. Select EJB Container Settings.

6. Select EJB container.

200 Administering WebSphere applications

7. Check the box labeled Enable stateful session bean failover using memory-to-memory

replication. This check box is disabled until you define a replication domain. This selection has a

hyperlink to help you configure the replication settings. If no replication domains are configured, the

link takes you to a panel where you can create one. If at least one domain is configured, the link takes

you to a panel where you can select the replication settings to be used by the EJB container.

8. Select OK.

Enabling or disabling stateful session bean failover with the enterprise

applications panel

You can use the enterprise applications administrative console panel to enable or disable stateful session

bean failover for all stateful session beans in the specified application.

1. Start the administrative console.

2. Select Applications.

3. Select Enterprise Applications.

4. Select the application you want to work with.

5. Under Additional Properties, select Stateful Session Bean Failover Settings. The Stateful Session

Bean Failover Settings panel appears.

6. Select Enable stateful session bean failover using memory to memory replication. This enables

failover for all stateful session beans in this application. If you want to disable the failover, clear this

checkbox.

7. Select your choice of Replication settings. You have a choice of two radio buttons:

Use replication settings from Enterprise JavaBeans (EJB) container

If you select this button, any replication settings defined for this application are ignored.

Note: Note to the system administrator: if you use this radio button, then memory to memory

replication must be configured at the EJB container level. Otherwise, the settings on this

panel are ignored by EJB container during server startup and the EJB container will log

a message indicating that stateful session bean failover is not enabled for this

application.

Use application replication settings

If you select this button, you override the EJB container settings. This button is disabled until

you define a replication domain. This selection has a hyperlink to help you configure the

replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel

where you can select the replication settings to be used by the application.

8. Select OK.

Enabling or disabling stateful session bean failover with the EJB

modules panel

You can use the enterprise applications administrative console panel to enable or disable stateful session

bean failover for all stateful session beans in the specified module.

 1. Start the administrative console.

 2. Select Applications.

 3. Select Enterprise Applications.

 4. Select the application you want to work with.

 5. Under Related items, select EJB modules.

 6. Select the .jar file you want to work with.

 7. Select Stateful session bean failover settings.

 8. Select Enable stateful session bean failover using memory to memory replication.

Chapter 3. EJB applications 201

9. Select your choice of Replication settings. You have a choice of two radio buttons:

Use application or Enterprise JavaBeans (EJB) container replication settings

If you select this button, any replication settings defined for this EJB module are ignored.

Note: Note to the system administrator: if you use this radio button, then memory to memory

replication must be configured at the EJB container level. Otherwise, the settings on

this panel are ignored by EJB container during server startup and the EJB container

will log a message indicating that stateful session bean failover is not enabled for this

application.

Use EJB module replication settings

If you select this button, you override the replication settings for the EJB container and

application. This button is disabled until you define a replication domain. This selection has a

hyperlink to help you configure the replication settings. If no replication domains are

configured, the link takes you to a panel where you can create one. If at least one domain is

configured, the link takes you to a panel where you can select the replication settings to be

used by the EJB container.

10. Select OK.

Tuning the EJB cache using the trace service

About this task

The size of your Enterprise JavaBeans (EJB) cache can effect the performance of the application server.

One of the steps in tuning your EJB container to optimum performance levels is to fine tune the EJB

cache. The following describes how to use the diagnostic trace service to help you determine the best

cache size for you.

1. Enable the EJB cache trace. To learn about working with the trace service, see Working with trace. For

information about the trace service settings, see Diagnostic trace service settings.

Set up your trace to use this trace string:

com.ibm.ejs.util.cache.BackgroundLruEvictionStrategy=all=enabled:com.ibm.ejs.util.cache.CacheElementEnumerator=

all=enabled

Set Maximum File Size to 200MB or more. If you leave the default value of 20MB, you could fill up

the single 20MB trace log and lose some data because of trace wrapping.

Set Maximum Number of Historical Files to 5. Five files should be sufficient, but if you see that all

five files are full and trace wrapping occurs, increase this value.

2. Stop your server, delete existing logs, then start your server.

3. Run typical scenarios to capture cache trace data. By running a typical scenario with the trace

enabled, you will get the EJB cache trace data to analyze in the following steps.

4. View and analyze the trace output.

a. Open your trace log. Look for either or both of the following trace strings to appear:

BackgroundLru 3 EJB Cache: Sweep (1,40) - Cache limit not reached : 489/2053

BackgroundLru > EJB Cache: Sweep (16,40) - Cache limit exceeded : 3997/2053 Entry

In the trace strings that include the words Cache limit you find a ratio. For example, 3997/2053.

The first number is the number of enterprise beans currently in the EJB cache (called the capacity).

The second number is the EJB cache setting (more about this in later steps). You will use this

ratio, particularly the capacity, in your analysis.

Also look for the statements Cache limit not reached and Cache limit exceeded.

Cache limit not reached

Your cache is equal to or larger than what is appropriate. If it is larger, you are wasting

memory, and should reduce the cache size to a more appropriate value, as described

below.

202 Administering WebSphere applications

Cache limit exceeded

The number of beans currently being used is greater than the capacity you have specified,

indicating that your cache is not properly tuned. The capacity can exceed the EJB Cache

setting because the setting is not a hard limit. The EJB Container does not stop adding

beans to the cache when the limit is reached. Doing so could mean that when the cache is

full, a request for a bean would not be fulfilled, or would at least be delayed until the cache

fell below the limit. Instead, the cache limit can be exceeded, but the EJB Container

attempts to clean up the cache and keep it below the EJB Cache size.

 In the case where the cache limit is exceeded, you might see a trace point similar to this:

BackgroundLru < EJB Cache: Sweep (64,38) - Evicted = 50 : 3589/2053 Exit

Notice the Evicted = string. If you see this string, you are using either Stateful Session

Beans or Entity Beans configured for Option A or B caching. Evicted objects mean you are

not taking full advantage of the caching option that you have chosen. Your first step is to

try increasing the EJB Cache size. If continued running of your application results in more

evictions, it means that the application is accessing or creating more new beans between

EJB Cache sweeps than the cache can hold, and NOT re-using existing beans. At this

point, you might want to consider using Option C caching for your entity beans, or checking

your application to see if it is not removing Stateful Session Beans after they are no longer

needed.

Note: Entity beans configured with Option C caching are only in the cache while in a

transaction, and are required to be held in the cache for the entire transaction.

Therefore, they are never evicted during a cache sweep, but are removed from the

cache when the transaction completes. In addition, if you are using only Stateless

Session Beans or Entity Beans with Option C caching (or both), then you might

want to increase your EJB Cache cleanup interval to a larger number. The cleanup

interval can be set as described in “EJB cache settings” on page 204. Stateless

Session Beans are NOT in the EJB Cache, and since Entity Beans using Option C

caching are never evicted by the caching (LRU) strategy, there is really no need to

sweep very often. When using only Stateless Session Beans or Option C caching,

you should only see ″Evicted = 0″ in the trace example shown above.

b. Analyze your trace log. Look for the trace string Cache limit exceeded.

v You might find more than one instance of this string. Examine them all to find the highest

capacity value of beans in the EJB Cache. Re-set your EJB Cache size to about 110% of this

number. Setting the EJB Cache size is explained in a later step.

v You might find no instances of this string. This means that you have not exceeded the capacity

of the EJB Cache (which is your end goal), but not seeing it during your initial analysis could

also mean that your cache is too large and using unnecessary memory. In this case, you still

need to tune your cache by reducing the cache size until your cache limit is exceeded, then

increasing it to the optimum value. Setting the EJB Cache size is explained in a later step.

Your ultimate goal is to set the cache limit to a value that does not waste resources, but also does

not get exceeded. So, a good set-up gives you a trace with only the Cache limit not reached

message, and a ratio where the capacity number can be near, but below, 100% of the EJB Cache

setting.

Note: It is recommended that you do not set your cache size to anything less than the default of

2053.

5. Modify the cache settings based on your analysis. See “EJB cache settings” on page 204 for

information on how to do this.

6. Stop your server, delete all logs, and restart your server.

7. Repeat the above steps until you are satisfied with your settings.

Chapter 3. EJB applications 203

8. Disable the EJB Cache trace. With the cache properly tuned, you can remove the trace, remove old

logs, and restart your server.

What to do next

From your analysis, it is possible to set the EJB cache optimally from an EJB Container perspective, but

perhaps not optimally from a WebSphere Application Server perspective. A larger cache size provides

more hits and better EJB cache performance, but uses more memory. Memory used by the cache is not

available to other areas of the product, potentially causing the overall performance to suffer. In a system

with ample memory, this might not be an issue and properly tuning the EJB cache might increase overall

performance. However, you should take into account this system performance versus EJB cache

performance when configuring the cache.

Related tasks

Working with trace
Use trace to obtain detailed information about running the WebSphere Application Server components,

including application servers, clients, and other processes in the environment.

Related reference

“EJB cache settings”
Use this page to configure and manage the cache for a specific Enterprise JavaBeans (EJB) container. To

avoid errors from attempting to overload the cache, determine the cache absolute limit. Multiply the

number of enterprise beans active in any given transaction by the total number of concurrent transactions

expected. Then, add the number of active session bean instances. This value is the limit that the cache

will hold.

EJB cache settings

Use this page to configure and manage the cache for a specific Enterprise JavaBeans (EJB) container. To

avoid errors from attempting to overload the cache, determine the cache absolute limit. Multiply the

number of enterprise beans active in any given transaction by the total number of concurrent transactions

expected. Then, add the number of active session bean instances. This value is the limit that the cache

will hold.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server → EJB Container Settings → EJB cache settings.

Cleanup interval

Specifies the interval at which the container attempts to remove unused items from the cache in order to

reduce the total number of items to the value of the cache size. This setting applies to the cache only.

The cache manager tries to maintain some unallocated entries that can be allocated quickly as needed. A

background thread attempts to free some entries while maintaining some unallocated entries. If the thread

runs while the application server is idle, when the application server needs to allocate new cache entries, it

does not pay the performance cost of removing entries from the cache. In general, increase this parameter

as the cache size increases.Timeouts are specified according to the transaction type:

v Container-managed transactions: The bean provider configures the timeout attribute in the deployment

desecriptor.

v Bean-managed transaction: An application calls the UserTransaction.setTransactionTimeout method in

the codes.

 Data type Integer

Units Milliseconds

Range 0 to 2 147 483 647

Default 3000

204 Administering WebSphere applications

Cache size

Specifies the number of buckets in the active instance list within the EJB container.

A bucket can contain more than one active enterprise bean instance, but performance is maximized if

each bucket in the table has a minimum number of instances assigned to it. When the number of active

instances within the container exceeds the number of buckets, that is, the cache size, the container

periodically attempts to reduce the number of active instances in the table by passivating some of the

active instances. For the best balance of performance and memory, set this value to the maximum number

of active instances expected during a typical workload.

 Data type Integer

Units Buckets in the hash table

Range Greater than 0. The container selects the next largest

prime number equal to or greater than the specified value.

Default 2053

Container interoperability

Container interoperability describes the ability of the product clients and servers at different versions to

successfully negotiate differences in native Enterprise JavaBeans (EJB) finder methods support and Java

EE compliance.

Interoperability of the handle formats in WebSphere Application Server, Version 5

and Version 5.0.1

Applications that attempt to persist handles to enterprise beans and EJBHome needed to subclass

ObjectInputStream in WebSphere Application Server, Version 5. This action was required so that the

subclass ObjectInputStream could utilize the context class loader to resolve the classes for enterprise

beans and EJBHome stubs.

In addition, handles created and persisted in WebSphere Application Server, Version 5 only work with

objects that have an unchanged remote interface. If the remote interface is changed, the handle is no

longer valid because the stub is serialized inside the handle and its serial Version UID changes if the

remote interface changes.

This release introduces a new handle persistence mechanism that avoids the implementation drawbacks

of the previous version. However, if handles are used for this WebSphere Application Server deployment,

you should consider the following issues when applying this update, future WebSphere Application Server

Fix Packs and EJB Container cumulative fixes for WebSphere Application Server, Version 5.

If a WebSphere Application Server, Version 5 persisted handle or home handle is encountered by a

WebSphere Application Server, Version 5.0.1 system, it can be read and utilized. In addition, it will be

converted to WebSphere Application Server, Version 5.0.1 format if it is re-persisted. The WebSphere

Application Server, Version 5.0.1 format cannot be read by a WebSphere Application Server, Version 5

system unless PQ72184 is applied.

Problems arise when handles are persisted and shared across systems that are not at the WebSphere

Application Server, Version 5.0.1 level or later. However, a Version 5 system can receive a handle from

Version 5.0.1 remotely through a call to get a handle on an enterprise bean or a getHomeHandle on an

EJBHome. The remote call will succeed, however, any attempt to persist it on the Version 5 system will

have the same limitations regarding the use of ObjectInputStream and changes in remote interface

invalidating the persisted handle.

When your application stores handles persistently and shares this persistence with multiple clients or

application servers, apply WebSphere Application Server, Version 5.0.1 or PQ72184 to both the client and

server systems at the same time. Failure to do so can result in the inability of these systems to read the

Chapter 3. EJB applications 205

handle data stored by upgraded systems. Also, handles stored by the WebSphere Application Server,

Version 5 can force the applications of the updated system to still subclass ObjectInputStream.

Applications using the WebSphere Application Server Enterprise, Version 5 scheduler and process

choreographer, are affected by these changes. These users should update their Version 5 systems at the

same time with either Version 5.0.1 or PQ72184.

If the applications store handles in the session context, or locally in a file on the same system, that is not

shared by other applications, on different systems, they might be able to update their systems individually,

rather than all at once. If Client Container and thin client applications do not share persisted handle data,

they can be updated as needed as well. However, handles created and persisted in WebSphere

Application Server, Version 5, Version 4.0.3 and later (with the property flag set), or Version 3.5.7 and later

(with the property flag set) are not usable if either the home or the remote interface changes.

If any WebSphere Application Server, Version 3.5.7 or Version 4.0.3 and later enables the system property

com.ibm.websphere.container.portable to true, any handles to objects on that server have the same

interoperability limitations. In addition, if any WebSphere Application Server, Version 3.5.7 and later or

Version 4.0.3 applications store a handle obtained from a WebSphere Application Server, Version 5 or

Version 5.0.1, the same restrictions apply, regarding the need to subclass ObjectInputStream and the

usability of handles after a change to the remote interface is made.

Replication of the Http Session and Handles

This note applies to you if you place Handles to Homes or Enterprise JavaBeans, or EJB or EJBHome

references in the Http Session in your application and you use Http Session Replication. If you intend to

replicate a mixed environment of Version 5.0.0 and Version 5.0.1 or 5.0.2 machines you should first apply

the latest Version 5.0.0 container cumulative e-fix to the Version 5.0.0 machines before allowing the

Version 5.0.1 or 5.0.2 server into the typology. The reason for this is that Version 5.0.0 servers are not

able to understand the persisted Handle format used on the Version 5.0.1 and 5.0.2 server. This is similar

to the case of Version 5.0.0 and Version 5.0.1 or 5.0.2 systems trying to use a shared database,

mentioned above. But in this case, it is the Http Session object and not the database providing the

persistence.

Top Down Deployment Mapping

The size of the Handle objects has grown due to the fix put in to allow serialization and deserialization to

occur without the previous requirements of subclassing the ObjectInputStream and so on. Top down

deployment of an object that contains EJB and EJBHome references create a database table ddl that has

a field of 1000 bytes of VARCHAR for BITDATA which will contain the Handle. It might be that your

object’s Handle does not fit in the 1000 byte default field, and you might need to adjust this to a higher

value. You might try increments of 250 bytes, that is, 1250, 1500, and so on.

EJB 2.1 container tuning

If you use applications that affect the size of the Enterprise JavaBeans (EJB) container cache, it is

possible that the performance of your applications can be impacted by an incorrect size setting. Container

managed persistence (CMP) is discussed in this topic, although it is important to know that entity beans

are not supported in an EJB 3.0 module.

EJB cache size

Monitoring Tivoli Performance Viewer (TPV) is a great way to diagnose if the EJB container cache size

setting is tuned correctly for your application.

If the application has filled the cache causing evictions to occur, TPV will show a very high rate of the

ejbStores method being called and probably a lower than expected CPU utilization on the application

server machine.

206 Administering WebSphere applications

All applications using enterprise beans should have this setting adjusted from the default if the following

formula works out to more than 2000.

EJB_Cache_Size = (Largest number of Option B or C Entity Beans enlisted in a

transaction * maximum number of concurrent transactions) +

(Largest number of unique Option A Entity Beans expected to be accessed during

typical application workload) +

(Number of stateful Session Beans active during typical workload) +

(Number of stateless SessionBean types used during typical workload)

Where:

Option B and C Entity Beans are only held in the EJB cache during the lifetime

of the transaction they are enlisted in. Therefore, the first term in the formula

computes the average EJB cache requirements for these types of beans.

Option A Entity Beans are held in the EJB cache indefinitely, and are only removed

 from the cache if there starts to become more beans in the cache than the cache

size has been set to. If your application uses Read Only Beans, consider them to be Option A beans for the purpose of this tuning calculation.

Stateful Session Beans are held in the EJB cache until they are removed by the

application, or their session timeout value is reached.

Only a single stateless Session Bean instance for each EJB type is held in the

cache during the time any methods are being executed on that stateless Session

Bean. If two or more methods are being executed simultaneously on the same

stateless Session Bean type, each method executes on its own bean instance, but

only one cache location is used for all of these instances.

This calculates the upper bound on the maximum possible number of enterprise beans active at one time

inside the application server. Because the EJB container’s cache is built to contain all these beans for

performance optimizations, best performance can be achieved by setting this cache size to be larger than

the number resulting from the calculation above.

<tuning parameter>

This setting can be found under Servers > Application Servers > serverName >

 EJB Container > EJB Cache Settings

Also while adjusting the EJB cache size, the EJB container management thread parameter can be tuned

to meet the needs of the application. The management thread is controlled through the Clean Up Interval

setting. This setting controls how frequently a daemon thread inside of the product attempts to remove

bean instances from the cache that have not been used recently, attempting to keep the number of bean

instances at or below the cache size. This ensures that the EJB container places and looks up items in the

cache as quickly. It is typically best to leave this interval set to the default, however, in some cases, it

might be worthwhile to see if there is a benefit to reducing this interval.

For information about tuning the EJB cache to an even finer degree using the EJB cache trace service,

see “Tuning the EJB cache using the trace service” on page 202.

EJB stateful session bean tuning

Stateful session bean timeout values can be configured using an assembly tool. For WebSphere

Application Server Version 5.1 and later, the default value is 600 seconds. If this default value is not

acceptable, you can change it in the tooling’s EJB deployment descriptor editor. Stateless session beans

do not have a timeout value because they have no conversational state and are not dedicated to any

specific client.

You cannot set the timeout value globally, or on the server, so that the value applies to all stateful session

beans. You can only set the timeout on a bean-by-bean basis.

Dcom.ibm.websphere.ejbcontainer.poolSize

If the application is using the majority of the instances in the pool, the TPV indicates this. When this

occurs, then the size of those bean pools that are being exhausted should be increased. This can be done

by adding this parameter in the JVM’s custom properties tag .

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#

<enterprisebean_name>=<minSize>,<maxSize>

where:

 <application_name> is the J2EE application name as defined in the application

archive (.ear) file deployment descriptor, for the bean whose pool size is being

Chapter 3. EJB applications 207

http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/index.jsp?topic=

set

<module_name> is the .jar file name of the EJB module, for the bean whose pool size

 is being set,

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module

deployment descriptor, for the bean whose pool size is being set

<minSize> is the number of bean instances the container maintains in the pool,

 irrespective of how long the beans have been in the pool (beans greater than this

 number are cleared from the pool over time to optimize memory usage)

<maxSize> is the number of bean instances in the pool where no more bean instances

 are placed in the pool after they are used (that is, once the pool is at this

 size, any additional beans are discarded rather than added into the pool --

this ensures the number of beans in the pool has an upper limit so memory usage

does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize

can be set to the same number. Note that there is a separate instance pool for

every EJB type running in the application server, and that every pool starts out

with no instances in it - that is, the number of instances grows as beans are

used and then placed in the pool. When a bean instance is needed by the container

and no beans are available in the pool, the container creates a new bean

instance, uses it, then places that instance in the pool (unless there are

already maxSize instances in the pool).

For example, the statement

-Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

would set a minSize of 125 and a maxSize of 1327 on the bean named "ivtEJBObject"

within the ivtEJB.jar file, in the application "ivtApp".

Where ivtApp is replaced by the actual application name, ivtEJB.jar file is replaced by the JAR that

contains the bean that needs to have its pool size increased, and ivtEJBObject is the bean name of the

enterprise bean whose pool size should be increased. The minimum number of beans that are held in the

pool is 125. The maximum number of beans that are held in the pool is 1327. These should be set so no

more evictions occur from the pool and in most cases should be set equal if memory is plentiful because

no growth and shrinkage of the pool occurs.

Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation

You should have a good idea of how your application handles the creation of primary key objects for use

by CMP beans and bean-managed persistence (BMP) beans inside of the product. The IBM EJB container

uses the primary key of an entity bean as an identifier inside of many internal data structures to optimize

performance. However, the EJB container must copy these primary key objects upon the first access to

the bean to ensure that the objects stored in the internal caches are separate from the ones used in an

application, in case the application changes or mutates the primary key, to keep the internal structures

consistent. If the application does not mutate any of the primary keys used to create and access entity

beans after they are created, a special flag can be used that ensures the EJB container skips the copy of

the primary key object, saving CPU cycles and increasing performance. This mechanism can be enabled

at your own risk by adding the –D property to the JVM custom property field.

<tuning parameter>

-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

The performance benefit of this optimization depends on the application. If the application uses primitive

types for enterprise beans’ primary keys there is no gain because these objects are already immutable

and the copy mechanism takes this into account. If, however, the application uses many complex primary

keys, that is, an object for a primary key or multiple fields, this parameter can yield significant

improvements.

208 Administering WebSphere applications

Dcom.ibm.ws.pm.deferredcreate

The persistence manager is used by the EJB container to persist data to the database from CMP entity

beans. When creating entity beans by calling the ejbCreate method, by default the persistence manager

immediately inserts the empty row with only the primary key in the database. In most cases, after creating

the bean you should modify fields in the bean created or in other beans inside of the same transaction. If

you want to postpone the insert into the database until the end of the transaction to eliminate one trip to

the database, set the –D flag inside of the JVM custom properties field. The data is inserted into the

database and consistency is maintained.

<tuning parameter>

-Dcom.ibm.ws.pm.deferredcreate=true

The performance benefit of this optimization depends on the application. If the EJB applications

transactions are insert intensive the application can benefit from this optimization. If the application

performs few inserts, the benefit of this optimization is less.

Dcom.ibm.ws.pm.batch

When an EJB application accesses multiple CMP beans inside of a single transaction, depending on the

operations performed on the beans, such as updates, inserts, reads, the number of operations issued to

the database corresponds directly to the operations performed on the CMP beans. If the database system

you are using supports batching of update statements, you can enable this flag and increase performance

on all interactions with the database that involve more than two updates in a single transaction.

This flag lets the persistence manager add all the update statements into one single batch statement that

is issued to the database. This saves round trips to the database, increasing performance. If the you know

that your application exhibits the behavior of updating multiple CMP beans in a single transaction, and the

database supports batch updates, you can set the –D flag inside of the JVM custom properties field.

<tuning parameter>

-Dcom.ibm.ws.pm.batch=true

The performance benefit of this optimization depends on the application. If the application never or

infrequently updates CMP beans or only updates a single bean per transaction there is no performance

gain. If the application updates multiple beans per transaction, this parameter benefits the applications

performance.

The following table lists the backend databases that support batch update.

 Table 1.

Database Supports batch update

Supports batch update with

Optimistic Concurrency Control

DB2 yes no

Oracle yes no

DB2 Universal Driver yes yes

Informix yes yes

SQLServer yes yes

Apache Derby yes yes

Note: Batch update with OCC cannot be performed for databases that do not support it, even if specified

by the access intent.

com.ibm.ws.pm.useLegacyCache

Specifies the name of the Java class that the product uses to implement the

javax.rmi.CORBA.UtilDelegate interface.

Chapter 3. EJB applications 209

Persistence manager has two types of caching mechanisms, legacy cache and two-level cache. Typically,

two-level cache performs better than legacy cache because of optimizations in this mode. The default is

legacy cache, although two-level cache is recommended. Set this configuration through the system

property

com.ibm.ws.pm.useLegacyCache=false

com.ibm.ws.pm.grouppartialupdate and com.ibm.ws.pm.batch

The partial updates feature enhances the performance of applications with enterprise beans in certain

scenarios. Persistence manager has two caching mechanisms available, legacy cache and two-level

cache. Typically, two-level cache performs better than legacy cache because of the optimizations in this

mode.

In certain applications where you need to perform both batch updates and partial updates, you must

configure the following system properties to gain the benefits of both:

‘com.ibm.ws.pm.grouppartialupdate=true’ and ‘com.ibm.ws.pm.batch=true’

Deploying EJB modules

When you deploy an Enterprise JavaBeans (EJB) module, you install that module on a server that has

been configured to support deployed modules.

Before you begin

Assemble one or more EJB modules, assemble one or more Web modules, and assemble them into a

J2EE application.

Assemble one or more EJB 3.0 modules, assemble one or more Web modules, and assemble them into a

J2EE application.

For an overview about the changes to the EJB deployment model for EJB 3.0, see the topic ″EJB 3.0

deployment overview.″

1. Prepare the deployment environment.

2. Update the configuration for each EJB module as needed for the deployment environment.

3. Deploy the application.

What to do next

If you specify that the EJBDeploy tool be run during application installation and the installation fails with a

NameNotFoundException message, ensure that the input Java archive (JAR) or enterprise archive (EAR)

file does not contain source files. Either remove the source files or include all dependent classes and

resource files on the class path. If there are source files in the input JAR or EAR file, the EJB deployment

tools runs a rebuild before generating the deployment code.

If the module deploys successfully, test and debug the module.

EJB 3.0 deployment overview

Learn about the Enterprise JavaBeans (EJB) 3.0 deployment model, including to Just-In-Time (JIT)

deployment.

All Java Platform, Enterprise Edition (Java EE) application server products have some form of EJB

deployment phase where your application is customized to run in that particular application server

implementation. Typically, this is accomplished by an application server-specific deployment tool, which

generates code to bridge your EJB interface and implementation code to the application server’s EJB

210 Administering WebSphere applications

container implementation. Some application server products’ deploy tools alter the bytecodes of your

application classes rather than using code generation, but the end result is similar.

In WebSphere Application Server, the bridging is accomplished by generating code that wraps your EJB

implementation classes, connecting them to the product EJB container, which in turn allows the EJB

container to host your enterprise beans and provide services to them. If one or more of your enterprise

beans has defined remote interfaces, additional code is generated to provide the remote function.

Historically, EJB deployment in the WebSphere product has been performed by the EJBDeploy tool that is

included with product and packaged with WebSphere product-oriented development tools.

The EJBDeploy tool introspects your EJB external interfaces, generates the wrapper code as .java files,

then compiles it using the javac compiler to produce .class files, which are then packaged in your EJB

module with your application code. The EJBDeploy tool also runs the rmic tool against the remote EJB

interfaces in the application, producing additional stub and tie class files that interact with the Remote

Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Object Request Broker (ORB), providing

remote object support. Typically, you run the EJBDeploy tool either when you install the application on the

product or sometime before you install the application from the command-line tool or within a development

tool.

Just-In-Time deployment

The EJB 3.0 support in WebSphere Application Server adds a new feature called Just-In-Time

Deployment. With Just-In-Time Deployment, the EJB container dynamically generates the wrapper, stub,

and tie classes in-memory as needed when the application is running. Additionally, the Web container and

application client containers dynamically generate the stub class required for remote EJB invocations.

Effectively, this means that you do not need to process EJB 3.0 modules, Web modules that invoke EJB

3.0 beans, or client modules that invoke EJB 3.0 beans, through the EJBDeploy tool prior to running them

in WebSphere.

createEJBStubs tool

Even though the Just-In-Time Deployment feature, in many cases, dynamically generates the RMI-IIOP

stub classes that are required for invocation of remote EJB interfaces, there remain some cases where

these stub classes are not dynamically generated. For EJB 3.0 clients not running inside a Web container,

EJB container, or client container, that is upgraded to EJB 3.0 level, you must generate the stub classes

with the createEJBStubs tool, then make the generated stubs available in the client environment’s

classpath. Typically you would accomplish this by copying the generated stubs to the location where the

client’s business interface class resides.

To summarize, the createEJBStubs tool must be used to generate client-side stubs for the following

environments:

v ″Bare″ Java Standard Edition (SE) clients, where a Java SE Java Virtual Machine (JVM) is the client

environment.

v WebSphere Application Server container environments prior to Version 7 that do not have the Feature

Pack for EJB 3.0 applied.

v Non-WebSphere Application Server environments.

For more information about packaging your EJB module, see the topic, ″EJB 3.0 module packaging

overview.″

EJBDEPLOY relationships – troubleshooting tips

Use this information to troubleshoot information for EJBDEPLOY problems.

Chapter 3. EJB applications 211

The converter that is defined for the primary key is not invoked on its foreign key

value

The mapping for primary key fields to database columns may use a converter to transform the key values.

If a container-managed persistence (CMP) bean uses a converter to map its primary key, and that bean

has a relationship where the bean at the other end holds a foreign key, the mapping for the foreign key will

not use the converter.

The following errors might occur, indicating that the converter defined for the primary key is not invoked on

its foreign key value. During the run of the ejbDeploy command , you receive the following message:

No type mapping defined for Java datatype1 to Database datatype2

During run time, the application does not find the CMP bean at the other end of the relationship.

To work around this limitation, define your own foreign key in the database table, and create a mapping

that uses the same converter as defined for the primary key on the enterprise beans at the other end of its

relationship.

EJB module settings

Use this page to configure and manage a specific deployed EJB module.

Note: You cannot start or stop an individual EJB module for modification. You must start or stop the

appropriate application entirely.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Manage Modules → module_name.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

URI

Specifies location of the module relative to the root of the application EAR file. The URI must match the

URI of a ModuleRef URI in the deployment descriptor of the deployed application (EAR).

Alternate deployment descriptor

Specifies an alternate deployment descriptor for the module as defined in the application deployment

descriptor according to the J2EE specification.

Starting weight

Specifies the order in which modules are started when the server starts. The module with the lowest

starting weight is started first.

 Data type Integer

Default 5000

Range Greater than 0

212 Administering WebSphere applications

Chapter 4. Client applications

Using application clients

An application client module is a Java Archive (JAR) file that contains a client for accessing a Java

application.

About this task

Complete the following steps for developing different types of application clients.

1. Decide on a type of application client.

2. Develop the application client code.

a. Develop ActiveX application client code.

b. Develop J2EE application client code.

c. Develop pluggable application client code.

d. Develop thin application client code.

3. Assemble the application client using the Application Server Toolkit.

4. Deploy the application client.

Deploy the application client on Windows systems.

5. Run the application client.

Example

The IBM Application Client for WebSphere Application Server Samples gallery is not available on

WebSphere Application Server for i5/OS. To access these samples, install WebSphere Application Server

Clients on the Windows platform, and retrieve the samples from your local file system as the following

command indicates:

<app_server_root>/samples/index.html

Application Client for WebSphere Application Server

In a traditional client-server environment, the client requests a service and the server fulfills the request.

Multiple clients use a single server. Clients can also access several different servers. This model persists

for Java clients except that now these requests use a client runtime environment.

In this model, the client application requires a servlet to communicate with the enterprise bean, and the

servlet must reside on the same machine as the WebSphere Application Server.

The Application Client for WebSphere Application Server Version 7.0 (Application Client) consists of the

following client applications:

v Java Platform, Enterprise Edition (Java EE) application client application (Uses services provided by the

Java EE Client Container)

v Thin application client application (Does not use services provided by the Java EE Client Container)

The Application Client is packaged with the following components:

v The application client on WebSphere Application Server for i5/OS provides the necessary Java

extensions to work with the iSeries server Java (TM) Development Kit. The i5/OS product does not

include a standalone JRE.

v WebSphere Application Server run time for Java EE application client applications or Thin application

client applications

© Copyright IBM Corp. 2008 213

The Java EE application client is a Java application program that accesses enterprise beans, Java

DataBase Connectivity (JDBC) APIs, and Java Message Service message queues. The Java EE

application client program runs on client machines. This program follows the same Java programming

model as other Java programs; however, the Java EE application client depends on the Application Client

run time to configure its execution environment, and uses the Java Naming and Directory Interface (JNDI)

name space to access resources.

The Thin application client provides a lightweight Java client programming model. This client is useful in

situations where the client application requires a thinner, more lightweight environment than the one

offered by the Java EE application client.

The Java EE application client programming model provides the benefits of the Java EE platform for the

Java client application. Use the Java EE application client to develop, assemble, deploy and launch a

client application. The tooling provided with the WebSphere Application Server platform supports the

seamless integration of these stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the Java EE platform, you can put the client

application code from one Java EE platform implementation to another. The client application package can

require redeployment using each Java EE platform deployment tool, but the code that comprises the client

application remains the same.

The Application Client run time supplies a container that provides access to system services for the client

application code. The client application code must contain a main method. The Application Client run time

invokes this main method after the environment initializes and runs until the Java virtual machine code

terminates.

The Java EE platform supports the Application Client use of nicknames or short names, defined within the

client application deployment descriptor. These deployment descriptors identify enterprise beans or local

resources (JDBC, Java Message Service (JMS), JavaMail and URL APIs) for simplified resolution through

JNDI. This simplified resolution to the enterprise bean reference and local resource reference also

eliminates changes to the client application code, when the underlying object or resource either changes

or moves to a different server. When these changes occur, the Application Client can require

redeployment.

The Application Client also provides initialization of the run-time environment for the client application. The

deployment descriptor defines this unique initialization for each client application. The Application Client

run time also provides support for security authentication to enterprise beans and local resources.

The Application Client uses the Java Remote Method Invocation-Internet InterORB Protocol (RMI-IIOP).

Using this protocol enables the client application to access enterprise bean references and to use

Common Object Request Broker Architecture (CORBA) services provided by the Java EE platform

implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in

developing a client application that requires access to both enterprise bean references and CORBA object

references.

When you combine the Java EE and CORBA environments or programming models in one client

application, you must understand the differences between the two programming models to use and

manage each appropriately.

Application client functions

This topic provides information about available functions in the different types of clients.

Use the following table to identify the available functions in the different types of clients.

 Available functions ActiveX client Applet client J2EE

client

Pluggable client Thin client

214 Administering WebSphere applications

Provides all the benefits of a

J2EE platform

Yes No Yes No No

Portable across all J2EE

platforms

No No Yes No No

Provides the necessary run-time

support for communication

between a client and a server

Yes Yes Yes Yes Yes

Supports the use of nicknames in

the deployment descriptor files.

Note: Although you can edit

deployment descriptor files, do

not use the administrative

console to modify them.

Yes No Yes No No

Supports use of the RMI-IIOP

protocol

Yes Yes Yes Yes Yes

Browser-based application No Yes No No No

Enables development of client

applications that can access

enterprise bean references and

CORBA object references

Yes Yes Yes Yes Yes

Enables the initialization of the

client application run-time

environment

Yes No Yes No No

Supports security authentication

to enterprise beans

Yes Limited Yes Yes Yes

Supports security authentication

to local resources

Yes No Yes No No

Requires distribution of

application to client machines

Yes No Yes Yes Yes

Enables access to enterprise

beans and other Java classes

through Visual Basic, VBScript,

and Active Server Pages (ASP)

code

Yes No No No No

Provides a lightweight client

suitable for download

No Yes No Yes Yes

Enables access JNDI APIs for

enterprise bean resolution

Yes Yes Yes Yes Yes

Runs on client machines that use

the Sun Java Runtime

Environment

No No No Yes No

Supports CORBA services (using

CORBA services can render the

application client code

nonportable)

No No Yes No No

Supports JMS connections to the

default messaging provider

No No Yes No Yes

Supports JMS connections to the

default messaging provider

No No Yes Yes Yes

Chapter 4. Client applications 215

ActiveX application clients

WebSphere Application Server provides an ActiveX to EJB bridge that enables ActiveX programs to

access enterprise beans through a set of ActiveX automation objects.

The bridge accomplishes this access by loading the Java virtual machine (JVM) into any ActiveX

automation container such as Visual Basic, VBScript, and Active Server Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:

v Client applications, such as Visual Basic and VBScript, are programs that a user starts from the

command line, desktop icon, or Start menu shortcut.

v Client services, such as Active Server Pages, are programs started by some automated means like the

Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to programmatically access

the JVM code. Therefore the JVM code exists in the same process space as the ActiveX application

(Visual Basic, VBScript, or ASP) and remains attached to the process until that process terminates. To

create JVM code, an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory object.

For more information about creating JVM code for an ActiveX program, see ActiveX to EJB bridge,

initializing JVM code.

After an ActiveX client program has initialized the JVM code, the program calls several methods to create

a proxy object for the Java class. When accessing a Java class or object, the real Java object exists in the

JVM code; the automation container contains the proxy for that Java object. The ActiveX program can use

the proxy object to access the Java class, object fields, and methods. For more information about using

Java proxy objects, see ActiveX to EJB bridge, using Java proxy objects. For more information about

calling methods and access fields, see ActiveX to EJB bridge, calling Java methods and ActiveX to EJB

bridge, accessing Java fields.

The client program performs primitive data type conversion through the COM IDispatch interface (use of

the IUnknown interface is not directly supported). Primitive data types are automatically converted between

native automation types and Java types. All other types are handled automatically by the proxy objects For

more information about data type conversion, see ActiveX to EJB bridge, converting data types.

Any exceptions thrown in Java code are encapsulated and thrown again as a COM error, from which the

ActiveX program can determine the actual Java exceptions. For more information about handling

exceptions, see ActiveX to EJB bridge, handling errors.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded access and implements

the free threaded marshaler (FTM) to work in a hybrid environment such as Active Server Pages. For

more information about the support for threading, see ActiveX to EJB bridge, using threading.

Applet clients

The applet client provides a browser-based Java run time capable of interacting with enterprise beans

directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client application programming

environment that provides a richer and more robust environment than the one offered by the Applet >

Servlet > enterprise bean model.

The programming model for this client is a hybrid of the Java application thin client and a servlet client.

When accessing enterprise beans from this client, the applet can consider the enterprise bean object

references as CORBA object references.

No tooling support exists for this client to develop, assemble or deploy the applet. You are responsible for

developing the applet, generating the necessary client bindings for the enterprise beans and CORBA

objects, and bundling these pieces together to install or download to the client machine. The Java applet

216 Administering WebSphere applications

client provides the necessary run time to support communication between the client and the server. The

applet client run time is provided through the Java applet browser plug-in that you install on the client

machine.

Generate client-side bindings using an assembly tool. An applet can utilize these bindings, or you can

generate client-side bindings using the rmic command. This command is part of the IBM Developer Kit,

Java edition that is installed with the WebSphere Application Server.

The applet client uses the RMI-IIOP protocol. Using this protocol enables the applet to access enterprise

bean references and CORBA object references, but the applet is restricted in using some supported

CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you must understand the

differences between the two programming models, and you must use and manage each model

appropriately.

The applet environment restricts access to external resources from the browser run-time environment. You

can make some of these resources available to the applet by setting the correct security policy settings in

the WebSphere Application Server client.policy file. If given the correct set of permissions, the applet

client must explicitly create the connection to the resource using the appropriate API. This client does not

perform initialization of any service that the client applet can need. For example, the client application is

responsible for the initialization of the naming service, either through the CosNaming, or the Java Naming

and Directory Interface (JNDI) APIs.

Java EE application clients

The Java Platform, Enterprise Edition (Java EE) application client programming model provides the

benefits of the Java EE Platform for WebSphere Application Server Enterprise product.

The Java EE platform offers the ability to seamlessly develop, assemble, deploy and launch a client

application. The tooling provided with the WebSphere platform supports the seamless integration of these

stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the Java EE platform, you can put the client

application code from one Java EE platform implementation to another. The client application package can

require redeployment using each Java EE platform deployment tool, but the code that comprises the client

application does not change.

The Java EE application client run time supplies a container that provides access to system services for

the application client code. The Java EE application client code must contain a main method. The Java EE

application client run time invokes this main method after the environment initializes and runs until the

Java virtual machine application terminates.

Application clients can use nicknames or short names, defined within the client application deployment

descriptor with the Java EE platform. These deployment descriptors identify enterprise beans or local

resources (Java Database Connectivity (JDBC) data sources, J2C connection factories, Java Message

Service (JMS), JavaMail and URL APIs) for simplified resolution through JNDI use. This simplified

resolution to the enterprise bean reference and local resource reference also eliminates changes to the

application client code, when the underlying object or resource either changes or moves to a different

server. When these changes occur, the application client can require redeployment. Although you can edit

deployment descriptor files, do not use the administrative console to modify them.

Note: Connection pool is not supported in application client. The application client calls the database

directly, without a datasource. If you want to use the getConnection() request from the application

client, configure the JDBC provider in the application client deployment descriptors, using Rational®

Application Developer (RAD) or assembly tool. The connection is established between application

Chapter 4. Client applications 217

client and the database. Application client does not have connection pool, but JDBC provider

configuration is available in the client deployment descriptors.

The Java EE application client also provides initialization of the run-time environment for the client

application. The deployment descriptor defines this unique initialization for each client application. The

Java EE application client run time also provides support for security authentication to the enterprise

beans and local resources.

The Java EE application client uses the Java Remote Method Invocation technology run over Internet

Inter-Orb Protocol (RMI-IIOP). Using this protocol enables the client application to access enterprise bean

references and to use Common Object Request Broker Architecture (CORBA) services provided by the

Java EE platform implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services

assist users in developing a client application that requires access to both enterprise bean references and

CORBA object references.

When you combine the Java EE and the CORBA WebSphere Application Server Enterprise environments

or programming models in one client application, you must understand the differences between the two

programming models to use and manage each appropriately.

Pluggable application clients

The Pluggable application client provides a lightweight, downloadable Java application run time capable of

interacting with enterprise beans.

Note: The Pluggable application client is available only on the Windows platform.

The Pluggable application client requires that you have previously installed the Sun Java Runtime

Environment (JRE) files. In all other aspects, the Pluggable application client, and the Thin application

client are similar.

This client is designed to support those users who want a lightweight Java client application programming

environment, without the overhead of the Java Platform, Enterprise Edition (Java EE) platform on the client

machine. The programming model for this client is heavily influenced by the CORBA programming model,

but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can consider the enterprise beans

object references as CORBA object references.

Tooling does not exist on the client; however, tooling does exists on the server. You are responsible for

developing the client application, generating the necessary client bindings for the enterprise bean and

CORBA objects, and after bundling these pieces together, installing them on the client machine.

The Pluggable application client provides the necessary run time to support the communication needs

between the client and the server.

The Pluggable application client uses the RMI-IIOP protocol. Using this protocol enables the client

application to access enterprise bean references and CORBA object references and use any supported

CORBA services. Using the RMI-IIOP protocol along with the accessibility of CORBA services can assist a

user in developing a client application that needs to access both enterprise bean references and CORBA

object references.

When you combine the Java EE and CORBA environments in one client application, you must understand

the differences between the two programming models to use and manage each appropriately.

The Pluggable application client run time provides the necessary support for the client application for

object resolution, security, Reliability Availability and Serviceability (RAS), and other services. However,

this client does not support a container that provides easy access to these services. For example, no

218 Administering WebSphere applications

support exists for using nicknames for enterprise beans or local resource resolution. When resolving to an

enterprise bean (using either the Java Naming and Directory Interface (JNDI) API or CosNaming) sources,

the client application must know the location of the name server and the fully qualified name used when

the reference was bound into the name space.

When resolving to a local resource, the client application cannot resolve to the resource through a JNDI

lookup. Instead the client application must explicitly create the connection to the resource using the

appropriate API (JDBC, Java Message Service (JMS), and so on). This client does not perform

initialization of any of the services that the client application might require. For example, the client

application is responsible for the initialization of the naming service, either through CosNaming or JNDI

APIs.

The Pluggable application client offers access to most of the available client services in the Java EE

application client. However, you cannot access the services in the Pluggable application client as easily as

you can in the Java EE application client. The Java EE client has the advantage of performing a simple

JNDI name space lookup to access the desired service or resource. The Pluggable application client must

code explicitly for each resource in the client application. For example, looking up an enterprise bean

Home object requires the following code in a Java EE application client:

java.lang.Object ejbHome =

 initialContext.lookup("java:/comp/env/ejb/MyEJBHome");

MyEJBHome =

 (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, you need more explicit code in a Pluggable application client for Java:

java.lang.Object ejbHome =

 initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");

MyEJBHome =

 (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

In this example, the Java EE application client accesses a logical name from the java:/comp name space.

The Java EE client run time resolves that name to the physical location and returns the reference to the

client application. The pluggable client must know the fully qualified physical location of the enterprise

bean Home object in the name space. If this location changes, the pluggable client application must also

change the value placed on the lookup() statement.

In the Java EE client, the client application is protected from these changes because it uses the logical

name. A change can require a redeployment of the EAR file, but the actual client application code remains

the same.

The Pluggable application client is a traditional Java application that contains a main function. The

WebSphere Pluggable application client provides run-time support for accessing remote enterprise beans,

and provides the implementation for various services. This client can also access CORBA objects and

CORBA-based services. When using both environments in one client application, you need to understand

the differences between the enterprise bean and the CORBA programming models to manage both

environments.

For instance, the CORBA programming model requires the CORBA CosNaming name service for object

resolution in a name space. The enterprise beans programming model requires the JNDI name service.

The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the JNDI implementation in the enterprise

bean model to initialize the Object Request Broker (ORB). The client application is unaware that an ORB

is present. The CORBA model, however, requires the client application to explicitly initialize the ORB

through the ORB.init() static method.

The Pluggable application client provides a batch command that you can use to set the CLASSPATH and

JAVA_HOME environment variables to enable the Pluggable application client run time.

Chapter 4. Client applications 219

Thin application clients

The Thin application client provides a lightweight, downloadable Java application run time capable of

interacting with enterprise beans.

WebSphere Application Server supports the pluggable client.

The Thin application client is designed to support those users who want a lightweight Java client

application programming environment, without the overhead of the Java Platform, Enterprise Edition (Java

EE) platform on the client machine. The programming model for this client is heavily influenced by the

CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can consider the enterprise beans

object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for developing the client

application, generating the necessary client bindings for the enterprise bean and CORBA objects, and

bundling these pieces together to install on the client machine.

The Thin application client provides the necessary runtime to support the communication needs between

the client and the server.

The Thin application client uses the RMI-IIOP protocol. Using this protocol enables the client application to

access not only enterprise bean references and CORBA object references, but also allows the client

application to use any supported CORBA services. Using the RMI-IIOP protocol along with the accessibility

of CORBA services can assist a user in developing a client application that needs to access both

enterprise bean references and CORBA object references.

When you combine the Java EE and CORBA environments in one client application, you must understand

the differences between the two programming models, to use and manage each appropriately.

The Thin application client run time provides the necessary support for the client application for object

resolution, security, Reliability Availability and Servicability (RAS), and other services. However, this client

does not support a container that provides easy access to these services. For example, no support exists

for using nicknames for enterprise beans or local resource resolution. When resolving to an enterprise

bean (using either Java Naming and Directory Interface (JNDI) or CosNaming) sources, the client

application must know the location of the name server and the fully qualified name used when the

reference was bound into the name space. When resolving to a local resource, the client application

cannot resolve to the resource through a JNDI lookup. Instead the client application must explicitly create

the connection to the resource using the appropriate API (JDBC, Java Message Service (JMS), and so

on). This client does not perform initialization of any of the services that the client application might

require. For example, the client application is responsible for the initialization of the naming service, either

through CosNaming or JNDI APIs.

The Thin application client offers access to most of the available client services in the Java EE application

client. However, you cannot access the services in the thin client as easily as you can in the Java EE

application client. The Java EE client has the advantage of performing a simple Java Naming and

Directory Interface (JNDI) name space lookup to access the desired service or resource. The thin client

must code explicitly for each resource in the client application. For example, looking up an enterprise bean

Home requires the following code in a Java EE application client:

java.lang.Object ejbHome = initialContext.lookup("java:comp/env/ejb/MyEJBHome");

MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, you need more explicit code in a Thin application client:

java.lang.Object ejbHome =

 initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");

MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

220 Administering WebSphere applications

In this example, the Java EE application client accesses a logical name from the java:comp name space.

The Java EE client run time resolves that name to the physical location and returns the reference to the

client application. The Thin application client must know the fully qualified physical location of the

enterprise bean Home in the name space. If this location changes, the thin client application must also

change the value placed on the lookup() statement.

In the Java EE client, the client application is protected from these changes because it uses the logical

name. A change might require a redeployment of the EAR file, but the actual client application code

remains the same.

The Thin application client is a traditional Java application that contains a main function. The WebSphere

Thin application client provides run-time support for accessing remote enterprise beans, and provides the

implementation for various services. This client can also access CORBA objects and CORBA based

services. When using both environments in one client application, you need to understand the differences

between the enterprise bean and CORBA programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming name service for object

resolution in a name space. The enterprise beans programming model requires the JNDI name service.

The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and Directory Interface

(JNDI) implementation in the enterprise bean model to initialize the Object Request Broker (ORB). The

client application is unaware that an ORB is present. The CORBA model, however, requires the client

application to explicitly initialize the ORB through the ORB.init() static method.

The Thin application client provides a batch command that you can use to set the CLASSPATH and

JAVA_HOME environment variables to enable the Thin application client run time.

WebSphere Application Server Version 6.1 and the Application client for WebSphere Application Server

Version 6.1 also provides specialized types of Thin application client. The Web Services Thin Client is an

unmanaged, stand-alone Java client environment that allows you to run JAX-RPC Web services client

applications to invoke Web services that are hosted by the application server. The Administration Thin

Client enables client applications to perform administration tasks outside of the application server

environment.

Application client troubleshooting tips

This topic provides debugging tips for resolving common Java 2 Platform Enterprise Edition (J2EE)

application client problems. To use this troubleshooting guide, review the trace entries for one of the J2EE

application client exceptions, and then locate the exception in the guide.

Some of the errors in the guide are samples, and the actual error you receive can be different than what is

shown here. You might find it useful to rerun the launchClient command specifying the -CCverbose=true

option. This option provides additional information when the J2EE application client run time is initializing.

Error: java.lang.NoClassDefFoundError

 Explanation This exception is thrown when Java code cannot load the specified class.

Possible causes v Invalid or non-existent class

v Class path problem

v Manifest problem

Chapter 4. Client applications 221

Recommended

response

Check to determine if the specified class exists in a Java Archive (JAR) file within your

Enterprise Archive (EAR) file. If it does, make sure the path for the class is correct. For

example, if you get the exception:

java.lang.NoClassDefFoundError:

WebSphereSamples.HelloEJB.HelloHome

verify that the HelloHome class exists in one of the JAR files in your EAR file. If it exists,

verify that the path for the class is WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a class path issue. Most likely, you do not

have the failing class JAR file specified in the client JAR file manifest. To verify this situation,

perform the following steps:

1. Open your EAR file with an assembly tool, and select the Application Client.

2. Add the names of the other JAR files in the EAR file to the Classpath field.

This exception is generally caused by a missing Enterprise Java Beans (EJB) module name

from the Classpath field.

If you have multiple JAR files to enter in the Classpath field, be sure to separate the JAR

names with spaces.

If you still have the problem, you have a situation where a class is loaded from the file

system instead of the EAR file. This error is difficult to debug because the offending class is

not the one specified in the exception. Instead, another class is loaded from the file system

before the one specified in the exception. To correct this error, review the class paths

specified with the -CCclasspath option and the class paths configured with the Application

Client Resource Configuration Tool.

Look for classes that also exist in the EAR file. You must resolve the situation where one of

the classes is found on the file system instead of in the .ear file. Remove entries from the

classpaths, or include the .jar files and classes in the .ear file instead of referencing them

from the file system.

If you use the -CCclasspath parameter or resource classpaths in the tool, and you have

configured multiple JAR files or classes, verify they are separated with the correct character

for your operating system. Unlike the Classpath field, these class path fields use

platform-specific separator characters.

Note: The system class path is not used by the Application Client run time if you use the

launchClient batch or shell files. In this case, the system class path would not cause this

problem. However, if you load the launchClient class directly, you do have to search through

the system class path as well.

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception

occurred while attempting to get an instance of the object for the specified

reference object. [Root exception is javax.naming.NameNotFoundException:

xxxxxxxxxx]

 Explanation This exception occurs when you perform a lookup on an

object that is not installed on the host server. Your

program can look up the name in the local client Java

Naming and Directory Interface (JNDI) name space, but

received a NameNotFoundException exception because it

is not located on the host server. One typical example is

looking up an EJB component that is not installed on the

host server that you access. This exception might also

occur if the JNDI name you configured in your Application

Client module does not match the actual JNDI name of

the resource on the host server.

222 Administering WebSphere applications

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration

Recommended response If you are accessing the wrong host server, run the

launchClient command again with the -CCBootstrapHost

parameter specifying the correct host server name. If you

are accessing the correct host server, use the product

dumpnamespace command line tool to see a listing of the

host server JNDI name space. If you do not see the failing

object name, the resource is either not installed on the

host server or the appropriate application server is not

started. If you determine the resource is already installed

and started, your JNDI name in your client application

does not match the global JNDI name on the host server.

Use the Application Server Toolkit to compare the JNDI

bindings value of the failing object name in the client

application to the JNDI bindings value of the object in the

host server application. The values must match.

Error: javax.naming.ServiceUnavailableException: A communication failure

occurred while attempting to obtain an initial context using the provider url:

″iiop://[invalidhostname]″. Make sure that the host and port information is correct

and that the server identified by the provider URL is a running name server. If no

port number is specified, the default port number 2809 is used. Other possible

causes include the network environment or workstation network configuration.

Root exception is org.omg.CORBA.INTERNAL: JORB0050E: In

Profile.getIPAddress(), InetAddress.getByName[invalidhostname] threw an

UnknownHostException. minor code: 4942F5B6 completed: Maybe

 Explanation This exception occurs when you specify an invalid host

server name.

Possible causes v Incorrect host server invoked

v Invalid host server name

Recommended response Run the launchClient command again and specify the

correct name of your host server with the

-CCBootstrapHost parameter.

Chapter 4. Client applications 223

Error: javax.naming.CommunicationException: Could not obtain an initial context

due to a communication failure. Since no provider URL was specified, either the

bootrap host and port of an existing ORB was used, or a new ORB instance was

created and initialized with the default bootstrap host of ″localhost″ and the

default bootstrap port of 2809. Make sure the ORB bootstrap host and port resolve

to a running name server. Root exception is org.omg.CORBA.COMM_FAILURE:

WRITE_ERROR_SEND_1 minor code: 49421050 completed: No

 Explanation This exception occurs when you run the launchClient

command to a host server that does not have the

Application Server started. You also receive this exception

when you specify an invalid host server name. This

situation might occur if you do not specify a host server

name when you run the launchClient tool. The default

behavior is for the launchClient tool to run to the local

host, because WebSphere Application Server does not

know the name of your host server. This default behavior

only works when you are running the client on the same

machine with WebSphere Application Server is installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port

Recommended response If you are not running to the correct host server, run the

launchClient command again and specify the name of

your host server with the -CCBootstrapHost parameter.

Otherwise, start the Application Server on the host server

and run the launchClient command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in

context ″java:″

 Explanation This exception is thrown when the Java code cannot

locate the specified name in the local JNDI name space.

Possible causes v No binding information for the specified name

v Binding information for the specified name is incorrect

v Wrong class loader was used to load one of the

program classes

v A resource reference does not include any client

configuration information

v A client container on the deployment manager is trying

to use enterprise extensions (not supported)

Recommended response Open the EAR file with the Application Server Toolkit, and

check the bindings for the failing name. Ensure this

information is correct. If you are using Resource

References, open the EAR file with the Application Client

Resource Configuration Tool, and verify that the Resource

Reference has client configuration information and the

name of the Resource Reference exactly matches the

JNDI name of the client configuration. If the values are

correct, you might have a class loader error. For detailed

information about the configuration tool and opening EAR

files, read the Starting the Application Client Resource

Configuration Tool in the Developing and deploying

applications PDF book.

224 Administering WebSphere applications

Error: java.lang.ClassCastException: Unable to load class:

org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at

com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)

 Explanation This exception occurs when the application program

attempts to narrow to the EJB home class and the class

loaders cannot find the EJB client side bindings.

Possible causes v The files, *_Stub.class and _Tie.class, are not in the

EJB .jar file

v Class loader could not find the classes

Recommended response Look at the EJB .jar file located in the .ear file and verify

the class contains the Enterprise Java Beans (EJB) client

side bindings. These are class files with file names that

end in _Stub and _Tie. If the binding classes are in the

EJB .jar file, then you might have a class loader error.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be found.

com.ibm.websphere.client.applicationclient.ClientContainerException:

com.ibm.etools.archive.exception.OpenFailureException

 Explanation This error occurs when the application client run time

cannot read the Enterprise Archive (EAR) file.

Possible causes The most likely cause of this error is that the system

cannot find the EAR file in the path specified on the

launchClient command.

Recommended response Verify that the path and file name specified on the

launchclient command are correct.

The launchClient command appears to hang and does not return to the command

line when the client application has finished.

 Explanation When running your application client using the

launchClient command the WebSphere Application

Server run time might need to display the security login

dialog. To display this dialog, WebSphere Application

Server run time creates an Abstract Window Toolkit (AWT)

thread. When your application returns from its main

method to the application client run time, the application

client run time attempts to return to the operating system

and end the Java virtual machine (JVM) code. However,

since there is an AWT thread, the JVM code will not end

until System.exit is called.

Possible causes The JVM code does not end because there is an AWT

thread. Java code requires that System.exit() be called

to end AWT threads.

Recommended response v Modify your application to call System.exit(0) as the

last statement.

v Use the -CCexitVM=true parameter when you call the

launchClient command.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/servers/eserver/support/iseries/allproducts/index.html

Chapter 4. Client applications 225

http://www.ibm.com/servers/eserver/support/iseries/allproducts/index.html

clientUpgrade script

The clientUpgrade script migrates application client modules and their resources in an enterprise archive

(EAR) file so that these application clients can run in WebSphere Application Server Version 7. The script

converts an EAR file that you want to migrate and then overwrites the original EAR file with the converted

EAR file.

The following title provides information about the clientUpgrade script.

Note: This command was deprecated in Version 6.1.

 Type Description

Product The clientUpgrade script is available in the WebSphere Application Server (Express and Base)

product only.

Authority To run this script, your user profile must have *ALLOBJ authority.

Syntax The syntax of the clientUpgrade script is:

clientUpgrade EAR_file [-clientJAR client_JAR_file]

 [-logFileLocation logFileLocation]

 [-traceString trace_spec [-traceFile file_name]]

Parameters The parameters of the clientUpgrade script are:

v EAR_file -- This is a required parameter. The value EAR_file specifies the fully-qualified path

of the EAR file that contains the application client modules that you want to migrate.

v -clientJAR -- This is an optional parameter. The value client_JAR_file specifies a JAR file that

you want to migrate. The script overwrites the original EAR file with a new EAR file that

contains only the specified JAR files. If you do not specify this parameter, the clientUpgrade

script migrates all client JAR files in the EAR file.

v -logFileLocation -- Use this optional parameter to specify an alternate location to store the log

output.

v -traceString -- This is an optional parameter. The value trace_spec specifies the trace

information that you want to collect. To gather all trace information, specify ″*=all=enabled″

(including the double quotation marks (″)). By default, the script does not gather trace

information. If you specify this parameter, you must also specify the -traceFile parameter.

v -traceFile -- This is an optional parameter. The value file_name The value file_name specifies

the name of the output file for trace information. If you specify the -traceString parameter but

do not specify the -traceFile parameter, the script does not generate a trace file.

Logging The clientUpgrade script displays status while it runs. It also saves more extensive logging

information to the clientupgrade.log file. This file is located in the /QIBM/UserData/WebSphere/
AppServer/V7/edition/profiles/default/logs directory (for a default installation using the default

profile) or in the location specified by the -logFileLocation parameter.

These examples demonstrate correct syntax. In this example, the My51Application.ear file is migrated from

WebSphere Application Server Version 5.1, The script overwrites the original EAR file with a new file that

you can deploy in your WebSphere Application Server Version 7 profile.

clientUpgrade /My51Application/My51Application.ear

In this example, only the myJarFile.jar client JAR file is migrated. The script overwrites

My51Application.ear with an EAR file that contains myJarFile.jar. You can deploy the new EAR file in

your WebSphere Application Server profile.

clientUpgrade /My51Application/My51Application.ear -clientJAR myJarFile.jar

226 Administering WebSphere applications

Running application clients

The Java Platform, Enterprise Edition (Java EE) specification requires support for a client container that

runs stand-alone Java applications (known as Java EE application clients) and provides Java EE services

to the applications. Java EE services include naming, security, and resource connections.

About this task

You are ready to run your application client using this tool after you:

1. Write the application client program.

2. Assemble and install an application module (.ear file) in the application server run time.

3. Deploy the application using the Application Client Resource Configuration Tool (ACRCT) on Windows.

This task only applies to Java EE application clients. To launch Java EE application clients using the

launchClient script, perform the following steps:

1. Start the Qshell environment.

On the CL command line, enter the command:

STRQSH

2. Enter the following command to launch Java EE application clients:

app_server_root/bin/launchClient

where app_server_root is /QIBM/ProdData/WebSphere/AppServer/V7/Base or /QIBM/ProdData/
WebSphere/AppServer/V7/ND

3. Pass parameters to the launchClient command or to your application client program as well. The

launchClient command allows you to do both. The launchClient command requires that the first

parameter is either:

v An EAR file specifying the application client to launch.

v A request for launchClient usage information.

The following example illustrates the command line invocation syntax for the launchClient tool:

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp> [-CC<name>=<value>] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation.

v -JVMOptions is a valid Java standard or non-standard option string. Insert quotation marks around

the string.

v -help, -? prints the usage information.

All other parameters intended for the launchClient command must begin with the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with the -CC prefix, are

ignored by the application client run time, and are passed directly to the application client program.

The launchClient command retrieves parameters from three places:

v The command line

v A properties file

v System properties

The parameters are resolved in the order listed above, with command line values having the highest

priority and system properties the lowest. Using this prioritization you can set and override default

values.

Chapter 4. Client applications 227

4. Specify the server name.

By default, the launchClient command uses your_server_name for the BootstrapHost property value.

This setting is effective for testing your application client when it is installed on the same computer as

the server. However, in other cases override this value with the name of your server. You can override

the BootstrapHost value by invoking launchClient command with the following parameters:

launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file and passing the file name

to the launchClient shell.

Security is controlled by the server. You do not need to configure security on the client because the

client assumes that security is enabled. If server security is not enabled, then the server ignores the

security request, and the application client functions as expected.

Example

You can store launchClient values in a properties file, which is a good method for distributing default

values. You can then override one or more values on the command line. The format of the file is one

launchClient -CC parameter per line without the -CC prefix. For example:

 verbose=true classpath=/usr/lpp/mydir/util.jar;/usr/lpp/mydir/harness.jar;/usr/lpp

/production/G19/global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=/usr

/lpp/WebSphere/mylog.txt

launchClient tool

This topic describes the Java Platform, Enterprise Edition (Java EE) command line syntax for the

launchClient tool for WebSphere Application Server.

You can use the launchClient command from a node within a Network Deployment environment.

However, do not attempt to use the launchClient command from the Deployment Manager.

Note: All users who run commands from a specific profile must have authority to modify files that are

created by other users that use the same profile. Otherwise, you might see a permission denied

error in the log files. To avoid this issue, consider one of the following policies:

v Use specific profiles for distinct user authorities

v Always use the same user for all of the commands that are run in a given profile

v Ensure that all users of a specific profile belong to the same group. In addition, ensure that each

user of a group has the read and write authority to the files that are created by other members in

the same profile.

The following example illustrates the command line invocation syntax for the launchClient tool:

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp> [-CC<name>=<value>] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation.

v -JVMOptions is a valid Java standard or nonstandard option string, except -cp or -classpath. Insert

quotation marks around the string.

v -help, -? prints the usage information.

228 Administering WebSphere applications

The first parameter must be -help, -? or contain no parameter at all. The -profileName pName and

-JVMOptions options are optional parameters. If used, they must appear before the <userapp> parameter.

All other parameters are optional and can appear in any order after the <userapp> parameter. The Java

EE Application client run time ignores any optional parameters that do not begin with a -CC prefix and

passes those parameters to the application client.

Client container parameters

Supported arguments include:

-CCadminConnectorHost

Specifies the host name of the server from which configuration information is retrieved.

 The default is the value of the -CCBootstrapHost parameter or the value, your.server.name, if the

-CCBootstrapHost parameter is not specified.

-CCadminConnectorPort

Indicates the port number for the administrative client function to use. The default value is 8880 for

SOAP connections and 2809 for Remote Method Invocation (RMI) connections.

-CCadminConnectorType

Specifies how the administrative client connects to the server. Specify RMI to use the RMI connection

type, or specify SOAP to use the SOAP connection type. The default value is SOAP.

-CCadminConnectorUser

Administrative clients use this user name when a server requires authentication. If the connection type

is SOAP, and security is enabled on the server, this parameter is required.

-CCadminConnectorPassword

The password for the user name that the -CCadminConnectorUser parameter specifies.

-CCaltDD

The name of an alternate deployment descriptor file. This parameter is used with the -CCjar parameter

to specify the deployment descriptor to use. Use this argument when a client JAR file is configured

with more than one deployment descriptor. Set the value to null to use the client JAR file standard

deployment descriptor.

-CCBootstrapHost

The name of the host server you want to connect to initially. The format is:

your_server_of_choice.com

-CCBootstrapPort

The server port number. If you do not specify this argument, the WebSphere Application Server default

value is used.

-CCclassLoaderMode

Specifies the class loader mode. If PARENT_LAST is specified, the class loader loads classes from

the local class path before delegating the class loading to its parent. The classes loaded for the

following are affected:

v Classes defined for the Java EE application client

v Resources defined in the Java EE application

v Classes specified on the manifest of the Java EE client JAR file

v Classes specified using the -CCclasspath option

If PARENT_LAST is not specified, then the default mode, PARENT_FIRST, causes the class loader to

delegate the loading of classes to its parent class loader before attempting to load the class from its

local class path.

-CCclasspath

A class path value. When you launch an application, the system class path is used. If you want to

Chapter 4. Client applications 229

access classes that are not in the EAR file or part of the system class paths, specify the appropriate

class path here. Multiple paths can be concatenated.

-CCD

Use this option to have the WebSphere Application Server set the specified system property during

initialization. Do not use the equals (=) character after the -CCD. For example:

-CCDcom.ibm.test.property=testvalue. You can specify multiple -CCD parameters. The general format

of this parameter is -CCD<property key>=<property value>. For example,

-CCDI18NService.enable=true.

-CCdumpJavaNameSpace

Controls generation of a dump of the java: name space for the application that is launched, which can

be used for debugging purposes. A value of true generates a dump in short format, and includes the

name and object type for each binding. A value of long generates a dump in long format, and includes

additional information for each binding over short format, such as the local object type and string

representation of the local object. The default value is false, and does not generate a dump.

-CCexitVM

Use this option to have the WebSphere Application Server call the System.exit() method after the

client application completes. The default is false.

-CCinitonly

Use this option to initialize application client run time for ActiveX application clients without launching

the client application. The default is false.

-CCjar

The name of the client Java Archive (JAR) file that resides within the EAR file for the application you

wish to launch. Use this argument when you have multiple client JAR files in the EAR file.

-CCpropfile

Indicates the name of a properties file that contains launchClient properties. Specify the properties

without the -CC prefix in the file, with the exception of the securityManager, securityMgrClass and

securityMgrPolicy properties. See the following example: verbose=true.

-CCproviderURL

Provides bootstrap server information that the initial context factory can use to obtain an initial context.

WebSphere Application Server initial context factory can use either a Common Object Request Broker

Architecture (CORBA) object URL or an Internet Inter-ORB Protocol (IIOP) URL. CORBA object URLs

are more flexible than IIOP URLs and are the recommended URL format to use. This value can

contain more than one bootstrap server address. This feature can be used when attempting to obtain

an initial context from a server cluster. You can specify bootstrap server addresses, for all servers in

the cluster, in the URL. The operation will succeed if at least one of the servers is running, eliminating

a single point of failure. The address list does not process in a particular order. For naming operations,

this value overrides the -CCBootstrapHost and -CCBootstrapPort parameters. A CORBA object URL

specifying multiple systems is illustrated in the following example:

-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCsecurityManager

Enables and runs the WebSphere Application Server with a security manager. The default is disable.

-CCsecurityMgrClass

Indicates the fully qualified name of a class that implements a security manager. Only use this

argument if the -CCsecurityManager parameter is set to enable. The default is

java.lang.SecurityManager.

-CCsecurityMgrPolicy

Indicates the name of a security manager policy file. Only use this argument if the -CCsecurityManager

parameter is set to enable. When you enable this parameter, the java.security.policy system

property is set. The default is <app_server_root>/ properties/client.policy.

230 Administering WebSphere applications

-CCsoapConnectorPort

The Simple Object Access Protocol (SOAP) connector port. If you do not specify this argument, the

WebSphere Application Server default value is used.

-CCtrace

Use this option to obtain debug trace information. You might need this information when reporting a

problem to IBM customer support. The default is false. For more information, read the topic ″Enabling

trace.″

-CCtracefile

Indicates the name of the file to which trace information is written. The default is to write output to the

console.

-CCtraceMode

Specifies the trace format to use for tracing. If the valid value, basic, is not specified the default is

advanced. Basic tracing format is a more compact form of tracing.

 For more information on basic and advanced trace formatting, see Interpreting trace output.

-CCverbose

This option displays additional information messages. The default is false.

If you are using an EJB client application with security enabled, edit the sas.client.props file, which is

located in the profile_root/properties directory. Within the file, change the com.ibm.CORBA.loginSource

value to none.

For more information on the sas.client.props utility, see Manually encoding passwords in properties files

and the PropFilePasswordEncoder command reference.

RMI connection with security. Used with the EJB and administrative client application.

Using Jacl:

 wsadmin -conntype RMI -port rmiportnumber -user userid

-password password

Using Jython:

wsadmin -lang jython -conntype RMI -port rmiportnumber -user userid

-password password

rmiportnumber for your connection displays in the administrative console as

BOOTSTRAP_ADDRESS.

Note: On the AIX®, HP-UX, Linux®, i5/OS, Solaris, and z/OS operating systems, the use of

-password option may result in security exposure as the password information becomes

visible to the system status program, such as ps command, which can be invoked by other

users to display all of the running processes. Do not use this option if security exposure is

a concern. Instead, specify user and password information in the soap.client.props file for

SOAP connector or sas.client.props file for RMI connector. The soap.client.props and

sas.client.props files are located in the properties directory of your WebSphere

Application Server profile.

If Kerberos (KRB5) is enabled for administrative authentication, the authentication target

supports BasicAuth and KRB5. To use KRB5, update the sas.client.props,

soap.client.props, and ipc.client.props files, according to the connector type.

Note: When using Kerberos authentication, the user password does not flow across the wire. A

one-way hash of password is used to identify the client.

The following examples demonstrate correct syntax.

Chapter 4. Client applications 231

/QIBM/ProdData/WebSphere/AppServer/V61/Base/bin/launchClient /home/earfiles/myapp.ear -profileName

myprofile -CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

Specifying the directory for an expanded EAR file

You can archive the Manifest.mf client Java Archive (JAR) files instead of automatically cleaning them up

after the application exits.

Before you begin

Each time the launchClient tool is called, it extracts the Enterprise Archive (EAR) file to a random directory

name in the temporary directory on your hard drive. Then the tool sets up the thread ClassLoader to use

the extracted EAR file directory and JAR files included in the Manifest.mf client Java Archive (JAR) file. In

a normal J2EE Java client, these files are automatically cleaned up after the application exits. This

cleanup occurs when the client container shutdown hook is called. To avoid extracting the EAR file (and

removing the temporary directory) each time the launchClient tool is called, complete the following steps:

1. Specify a directory to extract the EAR file by setting the

com.ibm.websphere.client.applicationclient.archivedir Java system property. If the directory does

not exist or is empty, the EAR file is extracted normally. If the EAR file was previously extracted, the

launchClient tool reuses the directory.

2. Delete the directory before running the launchClient tool again, if you need to update your EAR file.

When you call the launchClient command, it extracts the new EAR file to the directory. If you do not

delete the directory or change the system property value to point to a different directory, the

launchClient tool reuses the currently extracted EAR file and does not use your changed EAR file.

When specifying the com.ibm.websphere.client.applicationclient.archivedir property, make sure

that the directory you specify is unique for each EAR file you use. For example, do not point the

MyEar1.ear and the MyEar2.ear files to the same directory.

Using Java Web Start

Learn about the Java Web Start technology that is provided by the Java Standard Edition runtime

environment to deploy Java Enterprise Edition application clients, including Thin application clients, on the

remote client machine with a single click from Web browser on the client machine.

Before you begin

The supported client platforms for deploying application clients using the Java Web Start are the same as

the IBM Application Client for WebSphere Application Server supported platforms, except Linux on Power

and OS/400 operating systems.

Before you begin this task, see the following topics to understand Java Web Start technology and its

components:

v “Java Web Start architecture for deploying application clients” on page 234

v “Client application Java Network Launcher Protocol deployment descriptor file” on page 235

v “ClientLauncher class” on page 239

You can use the following resources:

v The IBM implementation of Java Web Start on Java Platform Standard Edition 6 (Java SE 6) that is

packaged in the Application Client for WebSphere Application Server.

Note: When using the Sun JRE with the Application Client runtime, application resources cannot be

downloaded using the https protocol. This is a Sun Microsystems limitation. Install the IBM JRE on

the client machine and use IBM Java Web Start to run the WebSphere Application Client

application. Sun Java Web Start is supported, but with a limitation that only the http protocol can be

used to download the application resource, including the application jnlp description file.

232 Administering WebSphere applications

About this task

To deploy application clients using Java Web Start, the client machine must have at least a Java SE

runtime environment installed. The Java SE runtime environment includes the Java Web Start, which

implements the JSR 56: Java Network Launching Protocol and API. The application clients Enterprise

Archive (EAR) file is a Java archive (JAR) resource in a JNLP descriptor file that resides on a central

server. The JNLP descriptor file also specifies the runtime environment requirement for running the

application.

WebSphere Application Server provides a launcher class to launch the Java EE application client in the

application client container inside of Java Web Start. The client machine might not have the IBM

Application Client for WebSphere Application Server installed. If this is the case, create and install an

application client container and runtime package as a runtime environment through Java Web Start. The

JNLP descriptor file specifies this runtime environment as the required runtime environment for running the

Java EE application client.

WebSphere Application Server also provides command-line utility programs to create this application client

container and runtime package from an existing IBM Application Client for WebSphere Application Server

installation, as well as an installer class to install this package as a runtime environment for the application

client container and also the Java Runtime Environment (JRE) in the IBM Application Client for

WebSphere Application Server installation. To run the Java EE application client, the EAR file is deployed

as a JAR resource that is described in the JNLP descriptor file.

1. Identify the client machine operating system, and install the corresponding IBM Application Client for

WebSphere Application Server on a development machine. For example, if the Java EE application

clients are targeted to run on Windows operating systems, install the IBM Application Client for

WebSphere Application Server for Windows. Follow the instructions for “Installing Application Client for

WebSphere Application Server” on page 266.

2. Run the utility programs to create the application client container and runtime package.

a. Use the “buildClientRuntime tool” on page 242 utility to create the package.

b. Use the “buildClientLibJars tool” on page 235 utility to create the JAR files containing the launcher

and the installer class. This utility also zips up the properties files in the <app_client_root>/
properties directory.

3. Create the runtime installer JNLP descriptor file. The JNLP response must be included in the JNLP

version ID to indicate the current runtime version in the response header, for example,

x-java-jnlp-version-id=1.6.0. Using a servlet of a Java Server Pages (JSP) file to provide a

dynamic JNLP response.

4. Create the Java EE application client launch JNLP descriptor file.

5. Package the application client container runtime environments and the Java EE application in an

Enterprise Archive (EAR) file. Depending on your preferred deployment strategy, the files can be in two

separate Web modules, or combined into one.

6. All JAR resources must be Java signed, including the Java EE application client EAR file.

7. Deploy the Enterprise Archive file on an application server, and start the application. The Java EE

application client is ready to be deployed.

Example

A Java Web Start deployment Sample is included in the client samples. This Sample demonstrates the

steps to deploy a Java EE application client with an automated ANT script. The Sample has a servlet to

generate the runtime installer JNLP response with JNLP version ID, for example, x-java-jnlp-version-id.

Note: When the application client initially launches using Java Web Start from Sun Microsystems Java SE

Runtime Environment 6.0, it installs the Application Client runtime, which includes the IBM JRE. An

null pointer exception (NPE) is thrown from the

com.sun.deploy.services.WPlatformService.getSecureRandom() method. This is a known bug in

Chapter 4. Client applications 233

Sun Java SE 6 (http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528). If you experience

this exception, relaunch the application. The NPE only occurs on the first launch of the application

client.

Java Web Start architecture for deploying application clients

Java Web Start is an application-deployment technology that includes the portability of applets, the

maintainability of servlets and JavaServer Pages (JSP) file technology, and the simplicity of mark-up

languages such as XML and HTML. It is a Java application that allows full-featured Java EE client

applications to be launched, deployed and updated from a standard Web server. The Java Web Start client

is used with platforms that support a Web browser.

Java Web Start is not supported.

Upon launching Java Web Start for the first time, you might download new client applications from the

Web. Each time you launch JWS thereafter, you can initiate applications either through a link on a Web

page or (in Windows) from desktop icons or the Start menu. You can deploy applications quickly using

Java Web Start, cache applications on the client machine, and launch applications remotely offline.

Additionally, because Java Web Start is built from the Java Platform, Enterprise Edition (Java EE)

infrastructure, the technology inherits the complete security architecture of the Java EE platform.

The technology underlying Java Web Start is the Java Network Launching Protocol & API (JNLP). Java

Web Start is a JNLP client and it reads and parses a JNLP descriptor file (JNLP file). Based on the JNLP

descriptor, it downloads appropriate pieces of a client application and any of its dependencies. If any of the

pieces of the application are already cached on the client machine, then those components are not

downloaded again, unless they have been updated on the server machine. After you download and cache

the client application, JWS launches it natively on the client machine.

The following diagram shows an overview of launching a client application, include the Application Client

for WebSphere Application Server as a dependent resource, using Java Web Start.

The Web browser running on a client machine connects to a Web application located on a server

machine. The client application JNLP descriptor file is downloaded and processed by Java Web Start on

the client machine.

In this diagram, there are two JNLP descriptor files:

v Client application JNLP descriptor (application-desc in the diagram)

v Application Clients run-time installer JNLP descriptor (installer-desc in the diagram)

234 Administering WebSphere applications

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528

Each of these JNLP descriptor files, the client application (JAR or EAR) and the dependent resource JAR

files are packaged as Web applications in an EAR file. This EAR file is deployed to an Application server.

The client machine with JWS installed uses a Web browser to connect to the url of the client application

JNLP descriptor file to download and run the client application.

Using Java Web Start from Java SE Runtime Environment 6.0 or later is highly recommended. All the

platforms supported by the application client for WebSphere Application Server are supported with the

exception Linux on Power and OS/400 platforms.

You can use the following:

v Java Web Start on the Java Standard Edition Developer Kits that IBM provides, packaged in Application

Client for WebSphere Application Server

v Java Web Start on Sun Microsystems Java SE 6 Development Kit or Java SE Runtime Environment

6.0, which you can download from the Sun Microsystems Web site for Windows, Linux and Solaris

operating systems

v Java Web Start on HP-UX JDK or JRE for Java Platform, Standard Edition, version 6, which you can

download from the HP Web site

buildClientLibJars tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application

client application to be launched using Java Web Start (JWS), the properties files bundled in Application

Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to create

those property JAR files. The Java Web Start client is used with platforms that support a Web browser.

 Java Web Start is not supported on WebSphere Application Server for i5/OS.

The buildClientLibJars tool copies the JAR files from the Application Client for WebSphere Application

Server installation and creates a properties.jar file, which contains the properties files from the

Application Clients installation properties directory to a specified location. When this property is created,

the tool uses the value of keystore, storepass, alias and storetype to sign all of the JAR files in the

specified location.

Windows usage: buildClientLibJars.bat [-help] [-verbose] destdir keystore storepass alias storetype

Unix usage: buildClientLibJars.sh [-help] [-verbose] destdir keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v destdir will output the destination directory name

v keystore is the key store file

v storepass is the key store password

v alias key is the alias name

v storetype is the key store type

Client application Java Network Launcher Protocol deployment descriptor file

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application.

Location

The client application has an Application Clients run-time dependency that provides the following:

v Java SE Runtime Environment from IBM

Chapter 4. Client applications 235

http://www.sun.com
http://www.hp.com

v Application Clients run-time properties

v SSL KeyStore and TrustStore file

v Application Clients run-time library JAR files (optional for Thin Application client applications)

If the Application Clients run-time dependency is not met, it is downloaded and installed in Java Web Start

(JWS), as described by the Application Clients run-time installer JNLP descriptor file. For example:

<j2se version="1.6" href="http://your_server.com/jws/wasappclient/download.jnlp"/>

Usage notes

The client application must also include the WebSphereClientLauncher.jar file, which contains the launcher

class, com.ibm.websphere.client.launcher.ClientLauncher, that completes one of the following actions:

v If it is a Java Platform, Enterprise Edition (Java EE) Application client application (that is the resources

for the application contain an EAR file with a client application), the EAR file must be specified as a JAR

resource so that it can be downloaded to JWS and specified in the system property,

com.ibm.websphere.client.launcher.ear. See “JNLP descriptor file for a Java EE Application client

application” on page 237 for an example.

v If it is a Thin Application client application, the Thin Application client application JAR file must be

specified as a JAR resource so that it can be downloaded to JWS and the name of the class containing

main method entry point is specified in the system property, com.ibm.websphere.launcher.main. See

“JNLP descriptor file for a Thin Application client application” on page 237 for an example.

The JNLP specification requires all the resource (JAR or EAR) files used in a JNLP file to be signed.

You can specify the –CC arguments defined in the launchClient tool for a J2EE Application client

application in application arguments section of the JNLP descriptor files. However, only –CCD is supported

for a Thin Application client application to define system properties and the JNLP <property> tag can also

be used to define system properties. See the following example for details:

<property name="java.naming.provider.url" value="corbaloc:iiop:myserver.com:9089"/>

For a J2EE Application client application, specify the following application arguments as defined in the

JNLP.

1. Specify your target server provider URL, as shown in the following example:

<argument> >-CCDjava.naming.provider.url =corbaloc:iiop:myserver.mydomain.com:9080 </argument>

2. Specify the SSL Key File and SSL Trust File location. These files are expected to be available in the

client machine. To use the ones in the Application Clients run-time dependency installed in JWS cache,

specify these application arguments:

<argument> -CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12 </argument>

<argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12 </argument>

3. Specify the initial naming context factor, as shown in the following example:

<argument>-CCDjava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory </argument>

For a Thin Application client application, you also need to specify the actual location of the

sas.client.props and ssl.client.props files located in the Application Clients run-time dependency

that is installed in the JWS cache.

<argument>-CCDcom.ibm.CORBA.ConfigURL=file:${WAS_ROOT}/properties/sas.client.props </argument>

<argument>-CCDcom.ibm.SSL.ConfigURL=file:${WAS_ROOT}/properties/ssl.client.props </argument>

If any of the default settings in the sas.client.props and ssl.client.props file need modifying, use

the –CCD to change the settings through the system properties, as shown in the following example:

<argument>-CCDjavacom.ibm.CORBA.securityEnabled=false </argument>

Note: The ${WAS_ROOT} token used in the JNLP file is replaced by the launcher class,

com.ibm.websphere.client.launcher.ClientLauncher, to the actual location of the Application

Clients run-time dependency installation in the JWS cache. If you are using JSP to dynamically

236 Administering WebSphere applications

create this JNLP description file, you must escape this token because it has a different meaning

in JSP 2.0. See the following example for details:

<argument>-CCDcom.ibm.ssl.keyStore=\${WAS_ROOT}/etc/key.p12 </argument>

<argument>-CCDcom.ibm.ssl.trustStore=\${WAS_ROOT}/etc/trust.p12 </argument>

JNLP descriptor file for a Java EE Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application.

 Here is an example of the client application JNLP descriptor file for a Java EE Application client

application:

<?xml version="1.0" encoding="utf-8"?>

<!--

This sample program is provided AS IS and may be used, executed, copied and modified

without royalty payment by customer (a) for its own instruction and study, (b) in order

to develop applications designed to run with an IBM WebSphere product, either for customer’s

own internal use or for redistribution by customer, as part of such an application, in

customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<jnlp spec="1.0+" codebase="http://your_server:port_number/jws/wasappclient/apps/">

 <information>

 <title>Java EE Client Example</title>

 <vendor>IBM</vendor>

 <homepage href="null"/>

 <description>Java WebStart example: Launching Java EE Application Client</description>

 <description kind="short">Java EE Applicaiton Client</description>

 <description kind="tooltip">Java EE Application Client</description>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp" version="1.6"/>

 <jar href="../lib/WebSphereClientLauncher.jar" download="eager" main="false"/>

 <jar href="../lib/properties.jar" download="eager" main="false"/>

 <jar href="SwingCalculator.ear" download="eager" main="false"/>

 <property name="com.ibm.websphere.client.launcher.ear" value="SwingCalculator.ear"/>

 </resources>

 <application-desc main-class="com.ibm.websphere.client.launcher.ClientLauncher">

 <argument>-CCproviderURL=corbaloc:iiop:tiu03.torolab.ibm.com:2809</argument>

 </application-desc>

</jnlp>

JNLP descriptor file for a Thin Application client application:

Chapter 4. Client applications 237

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application. If it is a Thin Application client application, then the launcher class uses the current JVM

from the Application Clients run-time dependency and invokes the Thin Application client application main

method.

 Here is an example of the JNLP descriptor file for a Thin Application client application.

This sample program is provided AS IS and may be used, executed, copied and modified

without royalty payment by customer (a) for its own instruction and study, (b) in order

to develop applications designed to run with an IBM WebSphere product, either for customer’s

own internal use or for redistribution by customer, as part of such an application, in

customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<!-

==

->

<!-- TODO: change "codebase" to the actual URL location of the jnlp file ->

==

->

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+"

codebase="http://your_server:port_number/jws/wasappclient/apps">

 <information>

 <title>Thin Base Calculator Client Samples</title>

 <vendor>IBM</vendor>

 <description>Thin Base Calculator Client Samples</description>

 <offline-allowed/>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se version="1.6" href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp"/>

 <jar href="/jws/wasappclient/lib/WebSphereClientLauncher.jar" main="true"/>

 <jar href="BasicCalculatorClientCommon.jar"/>

 <jar href="BasicCalculatorEJB.jar"/>

 <jar href="BasicCalculatorThinClient.jar"/>

 <property name="com.ibm.websphere.client.launcher.main"

 value="com.ibm.websphere.samples.technologysamples.basiccalcthinclient.BasicCalculatorClientThinMain"/>

 <property name="java.naming.factory.initial"

 value="com.ibm.websphere.naming.WsnInitialContextFactory" />

 <property name="java.naming.provider.url"

238 Administering WebSphere applications

value="corbaloc:iiop:tiu03:2809"/>

 </resources>

 <add</argument>

 <argument>1</argument>

 <argument>2</argument>

 </application-desc>

</jnlp>

ClientLauncher class:

The class, com.ibm.websphere.client.installer.ClientLauncher, contains a main() method that is called by

Java Web Start (JWS) to launch the client application. The Java Web Start client is used with platforms

that support a Web browser.

 Java Web Start is not supported.

This client is packaged in the WebSphereClientLauncher.jar file that is located in the Application Client for

WebSphere Application Server installation under the <app_client_root>/ lib/webstart directory.

The launcher class requires that the following properties are defined. These properties are not defined in a

separate properties file. Instead, the properties are defined as part of the Java Network Launching

Protocol (JNLP) files.

com.ibm.websphere.client.launcher.main

If the client application is a Thin Application client, then this property should be specified. It

specifies the class where the main entry point of the client application resides.

com.ibm.websphere.client.launcher.ear

If the client application is a Java Platform, Enterprise Edition (Java EE) Application client, then this

property should be specified. It specifies the name of the EAR file to be executed. This property

takes precedence over com.ibm.websphere.client.launcher.main. However, only one of the two

properties should be specified.

Application client launcher for Java Web Start:

The application client launcher for Java Web Start is a Java class,

com.ibm.websphere.client.installer.ClientLauncher, which has a main() method that Java Web Start calls to

start the application client container and to invoke the application client’s main() method. It provides similar

functions as the lauchClient command line tool to start application clients from the command line.

 The com.ibm.websphere.client.launcher.ClientLauncher class is packaged in the

WebSphereClientLauncher.jar file under the <app_client_root>/lib/webstart directory.

The launcher tool requires that the following properties are defined.

com.ibm.websphere.client.launcher.main

If the client that is to be run is a thin client, then this property should be specified. It specifies the

class where the main entry point of the application resides. It is the main class name for a Thin

application client. If it is set, the launcher will not start the client container, it will rather invoke the

main method for the application directly. However, if com.ibm.websphere.client.launcher.ear is

also set, it will be ignored.

com.ibm.websphere.client.launcher.ear

If the client that is to run is the Java Platform, Enterprise Edition (Java EE) client, then this

property should be specified. It specifies the name of the ear file to be executed. This property

takes precedence over com.ibm.websphere.client.launcher.main although only one of the two

properties should be specified.

Chapter 4. Client applications 239

These properties are not defined in a separate properties file. Instead, they are defined as part of the Java

Network Launching Protocol files.

When com.ibm.websphere.client.launcher.ear is set, the application client launcher for JWS supports

almost all of the –CC arguments as the lauchClient command line tool supports. However, if only

com.ibm.websphere.client.launcher.main is set, the launcher will only support the –CCD argument. The

following table shows the comparison of the supported –CC arguments for the launchClient command line

tool and the application client launcher for JWS:

 -CC argument launchClient Application client launcher for JWS

-CCverbose Yes Yes

-CCjar Yes Yes

-CCclasspath Yes N/A

-CCadminConnectorHost Yes Yes

-CCadminConnectorPort Yes Yes

-CCadminConnectorType Yes Yes

-CCadminConnectorUser Yes Yes

-CCaltDD Yes Yes

-CCBootstrapHost Yes Yes

-CCBootstrapPort Yes Yes

-CCproviderURL Yes Yes

-CCinitonly Yes N/A

-CCtrace Yes Yes

-CCtracefile Yes Yes

-CCsecurityManager Yes N/A

-CCsecurityMgrClass Yes N/A

-CCsecurityMgrPolicy Yes N/A

-CCD Yes Yes

-CCexitVM Yes Yes

-CCdumpJavaNameSpace Yes Yes

-CCsoapConnectorPort Yes Yes

-CCtraceMode Yes Yes

-CCclassLoaderMode Yes Yes

Macro expansion is supported for the –CCD argument by the application client launcher for JWS. The

launcher will automatically substitute certain macro keys (enclosed with ${...}) with the calculated value at

runtime. For example, if a macro key is used in the –CCD argument in the application client JNLP

manifest file,

<argument>-CCDcom.ibm.ssl.keyStore= ${WAS_ROOT}/etc/key.p12</argument>

it will be expanded to the JWS cache installation root location and the argument will become:

-CCDcom.ibm.ssl.keyStore=/home/tiu/.java/deployment/cache/javaws/ext/E1134532441112/etc/key12.p12

The following table shows the 3 macro keys that are currently supported and will be substituted by the

launcher:

240 Administering WebSphere applications

Table 2.

Macro key Value

${WAS_ROOT} Installation root location within the JWS cache that is

used by the application client container and runtime

installer for JWS.

${JAVA_HOME} Location of Java home. The return value of

System.getProperty(“java.home”).

${USER_HOME} Location of user home. The return value of

System.getProperty(“user.home”).

Preparing the application client run time dependency component for Java Web

Start

To launch a Java Platform, Enterprise Edition (Java EE) application client application, a Thin application

client application, or both using Java Web Start (JWS), a Java Runtime Environment implementation Java

archive (JAR) that IBM provides, the library JAR files and properties files bundled in Application Client for

WebSphere Application Server must be installed in the JWS. Learn the steps to build the application client

run time dependency component from an application client installation. It is packaged as a Web Archive

Resource (WAR) file that can be installed in an Application Server.

Before you begin

Install the Application Client for WebSphere Application Server for the operating system to which the client

application deploys. If there is a requirement to deploy the client application to multiple operating systems,

the application client run time dependency component must be built separately for each operating system

that client application supports.

1. Install the Application Client for WebSphere Application Server for the client application supported

operating systems.

2. Change the directory to the installation bin directory.

3. Run the “buildClientRuntime tool” on page 242 to generate the application client run time JAR file,

which contains the Java Standard Edition Runtime Environment, the run time library JAR files,

properties files, and the SSL KeyStore and TrustStore files from the application client installation.

4. Run the buildClientLibJars tools to package up the properties files in the properties directory of the

application client installation into a properties.jar file in the specified location. The buildClientLibJars

tools will also copy the WebSphereClientLauncher.jar file and WebSphereClientRuntimeInstaller.jar

file from the application client installation to the specified location. All jar files in the specified location

will be signed by the provided certificate.

For example, if you are using Version 7.0 and using the test certificate that is included in the

application client installation:

buildClientLibJars C:\Temp\webstart ..\etc\DummyClientKeyFilejar WebAS "websphere dummy client" JKS

5. Create a JavaServer Pages (JSP) file or use a servlet to generate the application client run time

installer Java Network Launching Protocol (JNLP) descriptor to respond to Java Web Start request.

See the Java Web Start Deployment sample in the application client installation.

6. Package the two signed JAR files, WASClient7.0_windows.jar and

WebSphereClientRuntimeInstaller.jar, and the JSP file or servlet for generating the Application Client

run time installer JNLP descriptor into a Web archive (WAR) file. This WAR file is packaged into an

EAR file that can be deployed to an application server. See the Java Web Start Deployment sample in

the application client installation.

Chapter 4. Client applications 241

Results

Your Web application is ready to serve the application client run time and the JRE environment.

buildClientRuntime tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application

client application to be launched using Java Web Start (JWS), the library JAR files bundled in Application

Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to build

those JAR files. The Java Web Start client is used with platforms that support a Web browser.

 The Java Web Start client is not supported on WebSphere Application Server for OS/400.

The buildClientRuntime tool builds the required components from the WebSphere Application Server

clients installation into the JAR file specified on the command. This JAR file contains:

v License files

v Java SE Runtime Environment 6 (JRE 6) that IBM provides

v Application Clients runtime properties and configuration

v SSL KeyStore and TrustStore files

v Runtime library JAR files

In the case of building an Application Clients runtime JAR file only for serving Thin Application client

applications and not for Java EE Application client applications, the runtime library JAR files and the

Application Clients runtime properties files are not included, except the configuration files,

sas.client.props, ssl.client.props and soap.client.props, located in the WAS_ROOT/properties

directory. The Java Web Start client is used with platforms that support a Web browser.

The command-line invocation syntax for the buildClientRuntime tool is shown in the following example:

Windows Usage: buildClientRuntime.bat [-help] [-verbose] outfile keystore storepass alias storetype

Unix Usage: buildClientRuntime.sh [-help] [-verbose] outfile keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v outfile is the output file name

v keystore is the key store file

v storepass is the key store password

v alias is the key alias name

v storetype is the key store type

ClientRuntimeInstaller class:

This section provides information on the ClientRuntimeInstaller class.

 This class, com.ibm.websphere.client.installer.ClientRuntimeInstaller, contains a main() method that Java

Web Start (JWS) calls to install the Application Client for WebSphere Application Server run-time

dependency component in JWS cache. It is packaged in WebSphereClientRuntimeInstaller.jar file

located in the Application Client for WebSphere Application Server installation in the <app_server_root>/
JWS directory.

242 Administering WebSphere applications

Specify the WebSphereClientRuntimeInstaller.jar file and the Application Client run-time dependency

component JAR file as JAR resources in the Application Client run-time installer Java Network Launcher

Protocol (JNLP) descriptor file. See the following example for details:

<jar href="Launcher/WebSphereClientRuntimeInstall.jar" main="true"/>

<jar href="Launcher/WASClient6.1_windows.jarRuntimeInstall.jar" main="true"/>

The ClientRuntimeInstaller class main method requires the following properties to be set in the JNLP file:

com.ibm.websphere.client.jre.version

Specifies a Java Runtime Environment (JRE) version name that is to be used when referring to

the Application Client run-time dependency component.

com.ibm.websphere.client.jre.launch.java

Specifies the relative location of the javaw.exe program in the Application Client run-time

dependency component JAR file.

The previously mentioned properties, JRE version name and the location of the javaw.exe program are

registered to the Java Web Start Application Manager, as shown in the following example:

<property name="com.ibm.websphere.client.jre.version" value="WASclient6.1"/>

<property name="com.ibm.websphere.client.jre.launch.java" value="java\jre\bin\javaw.exe"/>

Using the Java Web Start sample

The EAR file, WebSphereClientRuntime.ear, is provided in the JWS directory of the Client Application for

WebSphere Application Server installation. This EAR file provides a sample Application Clients run-time

installer JNLP descriptor file and a sample Application Clients run-time library component JNLP descriptor

file. Follow the steps in this task to build the Application Clients run-time dependency component and the

Application Clients run-time library component. Add these components to the WebSphereClientRuntime.ear

file, and then install the EAR file in an Application Server to be used by the client application.

About this task

There is a new Java Web Start sample available in the client sample gallery for WebSphere Application

Server V7.0. Refer to the client sample gallery in the Application Client for WebSphere Application Server

product. The name of the new sample is ″Java Web Start Deployment Sample″.

Installing Java Web Start

Learn about the steps that are necessary to install Java Web Start (JWS) on the AIX platform. Java Web

Start technology is provided by the Java SE runtime environment to deploy Java EE application clients

(including Thin application clients) on the remote client machine with a single click from Web browser on

the client machine.

Before you begin

Note: This topic applies only to the AIX operating system.

Before you begin this task, see the “Preparing the application client run time dependency component for

Java Web Start” on page 241 topic to understand Java Web Start (JWS) technology and components.

Note:

You can use the following resources:

v The IBM implementation of Java Web Start on Java Platform Standard Edition 6 (Java SE 6) that

is packaged in the Application Client for WebSphere Application Server

Note: You can use Java Web Start on Java Platform, Standard Edition Developer Kit 6 that IBM provides,

packaged in the Application Client for WebSphere Application Server, Version 7.0; Java Web Start

on Sun Microsystems Java Standard Edition Software Development Kit 6 or Java SE Runtime

Chapter 4. Client applications 243

Environment 6.0, which you can download from the Sun Microsystems Web site for Windows, Linux

and Solaris operating systems, or the Java Web Start on HP Software Development Kit (SDK) or

RTE for Java 2 version 5.0, which you can download from the HP Web site.

About this task

Use the following steps to install JWS on the AIX platform.

1. Install IBM Application Client for WebSphere Application Server.

2. Change your directory to the client_install_root/java/jre/lib/javaws path.

3. Run the updateSetting.sh script from the path mentioned in the previous step.

4. Change your path to the JWS installed path. For example, enter: client_install_root/java/jre/
javaws.

5. Run ./javaws from the path mentioned in the previous step.

Using a static JNLP file with Java Web Start for Application clients

Do not use JSP to dynamically generate a JNLP file, otherwise the JNLP jsp page cannot be opened in

some IE browsers.

About this task

To use a static JNLP file, you will need to add the following mime type mapping in the web.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>

 WAS Client runtime for Java Web Start</display-name>

 <welcome-file-list>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>default.html</welcome-file>

 <welcome-file>default.htm</welcome-file>

 <welcome-file>default.jsp</welcome-file>

 </welcome-file-list>

 <mime-mapping>

 <extension>jnlp</extension>

 <mime-type>application/x-java-jnlp-file</mime-type>

 </mime-mapping>

</web-app>

Running the IBM Thin Client for Enterprise JavaBeans (EJB)

An EJB Client is a Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Java Platform,

Standard Edition (Java SE) application that accesses remote Enterprise Java Beans from a server through

Java Naming and Directory Interface (JNDI) look up. IBM Thin Client for EJB offers a smaller footprint and

is easy to deploy to a Java SE environment and an Eclipse Rich Client Platform (RCP) environment. You

can bundle the IBM Thin Client for EJB library using the WebSphere Application Server installation or the

Application Client for WebSphere Application Server installation with your application. The IBM Thin Client

for EJB also extends the choice of Java SE runtime. It can be run in the Java Runtime Environment (JRE)

that is packaged with the WebSphere Application Server product, the Sun Microsystems JRE that is

downloaded from the Sun Microsystems Web site, or the JRE that is downloaded from the HP Web site.

Before you begin

The IBM ORB implementation library is required if the IBM Thin Client for EJB is running with a non-IBM

product JRE on a non-IBM product platform. For example, running the IBM Thin Client for EJB with Sun

244 Administering WebSphere applications

http://www.sun.com
http://www.hp.com/products1/unix/java/java2/sdkrte14/downloads/index_pa-risc.html

Microsystems JRE on Windows, Linux, or Solaris, and with the HP JRE on HPUX. The IBM-provided

Solaris hybrid and HP hybrid JRE are not considered non-IBM product JRE environments. The IBM Thin

Client for EJB can access version 2.x and version 3.0 EJB on the WebSphere Application Server using the

JNDI lookup, but it cannot access version 3.0 EJB through resource injection. Resource injection is

supported if the client application is a Java Platform, Enterprise Edition (Java EE) Application Client

running within the Java Platform, Enterprise Edition (Java EE) Application Client Container.

Before you set up an EJB Thin Client environment, obtain the Java archive (JAR) file for the EJB Thin

Client for WebSphere Application Server. To obtain the EJB Thin Client for WebSphere Application Server,

install WebSphere Application Server or Application Client. The EJB Thin Client for WebSphere Application

Server file, com.ibm.ws.ejb.thinclient_7.0.0.jar, is located in the app_server_root\runtimes directory.

Copy the Java archive (JAR) file for the IBM Thin Client for EJB with WebSphere Application Server

product, com.ibm.ws.ejb.thinclient_7.0.0.jar , to other machines to create a lightweight client

environment that enables communications with the products. Copies of the IBM Thin Client for EJB are

subject to the same terms and conditions of the license agreement for Version 7.0 WebSphere Application

Server where you obtained the Thin Client for EJB. Refer to the license agreements for correct usage and

other limitations.

The IBM Thin Client for EJB with WebSphere Application Server runs on distributed operating systems

with JDK support, including both Version 5 and Version 6. When using the IBM Thin Client for EJB as a

standalone Java SE application with a non-IBM product JRE, you must override the default ORB

implementation for the JRE through one of following methods:

v Include the com.ibm.ws.orb_7.0.0.jar file in the Java system classpath.

v Override the default ORB implementation in the JRE, using Java Endorsed Standards Override

Mechanism.

v Set the java.endorsed.dirs path to a directory that contains the com.ibm.ws.orb_7.0.0.jar file.

When running the IBM Thin Client for EJB as an Eclipse RCP application, it is recommended to use

method two, to override the default JRE ORB implementation.

Note: The Pluggable Application Client feature in the application client installer is deprecated. It is

replaced by the IBM Thin Client for EJB.

About this task

Run the IBM Thin Client for EJB, by completing the following steps.

1. Invoke the client application. Run the following Java command:

Add the following system properties to the Java command if you want authentication and SSL enabled:

2. Provide IIOP authentication configuration and Client SSL Configuration. Add the following system

properties to the Java command:

-Dcom.ibm.SSL.ConfigURL=file:///home/user1/ssl.client.props

-Dcom.ibm.CORBA.ConfigURL=file:///home/user1/sas.client.props

You can obtain the ssl.client.props file and sas.client.props file from the WebSphere Application

Server installation and modify the file to suit your environment. You must, at a minimum, update the

location of the key files in the ssl.client.props file to the match location of your target environment.

For example,

-Dcom.ibm.ssl.keyStore=/home/user1/etc/key.p12

-Dcom.ibm.ssl.trustStore=/home/user1/etc/trust.p12

Recommended SSL configuration settings when running the application with a non-IBM product JRE:

com.ibm.ssl.protocol=SSL

com.ibm.ssl.trustManager=SunX509

com.ibm.ssl.keyManager=SunX509

com.ibm.ssl.contextProvider=SunJSSE

Chapter 4. Client applications 245

com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.keyStoreProvider=SUN

com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS

com.ibm.ssl.trustStoreProvider=SUN

com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the

application runs. The automatic key file generation is not supported with a non-IBM product JRE.

You must override the default ORB implementation of the non-IBM product JRE with the

com.ibm.ws.orb_7.0.0.jar file, or add it to the classpath.

What to do next

Enable trace for the IBM Thin Client for EJB by adding the following to the Java command.

 -Dcom.ibm.ejs.ras.lite.traceSpecification=*=all

Related tasks

Example 1: Configuring basic authentication and identity assertion
This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user bob. The following steps take you through the configuration of C, S1, and S2.

Using JMS to connect to a WebSphere Application Server default messaging provider messaging engine

Related reference

ssl.client.props client configuration file
Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of

WebSphere Application Server, SSL properties were specified in the sas.client.props or

soap.client.props files or as system properties. By consolidating the configurations, WebSphere

Application Server enables you to manage security in a manner that is comparable to server-side

configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

Running application clients

The Java Platform, Enterprise Edition (Java EE) specification requires support for a client container that

runs stand-alone Java applications (known as Java EE application clients) and provides Java EE services

to the applications. Java EE services include naming, security, and resource connections.

About this task

You are ready to run your application client using this tool after you:

1. Write the application client program.

2. Assemble and install an application module (.ear file) in the application server run time.

3. Deploy the application using the Application Client Resource Configuration Tool (ACRCT) on Windows.

This task only applies to Java EE application clients. To launch Java EE application clients using the

launchClient script, perform the following steps:

1. Start the Qshell environment.

On the CL command line, enter the command:

STRQSH

2. Enter the following command to launch Java EE application clients:

app_server_root/bin/launchClient

where app_server_root is /QIBM/ProdData/WebSphere/AppServer/V7/Base or /QIBM/ProdData/
WebSphere/AppServer/V7/ND

246 Administering WebSphere applications

friend.sib/tasks/tjj_jmsthcli.dita

3. Pass parameters to the launchClient command or to your application client program as well. The

launchClient command allows you to do both. The launchClient command requires that the first

parameter is either:

v An EAR file specifying the application client to launch.

v A request for launchClient usage information.

The following example illustrates the command line invocation syntax for the launchClient tool:

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp> [-CC<name>=<value>] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation.

v -JVMOptions is a valid Java standard or non-standard option string. Insert quotation marks around

the string.

v -help, -? prints the usage information.

All other parameters intended for the launchClient command must begin with the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with the -CC prefix, are

ignored by the application client run time, and are passed directly to the application client program.

The launchClient command retrieves parameters from three places:

v The command line

v A properties file

v System properties

The parameters are resolved in the order listed above, with command line values having the highest

priority and system properties the lowest. Using this prioritization you can set and override default

values.

4. Specify the server name.

By default, the launchClient command uses your_server_name for the BootstrapHost property value.

This setting is effective for testing your application client when it is installed on the same computer as

the server. However, in other cases override this value with the name of your server. You can override

the BootstrapHost value by invoking launchClient command with the following parameters:

launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file and passing the file name

to the launchClient shell.

Security is controlled by the server. You do not need to configure security on the client because the

client assumes that security is enabled. If server security is not enabled, then the server ignores the

security request, and the application client functions as expected.

Example

You can store launchClient values in a properties file, which is a good method for distributing default

values. You can then override one or more values on the command line. The format of the file is one

launchClient -CC parameter per line without the -CC prefix. For example:

 verbose=true classpath=/usr/lpp/mydir/util.jar;/usr/lpp/mydir/harness.jar;/usr/lpp

/production/G19/global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=/usr

/lpp/WebSphere/mylog.txt

Chapter 4. Client applications 247

launchClient tool

This topic describes the Java Platform, Enterprise Edition (Java EE) command line syntax for the

launchClient tool for WebSphere Application Server.

You can use the launchClient command from a node within a Network Deployment environment.

However, do not attempt to use the launchClient command from the Deployment Manager.

Note: All users who run commands from a specific profile must have authority to modify files that are

created by other users that use the same profile. Otherwise, you might see a permission denied

error in the log files. To avoid this issue, consider one of the following policies:

v Use specific profiles for distinct user authorities

v Always use the same user for all of the commands that are run in a given profile

v Ensure that all users of a specific profile belong to the same group. In addition, ensure that each

user of a group has the read and write authority to the files that are created by other members in

the same profile.

The following example illustrates the command line invocation syntax for the launchClient tool:

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp> [-CC<name>=<value>] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation.

v -JVMOptions is a valid Java standard or nonstandard option string, except -cp or -classpath. Insert

quotation marks around the string.

v -help, -? prints the usage information.

The first parameter must be -help, -? or contain no parameter at all. The -profileName pName and

-JVMOptions options are optional parameters. If used, they must appear before the <userapp> parameter.

All other parameters are optional and can appear in any order after the <userapp> parameter. The Java

EE Application client run time ignores any optional parameters that do not begin with a -CC prefix and

passes those parameters to the application client.

Client container parameters

Supported arguments include:

-CCadminConnectorHost

Specifies the host name of the server from which configuration information is retrieved.

 The default is the value of the -CCBootstrapHost parameter or the value, your.server.name, if the

-CCBootstrapHost parameter is not specified.

-CCadminConnectorPort

Indicates the port number for the administrative client function to use. The default value is 8880 for

SOAP connections and 2809 for Remote Method Invocation (RMI) connections.

-CCadminConnectorType

Specifies how the administrative client connects to the server. Specify RMI to use the RMI connection

type, or specify SOAP to use the SOAP connection type. The default value is SOAP.

248 Administering WebSphere applications

-CCadminConnectorUser

Administrative clients use this user name when a server requires authentication. If the connection type

is SOAP, and security is enabled on the server, this parameter is required.

-CCadminConnectorPassword

The password for the user name that the -CCadminConnectorUser parameter specifies.

-CCaltDD

The name of an alternate deployment descriptor file. This parameter is used with the -CCjar parameter

to specify the deployment descriptor to use. Use this argument when a client JAR file is configured

with more than one deployment descriptor. Set the value to null to use the client JAR file standard

deployment descriptor.

-CCBootstrapHost

The name of the host server you want to connect to initially. The format is:

your_server_of_choice.com

-CCBootstrapPort

The server port number. If you do not specify this argument, the WebSphere Application Server default

value is used.

-CCclassLoaderMode

Specifies the class loader mode. If PARENT_LAST is specified, the class loader loads classes from

the local class path before delegating the class loading to its parent. The classes loaded for the

following are affected:

v Classes defined for the Java EE application client

v Resources defined in the Java EE application

v Classes specified on the manifest of the Java EE client JAR file

v Classes specified using the -CCclasspath option

If PARENT_LAST is not specified, then the default mode, PARENT_FIRST, causes the class loader to

delegate the loading of classes to its parent class loader before attempting to load the class from its

local class path.

-CCclasspath

A class path value. When you launch an application, the system class path is used. If you want to

access classes that are not in the EAR file or part of the system class paths, specify the appropriate

class path here. Multiple paths can be concatenated.

-CCD

Use this option to have the WebSphere Application Server set the specified system property during

initialization. Do not use the equals (=) character after the -CCD. For example:

-CCDcom.ibm.test.property=testvalue. You can specify multiple -CCD parameters. The general format

of this parameter is -CCD<property key>=<property value>. For example,

-CCDI18NService.enable=true.

-CCdumpJavaNameSpace

Controls generation of a dump of the java: name space for the application that is launched, which can

be used for debugging purposes. A value of true generates a dump in short format, and includes the

name and object type for each binding. A value of long generates a dump in long format, and includes

additional information for each binding over short format, such as the local object type and string

representation of the local object. The default value is false, and does not generate a dump.

-CCexitVM

Use this option to have the WebSphere Application Server call the System.exit() method after the

client application completes. The default is false.

-CCinitonly

Use this option to initialize application client run time for ActiveX application clients without launching

the client application. The default is false.

Chapter 4. Client applications 249

-CCjar

The name of the client Java Archive (JAR) file that resides within the EAR file for the application you

wish to launch. Use this argument when you have multiple client JAR files in the EAR file.

-CCpropfile

Indicates the name of a properties file that contains launchClient properties. Specify the properties

without the -CC prefix in the file, with the exception of the securityManager, securityMgrClass and

securityMgrPolicy properties. See the following example: verbose=true.

-CCproviderURL

Provides bootstrap server information that the initial context factory can use to obtain an initial context.

WebSphere Application Server initial context factory can use either a Common Object Request Broker

Architecture (CORBA) object URL or an Internet Inter-ORB Protocol (IIOP) URL. CORBA object URLs

are more flexible than IIOP URLs and are the recommended URL format to use. This value can

contain more than one bootstrap server address. This feature can be used when attempting to obtain

an initial context from a server cluster. You can specify bootstrap server addresses, for all servers in

the cluster, in the URL. The operation will succeed if at least one of the servers is running, eliminating

a single point of failure. The address list does not process in a particular order. For naming operations,

this value overrides the -CCBootstrapHost and -CCBootstrapPort parameters. A CORBA object URL

specifying multiple systems is illustrated in the following example:

-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCsecurityManager

Enables and runs the WebSphere Application Server with a security manager. The default is disable.

-CCsecurityMgrClass

Indicates the fully qualified name of a class that implements a security manager. Only use this

argument if the -CCsecurityManager parameter is set to enable. The default is

java.lang.SecurityManager.

-CCsecurityMgrPolicy

Indicates the name of a security manager policy file. Only use this argument if the -CCsecurityManager

parameter is set to enable. When you enable this parameter, the java.security.policy system

property is set. The default is <app_server_root>/ properties/client.policy.

-CCsoapConnectorPort

The Simple Object Access Protocol (SOAP) connector port. If you do not specify this argument, the

WebSphere Application Server default value is used.

-CCtrace

Use this option to obtain debug trace information. You might need this information when reporting a

problem to IBM customer support. The default is false. For more information, read the topic ″Enabling

trace.″

-CCtracefile

Indicates the name of the file to which trace information is written. The default is to write output to the

console.

-CCtraceMode

Specifies the trace format to use for tracing. If the valid value, basic, is not specified the default is

advanced. Basic tracing format is a more compact form of tracing.

 For more information on basic and advanced trace formatting, see Interpreting trace output.

-CCverbose

This option displays additional information messages. The default is false.

250 Administering WebSphere applications

If you are using an EJB client application with security enabled, edit the sas.client.props file, which is

located in the profile_root/properties directory. Within the file, change the com.ibm.CORBA.loginSource

value to none.

For more information on the sas.client.props utility, see Manually encoding passwords in properties files

and the PropFilePasswordEncoder command reference.

RMI connection with security. Used with the EJB and administrative client application.

Using Jacl:

 wsadmin -conntype RMI -port rmiportnumber -user userid

-password password

Using Jython:

wsadmin -lang jython -conntype RMI -port rmiportnumber -user userid

-password password

rmiportnumber for your connection displays in the administrative console as

BOOTSTRAP_ADDRESS.

Note: On the AIX, HP-UX, Linux, i5/OS, Solaris, and z/OS operating systems, the use of

-password option may result in security exposure as the password information becomes

visible to the system status program, such as ps command, which can be invoked by other

users to display all of the running processes. Do not use this option if security exposure is

a concern. Instead, specify user and password information in the soap.client.props file for

SOAP connector or sas.client.props file for RMI connector. The soap.client.props and

sas.client.props files are located in the properties directory of your WebSphere

Application Server profile.

If Kerberos (KRB5) is enabled for administrative authentication, the authentication target

supports BasicAuth and KRB5. To use KRB5, update the sas.client.props,

soap.client.props, and ipc.client.props files, according to the connector type.

Note: When using Kerberos authentication, the user password does not flow across the wire. A

one-way hash of password is used to identify the client.

The following examples demonstrate correct syntax.

/QIBM/ProdData/WebSphere/AppServer/V61/Base/bin/launchClient /home/earfiles/myapp.ear -profileName

myprofile -CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

Specifying the directory for an expanded EAR file

You can archive the Manifest.mf client Java Archive (JAR) files instead of automatically cleaning them up

after the application exits.

Before you begin

Each time the launchClient tool is called, it extracts the Enterprise Archive (EAR) file to a random directory

name in the temporary directory on your hard drive. Then the tool sets up the thread ClassLoader to use

the extracted EAR file directory and JAR files included in the Manifest.mf client Java Archive (JAR) file. In

a normal J2EE Java client, these files are automatically cleaned up after the application exits. This

cleanup occurs when the client container shutdown hook is called. To avoid extracting the EAR file (and

removing the temporary directory) each time the launchClient tool is called, complete the following steps:

1. Specify a directory to extract the EAR file by setting the

com.ibm.websphere.client.applicationclient.archivedir Java system property. If the directory does

not exist or is empty, the EAR file is extracted normally. If the EAR file was previously extracted, the

launchClient tool reuses the directory.

Chapter 4. Client applications 251

2. Delete the directory before running the launchClient tool again, if you need to update your EAR file.

When you call the launchClient command, it extracts the new EAR file to the directory. If you do not

delete the directory or change the system property value to point to a different directory, the

launchClient tool reuses the currently extracted EAR file and does not use your changed EAR file.

When specifying the com.ibm.websphere.client.applicationclient.archivedir property, make sure

that the directory you specify is unique for each EAR file you use. For example, do not point the

MyEar1.ear and the MyEar2.ear files to the same directory.

Using Java Web Start

Learn about the Java Web Start technology that is provided by the Java Standard Edition runtime

environment to deploy Java Enterprise Edition application clients, including Thin application clients, on the

remote client machine with a single click from Web browser on the client machine.

Before you begin

The supported client platforms for deploying application clients using the Java Web Start are the same as

the IBM Application Client for WebSphere Application Server supported platforms, except Linux on Power

and OS/400 operating systems.

Before you begin this task, see the following topics to understand Java Web Start technology and its

components:

v “Java Web Start architecture for deploying application clients” on page 234

v “Client application Java Network Launcher Protocol deployment descriptor file” on page 235

v “ClientLauncher class” on page 239

You can use the following resources:

v The IBM implementation of Java Web Start on Java Platform Standard Edition 6 (Java SE 6) that is

packaged in the Application Client for WebSphere Application Server.

Note: When using the Sun JRE with the Application Client runtime, application resources cannot be

downloaded using the https protocol. This is a Sun Microsystems limitation. Install the IBM JRE on

the client machine and use IBM Java Web Start to run the WebSphere Application Client

application. Sun Java Web Start is supported, but with a limitation that only the http protocol can be

used to download the application resource, including the application jnlp description file.

About this task

To deploy application clients using Java Web Start, the client machine must have at least a Java SE

runtime environment installed. The Java SE runtime environment includes the Java Web Start, which

implements the JSR 56: Java Network Launching Protocol and API. The application clients Enterprise

Archive (EAR) file is a Java archive (JAR) resource in a JNLP descriptor file that resides on a central

server. The JNLP descriptor file also specifies the runtime environment requirement for running the

application.

WebSphere Application Server provides a launcher class to launch the Java EE application client in the

application client container inside of Java Web Start. The client machine might not have the IBM

Application Client for WebSphere Application Server installed. If this is the case, create and install an

application client container and runtime package as a runtime environment through Java Web Start. The

JNLP descriptor file specifies this runtime environment as the required runtime environment for running the

Java EE application client.

WebSphere Application Server also provides command-line utility programs to create this application client

container and runtime package from an existing IBM Application Client for WebSphere Application Server

installation, as well as an installer class to install this package as a runtime environment for the application

252 Administering WebSphere applications

client container and also the Java Runtime Environment (JRE) in the IBM Application Client for

WebSphere Application Server installation. To run the Java EE application client, the EAR file is deployed

as a JAR resource that is described in the JNLP descriptor file.

1. Identify the client machine operating system, and install the corresponding IBM Application Client for

WebSphere Application Server on a development machine. For example, if the Java EE application

clients are targeted to run on Windows operating systems, install the IBM Application Client for

WebSphere Application Server for Windows. Follow the instructions for “Installing Application Client for

WebSphere Application Server” on page 266.

2. Run the utility programs to create the application client container and runtime package.

a. Use the “buildClientRuntime tool” on page 242 utility to create the package.

b. Use the “buildClientLibJars tool” on page 235 utility to create the JAR files containing the launcher

and the installer class. This utility also zips up the properties files in the <app_client_root>/
properties directory.

3. Create the runtime installer JNLP descriptor file. The JNLP response must be included in the JNLP

version ID to indicate the current runtime version in the response header, for example,

x-java-jnlp-version-id=1.6.0. Using a servlet of a Java Server Pages (JSP) file to provide a

dynamic JNLP response.

4. Create the Java EE application client launch JNLP descriptor file.

5. Package the application client container runtime environments and the Java EE application in an

Enterprise Archive (EAR) file. Depending on your preferred deployment strategy, the files can be in two

separate Web modules, or combined into one.

6. All JAR resources must be Java signed, including the Java EE application client EAR file.

7. Deploy the Enterprise Archive file on an application server, and start the application. The Java EE

application client is ready to be deployed.

Example

A Java Web Start deployment Sample is included in the client samples. This Sample demonstrates the

steps to deploy a Java EE application client with an automated ANT script. The Sample has a servlet to

generate the runtime installer JNLP response with JNLP version ID, for example, x-java-jnlp-version-id.

Note: When the application client initially launches using Java Web Start from Sun Microsystems Java SE

Runtime Environment 6.0, it installs the Application Client runtime, which includes the IBM JRE. An

null pointer exception (NPE) is thrown from the

com.sun.deploy.services.WPlatformService.getSecureRandom() method. This is a known bug in

Sun Java SE 6 (http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528). If you experience

this exception, relaunch the application. The NPE only occurs on the first launch of the application

client.

Java Web Start architecture for deploying application clients

Java Web Start is an application-deployment technology that includes the portability of applets, the

maintainability of servlets and JavaServer Pages (JSP) file technology, and the simplicity of mark-up

languages such as XML and HTML. It is a Java application that allows full-featured Java EE client

applications to be launched, deployed and updated from a standard Web server. The Java Web Start client

is used with platforms that support a Web browser.

Java Web Start is not supported.

Upon launching Java Web Start for the first time, you might download new client applications from the

Web. Each time you launch JWS thereafter, you can initiate applications either through a link on a Web

page or (in Windows) from desktop icons or the Start menu. You can deploy applications quickly using

Java Web Start, cache applications on the client machine, and launch applications remotely offline.

Additionally, because Java Web Start is built from the Java Platform, Enterprise Edition (Java EE)

infrastructure, the technology inherits the complete security architecture of the Java EE platform.

Chapter 4. Client applications 253

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528

The technology underlying Java Web Start is the Java Network Launching Protocol & API (JNLP). Java

Web Start is a JNLP client and it reads and parses a JNLP descriptor file (JNLP file). Based on the JNLP

descriptor, it downloads appropriate pieces of a client application and any of its dependencies. If any of the

pieces of the application are already cached on the client machine, then those components are not

downloaded again, unless they have been updated on the server machine. After you download and cache

the client application, JWS launches it natively on the client machine.

The following diagram shows an overview of launching a client application, include the Application Client

for WebSphere Application Server as a dependent resource, using Java Web Start.

The Web browser running on a client machine connects to a Web application located on a server

machine. The client application JNLP descriptor file is downloaded and processed by Java Web Start on

the client machine.

In this diagram, there are two JNLP descriptor files:

v Client application JNLP descriptor (application-desc in the diagram)

v Application Clients run-time installer JNLP descriptor (installer-desc in the diagram)

Each of these JNLP descriptor files, the client application (JAR or EAR) and the dependent resource JAR

files are packaged as Web applications in an EAR file. This EAR file is deployed to an Application server.

The client machine with JWS installed uses a Web browser to connect to the url of the client application

JNLP descriptor file to download and run the client application.

Using Java Web Start from Java SE Runtime Environment 6.0 or later is highly recommended. All the

platforms supported by the application client for WebSphere Application Server are supported with the

exception Linux on Power and OS/400 platforms.

You can use the following:

v Java Web Start on the Java Standard Edition Developer Kits that IBM provides, packaged in Application

Client for WebSphere Application Server

v Java Web Start on Sun Microsystems Java SE 6 Development Kit or Java SE Runtime Environment

6.0, which you can download from the Sun Microsystems Web site for Windows, Linux and Solaris

operating systems

v Java Web Start on HP-UX JDK or JRE for Java Platform, Standard Edition, version 6, which you can

download from the HP Web site

254 Administering WebSphere applications

http://www.sun.com
http://www.hp.com

buildClientLibJars tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application

client application to be launched using Java Web Start (JWS), the properties files bundled in Application

Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to create

those property JAR files. The Java Web Start client is used with platforms that support a Web browser.

 Java Web Start is not supported on WebSphere Application Server for i5/OS.

The buildClientLibJars tool copies the JAR files from the Application Client for WebSphere Application

Server installation and creates a properties.jar file, which contains the properties files from the

Application Clients installation properties directory to a specified location. When this property is created,

the tool uses the value of keystore, storepass, alias and storetype to sign all of the JAR files in the

specified location.

Windows usage: buildClientLibJars.bat [-help] [-verbose] destdir keystore storepass alias storetype

Unix usage: buildClientLibJars.sh [-help] [-verbose] destdir keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v destdir will output the destination directory name

v keystore is the key store file

v storepass is the key store password

v alias key is the alias name

v storetype is the key store type

Client application Java Network Launcher Protocol deployment descriptor file

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application.

Location

The client application has an Application Clients run-time dependency that provides the following:

v Java SE Runtime Environment from IBM

v Application Clients run-time properties

v SSL KeyStore and TrustStore file

v Application Clients run-time library JAR files (optional for Thin Application client applications)

If the Application Clients run-time dependency is not met, it is downloaded and installed in Java Web Start

(JWS), as described by the Application Clients run-time installer JNLP descriptor file. For example:

<j2se version="1.6" href="http://your_server.com/jws/wasappclient/download.jnlp"/>

Usage notes

The client application must also include the WebSphereClientLauncher.jar file, which contains the launcher

class, com.ibm.websphere.client.launcher.ClientLauncher, that completes one of the following actions:

v If it is a Java Platform, Enterprise Edition (Java EE) Application client application (that is the resources

for the application contain an EAR file with a client application), the EAR file must be specified as a JAR

resource so that it can be downloaded to JWS and specified in the system property,

com.ibm.websphere.client.launcher.ear. See “JNLP descriptor file for a Java EE Application client

application” on page 237 for an example.

Chapter 4. Client applications 255

v If it is a Thin Application client application, the Thin Application client application JAR file must be

specified as a JAR resource so that it can be downloaded to JWS and the name of the class containing

main method entry point is specified in the system property, com.ibm.websphere.launcher.main. See

“JNLP descriptor file for a Thin Application client application” on page 237 for an example.

The JNLP specification requires all the resource (JAR or EAR) files used in a JNLP file to be signed.

You can specify the –CC arguments defined in the launchClient tool for a J2EE Application client

application in application arguments section of the JNLP descriptor files. However, only –CCD is supported

for a Thin Application client application to define system properties and the JNLP <property> tag can also

be used to define system properties. See the following example for details:

<property name="java.naming.provider.url" value="corbaloc:iiop:myserver.com:9089"/>

For a J2EE Application client application, specify the following application arguments as defined in the

JNLP.

1. Specify your target server provider URL, as shown in the following example:

<argument> >-CCDjava.naming.provider.url =corbaloc:iiop:myserver.mydomain.com:9080 </argument>

2. Specify the SSL Key File and SSL Trust File location. These files are expected to be available in the

client machine. To use the ones in the Application Clients run-time dependency installed in JWS cache,

specify these application arguments:

<argument> -CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12 </argument>

<argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12 </argument>

3. Specify the initial naming context factor, as shown in the following example:

<argument>-CCDjava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory </argument>

For a Thin Application client application, you also need to specify the actual location of the

sas.client.props and ssl.client.props files located in the Application Clients run-time dependency

that is installed in the JWS cache.

<argument>-CCDcom.ibm.CORBA.ConfigURL=file:${WAS_ROOT}/properties/sas.client.props </argument>

<argument>-CCDcom.ibm.SSL.ConfigURL=file:${WAS_ROOT}/properties/ssl.client.props </argument>

If any of the default settings in the sas.client.props and ssl.client.props file need modifying, use

the –CCD to change the settings through the system properties, as shown in the following example:

<argument>-CCDjavacom.ibm.CORBA.securityEnabled=false </argument>

Note: The ${WAS_ROOT} token used in the JNLP file is replaced by the launcher class,

com.ibm.websphere.client.launcher.ClientLauncher, to the actual location of the Application

Clients run-time dependency installation in the JWS cache. If you are using JSP to dynamically

create this JNLP description file, you must escape this token because it has a different meaning

in JSP 2.0. See the following example for details:

<argument>-CCDcom.ibm.ssl.keyStore=\${WAS_ROOT}/etc/key.p12 </argument>

<argument>-CCDcom.ibm.ssl.trustStore=\${WAS_ROOT}/etc/trust.p12 </argument>

JNLP descriptor file for a Java EE Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application.

 Here is an example of the client application JNLP descriptor file for a Java EE Application client

application:

<?xml version="1.0" encoding="utf-8"?>

<!--

This sample program is provided AS IS and may be used, executed, copied and modified

without royalty payment by customer (a) for its own instruction and study, (b) in order

to develop applications designed to run with an IBM WebSphere product, either for customer’s

own internal use or for redistribution by customer, as part of such an application, in

customer’s own products.

256 Administering WebSphere applications

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<jnlp spec="1.0+" codebase="http://your_server:port_number/jws/wasappclient/apps/">

 <information>

 <title>Java EE Client Example</title>

 <vendor>IBM</vendor>

 <homepage href="null"/>

 <description>Java WebStart example: Launching Java EE Application Client</description>

 <description kind="short">Java EE Applicaiton Client</description>

 <description kind="tooltip">Java EE Application Client</description>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp" version="1.6"/>

 <jar href="../lib/WebSphereClientLauncher.jar" download="eager" main="false"/>

 <jar href="../lib/properties.jar" download="eager" main="false"/>

 <jar href="SwingCalculator.ear" download="eager" main="false"/>

 <property name="com.ibm.websphere.client.launcher.ear" value="SwingCalculator.ear"/>

 </resources>

 <application-desc main-class="com.ibm.websphere.client.launcher.ClientLauncher">

 <argument>-CCproviderURL=corbaloc:iiop:tiu03.torolab.ibm.com:2809</argument>

 </application-desc>

</jnlp>

JNLP descriptor file for a Thin Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application. If it is a Thin Application client application, then the launcher class uses the current JVM

from the Application Clients run-time dependency and invokes the Thin Application client application main

method.

 Here is an example of the JNLP descriptor file for a Thin Application client application.

This sample program is provided AS IS and may be used, executed, copied and modified

without royalty payment by customer (a) for its own instruction and study, (b) in order

to develop applications designed to run with an IBM WebSphere product, either for customer’s

own internal use or for redistribution by customer, as part of such an application, in

customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

Chapter 4. Client applications 257

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<!-

==

->

<!-- TODO: change "codebase" to the actual URL location of the jnlp file ->

==

->

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+"

codebase="http://your_server:port_number/jws/wasappclient/apps">

 <information>

 <title>Thin Base Calculator Client Samples</title>

 <vendor>IBM</vendor>

 <description>Thin Base Calculator Client Samples</description>

 <offline-allowed/>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se version="1.6" href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp"/>

 <jar href="/jws/wasappclient/lib/WebSphereClientLauncher.jar" main="true"/>

 <jar href="BasicCalculatorClientCommon.jar"/>

 <jar href="BasicCalculatorEJB.jar"/>

 <jar href="BasicCalculatorThinClient.jar"/>

 <property name="com.ibm.websphere.client.launcher.main"

 value="com.ibm.websphere.samples.technologysamples.basiccalcthinclient.BasicCalculatorClientThinMain"/>

 <property name="java.naming.factory.initial"

 value="com.ibm.websphere.naming.WsnInitialContextFactory" />

 <property name="java.naming.provider.url"

 value="corbaloc:iiop:tiu03:2809"/>

 </resources>

 <add</argument>

 <argument>1</argument>

 <argument>2</argument>

 </application-desc>

</jnlp>

ClientLauncher class:

The class, com.ibm.websphere.client.installer.ClientLauncher, contains a main() method that is called by

Java Web Start (JWS) to launch the client application. The Java Web Start client is used with platforms

that support a Web browser.

 Java Web Start is not supported.

This client is packaged in the WebSphereClientLauncher.jar file that is located in the Application Client for

WebSphere Application Server installation under the <app_client_root>/ lib/webstart directory.

258 Administering WebSphere applications

The launcher class requires that the following properties are defined. These properties are not defined in a

separate properties file. Instead, the properties are defined as part of the Java Network Launching

Protocol (JNLP) files.

com.ibm.websphere.client.launcher.main

If the client application is a Thin Application client, then this property should be specified. It

specifies the class where the main entry point of the client application resides.

com.ibm.websphere.client.launcher.ear

If the client application is a Java Platform, Enterprise Edition (Java EE) Application client, then this

property should be specified. It specifies the name of the EAR file to be executed. This property

takes precedence over com.ibm.websphere.client.launcher.main. However, only one of the two

properties should be specified.

Application client launcher for Java Web Start:

The application client launcher for Java Web Start is a Java class,

com.ibm.websphere.client.installer.ClientLauncher, which has a main() method that Java Web Start calls to

start the application client container and to invoke the application client’s main() method. It provides similar

functions as the lauchClient command line tool to start application clients from the command line.

 The com.ibm.websphere.client.launcher.ClientLauncher class is packaged in the

WebSphereClientLauncher.jar file under the <app_client_root>/lib/webstart directory.

The launcher tool requires that the following properties are defined.

com.ibm.websphere.client.launcher.main

If the client that is to be run is a thin client, then this property should be specified. It specifies the

class where the main entry point of the application resides. It is the main class name for a Thin

application client. If it is set, the launcher will not start the client container, it will rather invoke the

main method for the application directly. However, if com.ibm.websphere.client.launcher.ear is

also set, it will be ignored.

com.ibm.websphere.client.launcher.ear

If the client that is to run is the Java Platform, Enterprise Edition (Java EE) client, then this

property should be specified. It specifies the name of the ear file to be executed. This property

takes precedence over com.ibm.websphere.client.launcher.main although only one of the two

properties should be specified.

These properties are not defined in a separate properties file. Instead, they are defined as part of the Java

Network Launching Protocol files.

When com.ibm.websphere.client.launcher.ear is set, the application client launcher for JWS supports

almost all of the –CC arguments as the lauchClient command line tool supports. However, if only

com.ibm.websphere.client.launcher.main is set, the launcher will only support the –CCD argument. The

following table shows the comparison of the supported –CC arguments for the launchClient command line

tool and the application client launcher for JWS:

 -CC argument launchClient Application client launcher for JWS

-CCverbose Yes Yes

-CCjar Yes Yes

-CCclasspath Yes N/A

-CCadminConnectorHost Yes Yes

-CCadminConnectorPort Yes Yes

-CCadminConnectorType Yes Yes

-CCadminConnectorUser Yes Yes

Chapter 4. Client applications 259

-CC argument launchClient Application client launcher for JWS

-CCaltDD Yes Yes

-CCBootstrapHost Yes Yes

-CCBootstrapPort Yes Yes

-CCproviderURL Yes Yes

-CCinitonly Yes N/A

-CCtrace Yes Yes

-CCtracefile Yes Yes

-CCsecurityManager Yes N/A

-CCsecurityMgrClass Yes N/A

-CCsecurityMgrPolicy Yes N/A

-CCD Yes Yes

-CCexitVM Yes Yes

-CCdumpJavaNameSpace Yes Yes

-CCsoapConnectorPort Yes Yes

-CCtraceMode Yes Yes

-CCclassLoaderMode Yes Yes

Macro expansion is supported for the –CCD argument by the application client launcher for JWS. The

launcher will automatically substitute certain macro keys (enclosed with ${...}) with the calculated value at

runtime. For example, if a macro key is used in the –CCD argument in the application client JNLP

manifest file,

<argument>-CCDcom.ibm.ssl.keyStore= ${WAS_ROOT}/etc/key.p12</argument>

it will be expanded to the JWS cache installation root location and the argument will become:

-CCDcom.ibm.ssl.keyStore=/home/tiu/.java/deployment/cache/javaws/ext/E1134532441112/etc/key12.p12

The following table shows the 3 macro keys that are currently supported and will be substituted by the

launcher:

 Table 3.

Macro key Value

${WAS_ROOT} Installation root location within the JWS cache that is

used by the application client container and runtime

installer for JWS.

${JAVA_HOME} Location of Java home. The return value of

System.getProperty(“java.home”).

${USER_HOME} Location of user home. The return value of

System.getProperty(“user.home”).

Preparing the application client run time dependency component for Java Web

Start

To launch a Java Platform, Enterprise Edition (Java EE) application client application, a Thin application

client application, or both using Java Web Start (JWS), a Java Runtime Environment implementation Java

archive (JAR) that IBM provides, the library JAR files and properties files bundled in Application Client for

WebSphere Application Server must be installed in the JWS. Learn the steps to build the application client

run time dependency component from an application client installation. It is packaged as a Web Archive

Resource (WAR) file that can be installed in an Application Server.

260 Administering WebSphere applications

Before you begin

Install the Application Client for WebSphere Application Server for the operating system to which the client

application deploys. If there is a requirement to deploy the client application to multiple operating systems,

the application client run time dependency component must be built separately for each operating system

that client application supports.

1. Install the Application Client for WebSphere Application Server for the client application supported

operating systems.

2. Change the directory to the installation bin directory.

3. Run the “buildClientRuntime tool” on page 242 to generate the application client run time JAR file,

which contains the Java Standard Edition Runtime Environment, the run time library JAR files,

properties files, and the SSL KeyStore and TrustStore files from the application client installation.

4. Run the buildClientLibJars tools to package up the properties files in the properties directory of the

application client installation into a properties.jar file in the specified location. The buildClientLibJars

tools will also copy the WebSphereClientLauncher.jar file and WebSphereClientRuntimeInstaller.jar

file from the application client installation to the specified location. All jar files in the specified location

will be signed by the provided certificate.

For example, if you are using Version 7.0 and using the test certificate that is included in the

application client installation:

buildClientLibJars C:\Temp\webstart ..\etc\DummyClientKeyFilejar WebAS "websphere dummy client" JKS

5. Create a JavaServer Pages (JSP) file or use a servlet to generate the application client run time

installer Java Network Launching Protocol (JNLP) descriptor to respond to Java Web Start request.

See the Java Web Start Deployment sample in the application client installation.

6. Package the two signed JAR files, WASClient7.0_windows.jar and

WebSphereClientRuntimeInstaller.jar, and the JSP file or servlet for generating the Application Client

run time installer JNLP descriptor into a Web archive (WAR) file. This WAR file is packaged into an

EAR file that can be deployed to an application server. See the Java Web Start Deployment sample in

the application client installation.

Results

Your Web application is ready to serve the application client run time and the JRE environment.

buildClientRuntime tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application

client application to be launched using Java Web Start (JWS), the library JAR files bundled in Application

Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to build

those JAR files. The Java Web Start client is used with platforms that support a Web browser.

 The Java Web Start client is not supported on WebSphere Application Server for OS/400.

The buildClientRuntime tool builds the required components from the WebSphere Application Server

clients installation into the JAR file specified on the command. This JAR file contains:

v License files

v Java SE Runtime Environment 6 (JRE 6) that IBM provides

v Application Clients runtime properties and configuration

v SSL KeyStore and TrustStore files

v Runtime library JAR files

In the case of building an Application Clients runtime JAR file only for serving Thin Application client

applications and not for Java EE Application client applications, the runtime library JAR files and the

Application Clients runtime properties files are not included, except the configuration files,

Chapter 4. Client applications 261

sas.client.props, ssl.client.props and soap.client.props, located in the WAS_ROOT/properties

directory. The Java Web Start client is used with platforms that support a Web browser.

The command-line invocation syntax for the buildClientRuntime tool is shown in the following example:

Windows Usage: buildClientRuntime.bat [-help] [-verbose] outfile keystore storepass alias storetype

Unix Usage: buildClientRuntime.sh [-help] [-verbose] outfile keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v outfile is the output file name

v keystore is the key store file

v storepass is the key store password

v alias is the key alias name

v storetype is the key store type

ClientRuntimeInstaller class:

This section provides information on the ClientRuntimeInstaller class.

 This class, com.ibm.websphere.client.installer.ClientRuntimeInstaller, contains a main() method that Java

Web Start (JWS) calls to install the Application Client for WebSphere Application Server run-time

dependency component in JWS cache. It is packaged in WebSphereClientRuntimeInstaller.jar file

located in the Application Client for WebSphere Application Server installation in the <app_server_root>/
JWS directory.

Specify the WebSphereClientRuntimeInstaller.jar file and the Application Client run-time dependency

component JAR file as JAR resources in the Application Client run-time installer Java Network Launcher

Protocol (JNLP) descriptor file. See the following example for details:

<jar href="Launcher/WebSphereClientRuntimeInstall.jar" main="true"/>

<jar href="Launcher/WASClient6.1_windows.jarRuntimeInstall.jar" main="true"/>

The ClientRuntimeInstaller class main method requires the following properties to be set in the JNLP file:

com.ibm.websphere.client.jre.version

Specifies a Java Runtime Environment (JRE) version name that is to be used when referring to

the Application Client run-time dependency component.

com.ibm.websphere.client.jre.launch.java

Specifies the relative location of the javaw.exe program in the Application Client run-time

dependency component JAR file.

The previously mentioned properties, JRE version name and the location of the javaw.exe program are

registered to the Java Web Start Application Manager, as shown in the following example:

<property name="com.ibm.websphere.client.jre.version" value="WASclient6.1"/>

<property name="com.ibm.websphere.client.jre.launch.java" value="java\jre\bin\javaw.exe"/>

Using the Java Web Start sample

The EAR file, WebSphereClientRuntime.ear, is provided in the JWS directory of the Client Application for

WebSphere Application Server installation. This EAR file provides a sample Application Clients run-time

installer JNLP descriptor file and a sample Application Clients run-time library component JNLP descriptor

file. Follow the steps in this task to build the Application Clients run-time dependency component and the

Application Clients run-time library component. Add these components to the WebSphereClientRuntime.ear

file, and then install the EAR file in an Application Server to be used by the client application.

262 Administering WebSphere applications

About this task

There is a new Java Web Start sample available in the client sample gallery for WebSphere Application

Server V7.0. Refer to the client sample gallery in the Application Client for WebSphere Application Server

product. The name of the new sample is ″Java Web Start Deployment Sample″.

Installing Java Web Start

Learn about the steps that are necessary to install Java Web Start (JWS) on the AIX platform. Java Web

Start technology is provided by the Java SE runtime environment to deploy Java EE application clients

(including Thin application clients) on the remote client machine with a single click from Web browser on

the client machine.

Before you begin

Note: This topic applies only to the AIX operating system.

Before you begin this task, see the “Preparing the application client run time dependency component for

Java Web Start” on page 241 topic to understand Java Web Start (JWS) technology and components.

Note:

You can use the following resources:

v The IBM implementation of Java Web Start on Java Platform Standard Edition 6 (Java SE 6) that

is packaged in the Application Client for WebSphere Application Server

Note: You can use Java Web Start on Java Platform, Standard Edition Developer Kit 6 that IBM provides,

packaged in the Application Client for WebSphere Application Server, Version 7.0; Java Web Start

on Sun Microsystems Java Standard Edition Software Development Kit 6 or Java SE Runtime

Environment 6.0, which you can download from the Sun Microsystems Web site for Windows, Linux

and Solaris operating systems, or the Java Web Start on HP Software Development Kit (SDK) or

RTE for Java 2 version 5.0, which you can download from the HP Web site.

About this task

Use the following steps to install JWS on the AIX platform.

1. Install IBM Application Client for WebSphere Application Server.

2. Change your directory to the client_install_root/java/jre/lib/javaws path.

3. Run the updateSetting.sh script from the path mentioned in the previous step.

4. Change your path to the JWS installed path. For example, enter: client_install_root/java/jre/
javaws.

5. Run ./javaws from the path mentioned in the previous step.

Using a static JNLP file with Java Web Start for Application clients

Do not use JSP to dynamically generate a JNLP file, otherwise the JNLP jsp page cannot be opened in

some IE browsers.

About this task

To use a static JNLP file, you will need to add the following mime type mapping in the web.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>

Chapter 4. Client applications 263

http://www.sun.com
http://www.hp.com/products1/unix/java/java2/sdkrte14/downloads/index_pa-risc.html

WAS Client runtime for Java Web Start</display-name>

 <welcome-file-list>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>default.html</welcome-file>

 <welcome-file>default.htm</welcome-file>

 <welcome-file>default.jsp</welcome-file>

 </welcome-file-list>

 <mime-mapping>

 <extension>jnlp</extension>

 <mime-type>application/x-java-jnlp-file</mime-type>

 </mime-mapping>

</web-app>

Running the IBM Thin Client for Enterprise JavaBeans (EJB)

An EJB Client is a Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Java Platform,

Standard Edition (Java SE) application that accesses remote Enterprise Java Beans from a server through

Java Naming and Directory Interface (JNDI) look up. IBM Thin Client for EJB offers a smaller footprint and

is easy to deploy to a Java SE environment and an Eclipse Rich Client Platform (RCP) environment. You

can bundle the IBM Thin Client for EJB library using the WebSphere Application Server installation or the

Application Client for WebSphere Application Server installation with your application. The IBM Thin Client

for EJB also extends the choice of Java SE runtime. It can be run in the Java Runtime Environment (JRE)

that is packaged with the WebSphere Application Server product, the Sun Microsystems JRE that is

downloaded from the Sun Microsystems Web site, or the JRE that is downloaded from the HP Web site.

Before you begin

The IBM ORB implementation library is required if the IBM Thin Client for EJB is running with a non-IBM

product JRE on a non-IBM product platform. For example, running the IBM Thin Client for EJB with Sun

Microsystems JRE on Windows, Linux, or Solaris, and with the HP JRE on HPUX. The IBM-provided

Solaris hybrid and HP hybrid JRE are not considered non-IBM product JRE environments. The IBM Thin

Client for EJB can access version 2.x and version 3.0 EJB on the WebSphere Application Server using the

JNDI lookup, but it cannot access version 3.0 EJB through resource injection. Resource injection is

supported if the client application is a Java Platform, Enterprise Edition (Java EE) Application Client

running within the Java Platform, Enterprise Edition (Java EE) Application Client Container.

Before you set up an EJB Thin Client environment, obtain the Java archive (JAR) file for the EJB Thin

Client for WebSphere Application Server. To obtain the EJB Thin Client for WebSphere Application Server,

install WebSphere Application Server or Application Client. The EJB Thin Client for WebSphere Application

Server file, com.ibm.ws.ejb.thinclient_7.0.0.jar, is located in the app_server_root\runtimes directory.

Copy the Java archive (JAR) file for the IBM Thin Client for EJB with WebSphere Application Server

product, com.ibm.ws.ejb.thinclient_7.0.0.jar , to other machines to create a lightweight client

environment that enables communications with the products. Copies of the IBM Thin Client for EJB are

subject to the same terms and conditions of the license agreement for Version 7.0 WebSphere Application

Server where you obtained the Thin Client for EJB. Refer to the license agreements for correct usage and

other limitations.

The IBM Thin Client for EJB with WebSphere Application Server runs on distributed operating systems

with JDK support, including both Version 5 and Version 6. When using the IBM Thin Client for EJB as a

standalone Java SE application with a non-IBM product JRE, you must override the default ORB

implementation for the JRE through one of following methods:

v Include the com.ibm.ws.orb_7.0.0.jar file in the Java system classpath.

v Override the default ORB implementation in the JRE, using Java Endorsed Standards Override

Mechanism.

264 Administering WebSphere applications

v Set the java.endorsed.dirs path to a directory that contains the com.ibm.ws.orb_7.0.0.jar file.

When running the IBM Thin Client for EJB as an Eclipse RCP application, it is recommended to use

method two, to override the default JRE ORB implementation.

Note: The Pluggable Application Client feature in the application client installer is deprecated. It is

replaced by the IBM Thin Client for EJB.

About this task

Run the IBM Thin Client for EJB, by completing the following steps.

1. Invoke the client application. Run the following Java command:

Add the following system properties to the Java command if you want authentication and SSL enabled:

2. Provide IIOP authentication configuration and Client SSL Configuration. Add the following system

properties to the Java command:

-Dcom.ibm.SSL.ConfigURL=file:///home/user1/ssl.client.props

-Dcom.ibm.CORBA.ConfigURL=file:///home/user1/sas.client.props

You can obtain the ssl.client.props file and sas.client.props file from the WebSphere Application

Server installation and modify the file to suit your environment. You must, at a minimum, update the

location of the key files in the ssl.client.props file to the match location of your target environment.

For example,

-Dcom.ibm.ssl.keyStore=/home/user1/etc/key.p12

-Dcom.ibm.ssl.trustStore=/home/user1/etc/trust.p12

Recommended SSL configuration settings when running the application with a non-IBM product JRE:

com.ibm.ssl.protocol=SSL

com.ibm.ssl.trustManager=SunX509

com.ibm.ssl.keyManager=SunX509

com.ibm.ssl.contextProvider=SunJSSE

com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.keyStoreProvider=SUN

com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS

com.ibm.ssl.trustStoreProvider=SUN

com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the

application runs. The automatic key file generation is not supported with a non-IBM product JRE.

You must override the default ORB implementation of the non-IBM product JRE with the

com.ibm.ws.orb_7.0.0.jar file, or add it to the classpath.

What to do next

Enable trace for the IBM Thin Client for EJB by adding the following to the Java command.

 -Dcom.ibm.ejs.ras.lite.traceSpecification=*=all

Chapter 4. Client applications 265

Related tasks

Example 1: Configuring basic authentication and identity assertion
This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user bob. The following steps take you through the configuration of C, S1, and S2.

Using JMS to connect to a WebSphere Application Server default messaging provider messaging engine

Related reference

ssl.client.props client configuration file
Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of

WebSphere Application Server, SSL properties were specified in the sas.client.props or

soap.client.props files or as system properties. By consolidating the configurations, WebSphere

Application Server enables you to manage security in a manner that is comparable to server-side

configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

Installing Application Client for WebSphere Application Server

This topic describes how to install the Application Client for WebSphere Application Server using the

installation image on the product CD-ROM.

Before you begin

Running client applications that communicate with a WebSphere Application Server requires that elements

of the Application Server are installed on the system on which the client applications run. However, if the

system does not have the Application Server installed, you can install Application Client, which provides a

stand-alone client run-time environment for your client applications.

The i5/OS Application Client supports the following types of client:

v Java thin client

v Java Platform, Enterprise Edition (Java EE) application client

v Web services thin client

The steps that follow provide enough detail to guide you through preparing for, choosing, and installing the

variety of options and features provided. To prepare for installation and to make yourself familiar with

installation options, complete the steps in this topic and read the related topics, before you start to use the

installation tools. Specifically, read these topics before installing the product:

v Installing WebSphere Application Client from a Windows workstation

v Installing WebSphere Application Client from an i5/OS Qshell command line

v Best practices for installing

It is recommended that you have 350 MB of temporary disk space available before beginning the

installation.

1. Install WebSphere Application Client from your iSeries server. Installing the product from the CD-ROM

drive of your iSeries server requires direct physical access to the server. The local installation requires

less time to complete than a remote installation. The local installation reads installation options from a

response file.

See Installing WebSphere Application Client from your iSeries server.

2. Run the GUI installation tool from a Windows workstation

The interactive GUI uses an InstallShield interface to prompt you for installation options. Installing the

product from a Windows workstation does not require direct physical access to the iSeries server.

See “Installing Application Client for WebSphere Application Server from a Windows workstation” on

page 269.

266 Administering WebSphere applications

friend.sib/tasks/tjj_jmsthcli.dita

Results

You successfully installed the Application Client for WebSphere Application Server and the features you

selected.

What to do next

Use the installation verification utility to verify a successful installation. If the installation is not successful,

fix the error as indicated in the installation error message. For example, if you do not have enough disk

space, add more space, and reinstall the Application Client.

Best practices for installing Application Client for WebSphere

Application Server

This topic provides tips for installing Application Client on multiple platforms.

All platforms

The following tips pertain to installing Application Client on all platforms:

v Reserve at least 4 to 5MB free space in the target platform temporary directory.

v When specifying a different temporary directory while installing Application Client, the following message

is displayed if the target platform default temporary directory does not have enough free space to install

Application Client:

Error writing file = There may not be enough

temporary disk space.

Try using -is:tempdir to use a temporary

directory on a partition with more disk

space.

Use the -is:tempdir installation option to specify a different temporary directory. For example, the

following command uses /swap as a temporary directory during installation:

./install -is:tempdir /swap

v After the installation, when changing the installation settings for the WebSphere Application Server host

name and the port number, edit the setupClient file.

Change the DEFAULTSERVERNAME and SERVERPORTNUMBER to the new WebSphere Application Server

host name and port number, respectively. If the SERVERPORTNUMBER is not set, then the default is

2809. Review the following example:

set DEFAULTSERVERNAME=NDServerName

set SERVERPORTNUMBER=9810

The setupClient file is located in the bin subdirectory under the Application Client installation

destination.

Specific platforms

The following tips pertain to installing Application Client on the designated platforms:

Installing Application Client for WebSphere Application Server silently

This topic provides the steps necessary to use the installation wizard and perform a silent installation.

About this task

Use these steps to perform a silent installation, which uses the installation wizard to install the product.

Instead of displaying a user interface, the silent installation provides interaction between you and the

wizard by reading all of your responses from a file that you must customize.

Chapter 4. Client applications 267

1. Verify that the host server jobs are started on your iSeries server. The host server jobs allow the

installation code to run on iSeries. Enter this command on a CL command line: STRHOSTSVR

SERVER(*ALL)

2. Verify that your user profile has the *ALLOBJ and *SECADM special authorities.

3. Place the WebSphere Application Server Supplements disc in the disc drive of your iSeries server.

4. Customize the options response file.

a. Locate the sample options response file. The file name is setup.response in the operating system

platform directory on the product CD-ROM.

b. Use the Copy (CPY) command to create a copy of the setup.response file from the disk. For

example:

CPY OBJ(’/QOPT/WEBSPHERE/AppClient/setup.response’) TODIR(’/MYDIR’)

Where:

QOPT is the disk mount point.

WEBSPHERE is the disk volume label.

/AppClient is the product directory on the disk. This will be referred to in later steps.

Note: For DVD media, an additional directory prefix is required before the product directory that

reflects the operating system and architecture of the installation. Using the previous

example, the following installation path applies when you use CD-ROM media:

CPY OBJ(’/QOPT/WEBSPHERE/AppClient/setup.response’) TODIR(’/MYDIR’)

However, the following installation path applies when you use DVD media:

CPY OBJ(’/QOPT/WEBSPHERE/os400_ppc64/AppClient/setup.response’) TODIR(’/MYDIR’)

c. Edit the copy of the file using EDTF from the i5/OS command line or using Wordpad from a

mapped drive. Accept the license agreement by making the following change in the response file:

-OPT silentInstallLicenseAcceptance="true’ This is the only required change in the response

file. Read the information in the response file to determine if you want to change any other options.

d. Save the file.

5. Invoke the installation program for WebSphere Application Client for i5/OS. To do this, run the INSTALL

command from Qshell :

a. From the i5/OS command line, start a Qshell session: STRQSH

b. Change directory to the AppClient subdirectory of CD-ROM or DVD-ROM drive: cd

/QOPT/WEBSPHERE/AppClient OR cd /QOPT/WebSphere/os400_ppc64/AppClient

c. Issue the INSTALL command to start the installation program: install –options

/MYDIR/setup.response

Important: Do not exit the Qshell session (PF3) until the installation has completed. Doing so

might cause the installation to stop prematurely.

A JDK is automatically selected for invoking the installer and configuring the product based on what

JDKs are installed on the machine. The priority for selection is done in the following order:

v IBM Technology for JDK 6 - 32 bit (5722-JV1 or 5761JV1 option 11)

v IBM Technology for JDK 6 - 64 bit (5722-JV1 or 5761JV1 option 12)

v IBM Developer Kit for Java 1.6 (5722-JV1 or 5761JV1 option 10)

To force IBM Technology for JDK 6 - 64 bit add the parameter: -devkit16_64.

To force IBM Developer Kit for Java 1.6 add the parameter: -devkit16_CLASSIC.

Consider the following example to force the use of IBM Technology for JDK 6 - 64 bit:

 install –options /MYDIR/setup.response -devkit16_64

268 Administering WebSphere applications

Results

You installed application clients silently by using the response file.

What to do next

Use the installation verification utility to verify a successful installation. If the installation is not successful,

fix the error as indicated in the installation error message. For example, if you do not have enough disk

space, add more space, and reinstall the Application Client.

Installing Application Client for WebSphere Application Server from a

Windows workstation

This topic describes how to install the Application Client for WebSphere Application Server on your i5/OS

system from a Windows workstation.

About this task

The steps that follow guide you through installing the WebSphere Application Client from a Windows

workstation using the graphical installation wizard.

 1. If TCP/IP is not started or if you don’t know if TCP/IP is started, enter the Start TCP/IP (STRTCP)

command on the Control Language (CL) command line.

 2. Verify that the host server jobs are started on your iSeries server. The host server jobs allow the

installation code to run on iSeries. Enter this command on a CL command line: STRHOSTSVR

SERVER(*ALL)

 3. Verify that your user profile has the *ALLOBJ and *SECADM special authorities.

 4. Place the WebSphere Application Server Supplements disc in the disc drive of your workstation.

 5. Install Application Client for WebSphere Application Server using the launchpad. Read the Using the

launchpad to start the installation topic for more information.

 6. Enter your user profile, password and the host name or IP address for the system you wish to install

when prompted. Click OK to continue.

 7. Click Next to continue when the Welcome panel is displayed. Click the radio button beside the ″I

accept the terms in the license agreement″ message if you agree to the license agreement, and click

Next to continue.

 8. The installation wizard checks the system for prerequisites. Click Next if you see a success message

on the wizard panel. If a warning message is displayed on the panel, click Cancel to exit the

installation wizard and install the proper prerequisites to the system.

If more than one Java SE Development Kit 6 (JDK 6) option is installed on the machine, then select

one of the following:

v IBM Technology for JDK 6 - 32 bit (5722-JV1 or 5761JV1 option 11)

v IBM Technology for JDK 6 - 64 bit (5722-JV1 or 5761JV1 option 12)

v IBM Development Kit for Java 1.6 (5722-JV1 or 5761JV1 option 10)

Note: Application Client may be fully functional even if some prerequisites are not installed on the

system, however it is recommended you update your system to the required level.

 9. Specify the installation directory and the default profile directory. Click Next to continue.

a. Specify the target directories for the Application Client product and default profile if you do not

want to use the default directories.

b. Deleting the default target location and leaving an installation directory field empty prevents you

from continuing the installation process.

Chapter 4. Client applications 269

10. Choose a type of installation, and click Next. If you use the GUI you can choose a Typical installation

type, which installs J2EE and Thin application client, or you can choose the custom installation type.

For i5/OS, the custom installation type allows you to include the Web Services thin client and

Administration thin client features.

a. Install the Administration Thin Client, if you need a runtime jar that is customized to enable client

applications to perform WebSphere administration tasks. The Administration Thin Client is

installed into app_server_root/runtimes.

b. Install the Web Services Thin Client, if you need a JAX-RPC Web services runtime JAR that is

customized to enable client applications to communicate with the Application Server through Web

Services. The Web Services Thin Client is installed into app_server_root/runtimes.

11. Enter the host name of the WebSphere Application Server machine. Click Next to continue. The

default port number is 2809. If you do not know the host name of the system on which the application

server will run, enter any string to proceed with the install.

12. Review the summary information, and click Next to install the product code or you might also click

Back to change your specifications.

13. Click Finish to exit the wizard, after the Application Client installs.

14. Verify the success of the installer program by examining the Completion panel and the

app_client_root/logs/install/log.txt file for installation status. The installer program records the

following indicators of success in the logs:

 INSTCONFSUCCESS indicates that the installation is successful and that no further log analysis is

required.

 INSTCONFFAILED indicates an installation failure that you cannot retry or recover from without

reinstalling.

Results

You successfully installed the Application Client for WebSphere Application Server and the features you

selected.

What to do next

Use the installation verification utility to verify a successful installation. If the installation is not successful,

fix the error as indicated in the installation error message. For example, if you do not have enough disk

space, add more space, and reinstall the Application Client.

Uninstalling Application Client for WebSphere Application Server

This task describes using the uninstall program to uninstall the Application Client for WebSphere

Application Server.

Before you begin

If you want to uninstall IBM Application Client for WebSphere Application Server manually, read the

Uninstalling the product on i5/OS topic.

Note: If you have a feature pack installed, uninstalling the Application Client for WebSphere Application

Server using the Version 6.1.0 uninstaller program causes the feature pack to stop working

because the uninstallation removes the server. However, you can uninstall the feature pack after

uninstalling the WebSphere Application Server product.

Note: If you are logged in as a root user and attempt to uninstall an instance of Application Client for

WebSphere Application Server that a non-root user installed, the Windows registry will also be

270 Administering WebSphere applications

wiped clean for the application client instance that the root user installed. If you need to uninstall an

instance of application client that a non-root user has installed, be sure that you are logged in as

the non-root user.

1. Stop any browsers and any Java processes related to Application Client products.

Read the Uninstalling the product on i5/OS topic for more information.

2. Change directories to the uninstall directory before issuing the command to uninstall the application

client. The command file is located in the uninstall directory.

3. Issue the command to uninstall the product.

Use the uninstall all command.

The Uninstall wizard begins and displays the Welcome panel.

4. Click Next to begin uninstalling the product. The Uninstall wizard displays a Confirmation panel that

lists the product and features that you are uninstalling.

5. Click Next to continue uninstalling the product. The Uninstall wizard deletes existing profiles first.

After deleting profiles, the Uninstall wizard deletes core product files by component.

6. Click Finish to close the wizard after the wizard removes the product.

Results

Application Client for WebSphere Application Server is uninstalled.

What to do next

Verify the uninstall procedure by viewing the app_server_root/logs/uninstall/log.txt file for errors. Look

for the INSTCONFSUCCESS, indicating a successful uninstall in the log file:

Uninstall, com.ibm.ws.install.ni.ismp.actions.ISMPLogSuccessMessageAction, msg1,

 INSTCONFSUCCESS

The uninstallation wizard records uninstallation events in the uninstallation log files. Examine messages

that the uninstallation program displays. If the Application Client for WebSphere Application Server does

not uninstall successfully, read the messages to identify why the uninstallation failed. Correct the problems

identified and try uninstalling the product again.

Note: If you are logged in as non-root or non-admin user, the uninstall may not be successful. When the

uninstaller program runs, a log file is created in your home directory. If the uninstaller program fails,

an attempt is made to move the log to the app_server_root directory; however, without the

necessary permission to move the file to the app_server_root directory, the attempt to move fails

and the log remains in your home directory. Look for the following log files in the

user_home/waslogs directory:

v log.txt

v trace.txt.gz

v trace.xml.gz

Uninstalling IBM Application Client for WebSphere Application server

on i5/OS

You can uninstall IBM Application Client for WebSphere Application Server for i5/OS product by running

commands from your iSeries server.

About this task

Uninstall IBM Application Client for WebSphere Application Server for i5/OS from your iSeries server.

To uninstall the product, run the following command from the Qshell command line:

app_client_root/bin/uninstall

Chapter 4. Client applications 271

Uninstalling IBM Application Client for WebSphere Application Server from the iSeries server removes all

the product libraries and directories. If you later decide that you do not need the user-defined data, you

can manually remove it.

Results

After completing the procedure, the IBM Application Client for WebSphere Application Server product is

uninstalled.

installRegistryUtils command

The installRegistryUtils command-line tool runs on any supported operating system. The

installRegistryUtils tool lists installed products and packages and assists in cleaning a particular registered

product (including the associated packages), package, or all registered products (including all associated

packages) which are visible to the current user.

Location of the command file: The command file is located on both the product disc and the installed

product.

Note: When using the product disc, the command must be invoked on the machine targeted by the

command. The tool does not work remotely.

To invoke the command file from the product disc, run the following command file from the root of the

product CD:

v installRegistryUtils/bin/installRegistryUtils

To invoke the command file from the installed product, use the following command:

v app_server_root/bin/installRegistryUtils

The common location for the command file is /QIBM/WAS/bin/installRegistryUtils.

Syntax for the installRegistryUtils command: Clean up all accessible products and packages.

./installRegistryUtils -cleanAll

 [-userHome user_home]

Clean up the specified product and all associated packages.

./installRegistryUtils -cleanProduct

 -offering offering_ID

 -installLocation installation_location

 [-userHome user_home]

Clean up the specified package.

./installRegistryUtils -cleanPackage

 -pakName package_name

 -installLocation installation_location

 [-userHome user_home]

List all visible products.

./installRegistryUtils -listProducts

 [-userHome user_home]

List all visible packages.

./installRegistryUtils -listPackages

 [-userHome user_home]

Parameters: Supported arguments include:

272 Administering WebSphere applications

-installLocation installation_location

Specifies the full path to the product installation.

-offering offering_ID

Identifies the offering ID, also known as the product ID, of the specified product.

-pakName package_name

Identifies a package name of the specified product.

-userHome user_home

Specifies the full path to a user home directory. This parameter is not required for a root user unless

you want to invoke the installRegistryUtils command on the home directory of a non-root user.

Deploying J2EE application clients on workstation platforms

You can deploy the J2EE application clients on workstation platforms using the methods described in this

topic.

Before you begin

After developing an application client, deploy this application on client machines. Deployment consists of

pulling together the various artifacts that the application client requires.

The Application Client Resource Configuration Tool (ACRCT) defines resources for the application client.

These configurations are stored in the client .jar file within the application .ear file. The application client

run time uses these configurations for resolving and creating an instance of the resources for the

application client.

Note: This task only applies to J2EE application clients. Only perform this task if you configured your

J2EE application client to use resource references.

About this task

1. Start the ACRCT and open an EAR file.

2. Configure new data source providers.

3. Configure mail providers and sessions.

4. Configure URL providers and sessions.

5. Configure Java messaging resources.

6. Configure new environment entries.

7. (Optional) Remove application client resources.

8. Save the EAR file.

Resource Adapters for the client

A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS). A resource adapter plugs into an application client and provides

connectivity between the EIS and the enterprise application.

The resource adapter support for the J2EE client applications is a subset of the support for the server. For

any resource adapter installed using the clientRAR tool, the client resource adapter is used in a

non-managed environment and must conform to the J2EE Connector Architecture Specification Version 1.5

or higher. Only outbound connections to the EIS are supported through the ManagedConnectionFactory

interfaces. The inbound messaging support (from the EIS), life cycle management, and work management

aspects of the specification are not supported on the client.

For a client application to use a resource adapter, it must be installed in the directory specified by the

environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the setupCmdLine script

Chapter 4. Client applications 273

runs. The launchClient tool, Application Client Resource Configuration Tool (ACRCT) and clientRAR tool all

use this variable to find the default location of all installed resource adapters. To install a resource adapter

in the client, use the clientRAR tool. Once the resource adapter is installed, it must be configured using

the ACRCT. The client configuration tool adds the resource adapter configuration to the EAR file. Then,

connection factories and administered objects are defined.

When running J2EE application clients, the launchClient script specifies a system property called

com.ibm.ws.client.installedConnector, which is set to the same value as the

CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource adapters and

can be overridden for each launchClient call by specifying the -CCD parameter. When the client container

is activated, all resource adapter subdirectories under the specified default location for the resource

adapters directory are added to the classpath. This action allows the client application to use the resource

adapters without using the ACRCT to specify any of the client resources.

Using resource adapters is a new mechanism for easily extending client applications.

Configuring resource adapters

Use the Application Client Resource Configuration Tool (ACRCT) to configure resource adapters.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new resource adapters. The EAR file contents

display in a tree view.

3. Select the JAR file in which you want to configure the new resource adapters from the tree.

4. Expand the JAR file to view its contents.

5. Right-click the Resource Adapters folder, and click New.

6. Configure the resource adapter settings in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

clientRAR tool

This topic describes the command line syntax for the client resource adapter installation tool.

If this tool is used to add or delete resource adapters on the server, then only the client can use the

resource adapter. If the resource adapter is installed on the server using the wsadmin tool or the

administrative console, then do not use the clientRAR tool remove it. Only resource adapters that are

installed using the clientRAR tool should be removed using the clientRAR tool.

The command line invocation syntax for the clientRAR tool follows:

clientRAR [-help | -?] [-CRDcom.ibm.ws.client.installedConnectors=<dir>] <task> <archive>

where

-help, -?

Print the usage information.

-CRDcom.ibm.ws.client.installedConnectors

The directory where resource adapters are installed.

This will override the system property of the same name

(com.ibm.ws.client.installedConnectors).

<task>

The task to perform: add - install, delete - uninstall.

<archive>

if task=add then this is the fully qualified name of the resource adapter archive file.

If task=delete then this is the filename of the resource adapter archive to be uninstalled.

The following examples demonstrate correct syntax.

274 Administering WebSphere applications

Configuring new connection factories for resource adapters

Use the Application Client Resource Configuration Tool (ACRCT) to configure new connection factories for

resource adapters.

About this task

Complete this task to configure new connection factories for resource adapters.

 1. Start the Application Client Resource Configuration Tool (ACRCT).

 2. Open the EAR file for which you want to configure new connection factories. The EAR file contents

display in a tree view.

 3. Select the JAR file in which you want to configure the new connection factories from the tree.

 4. Expand the JAR file to view its contents.

 5. Click the Resource Adapters folder.

 6. Expand the resource adapter for which you want to create connection factories.

 7. Right-click the Connection Factories folder and click New.

 8. Configure the connection factory properties in the resulting property dialog.

 9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Resource adapter connection factory settings:

Use this panel to view or change the configuration properties of the selected resource adapter connection

factory.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters. Right-click the

Connection Factories folder, and click New. The following fields appear on the General tab.

Name:

The name by which this connection factory is known for administrative purposes within WebSphere

Application Server. The name must be unique within the resource adapter connection factories across the

product administrative domain.

 Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this resource adapter connection factory definition to the deployment

descriptor. This entry should be a resource-ref name.

 Data type String

User Name:

Chapter 4. Client applications 275

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly when getting a connection. If this field is used, then the Properties

field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly when getting a connection.

 Data type String

Password:

Specifies an encrypted password. If you complete this field, then the Password field in the Properties box

is ignored.

 If you specify a value for the UserName property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Type:

A drop-down list of all the connectionFactoryInterfaces as defined for the factories in the Resource

Adapter Archive.

 For each Type, there is a set of properties specified in the Properties box. This set of properties is

constructed by retrieving the properties from each connection definition object. For any existing connection

factories that are displayed for updating, this list of properties is overlaid with the properties specified for

the objects. When the Type field is changed, the properties also change to reflect the correct properties for

that type.

 Data type String

Configuring administered objects

This section helps you configure new administered objects.

Before you begin

Before you configure new administered objects, you must complete the following prerequisites:

1. Install the Resource Adapter Archive file (RAR) using the clientRAR tool.

2. Configure the resource adapter for the .ear file, using the Application Client Resource Configuration

Tool (ACRCT) tool.

About this task

Complete this task to configure new administered objects for installed resource adapters.

 1. Start the Application Client Resource Configuration Tool (ACRCT).

276 Administering WebSphere applications

2. Open the EAR file for which you want to configure new administered objects. The EAR file contents

display in a tree view.

 3. Select the JAR file in which you want to configure the new administered objects from the tree.

 4. Expand the JAR file to view its contents.

 5. Click the Resource Adapters folder.

 6. Expand the resource adapter for which you want to create administered objects.

 7. Right-click the Administered Objects folder and click New.

 8. Configure the administered object properties in the resulting property dialog.

 9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Administered objects settings:

Use this panel to view or change the configuration properties of the selected administered objects.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters >

resource_adapter_instance. Right-click Administered Objects and click New. The following fields appear

on the General tab.

The settings for administered objects are handled similarly to connection factories. When updating

administered objects, use the same panels that you used to create administered objects.

Name:

The name by which this administered object is known for administrative purposes within IBM WebSphere

Application Server. The name must be unique within the resource adapter administered objects across the

product administrative domain.

 Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

This entry is a resource-env-ref name, a message-destination-ref name (if the message-destination-
ref has no link), or a message-destination link.

 Data type String

Type:

A drop-down list of all the administered object class-interface pairs as defined for the admin objects in the

Resource Adapter Archive (RAR) file.

 For each Type, there is a set of properties specified in the Properties box. This set of properties is

constructed by retrieving the properties from each administered object definition. For any existing

administered objects that are displayed for updating, this list of properties is overlaid with the properties

Chapter 4. Client applications 277

specified for the objects. When the Type field is changed, the properties also change to reflect the correct

properties for that type.

 Data type String

Resource adapter settings

Use this panel to view or change the configuration properties of the resource adapter. These configuration

properties control how resource adapters are created.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapter. Right-click

Resource Adapter and click New. The following fields appear on the General tab.

Name

The name by which this Resource Adapter is known for administrative purposes within IBM WebSphere

Application Server. The name must be unique within the Resource Adapters across the product

administrative domain.

 Data type String

Description

A description of this resource adapter for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Class Path

Any additional class path. The path to the resource adapter directory is automatically added.

 Data type String

Default The path to your Resource Adapter directory.

Native Path

The native path where the Resource Adapter is located. Enter any additional native class path here.

 Data type String

Resource Adapter Name

A mandatory field that points to an installed resource adapter subdirectory. The entry does not represent

the full directory name for the resource adapter. The full directory name is the installed resource adapter

path, plus the resource adapter name.

 Data type String

Installed Resource Adapter Path

The directory where resource adapters are installed. If you do not complete this field, then the default

takes effect.

If you specify the value, ${CONNECTOR_INSTALL_ROOT}, then this value replaces the value of the

CLIENT_CONNECTOR_INSTALL_ROOT variable on the machine on which the client application runs. This action

allows the application to run easily on different machines, where the client installation might be in different

locations.

278 Administering WebSphere applications

Data type String

Default ${CONNECTOR_INSTALL_ROOT}

Starting the Application Client Resource Configuration Tool and

opening an EAR file

You can perform many tasks by starting the Application Client Resource Configuration Tool (ACRCT).

Many of these tasks also involve then opening an EAR file.

Before you begin

Note: This task only applies to J2EE application clients.

About this task

Use these steps to start the Application Client Resource Configuration Tool. When you start the tool, one

of the most common tasks that you perform is opening and modifying the components of EAR files.

1. Open a command prompt and change to the app_server_root\bin directory.

2. Run the clientConfig.bat file.

3. Open an EAR file within the Application Client Resource Configuration Tool (ACRCT):

a. Click File > Open.

b. Select the file and click Open.
v

4. Save your changes to the file and close the tool:

a. Click File > Save.

b. Click File > Exit.
v

Data sources for the Application Client

WebSphere Application Server and the Application Client for WebSphere Application Server do not provide

client database drivers to be used directly from a J2EE application client. If your application client

accesses a database directly, you must provide the database drivers on the client machine.

You can contact your database vendor to acquire client database driver code and licenses. In addition,

data sources configured on the server and looked up on the client do not participate in global transactions.

Instead of accessing the database directly, it is recommended that your client application use an enterprise

bean. Accessing a database through an enterprise bean eliminates the need to have database drivers on

the client machine because the database access is handled by the enterprise bean running on WebSphere

Application Server. For a current list of providers that are supported on WebSphere Application Server visit

the WebSphere Application Server prerequisite Web site. (See the following link.)

Data source properties for application clients

Use this page to create or modify the data sources.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Data Source Providers > Data source

provider instance. Right-click Data Sources and click New. The following fields are displayed on the

General tab:

Name

Specifies the display name of this data source.

 Data type String

Chapter 4. Client applications 279

Description

Specifies a text description of the data source.

 Data type String

JNDI Name

The application client run time uses this field to retrieve configuration information.

Database Name

The name of the database to which you want to connect.

User

Use the user ID with the Password property, for authentication if the calling application does not provide a

user ID and password explicitly.

If you specify a value for the User ID property, then you must also specify a value for the Password

property. The connection factory User ID and Password properties are used if the calling application does

not provide a user ID and password explicitly.

Password

Use the password with the User ID property, for authentication if the calling application does not provide a

user ID and password explicitly.

If you specify a value for the Password property, then you must also specify a value for the User ID

property.

Re-Enter Password

Confirms the password.

Custom Properties

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data source providers (JDBC providers) for

application clients

You can create new data source providers, also known as JDBC providers, for your application client using

the Application Client Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new data source providers, also known as JDBC providers, for your

application client. In a separate administrative task, install the Java code for the required data source

provider on the client machine on which the application client resides.

About this task

Use this task to connect application clients to relational databases.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file for which you

want to configure the new data source provider. The EAR file contents display in a tree view.

2. Select the JAR file in which you want to configure the new data source provider from the tree.

280 Administering WebSphere applications

3. Expand the JAR file to view its contents.

4. Click the Data Source Providers folder. Do one of the following:

v Right-click the folder and click New Provider.

v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Example: Configuring data source provider and data source settings

You can configure data source provider and data source settings.

The purpose of this article is to help you to configure data source provider and data source settings.

v Required fields:

– Data Source Provider Properties page: name

– Data Source Properties page: name, jndiName
v Special cases:

– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.

– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.
v Example:

<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"

description="jdbcProvider:description" implementationClassName="jdbcProvider:

ImplementationClass">

<classpath>jdbcProvider:classPath</classpath>

<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"

name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"

description="jdbcFactory:description" databaseName="jdbcFactory:databasename">

<propertySet xmi:id="J2EEResourcePropertySet_13">

<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"

value="jdbcFactory:customValue"/>

<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"

value="jdbcFactory:user"/>

<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"

value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_14">

<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"

value="jdbcProvider:customeValue"/>

</propertySet>

</resources.jdbc:JDBCProvider>

Data source provider settings for application clients

Use this page to create a data source under a JDBC provider which provides the specific JDBC driver

implementation class.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right-click Data Source Providers >

and click New. The following fields appear on the General tab:

Name:

Specifies the display name for the data source.

 For example you can set this field to Test Data Source.

 Data type String

Chapter 4. Client applications 281

Description:

Specifies a text description for the resource.

 Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Implementation class:

Use this setting to perform database specific functions.

 Data type String

Default Dependent on JDBC driver implementation class

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data sources for application clients

About this task

During this task, you create new data sources for your application client.

1. Click the data source provider for which you want to create a data source in the tree. Take one of the

following actions as needed:

v Configure a new data source provider.

v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.

3. Click the data source folder. Take one of the following actions as needed:

v Right click the data source folder and click New Factory.

v Click Edit > New on the menu bar.

4. Configure the data source properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring mail providers and sessions for application clients

You can edit the configurations of mail sessions and providers for your application clients using the

Application Client Resource Configuration Tool (ACRCT).

About this task

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of mail sessions

and providers for your application clients to use.

1. Start the ACRCT.

2. Open an EAR file.

282 Administering WebSphere applications

3. Locate the mail objects in the tree that is displayed for the EAR file. For example, if your file contains

mail sessions, expand Resources → application.jar → Mail Providers → java_mail_provider_instance

→ Mail Sessions.

In this example, java_mail_provider_instance is a particular mail provider.

Results

The mail session instances are located in the JavaMail Sessions folder.

Mail provider settings for application clients

Use this page to implement the JavaMail API and create mail sessions.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right-click Mail Providers > and click

New. The following fields appear on the General tab:

Name:

The name of the JavaMail resource provider.

Description:

An optional description for the resource provider.

Class Path:

Specifies a list of paths or JAR file names which together form the location for the resource provider

classes.

Protocol:

Specifies the name of the protocol.

Classname:

Specifies the name of the class implementing the protocol. Leave this field blank if you want to use the

default implementation.

Type:

This menu contains the following two values: TRANSPORT or STORE.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Mail session settings for application clients

Use this page to configure mail session properties.

Chapter 4. Client applications 283

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Mail Providers > mail provider

instance. Right-click Mail Sessions and click New. The following fields appear on the General tab:

Name:

Represents the administrative name of the JavaMail session object.

Description:

Provides an optional description for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Mail Transport Host:

Specifies the server to connect to when sending mail.

Mail Transport Protocol:

Specifies the transport protocol to use when sending mail.

Mail Transport User:

Specifies the user ID to use when the mail transport host requires authentication.

Mail Transport Password:

Specifies the password to use when the mail transport host requires authentication.

Enable strict Internet address parsing:

Specifies whether the recipient addresses must be parsed strictly in compliance with RFC 822, which is a

specifications document issued by the Internet Architecture Board.

 This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses

effectively enforces a strict definition of a valid e-mail address. If you select this setting, JavaMail will

adhere to RFC 822 syntax and reject recipient addresses that do not parse into valid e-mail addresses (as

defined by the specification). If you do not select this setting, JavaMail will not adhere to RFC 822 syntax

and will accept recipient addresses that do not comply with the specification. By default, this setting is

deselected. You can view the RFC 822 specification at the following URL for the World Wide Web

Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Re-Enter Password:

Confirms the password.

Mail From:

Specifies the mail originator.

Mail Store Host:

Specifies the mail account host (or ″domain″) name.

284 Administering WebSphere applications

Mail Store User:

Specifies the user ID of the mail account.

Mail Store Password:

Specifies the password of the mail account.

Re-Enter Password:

Confirms the password.

Mail Store Protocol:

Specifies the protocol to be used when receiving mail.

Mail Debug:

When true, JavaMail interaction with mail servers, along with these mail session properties are printed to

the stdout file.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring mail provider and mail session settings for application

clients

You can configure mail provider and mail session settings. This topic provides the required fields, special

cases, and an example.

The purpose of this topic is to help you configure mail provider and mail session settings.

v Required fields:

– Mail Provider Properties page: name, and at least one protocol provider

– Mail Session Properties page: name, jndiName, outgoing server and protocol, and/or incoming server

and protocol
v Special cases:

– If you use the ACRCT tool, the password field will be encrypted. You cannot encrypt the password

field if you do not use the ACRCT tool.
v Example:

<resources.mail:MailProvider xmi:id="builtin_mailprovider" name="Built-in Mail Provider" description="The built-in mail provider">

 <factories xmi:type="resources.mail:MailSession"

 xmi:id="MailSession_1207766754834" name="MailSession"

 jndiName="mail/session" description="Sample mail session" category="Sample"

 mailTransportHost="smtp.coldmail.com" mailTransportUser="transportUser"

 mailTransportPassword="{xor}Lz4sLChvLTs="

 mailFrom="smith@coldmail.com" mailStoreHost="imap.coldmail.com" mailStoreUser="storeUser"

 mailStorePassword="{xor}Lz4sLChvLTs="

 debug="true" strict="true"

 mailTransportProtocol="builtin_smtp" mailStoreProtocol="builtin_imap">

 <propertySet xmi:id="J2EEResourcePropertySet_1207766778585">

 <resourceProperties xmi:id="J2EEResourceProperty_1207766778585" name="key" type="java.lang.String" value="value" required="false"/>

 </propertySet>

 </factories>

 <protocolProviders xmi:id="builtin_smtp" protocol="smtp" classname="com.sun.mail.smtp.SMTPTransport" type="TRANSPORT"/>

 <protocolProviders xmi:id="builtin_pop3" protocol="pop3" classname="com.sun.mail.pop3.POP3Store" type="STORE"/>

 <protocolProviders xmi:id="builtin_imap" protocol="imap" classname="com.sun.mail.imap.IMAPStore" type="STORE"/>

Chapter 4. Client applications 285

<protocolProviders xmi:id="builtin_smtps" protocol="smtps" classname="com.sun.mail.smtp.SMTPSSLTransport" type="TRANSPORT"/>

 <protocolProviders xmi:id="builtin_pop3s" protocol="pop3s" classname="com.sun.mail.pop3.POP3SSLStore" type="STORE"/>

 <protocolProviders xmi:id="builtin_imaps" protocol="imaps" classname="com.sun.mail.imap.IMAPSSLStore" type="STORE"/>

</resources.mail:MailProvider>

Configuring new mail sessions for application clients

You can use the Application Client Resource Configuration Tool (ACRCT) to configure new mail sessions

for your application client.

Before you begin

During this task, you configure new mail sessions for your application client. The mail sessions are

associated with the pre-configured default mail provider supplied by the product.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file. The EAR file

contents are displayed in a tree view.

2. Select the JAR file in which you want to configure the new JavaMail session.

3. Expand the JAR file to view its contents.

4. Click Mail Providers > Mail Provider > Mail Sessions. Complete one of the following actions:

v Right click the Mail Sessions folder and select New Factory.

v Click Edit > New on the menu bar.

5. Configure the Mail Session properties in the displayed fields.

6. Click OK.

7. Click File > Save on the menu bar to save your changes.

URLs for application clients

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such

as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the type of resource and

the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available using HyperText Transfer

Protocol (HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer

Protocol (FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path

to that resource, and the resource name. The scheme_information for HTTP, FTP and File generally starts

with two slashes (//), then provides the Internet address separated from the resource path name with one

slash (/). For example,

http://www.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the

server generally returns the default index for the directory.

URL providers for the Application Client Resource Configuration Tool

A URL provider implements the function for a particular URL protocol, such as HyperText Transfer Protocol

(HTTP). This provider, comprised of a pair of classes, extends the java.net.URLStreamHandler and

java.net.URLConnection classes.

286 Administering WebSphere applications

Configuring new URL providers for application clients

You can create URL providers and URLs for your client application using the Application Client Resource

Configuration Tool (ACRCT).

Before you begin

During this task, you create URL providers and URLs for your client application. In a separate

administrative task, you must install the Java code for the required URL provider on the client machine on

which the client application resides.

About this task

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new URL provider. The EAR file contents

display in a tree view.

3. Select the JAR file in which you want to configure the new URL provider from the tree.

4. Expand the JAR file to view the contents.

5. Click the folder called URL Providers. Complete one of the following actions:

v Right click the folder and select New.

v Click Edit > New on the menu bar.

6. Configure the URL provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Configuring URL providers and sessions using the Application Client Resource

Configuration Tool

You can edit the configurations of URL providers and URLs to be used by your application clients using

the Application Client Resource Configuration Tool (ACRCT).

Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of URL

providers and URLs to be used by your application clients.

About this task

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the URL objects in the tree that displays. For example, if your file contains URL providers and

URLs, expand Resources -> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance is a particular URL provider.

4. If you expand the tree further, you will also see the URLs folders containing the URL instances for

each URL provider instance.

URL settings for application clients:

Use this page to implement the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP).

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > URL Providers > URL provider

instance. Right-click URLs and click New. The following fields appear on the General tab.

Chapter 4. Client applications 287

This provider, comprised of classes, extends the java.net.URLStreamHandler and java.net.URLConnection

classes.

Name:

The administrative name for the URL.

Description:

This is an optional description of the URL for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

URL:

A Uniform Resource Locator (URL) name that points to an Internet or intranet resource. For example:

http://www.ibm.com.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

URL provider settings for application clients:

Use this page create new URL providers.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right click URL Providers, and click

New. The following fields appear on the General tab.

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP). This provider, comprised of classes, extends the java.net.URLStreamHandler and

java.net.URLConnection classes.

Name:

Administrative name for the URL.

Description:

Optional description of the URL, for your administrative records.

Class Path:

A list of paths or JAR file names which together form the location for the resource provider classes.

Protocol:

Protocol supported by this stream handler. For example, nntp, smtp, ftp, and so on.

288 Administering WebSphere applications

To use the default protocol, leave this field blank.

Stream handler class:

Fully qualified name of a User-defined Java class that extends the java.net.URLStreamHandler for a

particular URL protocol, such as FTP.

 To use the default stream handler, leave this field blank.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for application clients

You can configure URL and URL provider settings. This topic provides the required fields and an example.

The purpose of this article is to help you to configure URL and URL provider settings.

v Required fields:

– URL Properties page: name, jndiName, url

– URL Provider Properties page: name
v Example:

<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"

description="urlProvider:description"

streamHandlerClassName="urlProvider:streamHandlerClass"

protocol="urlProvider:protocol">

<classpath>urlProvider:classpath</classpath>

<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"

jndiName="urlFactory:jndiName" description="urlFactory:description"

spec="urlFactory:url">

<propertySet xmi:id="J2EEResourcePropertySet_18">

<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"

value="urlFactory:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_19">

<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"

value="urlProvider:customValue"/>

</propertySet>

</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource

Configuration Tool

You can use URLs for your client application using the Application Client Resource Configuration Tool

(ACRCT).

Before you begin

During this task, you create URLs for your client application.

About this task

1. Click the URL provider for which you want to create a URL in the tree. Complete one of the following:

v Configure a new URL provider.

v Click an existing URL provider.

Chapter 4. Client applications 289

2. Expand the URL provider to view the URLs folder.

3. Click the URL folder. Complete one of the following actions:

v Right click the folder and click New.

v Click Edit -> New on the menu bar.

4. Configure the URL properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save in the menu bar to save your changes.

Asynchronous messaging in WebSphere Application Server using JMS

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interface. The JMS interface provides a common way

for Java programs (clients and Java Platform, Enterprise Edition (Java EE) applications) to create, send,

receive, and read asynchronous requests as JMS messages.

This topic provides a generic overview of asynchronous messaging using the JMS support provided by

WebSphere Application Server.

The base support for asynchronous messaging using the JMS API provides the common set of JMS

interfaces and associated semantics that define how a JMS client can access the facilities of a JMS

provider. This support enables WebSphere product Java EE applications, as JMS clients, to exchange

messages asynchronously with other JMS clients, by using JMS destinations (queues or topics). A Java

EE application can use JMS queue destinations for point-to-point messaging and JMS topic destinations

for publish and subscribe messaging. A Java EE application can explicitly poll for messages on a

destination, and then retrieve messages for processing by business logic beans (enterprise beans).

With the base JMS and XA support, the Java EE application uses standard JMS calls to process

messages, including any responses or outbound messaging. An enterprise bean can handle responses

acting as a sender bean, or within the enterprise bean that receives the incoming messages. Optionally,

this process can use two-phase commit within the scope of a transaction. This level of function for

asynchronous messaging is called bean-managed messaging, and gives an enterprise bean complete

control over the messaging infrastructure, for example, connection and session pool management. The

common container has no role in bean-managed messaging.

WebSphere Application Server also supports automatic asynchronous messaging using message-driven

beans (a type of enterprise bean defined in the Enterprise JavaBeans (EJB) 2.0 specification) and JMS

listeners (part of the JMS application server facilities). Messages are automatically retrieved from JMS

destinations, optionally within a transaction, then sent to the message-driven bean in a Java EE

application, without the application having to explicitly poll JMS destinations.

Java Message Service providers for clients

This topic describes the different ways client applications can use Java Message Service (JMS) providers

with WebSphere Application Server.

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider

and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To

use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

The service integration technologies of IBM WebSphere Application Server can act as a messaging

system when you have configured a service integration bus that is accessed through the default

messaging provider. This support is installed as part of WebSphere Application Server, administered

through the administrative console, and is fully integrated with the WebSphere Application Server runtime.

290 Administering WebSphere applications

WebSphere Application Server also includes support for the following JMS providers:

WebSphere MQ

Provided for use with supported versions of WebSphere MQ.

Generic

Provided for use with any 3rd party messaging system which supports ASF.

For backwards compatibility with earlier releases, WebSphere Application Server also includes support for

the V5 default messaging provider which enables you to configure resources for use with the WebSphere

Application Server version 5 Embedded Messaging system. The V5 default messaging provider can also

be used with a service integration bus.

WebSphere applications can use messaging resources provided by any of these JMS providers. However

the choice of provider is most often dictated by requirements to use or integrate with an existing

messaging system. For example, you may already have a messaging infrastructure based on WebSphere

MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS

provider, or configure a service integration bus with links to a WebSphere MQ network and then access

the bus through the default messaging provider.

The service integration bus also provides access to a default messaging provider. This is a J2EE 1.4

compliant JMS messaging provider which is fully integrated with WebSphere Application Server. You can

use it in multiple server configurations for messaging interactions with a WebSphere MQ network.

Configuring Java messaging client resources

To configure Java messaging client resources, you create new JMS provider configurations for your

application client. The application client can use a messaging service through the Java Message Service

APIs. A JMS provider provides two kinds of J2EE factories. One is a JMS connection factory, and the

other is a JMS destination factory.

Before you begin

In a separate administrative task, install the Java Message Service (JMS) client on the client machine

where the application client resides. The messaging product vendor must provide an implementation of the

JMS client. For more information, see your messaging product documentation.

Note: When completing this task, you can either create a new messaging provider, or you can use an

existing one.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new JMS provider. The EAR file contents are in

the displayed tree view.

3. Select the JAR file in which you want to configure the new JMS provider from the tree.

4. Expand the JAR file to view its contents.

5. Optionally right-click Messaging Providers and select New, if you want to create and use a new

messaging provider.

6. Configure the JMS provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save.

Configuring new JMS providers with the Application Client Resource

Configuration Tool

You can create new Java Message Service (JMS) provider configurations for the Application Client. The

Application Client makes use of a messaging service through the JMS interfaces.

Chapter 4. Client applications 291

Before you begin

During this task, you create new Java Message Service (JMS) provider configurations for the Application

Client. The Application Client makes use of a messaging service through the JMS interfaces. A JMS

provider provides two kinds of J2EE resources. One is a JMS connection factory, and the other is a JMS

destination.

In a separate administrative task, you must install the JMS client on the client machine where your

particular application client resides. The messaging product vendor must provide an implementation of the

JMS client. For more information, see your messaging product documentation.

About this task

1. Start the Application Client Resource Configuration Tool and open the EAR file for which you want to

configure the new JMS provider. The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Right-click Messaging Providers. Complete one of the following actions:

v Right click the folder and select New.

v On the menu bar, click Edit > New.

5. In the resulting property dialog, configure the JMS provider properties.

6. Click OK when finished.

7. Click File -> Save on the menu bar to save your changes.

JMS provider settings for application clients

Use this page to configure properties of the Java Message Service (JMS) provider, if you want to use a

JMS provider other than the default messaging provider or the WebSphere MQ as a JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right click Messaging Providers, and

click New. The following fields appear on the General tab.

Name:

The name by which the JMS provider is known for administrative purposes.

 Data type String

Description:

A description of the JMS provider, for administrative purposes.

 Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Context factory class:

The Java class name of the initial context factory for the JMS provider.

292 Administering WebSphere applications

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

Provider URL:

The JMS provider URL for external JNDI lookups.

 For example, an LDAP URL for a JMS provider has the form: ldap://hostname.company.com/contextName.

 Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Default Provider connection factory settings

Use this panel to view or change the configuration properties of the selected JMS connection factory for

use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server. These configuration properties control how connections are created between the JMS

provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Connection Factories and click New. The following fields appear on the General

tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a

drop down menu.

Name:

The name of the connection factory.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this Resource Adapter connection factory definition to the

deployment descriptor. This entry is a resource-ref name.

 Data type String

Chapter 4. Client applications 293

User Name:

The User Name used with the Password property for connecting to an application.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to authenticate connection to an application.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the connection factory connects.

 Data type String

Client Identifier:

The name of the client. Required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

294 Administering WebSphere applications

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

Chapter 4. Client applications 295

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Durable Subscription Home:

The name of the durable subscription home.

 Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server

cluster.

 Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This

property enables you to override this behavior, to enable a durable subscription to have multiple

simultaneous consumers.

 Data type Selection list

Default In cluster

Range

In cluster

Allows sharing of durable subscriptions when

connections are made from within a server

cluster.

Always shared

Durable subscriptions can be shared across

connections.

Never shared

Durable subscriptions are never shared across

connections.

296 Administering WebSphere applications

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example merlin:7276:BootstrapBasicMessaging,Gandalf:

5557:BootstrapSecureMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

Chapter 4. Client applications 297

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus

Range Bus, Host, Cluster, Server

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

 Data type String

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

 Data type String

Default Provider queue connection factory settings

Use this panel to view or change the configuration properties of the selected JMS queue connection

factory for use with the internal product Java Message Service (JMS) provider that is installed with

WebSphere Application Server. These configuration properties control how connections are created

between the JMS provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Queue Connection Factories and click New. The following fields appear on the

General tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a

drop down menu.

Name:

The name of the queue connection factory.

 Data type String

Description:

A description of this queue connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this queue connection factory definition to the deployment

descriptor. This entry is a resource-ref name.

 Data type String

298 Administering WebSphere applications

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the

Properties box is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the queue connection factory connects.

 Data type String

Client Identifier:

The client identifier. Required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

Chapter 4. Client applications 299

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

300 Administering WebSphere applications

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, Destination, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Chapter 4. Client applications 301

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus, Cluster, Server

Range Bus, Host

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

 Data type String

Default Provider topic connection factory settings

Use this panel to view or change the configuration properties of the selected JMS topic connection factory

for use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server. These configuration properties control how connections are created between the JMS

provider and the service integration bus that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Topic Connection Factories and click New. The following fields appear on the

General tab.

Settings that have a default value display that appropriate value. Any settings that have fixed values have

a drop down menu.

Name:

302 Administering WebSphere applications

The name of the topic connection factory.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this topic connection factory definition to the deployment descriptor.

This entry is a resource-ref name.

 Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the

Properties box is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the topic connection factory connects.

 Data type String

Client Identifier:

Chapter 4. Client applications 303

The name of the client. This field is required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

304 Administering WebSphere applications

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Durable Subscription Home:

The name of the durable subscription home.

 Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server

cluster.

 Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This

property enables you to override this behavior, to enable a durable subscription to have multiple

simultaneous consumers.

 Data type Selection list

Default In cluster

Range

In cluster

Allows sharing of durable subscriptions when

connections are made from within a server

cluster.

Always shared

Durable subscriptions can be shared across

connections.

Never shared

Durable subscriptions are never shared across

connections.

Chapter 4. Client applications 305

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

306 Administering WebSphere applications

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus

Range Bus, Host, Cluster, Server

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

 Data type String

Default Provider queue destination settings

Use this panel to view or change the configuration properties of the selected JMS queue destination for

use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Queue Destinations. Click New. The following fields appear on the General tab.

Name:

The name of the queue destination factory. You must complete this field.

 Data type String

Description:

A description of this queue destination for administrative purposes within WebSphere Application Server.

 Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

 Data type String

Queue Name:

The name of the queue.

 Data type String

Delivery Mode:

The delivery mode for messages sent to this destination.

 Data type String

Range Application, Persistent or NonPersistent

Default Application

Chapter 4. Client applications 307

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained

by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if

the Time to Live field is not completed.

 Data type Integer

Units Milliseconds

Priority:

The priority for messages sent to this destination. The value from the producer is used if not completed.

 Data type Integer

Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

 Data type String

Range AsConnection, AlwaysOn and AlwaysOff

Default AsConnection

Default Provider topic destination settings

Use this panel to view or change the configuration properties of the selected JMS topic destination for use

with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Topic Destinations, and click New. The following fields appear on the General tab.

Name:

The name of the topic destination entry.

 Data type String

Description:

A description of the entry.

 Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

 Data type String

308 Administering WebSphere applications

Topic Space:

The name of the topic space. This field is required.

 Data type String

Default DEFAULT_TOPIC_SPACE

Topic Name:

The name of the topic. This field is required.

 Data type String

Delivery Mode:

The default mode for messages sent to this destination.

 Data type String

Range Application, Persistent or NonPersistent

Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained

by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if

not completed.

 Data type Long

Units Milliseconds

Priority:

The priority for messages sent to this destination. Value from producer is used if not completed.

 Data type Integer

Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

 Data type String

Range AsConnection, AlwaysOn and AlwaysOff

Default AsConnection

Version 5 Default Provider queue connection factory settings for application

clients

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server version 5 applications.

These configuration properties control how connections are created between the JMS provider and the

default messaging system that it uses.

Chapter 4. Client applications 309

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Provider > Version 5

Default Provider. Right-click Queue Connection Factories and click New. The following fields appear on

the General tab.

A queue connection factory is used to create JMS connections to queue destinations. The queue

connection factory is created by the internal WebSphere Application Server product JMS provider. A

Version 5 Default Provider queue connection factory has the following properties:

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The User ID used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a User ID and password explicitly, for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

Re-Enter Password:

Confirms the password.

Node:

310 Administering WebSphere applications

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type String

Application Server:

Enter the name of the application server. This name is not the host name of the machine, but the name of

the configured application server.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider topic connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the internal product Java Message Service (JMS) provider. These configuration properties control

how connections are created between the JMS provider and the messaging system that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Topic Connection Factories and click New. The following fields appear on

the General tab.

A Version 5 Default Provider topic connection factory has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within WebSphere

Application Server. The name must be unique within the JMS connection factories across the WebSphere

Application Server administrative domain.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within WebSphere Application

Server.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

Chapter 4. Client applications 311

If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly, for example, if the calling application uses the method

createTopicConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Re-Enter Password:

Confirms the password.

Node:

The WebSphere Application Server node name of the administrative node where the JMS server runs for

this connection factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Range Pull-down list of nodes in the WebSphere Application

Server administrative domain.

Application Server:

Enter the name of the application server. This name is not the host name of the machine, but the name of

the configured application server.

Port:

Which of the two ports that connections use to connect to the JMS Server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for nonpersistent, nontransactional,

nondurable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish or subscribe support.

Therefore, any topic connection factory configured with the Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Default QUEUED

312 Administering WebSphere applications

Range QUEUED

The listener port used for full-function JMS

compliant, publish or subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (nontransactional, nonpersistent, and

nondurable subscriptions only) for publish or

subscribe support.

The TCP/IP port numbers for these ports are defined on

the product internal JMS server.

Client ID:

The JMS client identifier used for connections to the MQSeries® queue manager.

 Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider queue destination settings for application clients

Use this panel to view or change the configuration properties of the selected queue destination for use

with product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Queue Destinations and click New. The following fields are displayed on

the General tab.

A queue destination is used to configure the properties of a JMS queue. A Version 5 Default Provider

queue destination has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Chapter 4. Client applications 313

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

314 Administering WebSphere applications

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

whether messages on the queue expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages in this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages in this queue is

defined by the Specified expiry property.If you

select this option, you must define a time out on

the Specified expiry property.

Unlimited

Messages in this queue have no expiry timeout,

and those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, specify the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never timeout.

v Other values are an integer number of milliseconds.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider topic destination settings for application clients

Use this panel to view or change the configuration properties of the selected topic destination for use with

the internal product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Topic Destinations and click New. The following fields appear on the

General tab.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A

Version 5 Default Provider topic has the following properties.

Name:

The name by which the topic is known for administrative purposes.

 Data type String

Chapter 4. Client applications 315

Description:

A description of the topic, for administrative purposes within WebSphere Application Server.

 Data type String

JNDI Name:

The application client run-time environment uses this field to retrieve configuration information.

Topic Name: The name of the topic as defined to the JMS provider.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

316 Administering WebSphere applications

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout,

so those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out.

v Other values are an integer number of milliseconds.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider queue connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected queue connection factory for

use with the MQSeries product Java Message Service (JMS) provider. These configuration properties

control how connections are created between the JMS provider and WebSphere MQ.

Chapter 4. Client applications 317

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right click Queue Connection Factories, and click New. The following fields are displayed

on the General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see WebSphere MQ Using Java, available from the WebSphere MQ library.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

A queue connection factory for the JMS provider has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

318 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/

Default Null

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the MQSeries queue manager for this connection factory.

 Connections created by this factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connection only.

 Data type String

Default Null

Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Transport type:

Specifies whether the WebSphere MQ client connection or JNDI bindings are used for connection to the

WebSphere MQ queue manager. The external JMS provider controls the communication protocols

between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, nondurable, nontransactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

 Data type Enum

Units Not applicable

Chapter 4. Client applications 319

Default BINDINGS

Range BINDINGS

JNDI bindings are used to connect to the queue manager. BINDINGS is a

shared memory protocol and can only be used when the queue manager is on

the same node as the JMS client and poses security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to connect to the queue manager.

CLIENT is a typical TCP-based protocol.

DIRECT

For WebSphere MQ Event Broker using DIRECT mode. DIRECT is a

lightweight sockets protocol used in nontransactional, nondurable and

nonpersistent Publish/Subscribe messaging. DIRECT only works for clients

and message-driven beans using the non-ASF protocol.

QUEUED

QUEUED is a standard TCP protocol.

Recommended Queue connection factory transport type

BINDINGS is faster by 30% or more, but it lacks security. When you have

security concerns, BINDINGS is more desirable than CLIENT.

Topic connection factory transport type

DIRECT is the fastest type and should be used where possible. Use

BINDINGS when you want to satisfy additional security tasks and the queue

manager is local to the JMS client. QUEUED is the fallback for all other cases.

WebSphere MQ 5.3 before CSD2 with the DIRECT setting can lose messages

when used with message-driven beans and under load. This loss also

happens with client-side applications unless the broker maxClientQueueSize is

set to 0. You can set this to 0 with the command:

#wempschangeproperties WAS_nodeName_server1

 -e default -o DynamicSubscriptionEngine -n

 maxClientQueueSize -v 0 -x executionGroupUUID

where executionGroupUUID can be found by starting the broker and looking in

the Event Log/Applications for event 2201. This value is usually

ffffffff-0000-0000-000000000000.

Note: The WebSphere MQ 5.3 JMS cannot be used within WAS 6.1 because WAS 6.1

has a Java 5 runtime. Therefore, cross-memory connections cannot be established with

WebSphere MQ 5.3 queue managers. This can result in a performance degradation if

you were previously using WebSphere MQ 5.3 and BINDINGS for your connections

and move to CLIENT network connections in migrating to WAS 6.1.

Client ID:

The JMS client identifier used for connections to the MQSeries queue manager.

 Data type String

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

320 Administering WebSphere applications

Application Programming Reference books. These references are available from the WebSphere MQ

messaging multiplatform and platform-specific books Web pages; for example, at http://www.ibm.com/
software/integration/wmq/library/, the IBM Publications Center, or from the WebSphere MQ collection kit,

SK2T-0730.

Message Retention:

Select this check box to specify that unwanted messages are to be left on the queue. Otherwise,

unwanted messages are handled according to their disposition options.

 Data type Enum

Units Not applicable

Default Cleared

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are handled according to

their disposition options.

Temporary model:

The name of the model definition used to create temporary connection factories if a connection factory

does not already exist.

 Data type String

Range 1 through 48 ASCII characters

Temporary queue prefix:

The prefix used for dynamic queue naming.

 Data type String

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

Local Server Address:

Specifies the local server address.

 Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery

 Data type Integer

Units Milliseconds

Chapter 4. Client applications 321

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Default 5000

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units Milliseconds

Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/epubs/html/csqzas01/
csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

322 Administering WebSphere applications

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

Default Selected

WebSphere MQ Provider topic connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the WebSphere MQ product Java Message Service (JMS) provider. These configuration

properties control how connections are created between the JMS provider and WebSphere MQ.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right-click Topic Connection Factories and click New.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ

product JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

MA0C broker: When creating a WebSphere Application Server v6 topic connection factory for the

MA0C broker, you should consider the following attribute values:

BrokerControlQueue

This value is fixed at SYSTEM.BROKER.CONTROL.QUEUE for the MA0C broker and is

the queue the broker reads from.

BrokerVersion

Set this value to BASIC for the MA0C broker.

ClientID

Set this value to whatever you like for the MA0C broker (the value is string and is merely

an identifier for your client application).

Chapter 4. Client applications 323

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm

XA Enabled

Set this value to TRUE or FALSE for the MA0C broker (the setting you use is a

performance enhancement flag - you will probably want to set this to ’true’ most of the

time).

BrokerMessage Selection

This value is fixed at CLIENT for the MA0C broker because the broker relies on client side

message selection.

Direct Broker Authorization Type

This value is not required by the MA0C broker.

A topic connection factory for the WebSphere MQ product JMS provider has the following properties.

Name:

The name by which this topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS provider.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The Java Naming and Directory Interface (JNDI) name that is used to bind the topic connection factory

into the application server name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Units En_US ASCII characters

Range 1 through 45 ASCII characters

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User property, you must also specify a value for the Password property.

The connection factory User and Password properties are used if the calling application does not provide

a userid and password explicitly, for example, if the calling application uses the method

createTopicConnection(). The JMS client flows the userid and password to the JMS server.

324 Administering WebSphere applications

Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connections only.

 Data type String

Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for client connections to the WebSphere MQ queue manager for client

connection only.

 Data type String

Range 1 through 20 ASCII characters

Transport Type:

Whether WebSphere MQ client connection or JNDI bindings are used for connection to the WebSphere

MQ queue manager.

Chapter 4. Client applications 325

Data type Enum

Default BINDINGS

Range CLIENT

WebSphere MQ client connection is used to

connect to the WebSphere MQ queue manager.

BINDINGS

JNDI bindings are used to connect to the

WebSphere MQ queue manager.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

 Data type String

CCSID:

The coded character set identifier to be used with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Broker Control Queue:

The name of the broker control queue to which all command messages (except publications and requests

to delete publications) are sent.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Queue Manager:

The name of the WebSphere MQ queue manager that provides the Publisher and Subscriber message

broker.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Publish Queue:

The name of the broker input queue that receives all publication messages for the default stream.

 The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

326 Administering WebSphere applications

Broker Subscribe Queue:

The name of the broker queue from which nondurable subscription messages are retrieved.

 The name of the broker queue from which nondurable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker CCSubQ:

The name of the broker queue from which nondurable subscription messages are retrieved for a

ConnectionConsumer request. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Version:

Specifies whether the message broker is provided by the WebSphere MQ MA0C SupportPac™ or newer

versions of WebSphere family message broker products.

 Data type Enum

Default Advanced

Range Advanced

The message broker is provided by newer

versions of WebSphere family message broker

products (MQ Integrator and MQ Publish and

Subscribe).

Basic The message broker is provided by the

WebSphere MQ MA0C SupportPac (WebSphere

MQ - Publish and Subscribe).

Cleanup level:

Specifies the level of clean up provided by the publish or subscribe cleanup utility.

 Data type Enum

Default SAFE

Range

ASPROP

NONE

STRONG

Cleanup interval:

Specifies the interval, in milliseconds, between background executions of the publish/subscribe cleanup

utility.

 Data type Integer

Chapter 4. Client applications 327

Units Milliseconds

Default 6000

Message selection:

Specifies where broker message selection is performed.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker location.

Message CLIENT

Message selection is done at the client location.

Publish acknowledge interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Sparse subscriptions:

Enables sparse subscriptions.

 Data type Check box

Default Cleared

Status refresh interval:

The interval, in milliseconds, between transactions to refresh publish or subscribe status.

 Data type Integer

Default 6000

Subscription store:

Specifies where WebSphere MQ stores data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

Range

MIGRATE

QUEUE

BROKER

Multicast:

Specifies whether this connection factory uses multicast transport.

328 Administering WebSphere applications

Data type Enum

Default NOT USED

Range

NOT USED

This connection factory does not use multicast

transport.

ENABLED

This connection factory always uses multicast

transport.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport.

ENABLED_RELIABLE

This connection factory uses reliable multicast

transport.

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast

transport if available.

Direct authentication:

Specifies whether to use direct broker authorization.

 Data type Enum

Default NONE

Range

NONE Direct broker authorization is not used.

PASSWORD

Direct broker authorization is authenticated with a

password.

CERTIFICATE

Direct broker authorization is authenticated with a

certificates.

Proxy Host Name:

Specifies the host name of a proxy to be used for communication with WebSphere MQ.

 Data type String

Proxy Port:

Specifies the port number of a proxy to be used for communication with WebSphere MQ.

 Data type Integer

Default 0

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

Chapter 4. Client applications 329

Local Server Address:

Specifies the local server address.

 Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery.

 Data type Integer

Units Milliseconds

Default 5000

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units Milliseconds

Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/epubs/html/csqzas01/
csqzas012w.htm#IDX2254.

SSL peer name:

330 Administering WebSphere applications

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

Default Selected

WebSphere MQ Provider queue destination settings for application clients

Use this panel to view or change the configuration properties of the selected queue destination for use

with the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right-click Queue Destinations and click New. The following fields are displayed on the

General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product for JMS resources. For more information about configuring WebSphere

MQ product for JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters.

A queue for use with the WebSphere MQ product JMS provider has the following properties.

Name:

Chapter 4. Client applications 331

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

 Data type String

JNDI Name:

The application client run-time environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Units Not applicable

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

332 Administering WebSphere applications

Specified Priority:

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout value for this queue is defined by the application or the by Specified expiry

property or whether messages on the queue never expire (have an unlimited expiry time out).

 Data type Enum

Units Not applicable

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout

and those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out

v Other values are an integer number of milliseconds

Base Queue Name:

The name of the queue to which messages are sent, on the queue manager specified by the Base queue

manager name property.

 Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

 This queue manager provides the queue specified by the Base queue name property.

 Data type String

Chapter 4. Client applications 333

Units En_US ASCII characters

Range A valid WebSphere MQ Queue Manager name, as 1

through 48 ASCII characters

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSID identifier supported by WebSphere

MQ queue manager.

 Data type String

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

Indicates that if native encoding is not enabled to select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

Indicates that if native encoding is not enabled to select the type of floating point encoding.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

334 Administering WebSphere applications

Native encoding:

Indicates that the queue destination use native encoding (appropriate encoding values for the Java

platform) when you select this check box.

 Data type Enum

Default Cleared

Range Cleared

Native encoding is not used, so specify the

following properties for integer, decimal and

floating point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application.

 Data type Enum

Default WebSphere MQ

Range WebSphere MQ

The target is a traditional WebSphere MQ

application that does not support JMS.

JMS The target application supports JMS.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider topic destination settings for application clients

Use this panel to view or change the configuration properties of the selected topic destination for use with

the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right click Topic Destinations, and click New. The following fields are displayed on the

General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ

product JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A

topic for use with the WebSphere MQ product JMS provider has the following properties.

Chapter 4. Client applications 335

Name:

The name by which the topic is known for administrative purposes.

 Data type String

Description:

A description of the topic for administrative purposes within IBM WebSphere Application Server.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Persistence:

Specifies whether all messages sent to the destination are persistent, nonpersistent, or have their

persistence defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them in the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Specifies whether the message priority for this destination is defined by the application or the Specified

priority property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them in the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority for

the Specified priority property.

Specified Priority:

336 Administering WebSphere applications

If the Priority property is set to Specified, type the message priority for this queue, in the range 0 (lowest)

through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or by the Specified expiry property

or by messages on the queue never expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them in the

queue.

Specified

The expiry timeout for messages in this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout

value for the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout,

and these messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type the number of milliseconds (greater than 0) after

which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out.

v Other values are an integer number of milliseconds.

Base Topic Name:

The name of the topic to which messages are sent.

 Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSID identifiers that WebSphere MQ

supports.

 Data type String

Chapter 4. Client applications 337

Units Integer

Range 1 through 65535

Integer encoding:

Indicates whether integer encoding is normal or reversed when native encoding is not enabled.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

Indicates the type of floating point encoding when native encoding is not enabled.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S/390® floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java

platform) when you select this check box.

 Data type Enum

Default Cleared

338 Administering WebSphere applications

Range Cleared

Native encoding is not used, so specify the

previous properties for integer, decimal and

floating point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

BrokerDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved.

 The subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

BrokerCCDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Target Client:

Specifies whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

 Data type Enum

Default WebSphere MQ

Range WebSphere MQ

The target is a traditional WebSphere MQ

application that does not support JMS.

JMS The target is a JMS compliant application.

Multicast:

Specifies whether this connection factory uses multicast transport.

 Data type Enum

Default AS_CF

Chapter 4. Client applications 339

Range

AS_CF This connection factory uses multicast transport.

DISABLED

This connection factory does not use multicast

transport.

NOT_RELIABLE

This connection factory always uses multicast

transport.

RELIABLE

This connection factory uses multicast transport

when the topic destination is not reliable.

ENABLED

This connection factory uses reliable multicast

transport.

Generic JMS connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected Java Message Service (JMS)

connection factory for use with the associated JMS provider. These configuration properties control how

connections are created between the JMS provider and the messaging system that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers >

new_JMS_Provider_instance. Right-click Connection Factories, and click New. The following fields are

displayed on the General tab.

A Java Message Service (JMS) connection factory creates connections to JMS destinations. The JMS

connection factory is created by the associated JMS provider. A JMS connection factory for a generic JMS

provider (other than the internal default messaging provider or WebSphere MQ as a JMS provider) has the

following properties:

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated JMS provider.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

Indicates the user ID used with the Password property, for authentication if the calling application does

not provide a userid and password explicitly.

340 Administering WebSphere applications

If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used with the User ID property for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Default Null

Re-Enter Password:

Confirms the password entered in the Password field.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

 As a convention, use the fully qualified JNDI name, for example, jms/Name, where Name is the logical

name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI API by the

platform.

 Data type String

Connection Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publication or subscription).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish subscribe messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Chapter 4. Client applications 341

Generic JMS destination settings for application clients

Use this panel to view or change the configuration properties of the selected JMS destination for use with

the associated JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > new JMS

Provider instance. Right-click Destinations, and click New. The following fields are displayed on the

General tab.

A JMS destination is used to configure the properties of a JMS destination for the associated generic JMS

provider. Connections to the JMS destination are created by the associated JMS connection factory. A

JMS destination for use with a generic JMS provider (not the default messaging provider or WebSphere

MQ as a JMS provider) has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

JNDI Name:

The JNDI name of the actual (physical) name of the JMS destination bound into JNDI.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Destination Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publishing or subscribing).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

342 Administering WebSphere applications

You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JMS provider, JMS connection factory and JMS destination

settings for application clients

You can configure JMS Provider, JMS Connection Factory and JMS Destination settings. This topic

provides the required fields, special cases, and an example.

The purpose of this article is to help you to configure JMS Provider, JMS Connection Factory and JMS

Destination settings.

v Required fields include:

– JMS Provider Properties page: name, and at least one protocol provider

– JMS Connection Factory Properties page: name, jndiName, destination type

– JMS Destination Properties page: name, jndiName, destination type
v Special cases:

– The destination type must be QUEUE, or TOPIC.
v Example:

<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"

description="genericJMSProvider:description"

externalInitialContextFactory="genericJMSProvider:contextFactoryClass"

externalProviderURL="genericJMSProvider:providerUrl">

<classpath>genericJMSProvider:classpath</classpath>

<factories xmi:type="resources.jms:GenericJMSDestination"

xmi:id="GenericJMSDestination_1" name="jmsDestination:name"

jndiName="jmsDestination:jndiName" description="jmsDestination:description"

externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">

<propertySet xmi:id="J2EEResourcePropertySet_15">

<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"

value="jmsDestination:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms:GenericJMSConnectionFactory"

xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"

description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="

externalJNDIName="jmsCF:externalJndiName" type="QUEUE">

<propertySet xmi:id="J2EEResourcePropertySet_16">

<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"

value="jmsCF:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_17">

<resourceProperties xmi:id="J2EEResourceProperty_19"

name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Configuring new JMS connection factories for application clients

Use this task to create a new Java Message Service (JMS) connection factory configuration for your

application client.

1. Click the JMS provider for which you want to create a connection factory in the tree. Complete one of

the following actions:

v Configure a new JMS provider.

v Click an existing JMS provider.

2. Expand the JMS provider to view its Connection Factories folder.

3. Click the connection factory folder, and complete one of the following actions:

v Right-click the folder and selectNew.

v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the displayed fields.

Chapter 4. Client applications 343

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new JMS destinations for application clients

Use this task to create a new Java Message Service (JMS) destination configuration for your application

client.

1. Click the JMS provider in the tree for which you want to create a destination. Complete one of the

following actions:

v Configure a new JMS provider.

v Click an existing JMS provider.

2. Expand the JMS provider to view its Destinations folder.

3. Click the provider folder, and complete one of the following actions:

v Right-click the folder and select New.

v Click Edit > New on the menu bar.

4. Configure the JMS destination properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new resource environment providers for application

clients

You can create new resource environment provider configurations for your application client using the

Application Client Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new resource environment provider configurations for your application client.

About this task

To configure a new resource environment provider, perform the following steps:

1. Start the Application Configuration Resource Tool and open the EAR file for which you want to

configure the new Java Message Service (JMS) provider. The EAR file contents display in a tree view.

2. Select from the tree the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Click the Resource Environment Providers folder. Take one of the following actions:

v Right-click the provider folder, and click New.

v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected Java Archive (JAR) file. Right-click Resource

Environment Providers, and click New. The following fields are displayed on the General tab:

Name:

Specifies the administrative name for the resource environment provider.

344 Administering WebSphere applications

Description:

Specifies a description of the resource environment provider for your administrative records.

Class Path:

Specifies the path to the JAR file that contains the implementation classes for the resource environment

provider.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application clients

You can create new resource environment entries for your client application using the Application Client

Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new resource environment entries for your client application.

About this task

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new resource environment entry. The EAR file

contents are in the displayed tree view.

3. Click the desired resource environment provider, and complete the following action to configure new

providers:

v Configure a new resource environment provider.

4. Expand the resource environment provider to view the Resource Environment Entries folder.

5. Click the resource environment entries folder, and complete one of the following actions:

v Right-click the folder and select New.

v Click Edit > New on the menu bar.

6. Configure the resource environment entry properties in the displayed fields.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Environment Providers >

resource environment instance. Right-click Resource Environment Entries, and click New. The following

fields appear on the General tab:

Name:

Specifies the administrative name for the resource environment entry.

Description:

Chapter 4. Client applications 345

Specifies a description of the URL for your administrative records.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

 Use this name to link to the binding information of the platform. The binding associates the resources

defined in the deployment descriptor of the module to the actual (or physical) resources bound into JNDI

by the platform.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Managing application clients

You can manage Java Platform, Enterprise Edition (Java EE) application clients using the Application

Client Resource Configuration Tool (ACRCT).

Before you begin

Perform the following tasks after deploying application clients. This task only applies to Java EE

application clients.

1. Update data source and data source provider configurations.

2. Update URLs and URL provider configurations.

3. Update mail session configurations.

4. Update JMS provider, connection factories, and destination configurations.

5. Update MQ JMS provider, MQ connection factories and MQ destination configurations.

6. Update Resource Environment Entry and Resource Environment Provider configurations.

7. (Optional) Remove application client resources.

Updating data source and data source provider configurations with the Application

Client Resource Configuration Tool

You can update the configuration of an existing data source or data source provider using the Application

Client Resource Configuration Tool (ACRCT).

About this task

During this task, you update the configuration of an existing data source or data source provider. Perform

this task when your database configuration changes.

1. Start the Application Client Resource Configuration Tool (ACRCT), and open the Enterprise Archive

(EAR) file containing the data source or data source provider. The EAR file contents display in a tree

view.

2. Select Java Archive (JAR) file from the navigation tree containing the data source or data source

provider to update.

3. Expand the JAR file to view its contents until you locate the particular data source or data source

provider to update. Take one of the following actions:

v Right-click the data source object and click Properties.

346 Administering WebSphere applications

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v Data source provider properties

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Updating URLs and URL provider configurations for application clients

You can update URLs and URL provider configurations for application clients using the Application Client

Resource Configuration Tool (ACRCT).

1. Start the tool and open the Enterprise Archive (EAR) file containing the URL or URL provider. The EAR

file contents are displayed in a tree view.

2. Select from the tree the Java Archive (JAR) file containing the URL or URL provider to update.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular URL or URL provider to update.

Take one of the following actions:

a. Right-click the URL object and click Properties.

b. Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Updating mail session configurations for application clients

You can update the configuration of an existing JavaMail session using the Application Client Resource

Configuration Tool (ACRCT).

About this task

During this task, you update the configuration of an existing JavaMail session. You cannot update the

name of the default JavaMail provider, and you cannot delete the default JavaMail provider from the

navigation tree.

1. Start the tool and open the Enterprise Archive (EAR) file containing the JavaMail session. The EAR file

contents are displayed in the navigation tree view.

2. Select the Java Archive (JAR) file containing the JavaMail session to update from the navigation tree.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular JavaMail session to update. Take

one of the following actions:

a. Right-click the object and click Properties

b. Click Edit > Properties from the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Select File > Save from the menu bar to save your changes.

Updating Java Message Service provider, connection factories, and destination

configurations for application clients

You can update the configuration of an existing Java Message Service (JMS) provider, connection factory

or destination using the Application Client Resource Configuration Tool (ACRCT).

About this task

During this task, you update the configuration of an existing Java Message Service (JMS) provider,

connection factory or destination.

Chapter 4. Client applications 347

1. Start the tool and open the Enterprise Archive (EAR) file containing the Java Message Service (JMS)

provider, connection factory, or destination. The EAR file contents display in a tree view.

2. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to

update from the navigation tree.

3. Expand the JAR file to view its contents until you locate the particular JMS provider, connection

factory, or destination to update. When you find it, do one of the following actions:

v Right-click the provider, and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v JMS provider properties

v WebSphere Application Server Queue connection factory properties

v WebSphere Application Server Topic connection factory properties

v WebSphere Application Server Queue destination properties

v WebSphere Application Server Topic destination properties

5. Click OK.

6. Click File > Save to save your changes.

Updating WebSphere MQ as a Java Message Service provider, and its JMS

resource configurations, for application clients

You can update an existing configuration of WebSphere MQ as a Java Message Service (JMS) provider,

and update the configuration of WebSphere MQ connection factories or WebSphere MQ destinations.

About this task

Use this task to update an existing configuration of WebSphere MQ as a Java Message Service (JMS)

provider, and to update the configuration of WebSphere MQ connection factories or WebSphere MQ

destinations.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the Enterprise Archive (EAR) file containing the WebSphere MQ JMS provider, WebSphere MQ

connection factory, or WebSphere MQ destination. The EAR file contents are displayed in the

navigation tree view.

3. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to

update.

4. Expand the JAR file to view its contents until you locate the particular JMS provider, connection

factory, or destination that you want to update. Complete one of the following actions:

v Right-click the appropriate object and click Properties.

v Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields. For detailed field help, see:

v JMS provider properties

v MQ Queue connection factory properties

v MQ Topic connection factory properties

v MQ Queue destination properties

v MQ Topic destination properties

6. Click OK.

7. Click File > Save to save your changes.

Updating resource environment entry and resource environment provider

configurations for application clients

You can update the configuration of an existing resource environment entry or resource environment

provider using the Application Client Resource Configuration Tool (ACRCT).

348 Administering WebSphere applications

About this task

During this task, you update the configuration of an existing resource environment entry or resource

environment provider.

1. Start the tool and open the Enterprise Archive (EAR) file containing the resource environment entry or

resource environment provider. The EAR file contents display in a navigation tree view.

2. Select from the tree the Java Archive (JAR) file containing the resource environment entry or resource

environment provider to update.

3. Expand the JAR file to view its contents until you locate the resource environment entry or resource

environment provider to update. Take one of the following actions:

v Right-click the resource environment object, and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v Resource environment provider properties

v Resource environment entry properties

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Example: Configuring Resource Environment settings:

You can configure Resource Environment settings. This topic provides the required fields and an example.

 The purpose of this topic is to help you configure Resource Environment settings.

v Required fields:

– Resource Environment Provider page: Name

– Resource Environment Entry page: Name, JNDI Name
v Example:

<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"

name="resourceEnvProvider:name" description="resourceEnvProvider:description">

<classpath>resourceEnvProvider:classpath</classpath>

<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"

name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName"

description="resourceEnvEntry:description">

<propertySet xmi:id="J2EEResourcePropertySet_20">

<resourceProperties xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_21">

<resourceProperties xmi:id="J2EEResourceProperty_23"

name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>

</propertySet>

</resources.env:ResourceEnvironmentProvider>

Example: Configuring resource environment custom settings for application clients:

You can configure resource environment custom settings.

 The purpose of this topic is to help you configure resource environment custom settings.

v The custom page applies to every resource type. You can specify as many custom names and values

as you need.

v Example:

<propertySet xmi:id="J2EEResourcePropertySet_20">

<resourceProperties xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>

</propertySet>

Chapter 4. Client applications 349

Removing application client resources

You can remove Java Platform, Enterprise Edition (Java EE) application client resources using the

Application Client Resource Configuration Tool (ACRCT).

Before you begin

The option to delete an item does not offer a confirmation dialog. As a safeguard, consider saving your

work right before you begin this task. If you change your mind after removing an item, you can close the

EAR file without saving your changes, canceling your deletion. Remember to close the EAR file

immediately after the deletion, or you also lose any unsaved work that you performed since the deletion.

This task only applies to Java EE application clients.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the Enterprise Archive

(EAR) file from which you want to remove an object. The EAR file contents display in the navigation

tree view. If you already have an EAR file open and have made some changes, click File > Save to

save your work before preceding to delete an object.

2. Locate the object that you want to remove in the tree.

3. Right-click the object, and click Delete.

4. Click File > Save.

350 Administering WebSphere applications

Chapter 5. Web services

Task overview: Implementing Web services applications

Use this topic as an introduction to using Web services. WebSphere Application Server supports Web

services that are developed and implemented based on a variety of Java programming models. Use Web

services when operating across a variety of platforms, including Java Platform, Enterprise Edition (Java

EE) and non-Java EE platforms.

Before you begin

Decide if a Web services implementation benefits your business process.

About this task

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)

programming model and the Java API for XML-based RPC (JAX-RPC) programming model.

JAX-WS is the next generation Web services programming model extending the foundation

provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,

development of Web services and clients is simplified through support of a standards-based

annotations model. Although the JAX-RPC programming model and applications are still supported,

take advantage of the easy-to-implement JAX-WS programming model to develop new Web

services applications and clients.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

Implementing Web services applications is an easy way to integrate application systems together within or

outside your business infrastructure that function as stand-alone systems. For example, your customer

information database is a stand-alone application, but you want your accounting application to access the

customer data. You can create a Web service for the customer database and then enable the accounting

application as a Web service client. The accounting application can now access the customer information.

By implementing a Web service, these two applications can share information in an efficient way.

Because Web services are easily applied to existing applications and information technology assets, you

can develop, deploy and recompose new solutions quickly to address new opportunities. As Web services

become more popular, the pool of services grows, promoting development of more robust models of

just-in-time application and business integration over the Internet.

You can use Web services applications with the application server by following the steps provided:

 1. Plan to use Web services. Review all of the components of Web services to learn how you can make

your Web services plan more robust.

 2. (Optional) Migrate existing Web services.

Because Java EE environments emphasize compatibility, most application servers that offer support

for the newer JAX-WS and JAXB specifications continue to support the older JAX-RPC specification.

A consequence of this is that, existing Web services are likely to remain JAX-RPC based while new

ones are developed using JAX-WS and JAXB.

However, as time passes and applications are revised and rewritten, there might be times when the

best strategy is to migrate a JAX-RPC based Web service to one based on JAX-WS and JAXB. This

might result from a vendor choosing to provide enhancements to qualities of service that are only

available in the new programming models. For example, SOAP 1.2 and SOAP Message Transmission

Optimization Mechanism (MTOM) support are only available within the JAX-WS 2.x and JAXB 2.x

© Copyright IBM Corp. 2008 351

programming models and not JAX-RPC. Read about Web services migration best practices to learn

more about best practices and examples when migrating JAX-RPC Web services to JAX-WS and

JAXB Web services.

Note: Existing JAX-RPC applications wanting to use JAX-WS features must be rewritten using the

JAX-WS programming model.

If you have used Web services based on Apache SOAP and now want to develop and implement

Web Services for Java EE specification, you need to migrate client applications developed with all

versions of 4.0, and versions of 5.0 prior to 5.0.2. See the topic, Migrating Apache SOAP Web

services to JAX-RPC Web Services based on Java EE standards.

 3. Develop Web services applications. You can develop Web services in one of the following ways:

a. Develop Web services from existing WSDL files using JAX-WS.

You can create a JAX-WS Web service by starting with an existing Web Services Description

Language (WSDL) file describing the service interface for a JavaBeans or enterprise beans

application. Typically, the WSDL file is defined as part of the application modeling process. Using

an existing service definition or WSDL file to generate a new application is called a top-down

approach to developing Web services.

b. Develop Web services applications using JAX-WS.

You can use the Java API for XML-Based Web Services (JAX-WS) programming model to

develop Web services. JAX-WS simplifies application development through a standard,

annotation-based model to develop Web services applications and clients. A common set of

binding rules for XML and Java objects make it easy to incorporate XML data and process

functions in Java applications. A further set of enhancements help you optimally send binary

attachments, such as images or files, with the Web services requests.

When developing a JAX-WS Web service starting from existing JavaBeans or stateless session

enterprise beans, you can expose the bean as a JAX-WS Web service by using annotations.

Adding the @WebService or @WebServiceProvider annotation to the bean defines the bean as a

JAX-WS Web service. Enterprise beans that are exposed as JAX-WS Web services must be

packaged in EJB 3.0 or higher modules.

Transforming an existing application into Web services is called a bottoms-up approach to

developing Web services. This process is called bottoms-up because you are starting with the

implementation rather than starting with an existing service or Web Services Description

Language (WSDL) file.

c. Develop and deploy JAX-WS Web services clients Web services clients that can both access and

invoke JAX-WS Web services are developed based on the Web Services for Java Platform,

Enterprise Edition (Java EE) specification. The application server supports Enterprise JavaBeans™

(EJB) clients, Java EE application clients, JavaServer Pages (JSP) files and servlets that are

based on the JAX-WS programming model.

d. Develop Web services applications from existing WSDL files with JAX-RPC.

You can create a JAX-RPC Web service by starting with an existing WSDL file describing the

service interface of an enterprise bean implementation using a top-down approach to developing

Web services.

e. Develop Web services applications with JAX-RPC.

You can use the Java API for XML-based RPC (JAX-RPC) programming model to develop Web

services. When developing a JAX-RPC Web service starting from existing JavaBeans or

enterprise beans, you need develop a WSDL file. You can use existing JavaBeans or enterprise

beans and then enable the implementation for Web services.

f. Develop and deploy JAX-RPC Web services clients You can develop Web services clients based

on the Web Services for Java Platform, Enterprise Edition (Java EE) specification and the Java

API for XML-based remote procedure call (JAX-RPC) specification. The application server

supports Enterprise JavaBeans™ (EJB) clients, Java EE application clients, JavaServer Pages

(JSP) files and servlets that are based on the JAX-RPC programming model.

352 Administering WebSphere applications

g. Enable Web services through service integration technologies

You can use the Web services enablement of the service integration bus (SIBus) to achieve the

following goals:

v Make an internally hosted service that is available at a bus destination available as a Web

service.

v Make an external Web service available internally at a bus destination.

v Use the Web services gateway to map an existing service, either an internally-hosted service

or an external Web service, to a new Web service that is provided by the gateway.

You can develop Web services to take advantage of Web Services Addressing (WS-Addressing),

Web Services Resource Framework (WSRF), and Web Services Transaction (WS-Transaction)

support.

v Use the WS-Addressing SPI: Performing more advanced Web Service Addressing tasks.

You can develop Web services to take advantage of Web Services Addressing (WS-Addressing),

which aids interoperability between Web services using a standard way to address Web services

and providing addressing information in messages.

v Create stateful Web services using the Web Services Resource Framework.

With the Web Services Resource Framework (WSRF) support in the application server, you can

implement a stateful Web service as a WS-Resource, and reference that service it using a

WS-Addressing endpoint reference.

v Use WS-Transaction policy to coordinate transactions or business activities for Web services.

WS-Transaction is an interoperability standard that includes the WS-AtomicTransaction,

WS-BusinessActivity, and WS-Coordination specifications. The Web Services Atomic Transaction

(WS-AT) support in the application server provides transactional quality of service to the Web

services environment. Distributed Web services applications, and the resources they use, can take

part in distributed global transactions. With Web Services Business Activity (WS-BA) support in the

application server, Web services on different systems can coordinate activities that are more

loosely coupled than atomic transactions. Such activities can be difficult or impossible to roll back

atomically, and therefore require a compensation process if an error occurs.

v Use WS-Policy to exchange policies in a standard format.

WS-Policy is an interoperability standard that is used to describe and communicate the policies of

a Web service so that service providers can export policy requirements in a standard format.

Clients can combine the service provider requirements with their own capabilities to establish the

policies required for a specific interaction.

 4. Assemble Web services.

Read about what you need to assemble a Web service and the order in which to assemble the parts,

for example an enterprise archive (EAR) file.

 5. Deploy Web services.

Read about the steps necessary to deploy the EAR file that has been configured and enabled for

Web services.

 6. Administer deployed Web services.

Once your Web services application is deployed, you can configure security settings, view

deployment descriptors and WSDL documents, set the scope of a Web service port, and manage

policy sets and service providers. These tasks can be done using the administrative console or with

command-line tools.

 7. Secure Web services.

v Manage policy sets using the administrative console.

Read about creating policy sets that you can use to simplify the security configuration of your Web

services applications. Policy sets are only supported by JAX-WS applications.

v Secure Web services applications using message level security.

Chapter 5. Web services 353

friend.sib/tasks/tjw_ep.dita

Consider a broad set of security requirements, including authentication, authorization, privacy, trust,

integrity, confidentiality, secure communications channels, delegation, and auditing across a

spectrum of application and business topologies.

 8. Publish the WSDL file.

After installing a Web services application, and optionally modifying the endpoint information, you

might need Web Services Description Language (WSDL) files containing the updated endpoint

information. Read about the steps necessary to publish the WSDL files so that this information is

available.

 9. Monitor the performance of Web services applications.

Read about using the Performance Monitoring Infrastructure (PMI) to measure the time required to

process Web services requests.

10. Troubleshoot Web services.

Read about troubleshooting different processes used to develop, implement and use Web services,

including command-line tools, Java compiling errors, client runtime errors and exceptions, serialization

and deserialization errors, and authentication challenges and authorization failures with Web services

security.

Example

The following example illustrates how a business might use Web services.

The owner of a flower shop wants to start receiving orders from customers through the Web. This owner

starts the process by finding wholesale flower suppliers, pricing the product, and completing contracts for

future flower orders.

Using Web services, the flower shop owner can find wholesale flower suppliers. One way to find new

suppliers is to use a Universal Description, Discovery and Integration (UDDI) registry to search for

potential suppliers. When the suppliers are chosen, the registry sends back information on how to contact

the flower distributors that meet the criteria of the flower shop owner.

The flower shop owner can request price lists from each of the suppliers by obtaining a WSDL file for each

potential supplier. The WSDL can be downloaded from the Web page of the supplier, received through

e-mail, or retrieved from the UDDI registry entry of the supplier.

The WSDL describes the procedure call. When using the application server, the procedure call is a

JAX-RPC or a JAX-WS procedure call. Either of these procedure call types retrieves the price list. The

WSDL file also specifies the Universal Resource Locator (URL), where the request is sent.

The flower shop owner now has to compare the prices received from each supplier, decide which suppliers

to do business with, and make arrangements for future orders to fill. The flower shop can now sell

merchandise through the Web by using Web services to communicate with suppliers for the best prices

and complete the ordering processes. The merchandise price lists need publishing to the Web site and a

mechanism is needed for customers to order flowers.

The Web services clients of the flower supplier are deployed on the flower shop server. When a customer

makes a transaction to purchase flowers through the Web, the order is sent to the supplier through the

procedure call. The supplier responds by sending a confirmation with the order number and shipping date.

The suppliers maintain the inventory and the flower shop owner handles billing and customer order

management.

Similarly, the flower shop catalog can be composed automatically from the catalogs of each supplier. If the

supplier delivers directly to the customer, then the order tracking inquiries can pass directly to the order

tracking system of the supplier. The supplier can also use Web services to send invoices for orders by the

354 Administering WebSphere applications

flower shop. Processes that previously required forms to fill manually, and fax or mail, can now be done

automatically, saving labor costs for both the flower shop and the supplier.

Using Web services is beneficial because a much larger inventory is made available to the flower shop.

No merchandise maintenance overhead exists, and the flower shop can offer their customers products that

they otherwise might not have. Selling flowers through the Web increases capital for the flower shop

without overhead of another store or resources invested into additional products.

For a more detailed scenario, see Web services scenario: Overview which tells the story of a fictional

online garden supply retailer, Plants by WebSphere, and how they incorporated the Web services concept.

Refer to the Samples Gallery for additional Samples that demonstrate JAX-WS and JAX-RPC Web

services.

Service-oriented architecture

A service-oriented architecture (SOA) is a collection of services that communicate with each other, for

example, passing data from one service to another or coordinating an activity between one or more

services.

Companies want to integrate existing systems to implement Information Technology (IT) support for

business processes that cover the entire business value chain. A variety of designs are used, ranging from

rigid point-to-point electronic data interchange (EDI) to Web auctions. By using the Internet, companies

can make their IT systems available to internal departments or external customers, but the interactions are

not flexible and are without standardized architecture.

Because of this increasing demand for technologies that support connecting and sharing resources and

data, a need exists for a flexible, standardized architecture. SOA is a flexible architecture that unifies

business processes by structuring large applications into building blocks, or small modular functional units

or services, for different groups of people to use inside and outside the company. The building blocks can

be one of three roles: service provider, service broker, or service requestor. See Web services approach to

a service-oriented architecture to learn more about these roles.

Requirements for an SOA

To efficiently use an SOA, follow these requirements:

v Interoperability between different systems and programming languages.

The most important basis for a simple integration between applications on different platforms is to

provide a communication protocol. This protocol is available for most systems and programming

languages.

v Clear and unambiguous description language.

To use a service offered by a provider, it is not only necessary to be able to access the provider system,

but the syntax of the service interface must also be clearly defined in a platform-independent fashion.

v Retrieval of the service.

To support a convenient integration at design time or even system run time, a search mechanism is

required to retrieve suitable services. Classify these services as computer-accessible, hierarchical or

taxonomies based on what the services in each category do and how they can be invoked.

Web services approach to a service-oriented architecture

You can use Web services in a service-oriented architecture (SOA) environment.

You can use Web services to implement a SOA. A major focus of Web services is to make functional

building blocks accessible over standard Internet protocols that are independent from platforms and

programming languages. These services can be new applications or just wrapped around existing legacy

systems to make them network-enabled. A service can rely on another service to achieve its goals.

Chapter 5. Web services 355

Each SOA building block can assume one or more of three roles:

v Service provider

The service provider creates a Web service and possibly publishes its interface and access information

to the service registry. Each provider must decide which services to expose, how to make trade-offs

between security and easy availability, how to price the services, or how to exploit free services for

other value. The provider also has to decide which category to list the service in for a given broker

service and what sort of trading partner agreements are required to use the service.

v Service broker

The service broker, also known as service registry, is responsible for making the Web service interface

and implementation access information available to any potential service requestor. The implementer of

the broker decides the scope of the broker. Public brokers are available through the Internet, while

private brokers are only accessible to a limited audience, for example, users of a company intranet.

Furthermore, some decisions need to be made about the amount of the offered information. Some

brokers specialize in many listings. Others offer high levels of trust in the listed services. Some cover a

broad landscape of services and others focus within an industry. Some brokers catalog other brokers.

Depending on the business model, brokers can attempt to maximize look-up requests, the number of

listings or the accuracy of the listings. The Universal Description, Discovery and Integration (UDDI)

specification defines a way to publish and discover information about Web services.

v Service requester

The service requestor or Web service client locates entries in the broker registry using various find

operations and then binds to the service provider to invoke one of its Web services.

Service

requester

Service

provider

Legacy

system

Service

broker

Client

Internet

12

3

.

Characteristics of the SOA

The presented SOA illustrates a loose coupling between the participants, which provides greater flexibility

in the following ways:

v A client is coupled to a service. Therefore, the integration of the server takes place outside the scope of

the client application programs.

v Old and new functional blocks or applications and systems, are encapsulated into components that work

as services.

v Functional components and their interfaces are separate so that new interfaces can be plugged in more

easily.

v Within complex applications, the control of business processes can be isolated. A business rule engine

can be incorporated to control the workflow of a defined business process. Depending on the state of

the workflow, the engine calls the respective services.

356 Administering WebSphere applications

v Services can be incorporated dynamically during run time.

v Bindings are specified using configuration files and can be easily adapted to new needs.

Properties of a service-oriented architecture

The service-oriented architecture offers the following properties:

v Web services are self-contained

On the client side, no additional software is required. A programming language with Extensible Markup

Language (XML) and HTTP client support is enough to get you started. On the server side, a Web

server and a SOAP server are required. It is possible to enable an existing application for Web services

without writing a single line of code.

v Web services are self-describing

Neither the client nor the server knows or cares about anything besides the format and content of the

request and response messages (loosely coupled application integration). The definition of the message

format travels with the message; no external metadata repositories or code generation tool are required.

v Web services can be published, located, and invoked across the Internet

This technology uses established lightweight Internet standards such as HTTP and it leverages the

existing infrastructure. Some other standards that are required include, SOAP, Web Services Description

Language (WSDL), and UDDI.

v Web services are language-independent and interoperable

The client and server can be implemented in different environments. Existing code does not have to

change in order to be Web services-enabled.

v Web services are inherently open and standard-based

XML and HTTP are the major technical foundation for Web services. A large part of the Web service

technology has been built using open-source projects.

v Web services are dynamic

Dynamic e-business can become reality using Web services because with UDDI and WSDL you can

automate the Web service description and discovery.

v Web services are composable

Simple Web services can be aggregated to more complex ones, either using workflow techniques or by

calling lower-layer Web services from a Web service implementation. Web services can be chained

together to perform higher-level business functions. This chaining shortens development time and

enables best-of-breed implementations.

v Web services are loosely coupled

Traditionally, application design has depended on tight interconnections at both ends. Web services

require a simpler level of coordination that supports a more flexible reconfiguration for an integration of

the services.

v Web services provide programmatic access

The approach provides no graphical user interface; it operates at the code level. Service consumers

need to know the interfaces to Web services, but do not need to know the implementation details of

services.

v Web services provide the ability to wrap existing applications

Already existing stand-alone applications can easily integrate into the SOA by implementing a Web

service as an interface.

Web services business models supported

This article explains the concept and business models that can be implemented by using Web services in

a service-oriented architecture (SOA).

Chapter 5. Web services 357

The properties and benefits of using a SOA such as Web services is well suited for binding small modules

that perform independent tasks within a highly heterogeneous e-business model. Web services can be

easily wrapped around existing applications in your business model and plugged into different business

processes.

For connecting to a large monolithic system that does not support the implementation of different flexible

business processes, other approaches might be better suited, for example, to satisfy specialized features,

such as performance or security.

The following business models are easily implemented by using an architecture including Web services:

v Business information

Sharing of information with consumers or other businesses. Web services can be used to expand the

reach through such services as news streams, local weather reports, integrated travel planning, and

intelligent agents.

v Business integration

Providing transactional, fee-based services for customers. A global network of suppliers can be easily

created. Web services can be implemented in auctions, e-marketplaces, and reservation systems.

v Business process externalization

Web services can be used to model value chains by dynamically integrating processes to a new

solution within an organizational unit or even with those of other e-businesses. This modeling can be

achieved by dynamically linking internal applications to new partners and suppliers, to offer their

services to complement internal services.

To see how these models are implemented using all aspects of Web services, see Web services scenario:

Overview which tells the story of a fictional online garden supply retailer named Plants by WebSphere and

how this retailer incorporates the Web services concept.

Web services

Web services are self-contained, modular applications that you can describe, publish, locate, and invoke

over a network.

The application server supports Web services that are developed and implemented based on the Web

Services for Java Platform, Enterprise Edition (Java EE) specification. The application server supports the

Java API for XML Web Services (JAX-WS) programming model and the Java API for XML-based RPC

(JAX-RPC) programming model. The JAX-WS is a strategic programming model that simplifies application

development through support of a standard, annotation-based model to develop Web services applications

and clients.

A typical Web services scenario is a business application requesting a service from another existing

application. The request is processed through a given Web address using SOAP messages over a HTTP,

Java Message Service (JMS) transport or invoked directly as Enterprise JavaBeans (EJB). The service

receives the request, processes it, and returns a response. Examples of a simple Web service include

weather reports or getting stock quotes. The method call is synchronous, that is, the method waits until the

result is available. Transaction Web services, supporting quotes, business-to-business (B2B) or

business-to-client (B2C) operations include airline reservations and purchase orders.

Web services can include the actual service or the client that accesses the service.

Web services are Web applications that help improve the flexibility of your business processes by

integrating with applications that otherwise do not communicate. The inner-library loan program at your

local library is a good example of the Web services concept and its evolution. The Web service concept

existed even before the term; the concept became widely accepted with the creation of the Internet. Before

the Internet was created, you visited your library, searched the collections and checked out your books. If

you did not find the book that you wanted, the librarian ran a search for you by computer or phone and

358 Administering WebSphere applications

located the book at a nearby library. The librarian ordered the book for you and you picked it up after it

was delivered to your local library. By incorporating Web services applications, you can streamline your

library visit.

Now, you can search the local library collection and other local libraries at the same time. When other

libraries provide your library with a Web service to search their collection (the service might have been

provided through Universal Description Discovery and Integration (UDDI), your results yield their

resources. You might use another Web service application to check out and send the book to your home.

Using Web services applications saves time and provides a convenience for you, as well as freeing the

librarian to do other business tasks.

Web services reflect the service-oriented architecture (SOA) approach to programming. This approach is

based on the idea of building applications by discovering and implementing network-available services, or

by invoking the available applications to accomplish a task. Web services deliver interoperability, for

example, Web services applications provide components created in different programming languages to

work together as if they were created using the same language. Web services rely on existing transport

technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup

Language (XML), for invoking the implementation.

The key components of Web services include:

v Web Services Description Language (WSDL)

WSDL is the XML-based file that describes the Web service. The Web service request uses this file to

bind to the service.

v SOAP

SOAP is the XML-based protocol that the Web service request uses to invoke the service.

v Universal Description, Discovery and Integration Protocol (UDDI)

UDDI is the registry that hosts the service broker. UDDI is similar to the Yellow Pages in a phone book.

For a more detailed scenario, see Web services scenario: Overview, which tells the story of a fictional

online garden supply retailer named Plants by WebSphere, and how this retailer incorporated the Web

services concept.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

Web Services for Java EE specification

The Web Services for Java Platform, Enterprise Edition (Java EE) specification defines the programming

model and runtime architecture for implementing Web services based on the Java language. Another

name for the Web Services for Java EE specification is the Java Specification Requirements (JSR) 109.

The specification includes open standards for developing and implementing Web services.

The Web Services for Java EE specification is based on the Java EE technology and supports the Java

API for XML Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) programming model

for Web services and clients in a manner that is interoperable and portable across application servers

within environments that are scalable and secure. This specification is based on industry standards for

Web services, including Web Services Description Language (WSDL) and SOAP, and it describes the

development and deployment of Web services.

The application server supports the Web Services for Java EE specification, Version 1.2. This specification

supports WSDL Version 1.1, SOAP Version 1.1 and SOAP Version 1.2. Prior to Web Services for Java EE

Version 1.2, the JSR 109 specification name was Web Services for Java 2 Platform, Enterprise Edition

(J2EE).

You can integrate the Java EE technology with Web services in a variety of ways. You can expose Java

EE components as Web services, for example, JavaBeans and enterprise beans. When you expose Java

Chapter 5. Web services 359

EE components as Web services, clients that are written in Java code or existing Web service clients that

are not written in Java code can access these services. Java EE components can also act as Web service

clients.

The Web Services for Java EE specification is the preferred platform for Web-based programming

because it provides open standards permitting different types of languages, operating systems and

software to communicate seamlessly through the Internet.

For a Java application to act as Web service client, a mapping between the WSDL file and the Java

application must exist. For JAX-WS applications, the mapping is defined using annotations. You can

optionally use the webservices.xml deployment descriptor to specify the location of the WSDL file and

override the value defined in the @WebServices annotation. For JAX-RPC applications, you must define

the JAX-RPC mapping file. To learn more about the mapping that is defined between the WSDL file and

your Web service application, see the JAX-WS specification or the JAX-RPC specification in the Web

services specifications and API documentation depending on the programming model used.

You can use a Java component to implement a Web service by specifying the component interface and

binding information in the WSDL file and designing the application server infrastructure to accept the

service request.

This entire process encompassed is based on the Web Services for Java EE specification.

The specification defines the webservices.xml deployment descriptor specifically for Web services. The

webservices.xml deployment descriptor file defines the set of Web services that you can deploy in a Web

Services for Java EE enabled container.

For JAX-WS Web services, the use of the webservices.xml deployment descriptor is optional because you

can use annotations to specify all of the information that is contained within the deployment descriptor file.

You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any

information that you define in the webservices.xml deployment descriptor overrides any corresponding

information that is specified by annotations.

For example, if your service implementation class for your JAX-WS Web service includes the

@WebService annotation as follows:

@WebService(wsdlLocation=”http://myhost.com/location/of/the/wsdl/ExampleService.wsdl”)

and the webservices.xml specifies a different filename for the WSDL document as follows:

<webservices>

<webservice-description>

<webservice-description-name>ExampleService</webservice-description-name>

<wsdl-file>META-INF/wsdl/ExampleService.wsdl</wsdl-file>

...

</webservice-description>

</webservices>

then the value that is specified in the deployment descriptor, META-INF/wsdl/ExampleService.wsdl

overrides the annotation value.

See section 5 of the Web Services for Java EE specification for details regarding the correlation between

values specified in the Web services deployment descriptor file and the attributes of the @WebService and

the @WebServiceProvider annotations.

For JAX-RPC Web services, you must define the deployment characteristics in the webservices.xml

deployment descriptor file.

You are responsible for providing various elements to the deployment descriptor, including:

360 Administering WebSphere applications

v Port name

v Port service implementation

v Port service endpoint interface

v Port WSDL definition

v Port QName

v MTOM/XOP support for JAX-WS Web services

v Protocol binding for JAX-WS Web services

v JAX-RPC mapping

v Handlers (optional)

v Servlet mapping (optional)

The Enterprise JavaBeans (EJB) 2.1 specification also states that for a Web service developed from a

session bean, the EJB deployment descriptor, ejb-jar.xml, must contain the service-endpoint element.

The service-endpoint value must be the same as that stated in the webservices.xml deployment descriptor.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

Artifacts used to develop Web services

With development artifacts you can develop an enterprise bean or a JavaBeans module into a Web

service. This topic describes artifacts used to develop Web services that are based on the Web Services

for Java Platform, Enterprise Edition (Java EE) specification.

To create a Web service from an enterprise bean or from a JavaBeans module, the following files are

added to the respective Java archive (JAR) file or Web archive (WAR) modules at assembly time:

v Web Services Description Language (WSDL) Extensible Markup Language (XML) file

The WSDL XML file describes the Web service that is implemented.

v Service Endpoint Interface

A Service Endpoint Interface is the Java interface corresponding to the Web service port type

implemented. The Service Endpoint Interface is defined by the Java API for XML Web Services

(JAX-WS) or Java API for XML-based RPC (JAX-RPC) Web services run time that you are using.

v webservices.xml

The webservices.xml file contains the Java EE deployment descriptor of the Web service specifying how

the Web service is implemented. The webservices.xml file is defined in the Web Services for Java EE

specification.

For JAX-WS Web services, the use of the webservices.xml deployment descriptor is optional because

you can use annotations to specify all of the information that is contained within the deployment

descriptor file. You can use the deployment descriptor file to augment or override existing JAX-WS

annotations. Any information that you define in the webservices.xml deployment descriptor overrides any

corresponding information that is specified by annotations.

For JAX-RPC applications, deployment descriptors are required to specify how the Web service is

implemented.

v ibm-webservices-bnd.xmi (JAX-RPC applications only)

This file contains WebSphere product-specific deployment information and is defined in

ibm-webservices-bnd.xmi assembly properties.

v Java API for XML-based remote procedure call (JAX-RPC) mapping file

The JAX-RPC mapping deployment descriptor specifies how Java elements are mapped to and from

WSDL file elements.

The following files are added to an application client, enterprise beans or Web module to permit a Web

Services for Java Platform, Enterprise Edition (Java EE) client access to Web services:

v WSDL file

Chapter 5. Web services 361

The WSDL file is provided by the Web service implementer.

v Java interfaces for the Web service

The Java interfaces are generated from the WSDL file as specified by the JAX-WS or JAX-RPC

specification. These bindings are the Service Endpoint Interface based on the WSDL port type, or the

service interface, which is based on the WSDL service.

v ibm-webservicesclient-bnd.xmi (JAX-RPC applications only)

This file contains WebSphere product-specific deployment information, such as security information for

JAX-RPC applications. For JAX-WS applications, deployment descriptors are not supported and have

been replaced by the use of annotations.

v Other JAX-RPC binding files

Additional JAX-RPC binding files that support the client application in mapping SOAP to the Java

language are generated from WSDL by the WSDL2Java command tool.

WSDL

Web Services Description Language (WSDL) is an Extensible Markup Language (XML)-based description

language. This language was submitted to the World-Wide Web Consortium (W3C) as the industry

standard for describing Web services. The power of WSDL is derived from two main architectural

principles: the ability to describe a set of business operations and the ability to separate the description

into two basic units. These units are a description of the operations and the details of how the operation

and the information associated with it are packaged.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract

definitions of endpoints and messages are separated from their concrete network deployment or data

format bindings. This separation supports the reuse of abstract definitions: messages, which are abstract

descriptions of exchanged data, and port types, which are abstract collections of operations. The concrete

protocol and data format specifications for a particular port type constitutes a reusable binding. A port is

defined by associating a network address with a reusable binding, and a collection of ports defines a

service. Therefore, a WSDL document is composed of several elements.

The following is the structure of the information in a WSDL file:

Web service

interface

definition

Web service

implementation

Port type

Messages

Types

Bindings

Service

Ports

Operation signatures

Parameter definitions

Complex type definitions

Transport protocol and payload format

Service definition element

Supported interface bindings

A WSDL file contains the following parts:

v Web service interface definition

This part contains the elements and the namespaces.

v Web service implementation

This part contains the definition of the service and ports.

362 Administering WebSphere applications

A WSDL file describes a Web service with the following elements:

portType

The description of the operations and associated messages. The portType element defines abstract

operations.

<portType name="EightBall">

 <operation name="getAnswer">

 <input message="ebs:IngetAnswerRequest"/>

 <output message="ebs:OutgetAnswerResponse"/>

 </operation>

</portType>

message

The description of input and output parameters and return values.

<message name="IngetAnswerRequest">

 <part name="meth1_inType" type="ebs:questionType"/>

</message>

<message name="OutgetAnswerResponse">

 <part name="meth1_outType" type="ebs:answerType"/>

</message>

types

The schema for describing XML types used in the messages.

<types>

 <xsd:schema targetNamespace="...">

 <xsd:complexType name="questionType">

 <xsd:element name="question" type="string"/>

 </xsd:complexType>

 <xsd:complexType name="answerType">

 ...

</types>

binding

The bindings describe the protocol that is used to access a portType, as well as the data formats for the

messages that are defined by a particular portType element.

<binding name="EightBallBinding" type="ebs:EightBall">

 <soap:binding style="rpc" transport="schemas.xmlsoap.org/soap/http">

 <operation name="ebs:getAnswer">

 <soap:operation soapAction="urn:EightBall"/>

 <input>

 <soap:body namespace="urn:EightBall" ... />

 ...

Service

The services and ports define the location of the Web service.

The service contains the Web service name and a list of ports.

Ports

The ports contain the location of the Web service and the binding used for service access.

Chapter 5. Web services 363

<service name="EightBall">

 <port binding="ebs:EightBallBinding" name="EightBallPort">

 <soap:address location="localhost:8080/axis/EightBall"/>

 </port>

</service>

When creating Java API for XML Web Services (JAX-WS) or Java API for XML-based RPC (JAX-RPC)

Web services, you can use a bottom-up development approach when you start from JavaBeans or an

enterprise bean, or you can use a top-down development approach when you start with an existing Web

Services Description Language (WSDL) file.

When creating JAX-WS Web services for this product, you can start with either a WSDL or an

implementation bean class. If you start with an implementation bean class, then use the wsgen command

line tool to generate all the Web services server artifacts, including a WSDL if requested. If you start with a

WSDL, then use the wsimport command line tool to generate all the Web services artifacts for either the

server or client side.

When creating JAX-RPC Web services for this product, you must first have an implementation bean that

includes a service endpoint interface. Then, you use the Java2WSDL command-line tool to create a WSDL

file that defines the Web services. If you are starting with the WSDL to generate the implementation bean

class, run the WSDL2Java command line tool against the WSDL file to create Java APIs and deployment

descriptor templates.

Multipart WSDL and WSDL publication

The product supports deployment of Web services using a multipart Web Services Description Language

(WSDL) file. In multipart WSDL files, an implementation WSDL file contains the wsdl:service. This

implementation WSDL file imports an interface WSDL file, which contains the other WSDL constructs. This

supports multiple Web services using the same WSDL interface definition.

The <wsdl:import> element indicates a reference to another WSDL file. If the <wsdl:import> element

location attribute does not contain a URL, that is, it contains only a file name, and does not begin with

http://, https:// or file://, the imported file must be located in the same directory and must not contain a

relative path component. For example, if META-INF/wsdl/A_Impl.wsdl is in your module and contains the

<wsdl:import=″A.wsdl″ namespace=″...″/> import statement, the A.wsdl file must also be located in the

module META-INF/wsdl directory.

It is recommended that you place all WSDL files in either the META-INF/wsdl directory, if you are using

Enterprise JavaBeans (EJB), or the WEB-INF/wsdl directory, if you are using JavaBeans components,

even if relative imports are located within the WSDL files. Otherwise, implications exist with the WSDL

publication when you use a path like <location=″../interfaces/A_Interface.wsdl″namespace=″...″/>. Using a

path like this example fails because the presence of the relative path, regardless of whether the file is

located at that path or not. If the location is a Web address, it must be readable at both deployment and

server startup.

You can publish the files located in the META-INF/wsdl or the WEB-INF/wsdl directory through either a

URL address or file, including WSDL or XML Schema Definition (XSD) files. For example, if the file

referenced in the <wsdl-file> element of the webservices.xml deployment descriptor is located in the

META-INF/wsdl or the WEB-INF/wsdl directory, it is publishable. If the files imported by the <wsdl-file> are

located in the wsdl/ directory or its subdirectory, they are publishable.

If the WSDL file referenced by the <wsdl-file> element is located in a directory other than wsdl, or its

subdirectories, the file and its imported files, either WSDL or XSD files, which are in the same directory,

are copied to the wsdl directory without modification when the application is installed. These types of files

can also be published.

364 Administering WebSphere applications

If the <wsdl-file> imports a file located in a different directory (a directory that is not -INF/wsdl or a

subdirectory), the file is not copied to the wsdl directory and not available for publishing.

For JAX-WS Web services, you can use an annotation to specify the location of the WSDL. Use the

@WebService annotation with the WSDLLocation attribute. The WSDLLocation attribute is optional. If this

attribute is not specified, then WSDL is generated and published from the information that is found in the

Web service classes. You can optionally specify the location of the WSDL file in the webservices.xml

deployment descriptor. However, any information that you define in the webservices.xml deployment

descriptor overrides any corresponding information that is specified by annotations.

SOAP

SOAP is a specification for the exchange of structured information in a decentralized, distributed

environment. As such, it represents the main way of communication between the three key actors in a

service oriented architecture (SOA): service provider, service requestor and service broker. The main goal

of its design is to be simple and extensible. A SOAP message is used to request a Web service.

SOAP 1.1

WebSphere Application Server follows the standards outlined in SOAP 1.1.

SOAP was submitted to the World Wide Web Consortium (W3C) as the basis of the Extensible Markup

Language (XML) Protocol Working Group by several companies, including IBM and Lotus. This protocol

consists of three parts:

v An envelope that defines a framework for describing message content and processing instructions.

v A set of encoding rules for expressing instances of application-defined data types.

v A convention for representing remote procedure calls and responses.

SOAP 1.1 is a protocol-independent transport and can be used in combination with a variety of protocols.

In Web services that are developed and implemented with WebSphere Application Server, SOAP is used

in combination with HTTP, HTTP extension framework, and Java Message Service (JMS). SOAP is also

operating-system independent and not tied to any programming language or component technology.

As long as the client can issue XML messages, it does not matter what technology is used to implement

the client. Similarly, the service can be implemented in any language, as long as the service can process

SOAP messages. Also, both server and client sides can reside on any suitable platform.

SOAP 1.2

The SOAP 1.2 specification is also a W3C recommendation, and WebSphere Application Server follows

the standards that are outlined in SOAP 1.2. The SOAP 1.2 specification comes in three parts plus some

assertions and a test collection:

v Part 0: Primer

v Part 1: Messaging Framework

v Part 2: Adjuncts

v Specification Assertions and Test Collection

SOAP 1.2 provides a more specific definition of the SOAP processing model, which removes many of the

ambiguities that sometimes led to interoperability problems in the absence of the Web

Services-Interoperability (WS-I) profiles. SOAP 1.2 should reduce the chances of interoperability issues

with SOAP 1.2 implementations between different vendors.

Some of the more significant changes in the SOAP 1.2 specification include:

Chapter 5. Web services 365

v The ability to now officially define other transport protocols other than the HTTP protocol as long as

vendors conform to the binding framework that is defined in SOAP 1.2. While HTTP is ubiquitous, it is

not as reliable of a transport as other things such as TCP/IP, MQ, and so forth.

v The fact that SOAP 1.2 is based on the XML Information Set (XML Infoset). The information set

provides a way to describe the XML document using the XSD schema but does not necessarily serialize

the document by using XML 1.0 serialization. SOAP 1.1 is based upon XML 1.0 serialization. The

information set will make it easier to use other serialization formats such as a binary protocol format.

You can use a binary protocol format shrink the message into a much more compact format where

some of the verbose tagging information might not be required.

The Java API for XML Web Services (JAX-WS) standard introduces the ability to support both SOAP 1.1

as well as SOAP 1.2.

See “Differences in SOAP versions” on page 376 for additional differences between SOAP 1.1 and SOAP

1.2.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

SOAP with Attachments API for Java interface:

The SOAP with Attachments API for Java (SAAJ) interface is used for SOAP messaging that provides a

standard way to send XML documents over the Internet from a Java programming model. SAAJ is used to

manipulate the SOAP message to the appropriate context as it traverses through the runtime environment.

 Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)

programming model and the Java API for XML-based RPC (JAX-RPC) programming model.

JAX-WS is the next generation Web services programming model extending the foundation

provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,

development of Web services and clients is simplified through support of a standards-based

annotations model. Although the JAX-RPC programming model and applications are still supported,

take advantage of the easy-to-implement JAX-WS programming model to develop new Web

services applications and clients.

The Java API for XML-Based RPC (JAX-RPC) programming model supports SAAJ 1.2 to manipulate the

XML.

The JAX-WS programming model supports SAAJ 1.2 and 1.3. SAAJ 1.3 includes support for SOAP 1.2

messages.

The differences in the SAAJ 1.2 and SAAJ 1.3 specification can be reviewed in the topic ″Differences in

SAAJ versions.″

How are messages used in Web services?

Web services use XML technology to exchange messages. These messages conform to XML schema.

When developing Web services applications, there are limited XML APIs to work with, for example,

Document Object Model (DOM). It is more efficient to manipulate the Java objects and have the

serialization and deserialization completed during run time.

Web services uses SOAP messages to represent remote procedure calls between the client and the

server. Typically, the SOAP message is deserialized into a series of Java value-type business objects that

represent the parameters and return values. In addition, the Java programming model provides APIs that

support applications and handlers to manipulate the SOAP message directly. Because there are a limited

number of XML schema types that are supported by the programming models, the specification provides

the SAAJ data model as an extension to manipulate the message.

366 Administering WebSphere applications

To manipulate the XML schema types, you need to map the XML schema types to Java types with a

custom data binder.

The SAAJ interface

The SAAJ-related classes are located in the javax.xml.soap package. SAAJ builds on the interfaces and

abstract classes and many of the classes begin by invoking factory methods to create a factory such as

SOAPConnectionFactory and SOAPFactory.

The most commonly used classes are:

v SOAPMessage: Contains the message, both the XML and non-XML parts

v SOAPHeader: Represents the SOAP header XML element

v SOAPBody: Represents the SOAP body XML element

v SOAPElement: Represents the other elements in the SOAP message

Other parts of the SAAJ interface include:

v MessageContext: Contains a SOAP message and related properties

v AttachmentPart: Represents a binary attachment

v SOAPPart: Represents the XML part of the message

v SOAPEnvelope: Represents the SOAP envelope XML element

v SOAPFault: Represents the SOAP fault XML element

The primary interface in the SAAJ model is javax.xml.soap.SOAPElement, also referred to as

SOAPElement. Using this model, applications can process an SAAJ model that uses pre-existing DOM

code. It is also easier to convert pre-existing DOM objects to SAAJ objects.

Messages created using the SAAJ interface follow SOAP standards. A SOAP message is represented in

the SAAJ model as a javax.xml.soap.SOAPMessage object. The XML content of the message is

represented by a javax.xml.soap.SOAPPart object. Each SOAP part has a SOAP envelope. This envelope

is represented by the SAAJ javax.xml.SOAPEnvelope object. The SOAP specification defines various

elements that reside in the SOAP envelope; SAAJ defines objects for the various elements in the SOAP

envelope.

The SOAP message can also contain non-XML data that is called attachments. These attachments are

represented by SAAJ AttachmentPart objects that are accessible from the SOAPMessage object.

A number of reasons exist as to why handlers and applications use the generic SOAPElement API instead

of a tightly bound mapping:

v The Web service might be a conduit to another Web service. In this case, the SOAP message is only

forwarded.

v The Web service might manipulate the message using a different data model, for example a Service

Data Object (SDO). It is easier to convert the message from a SAAJ DOM to a different data model.

v A handler, for example, a digital signature validation handler, might want to manipulate the message

generically.

You might need to go a step further to map your XML schema types, because the SOAPElement interface

is not always the best alternative for legacy systems. In this case you might want to use a generic

programming model, such as SDO, which is more appropriate for data-centric applications.

The XML schema can be configured to include a custom data binding that pairs the SDO or data object

with the Java object. For example, the run time renders an incoming SOAP message into a SOAPElement

interface and passes it to the customer data binder for more processing. If the incoming message contains

Chapter 5. Web services 367

an SDO, the run time recognizes the data object code, queries its type mapping to locate a custom binder,

and builds the SOAPElement interface that represents the SDO code. The SOAPElement is passed to the

SDOCustomBinder.

See Custom data binders for more information about the process of developing applications with

SOAPElement, SDO and custom binders.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

Related concepts

“SOAP” on page 365
SOAP is a specification for the exchange of structured information in a decentralized, distributed

environment. As such, it represents the main way of communication between the three key actors in a

service oriented architecture (SOA): service provider, service requestor and service broker. The main goal

of its design is to be simple and extensible. A SOAP message is used to request a Web service.

“Differences in SOAP versions” on page 376
Both SOAP Version 1.1 and SOAP Version 1.2 are World Wide Web Consortium (W3C) standards. Web

services can be deployed that support not only SOAP 1.1 but also support SOAP 1.2. Some changes from

SOAP 1.1 that were made to the SOAP 1.2 specification are significant, while other changes are minor.

“Differences in SAAJ versions”
The SOAP with Attachments API for Java (SAAJ) interface Version 1.3 expands the support of SOAP 1.2

messages in a Web services environment. There are several differences between SAAJ 1.2 and SAAJ 1.3

that are presented in this topic.

Related reference

Web services specifications and APIs

Differences in SAAJ versions:

The SOAP with Attachments API for Java (SAAJ) interface Version 1.3 expands the support of SOAP 1.2

messages in a Web services environment. There are several differences between SAAJ 1.2 and SAAJ 1.3

that are presented in this topic.

 In a typical Web services environment, you rely on the underlying code that is based on Java standards to

translate a set of Java objects. The SAAJ interface provides APIs to read, write, send and receive SOAP

messages, and advocates binary content sent as an attachment to a SOAP message.

SAAJ 1.3 aligns with SOAP 1.1 and SOAP 1.2 messages and is supported by the Java API for XML Web

Services (JAX-WS) programming model and the Java API for XML-Based RPC (JAX-RPC) programming

model. SAAJ 1.2 works with SOAP 1.1 messages only.

If you migrate your code from SOAP 1.1 to SOAP 1.2, you can continue to use your existing SOAP 1.1

code, if the message is a SOAP 1.2 message. If you upgrade your base code to use SAAJ 1.3, then you

can continue to use the existing code that operates on a SOAP 1.1 message. An example of these

differences is in SOAP 1.1, where the human readable text of a fault is stored in the faultString element. In

SOAP 1.2, the human readable text is stored in the Reason element. Your code might look like the

following example:

String text = soapFault.getFaultString();

The getFaultString () returns the faultString value if the message is based on SOAP 1.1. If you are using

SOAP 1.2, the getFaultString () returns the Reason value. In addition, the SAAJ 1.3 interface provides a

new method, getReasonText (Locale), that gets a specific Reason value. The getReasonText (Locale)

method returns a documented exception if the message is based on SOAP 1.1. The SAAJ 1.3 interface

supports existing code to process both SOAP 1.1 and SOAP 1.2 messages.

368 Administering WebSphere applications

Other differences between SAAJ 1.2 and SAAJ 1.3 are in the following list:

v SAAJMetaFactory interface

The SAAJMetaFactory SPI is introduced to support creating SOAP factory classes in a single place.

v SAAJResult class

The SAAJResult object acts as a holder for the results of a Java API for XML Processing (JAX-P)

transformation or a Java Architecture for XML Binding (JAXB) marshalling, in the SAAJ tree. The

SAAJResult class is introduced for improved usability when transformation results are expected to be a

valid SAAJ tree.

v Overloaded methods that accept a QName instead of a Name

It is preferred that a QName represents an XML-qualified name. Therefore, overloaded methods are

introduced in all of the SAAJ APIs, where a corresponding method accepts a javax.xml.soap.Name

name as an argument.

v New methods in AttachmentPart, SOAPBody and SOAPElement interfaces and classes

Use these new methods to assist you when you are working with the new SOAP features.

v SOAPPart is now a javax.xml.soap.Node method.

The SOAPPart object is now also considered to be a SOAP node method.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

Message Transmission Optimization Mechanism:

SOAP Message Transmission Optimization Mechanism (MTOM) is a standard that is developed by the

World Wide Web Consortium (W3C). MTOM describes a mechanism for optimizing the transmission or

wire format of a SOAP message by selectively re-encoding portions of the message while still presenting

an XML Information Set (Infoset) to the SOAP application.

 There are many reasons why you might want to send binary attachments, such as images or files, along

with a Web services request. There are ways to accomplish this, such as:

v Encoding with base64 inline in the SOAP payload. However, encoding inline tends to enlarge the size of

the SOAP message. Note that base64 encoding might double the size of the binary data.

v Encoding the messages by using SOAP with Attachments (SwA) and to follow the Web Services

Interoperability Organization (WS-I) Attachments Profile. WebSphere Application Server currently

supports this method.

v Providing optimization of binary message transportation by using XML-binary Optimized Packaging

(XOP). Optimization is available only for binary data or content. MTOM uses XOP in the context of

SOAP and MIME over HTTP.

XOP defines a serialization mechanism for the XML Infoset with binary content that is not only applicable

to SOAP and MIME packaging, but to any XML Infoset and any packaging mechanism. It is an alternate

serialization of XML that just happens to look like a MIME multipart/related package, with an XML

documents as the root part. That root part is very similar to the XML serialization of the document, except

that base64-encoded data is replaced by a reference to one of the MIME parts, which is not base64

encoded. This reference enables you to avoid the bulk and overhead in processing that is associated with

encoding. Encoding is the only way a binary data can fit directly into an XML world.

If MTOM mapping generation is disabled, then XOP is disabled. If XOP is disabled, the binary data are not

sent by using MIME attachments. Instead, the binary data is base64 encoded as usual.

The MTOM specification is defined in three different parts:

v An abstract feature for optimized transmission or wire format for SOAP messages. This feature is

abstract in the sense that the description of the optimization technique as well as the behavior of the

SOAP processors at sender, receiver and intermediaries is generic and does not include any references

Chapter 5. Web services 369

to technologies such as MIME, HTTP, and so forth. The optimization technique centers around ensuring

a SOAP envelope Infoset view for the SOAP processors while encoding selectively certain contents of

the SOAP Envelope Infoset that are accessible as canonical lexical representation of the

xs:base64Binary data type.

Implementing these abstract features requires concrete specification of two aspects: the optimized wire

format and how the optimized wire format flows on a particular transport

v The second part of the MTOM specification addresses the serialization aspect and depends normatively

upon MIME Multipart/Related XOP packaging. The serialization aspect is where MTOM relates to XOP.

v As a concrete SOAP HTTP binding level feature, MTOM expands upon the serialization. This part

describes how HTTP binding can be used to transport the XOP packages that are holding the SOAP

MTOM messages. This part also puts some restrictions on the possible serializations of the SOAP

MTOM messages as XOP packages, such as use of XML 1.0 only.

The Java API for XML Web Services (JAX-WS) adds support for sending binary data attachments using

MTOM. JAX-WS is the centerpiece of a newly re-architected API stack for Web service that includes

JAX-WS 2.0, JAXB 2.0, and SAAJ 1.3. The API stack is sometimes referred to as the integrated stack.

JAX-WS is designed to take the place of JAX-RPC in Web services and Web applications.

Attachment approach

Attachment by value or by reference has been the widely accepted technique for handling opaque data in

XML-formatted messages.

v By value is when the opaque data content is embedded as an element or as an attribute by using

either base64 or hexadecimal text encoding approach, which is codified in the XML schema as data

types xs:base64Binary and xs:hexBinary, respectively.

v By reference is when the opaque data content is referenced externally as element or as attribute by

using a URI, which is codified in the XML schema as data type xs:anyURI.

The use of either of these two techniques has its advantages and disadvantages. MTOM is the

specification that is focused on resolving these inherent attachments problems.

A different standard is defined by World Wide Web Consortium (W3C) and is called SOAP with

Attachments (SwA). SwA was developed as a way to package SOAP messages with attachments.

Because some vendors do not support SwA, SwA can be replaced by the more powerful MTOM and XOP

mechanisms. SwA and MTOM are conceptually similar, and both encode binary data as a MIME

attachment in a MIME document. Using MIME attachments improves the performance of large binary

payloads transport.

Additional differences between SwA and MTOM include:

v MTOM uses a standard called XOP, which defines a XOP reference that exists within the SOAP

payload. This reference points to the MIME attachment that contains the binary data.

v With MTOM, the XOP reference logically includes the binary data into the XML Information Set (Infoset).

With SwA, the href points to data that is not only physically outside the XML document but is not

logically included within its Infoset.

v With MTOM, binary attachments can be logically signed as if they were part of the SOAP XML

document.

v In additional to IBM, Microsoft® .NET supports MTOM, which eliminates some of the interoperability

problems found with SwA. Interoperability was treated as the main goal when the co-submitters

discussed the suggested modifications.

The MTOM attachment approach takes advantage of the SOAP infrastructure while also gaining transport

efficiencies that are provided by SOAP with Attachment (SwA) solution.

370 Administering WebSphere applications

SOAP 1.2 and SOAP 1.1

SOAP 1.1 is based on the XML specification. Likely, the SOAP 1.1 implementation will continue to exist for

a few years. For those who are still running SOAP 1.1, there is now an interoperable way to use MTOM

for attachments support. SAP, Oracle, Microsoft, and IBM have submitted a SOAP 1.1 Binding for MTOM

1.0 specification to W3C, which defines how MTOM can be used with SOAP 1.1 payloads. The

specification details the necessary modifications to the SOAP MTOM and XOP specifications that are

necessary to successfully use these technologies with SOAP 1.1. See the information at this Web

site:http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf

MTOM is a SOAP Version 1.2 feature, which is based on the Infoset. For more information, see “XML

information set” on page 374.

Without MTOM, the data is encoded in whatever format is described in the schema (base64 or hex) and

then is contained in the XML document. The following example shows a SOAP message with an

<xsd:base64Binary> element:

... other transport headers ...

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>

 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header/>

 <soapenv:Body>

 <sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">

 <input>

 <imageData>R0lGODl ... more base64 encoded data ... KTJk8giAAA7</imageData>

 </input>

 </sendImage>

 </soapenv:Body>

 </soapenv:Envelope>

When MTOM is enabled, the binary data that represents the attachment is included as a MIME attachment

to the SOAP message. The following example shows an MTOM-enabled SOAP message with attachment

data:

... other transport headers ...

Content-Type: multipart/related; boundary=MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812;

type="application/xop+xml"; start="<0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>";

start-info="text/xml"; charset=UTF-8

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812

content-type: application/xop+xml; charset=UTF-8; type="text/xml";

content-transfer-encoding: binary

content-id:

 <0.urn:uuid:0FE43E4D025F0BF3DC11582467646813@apache.org>

<?xml version="1.0" encoding="UTF-8"?>

 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header/>

 <soapenv:Body>

 <sendImage xmlns="http://org/apache/axis2/jaxws/sample/mtom">

 <input>

 <imageData>

 <xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"

 href="cid:1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org"/>

 </imageData>

 </input>

 </sendImage>

 </soapenv:Body>

 </soapenv:Envelope>

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812

content-type: text/plain

content-transfer-encoding: binary

Chapter 5. Web services 371

http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf

content-id:

 <1.urn:uuid:0FE43E4D025F0BF3DC11582467646811@apache.org>

... binary data goes here ...

--MIMEBoundaryurn_uuid_0FE43E4D025F0BF3DC11582467646812--

XML-binary Optimized Packaging:

XML-binary Optimized Packaging (XOP) specification was standardized by the World Wide Web (W3C) on

January 25, 2005. SOAP Message Transmission Optimization Mechanism (MTOM) uses XOP in the

context of SOAP and MIME over HTTP.

 XML is widely used for data transfer. XML is a popular format for exchanging well-formed documents

because it is plain text, human-readable, and structured. For example, SOAP messaging in Web services

is based on XML (or is based on XML Infoset with SOAP 1.2). People want to leverage legacy formats like

PDF, GIF, JPEG and similar things, while still using an XML model. The desire to integrate XML with

pre-existing data formats has been a long-standing and persistent issue for the XML community. Users

often want to leverage the structured, extensible markup conventions of XML without abandoning existing

data formats that do not readily adhere to XML 1.0 syntax.

As SOAP messaging in Web services becomes more widespread, the next step is how to send non-text

based data, such as images and workflow data, along with your message. For example, you might want to

send a scanned document in .jpeg format between two applications. The question becomes whether this

data can be understood between the various applications.

Much of the value of XML and Web services resides in the ability to use generic XML tools to work with

content. Many XML tools and standards for describing and manipulating XML (such as parsers, XPath,

XQuery, XSLT, XML encryption and digital signature and XML schema) are not designed to work with

non-text data, such as images. These XML tools do not work with non-XML content; these tools require

text. The challenge is how non-text data (also called binary data) can be embedded or attached with XML.

In other words, a way to attach a binary file to a SOAP message is needed.

Encoding is the only way binary data can fit directly into an XML world. Normally, you can embed binary

data in an XML document by encoding it as text using Base 64. Base 64 is a serialization that has existed

for some time, can be easily implemented out of the box, and has interoperability across platforms. The

xsi:base64binary datatype supports this serialization in the XML Schema. Base 64 encodes your binary

data into a textual representation that can squeeze into an XML document. Base 64 takes your binary data

and translates it into a series of ASCII characters by encoding three octets at a time. Because each octet

consists of eight bits, representing them as four printable characters in the ASCII standard, it uses 64

ASCII characters to represent the binary. All platforms can decode and encode using this convention. 6-bit

ASCII is widely supported, and no special characters need to be dealt with. However, there is a

performance impact for larger messages.

For applications that require speedy operation, Base 64 might not be the solution. If you want to index into

such content, query it, transform it, encrypt it, sign it, or describe it, you need to use a different

mechanism.

The first attachment specification known as SOAP with Attachments (SwA) was developed. The basic idea

of SwA is that the binary message part (the attachment) is thought of as a Multipurpose Internet Mail

Extensions (MIME) attachment. MIME is a widely implemented specification for formatting non-ASCII mail

message attachments. SwA specifies that the SOAP body can contain a reference to the MIME message

part (the attachment) simply by using a URI. The binary part is attached by a reference.

A few disadvantages of SwA include:

v SwA fails in its usability or interoperability. The SOAP infrastructure was created around the SOAP

envelope, which didn’t work well for attachments. An attachment using SwA means that two data

models are used in one message. These two data models do not operate with existing XML technology.

372 Administering WebSphere applications

v SwA does not work with the composable character of SOAP. Basically standards, such as WS-Security,

were not written to work with attachments. WS-Security needs to work on all the data that needs to be

digitally signed or encrypted, and that means all the data in the attachment also. But if it cannot access

it, then it will not work and the signature is effectively invalid.

Often, users want to leave their existing non-XML formats as is, to be treated as opaque sequences of

octets by XML tools and infrastructure. Such an approach permits widely used formats such as .jpeg and

.wav to peacefully coexist with XML. XOP makes it a bit more realistic to use base64-encoded data. At the

current time, XOP only permits base64-encoded data to be optimized.

Using XOP means that instances of XML-type base64Binary, if enabled, are transported by using MIME

attachments. If XOP is in use, the implementation can automatically encode it. XOP maintains the data

model of the XML message because the attachment is treated as base64-encoded data. If an XML stack

understands XOP encoding, your application does not need to be changed at all. For example, when it

wants to access a .jpeg picture, it can get the character value of the content as a base64-encoded string.

XOP gives people a way to think about MIME messages in a data exchange that they are comfortable with

and already use for a lot of other data. The XOP format uses multipart MIME to enable raw binary data to

be included into an XML 1.0 document without resorting to base64 encoding.

A companion specification, SOAP Message Transmission Optimization Method (MTOM) then specifies how

to bind this format to SOAP. The XOP and MTOM standards should enhance SOAP 1.2 performance.

XOP and MTOM together provide the preferred approach for mixing binary data with text-based XML.

Coupled together, MTOM and XOP enables us to select what parts of the message need to be sent over

the wire as binary while still maintaining the Infoset. These standards enable the attachment of binary data

outside of the SOAP envelope as a message part. However, unlike SwA, the binary data is treated very

much as it was within the SOAP envelope, meaning one Infoset.

XOP defines a serialization mechanism for XML Infoset with binary content that is not only applicable to

SOAP and MIME packaging, but applicable to any XML Infoset and any packaging mechanism. On the

other hand, XML is not a good general-purpose packaging mechanism.

An XOP package is created by placing a serialization of the XML Infoset inside of an extensible packaging

format (such a MIME). Note that XOP does reuse MIME for the actual packaging on the wire. Then,

selected portions of its content that are base64-encoded binary data are extracted and re-encoded,

meaning the data is decoded from base64 and placed into the package. The locations of those selected

portions are marked in the XML with a special element that links to the packaged data by using URIs.

The SOAP processing engines performs a temporary Base 64 encoding of the binary data just before the

message hits the wire. This temporary encoding enables the SOAP processor to work on the Base 64

data; for example, enabling a WS-Signature of the data to be taken and placed into the header. There is

no need for expensive decoding at the other end, and the process works in reverse.

Implementations of MTOM and XOP are available in Java (JAX-WS).

This example shows an XML Infoset prior to XOP processing (SOAP):

<soap:Envelope

 xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’

 xmlns:xmlmime=’http://www.w3.org/2004/11/xmlmime’>

 <soap:Body>

 <m:data xmlns:m=’http://example.org/stuff’>

 <m:photo

 xmlmime:contentType=’image/png’>/aWKKapGGyQ=</m:photo>

 <m:sig

 xmlmime:contentType=’application/pkcs7-signature’>Faa7vROi2VQ=</m:sig>

 </m:data>

 </soap:Body>

</soap:Envelope>

Chapter 5. Web services 373

This example shows an XML Infoset that is serialized as a XOP package (SOAP)

MIME-Version: 1.0

Content-Type: Multipart/Related;boundary=MIME_boundary;

 type="application/xop+xml";

 start="<mymessage.xml@example.org>";

 startinfo="application/soap+xml; action=\"ProcessData\""

Content-Description: A SOAP message with my pic and sig in it

--MIME_boundary

Content-Type: application/xop+xml;

 charset=UTF-8;

 type="application/soap+xml; action=\"ProcessData\""

Content-Transfer-Encoding: 8bit

Content-ID: <mymessage.xml@example.org>

<soap:Envelope

 xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’

 xmlns:xmlmime=’http://www.w3.org/2004/11/xmlmime’>

 <soap:Body>

 <m:data xmlns:m=’http://example.org/stuff’>

 <m:photo

 xmlmime:contentType=’image/png’><xop:Include

 xmlns:xop=’http://www.w3.org/2004/08/xop/include’

 href=’cid:http://example.org/me.png’/></m:photo>

 <m:sig

 xmlmime:contentType=’application/pkcs7-signature’><xop:Include

 xmlns:xop=’http://www.w3.org/2004/08/xop/include’

 href=’cid:http://example.org/my.hsh’/></m:sig>

 </m:data>

 </soap:Body>

</soap:Envelope>

--MIME_boundary

Content-Type: image/png

Content-Transfer-Encoding: binary

Content-ID: <http://example.org/me.png>

// binary octets for png

--MIME_boundary

Content-Type: application/pkcs7-signature

Content-Transfer-Encoding: binary

Content-ID: <http://example.org/my.hsh>

// binary octets for signature

--MIME_boundary--

XML information set:

XML Information Set (Infoset) is a World Wide Web Consortium (W3C) specification, dated February 4,

2004. An XML information set is an abstract model of the information that is stored in an XML document.

The information set establishes a separation between data and information in a way that suits most

common uses of XML. Several of the concrete XML data models are defined by referring to XML

information set items and their properties.

 Whereas an XML information set is an abstract model of the information that is stored in an XML

document, an information item is an abstract representation of some component of an XML document.

SOAP Version 1.2 makes use of this abstraction to define the information in a SOAP message without

ever referring to XML Version 1.x. The SOAP HTTP binding specifically permits alternative media types

that provide for, as a minimum, the transfer of the SOAP XML Infoset.

374 Administering WebSphere applications

SOAP Message Transmission Optimization Mechanism (MTOM) describes SOAP 1.2 constructs in terms

of information items whereas SOAP 1.1 is defined in terms of XML elements. MTOM enables SOAP

bindings to optimize the transmission or wire format (or both) of a SOAP message by selectively encoding

portions of the message while still presenting an XML information set to the SOAP application. The SOAP

1.2 attribute is now in the SOAP namespace. The XML information sets require the support of XML

namespaces. The core XML recommendation does not require the support of XML namespaces; however

namespaces are required to support the XML schema.

The XML information set does not require or favor a specific interface or class of interfaces. The XML

information set specification presents the information set as a tree for the sake of clarity and simplicity, but

there is no requirement that the XML information set be made available through a tree structure. Other

types of interfaces, including but not limited to event-based and query-based interfaces, are also capable

of providing information conforming to the information set. As long as the information in the information set

is made available to XML applications in one way or another, the requirements of the XML information set

are satisfied.

The XML information set provides a set of definitions to be used in other specifications that refer to the

information in a well-formed XML document. For any given XML document, there are a number of

corresponding information sets.

v A unique minimal information set consisting of the core properties of the core items and nothing else.

v A unique maximal information set consisting of all the core and all the peripheral items with all the

peripheral properties, and one for every combination of present and absent peripheral items and

properties in between. The in-between information sets must be fully consistent with the maximal

information set.

Information set items

The XML information set is a description of the information that is available in a well-formed XML

document, and it describes an abstract data model of an XML document in terms of a set of information

set items. An information item is an abstract description of some part of an XML document, and each

information item has a set of associated named properties. All other information items are accessible from

the properties of the document information item, either directly or indirectly through the properties of other

information items.

Guidelines for using information set items include:

v There is no requirement for an XML document to be valid in order to have an information set.

v An XML document has an information set if it satisfies the namespace constraints.

v An XML document has an information set if it is well-formed

v Only one document information item is permited in the information set.

v An information set for an XML document consists of two or more information items.

v The information set for any well-formed XML document will contain at least the minimum information

items: one document information item and one element information item.

v Each information item has a set of associated properties, some of which are core and some of which

are peripheral.

An information set can contain up to eleven different types of information items:

v Document information item

v Element information items

v Attribute information items

v Processing instruction information items

v Unexpanded entity reference information items

v Character information items

v Comment information items

v The Document Type Declaration (DTD) information item

Chapter 5. Web services 375

v Unparsed entity information items

v Notation information items

v Namespace information items

Note that the information set of the XML document might not be a complete list of all information items.

Certain kinds of invalidity affect the values assigned to some properties. Entities, notations, elements and

attributes can be undeclared. You can have multiple declarations for notations and elements. Multiple

declarations are valid for entities and attributes. An ID can be undefined or multiply defined. Such cases

are noted where relevant in the information item definitions in the XML Information Set specification.

Syntax

The XML information set uses a square-bracket syntax, meaning the property names are shown in square

brackets. For example, the document information item has the following properties:

 Table 4.

Property Description

[children] An ordered list of child information items, in document order.

[document element] The element information item corresponding to the document element.

[notations] An unordered set of notation information items, one for each notation declared in the

DTD. If any notation is multiply declared, this property has no value.

[unparsed entities] An unordered set of unparsed entity information items, one for each unparsed entity

declared in the DTD.

[base URI] The base URI of the document entity.

[character encoding scheme] The name of the character encoding scheme in which the document entity is

expressed.

[standalone] An indication of the standalone status of the document, either yes or no. This

property is derived from the optional standalone document declaration in the XML

declaration at the beginning of the document entity, and has no value if there is no

standalone document declaration.

[version] A string representing the XML version of the document. This property is derived from

the XML declaration optionally present at the beginning of the document entity, and

has no value if there is no XML declaration.

[all declarations processed] This property is not strictly speaking part of the information set of the document.

Rather it is an indication of whether the processor has read the complete DTD. Its

value is a boolean. If it is false, then certain properties (indicated in their descriptions

below) might be unknown. If it is true, those properties are never unknown.

All information sets are understood to describe the XML document with all entity references already

expanded; that is, represented by the information items corresponding to their replacement text. In the

case that an entity reference cannot be expanded, because an XML processor has not read its declaration

or its value, explicit provision is made for representing such a reference in the information set.

Differences in SOAP versions:

Both SOAP Version 1.1 and SOAP Version 1.2 are World Wide Web Consortium (W3C) standards. Web

services can be deployed that support not only SOAP 1.1 but also support SOAP 1.2. Some changes from

SOAP 1.1 that were made to the SOAP 1.2 specification are significant, while other changes are minor.

 The SOAP 1.2 specification introduces several changes to SOAP 1.1. This information is not intended to

be an in-depth description of all the new or changed features for SOAP 1.1 and SOAP 1.2. Instead, this

information highlights some of the more important differences between the current versions of SOAP.

376 Administering WebSphere applications

http://www.w3.org/TR/xml-infoset/

The changes to the SOAP 1.2 specification that are significant include the following updates:

v SOAP 1.1 is based on XML 1.0. SOAP 1.2 is based on XML Information Set (XML Infoset).

The XML information set (infoset) provides a way to describe the XML document with XSD schema.

However, the infoset does not necessarily serialize the document with XML 1.0 serialization on which

SOAP 1.1 is based.. This new way to describe the XML document helps reveal other serialization

formats, such as a binary protocol format. You can use the binary protocol format to compact the

message into a compact format, where some of the verbose tagging information might not be required.

In SOAP 1.2 , you can use the specification of a binding to an underlying protocol to determine which

XML serialization is used in the underlying protocol data units. The HTTP binding that is specified in

SOAP 1.2 - Part 2 uses XML 1.0 as the serialization of the SOAP message infoset.

v SOAP 1.2 provides the ability to officially define transport protocols, other than using HTTP, as long as

the vendor conforms to the binding framework that is defined in SOAP 1.2. While HTTP is ubiquitous, it

is not as reliable as other transports including TCP/IP and MQ.

v SOAP 1.2 provides a more specific definition of the SOAP processing model that removes many of the

ambiguities that might lead to interoperability errors in the absence of the Web Services-Interoperability

(WS-I) profiles. The goal is to significantly reduce the chances of interoperability issues between

different vendors that use SOAP 1.2 implementations.

v SOAP with Attachments API for Java (SAAJ) can also stand alone as a simple mechanism to issue

SOAP requests. A major change to the SAAJ specification is the ability to represent SOAP 1.1

messages and the additional SOAP 1.2 formatted messages. For example, SAAJ Version 1.3 introduces

a new set of constants and methods that are more conducive to SOAP 1.2 (such as getRole(),

getRelay()) on SOAP header elements. There are also additional methods on the factories for SAAJ to

create appropriate SOAP 1.1 or SOAP 1.2 messages.

v The XML namespaces for the envelope and encoding schemas have changed for SOAP 1.2. These

changes distinguish SOAP processors from SOAP 1.1 and SOAP 1.2 messages and supports changes

in the SOAP schema, without affecting existing implementations.

v Java Architecture for XML Web Services (JAX-WS) introduces the ability to support both SOAP 1.1 and

SOAP 1.2. Because JAX-RPC introduced a requirement to manipulate a SOAP message as it traversed

through the run time, there became a need to represent this message in its appropriate SOAP context.

In JAX-WS, a number of additional enhancements result from the support for SAAJ 1.3.

v The Web Services Description Language (WSDL) Version 1.1 specification does not discuss SOAP 1.2.

SOAP 1.2 is discussed in the draft versions of WSDL 2.0. WSDL Version 1.1 only defines how to render

a SOAP 1.1 payload in a WSDL 1.1 document. To resolve how to represent SOAP 1.2-based services,

there is another W3C document that defines how to define a SOAP 1.2 payload within a WSDL 1.1

document. Read about WSDL 1.1 binding extensions for SOAP 1.2.

v SOAP 1.1 is a single document. The SOAP 1.2 specification is organized in the following parts:

– Part 0 is a non-normative introduction to SOAP.

– Part 1 describes the structure of SOAP messages, the SOAP processing model and a framework for

binding SOAP to underlying protocols. Conformant SOAP implementations must implement

everything in Part 1.

– Part 2 describes optional add-ins to the core of SOAP including a data model and encoding, an RPC

convention and a binding to HTTP. Conformant SOAP implementations might implement any of the

add-ins in Part 2. However, if add-ins are implemented, they must conform to the relevant parts of

the specification.

A fourth document is the Specification Assertions and Test Collection

SOAP 1.2 has a number of changes in syntax and provides additional, clarified semantics from those that

are described in SOAP 1.1. The SOAP 1.2 Primer document lists and describes these syntax changes.

JAX-WS

Java API for XML-Based Web Services (JAX-WS) is the next generation Web services programming

model complimenting the foundation provided by the Java API for XML-based RPC (JAX-RPC)

Chapter 5. Web services 377

programming model. Using JAX-WS, development of Web services and clients is simplified with more

platform independence for Java applications by the use of dynamic proxies and Java annotations.

JAX-WS is a programming model that simplifies application development through support of a standard,

annotation-based model to develop Web Service applications and clients. The JAX-WS technology

strategically aligns itself with the current industry trend towards a more document-centric messaging model

and replaces the remote procedure call programming model as defined by JAX-RPC. While the JAX-RPC

programming model and applications are still supported by this product, JAX-RPC has limitations and does

not support various complex document-centric services. JAX-WS is the strategic programming model for

developing Web services and is a required part of the Java Platform, Enterprise Edition 5 (Java EE 5).

JAX-WS is also known as JSR 224.

Note: WebSphere Application Server Version 7.0 supports the JAX-WS 2.1 specification. JAX-WS 2.1

extends the functionality of JAX-WS 2.0 to provide support for the WS-Addressing in a standardized

API. Using this function, you can create, transmit and use endpoint references to target a Web

service endpoint. You can use this API to specify the action uniform resource identifiers (URIs) that

are associated with the Web Services Description Language (WSDL) operations of your Web

service. JAX-WS 2.1 introduces the concept of features as a way to programmatically control

specific functions and behaviors. There are three standard features: the AddressingFeature for

WS-Addressing, the MTOMFeature when optimizing the transmission of binary attachments, and

the RespectBindingFeature for wsdl:binding extensions. JAX-WS 2.1 requires Java Architecture for

XML Binding (JAXB) Version 2.1 for data binding.

The implementation of the JAX-WS programming standard provides the following enhancements for

developing Web services and clients:

v Better platform independence for Java applications.

Using JAX-WS APIs, development of Web services and clients is simplified with better platform

independence for Java applications. JAX-WS takes advantage of the dynamic proxy mechanism to

provide a formal delegation model with a pluggable provider. This is an enhancement over JAX-RPC,

which relies on the generation of vendor-specific stubs for invocation.

v Annotations

JAX-WS introduces support for annotating Java classes with metadata to indicate that the Java class is

a Web service. JAX-WS supports the use of annotations based on the Metadata Facility for the Java

Programming Language (JSR 175) specification, the Web Services Metadata for the Java Platform (JSR

181) specification and annotations defined by the JAX-WS 2.1 specification. Using annotations within

the Java source and within the Java class simplifies development of Web services. Use annotations to

define information that is typically specified in deployment descriptor files, WSDL files, or mapping

metadata from XML and WSDL files into the source artifacts.

For example, you can embed a simple @WebService tag in the Java source to expose the bean as a

Web service.

@WebService

public class QuoteBean implements StockQuote {

 public float getQuote(String sym) { ... }

}

The @WebService annotation tells the server runtime environment to expose all public methods on that

bean as a Web service. Additional levels of granularity can be controlled by adding additional

annotations on individual methods or parameters. Using annotations makes it much easier to expose

Java artifacts as Web services. In addition, as artifacts are created from using some of the top-down

mapping tools starting from a WSDL file, annotations are included within the source and Java classes

as a way of capturing the metadata along with the source files.

378 Administering WebSphere applications

Using annotations also improves the development of Web services within a team structure because you

do not need to define every Web service in a single or common deployment descriptor as required with

JAX-RPC Web services. Taking advantage of annotations with JAX-WS Web services enables parallel

development of the service and the required metadata.

For JAX-WS Web services, the use of the webservices.xml deployment descriptor is optional because

you can use annotations to specify all of the information that is contained within the deployment

descriptor file. You can use the deployment descriptor file to augment or override existing JAX-WS

annotations. Any information that you define in the webservices.xml deployment descriptor overrides any

corresponding information that is specified by annotations.

For example, if your service implementation class for your JAX-WS Web service includes the following:

– the @WebService annotation:

@WebService(wsdlLocation=”http://myhost.com/location/of/the/wsdl/ExampleService.wsdl”)

– the webservices.xml file specifies a different file name for the WSDL document as follows:

<webservices>

<webservice-description>

<webservice-description-name>ExampleService</webservice-description-name>

<wsdl-file>META-INF/wsdl/ExampleService.wsdl</wsdl-file>

...

</webservice-description>

</webservices>

In this case, the value that is specified in the deployment descriptor, META-INF/wsdl/
ExampleService.wsdl overrides the annotation value.

v Invoking Web services asynchronously

With JAX-WS, Web services are called both synchronously and asynchronously. JAX-WS adds support

for both a polling and callback mechanism when calling Web services asynchronously. Using a polling

model, a client can issue a request, get a response object back, which is polled to determine if the

server has responded. When the server responds, the actual response is retrieved. Using the callback

model, the client provides a callback handler to accept and process the inbound response object. Both

the polling and callback models enable the client to focus on continuing to process work without waiting

for a response to return, while providing for a more dynamic and efficient model to invoke Web services.

For example, a Web service interface might have methods for both synchronous and asynchronous

requests. Asynchronous requests are identified in bold in the following example:

@WebService

public interface CreditRatingService {

 // sync operation

 Score getCreditScore(Customer customer);

 // async operation with polling

 Response<Score> getCreditScoreAsync(Customer customer);

 // async operation with callback

 Future<?> getCreditScoreAsync(Customer customer,

 AsyncHandler<Score> handler);

}

The asynchronous invocation that uses the callback mechanism requires an additional input by the

client programmer. The callback is an object that contains the application code that is run when an

asynchronous response is received. Use the following code example to invoke an asynchronous

callback handler:

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customerFred,

 new AsyncHandler<Score>() {

 public void handleResponse (

 Response<Score> response)

 {

 Score score = response.get();

Chapter 5. Web services 379

// do work here...

 }

 }

);

Use the following code example to invoke an asynchronous polling client:

CreditRatingService svc = ...;

Response<Score> response = svc.getCreditScoreAsync(customerFred);

while (!response.isDone()) {

 // Complete an action while we wait.

}

// No cast needed, because of generics.

Score score = response.get();

v Using resource injection

JAX-WS supports resource injection to further simplify development of Web services. JAX-WS uses this

key feature of Java EE 5 to shift the burden of creating and initializing common resources in a Java

runtime environment from your Web service application to the application container environment, itself.

JAX-WS provides support for a subset of annotations that are defined in JSR-250 for resource injection

and application life cycle in its runtime environment.

The application server also supports the usage of the @Resource or @WebServiceRef annotation to

declare JAX-WS managed clients and to request injection of JAX-WS services and ports. When either

of these annotations are used on a field or method, they result in injection of a JAX-WS service or port

instance. The usage of these annotations also results in the type specified by the annotation being

bound into the JNDI namespace.

The @Resource annotation is defined by the JSR-250, Common Annotations specification that is

included in Java Platform, Enterprise Edition 5 (Java EE 5). By placing the @Resource annotation on a

variable of type javax.xml.ws.WebServiceContext within a service endpoint implementation class, you

can request a resource injection and collect the javax.xml.ws.WebServiceContext interface related to

that particular endpoint invocation. From the WebServiceContext interface, you can collect the

MessageContext for the request associated with the particular method call using the

getMessageContext() method.

The @WebServiceRef annotation is defined by the JAX-WS specification.

The following example illustrates using the @Resource and @WebServiceRef annotations for resource

injection:

@WebService

public class MyService {

 @Resource

 private WebServiceContext ctx;

 @Resource

 private SampleService svc;

 @WebServiceRef

 private SamplePort port;

 public String echo (String input) {

 ...

 }

}

Refer to sections 5.2.1 and 5.3 of the JAX-WS specification for more information on resource injection.

v Data binding with JAXB 2.1

JAX-WS leverages the Java Architecture for XML Binding (JAXB) 2.1 API and tools as the binding

technology for mappings between Java objects and XML documents. JAX-WS tooling relies on JAXB

tooling for default data binding for two-way mappings between Java objects and XML documents. JAXB

data binding replaces the data binding described by the JAX-RPC specification.

380 Administering WebSphere applications

The JAXB 2.1 specification provides enhancements such as improved compilation support and

introduces support for the @XMLSeeAlso annotation. With the improved compilation support, you now

have the flexibility to control the whether a new schema file is generated when using the schemagen

schema generator and you can configure the xjc schema compiler so that it does not automatically

generate new classes for a particular schema. You can use the @XMLSeeAlso annotation to ensure

that JAXB is aware of all the classes included in an inheritance hierarchy for a service endpoint

interface.Dynamic and static clients

The dynamic client API for JAX-WS is called the dispatch client (javax.xml.ws.Dispatch). The dispatch

client is an XML messaging oriented client. The data is sent in either PAYLOAD or MESSAGE mode.

When using the PAYLOAD mode, the dispatch client is only responsible for providing the contents of the

<soap:Body> and JAX-WS adds the <soap:Envelope> and <soap:Header> elements. When using the

MESSAGE mode, the dispatch client is responsible for providing the entire SOAP envelope including

the <soap:Envelope>, <soap:Header>, and <soap:Body> elements. JAX-WS does not add anything

additional to the message. The dispatch client supports asynchronous invocations using a callback or

polling mechanism.

The static client programming model for JAX-WS is the called the proxy client. The proxy client invokes

a Web service based on a Service Endpoint interface (SEI), which must be provided.

v Support for MTOM

Using JAX-WS, you can send binary attachments such as images or files along with Web services

requests. JAX-WS adds support for optimized transmission of binary data as specified by Message

Transmission Optimization Mechanism (MTOM).

v Multiple data binding technologies

JAX-WS exposes the following binding technologies to the end user: XML Source, SOAP Attachments

API for Java (SAAJ) 1.3, and Java Architecture for XML Binding (JAXB) 2.1. XML Source enables a

user to pass a javax.xml.transform.Source into the runtime environment which represents the data in a

Source object to be processed. SAAJ 1.3 now has the ability to pass an entire SOAP document across

the interface rather than just the payload itself. This action is done by the client passing the SAAJ

SOAPMessage object across the interface. JAX-WS leverages the JAXB 2.1 support as the data

binding technology of choice between Java and XML.

v Support for SOAP 1.2

Support for SOAP 1.2 has been added to JAX-WS 2.0. JAX-WS supports both SOAP 1.1 and SOAP

1.2 so that you can send binary attachments such as images or files along with Web services requests.

JAX-WS adds support for optimized transmission of binary data as specified by MTOM.

v Development tools

JAX-WS provides the wsgen and wsimport command-line tools for generating portable artifacts for

JAX-WS Web services. When creating JAX-WS Web services, you can start with either a WSDL file or

an implementation bean class. If you start with an implementation bean class, use the wsgen

command-line tool to generate all the Web services server artifacts, including a WSDL file if requested.

If you start with a WSDL file, use the wsimport command-line tool to generate all the Web services

artifacts for either the server or the client. The wsimport command-line tool processes the WSDL file

with schema definitions to generate the portable artifacts, which include the service class, the service

endpoint interface class, and the JAXB 2.1 classes for the corresponding XML schema.

v Support for WS-Addressing (JAX-WS 2.1)

JAX-WS 2.1 integrates support for the WS-Addressing standard in to the API. The new API enables you

to create, transmit and use endpoint references to target a specific Web service endpoint. You can also

explicitly specify the action URIs associated with the Web Services Description Language (WSDL)

operations of your Web service.

v Support for JAX-WS 2.1 features

JAX-WS 2.1 introduces the concept of features as a way to programmatically control certain functions or

behaviors. There are three standard features: the AddressingFeature , the MTOMFeature, and the

RespectBindingFeature. The AddressingFeature is used to enable or disable support for the

WS-Addressing Version 1.0 specification. The MTOMFeature is used to enable or disable support for

Chapter 5. Web services 381

Message Transmission Optimized Mechanism (MTOM) when sending binary attachments. The

RespectBindingFeature is used to enable or disable support for wsdl:binding extensions. The application

server supports an additional feature, the SubmissionAddressingFeature, which is used to enable or

disable support for WS-Addressing Member Submission specification (prior to the WS-Addressing

Version 1.0 level of specification).

JAX-WS client programming model:

The Java API for XML-Based Web Services (JAX-WS) Web service client programming model supports

both the Dispatch client API and the Dynamic Proxy client API. The Dispatch client API is a dynamic client

programming model, whereas the static client programming model for JAX-WS is the Dynamic Proxy

client. The Dispatch and Dynamic Proxy clients enable both synchronous and asynchronous invocation of

JAX-WS Web services.

 v Dispatch client: Use this client when you want to work at the XML message level or when you want to

work without any generated artifacts at the JAX-WS level.

v Dynamic Proxy client: Use this client when you want to invoke a Web service based on a service

endpoint interface.

Dispatch client

XML-based Web services use XML messages for communications between Web services and Web

services clients. The JAX-WS APIs provide high-level methods to simplify and hide the details of

converting between Java method invocations and their associated XML messages. However, in some

cases, you might desire to work at the XML message level. Support for invoking services at the XML

message level is provided by the Dispatch client API. The Dispatch client API, javax.xml.ws.Dispatch, is a

dynamic JAX-WS client programming interface. To write a Dispatch client, you must have expertise with

the Dispatch client APIs, the supported object types, and knowledge of the message representations for

the associated Web Services Description Language (WSDL) file. The Dispatch client can send data in

either MESSAGE or PAYLOAD mode. When using the javax.xml.ws.Service.Mode.MESSAGE mode, the Dispatch

client is responsible for providing the entire SOAP envelope including the <soap:Envelope>, <soap:Header>,

and <soap:Body> elements. When using the javax.xml.ws.Service.Mode.PAYLOAD mode, the Dispatch

client is only responsible for providing the contents of the <soap:Body> and JAX-WS includes the payload

in a <soap:Envelope> element.

The Dispatch client API requires application clients to construct messages or payloads as XML which

requires a detailed knowledge of the message or message payload. The Dispatch client supports the

following types of objects:

v javax.xml.transform.Source: Use Source objects to enable clients to use XML APIs directly. You can

use Source objects with SOAP or HTTP bindings.

v JAXB objects: Use JAXB objects so that clients can use JAXB objects that are generated from an XML

schema to create and manipulate XML with JAX-WS applications. JAXB objects can only be used with

SOAP or HTTP bindings.

v javax.xml.soap.SOAPMessage: Use SOAPMessage objects so that clients can work with SOAP messages.

You can only use SOAPMessage objects with SOAP bindings.

v javax.activation.DataSource: Use DataSource objects so that clients can work with Multipurpose

Internet Mail Extension (MIME) messages. Use DataSource only with HTTP bindings.

For example, if the input parameter type is javax.xml.transform.Source, the call to the Dispatch client API

is similar to the following code example:

Dispatch<Source> dispatch = ... create a Dispatch<Source>

Source request = ... create a Source object

Source response = dispatch.invoke(request);

The Dispatch parameter value determines the return type of the invoke() method.

382 Administering WebSphere applications

The Dispatch client is invoked in one of three ways:

v Synchronous invocation for requests and responses using the invoke method

v Asynchronous invocation for requests and responses using the invokeAsync method with a callback or

polling object

v One-way invocation using the invokeOneWay methods

Refer to Chapter 4, section 3 of the JAX-WS specification for more information on using a Dispatch client.

Dynamic Proxy client

The static client programming model for JAX-WS is the called the Dynamic Proxy client. The Dynamic

Proxy client invokes a Web service based on a Service Endpoint Interface (SEI) which must be provided.

The Dynamic Proxy client is similar to the stub client in the Java API for XML-based RPC (JAX-RPC)

programming model. Although the JAX-WS Dynamic Proxy client and the JAX-RPC stub client are both

based on the Service Endpoint Interface (SEI) that is generated from a WSDL file , there is a major

difference. The Dynamic Proxy client is dynamically generated at run time using the Java 5 Dynamic Proxy

functionality, while the JAX-RPC-based stub client is a non-portable Java file that is generated by tooling.

Unlike the JAX-RPC stub clients, the Dynamic Proxy client does not require you to regenerate a stub prior

to running the client on an application server for a different vendor because the generated interface does

not require the specific vendor information.

The Dynamic Proxy instances extend the java.lang.reflect.Proxy class and leverage the Dynamic Proxy

function in the base Java SE Runtime Environment (JRE) 6. The client application can then provide an

interface that is used to create the proxy instance while the runtime is responsible for dynamically creating

a Java object that represents the SEI.

The Dynamic Proxy client is invoked in one of three ways:

v Synchronous invocation for requests and responses using the invoke method

v Asynchronous invocation for requests and responses using the invokeAsync method with a callback or

polling object

v One-way invocation using the invokeOneWay methods

Refer to Chapter 4 of the JAX-WS specification for more information on using Dynamic Proxy clients.

Chapter 5. Web services 383

Related concepts

“JAX-WS” on page 377
Java API for XML-Based Web Services (JAX-WS) is the next generation Web services programming

model complimenting the foundation provided by the Java API for XML-based RPC (JAX-RPC)

programming model. Using JAX-WS, development of Web services and clients is simplified with more

platform independence for Java applications by the use of dynamic proxies and Java annotations.

Related tasks

Developing and deploying JAX-WS Web services clients

You can develop Web services clients based on the Web Services for Java Platform, Enterprise Edition

(Java EE) specification and the Java API for XML-Based Web Services (JAX-WS) programming model.

Developing a JAX-WS client from a WSDL file
Java API for XML-Based Web Services (JAX-WS) tooling supports generating Java artifacts you need to

develop static JAX-WS Web services clients when starting with a Web Services Description Language

(WSDL) file.

Invoking JAX-WS Web services asynchronously
Java API for XML-Based Web Services (JAX-WS) provides support for invoking Web services using an

asynchronous client invocation. JAX-WS provides support for both a callback and polling model when

calling Web services asynchronously. Both the callback model and the polling model are available on the

Dispatch client and the Dynamic Proxy client.

Related reference

Web services specifications and APIs

Related information

Java API for XML Web Services (JAX-WS) API documentation

Java API for XML Web Services (JAX-WS) API User’s Guide documentation

JAX-WS annotations:

Java API for XML-Based Web Services (JAX-WS) relies on the use of annotations to specify metadata

associated with Web services implementations and to simplify the development of Web services.

Annotations describe how a server-side service implementation is accessed as a Web service or how a

client-side Java class accesses Web services.

 The JAX-WS programming standard introduces support for annotating Java classes with metadata that is

used to define a service endpoint application as a Web service and how a client can access the Web

service. JAX-WS supports the use of annotations based on the Metadata Facility for the Java

Programming Language (Java Specification Request (JSR) 175) specification, the Web Services Metadata

for the Java Platform (JSR 181) specification and annotations defined by the JAX-WS 2.0 and later (JSR

224) specification which includes JAXB annotations. Using annotations from the JSR 181 standard, you

can simply annotate the service implementation class or the service interface and now the application is

enabled as a Web service. Using annotations within the Java source simplifies development and

deployment of Web services by defining some of the additional information that is typically obtained from

deployment descriptor files, WSDL files, or mapping metadata from XML and WSDL into the source

artifacts.

Use annotations to configure bindings, handler chains, set names of portType, service and other WSDL

parameters. Annotations are used in mapping Java to WSDL and schema, and at runtime to control how

the JAX-WS runtime processes and responds to Web service invocations.

For JAX-WS Web services, the use of the webservices.xml deployment descriptor is optional because you

can use annotations to specify all of the information that is contained within the deployment descriptor file.

You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any

information that you define in the webservices.xml deployment descriptor overrides any corresponding

information that is specified by annotations.

384 Administering WebSphere applications

http://java.sun.com/webservices/jaxws/index.jsp
https://jax-ws.dev.java.net/jax-ws-ea3/docs/UsersGuide.html

Note: In WebSphere Application Server Version 7.0, the default annotation support behavior has changed.

In the Version 6.1 Feature Pack for Web services, the default behavior is to scan pre- Java

Platform, Enterprise Edition (Java EE) 5 Web application modules to identify JAX-WS services and

to scan pre-Java EE 5 Web application modules and EJB modules for service clients during

application installation. For Version 7.0, the default behavior is to not scan pre-Java EE 5 modules

for annotations during application installation or server startup. You can preserve backward

compatibility with the feature pack in either of two ways:

v You can set the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a WAR file or

EJB module to true. For example:

Manifest-Version: 1.0

UseWSFEP61ScanPolicy: true

When this property is set to true in the module’s META-INF/MANIFEST.MF file, the module is

scanned for JAX-WS annotations regardless of the Java EE version of the module. The default

value is false and when the default value is in effect, JAX-WS annotations are only supported in

modules whose version is Java EE 5 or later.

v You can set the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy custom Java virtual

machine (JVM) property using the administrative console. See the JVM custom properties

documentation for the correct navigation path to use. To request annotation scanning in all

modules regardless of their Java EE version, set the custom property

com.ibm.websphere.webservices.UseWSFEP61ScanPolicy to true. You must change the setting on

each server that requires a change in the default behavior.

If the property is set within a module’s META-INF/MANIFEST.MF file, this setting takes precedence

over the server’s custom JVM property. When using either property, you must establish the desired

annotation scanning behavior before the application is installed. You cannot dynamically change the

scanning behavior once an application is installed. If changes to the behavior are required after

your application is installed, you must first uninstall the application, specify the desired scanning

behavior using the appropriate property and then install the application again. When federating

nodes that have the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy set to true in the

configuration of the servers contained within the node, this property does not affect the deployment

manager. You must set the property to true on the deployment manager before the node is

federated to preserve the behavior as it was on the node before federation.

Note: When federating nodes that have the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy set to

true in the configuration of the servers contained within the node, this does not affect the

deployment manager. You must set the property to true on the deployment manager before the

node is federated if you wish to preserve the behavior as it was on the node before federation.

Annotations supported by JAX-WS are listed in the table below. The target for annotations is applicable for

these Java objects:

v types such as a Java class, enum or interface

v methods

v fields representing local instance variables within a Java class

v parameters within a Java method

Web Services Metadata Annotations (JSR 181)

Chapter 5. Web services 385

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
jw

s.

We
bS

er
vi

ce

T
he

@

W
eb

S
er

vi
ce

an

no
ta

tio
n

m
ar

ks

a

Ja
va

cl

as
s

as

im

pl
em

en
tin

g
a

W
eb

se

rv
ic

e
or

m

ar
ks

a

se
rv

ic
e

en
dp

oi
nt

in

te
rf

ac
e

(S
E

I)

as

im
pl

em
en

tin
g

a
W

eb

se

rv
ic

e
in

te
rf

ac
e.

Im
p

o
rt

an
t:

v
A

Ja

va

cl

as
s

th
at

im

pl
em

en
ts

a

W
eb

se

rv
ic

e
m

us
t

sp
ec

ify

ei

th
er

th

e
@

W
eb

S
er

vi
ce

or

@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n.

B

ot
h

an
no

ta
tio

ns

ca
nn

ot

be

pr

es
en

t.

T
hi

s
an

no
ta

tio
n

is

ap

pl
ic

ab
le

on

a

cl
ie

nt

or

se

rv
er

S

E
I

or

a

se
rv

er

en
dp

oi
nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
If

th
e

an
no

ta
tio

n
re

fe
re

nc
es

an

S

E
I

th
ro

ug
h

th
e
en

dp
oi

nt
In

te
rf

ac
e

at
tr

ib
ut

e,

th

e
S

E
I

m
us

t
al

so

be

an

no
ta

te
d

w
ith

th

e
@

W
eb

S
er

vi
ce

an
no

ta
tio

n.

v
S

ee

“R

ul
es

fo

r
m

et
ho

ds

on

cl

as
se

s
an

no
ta

te
d

w
ith

@

W
eb

S
er

vi
ce

”
on

pa

ge

40

3
fo

r
ad

di
tio

na
l i

nf
or

m
at

io
n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
n

am
e

T
he

na

m
e

of

th

e
ws

dl
:p

or
tT

yp
e.

T

he

de

fa
ul

t
va

lu
e

is

th
e

un
qu

al
ifi

ed

na

m
e

of

th

e
Ja

va

cl

as
s

or

in

te
rf

ac
e.

(S
tr

in
g)

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce

of

th

e
W

S
D

L
an

d
X

M
L

el
em

en
ts

ge

ne
ra

te
d

fr
om

th

e
W

eb

se

rv
ic

e.

T

he

de

fa
ul

t
va

lu
e

is

th

e
na

m
es

pa
ce

m

ap
pe

d
fr

om

th

e
pa

ck
ag

e
na

m
e

co
nt

ai
ni

ng

th

e
W

eb

se

rv
ic

e.

(S

tr
in

g)

-
se

rv
ic

eN
am

e
S

pe
ci

fie
s

th
e

se
rv

ic
e

na
m

e
of

th

e
W

eb

se

rv
ic

e:

ws
dl

:s
er

vi
ce

.
T

he

de

fa
ul

t
va

lu
e

is

th

e
si

m
pl

e
na

m
e

of

th
e

Ja
va

cl

as
s

+

S

er
vi

ce
.

(S
tr

in
g)

-
en

d
p

o
in

tI
n

te
rf

ac
e

S
pe

ci
fie

s
th

e
qu

al
ifi

ed

na

m
e

of

th

e
se

rv
ic

e
en

dp
oi

nt

in
te

rf
ac

e
th

at

de

fin
es

th

e
se

rv
ic

es
’ a

bs
tr

ac
t

W
eb

se
rv

ic
e

co
nt

ra
ct

.
If

sp
ec

ifi
ed

,
th

e
se

rv
ic

e
en

dp
oi

nt

in
te

rf
ac

e
is

us

ed

to

de

te
rm

in
e

th
e

ab
st

ra
ct

W

S
D

L
co

nt
ra

ct
.

(S
tr

in
g)

-
p

o
rt

N
am

e
T

he

ws

dl
:p

or
tN

am
e.

T

he

de

fa
ul

t
va

lu
e

is

W
eb

S
er

vi
ce

.n
am

e
+

P
or

t
.

(S
tr

in
g)

-
w

sd
lL

o
ca

ti
o

n

S
pe

ci
fie

s
th

e
W

eb

ad

dr
es

s
of

th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

W
eb

se

rv
ic

e.

T

he

W

eb

ad

dr
es

s
is

ei

th
er

re
la

tiv
e

or

ab

so
lu

te
.

(S
tr

in
g)

386 Administering WebSphere applications

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
jw

s.

We
bM

et
ho

d
T

he

@

W
eb

M
et

h
o

d

an

no
ta

tio
n

de
no

te
s

a
m

et
ho

d
th

at

is

a

W
eb

se
rv

ic
e

op
er

at
io

n.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S

er
vi

ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

Im
p

o
rt

an
t:

v
T

he

@

W
eb

M
et

ho
d

an
no

ta
tio

n
is

on

ly

su

pp
or

te
d

on

cl

as
se

s
th

at

ar

e
an

no
ta

te
d

w
ith

th

e
@

W
eb

S
er

vi
ce

an

no
ta

tio
n.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
o

p
er

at
io

n
N

am
e

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
ws

dl
:o

pe
ra

ti
on

m

at
ch

in
g

th
is

m

et
ho

d.

T

he

de

fa
ul

t
va

lu
e

is

th

e
na

m
e

of

Ja

va

m
et

ho
d.

(S

tr
in

g)

-
ac

ti
o

n

D
ef

in
es

th

e
ac

tio
n

fo
r

th
is

op

er
at

io
n.

F

or

S

O
A

P

bi
nd

in
gs

,
th

is

va

lu
e

de
te

rm
in

es

th

e
va

lu
e

of

th

e
S

O
A

P
A

ct
io

n
he

ad
er

.
T

he

de

fa
ul

t
va

lu
e

is

th

e
na

m
e

of

Ja
va

m

et
ho

d.

(S

tr
in

g)

-
ex

cl
u

d
e

S
pe

ci
fie

s
w

he
th

er

to

ex

cl
ud

e
a

m
et

ho
d

fr
om

th

e
W

eb

se
rv

ic
e.

T

he

de

fa
ul

t
va

lu
e

is

fa

ls
e.

(B

oo
le

an
)

ja
va

x.
jw

s.

On
ew

ay

T
he

@

O
n

ew
ay

an

no
ta

tio
n

de
no

te
s

a
m

et
ho

d
as

a

W
eb

se

rv
ic

e
on

e-
w

ay

op

er
at

io
n

th
at

on

ly

ha

s
an

in

pu
t

m
es

sa
ge

an

d
no

ou

tp
ut

m
es

sa
ge

.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S

er
vi

ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
T

he
re

ar

e
no

pr

op
er

tie
s

on

th

e
O

ne
w

ay

an

no
ta

tio
n.

Chapter 5. Web services 387

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
jw

s.

We
bP

ar
am

T
he

@

W
eb

P
ar

am

an

no
ta

tio
n

cu
st

om
iz

es

th

e
m

ap
pi

ng

of

an

in

di
vi

du
al

pa
ra

m
et

er

to

a

W
eb

se

rv
ic

e
m

es
sa

ge

pa

rt

an

d
X

M
L

el
em

en
t.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S

er
vi

ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
P

ar
am

et
er

v
P

ro
pe

rt
ie

s:

-
n

am
e

T
he

na

m
e

of

th

e
pa

ra
m

et
er

.
If

th
e

op
er

at
io

n
is

re

m
ot

e
pr

oc
ed

ur
e

ca
ll

(R
P

C
)

st
yl

e
an

d
th

e
pa

rt
Na

me

at

tr
ib

ut
e

is

no
t

sp
ec

ifi
ed

,
th

en

th

is

is

th

e
na

m
e

of

th

e
ws

dl
:p

ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

e
pa

ra
m

et
er

.
If

th
e

op
er

at
io

n
is

do
cu

m
en

t
st

yl
e

or

th

e
pa

ra
m

et
er

m

ap
s

to

a

he
ad

er
,

th
en

-n

am
e

is

th

e
lo

ca
l n

am
e

of

th

e
X

M
L

el
em

en
t

re
pr

es
en

tin
g

th
e

pa
ra

m
et

er
.

T
hi

s
at

tr
ib

ut
e

is

re

qu
ire

d
if

th
e

op
er

at
io

n
is

do

cu
m

en
t

st
yl

e,

th

e
pa

ra
m

et
er

st

yl
e

is

BA
RE

,
an

d
th

e
m

od
e

is

OU

T
or

IN

OU
T.

(S

tr
in

g)

-
p

ar
tN

am
e

D
ef

in
es

th

e
na

m
e

of

ws

dl
:p

ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

is

pa

ra
m

et
er

.
T

hi
s

is

on

ly

us

ed

if

th
e

op
er

at
io

n
is

R
P

C

st

yl
e,

or

th

e
op

er
at

io
n

is

do

cu
m

en
t

st
yl

e
an

d
th

e
pa

ra
m

et
er

st

yl
e

is

BA

RE
.

(S
tr

in
g)

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce

of

th

e
X

M
L

el
em

en
t

fo
r

th
e

pa
ra

m
et

er
. A

pp
lie

s
on

ly

fo

r
do

cu
m

en
t

bi
nd

in
gs

w
he

n
th

e
at

tr
ib

ut
e

m
ap

s
to

an

X

M
L

el
em

en
t.

T
he

de
fa

ul
t

va
lu

e
is

th

e
ta

rg
et

Na
me

sp
ac

e
fo

r
th

e
W

eb

se
rv

ic
e.

(S

tr
in

g)

-
m

o
d

e
T

he

va

lu
e

re
pr

es
en

ts

th

e
di

re
ct

io
n

th
e

pa
ra

m
et

er

flo

w
s

fo
r

th
is

m

et
ho

d.

V

al
id

va

lu
es

ar

e
IN

,
IN

OU
T,

an

d
OU

T.

(S
tr

in
g)

-
h

ea
d

er

S
pe

ci
fie

s
w

he
th

er

th

e
pa

ra
m

et
er

is

in

a

m
es

sa
ge

he
ad

er

ra

th
er

th

an

a

m
es

sa
ge

bo

dy
.

T
he

de

fa
ul

t
va

lu
e

is

fa

ls
e.

(B

oo
le

an
)

388 Administering WebSphere applications

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
jw

s.

We
bR

es
ul

t
T

he

@

W
eb

R
es

u
lt

an

no
ta

tio
n

cu
st

om
iz

es

th

e
m

ap
pi

ng

of

a

re
tu

rn

va
lu

e
to

a

W
S

D
L

pa
rt

or

X

M
L

el
em

en
t.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S

er
vi

ce

E
nd

po
in

t
In

te
rf

ac
e

(S
E

I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
n

am
e

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
re

tu
rn

va

lu
e

as

it

is

lis

te
d

in

th
e

W
S

D
L

fil
e

an
d

fo
un

d
in

m

es
sa

ge
s

on

th

e
w

ire
.

F
or

R
P

C

bi

nd
in

gs
,

th
is

is

th

e
na

m
e

of

th

e
ws

dl
:p

ar
t

at
tr

ib
ut

e
re

pr
es

en
tin

g
th

e
re

tu
rn

va

lu
e.

F

or

do

cu
m

en
t

bi
nd

in
gs

,
th

e
-n

am
e

pa
ra

m
et

er

is

th

e
lo

ca
l n

am
e

of

th

e
X

M
L

el
em

en
t

re
pr

es
en

tin
g

th
e

re
tu

rn

va

lu
e.

T

he

de

fa
ul

t
va

lu
e

is

re

tu
rn

fo

r
R

P
C

an

d
D

O
C

U
M

E
N

T
/W

R
A

P
P

E
D

bi
nd

in
gs

.
T

he

de

fa
ul

t
va

lu
e

is

th

e
m

et
ho

d
na

m
e

+

Re
sp

on
se

fo

r
D

O
C

U
M

E
N

T
/B

A
R

E

bi

nd
in

gs
.

(S
tr

in
g)

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce

fo

r
th

e
re

tu
rn

va

lu
e.

T
hi

s
pa

ra
m

et
er

is

on

ly

us

ed

if

th
e

op
er

at
io

n
is

R

P
C

st
yl

e
or

if

th
e

op
er

at
io

n
is

D

O
C

U
M

E
N

T

st

yl
e

an
d

th
e

pa
ra

m
et

er

st

yl
e

is

B

A
R

E
.

(S
tr

in
g)

-
h

ea
d

er

S
pe

ci
fie

s
w

he
th

er

th

e
re

su
lt

is

ca

rr
ie

d
in

a

he
ad

er
.

T
he

de
fa

ul
t

va
lu

e
is

fa

ls
e.

(B

oo
le

an
)

-
p

ar
tN

am
e

S
pe

ci
fie

s
th

e
pa

rt

na

m
e

fo
r

th
e

re
su

lt
w

ith

R

P
C

or

D
O

C
U

M
E

N
T

/B
A

R
E

op

er
at

io
ns

.
T

he

de

fa
ul

t
va

lu
e

is

@W
eb

Re
su

lt
.n

am
e.

(S

tr
in

g)

Chapter 5. Web services 389

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
jw

s.

Ha
nd

le
rC

ha
in

T
he

@

H
an

d
le

rC
h

ai
n

an

no
ta

tio
n

as
so

ci
at

es

th

e
W

eb

se

rv
ic

e
w

ith

an

ex
te

rn
al

ly

de

fin
ed

ha

nd
le

r
ch

ai
n.

Yo
u

ca
n

on
ly

co

nf
ig

ur
e

th
e

se
rv

er

si

de

ha

nd
le

r
by

us

in
g

th
e

@
H

an
dl

er
C

ha
in

an

no
ta

tio
n

on

th

e
S

er
vi

ce

E

nd
po

in
t

In
te

rf
ac

e
(S

E
I)

or

th
e

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

U
se

on

e
of

se

ve
ra

l w
ay

s
to

co

nf
ig

ur
e

a
cl

ie
nt

si

de

ha

nd
le

r.
Yo

u
ca

n
co

nf
ig

ur
e

a
cl

ie
nt

si

de

ha

nd
le

r
by

us

in
g

th
e

@
H

an
dl

er
C

ha
in

an
no

ta
tio

n
on

th

e
ge

ne
ra

te
d

se
rv

ic
e

cl
as

s
or

S

E
I.

A
dd

iti
on

al
ly

,
yo

u
ca

n
pr

og
ra

m
m

at
ic

al
ly

re

gi
st

er

yo

ur

ow

n
im

pl
em

en
ta

tio
n

of

th

e
H

an
dl

er
R

es
ol

ve
r

in
te

rf
ac

e
on

th

e
S

er
vi

ce
,

or

pr

og
ra

m
m

at
ic

al
ly

se

t
th

e
ha

nd
le

r
ch

ai
n

on

th

e
B

in
di

ng

ob

je
ct

.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
fi

le
 S

pe
ci

fie
s

th
e

lo
ca

tio
n

of

th

e
ha

nd
le

r
ch

ai
n

fil
e.

T

he

fil

e
lo

ca
tio

n
is

ei

th
er

an

ab

so
lu

te

ja

va
.n

et
.U

R
L

in

ex

te
rn

al

fo
rm

or

a

re
la

tiv
e

pa
th

fr

om

th

e
cl

as
s

fil
e.

(S

tr
in

g)

-
n

am
e

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
ha

nd
le

r
ch

ai
n

in

th

e
co

nf
ig

ur
at

io
n

fil
e.

(S

tr
in

g)

ja
va

x.
jw

s.

SO
AP

Bi
nd

in
g

T
he

@

S
O

A
P

B
in

d
in

g

an

no
ta

tio
n

sp
ec

ifi
es

th

e
m

ap
pi

ng

of

th

e
W

eb

se
rv

ic
e

on
to

th

e
S

O
A

P

m

es
sa

ge

pr

ot
oc

ol
.

A
pp

ly

th

is

an

no
ta

tio
n

to

a

ty
pe

or

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S
er

vi
ce

E

nd
po

in
t

In
te

rf
ac

e
(S

E
I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

T
he

m

et
ho

d
le

ve
l a

nn
ot

at
io

n
is

lim

ite
d

in

w

ha
t

it
ca

n
sp

ec
ify

an

d
is

on
ly

us

ed

if

th
e
st

yl
e

pr
op

er
ty

is

DO

CU
ME

NT
.

If
th

e
m

et
ho

d
le

ve
l

an
no

ta
tio

n
is

no

t
sp

ec
ifi

ed
,

th
e

@
S

O
A

P
B

in
d

in
g

be

ha
vi

or

fr

om

th

e
ty

pe

is

us

ed
.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

or

M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
st

yl
e D
ef

in
es

en

co
di

ng

st

yl
e

fo
r

m
es

sa
ge

s
se

nt

to

an

d
fr

om

th
e

W
eb

se

rv
ic

e.

T

he

va

lid

va

lu
es

ar

e
DO

CU
ME

NT

an

d
RP

C.

T

he

de

fa
ul

t
va

lu
e

is

DO

CU
ME

NT
.

(S
tr

in
g)

-
u

se
 D
ef

in
es

th

e
fo

rm
at

tin
g

us
ed

fo

r
m

es
sa

ge
s

se
nt

to

an

d
fr

om

th

e
W

eb

se

rv
ic

e.

T

he

de

fa
ul

t
va

lu
e

is

LI

TE
RA

L.

EN
CO

DE
D

is

no

t
su

pp
or

te
d.

(S

tr
in

g)

-
p

ar
am

et
er

S
ty

le

D
et

er
m

in
es

w

he
th

er

th

e
m

et
ho

d’
s

pa
ra

m
et

er
s

re
pr

es
en

t
th

e
en

tir
e

m
es

sa
ge

bo

dy

or

w

he
th

er

pa
ra

m
et

er
s

ar
e

el
em

en
ts

w

ra
pp

ed

in

si
de

a

to
p-

le
ve

l
el

em
en

t
na

m
ed

af

te
r

th
e

op
er

at
io

n.

V

al
id

va

lu
es

ar

e
WR

AP
PE

D
or

BA

RE
.

Yo
u

ca
n

on
ly

us

e
th

e
BA

RE

va

lu
e

w
ith

DO
CU

ME
NT

st

yl
e

bi
nd

in
gs

.
T

he

de

fa
ul

t
va

lu
e

is

WR

AP
PE

D.

(S
tr

in
g)

390 Administering WebSphere applications

JAX-WS Annotations (JSR 224)

Chapter 5. Web services 391

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
xm

l.
ws

.
Ac

ti
on

T
he

@

A
ct

io
n

an

no
ta

tio
n

sp
ec

ifi
es

th

e
W

S
-A

dd
re

ss
in

g
ac

tio
n

th
at

is

as
so

ci
at

ed

w

ith

a

W
eb

se

rv
ic

e
op

er
at

io
n.

W
he

n
yo

u
us

e
th

is

an

no
ta

tio
n

w
ith

a

pa
rt

ic
ul

ar

m

et
ho

d,

an

d
ge

ne
ra

te

th
e

co
rr

es
po

nd
in

g
W

S
D

L
do

cu
m

en
t,

th
e

W
S

-A
dd

re
ss

in
g

A
ct

io
n

ex
te

ns
io

n
at

tr
ib

ut
e

is

ad

de
d

to

th

e
in

pu
t

an
d

ou
tp

ut

el

em
en

ts

of

th

e
W

S
D

L
op

er
at

io
n

th
at

co

rr
es

po
nd

s
to

th

at

m

et
ho

d.

To

ad

d
th

is

at

tr
ib

ut
e

to

th

e
W

S
D

L
op

er
at

io
n,

yo

u
m

us
t

al
so

sp

ec
ify

th

e
@

A
dd

re
ss

in
g

an
no

ta
tio

n
on

th

e
se

rv
er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

If
yo

u
do

no

t
w

an
t

to

us

e
th

e
@

A
dd

re
ss

in
g

an
no

ta
tio

n
yo

u
ca

n
su

pp
ly

yo
ur

ow

n
W

S
D

L
do

cu
m

en
t

w
ith

th

e
A

ct
io

n
at

tr
ib

ut
e

al
re

ad
y

de
fin

ed
.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
fa

u
lt

S
pe

ci
fie

s
th

e
ar

ra
y

of

F

au
ltA

ct
io

n
fo

r
th

e
w

sd
l:f

au
lt

of

th
e

op
er

at
io

n.

(S

tr
in

g)

-
in

p
u

t
S

pe
ci

fie
s

th
e

ac
tio

n
fo

r
th

ew
sd

l:i
np

ut

of

th

e
op

er
at

io
n.

(S
tr

in
g)

-
o

u
tp

u
t

S
pe

ci
fie

s
th

e
ac

tio
n

fo
r

th
ew

sd
l:o

ut
pu

t
of

th

e
op

er
at

io
n.

(S

tr
in

g)

ja
va

x.
xm

l.
ws

.
Bi

nd
in

gT
yp

e
T

he

@

B
in

d
in

g
Ty

p
e

an
no

ta
tio

n
sp

ec
ifi

es

th

e
bi

nd
in

g
to

us

e
w

he
n

pu
bl

is
hi

ng

an

en

dp
oi

nt

of

th

is

ty

pe
.

A
pp

ly

th

is

an

no
ta

tio
n

to

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

Im
p

o
rt

an
t:

v
Yo

u
ca

n
us

e
th

e
@

B
in

di
ng

Ty
pe

an

no
ta

tio
n

on

th

e
Ja

va
B

ea
ns

en
dp

oi
nt

im

pl
em

en
ta

tio
n

cl
as

s
to

en

ab
le

M

T
O

M

by

sp

ec
ify

in
g

ei
th

er

ja
va

x.
xm

l.
ws

.s
oa

p.
SO

AP
Bi

nd
in

g.
SO

AP
11

HT
TP

_M
TO

M_
BI

ND
IN

G
or

ja
va

x.
xm

l.
ws

.s
oa

p.
SO

AP
Bi

nd
in

g.
SO

AP
12

HT
TP

_M
TO

M_
BI

ND
IN

G
as

th

e
va

lu
e

fo
r

th
e

an
no

ta
tio

n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va

lu
e

In
di

ca
te

s
th

e
bi

nd
in

g
id

en
tif

ie
r

W
eb

ad

dr
es

s.

V

al
id

va
lu

es

ar

e
ja

va
x.

xm
l.

ws
.s

oa
p.

SO
AP

Bi
nd

in
g.

SO
AP

11
HT

TP
_B

IN
DI

NG
,

ja
va

x.
xm

l.
ws

.s
oa

p.
SO

AP
Bi

nd
in

g.
SO

AP
12

HT
TP

_B
IN

DI
NG

,
an

d
ja

va
x.

xm
l.

ws
.h

tt
p.

HT
TP

Bi
nd

in
g.

HT
TP

2H
TT

P_
BI

ND
IN

G.

T
he

de

fa
ul

t
va

lu
e

is

ja
va

x.
xm

l.
ws

.s
oa

p.
SO

AP
Bi

nd
in

g.
SO

AP
11

HT
TP

_B
IN

DI
NG

.
(S

tr
in

g)

392 Administering WebSphere applications

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
xm

l.
ws

.
Fa

ul
tA

ct
io

n
T

he

@

F
au

lt
A

ct
io

n

an

no
ta

tio
n

sp
ec

ifi
es

th

e
W

S
-A

dd
re

ss
in

g
ac

tio
n

th
at

is

ad

de
d

to

a

fa
ul

t
re

sp
on

se
.

T
hi

s
an

no
ta

tio
n

m
us

t
be

co

nt
ai

ne
d

w
ith

in

an

@

A
ct

io
n

an
no

ta
tio

n.

W
he

n
yo

u
us

e
th

is

an

no
ta

tio
n

w
ith

a

pa
rt

ic
ul

ar

m

et
ho

d,

th

e
W

S
-A

dd
re

ss
in

g
F

au
ltA

ct
io

n
ex

te
ns

io
n

at
tr

ib
ut

e
is

ad

de
d

to

th

e
fa

ul
t

el
em

en
t

of

th

e
W

S
D

L
op

er
at

io
n

th
at

co

rr
es

po
nd

s
to

th

at

m

et
ho

d.

To

ad

d
th

is

at

tr
ib

ut
e

to

th

e
W

S
D

L
op

er
at

io
n,

yo

u
m

us
t

al
so

sp

ec
ify

th

e
@

A
dd

re
ss

in
g

an
no

ta
tio

n
on

th

e
se

rv
er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

If
yo

u
do

no

t
w

an
t

to

us

e
th

e
@

A
dd

re
ss

in
g

an
no

ta
tio

n
yo

u
ca

n
su

pp
ly

yo
ur

ow

n
W

S
D

L
do

cu
m

en
t

w
ith

th

e
A

ct
io

n
at

tr
ib

ut
e

al
re

ad
y

de
fin

ed
.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
va

lu
e

S
pe

ci
fie

s
th

e
ac

tio
n

of

th

e
w

sd
l:f

au
lt

of

th

e
op

er
at

io
n.

(S
tr

in
g)

-
o

u
tp

u
t

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
ex

ce
pt

io
n

cl
as

s.

(S

tr
in

g)

-
cl

as
sN

am
e

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
(S

tr
in

g)

ja
va

x.
xm

l.
ws

.
Re

qu
es

tW
ra

pp
er

T
he

@

R
eq

u
es

tW
ra

p
p

er

an

no
ta

tio
n

su
pp

lie
s

th
e

JA
X

B

ge

ne
ra

te
d

re
qu

es
t

w
ra

pp
er

be

an
,

th
e

el
em

en
t

na
m

e,

an

d
th

e
na

m
es

pa
ce

fo

r
se

ria
liz

at
io

n
an

d
de

se
ria

liz
at

io
n

w
ith

th

e
re

qu
es

t
w

ra
pp

er

be

an

th

at

is

us
ed

at

ru

nt
im

e.

W
he

n
st

ar
tin

g
w

ith

a

Ja
va

ob

je
ct

,
th

is

el

em
en

t
is

us

ed

to

re

so
lv

e
ov

er
lo

ad
in

g
co

nf
lic

ts

in

do

cu
m

en
t

lit
er

al

m

od
e.

O

nl
y

th
e
cl

as
sN

am
e

at
tr

ib
ut

e
is

re

qu
ire

d
in

th

is

ca

se
.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S

er
vi

ce

E

nd
po

in
t

In
te

rf
ac

e
(S

E
I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
lo

ca
lN

am
e

S
pe

ci
fie

s
th

e
lo

ca
l n

am
e

of

th

e
X

M
L

sc
he

m
a

el
em

en
t

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
T

he

de

fa
ul

t
va

lu
e

is

th
e
op

er
at

io
nN

am
e

as

de

fin
ed

in

ja

va
x.

jw
s.

W
eb

M
et

ho
d

an
no

ta
tio

n.

(S

tr
in

g)

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce

of

th

e
re

qu
es

t
w

ra
pp

er

m
et

ho
d.

T

he

de

fa
ul

t
va

lu
e

is

th

e
ta

rg
et

na

m
es

pa
ce

of

th
e

S
E

I.
(S

tr
in

g)

-
cl

as
sN

am
e

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
(S

tr
in

g)

Chapter 5. Web services 393

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
xm

l.
ws

.
Re

sp
on

se
Wr

ap
pe

r
T

he

@

R
es

p
o

n
se

W
ra

p
p

er

an

no
ta

tio
n

su
pp

lie
s

th
e

JA
X

B

ge

ne
ra

te
d

re
sp

on
se

w

ra
pp

er

be

an
,

th
e

el
em

en
t

na
m

e,

an

d
th

e
na

m
es

pa
ce

fo

r
se

ria
liz

at
io

n
an

d
de

se
ria

liz
at

io
n

w
ith

th

e
re

sp
on

se

w

ra
pp

er

be

an

th

at

is

us
ed

at

ru

nt
im

e.

W
he

n
st

ar
tin

g
w

ith

a

Ja
va

ob

je
ct

,
th

is

el

em
en

t
is

us

ed

to

re

so
lv

e
ov

er
lo

ad
in

g
co

nf
lic

ts

in

do

cu
m

en
t

lit
er

al

m

od
e.

O

nl
y

th
e
cl

as
sN

am
e

at
tr

ib
ut

e
is

re

qu
ire

d
in

th

is

ca

se
.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

cl
ie

nt

or

se

rv
er

S

er
vi

ce

E

nd
po

in
t

In
te

rf
ac

e
(S

E
I)

or

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
lo

ca
lN

am
e

S
pe

ci
fie

s
th

e
lo

ca
l n

am
e

of

th

e
X

M
L

sc
he

m
a

el
em

en
t

re
pr

es
en

tin
g

th
e

re
qu

es
t

w
ra

pp
er

.
T

he

de

fa
ul

t
va

lu
e

is

th
e
op

er
at

io
nN

am
e

+

R

es
po

ns
e.

op

er
at

io
nN

am
e

is

de
fin

ed

in

ja

va
x.

jw
s.

W
eb

M
et

ho
d

an
no

ta
tio

n.

(S

tr
in

g)

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce

of

th

e
re

qu
es

t
w

ra
pp

er

m
et

ho
d.

T

he

de

fa
ul

t
va

lu
e

is

th

e
ta

rg
et

na

m
es

pa
ce

of

th
e

S
E

I.
(S

tr
in

g)

-
cl

as
sN

am
e

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
cl

as
s

re
pr

es
en

tin
g

th
e

re
sp

on
se

w

ra
pp

er
.

(S
tr

in
g)

ja
va

x.
xm

l.
ws

.
Re

sp
ec

tB
in

di
ng

T
he

@

R
es

p
ec

tB
in

d
in

g

an

no
ta

tio
n

sp
ec

ifi
es

w

he
th

er

th

e
JA

X
-W

S

im
pl

em
en

ta
tio

n
m

us
t

us
e

th
e

co
nt

en
ts

of

th

e
w

sd
l:b

in
di

ng

fo

r
an

en
dp

oi
nt

.

W
he

n
th

is

an

no
ta

tio
n

is

sp

ec
ifi

ed
,

a
ch

ec
k

is

pe

rf
or

m
ed

to

en

su
re

al

l
re

qu
ire

d
W

S
D

L
ex

te
ns

ib
ili

ty

el

em
en

ts

w

ith

th

e
en

ab
le

d
at

tr
ib

ut
e

se
t

to

tr
ue

ar

e
su

pp
or

te
d.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
en

ab
le

d

S
pe

ci
fie

s
w

he
th

er

th

e
w

sd
l:b

in
di

ng

m

us
t

be

us

ed

or

no
t.

T
he

de

fa
ul

t
va

lu
e

is

tr

ue
.

(B
oo

le
an

)

ja
va

x.
xm

l.
ws

.
Se

rv
ic

eM
od

e
T

he

@

S
er

vi
ce

M
o

d
e

an
no

ta
tio

n
sp

ec
ifi

es

w

he
th

er

a

se
rv

ic
e

pr
ov

id
er

ne
ed

s
to

ha

ve

ac

ce
ss

to

an

en

tir
e

pr
ot

oc
ol

m

es
sa

ge

or

ju

st

th

e
m

es
sa

ge

pa

yl
oa

d.

Im
p

o
rt

an
t:

v
T

he

@

S
er

vi
ce

M
od

e
an

no
ta

tio
n

is

on

ly

su

pp
or

te
d

on

cl

as
se

s
th

at

ar

e
an

no
ta

te
d

w
ith

th

e
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va

lu
e

In
di

ca
te

s
w

he
th

er

th

e
pr

ov
id

er

cl

as
s

ac
ce

pt
s

th
e

pa
yl

oa
d

of

th

e
m

es
sa

ge
,
PA

YL
OA

D
or

th

e
en

tir
e

m
es

sa
ge

ME

SS
AG

E.

T

he

de

fa
ul

t
va

lu
e

is

PA

YL
OA

D.

(S
tr

in
g)

394 Administering WebSphere applications

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
xm

l.
ws

.
so

ap
.A

dd
re

ss
in

g
T

he

@

A
d

d
re

ss
in

g

an

no
ta

tio
n

sp
ec

ifi
es

th

at

th

is

se

rv
ic

e
w

an
ts

to

en
ab

le

W

S
-A

dd
re

ss
in

g
su

pp
or

t.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
en

ab
le

d

S
pe

ci
fie

s
if

W
S

-A
dd

re
ss

in
g

is

en

ab
le

d
or

no

t.
T

he

de
fa

ul
t

va
lu

e
is

tr

ue
.

(B
oo

le
an

)

-
re

q
u

ir
ed

S
pe

ci
fie

s
th

at

W

S
-A

dd
re

ss
in

g
he

ad
er

s
m

us
t

be

pr
es

en
t

on

in

co
m

in
g

m
es

sa
ge

s.

T

he

de

fa
ul

t
va

lu
e

is

fa
ls

e.

(B

oo
le

an
)

ja
va

x.
xm

l.
ws

.
so

ap
.M

TO
M

T
he

@

M
TO

M

an

no
ta

tio
n

sp
ec

ifi
es

w

he
th

er

bi

na
ry

co

nt
en

t
in

th

e
bo

dy

of

a

S
O

A
P

m

es
sa

ge

is

se

nt

us

in
g

M
T

O
M

.

A
pp

ly

th

is

an

no
ta

tio
n

to

a

se
rv

ic
e

en
dp

oi
nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
C

la
ss

v
P

ro
pe

rt
ie

s:

-
en

ab
le

d

S
pe

ci
fie

s
if

M
T

O
M

is

en

ab
le

d
fo

r
th

e
JA

X
-W

S

en
dp

oi
nt

.
T

he

de

fa
ul

t
va

lu
e

is

tr

ue
.

(B
oo

le
an

)

-
th

re
sh

o
ld

S
pe

ci
fie

s
th

e
m

in
im

um

si

ze

fo

r
m

es
sa

ge
s

th
at

ar

e
se

nt

us
in

g
M

T
O

M
.

W
he

n
th

e
m

es
sa

ge

si

ze

is

le

ss

th

an

th

is

sp
ec

ifi
ed

in

te
ge

r,
th

e
m

es
sa

ge

is

in

lin
ed

in

th

e
X

M
L

do
cu

m
en

t
as

ba

se
64

or

he

xB
in

ar
y

da
ta

.
(in

te
ge

r)

Chapter 5. Web services 395

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
xm

l.
ws

.
We

bF
au

lt

T
he

@

W
eb

F
au

lt

an

no
ta

tio
n

m
ap

s
W

S
D

L
fa

ul
ts

to

Ja

va

ex

ce
pt

io
ns

.
It

is

us
ed

to

ca

pt
ur

e
th

e
na

m
e

of

th

e
fa

ul
t

du
rin

g
th

e
se

ria
liz

at
io

n
of

th

e
JA

X
B

ty

pe

th

at

is

ge

ne
ra

te
d

fr
om

a

gl
ob

al

el

em
en

t
re

fe
re

nc
ed

by

a

W
S

D
L

fa
ul

t
m

es
sa

ge
.

It
ca

n
al

so

be

us

ed

to

cu

st
om

iz
e

th
e

m
ap

pi
ng

of

se
rv

ic
e

sp
ec

ifi
c

ex
ce

pt
io

ns

to

W

S
D

L
fa

ul
ts

.

T
hi

s
an

no
ta

tio
n

ca
n

on
ly

be

ap

pl
ie

d
to

a

fa
ul

t
im

pl
em

en
ta

tio
n

cl
as

s
on

th
e

cl
ie

nt

or

se

rv
er

.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
n

am
e

S
pe

ci
fie

s
th

e
lo

ca
l n

am
e

of

th

e
X

M
L

el
em

en
t

th
at

re
pr

es
en

ts

th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th

e
W

S
D

L
fil

e.

T
he

ac

tu
al

va

lu
e

m
us

t
be

sp

ec
ifi

ed
.

(S
tr

in
g)

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
na

m
es

pa
ce

of

th

e
X

M
L

el
em

en
t

th
at

re
pr

es
en

ts

th

e
co

rr
es

po
nd

in
g

fa
ul

t
in

th

e
W

S
D

L
fil

e.

(S
tr

in
g)

-
fa

u
lt

B
ea

n

S
pe

ci
fie

s
th

e
na

m
e

of

th

e
fa

ul
t

be
an

cl

as
s.

(S

tr
in

g)

ja
va

x.
xm

l.
ws

.
We

bS
er

vi
ce

Pr
ov

id
er

T
he

@

W
eb

S
er

vi
ce

P
ro

vi
d

er

an

no
ta

tio
n

de
no

te
s

th
at

a

cl
as

s
sa

tis
fie

s
re

qu
ire

m
en

ts

fo

r
a

JA
X

-W
S

P

ro
vi

de
r

im
pl

em
en

ta
tio

n
cl

as
s.

Im
p

o
rt

an
t:

v
A

Ja

va

cl

as
s

th
at

im

pl
em

en
ts

a

W
eb

se

rv
ic

e
m

us
t

sp
ec

ify

ei

th
er

th

e
@

W
eb

S
er

vi
ce

or

@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n.

B

ot
h

an
no

ta
tio

ns

ca
nn

ot

be

pr

es
en

t.

v
T

he

@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n

is

on

ly

su

pp
or

te
d

on

th

e
se

rv
ic

e
im

pl
em

en
ta

tio
n

cl
as

s.

A
ny

cl

as
s

w
ith

th

e
@

W
eb

S
er

vi
ce

P
ro

vi
de

r
an

no
ta

tio
n

m
us

t
im

pl
em

en
t

th
e

ja
va

x.
xm

l.w
s.

P
ro

vi
de

r
in

te
rf

ac
e.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
ta

rg
et

N
am

es
p

ac
e

S
pe

ci
fie

s
th

e
X

M
L

na
m

es
pa

ce

of

th

e
W

S
D

L
an

d
X

M
L

el
em

en
ts

ge

ne
ra

te
d

fr
om

th

e
W

eb

se

rv
ic

e.

T

he

de

fa
ul

t
va

lu
e

is

th

e
na

m
es

pa
ce

m

ap
pe

d
fr

om

th

e
pa

ck
ag

e
na

m
e

co
nt

ai
ni

ng

th

e
W

eb

se

rv
ic

e.

(S

tr
in

g)

-
se

rv
ic

eN
am

e
S

pe
ci

fie
s

th
e

se
rv

ic
e

na
m

e
of

th

e
W

eb

se

rv
ic

e:

ws
dl

:s
er

vi
ce

.
T

he

de

fa
ul

t
va

lu
e

is

th

e
si

m
pl

e
na

m
e

of

th
e

Ja
va

cl

as
s

+

S

er
vi

ce
.

(S
tr

in
g)

-
p

o
rt

N
am

e
T

he

ws

dl
:p

or
tN

am
e.

T

he

de

fa
ul

t
va

lu
e

is

th

e
na

m
e

of

th
e

cl
as

s
+

P

or
t.

(S
tr

in
g)

-
w

sd
lL

o
ca

ti
o

n

T
he

W

eb

ad

dr
es

s
of

th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

W
eb

se

rv
ic

e.

T

hi
s

at
tr

ib
ut

e
is

re

qu
ire

d.

(S

tr
in

g)

396 Administering WebSphere applications

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
xm

l.
ws

.
We

bS
er

vi
ce

Re
f

T
he

@

W
eb

S
er

vi
ce

R
ef

an

no
ta

tio
n

de
fin

es

a

re
fe

re
nc

e
to

a

W
eb

se

rv
ic

e
in

vo
ke

d
by

th

e
cl

ie
nt

.

Im
p

o
rt

an
t:

v
T

he

@

W
eb

S
er

vi
ce

R
ef

an

no
ta

tio
n

ca
n

be

us

ed

to

in

je
ct

in

st
an

ce
s

of

JA
X

-W
S

se

rv
ic

es

an

d
po

rt
s.

v
T

he

@

W
eb

S
er

vi
ce

R
ef

an

no
ta

tio
n

is

on

ly

su

pp
or

te
d

in

ce

rt
ai

n
cl

as
s

ty
pe

s.

E

xa
m

pl
es

ar

e
JA

X
-W

S

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

se
s,

JA
X

-W
S

ha

nd
le

r
cl

as
se

s,

E

nt
er

pr
is

e
Ja

va
B

ea
ns

cl

as
se

s,

an

d
se

rv
le

t
cl

as
se

s.

T

hi
s

an
no

ta
tio

n
is

su

pp
or

te
d

in

th

e
sa

m
e

cl
as

s
ty

pe
s

as

th

e
@

R
es

ou
rc

e
an

no
ta

tio
n.

S

ee

th

e
Ja

va

P

la
tfo

rm
,

E
nt

er
pr

is
e

E
di

tio
n

(J
av

a
E

E
)

5
sp

ec
ifi

ca
tio

n
fo

r
a

co
m

pl
et

e
lis

t
of

su

pp
or

te
d

cl
as

s
ty

pe
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe
,

F
ie

ld

or

M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
n

am
e

S
pe

ci
fie

s
th

e
JN

D
I

na
m

e
of

th

e
re

so
ur

ce
.

T
he

fie

ld

na
m

e
is

th

e
de

fa
ul

t
fo

r
fie

ld

an

no
ta

tio
ns

.
T

he

Ja
va

B
ea

ns

pr

op
er

ty

na

m
e

th
at

co

rr
es

po
nd

s
to

th

e
m

et
ho

d
is

th

e
de

fa
ul

t
fo

r
m

et
ho

d
an

no
ta

tio
ns

.
Yo

u
m

us
t

sp
ec

ify

a

va
lu

e
fo

r
cl

as
s

an
no

ta
tio

ns

as

th

er
e

is

no

de

fa
ul

t.
(S

tr
in

g)

-
ty

p
e In

di
ca

te
s

th
e

Ja
va

ty

pe

of

th

e
re

so
ur

ce
.

T
he

fie

ld

ty

pe

is

th

e
de

fa
ul

t
fo

r
fie

ld

an

no
ta

tio
ns

.
T

he

ty

pe

of

th

e
Ja

va
B

ea
ns

pr

op
er

ty

is

th

e
de

fa
ul

t
fo

r
m

et
ho

d
an

no
ta

tio
ns

.
Yo

u
m

us
t

sp
ec

ify

a

va
lu

e
fo

r
cl

as
s

an
no

ta
tio

ns

as

th

er
e

is

no

de

fa
ul

t.
(C

la
ss

)

-
m

ap
p

ed
N

am
e

S
pe

ci
fie

d
th

e
na

m
e

to

m

ap

th

is

re

so
ur

ce

to

.
(S

tr
in

g)

-
va

lu
e

In
di

ca
te

s
th

e
va

lu
e

of

th

e
se

rv
ic

e
cl

as
s

an
d

it
is

a

ty
pe

th
at

ex

te
nd

s
ja

va
x.

xm
l.

ws
.S

er
vi

ce
.

T
hi

s
at

tr
ib

ut
e

is

re
qu

ire
d

w
he

n
th

e
ty

pe

of

th

e
re

fe
re

nc
e

is

a

se
rv

ic
e

en
dp

oi
nt

in

te
rf

ac
e.

(C

la
ss

)

-
w

sd
lL

o
ca

ti
o

n

T
he

W

eb

ad

dr
es

s
of

th

e
W

S
D

L
do

cu
m

en
t

de
fin

in
g

th
e

W
eb

se

rv
ic

e.

T

hi
s

at
tr

ib
ut

e
is

re

qu
ire

d.

(S

tr
in

g)

ja
va

x.
xm

l.
ws

.
We

bS
er

vi
ce

Re
fs

T
he

@

W
eb

S
er

vi
ce

R
ef

s
an

no
ta

tio
n

as
so

ci
at

es

m

ul
tip

le

@
W

eb
S

er
vi

ce
R

ef

an

no
ta

tio
ns

w

ith

a

sp
ec

ifi
c

cl
as

s.

Im
p

o
rt

an
t:

v
T

he

@

W
eb

S
er

vi
ce

R
ef

an

no
ta

tio
n

is

on

ly

su

pp
or

te
d

in

ce

rt
ai

n
cl

as
s

ty
pe

s.

E

xa
m

pl
es

ar

e
JA

X
-W

S

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

se
s,

JA
X

-W
S

ha

nd
le

r
cl

as
se

s,

E

nt
er

pr
is

e
Ja

va
B

ea
ns

cl

as
se

s,

an

d
se

rv
le

t
cl

as
se

s.

T

hi
s

an
no

ta
tio

n
is

su

pp
or

te
d

in

th

e
sa

m
e

cl
as

s
ty

pe
s

as

th

e
@

R
es

ou
rc

e
an

no
ta

tio
n.

S

ee

th

e
Ja

va

P

la
tfo

rm
,

E
nt

er
pr

is
e

E
di

tio
n

(J
av

a
E

E
)

5
sp

ec
ifi

ca
tio

n
fo

r
a

co
m

pl
et

e
lis

t
of

su

pp
or

te
d

cl
as

s
ty

pe
s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
va

lu
e

S
pe

ci
fie

s
an

ar

ra
y

fo
r

m
ul

tip
le

W

eb

se

rv
ic

e
re

fe
re

nc
e

de
cl

ar
at

io
ns

.
T

hi
s

at
tr

ib
ut

e
is

re

qu
ire

d.

Chapter 5. Web services 397

398 Administering WebSphere applications

JAX-WS Common Annotations (JSR 250)

Chapter 5. Web services 399

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

ja
va

x.
an

no
ta

ti
on

.
Re

so
ur

ce

T
he

@

R
es

o
u

rc
e

an
no

ta
tio

n
m

ar
ks

a

W
eb

S
er

vi
ce

C
on

te
xt

re

so
ur

ce

ne
ed

ed

by

th

e
ap

pl
ic

at
io

n.

Im
p

o
rt

an
t:

A
pp

ly
in

g
th

is

an

no
ta

tio
n

to

a

W
eb

S
er

vi
ce

C
on

te
xt

ty

pe

fie

ld

on

th

e
se

rv
er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s
fo

r
a

Ja
va

B
ea

ns

en

dp
oi

nt

or

a

P
ro

vi
de

r
en

dp
oi

nt

re

su
lts

in

th

e
co

nt
ai

ne
r

in
je

ct
in

g
an

in

st
an

ce

of

th

e
W

eb
S

er
vi

ce
C

on
te

xt

in

to

th

e
sp

ec
ifi

ed

fie

ld
.

W
he

n
th

is

an

no
ta

tio
n

is

us

ed

in

pl

ac
e

of

th

e
@

W
eb

S
er

vi
ce

R
ef

an
no

ta
tio

n,

th

e
ru

le
s

de
sc

rib
ed

fo

r
th

e
@

W
eb

S
er

vi
ce

R
ef

an

no
ta

tio
n

ap
pl

y.

v
A

nn
ot

at
io

n
ta

rg
et

:
F

ie
ld

or

M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
ty

p
e In

di
ca

te
s

th
e

Ja
va

ty

pe

of

th

e
re

so
ur

ce
.

Yo
u

ar
e

re
qu

ire
d

to

us

e
th

e
de

fa
ul

t,
ja

va
.l

an
g.

Ob
je

ct

or

ja
va

x.
xm

l.
ws

.W
eb

Se

rv
ic

eC
on

te
xt

va

lu
e.

If

th
e

ty
pe

is

th
e

de
fa

ul
t,

th
e

re
so

ur
ce

m

us
t

be

in

je
ct

ed

in

to

a

fie
ld

or

a

m
et

ho
d.

In

th

is

ca

se
,

th
e

ty
pe

of

th

e
fie

ld

or

th

e
ty

pe

of

th

e
Ja

va
B

ea
ns

pr

op
er

ty

de

fin
ed

by

th

e
m

et
ho

d
m

us
t

be

ja

va
x.

xm
l.

ws
.W

eb
Se

rv
ic

eC
on

te
xt

.
(C

la
ss

)

 If
yo

u
ar

e
us

in
g

th
is

an

no
ta

tio
n

to

in

je
ct

a

W
eb

se
rv

ic
e,

se

e
th

e
de

sc
rip

tio
n

of

th

e
@

W
eb

S
er

vi
ce

R
ef

ty
pe

at

tr
ib

ut
e.

ja
va

x.
an

no
ta

ti
on

.
Re

so
ur

ce
s

T
he

@

R
es

o
u

rc
es

an

no
ta

tio
n

as
so

ci
at

es

m

ul
tip

le

@

R
es

ou
rc

e
an

no
ta

tio
ns

w

ith

a

sp
ec

ifi
c

cl
as

s
an

d
se

rv
es

as

a

co
nt

ai
ne

r
fo

r
m

ul
tip

le

re
so

ur
ce

de

cl
ar

at
io

ns
.

v
A

nn
ot

at
io

n
ta

rg
et

:
F

ie
ld

or

M

et
ho

d

v
P

ro
pe

rt
ie

s:

-
va

lu
e

S
pe

ci
fie

s
an

ar

ra
y

fo
r

m
ul

tip
le

@

R
es

ou
rc

e
an

no
ta

tio
ns

.
T

hi
s

at
tr

ib
ut

e
is

re

qu
ire

d.

ja
va

x.
an

no
ta

ti
on

.
Po

st
Co

ns
tr

uc
t

T
he

@

P
o

st
C

o
n

st
ru

ct

an

no
ta

tio
n

m
ar

ks

a

m
et

ho
d

th
at

ne

ed
s

to

ru

n
af

te
r

de
pe

nd
en

cy

in

je
ct

io
n

is

pe

rf
or

m
ed

on

th

e
cl

as
s.

A
pp

ly

th

is

an

no
ta

tio
n

to

a

JA
X

-W
S

ap

pl
ic

at
io

n
ha

nd
le

r,
a

se
rv

er

en
dp

oi
nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

ja
va

x.
an

no
ta

ti
on

.
Pr

eD
es

tr
oy

T
he

@

P
re

D
es

tr
o

y
an

no
ta

tio
n

m
ar

ks

a

m
et

ho
d

th
at

m

us
t

be

ru

n
w

he
n

th
e

in
st

an
ce

is

in

th

e
pr

oc
es

s
of

be

in
g

re
m

ov
ed

by

th

e
co

nt
ai

ne
r.

A
pp

ly

th

is

an

no
ta

tio
n

to

a

JA
X

-W
S

ap

pl
ic

at
io

n
ha

nd
le

r
or

a

se
rv

er

en
dp

oi
nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
M

et
ho

d

400 Administering WebSphere applications

IBM proprietary annotations

Chapter 5. Web services 401

A
n

n
o

ta
ti

o
n

cl

as
s

A
n

n
o

ta
ti

o
n

P

ro
p

er
ti

es

co
m.

ib
m.

we
bs

ph
er

e.

ws
ad

dr
es

si
ng

.
ja

xw
s2

1.

Su
bm

is
si

on
Ad

dr
es

si
ng

T
he

@

S
u

b
m

is
si

o
n

A
d

d
re

ss
in

g

an

no
ta

tio
n

sp
ec

ifi
es

th

at

th

is

se

rv
ic

e
w

an
ts

to

en

ab
le

W

S
-A

dd
re

ss
in

g
su

pp
or

t
fo

r
th

e
20

04
/0

8
W

S
-A

dd
re

ss
in

g
sp

ec
ifi

ca
tio

n.

T
hi

s
an

no
ta

tio
n

is

pa

rt

of

th

e
IB

M

im

pl
em

en
ta

tio
n

of

th

e
JA

X
-W

S

2.

1
sp

ec
ifi

ca
tio

n.

A
pp

ly

th

is

an

no
ta

tio
n

to

m

et
ho

ds

on

a

se
rv

er

en

dp
oi

nt

im

pl
em

en
ta

tio
n

cl
as

s.

v
A

nn
ot

at
io

n
ta

rg
et

:
Ty

pe

v
P

ro
pe

rt
ie

s:

-
re

q
u

ir
ed

S
pe

ci
fie

s
th

at

W

S
-A

dd
re

ss
in

g
he

ad
er

s
m

us
t

be

pr
es

en
t

on

in

co
m

in
g

m
es

sa
ge

s.

T

he

de

fa
ul

t
va

lu
e

is

fa
ls

e.

(B

oo
le

an
)

402 Administering WebSphere applications

Rules for methods on classes annotated with @WebService

The following rules apply for methods on classes annotated with the @WebService annotation.

v If the @WebService annotation of an implementation class references an SEI, the implementation class

must not have any @WebMethod annotations.

v All public methods for an SEI are considered exposed methods regardless of whether the

@WebMethod annotation is specified or not. It is incorrect to have an @WebMethod annotation on an

SEI that contains the exclude attribute.

v For an implementation class that does not reference an SEI, if the @WebMethod annotation is specified

with a value of exclude=true, that method is not exposed. If the @WebMethod annotation is not

specified, all public methods are exposed including the inherited methods with the exception of methods

inherited from java.lang.Object.

JAX-WS application packaging:

You can package a Java Application Programming Interface (API) for XML Web Services (JAX-WS)

application as a Web service. A JAX-WS Web service is contained within a Web archive (WAR) file or a

WAR module within an enterprise archive (EAR) file.

 A JAX-WS enabled WAR file contains:

v A WEB-INF/web.xml file

v Annotated classes that implement the Web services contained in the application module

v [Optional] Web Services Description Language (WSDL) documents that describe the Web services

contained in the application module

A WEB-INF/web.xml file is similar to this example:

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_ID" xmlns=”http://java.sun.com/xml/ns/j2ee”

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

</web-app>

The web.xml might contain servlet or servlet-mapping elements. When customizations to the web.xml file

are not needed, the WebSphere Application Server runtime defines them dynamically as the module is

loaded. For more information on configuring the web.xml file, read about customizing Web URL patterns in

the web.xml file for JAX-WS applications.

Annotated classes must contain, at a minimum, a Web service implementation class that includes the

@WebService annotation. The definition and specification of the Web services-related annotations are

provided by the JAX-WS and JSR-181 specifications. The Web service implementation classes can exist

within the WEB-INF/classes or directory within a Java archive (JAR) file that is contained in the

WEB-INF/lib directory of the WAR file.

You can optionally include WSDL documents in the JAX-WS application packaging. If the WSDL document

for a particular Web service is omitted, then the WebSphere Application Server runtime constructs the

WSDL definition dynamically from the annotations contained in the Web service implementation classes.

You must include the @WebService, @WebMethod, @WebParam, @WebResult, and optionally the @SOAPBinding

annotations if the WSDL document is omitted.

Note: In WebSphere Application Server Version 7.0, the default annotation support behavior has changed.

In the Version 6.1 Feature Pack for Web services, the default behavior is to scan pre-Java EE 5

Web application modules to identify JAX-WS services and to scan pre-Java EE 5 Web application

modules and EJB modules for service clients during application installation. For Version 7.0, the

Chapter 5. Web services 403

default behavior is to not scan pre-Java EE 5 modules for annotations during application installation

or server startup. You can preserve compatibility with feature packs from previous releases by

either setting the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a Web

archive (WAR) file or EJB module or by defining the Java virtual machine custom property,

com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during

application installation and server startup. To learn more about annotations scanning, see the

JAX-WS annotations documentation.

JAXB

Java Architecture for XML Binding (JAXB) is a Java technology that provides an easy and convenient way

to map Java classes and XML schema for simplified development of Web services. JAXB leverages the

flexibility of platform-neutral XML data in Java applications to bind XML schema to Java applications

without requiring extensive knowledge of XML programming.

JAXB is an XML to Java binding technology that supports transformation between schema and Java

objects and between XML instance documents and Java object instances. JAXB consists of a runtime

application programming interface (API) and accompanying tools that simplify access to XML documents.

JAXB also helps to build XML documents that both conform and validate to the XML schema. Java API for

XML-Based Web Services (JAX-WS) leverages the JAXB API and tools as the binding technology for

mappings between Java objects and XML documents. JAX-WS tooling relies on JAXB tooling for default

data binding for two-way mappings between Java objects and XML documents.

Note: WebSphere Application Server Version 7.0 supports the JAXB 2.1 specification. JAX-WS 2.1

requires JAXB 2.1 for data binding. JAXB 2.1 provides enhancements such as improved

compilation support and support for the @XMLSeeAlso annotation. With JAXB 2.1, you can

configure the xjc schema compiler so that it does not automatically generate new classes for a

particular schema. Similarly, you can configure the schemagen schema generator to not

automatically generate a new schema. This enhancement is useful when you are using a common

schema and you do not want a new schema generated. JAXB 2.1 also introduces the

@XMLSeeAlso annotation that enables JAXB to bind additional Java classes that it might not

otherwise know about when binding a Java class with this annotation. This annotation enables

JAXB to know about all classes that are potentially involved in marshalling or unmarshalling as it is

not always possible or practical to list all of the subclasses of a given Java class. JAX-WS 2.1 also

supports the use of the @XMLSeeAlso annotation on a service endpoint interface (SEI) or on a

service implementation bean to ensure all of the classes referenced by the annotation are passed

to JAXB for processing.

JAXB provides the xjc schema compiler tool, the schemagen schema generator tool, and a runtime

framework. You can use the xjc schema compiler tool to start with an XML schema definition (XSD) to

create a set of JavaBeans that map to the elements and types defined in the XSD schema. You can also

start with a set of JavaBeans and use the schemagen schema generator tool to create the XML schema.

Once the mapping between XML schema and Java classes exists, XML instance documents can be

converted to and from Java objects through the use of the JAXB binding runtime API. Data stored in XML

documents can be accessed without the need to understand the data structure. You can then use the

resulting Java classes to assemble a Web services application.

JAXB annotated classes and artifacts contain all the information needed by the JAXB runtime API to

process XML instance documents. The JAXB runtime API supports marshaling of JAXB objects to XML

and unmarshaling the XML document back to JAXB class instances. Optionally, you can use JAXB to

provide XML validation to enforce both incoming and outgoing XML documents to conform to the XML

constraints defined within the XML schema.

JAXB is the default data binding technology used by the Java API for XML Web Services (JAX-WS) tooling

and implementation within this product. You can develop JAXB objects for use within JAX-WS applications.

404 Administering WebSphere applications

You can also use JAXB independently of JAX-WS when you want to leverage the XML data binding

technology to manipulate XML within your Java applications.

The following diagram illustrates the JAXB architecture.

JAX-RPC

The Java API for XML-based RPC (JAX-RPC) specification enables you to develop SOAP-based

interoperable and portable Web services and Web service clients. JAX-RPC 1.1 provides core APIs for

developing and deploying Web services on a Java platform and is a part of the Web Services for Java

Platform, Enterprise Edition (Java EE) platform. The Java EE platform enables you to develop portable

Web services.

WebSphere Application Server implements JAX-RPC 1.1 standards.

The JAX-RPC standard covers the programming model and bindings for using Web Services Description

Language (WSDL) for Web services in the Java language. JAX-RPC simplifies development of Web

services by shielding you from the underlying complexity of SOAP communication.

On the surface, JAX-RPC looks like another instantiation of remote method invocation (RMI). Essentially,

JAX-RPC enables clients to access a Web service as if the Web service was a local object mapped into

the client’s address space even though the Web service provider is located in another part of the world.

The JAX-RPC is done by using the XML-based protocol SOAP, which typically rides on top of HTTP.

JAX-RPC defines the mappings between the WSDL port types and the Java interfaces, as well as

between Java language and Extensible Markup Language (XML) schema types.

A JAX-RPC Web service can be created from a JavaBean or a enterprise bean implementation. You can

specify the remote procedures by defining remote methods in a Java interface. You only need to code one

or more classes that implement the methods. The remaining classes and other artifacts are generated by

the Web service vendor’s tools. The following is an example of a Web service interface:

package com.ibm.mybank.ejb;

import java.rmi.RemoteException;

import com.ibm.mybank.exception.InsufficientFundsException;

/**

 * Remote interface for Enterprise Bean: Transfer

 */

public interface Transfer_SEI extends java.rmi.Remote {

Figure 5. JAXB architecture

Chapter 5. Web services 405

public void transferFunds(int fromAcctId, int toAcctId, float amount)

 throws java.rmi.RemoteException;

}

The interface definition in JAX-RPC must follow specific rules:

v The interface must extend java.rmi.Remote just like RMI.

v Methods must create java.rmi.RemoteException.

v Method parameters cannot be remote references.

v Method parameter must be one of the parameters supported by the JAX-RPC specification. The

following list are examples of method parameters that are supported. For a complete list of method

parameters see the JAX-RPC specification.

– Primitive types: boolean, byte, double, float, short, int and long

– Object wrappers of primitive types: java.lang.Boolean, java.lang.Byte, java.lang.Double,

java.lang.Float, java.lang.Integer, java.lang.Long, java.lang.Short

– java.lang.String

– java.lang.BigDecimal

– java.lang.BigInteger

– java.lang.Calendar

– java.lang.Date

v Methods can take value objects which consist of a composite of the types previously listed, in addition

to aggregate value objects.

A client creates a stub and invokes methods on it. The stub acts like a proxy for the Web service. From

the client code perspective, it seems like a local method invocation. However, each method invocation gets

marshaled to the remote server. Marshaling includes encoding the method invocation in XML as

prescribed by the SOAP protocol.

The following are key classes and interfaces needed to write Web services and Web service clients:

v Service interface: A factory for stubs or dynamic invocation and proxy objects used to invoke methods

v ServiceFactory class: A factory for Services.

v loadService

The loadService method is provided in WebSphere Application Server Version 6.0 to generate the

service locator which is required by a JAX-RPC implementation. If you recall, in previous versions there

was no specific way to acquire a generated service locator. For managed clients you used a JNDI

method to get the service locator and for non-managed clients, you were required to instantiate IBM’s

specific service locator ServiceLocator service=new ServiceLocator(...); which does not offer

portability. The loadService parameters include:

– wsdlDocumentLocation: A URL for the WSDL document location for the service or null.

– serviceName: A qualified name for the service

– properties: A set of implementation-specific properties to help locate the generated service

implementation class.

v isUserInRole

The isUserInRole method returns a boolean indicating whether the authenticated user for the current

method invocation on the endpoint instance is included in the specified logical role.

– role: The role parameter is a String specifying the name of the role.

v Service

v Call interface: Used for dynamic invocation

v Stub interface: Base interface for stubs

406 Administering WebSphere applications

If you are using a stub to access the Web service provider, most of the JAX-RPC API details are hidden

from you. The client creates a ServiceFactory (java.xml.rpc.ServiceFactory). The client instantiates a

Service (java.xml.rpc.Service) from the ServiceFactory. The service is a factory object that creates the

port. The port is the remote service endpoint interface to the Web service. In the case of DII, the Service

object is used to create Call objects, which you can configure to call methods on the Web service’s port.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

RMI-IIOP using JAX-RPC:

Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) can be used with JAX-RPC to

support non-SOAP bindings.

 Java API for XML-based Remote Procedure Call (JAX-RPC) is the Java standard API for invoking Web

services through remote procedure calls. A transport is used by a programming language to communicate

over the Internet. You can use protocols with the transport such as SOAP and Remote Method Invocation

(RMI). You can use Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) with JAX-RPC

to support non-SOAP bindings.

Using RMI-IIOP with JAX-RPC, enables WebSphere Java clients to invoke enterprise beans using a

WSDL file and the JAX-RPC programming model instead of using the standard Web Services for Java

Platform, Enterprise Edition (Java EE) programming model. When a enterprise JavaBeans implementation

is used to invoke a Web service, multiprotocol JAX-RPC permits the Web service invocation path to be

optimized for WebSphere Java clients. To learn more this optimization, read about using enterprise bean

bindings to invoke an EJB from a Web services client.

Benefits of using the RMI/IIOP protocol instead of a SOAP- based protocol are:

v XML processing is not required to send and receive messages; Java serialization is used instead.

v The client JAX-RPC call can participate in a user transaction, which is not the case when SOAP is

used.

Web Services-Interoperability Basic Profile

The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary Web services

specifications that promote interoperability. WebSphere Application Server conforms to the WS-I Basic

Profile Version 1.1 and WS-I Basic Security Profile Version 1.0.

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under

direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about

open standards for Web services technology. All organizations that are interested in promoting

interoperability among Web services are encouraged to become members of the Web Services

Interoperability Organization.

Several technology components are used in the composition and implementation of Web services,

including messaging, description, discovery, and security. Each of these components are supported by

specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1,

Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration

(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve

interoperability, and mandates specific use of each of the technologies when appropriate. You can read

more about the WS-I Basic Profile at the WS-I Organization Web site.

As technology components are updated, these components are also used in the composition and

implementation of Web Services. One example is that both SOAP 1.1 and SOAP 1.2 are now supported.

Chapter 5. Web services 407

Note: Building on the support for WS-I Basic Profile Version 1.0, WS-I Basic Profile V1.1, Attachment

Profile V1.0, and Basic Security Profile (BSP) V1.0, you can implement Web services with

WebSphere Application Server Version 7.0 using the following current emerging standard WS-I

profiles:

v WS-I Basic Profile V1.2 builds on WS-I Basic Profile V1.0 and WS-I Basic Profile V1.1 and adds

support for WS-Addressing (WS-A) and SOAP Message Transmission Optimization Mechanism

(MTOM). The WS-Addressing specification enables the asynchronous message exchange

pattern so that you can decouple the service request from the service response. The SOAP

header of the sender’s request contains the wsa:ReplyTo value that defines the endpoint

reference to which the provider’s response is sent. Decoupling the request from the response

enables long running Web services interactions. Leveraging the asynchronous programming

model support in JAX-WS Version 2.1 in combination with WS-Addressing, you can now take

advantage of the ability to create Web services invocations where the client can continue to

process work without waiting for a response to return. This provides for a more dynamic and

efficient model to invoke Web services. Using MTOM, you can send and receive binary data

optimally within a SOAP message.

v WS-I Basic Profile V2.0 builds on top of Basic Profile V1.2 with the addition of support for SOAP

1.2.

v WS-I Basic Security Profile V1.1 extends the WS-I Basic Security Profile V1.0 standard by

profiling the latest WS-Security V1.1 specification.

v WS-I Reliable Secure Profile 1.0 builds on WS-I Basic Profile V1.2, WS-I Basic Profile V2.0,

WS-I Basic Security Profile V1.0, and WS-I Basic Security Profile V1.1 and adds support for

WS-Reliable Messaging 1.1, WS-Make Connection 1.0, and WS-Secure Conversation 1.3.

WS-Reliable Messaging 1.1 is a session-based protocol that provides message level reliability for

Web services interactions. WS-Make Connection 1.0 was developed by the WS-Reliable

Messaging workgroup to address scenarios where a Web services endpoint is behind a firewall

or the endpoint has no visible endpoint reference. If a Web services endpoint loses connectivity

during a reliable session, WS-Make Connection provides an efficient method to re-establish the

reliable session. Additionally, WS-Secure Conversation V1.3 is a session-based security protocol

that uses an efficient symmetric key based encryption algorithm for message level security. WS-I

Reliable Secure Profile V1.0 provides secure reliable session-oriented Web services interactions.

Each of the technology components has requirements that you can read about in more detail at the WS-I

Organization Web site. For example, support for Universal Transformation Format (UTF)-16 encoding is

required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme that uses 16-bit values to

store Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the

Internet; UTF-16 encoding is typically used for Java and Windows product applications; and UTF-32 is

used by various Linux and UNIX systems. Unlike UTF-8, UTF-16 has issues with big-endian and

little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for

UTF-16 encoding and it can be used in UTF-8.

The application server only supports UTF-8 and UTF-16 encoding of SOAP messages.

The following table summarizes some of the properties of each UTF:

 Bytes Encoding form

EF BB BF UTF-8

FF FE UTF-16, little-endian

FE FF UTF-16, big-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

408 Administering WebSphere applications

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML

declaration contains the encoding, for example: <?xml version=xxx encoding=″utf-xxx″?>. BOM is used

with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and

how BOM and UTF encoding are used:

POST http://www.whitemesa.net/soap12/add-test-rpc HTTP/1.1

Content-Type: application/soap+xml; charset=utf-16; action=""

SOAPAction:

Host: localhost: 8080

Content-Length: 562

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>

 <q1:echoString xmlns:q1="http://soapinterop.org/">

 <inputString soap:encodingStyle="http://example.org/unknownEncoding"

 xsi:type="xsd:string">

 Hello SOAP 1.2

 </inputString>

 </q1:echoString>

 </soap:Body>

</soap:Envelope>

In the example code, 0xFF0xFE represents the byte codes, while the <?xml> declaration is the textual

representation.

Support for styleEncoding is not supported in SOAP 1.2 so here is the same example of the SOAP

message but without the encoding information:

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>

 <q1:echoString xmlns:q1="http://soapinterop.org/">

 <inputString xsi:type="xsd:string">

 Hello SOAP 1.2

 </inputString>

 </q1:echoString>

 </soap:Body>

</soap:Envelope>

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

WS-I Attachments Profile

The Web Services-Interoperability (WS-I) Attachments Profile is a set of non-proprietary Web services

specifications that promote interoperability. This profile compliments the WS-I Basic Profile 1.1 to add

support for interoperable SOAP messages with attachments-based Web services.

WebSphere Application Server conforms to the WS-I Attachments Profile 1.0.

Attachments are typically used to send binary data, for example, data that is mapped in Java code to

java.awt.Image and javax.activation.DataHandler. The raw data can be sent in the SOAP message,

however, this approach is inefficient because an XML parser has to scan the data as it parses the

message.

Chapter 5. Web services 409

The WS-I Attachments Profile provides a solution to the limitations that are presented by Web Services

Description Language (WSDL) 1.1. Because WSDL 1.1 attachments are not part of the XML schema type

space, they can be message parts only. As message parts, the attachments cannot be arrays or properties

of Java beans. The profile defines the wsi:swaRef XML schema type.Use the wsi:swaRef XML schema

type to overcome the limitations of WSDL 1.1 attachments.

The wsi:swaRef type is an extension of the xsd:anyURI type, where its value contains the content-ID of

the attachment.

For a complete list of the supported standards and specifications, see the Web services specifications and

API documentation.

Web services migration scenarios: JAX-RPC to JAX-WS and JAXB

This topic explains scenarios for migrating your Java API for XML-based RPC (JAX-RPC) Web services to

Java API for XML-Based Web Services (JAX-WS) and Java Architecture for XML Binding (JAXB) Web

services.

Changes in the tooling can be largely hidden from the user by a development environment like the

assembly tools available with WebSphere Application Server. Also, depending on the data specified in the

XML, some methods that were used for the JAX-RPC service can be used with little or no change in a

JAX-WS service. There are also conditions that do require changes to be made in the JAX-WS service.

Because Java EE environments emphasize compatibility, most application servers that offer support for the

newer JAX-WS and JAXB specifications continue to support the previous JAX-RPC specification. A

consequence of this is that existing Web services are likely to remain JAX-RPC based while new Web

services are developed using the JAX-WS and JAXB programming models.

However, as time passes and applications are revised and rewritten, there might be times when the best

strategy is to migrate a JAX-RPC based Web service to one that is based on the JAX-WS and JAXB

programming models. This might result from a vendor choosing to provide enhancements to qualities of

service that are only available in the new programming models. For example, SOAP 1.2 and SOAP

Message Transmission Optimization Mechanism (MTOM) support are only available within the JAX-WS 2.x

and JAXB 2.x programming models and not JAX-RPC.

The following information includes issues that you might have while migrating from JAX-RPC to JAX-WS

and JAXB.

Note: When the terms migrate, migrating, and migration are used in this topic, unless there is some

statement to indicate otherwise, the move from a JAX-RPC to a JAX-WS and JAXB environment is

being described.

Comparison of JAX-RPC to JAX-WS and JAXB programming models

If you are looking for additional information that describes the changes between the JAX-RPC and

JAX-WS and JAXB programming models, IBM developerWorks has published several Web services hints

and tips topics.

410 Administering WebSphere applications

Development models

The high level combined development models for JAX-RPC and JAX-WS and JAXB are shown the

following image:

WSDL
WSDL to Java

generation
tools

(Optional)
Configuration

files

JAX-WS and
JAXB portable

artifacts

JAX-RPC only;
Non-portable

artifacts

Implementation
code

Deployment
information

WAR file

At a high level, the models are very similar. The only difference is that the JAX-RPC model produces both

portable and non-portable artifacts; the JAX-WS and JAXB model does not produce non-portable artifacts.

The image displays the following components:

v Web Services Description Language (WSDL) file: A document conforming to the WSDL

recommendation as published by the W3C organization.

v (Optional) Configuration files

v WSDL to Java generation tool: The specifications describe the mappings required, not the name of

the tools. Typically, the tool for JAX-WS and JAXB is wsimport, and for JAX-RPC the tools are

wscompile and wsdeploy.

v Portable artifacts: These are files generated by the WSDL to Java generation tool that have

well-defined mappings in the JAX-RPC or JAX-WS and JAXB, whichever is applicable, specifications.

These artifacts can be used without modification between different implementations of JAX-RPC or

JAX-WS and JAXB.

v Non-portable artifacts: These are files generated by the WSDL to Java generation tool that do not

have well-defined mappings in the JAX-RPC or JAX-WS and JAXB, whichever is applicable,

specifications. These artifacts generally require modification between different implementations of

JAX-RPC or JAX-WS/JAXB.

v Implementation code: This is the code that you need to meet particular requirements for

implementation.

v Deployment information: Additional information that is needed to run the application in a particular

environment.

v Web archive (WAR) file: In the context of the SampleService image, a WAR file is an archive file that

contains all items needed to deploy a Web service into a particular environment. This is sometimes

called a cooked WAR file.

The Development and runtime environments

A specialized development environment simplifies Web services migration by automating many of the

tasks. For development of WebSphere-based applications, including Web services, you can use the

assembly tools. You can read more about the use of the assembly tools in the assembly tool information

center.

The following sample code in this topic was tested in the following runtime environment:

Chapter 5. Web services 411

v IBM WebSphere Application Server V6.1, which includes support for the JAX-RPC specification.

v IBM WebSphere Application Server V6.1 Feature Pack for Web Services, which includes support for the

JAX-WS and JAXB specifications.

Examples

The following examples show some of the code changes that you might need to migrate your JAX-RPC

Web services to JAX-WS and JAXB Web services. In particular, there is an emphasis on the changes in

the implementation code that you must write, from both the client and the server side. If no new function is

to be introduced, the changes required to move from JAX-RPC to JAX-WS and JAXB might be few.

Sample Web service

The first example is a sample JAX-RPC-based Web Service that was created from a WSDL file (top-down

development); the same WSDL file is used to generate the JAX-WS and JAXB-based service. The WSDL

file describes the Web service, SampleService, with these operations described by the following image:

As shown in the image, the five operations offered are:

v xsd:int calcShippingCost(xsd:int, xsd:int)

v xsd:string getAccountNumber(xsd:string)

v xsd:dateTime calculateShippingDate(xsd:dateTime)

v xsd:string ckAvailability(xsd:int) creates invalidDateFault

v Person findSalesRep(xsd:string)

Also assume that Person is defined by the following schema fragment in the WSDL file:

<complexType name="Person">

 <sequence>

 <element name="name" type="xsd:string"/>

 <element name="age" type="xsd:int"/>

 <element name="location" type="impl:Address/>

 </sequence>

</complexType>

Address is defined by:

<complexType name="Address">

 <sequence>

 <element name="street" type="xsd:string"/>

 <element name="city" type="xsd:string"/>

 <element name ="state" type="xsd:string"/>

 <element name="zip" type="xsd:int"/>

 </sequence>

</complexType>

412 Administering WebSphere applications

The following image also shows that the operation, ckAvailability(xsd:int), which produces an

invalidDateFault exception.

getAccountNumber*

SampleServiceI

calcShippingCost*
input

output

shippingWt

shippingZone

shippingCost

int

int

int

input

output

accountName

accountNumber

string

string

ckAvailability*
input

output

itemNumbers

itemAvailability

int

string

invalidDateFaultX stringdate

calculateShippingDate*
input

output

requestedDate

actualDate

dateTime

dateTime

findSalesRep*
input

output

saleRepName

salesRepInfo

string

Person

Service operations

Review the service code created by the tooling. The following information includes examining what is

created for a JAX-RPC runtime and also for a JAX-WS and JAXB runtime.

JAX-RPC

For JAX-RPC, the tooling accepts the WSDL file as input, and, amongst other files, generates the

SampleService.java and SampleServiceImpl.java interfaces. The SampleService.java interface defines an

interface and the generated code can be review in the following code block. The

SampleServiceSoapBindingImpl.java interface provides the skeleton of an implementation, and you

typically modify to add your own logic.

JAX-RPC version of SampleService.java:

/**

* SampleService.java

*

* This file was auto-generated from WSDL * by the IBM Web services WSDL2Java emitter. * cf20633.22 v82906122346

*/

package simple;

public interface SampleService extends java.rmi.Remote {

 public java.lang.Integer calcShippingCost(java.lang.Integer shippingWt,

 java.lang.Integer shippingZone) throws java.rmi.RemoteException;

 public java.lang.String getAccountNumber(java.lang.String accountName)

 throws java.rmi.RemoteException;

 public java.lang.String[] ckAvailability(int[] itemNumbers)

 throws java.rmi.RemoteException, simple.InvalidDateFault;

 public java.util.Calendar calculateShippingDate(

 java.util.Calendar requestedDate)

 throws java.rmi.RemoteException;

 public simple.Person findSalesRep(java.lang.String saleRepName)

 throws java.rmi.RemoteException; }

Chapter 5. Web services 413

JAX-WS and JAXB

For JAX-WS and JAXB, the tooling accepts the WSDL file as input, and as in the case of JAX-RPC,

generates SampleService.java and SampleServiceImpl.java interfaces. As with JAX-RPC, the

SampleService.java interface also defines an interface as shown in the following code block. The

SampleServiceImpl.java interface provides the skeleton of an implementation, and you typically modify to

add your own logic.

Note: The code has been annotated by the tooling.
JAX-WS and JAXB version of the SampleService.java interface:

package simple;

 import java.util.List;

 import javax.jws.WebMethod;

 import javax.jws.WebParam;

 import javax.jws.WebResult;

 import javax.jws.WebService;

 import javax.xml.datatype.XMLGregorianCalendar;

 import javax.xml.ws.RequestWrapper;

 import javax.xml.ws.ResponseWrapper;

/**

* This class was generated by the JAX-WS SI. * JAX-WS RI IBM 2.0_03-06/12/2007 07:44 PM(Raja)-fcs *

Generated source version: 2.0

*

*/

@WebService(name = "SampleService", targetNamespace = "http://simple") public interface SampleService {

 /**

 *

 * @param shippingWt

 * @param shippingZone

 * @return

 * returns java.lang.Integer

 */

 @WebMethod

 @WebResult(name = "shippingCost", targetNamespace = "")

 @RequestWrapper(localName = "calcShippingCost", targetNamespace = "http://simple",

className = "simple.CalcShippingCost")

 @ResponseWrapper(localName = "calcShippingCostResponse", targetNamespace = "http://simple",

className = "simple.CalcShippingCostResponse")

 public Integer calcShippingCost(

 @WebParam(name = "shippingWt", targetNamespace = "")

 Integer shippingWt,

 @WebParam(name = "shippingZone", targetNamespace = "")

 Integer shippingZone);

 /**

 *

 *

 @param accountName

 * @return

 * returns java.lang.String

 */

 @WebMethod

 @WebResult(name = "accountNumber", targetNamespace = "")

 @RequestWrapper(localName = "getAccountNumber", targetNamespace = "http://simple",

className = "simple.GetAccountNumber")

 @ResponseWrapper(localName = "getAccountNumberResponse", targetNamespace = "http://simple",

className = "simple.GetAccountNumberResponse")

 public String getAccountNumber(

 @WebParam(name = "accountName", targetNamespace = "")

 String accountName);

 /**

 *

 * @param requestedDate

 * @return

 * returns javax.xml.datatype.XMLGregorianCalendar

 */

 @WebMethod

 @WebResult(name = "actualDate", targetNamespace = "")

 @RequestWrapper(localName = "calculateShippingDate", targetNamespace = "http://simple",

className = "simple.CalculateShippingDate")

 @ResponseWrapper(localName = "calculateShippingDateResponse", targetNamespace = "http://simple",

className = "simple.CalculateShippingDateResponse")

414 Administering WebSphere applications

public XMLGregorianCalendar calculateShippingDate(

 @WebParam(name = "requestedDate", targetNamespace = "")

 XMLGregorianCalendar requestedDate);

 /**

 *

 * @param itemNumbers

 * @return

 * returns java.util.List<java.lang.String>

 * @throws InvalidDateFault_Exception

 */

 @WebMethod

 @WebResult(name = "itemAvailability", targetNamespace = "")

 @RequestWrapper(localName = "ckAvailability", targetNamespace = "http://simple", className = "simple.CkAvailability")

 @ResponseWrapper(localName = "ckAvailabilityResponse", targetNamespace = "http://simple",

className = "simple.CkAvailabilityResponse")

 public List<String> ckAvailability(

 @WebParam(name = "itemNumbers", targetNamespace = "")

 List<Integer> itemNumbers)

 throws InvalidDateFault_Exception

 ;

 /**

 *

 * @param saleRepName

 * @return

 * returns simple.Person

 */

 @WebMethod

 @WebResult(name = "salesRepInfo", targetNamespace = "")

 @RequestWrapper(localName = "findSalesRep", targetNamespace = "http://simple", className = "simple.FindSalesRep")

 @ResponseWrapper(localName = "findSalesRepResponse", targetNamespace = "http://simple",

className = "simple.FindSalesRepResponse")

 public Person findSalesRep(

 @WebParam(name = "saleRepName", targetNamespace = "")

 String saleRepName);

}

Comparing the code examples

At first glance, it might seem that there is little similarity between the interfaces. If you disregard the

additional information added by the annotations for JAX-WS and JAXB, the code samples are similar. For

example, the calcShippingCost method in the JAX-WS and JAXB version the following lines of code exist:

@WebMethod

 @WebResult(name = "shippingCost", targetNamespace = "")

 @RequestWrapper(localName = "calcShippingCost", targetNamespace = "http://simple",

className = "simple.CalcShippingCost")

 @ResponseWrapper(localName = "calcShippingCostResponse", targetNamespace = "http://simple",

className = "simple.CalcShippingCostResponse")

 public Integer calcShippingCost(

 @WebParam(name = "shippingWt", targetNamespace = "")

 Integer shippingWt,

 @WebParam(name = "shippingZone", targetNamespace = "")

 Integer shippingZone);

But, if you discard the annotations, the following lines of code are:

public Integer calcShippingCost(

 Integer shippingWt,

 Integer shippingZone);

These lines are almost identical to what was generated for JAX-RPC. The only difference is that the

JAX-RPC code can produce the java.rmi.RemoteException error as follows:

public java.lang.Integer calcShippingCost(java.lang.Integer shippingWt,

 java.lang.Integer shippingZone) throws java.rmi.RemoteException;

Following this logic, three of the methods have essentially the same signatures:

public Integer calcShippingCost(Integer shippingWt, Integer shippingZone)

 public String getAccountNumber(String accountName)

 public Person findSalesRep(String saleRepName)

Chapter 5. Web services 415

This means that migrating from JAX-RPC to JAX-WS does not directly affect these methods and the

original implementation code that is successfully running in the JAX-RPC based environment can probably

be used without modification for these methods.

However two of the methods do have different signatures:

For JAX-RPC:

public java.util.Calendar calculateShippingDate(

 java.util.Calendar requestedDate)

public java.lang.String[] ckAvailability(int[] itemNumbers)

 throws java.rmi.RemoteException,

 simple.InvalidDateFault

JAX-WS and JAXB:

public XMLGregorianCalendar calculateShippingDate(

 XMLGregorianCalendar requestedDate)

public List<String> ckAvailability(List<Integer> itemNumbers)

 throws InvalidDateFault_Exception

Note:

You might find it easier to compare the skeleton implementation files since the annotations are not

present in SampleServiceImpl.java.:

v SampleServiceSoapBindingImpl.java

v SampleServiceImpl.java

The differences in signatures are due to the following reasons:

v Differences mappings from XML names to Java names

For the calculateShippingDate method, both the input parameter and the return parameter have

changed from type java.util.Calendar to type XMLGregorianCalendar. This is because the WSDL

specified these parameters to be of type, xsd:dateTime, JAX-RPC maps this data type to

java.util.Calendar, while JAX-WS and JAXB maps it to XMLGregorianCalendar.

v Different mappings of arrays from XML to Java

For the ckAvailability method, the change is due to the data mappings for XML arrays.

JAX-RPC maps the following WSDL elements:

<element maxOccurs="unbounded" name="itemNumbers" type="xsd:int"/>

<element maxOccurs="unbounded" name="itemAvailability" type="xsd:string"/>

The previous elements are mapped to the following Java source:

int[] itemNumbers

java.lang.String[] itemAvailability

JAX-WS and JAXB map the following WSDL elements:

List<Integer> itemNumbers

List<String> ckAvailability

v Different mappings of exceptions

For the ckAvailability method, the JAX-RPC code generated the following error:

simple.InvalidDateFault

The JAX-WS code generates the following error:

InvalidDateFault_Exception

Except for the names, the constructors for these exceptions are different. Therefore, the actual

JAX-RPC code that produces the error might be displayed as:

416 Administering WebSphere applications

throw new InvalidDateFault("this is an InvalidDateFault");

For JAX-WS, the code uses a command similar to the following example::

throw new InvalidDateFault_Exception("this is an InvalidDateFault_Exception", new InvalidDateFault());

In cases that use exceptions, the code that uses it needs to change.

Migrating the code

Now that the differences between code have been explained, review the original code for the methods that

need changing and how to change this code so that it works in a JAX-WS and JAXB environment.

Assume that the original (JAX-RPC) implementation code is similar to following:

public java.util.Calendar calculateShippingDate(

 java.util.Calendar requestedDate) throws java.rmi.RemoteException {

// Set the date to the date that was sent to us and add 7 days.

requestedDate.add(java.util.Calendar.DAY_OF_MONTH, 7);

// . . .

return requestedDate;

}

You can write the new code to directly use the new types as in the following examples:

public XMLGregorianCalendar calculateShippingDate(

XMLGregorianCalendar requestedDate) {

try {

// Create a data type factory.

DatatypeFactory df = DatatypeFactory.newInstance();

// Set the date to the date that was sent to us and add 7 days.

Duration duration = df.newDuration("P7D");

requestedDate.add(duration);

} catch (DatatypeConfigurationException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

// . . .

return requestedDate;

}

Migrating the code for the ckAvailability method

When migrating the code for the ckAvailability method, changes were required because of the way that

arrays and exceptions are mapped from XML is different between JAX-RPC and JAX-WS. Assume that the

original JAX-RPC Web service code is similar to the following example:

public java.lang.String[] ckAvailability(int[] itemNumbers)

{

 String[] myString = new String[itemNumbers.length];

 for (int j = 0; j < myString.length; j++) {

 . . .

 if (...)

 throw new simple.InvalidDateFault(“InvalidDateFault”);

 . . .

 if (. . .)

 myString[j] = “available: “ + jitemNumbers[j] ;

Chapter 5. Web services 417

else

 myString[j] = “not available: “ + jitemNumbers[j];

 }

 return myString;

}

The previous code accepts an int[] as input and returns a String[]. For the JAX-WS and JAXB version,

these are List<Integer> and List<String> elements respectively. Processing for these arrays, and

discarding the Exception code, the JAX-RPC code is similar to the following:

public java.lang.String[] ckAvailability(int[] itemNumbers)

{

 String[] myString = new String[itemNumbers.length];

 for (int j = 0; j < jitemNumbers.length; j++) {

 . . .

 if (. . .)

 myString[j] = “available: “ + itemNumbers.get(j);

 else

 myString[j] = “not available: “ + itemNumbers.get(j);

 }

 return myString;

}

The following JAX-WS and JAXB equivalent code exists using Lists instead of arrays:

List <String> ckAvailability(List <Integer> itemNumbers)

{

 ArrayList<String> retList = new ArrayList<String>();

 for (int count = 0; count < itemNumbers.size(); count++) {

 . . .

 if (. . .)

 retList.add(“available: “ + itemNumbers.get(j));

 else

 retList.add(“not available: “ + itemNumbers.get(j));

 }

 return retList;

}

The differences in the mappings of exceptions from XML to Java forces the JAX-WS code to use.

InvalidDateFault_Exception instead of InvalidDateFault.

This means that you must replace throw new simple.InvalidDateFault(“InvalidDateFault”); with some

other code. Therefore, the following line is used for the new code:

throw new InvalidDateFault_Exception("test InvalidDateFault_Exception", new InvalidDateFault());

The final JAX-WS and JAXB implementation of the method might be similar to the following code:

List <String> ckAvailability(List <Integer> itemNumbers)

{

 ArrayList<String> retList = new ArrayList<String>();

 for (int count = 0; count < itemNumbers.size(); count++) {

if (. . .) {

 throw new InvalidDateFault_Exception(

 "test InvalidDateFault_Exception",

 new InvalidDateFault());

}

418 Administering WebSphere applications

. . .

if (. . .)

 retList.add(“available: “ + itemNumbers.get(count));

else

 retList.add(“not available: “ + itemNumbers.get(count));

 }

 return retList;

}

There are multiple ways that you might choose to migrate the code. With practice and an effective

development environment, migrating from JAX-RPC to JAX-WS can be straightforward.

Web services migration best practices

Use these Web services migration best practices when migrating Web services applications.

If you have used the Apache SOAP support to develop Web services client applications in WebSphere

Application Server Versions 4, 5, or 5.1, you might need to migrate your applications or the security files

for your applications. The following table summarizes the Web services specifications supported by the

WebSphere products.

 WebSphere Application Server Version Web services specifications supported

4.0 Apache SOAP 2.2

5.0 and 5.0.1 Apache SOAP 2.3

5.0.2 or later Java 2 Platform, Enterprise Edition (J2EE), also known as

(JSR 109)

6.0.x and 6.1 J2EE (JSR 109)

7.0 or later Web Services for Java Platform, Enterprise Edition (Java

EE) 5 also known as JSR 109

Note: The Apache SOAP 2.2 and Apache SOAP 2.3-based implementations that were available in

WebSphere Application Server Version 4.0.x, 5.0 and 5.0.1 have been deprecated. It is

recommended that applications that are using these SOAP implementations migrate to Web

Services for Java EE (JSR 109) support that is provided in current WebSphere Application Server

versions.

For more information on migrating your Web services, see Migrating Apache SOAP Web services to Web

Services to J2EE standards .

It is recommended that new Web services be developed using the Web services for Java EE specification.

For more information, read about implementing Web services applications.

Security cannot be directly migrated from SOAP 2.3 to the Java EE standards. After you have migrated

your Web services to the Java EE standards, read about securing Web services for Version 6 applications

based on WS-Security.

Follow these best practices for the most optimal migration experience:

The application server supports the Java API for XML-Based Web Services (JAX-WS) programming model

and the Java API for XML-based RPC (JAX-RPC) programming model. JAX-WS is the next generation

Web services programming model extending the foundation provided by the JAX-RPC programming

model.

Note: Existing JAX-RPC applications wanting to use JAX-WS features must be rewritten using the

JAX-WS programming model.

Chapter 5. Web services 419

Redeploy existing JAX-RPC Web services after migrating to a new release of the

application server

When migrating to a new release of the application server, it is recommended that you redeploy your Web

services applications. You should redeploy your Web services application in the new application server

environment because of possible changes to the supported levels of Web services specifications and Web

services deployment descriptors in each release. To redeploy your Web service, select Deploy Web

Services in the Install New Application wizard or use the wsdeploy command. To learn more about this

process, see the deploying Web services applications onto application servers documentation.

Migrating a Version 5 Java API for XML-based remote procedure call (JAX-RPC)

client that uses SOAP over Java Message Service (JMS) to invoke a Web service

A JAX-RPC client that is run on WebSphere Application Server Version 5, can use SOAP over JMS to

invoke a Web service that is run on a Version 5 Application Server.

A user ID and password are not required on the target WebSphere MQ queue. After the application server

is migrated to Version 6.x, and uses the Version 6.x default messaging feature, client requests can fail

because basic authentication is enabled. The following error message displays when this migration

problem occurs:

SibMessage W [:] CWSIT0009W: A client request failed in the application server with

endpoint <endpoint name> in bus <bus_name> with reason: CWSIT0016E: The user

ID null failed authentication in bus <bus_name>.

When the application server is migrated to Version 6.x, and the default messaging provider (service

integration technologies) is used, and administrative and application security is enabled for the server or

the cell, the service integration bus queue destination inherits the security characteristics of the server or

the cell by default. If the server or the cell has basic authentication enabled, the client request fails.

The following options are available to solve this problem. The solutions are listed by the level of security

that they impose:

v Disable administrative and application security on the main security panel within the administrative

console. To disable administrative and application security, click Security > Global security. Deselect

the Enable administrative security and Enable application security options.

v Modify the settings for the service integration bus that hosts the queue destination so that the bus

security is disabled and the bus does not inherit security characteristics from the server or the cell. This

option is equivalent to the level of security that you can configure in Version 5.

v Configure the basic authentication on each client that uses the service.

Migrating Apache SOAP Web services

See Migrating Apache SOAP Web services to Web Services for J2EE standards to learn how to migrate

Apache SOAP Web services. This topic explains how to migrate Web services that were developed using

Apache SOAP to Web services that are developed based on the Web Services for Java 2 Platform,

Enterprise Edition (J2EE) specification.

Migrating Web services assembled with early versions of the Application Server

Toolkit or Assembly Toolkit

If you are migrating your Web service or Web service components from earlier versions of the Application

Server Toolkit or Assembly Toolkit, refer to the following hints and tips to improve your success:

v Secure Web services are not migrated by the J2EE Migration Wizard when Web services are migrated

from J2EE 1.3 to J2EE 1.4.

v The migration of secure Web services requires manual steps.

420 Administering WebSphere applications

v After the J2EE migration, the secure binding and extension files must be migrated manually to J2EE 1.4

as follows:

1. Double click on the webservices.xml file to open the Web Services editor.

2. Select the Binding Configurations tab to edit the binding file.

3. Add all the necessary binding configurations under the new sections Request Consumer Binding

Configuration Details and Response Generator Binding Configuration Details.

4. Select the Extension tab to edit the extension file.

5. Add all the necessary extension configurations under the new sections Request Consumer Service

Configuration Details and Response Generator Service Configuration Details.

6. Save and exit the editor.

.

WebSphere Application Server roles and goals

A description of several computing roles that members of your organization might perform when working

with WebSphere Application Server.

Enterprise architect

The enterprise architect provides overall leadership for all architectural and technological matters with

respect to the company’s IT environment.

Solution architect

The solution architect designs and coordinates a new solution, application or component with end-to-end

responsibility including both hardware and software elements.

The main goal of the solution architect is to design a solution that supports the specification set by the

enterprise architect.

System administrator

The system administrator is responsible for managing systems and software, and for installing operating

system upgrades and middleware products in many accounts.

The system administrator installs and configures appropriate hardware and software (including

middleware) to implement the design provided by the solution architect. Additionally the system

administrator monitors and maintains the configured system, modifying and removing previously configured

objects as and when required.

Application developer

The application developer creates business applications.

The goal of the application developer is to develop applications that provide the business services

described by the solution architect.

Deploying Web services applications onto application servers

After assembling the artifacts required to enable the Web module for Web services into an enterprise

archive (EAR) file, you can deploy the EAR file into the application server.

Chapter 5. Web services 421

Before you begin

To deploy Java-based Web services, you need an enterprise application, also known as an EAR file that is

configured and enabled for Web services.

A Java API for XML-Based Web Services (JAX-WS) application does not require additional bindings and

deployment descriptors for deployment whereas a Java API for XML-based RPC (JAX-RPC) Web services

application requires you to add additional bindings and deployment descriptors for application deployment.

JAX-WS is much more dynamic, and does not require any of the static data generated by the deployment

step required for deploying JAX-RPC applications.

For JAX-WS Web services, the use of the webservices.xml deployment descriptor is optional because you

can use annotations to specify all of the information that is contained within the deployment descriptor file.

You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any

information that you define in the webservices.xml deployment descriptor overrides any corresponding

information that is specified by annotations.

Note: In a mixed node cell, you can only target a JAX-WS enabled enterprise beans module to a server

using WebSphere Application Server Version 7.0. However, you can target a JAX-WS enabled Web

application archives (WAR) module to a server using either WebSphere Application Server Version

7.0 or WebSphere Application Server Version 6.1 Feature Pack for Web Services

You can use the wsdeploy command with JAX-RPC applications to add WebSphere product-specific

deployment classes to a Web services-compatible enterprise application enterprise archive (EAR) file or an

application client Java archive (JAR) file.

To install or deploy a JAX-WS application, you only need to install the JAX-WS enabled EAR file. If your

Web services application contains only JAX-WS endpoints, you do not need to run the wsdeploy

command, as this command is used to process only JAX-RPC endpoints.

Ensure that you have installed the HTTP or Java Message Service (JMS) router module that was

generated with the endptEnabler command onto the same target as your Web services enterprise bean

JAR files. These HTTP or JMS router modules are included in your Web services application and they

need to use the runtime libraries of the application server.

About this task

This task is one of the steps in developing and implementing Web services.

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you

are installing an containing Web services by using the wsadmin command, specify the -deployws option

for JAX-RPC applications. If you are installing an application containing Web services by using the

administrative console, select Deploy WebServices in the Install New Application wizard. For more

information about installing applications using the administrative console see Installing a new application.

If your JAX-RPC Web services application was previously deployed with the wsdeploy command, it is not

necessary to specify Web services deployment during installation.

The following actions deploy the EAR file with the wsadmin command:

1. Start install_root/bin/wsadmin from a command prompt.

2. Deploy the EAR file.

v For JAX-WS Web service applications, enter the $AdminApp install EARfile

″-usedefaultbindings″ command at the wsadmin prompt.

v For JAX-RPC Web service applications, enter the $AdminApp install EARfile

″-usedefaultbindings -deployws″ command at the wsadmin prompt.

422 Administering WebSphere applications

Results

You have a Web service installed onto your application server.

Note: While installing Web services applications that contain a large number of enterprise beans onto the

application server, you might receive out of memory errors. If you receive out of memory errors,

increase the heap size of your Java Virtual Machine (JVM). If you are installing the application

server in a network deployment environment, you might need to increase the heap size of the JVM

in the application servers in which you are installing the application, and in the deployment manager

profile, dmgr. Read about tuning the IBM virtual machine for Java documentation to learn more

about tuning the application server environment.

What to do next

You can confirm that the Web services application was deployed by entering the Web service endpoint

URL in a browser, then viewing an informative page. The information page contains the following

information:

{http://webservice.pli.tc.wssvt.ibm.com}RetireWebServices

Hello! This is an Axis2 Web service!

The first line of this information is variable, depending on your Web service. The URI in the brackets is the

namespace and the string that follows, in this example RetireWebServices, is the name of the port used to

access the Web service.

The next step you might want to consider is to apply security to your Web service.

Provide options to perform the Web services deployment settings

Use this panel to specify options for Web services deployment.

This administrative console panel is a step in the application installation and update wizards.

To view this panel, you must select Deploy Web services on the Select installation options panel.

To view this administrative console page, complete the following steps:

1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options panel.

4. Select Deploy Web service.

5. Click Next to get to the Step: Provide options to perform the Web services deployment panel.

You can specify the Web services deployment options on this panel only when installing or updating an

application that uses Web services.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java

API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application

server does not support the wsdeploy command. If your Web services application contains only JAX-WS

endpoints, you do not need to run the wsdeploy command, as this command is used to process only

JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command

adds product-specific deployment classes to a Web services-compatible enterprise archive (EAR) file or an

application client Java archive (JAR) file. These classes include:

v Stubs

v Serializers and deserializers

Chapter 5. Web services 423

v Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary panel of the

wizard.

Related tasks

Installing enterprise application files with the console
Installing Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled

enterprise application, Web, enterprise bean (EJB), or other installable modules on a server or cluster

configured to hold the files. Installed files that start and run properly are considered deployed.

Related reference

“wsdeploy command”
This topic explains how to use the wsdeploy command-line tool with Web services. The wsdeploy

command adds WebSphere product-specific deployment classes to a Web services-compatible enterprise

application enterprise archive (EAR) file or an application client Java archive (JAR) file.

Enterprise application settings
Use this page to configure an enterprise application.

Deploy Web services option - Classpath

Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on

Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the

entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

 Data type String

Default null

Deploy Web services option - Extension Directories

Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this

directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

 Data type String

Default null

wsdeploy command

This topic explains how to use the wsdeploy command-line tool with Web services. The wsdeploy

command adds WebSphere product-specific deployment classes to a Web services-compatible enterprise

application enterprise archive (EAR) file or an application client Java archive (JAR) file.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java

API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application

server does not support the wsdeploy command. If your Web services application contains only JAX-WS

endpoints, you do not need to run the wsdeploy command, as this command is used to process only

JAX-RPC endpoints.

The deployment classes that are added by the wsdeploy tool to a Web services-compatible EAR file or a

JAR file include:

v Stubs

v Serializers and deserializers

424 Administering WebSphere applications

v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed more often. Deployment

can be performed separately using the wsdeploy command, assembly tools, or when the application is

installed. When using the wsadmin command for installation, specify the -deployws option.

The wsdeploy command operates as noted in the following list:

v Each module in the enterprise application or JAR file is examined.

v If the module contains Web services implementations, indicated by the presence of the webservices.xml

deployment descriptor, the associated Web Services Description Language (WSDL) files are located

and the WSDL2Java command is run with the role deploy-server option.

v If the module contains Web services clients, indicated by the presence of the client deployment

descriptor, the associated WSDL files are located and the WSDL2Java command is run with the role

deploy-client option.

v The files generated by the WSDL2Java command are compiled and repackaged.

See WSDL2Java command for more information about the files that are generated for deployment.

When the generated files are compiled, they can reference application-specific classes outside the EAR or

JAR file, if the EAR or JAR file is not self-contained. In this case, use either the -jardir or -cp option to

specify additional JAR or zip files to be added to CLASSPATH variable when the generated files are

compiled.

wsdeploy command syntax

The command syntax is noted in the following example:

wsdeploy Input_filename Output_filename [options]

Required options:

v Input_filename

Specifies the path to the EAR or JAR file to deploy.

v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already exists, it is silently

overwritten. The output_filename can be the same as the input_filename.

Other options:

v -jardir directory

Specifies a directory that contains JAR or zip files. All JAR and zip files in this directory are added to

the CLASSPATH used to compile the generated files. This option can be specified zero or more times.

v -cp entries

Specifies entries to add to the CLASSPATH when the generated classes are compiled. Multiple entries

are separated the same as they are in the CLASSPATH environment variable.

v -codegen

Specifies to generate but not compile deployment code. This option implicitly specifies the -keep option.

v -debug

Includes debugging information when compiling, that is, use javac -g to compile.

v -help

Displays a help message and exit.

v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.

v -keep

Do not delete working directories containing generated classes. A message is displayed indicating the

name of the working directory that is retained.

v -novalidate

Chapter 5. Web services 425

Do not validate the Web services deployment descriptors in the input file.

v -trace

Displays processing information, including the names of the generated files.

Example The following example illustrates how the options are used with the wsdeploy command:

wsdeploy x.ear x_deployed.ear -trace -keep

Processing web service module x_client.jar.

Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.

Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.

Done processing module x_client.jar.

Messages

v Flag -f is not valid.

Option f was not recognized as a valid option.

v Flag -c is ambiguous.

Options can be abbreviated, but the abbreviation must be unique. In this case, the wsdeploy command

cannot determine which option was intended.

v Flag -c is missing parameter -p.

A required parameter for an option is omitted.

v Missing p parameter.

A required option is omitted.

JAX-WS application deployment model

The administration function of the product is enhanced to support installing and deploying Java Application

Programming Interface (API) for XML Web Services (JAX-WS) applications like any other WebSphere

Application Server applications.

A JAX-WS application is packaged as a Web archive (WAR) file or a WAR module within an Enterprise

Archive (EAR) file. The JAX-WS application deployment model is similar to the Java API for XML Remote

Protocol Call (JAX-RPC) Web services application model. The main difference between them is that

JAX-RPC Web services application requires you to add additional bindings and deployment descriptors for

application deployment. A JAX-WS application does not require additional bindings and deployment

descriptors for deployment. You can deploy your JAX-WS applications as you would deploy any other

WebSphere Application Server application.

JAX-WS Web services is a rewrite of JAX-RPC Web services. The table compares the Web services stack

for both JAX-WS and JAX-RPC Web services.

 JAX-RPC Web services JAX-WS Web services

Bindings are proprietary Bindings are based on the open source Java API for XML

Bindings (JAXB)

Parsing is proprietary Parsing is based on the open source Java Specification

Request (JSR) 173

No Java annotations support Support for Java annotations such as @WebService,

@WebMethod, @WebParam, @WebResult, and @SOAPBinding

426 Administering WebSphere applications

JAX-RPC Web services JAX-WS Web services

During deployment, some deployment descriptor files are

created in a JAX-RPC based service and client.

The following files are created on the services side, when

it is an EJB based Web service and EJB based module:

v webservices.xml

v <name_of_service>_mapping.xml

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

When the service is a JavaBeans-based or Web

module-based service, the following files and deployment

descriptors are required:

v webservices.xml

v <name_of_service>_mapping.xml

v In the web.xml, there is no additional content

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

The web.xml exists in both EJB and JavaBeans based

services. However, there is no additional content added to

the file during deployment of a Web service application or

module.

For JAX-WS Web services, the use of the

webservices.xml deployment descriptor is optional

because you can use annotations to specify all of the

information that is contained within the deployment

descriptor file. You can use the deployment descriptor file

to augment or override existing JAX-WS annotations. Any

information that you define in the webservices.xml

deployment descriptor overrides any corresponding

information that is specified by annotations.

Note: In WebSphere Application Server Version 7.0, the default annotation support behavior has changed.

In the Version 6.1 Feature Pack for Web services, the default behavior is to scan pre-Java EE 5

Web application modules to identify JAX-WS services and to scan pre-Java EE 5 Web application

modules and EJB modules for service clients during application installation. For Version 7.0, the

default behavior is to not scan pre-Java EE 5 modules for annotations during application installation

or server startup. You can preserve compatibility with feature packs from previous releases by

either setting the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a Web

archive (WAR) file or EJB module or by defining the Java virtual machine custom property,

com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during

application installation and server startup. To learn more about annotations scanning, see the

JAX-WS annotations documentation.

Deploying Web services applications onto application servers

After assembling the artifacts required to enable the Web module for Web services into an enterprise

archive (EAR) file, you can deploy the EAR file into the application server.

Before you begin

To deploy Java-based Web services, you need an enterprise application, also known as an EAR file that is

configured and enabled for Web services.

A Java API for XML-Based Web Services (JAX-WS) application does not require additional bindings and

deployment descriptors for deployment whereas a Java API for XML-based RPC (JAX-RPC) Web services

application requires you to add additional bindings and deployment descriptors for application deployment.

JAX-WS is much more dynamic, and does not require any of the static data generated by the deployment

step required for deploying JAX-RPC applications.

For JAX-WS Web services, the use of the webservices.xml deployment descriptor is optional because you

can use annotations to specify all of the information that is contained within the deployment descriptor file.

Chapter 5. Web services 427

You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any

information that you define in the webservices.xml deployment descriptor overrides any corresponding

information that is specified by annotations.

Note: In a mixed node cell, you can only target a JAX-WS enabled enterprise beans module to a server

using WebSphere Application Server Version 7.0. However, you can target a JAX-WS enabled Web

application archives (WAR) module to a server using either WebSphere Application Server Version

7.0 or WebSphere Application Server Version 6.1 Feature Pack for Web Services

You can use the wsdeploy command with JAX-RPC applications to add WebSphere product-specific

deployment classes to a Web services-compatible enterprise application enterprise archive (EAR) file or an

application client Java archive (JAR) file.

To install or deploy a JAX-WS application, you only need to install the JAX-WS enabled EAR file. If your

Web services application contains only JAX-WS endpoints, you do not need to run the wsdeploy

command, as this command is used to process only JAX-RPC endpoints.

Ensure that you have installed the HTTP or Java Message Service (JMS) router module that was

generated with the endptEnabler command onto the same target as your Web services enterprise bean

JAR files. These HTTP or JMS router modules are included in your Web services application and they

need to use the runtime libraries of the application server.

About this task

This task is one of the steps in developing and implementing Web services.

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you

are installing an containing Web services by using the wsadmin command, specify the -deployws option

for JAX-RPC applications. If you are installing an application containing Web services by using the

administrative console, select Deploy WebServices in the Install New Application wizard. For more

information about installing applications using the administrative console see Installing a new application.

If your JAX-RPC Web services application was previously deployed with the wsdeploy command, it is not

necessary to specify Web services deployment during installation.

The following actions deploy the EAR file with the wsadmin command:

1. Start install_root/bin/wsadmin from a command prompt.

2. Deploy the EAR file.

v For JAX-WS Web service applications, enter the $AdminApp install EARfile

″-usedefaultbindings″ command at the wsadmin prompt.

v For JAX-RPC Web service applications, enter the $AdminApp install EARfile

″-usedefaultbindings -deployws″ command at the wsadmin prompt.

Results

You have a Web service installed onto your application server.

Note: While installing Web services applications that contain a large number of enterprise beans onto the

application server, you might receive out of memory errors. If you receive out of memory errors,

increase the heap size of your Java Virtual Machine (JVM). If you are installing the application

server in a network deployment environment, you might need to increase the heap size of the JVM

in the application servers in which you are installing the application, and in the deployment manager

profile, dmgr. Read about tuning the IBM virtual machine for Java documentation to learn more

about tuning the application server environment.

428 Administering WebSphere applications

What to do next

You can confirm that the Web services application was deployed by entering the Web service endpoint

URL in a browser, then viewing an informative page. The information page contains the following

information:

{http://webservice.pli.tc.wssvt.ibm.com}RetireWebServices

Hello! This is an Axis2 Web service!

The first line of this information is variable, depending on your Web service. The URI in the brackets is the

namespace and the string that follows, in this example RetireWebServices, is the name of the port used to

access the Web service.

The next step you might want to consider is to apply security to your Web service.

Provide options to perform the Web services deployment settings

Use this panel to specify options for Web services deployment.

This administrative console panel is a step in the application installation and update wizards.

To view this panel, you must select Deploy Web services on the Select installation options panel.

To view this administrative console page, complete the following steps:

1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options panel.

4. Select Deploy Web service.

5. Click Next to get to the Step: Provide options to perform the Web services deployment panel.

You can specify the Web services deployment options on this panel only when installing or updating an

application that uses Web services.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java

API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application

server does not support the wsdeploy command. If your Web services application contains only JAX-WS

endpoints, you do not need to run the wsdeploy command, as this command is used to process only

JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command

adds product-specific deployment classes to a Web services-compatible enterprise archive (EAR) file or an

application client Java archive (JAR) file. These classes include:

v Stubs

v Serializers and deserializers

v Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary panel of the

wizard.

Chapter 5. Web services 429

Related tasks

Installing enterprise application files with the console
Installing Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled

enterprise application, Web, enterprise bean (EJB), or other installable modules on a server or cluster

configured to hold the files. Installed files that start and run properly are considered deployed.

Related reference

“wsdeploy command” on page 424
This topic explains how to use the wsdeploy command-line tool with Web services. The wsdeploy

command adds WebSphere product-specific deployment classes to a Web services-compatible enterprise

application enterprise archive (EAR) file or an application client Java archive (JAR) file.

Enterprise application settings
Use this page to configure an enterprise application.

Deploy Web services option - Classpath

Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on

Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the

entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

 Data type String

Default null

Deploy Web services option - Extension Directories

Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this

directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

 Data type String

Default null

wsdeploy command

This topic explains how to use the wsdeploy command-line tool with Web services. The wsdeploy

command adds WebSphere product-specific deployment classes to a Web services-compatible enterprise

application enterprise archive (EAR) file or an application client Java archive (JAR) file.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java

API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application

server does not support the wsdeploy command. If your Web services application contains only JAX-WS

endpoints, you do not need to run the wsdeploy command, as this command is used to process only

JAX-RPC endpoints.

The deployment classes that are added by the wsdeploy tool to a Web services-compatible EAR file or a

JAR file include:

v Stubs

v Serializers and deserializers

v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed more often. Deployment

can be performed separately using the wsdeploy command, assembly tools, or when the application is

installed. When using the wsadmin command for installation, specify the -deployws option.

430 Administering WebSphere applications

The wsdeploy command operates as noted in the following list:

v Each module in the enterprise application or JAR file is examined.

v If the module contains Web services implementations, indicated by the presence of the webservices.xml

deployment descriptor, the associated Web Services Description Language (WSDL) files are located

and the WSDL2Java command is run with the role deploy-server option.

v If the module contains Web services clients, indicated by the presence of the client deployment

descriptor, the associated WSDL files are located and the WSDL2Java command is run with the role

deploy-client option.

v The files generated by the WSDL2Java command are compiled and repackaged.

See WSDL2Java command for more information about the files that are generated for deployment.

When the generated files are compiled, they can reference application-specific classes outside the EAR or

JAR file, if the EAR or JAR file is not self-contained. In this case, use either the -jardir or -cp option to

specify additional JAR or zip files to be added to CLASSPATH variable when the generated files are

compiled.

wsdeploy command syntax

The command syntax is noted in the following example:

wsdeploy Input_filename Output_filename [options]

Required options:

v Input_filename

Specifies the path to the EAR or JAR file to deploy.

v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already exists, it is silently

overwritten. The output_filename can be the same as the input_filename.

Other options:

v -jardir directory

Specifies a directory that contains JAR or zip files. All JAR and zip files in this directory are added to

the CLASSPATH used to compile the generated files. This option can be specified zero or more times.

v -cp entries

Specifies entries to add to the CLASSPATH when the generated classes are compiled. Multiple entries

are separated the same as they are in the CLASSPATH environment variable.

v -codegen

Specifies to generate but not compile deployment code. This option implicitly specifies the -keep option.

v -debug

Includes debugging information when compiling, that is, use javac -g to compile.

v -help

Displays a help message and exit.

v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.

v -keep

Do not delete working directories containing generated classes. A message is displayed indicating the

name of the working directory that is retained.

v -novalidate

Do not validate the Web services deployment descriptors in the input file.

v -trace

Displays processing information, including the names of the generated files.

Example The following example illustrates how the options are used with the wsdeploy command:

Chapter 5. Web services 431

wsdeploy x.ear x_deployed.ear -trace -keep

Processing web service module x_client.jar.

Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.

Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.

Done processing module x_client.jar.

Messages

v Flag -f is not valid.

Option f was not recognized as a valid option.

v Flag -c is ambiguous.

Options can be abbreviated, but the abbreviation must be unique. In this case, the wsdeploy command

cannot determine which option was intended.

v Flag -c is missing parameter -p.

A required parameter for an option is omitted.

v Missing p parameter.

A required option is omitted.

JAX-WS application deployment model

The administration function of the product is enhanced to support installing and deploying Java Application

Programming Interface (API) for XML Web Services (JAX-WS) applications like any other WebSphere

Application Server applications.

A JAX-WS application is packaged as a Web archive (WAR) file or a WAR module within an Enterprise

Archive (EAR) file. The JAX-WS application deployment model is similar to the Java API for XML Remote

Protocol Call (JAX-RPC) Web services application model. The main difference between them is that

JAX-RPC Web services application requires you to add additional bindings and deployment descriptors for

application deployment. A JAX-WS application does not require additional bindings and deployment

descriptors for deployment. You can deploy your JAX-WS applications as you would deploy any other

WebSphere Application Server application.

JAX-WS Web services is a rewrite of JAX-RPC Web services. The table compares the Web services stack

for both JAX-WS and JAX-RPC Web services.

 JAX-RPC Web services JAX-WS Web services

Bindings are proprietary Bindings are based on the open source Java API for XML

Bindings (JAXB)

Parsing is proprietary Parsing is based on the open source Java Specification

Request (JSR) 173

No Java annotations support Support for Java annotations such as @WebService,

@WebMethod, @WebParam, @WebResult, and @SOAPBinding

432 Administering WebSphere applications

JAX-RPC Web services JAX-WS Web services

During deployment, some deployment descriptor files are

created in a JAX-RPC based service and client.

The following files are created on the services side, when

it is an EJB based Web service and EJB based module:

v webservices.xml

v <name_of_service>_mapping.xml

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

When the service is a JavaBeans-based or Web

module-based service, the following files and deployment

descriptors are required:

v webservices.xml

v <name_of_service>_mapping.xml

v In the web.xml, there is no additional content

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

The web.xml exists in both EJB and JavaBeans based

services. However, there is no additional content added to

the file during deployment of a Web service application or

module.

For JAX-WS Web services, the use of the

webservices.xml deployment descriptor is optional

because you can use annotations to specify all of the

information that is contained within the deployment

descriptor file. You can use the deployment descriptor file

to augment or override existing JAX-WS annotations. Any

information that you define in the webservices.xml

deployment descriptor overrides any corresponding

information that is specified by annotations.

Note: In WebSphere Application Server Version 7.0, the default annotation support behavior has changed.

In the Version 6.1 Feature Pack for Web services, the default behavior is to scan pre-Java EE 5

Web application modules to identify JAX-WS services and to scan pre-Java EE 5 Web application

modules and EJB modules for service clients during application installation. For Version 7.0, the

default behavior is to not scan pre-Java EE 5 modules for annotations during application installation

or server startup. You can preserve compatibility with feature packs from previous releases by

either setting the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a Web

archive (WAR) file or EJB module or by defining the Java virtual machine custom property,

com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during

application installation and server startup. To learn more about annotations scanning, see the

JAX-WS annotations documentation.

Using the UDDI registry

The Universal Description, Discovery, and Integration (UDDI) registry is a directory for Web services that is

implemented using the UDDI specification. It is a component of WebSphere Application Server.

About this task

Throughout this information, the term UDDI registry refers to the UDDI registry component that is supplied

as part of WebSphere Application Server.

This section describes the UDDI registry and how to use it. An administrator can install, configure, and

manage the UDDI registry. A user can use the UDDI registry user interface and the UDDI Application

Programming Interfaces (APIs).

1. To learn about the UDDI registry, see the following topics:

v “Overview of the Version 3 UDDI registry” on page 434

v “UDDI registry terminology” on page 436

2. To use the UDDI registry, see the following topics:

Chapter 5. Web services 433

v “Getting started with the UDDI registry” on page 1006

v Using the UDDI registry user interface

v UDDI registry client programming

v “Java API for XML Registries (JAXR) provider for UDDI” on page 472

3. To install, configure, or manage a UDDI registry, see the following topics:

v “Getting started with the UDDI registry” on page 1006

v “Setting up and deploying a new UDDI registry” on page 484

v Configuring UDDI registry security

v “Managing the UDDI registry” on page 1017

v “UDDI registry management interfaces” on page 439

v “Configuring SOAP API and GUI services for the UDDI registry” on page 1015

v “Applying an upgrade to the UDDI registry” on page 1015

v “Removing and reinstalling the UDDI registry” on page 1007

v Migrating the UDDI registry

4. To resolve any problems with the UDDI registry, see the following topic:

v UDDI registry troubleshooting

Overview of the Version 3 UDDI registry

The Universal Description, Discovery, and Integration (UDDI) specification defines a way to publish and

discover information about Web services. The term Web service describes specific business functionality

that is exposed by a company, usually through an Internet connection, to allow another company, its

subsidiaries, or software program, to use the service.

You can find the UDDI specification on the OASIS UDDI Web page.

The UDDI specification defines a standard for the visibility, reusability, and manageability that are essential

for a service-oriented architecture (SOA) registry service.

The UDDI registry is a directory for Web services that is implemented using the UDDI specification. It is a

component of WebSphere Application Server.

A critical component of IBM’s on-demand service-oriented architecture, the UDDI registry solves the

problem of discovery of technical components for an enterprise and its partners by:

v Providing control, flexibility, and confidentiality so that an enterprise can protect its e-business

investments

v Increasing efficiency by making it easier to identify technical assets

v Leveraging existing infrastructures

The following example shows how the UDDI registry can be used in a larger enterprise.

A company has a legacy application that provides telephone numbers and human resources (HR)

information about employees. This application is turned into a Web service and published to the registry. A

developer in the same company wants to write an application for a procurement function that also needs

to provide HR information to the supplier. The application needs to give the supplier access to the

employee account codes after the employee provides a name or serial number. Before Web services, the

developer might be in one of the following situations:

v The developer does not know about the similar application

v The developer knows about the application, but cannot reuse it because of technical barriers

v The developer knows about the application and reuses it, but only after significant time and negotiation

434 Administering WebSphere applications

http://www.uddi.org/specification.html

With UDDI, the developer can search for the Web service and reuse the existing technical component in

their new application for the supplier in minutes. The developer saves time and gets the application

running sooner, thereby increasing efficiency and saving the company time and money. The UDDI registry

was the first version 2 standard-compliant UDDI registry for private enterprise work. The UDDI registry in

this version has the following characteristics:

v It supports the UDDI Version 3.0 specification, in addition to the Version 1.0 and Version 2.0 standard

APIs.

v It leverages the proven, reliable WebSphere Application Server technology.

v It uses a relational database, such as DB2, for its persistent store.

What is new in UDDI Version 3

The main aspects of the UDDI Version 3 specification that are provided with this version of WebSphere

Application Server are as follows:

Improved recognition of the importance of private UDDI registries

Private UDDI registries are registries that are installed, owned, managed, and controlled by a

separate body such as a department within a company, a company, an industry consortium, or an

e-marketplace.

Publisher-assigned keys

The publisher of a UDDI entity can specify its key, rather than the registry automatically assigning

a unique key. This means that more human-friendly, URI-based keys can be used, and it makes it

easier to manage multiple registries.

UDDI information model improvements

The UDDI data structures are extended, which improves the ability of UDDI to represent

businesses and services through metadata.

Security enhancements

Digital signatures provide additional security. Each of the main UDDI entities can be digitally

signed, which improves the integrity and trustworthiness of UDDI data.

Ownership transfer APIs

These APIs support the transfer of the ownership of a UDDI entity from one publisher to another.

UDDI policy

You can set policy to define the behavior of a UDDI registry and therefore recognize the different

environments in which a UDDI registry is used.

HTTP GET support for UDDI entities

You can use HTTP GET to access XML representations of each of the UDDI data structures. This

extends the HTTP GET service beyond the scope for discovery URLs in the UDDI Version 2

specification.

Additional UDDI registry capabilities

The Version 3 UDDI registry in this version of WebSphere Application Server provides the following

capabilities that are additional to support for the UDDI Version 3 specification:

Version 2 UDDI inquiry and publish SOAP API compatibility

There is backward compatibility for the Version 1 and Version 2 SOAP inquiry and publish APIs.

UDDI administrative console extension

The WebSphere Application Server administrative console includes a section that administrators

can use to manage UDDI-specific aspects of their WebSphere environment. This management

includes the ability to set defaults for initialization of the UDDI node, such as its node ID, and to

set the UDDI Version 3 policy values.

Chapter 5. Web services 435

UDDI registry administrative interface

The Java Management Extensions (JMX) administrative interface enables administrators to

manage UDDI-specific aspects of the WebSphere environment programmatically.

Multidatabase support

The UDDI data is persisted to a registry database. The following database products that are

supported by WebSphere Application Server are also supported for use as the persistence store

for the UDDI registry. For specific details on supported levels, see Detailed system requirements

page.

v Apache Derby Version 10.2

v DB2 for iSeries Versions 5.2 and 5.3

v Oracle Versions 9i and 10g

User-defined value set support

You can create your own categorization schemes or value sets. These are in addition to the

standard schemes, such as North American Industry Classification System (NAICS), that are

provided with the UDDI registry.

UDDI utility tools

You can use UDDI utility tools to import or export entities that use the UDDI Version 2 API.

UDDI user interface

The UDDI user console supports the UDDI Version 3 inquiry and publish APIs.

UDDI Version 3 client

The Java client for UDDI Version 3 handles the construction of raw SOAP requests for the client

application. It is a JAX-RPC client and uses Version 3 data types, which are generated from the

UDDI Version 3 Web Services Description Language (WSDL) and schema. These data types are

serialized or deserialized to the XML, which constitutes the raw UDDI requests.

UDDI Version 2 clients

The following clients for UDDI Version 2 requests are provided:

v UDDI4J. A Java class library for issuing UDDI requests. This client is provided in WebSphere

Application Server Version 5 for both UDDI Version 1 requests (uddi4j.jar) and Version 2

requests (uddi4jv2.jar). These class libraries are still supported, as part of the com.ibm.uddi.jar

file, but are now both deprecated.

v JAXR. The Java API for XML Registries (JAXR) is a Java client API for accessing UDDI and

ebXML registries. WebSphere Application Server provides a JAXR provider for accessing the

UDDI registry that conforms to the JAXR 1.0 specification.

v EJB. An Enterprise JavaBeans (EJB) interface for issuing UDDI Version 2 requests. This client

is still supported, but is now deprecated.

UDDI registry terminology

Some terms specific to the UDDI registry are explained. Also, the relationship between the versions of the

UDDI registry, the Organization for the Advancement of Structured Information (OASIS) specification, and

the WebSphere Application Server level are shown.

Throughout the UDDI information in this information center, the directory locations of WebSphere

Application Server are referred to as app_server_root and profile_root.

UDDI Definitions

bindingTemplate

AbindingTemplate is technical information about a service entry point and construction

specifications.

436 Administering WebSphere applications

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

businessEntity

A businessEntity is information about the party who publishes information about a family of

services.

businessService

A businessService is descriptive information about a particular service.

customized UDDI node

A customized UDDI node is a UDDI node that is initialized with customized settings for the UDDI

properties and UDDI policies. In particular, this type kind of node does not have default values for

those properties that are read-only after initialization.

 Use a customized UDDI node for anything other than simple testing purposes (for which a default

UDDI node is enough). To set up a customized UDDI node, see Setting up a customized UDDI

node.

When you first start a customized UDDI node, you must set values for certain properties, and then

initialize the node (using the administrative console or UDDI administrative interface), before the

node is ready to accept UDDI requests. The properties that you must set control characteristics of

the UDDI node that cannot be changed after initialization.

An advantage of using a customized UDDI node is that can set these properties to values that are

suitable for your environment and usage of UDDI.

After a customized UDDI node is initialized, it is the same as a default UDDI node except that it

uses customized UDDI property and policy values.

default UDDI node

A default UDDI node is a UDDI node that is initialized with default settings for the UDDI properties

and UDDI policies, including the properties that are read-only after initialization. A default UDDI

node is intended for use for testing and to provide a simple way to become familiar with the

behavior of the UDDI registry.

 You can set up a default UDDI node in two ways. The first is to run the uddiDeploy.jacl script,

specifying the ’default’ option, in which case the UDDI database will be an Apache Derby database

that is created for you automatically.

The second is to create the database yourself, specifying the default option, which for Apache

Derby is the DEFAULT parameter when using the UDDIDerbyCreate.jar file, and for DB2 or Oracle

the SQL script insert_default_database_indicator.

After a default UDDI node is initialized, it is the same as a customized UDDI node except that it

uses default UDDI property and policy values.

policy profile

A policy profile is set of UDDI policies. The default policy profile is the profile created when the

default UDDI node is created. In the default policy profile, the nodeID and root key generator are

set to read-only and cannot be changed after installation.

publisherAssertion

A publisherAssertion is information about a relationship between two parties, asserted by one or

both.

tModel

A tModel (short for technical model) is a data structure representing a reusable concept, such as a

Web service type, a protocol used by Web services, or a category system.

 tModel keys in a service description are a technical ″fingerprint″ that you can use to trace the

compatibility origins of a given service. They provide a common point of reference so that you can

identify compatible services.

tModels are used to establish the existence of a variety of concepts and to point to their technical

definitions. tModels that represent value sets such as category, identifier, and relationship systems

Chapter 5. Web services 437

are used to provide additional data to the UDDI core entities to facilitate discovery along a number

of dimensions. This additional data is captured in keyedReferences that reside in categoryBags,

identifierBags, or publisherAssertions. The tModelKey attributes in these keyedReferences refer to

the value set that relates to the concept or namespace being represented. The keyValues contain

the actual values from that value set. In some cases, keyNames are significant, for example, to

describe relationships and when using the general keywords value set. In all other cases,

keyNames provide a version of the keyValue that people can read.

UDDI application

The UDDI application is the UDDI registry enterprise application.

UDDI entitlement

A UDDI entitlement is an entitlement that a UDDI user or publisher has in a UDDI registry, such as

the capability to publish keyGenerators, or the tier to which the publisher is assigned (in other

words, the number of entities that the publisher is entitled to publish). Each UDDI publisher has a

range of settings for the various UDDI entitlements. A UDDI entitlement is sometimes referred to

as a ’user entitlement’, or as the UDDI publisher’s set of ’user entitlements’.

UDDI node

A UDDI node is a set of Web Services that support at least one of the UDDI API sets, which

supports interaction with UDDI data through the UDDI APIs. There is no direct mapping between a

UDDI node and a WebSphere Application Server node. A UDDI node consists of an instance of

the UDDI application running in an application server (or a cluster of UDDI application instances

running in a cluster of application servers), together with an instance of the UDDI database

containing UDDI data.

UDDI node initialization

UDDI node initialization is the process that sets up values in the UDDI database, and establishes

the ″personality″ of the UDDI node. A UDDI node cannot accept UDDI API requests until it is

initialized.

UDDI node state

The UDDI node state describes the current state of the UDDI node, as opposed to the state of the

UDDI application (which is either stopped or started). A UDDI node can be in one of the following

states:

v not initialized

v initialization pending

v initialization in progress

v migration pending

v migration in progress

v value set creation pending

v value set creation in progress

v activated

v deactivated

UDDI NodeId

The UDDI NodeId is a unique identifier of a UDDI node.

UDDI policy

A UDDI policy is a statement of required and expected behavior of a UDDI registry, specified using

policy values for the various policies that are defined in the UDDI Version specification.

UDDI property

A UDDI property is a value for a property that controls the personality or behavior of a UDDI node.

438 Administering WebSphere applications

UDDI publisher

A UDDI publisher is a WebSphere user who is entitled to publish UDDI entities to a specified

UDDI registry. A UDDI publisher is sometimes referred to as a ’UDDI user’, or simply as a

’publisher’ when used in a UDDI context.

UDDI registry

A UDDI registry comprises one or more UDDI nodes. The UDDI registry in this version of

WebSphere Application Server supports single-node UDDI registries only.

UDDI tier

A UDDI tier determines the number of UDDI entities of each type (business, services per business,

bindings per service, tModel, publisher assertion) that a UDDI publisher is entitled to publish. Each

UDDI publisher is assigned (either by default or explicitly by a UDDI administrator) to a particular

tier, and cannot publish more entities than are allowed for that tier. There are some predefined

tiers supplied with the UDDI registry, and a UDDI administrator can create additional tiers. A UDDI

tier is often referred to simply as a ’tier’ when used in a UDDI context.

Version 2 UDDI registry

A Version 2 UDDI registry is a UDDI registry implementation that supports Version 2 of the UDDI

specification and also Version 1. A Version 2 UDDI registry is included in WebSphere Application

Server Network Deployment Version 5.x.

Version 3 UDDI registry

A Version 3 UDDI registry is a UDDI registry implementation that supports Version 3 of the UDDI

specification, and also Versions 1 and 2. A Version 3 UDDI registry is included in WebSphere

Application Server. Note that Version 3 UDDI registry does not indicate a UDDI registry

implementation that supports only UDDI Version 3 requests.

The following table shows how the various versions of the UDDI registry relate to the relevant OASIS

specification and WebSphere Application Server level:

 UDDI registry Version OASIS UDDI specification levels

supported

Supported on WebSphere Application

Server version

1.1 v UDDI Version 1

v UDDI Version 2

4.0.2

1.1.1 v UDDI Version 1

v UDDI Version 2

4.0.3 and later

2.0.x v UDDI Version 1

v UDDI Version 2

5.0.x

2.1.x v UDDI Version 1

v UDDI Version 2

5.1.x

3.0.2 v UDDI Version 1

v UDDI Version 2.0.4 (APIs), Version

2.0.3 (data structures)

v UDDI Version 3.0.2

6.0 and later

UDDI registry management interfaces

This topic explains interfaces and tools that you can use to manage UDDI nodes programmatically.

UDDI registry Administrative (JMX) Interface

The UDDI registry Administrative (JMX) Interface provides a Java API that allows you to manage runtime

configuration settings to control UDDI registry runtime behavior, such as setting the maximum number of

Chapter 5. Web services 439

http://www.uddi.org/specification.html
http://www.uddi.org/specification.html

results that UDDI users can receive for inquiry requests, or creating publish limits for UDDI publishers.

Sample client code is provided for you to build on.

User Defined Value Set Support in the UDDI registry

User Defined Value Set Support in the UDDI registry explains the tooling provided to manage your own

categorization value sets, including loading value set data into a UDDI registry node.

UDDI Utility Tools

UDDI Utility Tools explains the tooling and Java API for promoting version 2 entities from one UDDI

registry to another while retaining entity keys. This is particularly useful for publishing canonical tModels

with a predefined key.

UDDI registry Administrative (JMX) Interface

You can use the UDDI registry Administrative Interface to inspect and manage the runtime configuration of

a UDDI application. You can manage the information and the activation state about a UDDI node, update

properties and policies, set publish tier limits, register UDDI publishers, and control value set support.

The operations of the UDDI registry Administrative Interface can be read and invoked using standard JMX

(Java Management Extensions) interfaces. The use of JMX is explained in Using administrative programs

(JMX).

Each WebSphere UDDI registry application registers an MBean with an MBean identifier of ‘UddiNode’.

This MBean may be used by client applications to inspect and manage the runtime configuration of a

UDDI application. This includes managing the activation state of and information about a UDDI node,

updating properties and policies, setting publish tier limits, registration of UDDI publishers, and controlling

value set support.

You can read and invoke the UddiNode attributes and operations using standard JMX interfaces. A client

utility class UddiNodeProxy.java provides a ready-made application to connect to a UddiNode MBean and

perform all the available operations. Example classes are also provided to drive UddiNodeProxy and

demonstrate how to use the various UDDI management data types.

When WebSphere Application Server security is enabled, you can only invoke the operations of the

UddiNode MBean if you are a user in an administrative role. The operations which make updates require

the Administrator or Operator role, while get operations can be performed by Administrator, Operator,

Configurator and Monitor roles.

UddiNodeProxy Usage

The following .jar files are required for compilation:

v app_server_root/plugins/com.ibm.uddi.jar

v app_server_root/runtimes/com.ibm.ws.admin.client.jar

The UddiNodeProxy class provides a utility method to programmatically interrogate the UddiNode MBean

and output all the available attributes, operations and notifications to System.out. For each operation, the

return type, operation name and parameter types are output as well as the impact property which indicates

how the operation changes the state of the UddiNode MBean (and the UDDI node). As for all MBeans, the

value for the impact property can be one of:

ACTION:

state of MBean will be changed

INFO: of the MBean remains unchanged and will return information

440 Administering WebSphere applications

ACTION_INFO:

state of the MBean will change and return some information

UNKNOWN:

the impact of invoking the operation is not known

1. Invoke outputMBeanInterface:uddiNode.outputMBeanInterface();

Expected output:

java.lang.String getNodeID() [INFO]

(getter for attribute nodeID)

java.lang.String getNodeState() [INFO]

(getter for attribute nodeState)

java.lang.String getNodeDescription() [INFO]

(getter for attribute nodeDescription)

java.lang.String getNodeApplicationName() [INFO]

(getter for attribute nodeApplicationName)

void activateNode() [ACTION]

(activates UDDI node)

void deactivateNode() [ACTION]

(deactivates UDDI node)

void initNode() [ACTION]

(initializes Uddi node)

com.ibm.uddi.v3.management.Property getProperty(java.lang.String propertyId) [INFO]

(returns UDDI Property)

com.ibm.uddi.v3.management.PolicyGroup getPolicyGroup(java.lang.String policyGroupId) [INFO]

(returns UDDI PolicyGroup)

com.ibm.uddi.v3.management.Policy getPolicy(java.lang.String policyId) [INFO]

(returns UDDI Policy)

void updatePolicy(com.ibm.uddi.v3.management.Policy policy) [ACTION]

(updates UDDI Policy)

void updateProperty(com.ibm.uddi.v3.management.ConfigurationProperty property) [ACTION]

(updates UDDI Property)

void updateProperties(java.util.List properties) [ACTION]

(updates collection of UDDI properties)

void updatePolicies(java.util.List policies) [ACTION]

(updates collection of UDDI policies)

java.util.List getProperties() [INFO]

(returns the collection of UDDI properties)

java.util.List getPolicyGroups() [INFO]

(returns collection of policy groups (note that the policies are not populated))

java.util.List getValueSets() [INFO]

(returns collection of value set status objects)

com.ibm.uddi.v3.management.ValueSetStatus getValueSetDetail(java.lang.String tModelKey) [INFO]

(returns status for a value set)

com.ibm.uddi.v3.management.ValueSetProperty getValueSetProperty(java.lang.String tModelKey,java.lang.

String valueSetPropertyId) [INFO]

(returns a property of a value set)

void updateValueSet(com.ibm.uddi.v3.management.ValueSetStatus valueSet) [ACTION]

(updates value set status)

void updateValueSets(java.util.List valueSets) [ACTION]

(updates multiple value sets)

void loadValueSet(java.lang.String filePath,java.lang.String tModelKey) [ACTION]

(loads values for a value set from a UDDI registry V3/V2 taxonomy data file.)

void loadValueSet(com.ibm.uddi.v3.management.ValueSetData valueSetData) [ACTION]

(loads values for a value set with the given tModel key.)

void changeValueSetTModelKey(java.lang.String oldTModelKey,java.lang.String newTModelKey) [ACTION]

(replaces all occurrences of values belonging to original tModelKey to new tModelKey.)

void unloadValueSet(java.lang.String tModelKey) [ACTION]

(unloads values for a value set with the given tModel key.)

java.lang.Boolean isExistingValueSet(java.lang.String tModelKey) [INFO]

(Determine if Value Set data exists for the given tModel key.)

java.util.List getTierInfos() [INFO]

(returns the collection of UDDI tier descriptions.)

java.util.List getLimitInfos() [INFO]

(returns the collection of UDDI limit descriptions.)

java.util.List getEntitlementInfos() [INFO]

Chapter 5. Web services 441

(returns the collection of UDDI entitlements.)

com.ibm.uddi.v3.management.Tier getTierDetail(java.lang.String tierId) [INFO]

(returns UDDI Tier detail, specifying limits to the number of entities that can be published.)

com.ibm.uddi.v3.management.Tier createTier(com.ibm.uddi.v3.management.Tier tier) [ACTION]

(creates a UDDI Tier, specifying limits to the number of entities that can be published. Returns the

new tier ID.)

com.ibm.uddi.v3.management.Tier updateTier(com.ibm.uddi.v3.management.Tier tier) [ACTION]

(updates UDDI Tier details. Returns the updated Tier.)

void deleteTier(java.lang.String tierId) [ACTION]

(deletes the UDDI Tier, if it not in use.)

void setDefaultTier(java.lang.String tierId) [ACTION]

(Specifies the tier that auto registered UDDI publishers are assigned to.)

java.lang.Integer getUserCount(java.lang.String tierId) [INFO]

(returns the number of UDDI publisher within the specified tier.)

com.ibm.uddi.v3.management.TierInfo getUserTier(java.lang.String userId) [INFO]

(returns UDDI Tier information, specifying the tier this user belongs to.)

com.ibm.uddi.v3.management.UddiUser getUddiUser(java.lang.String userId) [INFO]

(returns UDDI user details, including tier and entitlements details.)

java.util.List getUserInfos() [INFO]

(returns the collection of UDDI user names and the tier they belong to.)

void createUddiUser(com.ibm.uddi.v3.management.UddiUser user) [ACTION]

(creates a new UDDI user.)

void createUddiUsers(java.util.List users) [ACTION]

(creates the collection of new UDDI users.)

void updateUddiUser(com.ibm.uddi.v3.management.UddiUser user) [ACTION]

(updates UDDI user details.)

void deleteUddiUser(java.lang.String userId) [ACTION]

(deletes UDDI publisher.)

void assignTier(java.util.List userIds,java.lang.String tierId) [ACTION]

(sets the tier for a List of users.)

notificationInfo: description=default UDDI event,descriptorType=notification,severity=(6),name=

uddi.node.event

notificationInfo: description=null,descriptorType=notification,severity=(6),name=jmx.attribute.

changed

See ManageNodeInfoSample class for sample code that demonstrates the attributes and operations

described in this section.

Managing UDDI Node States and Attributes

UDDI nodes can be in one of several states, depending on the way the UDDI application was installed (as

a default configuration or one where the administrator controls when initialization occurs). The UddiNode

MBean provides four read only attributes: nodeID, nodeState, nodeDescription and nodeApplicationName.

In addition the following MBean operations change UDDI node state: activateNode, deactivateNode and

initNode.

nodeID

The node ID is the unique identifier for a UDDI node. If the UDDI application is installed as a default

configuration the node ID is automatically generated. If the UDDI application is set up manually, the node

ID is set by the administrator. It must be a valid UDDI key.

 String nodeID = uddiNode.getNode();

 System.out.println("node ID: " + nodeId);

nodeState

The nodeState attribute can have one of the following values:

 nodeState value English text associated with state

node.state.uninitialized Not initialized

442 Administering WebSphere applications

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

node.state.initialized Initialized

node.state.initPending Initialization pending

node.state.initInProgress Initialization in progress

node.state.initMigrationPending Migration pending

node.state.initMigration Migration in progress

node.state.initValueSetCreationPending Value set creation pending

node.state.initValueSetCreation Value set creation in progress

node.state.activated Activated

node.state.deactivated Deactivated

node.state.unknown Unknown

After installing a UDDI application using the default configuration, the UDDI node will be in activated state,

that is, ready to receive and process UDDI API requests. The node ID and root key generator and some

other properties are generated and cannot be changed. For a manually installed UDDI application where

you want to specify the UDDI node ID and root key generator values, starting the UDDI application will put

the UDDI node into initPending state. In this state, you can update all writable values up until the point you

invoke the initNode operation. The initNode operation loads base tModels and value set data and writes all

the configuration data to the UDDI node’s database. During initialization the state is initInProgress. When

initialization completes, the state changes momentarily to initialized and settles at activated. At this point

the state can only be switched between activated and deactivated using deactivateNode and activateNode

MBean operations.

Each node state value is in fact a message key which can be looked up in the messages.properties

resource bundle. The attribute value can be retrieved using the getNodeState method of UddiNodeProxy:

1. Invoke getNodeState:

 String nodeStateKey = uddiNode.getNodeState();

2. Look up translated text from ResourceBundle and output:

 String messages = "com.ibm.uddi.v3.management.messages";

 ResourceBundle bundle = ResourceBundle.getBundle(messages,

 Locale.ENGLISH);

 String nodeStateText = bundle.getString(nodeStateKey);

 System.out.println("node state: " + nodeStateText);

nodeDescription

You can get the administrator assigned description for the UDDI node using the getNodeDescription

method of UddiNodeProxy:

1. Invoke getNodeDescription and output:

 String nodeDescription = uddiNode.getNodeDescription();

 System.out.println("node description: " + nodeDescription);

nodeApplicationName

The nodeApplicationName attribute is useful for discovering where the UDDI application that corresponds

to the UDDI node is installed. The value will be a concatenation of the cell, node and server names,

separated by colons. Retrieve the application location using the getApplicationId method of

UddiNodeProxy:

1. Invoke getApplicationId and output:

Chapter 5. Web services 443

String nodeApplicationId = uddiNode.getApplicationId();

 System.out.println("node application location: " +

 nodeApplicationId);

activateNode

Changes the state of the UDDI node to activated, if the UDDI node was previously deactivated.

1. . Invoke activateNode:

 uddiNode.activateNode();

deactivateNode

Changes the state of the UDDI node to deactivated, if the UDDI node was previously activated.

1. Invoke deactivateNode:

 uddiNode.deactivateNode();

initNode

Causes UDDI node initialization, and when this completes the state of the UDDI node is ‘activated’.

1. Invoke initNode:

 uddiNode.initNode();

Managing Configuration Properties

UDDI node runtime behavior is affected by the setting of several configuration properties. The UddiNode

MBean provides operations to inspect and update their values, as follows: getProperties, getProperty,

updateProperty and updateProperties.

See ManagePropertiesSample class for sample code that demonstrates the operations described in this

section.

getProperties

Returns collection of all configuration properties as ConfigurationProperty objects.

1. Invoke getProperties:

 List properties = uddiNode.getProperties();

2. Cast each collection member to ConfigurationProperty:

 if (properties != null) {

 for (Iterator iter = properties.iterator(); iter.hasNext();) {

 ConfigurationProperty property =

 (ConfigurationProperty) iter.next();

 System.out.println(property);

 }

 }

Once you have the ConfigurationProperty objects you can inspect attributes like the ID, value, type,

whether the property is read only, required for initialization, and get name and description message keys.

For example, invoking the toString method returns results similar to:

 ConfigurationProperty

 id: operatorNodeIDValue

 nameKey: property.name.operatorNodeIDValue

 descriptionKey: property.desc.operatorNodeIDValue

 type: java.lang.String

 value: uddi:capnscarlet:capnscarlet:server1:default

 unitsKey:

444 Administering WebSphere applications

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

readOnly: true

 required: true

 usingMessageKeys: false

 validValues: none

You can use the nameKey and descriptionKey values to look up the translated name and description for a

given locale, using the messages.properties resource in the sample package.

getProperty

Returns ConfigurationProperty object with the specified ID. Available property IDs are specified in

PropertyConstants together with descriptions of the purpose of the corresponding properties.

1. Invoke getProperty:

 ConfigurationProperty property =

 uddiNode.getProperty(PropertyConstants.DATABASE_MAX_RESULT_COUNT);

2. To retrieve the value of the property you could use the getValue method which returns an Object, but

in this case, the property is of type integer, so it’s easier to retrieve the value using the convenience

method getIntegerValue:

 int maxResults = property.getIntegerValue();

updateProperty

Updates the value of the ConfigurationProperty object with the specified ID. Available property IDs are

specified in PropertyConstants together with descriptions of the purpose of the corresponding properties.

Although you can invoke the setter methods in a ConfigurationProperty object, the only value that is

updated in the UDDI node is the value. So to update a property, the steps are typically:

1. Create a ConfigurationProperty object and set its ID:

 ConfigurationProperty defaultLanguage = new ConfigurationProperty();

 defaultLanguage.setId(PropertyConstants.DEFAULT_LANGUAGE);

2. Set the value:

 defaultLanguage.setStringValue("ja");

3. Invoke updateProperty:

 uddiNode.updateProperty(defaultLanguage);

updateProperties

Updates several ConfigurationProperty objects in a single request. Set up the ConfigurationProperty

objects as for the updateProperty operation.

1. Add updated properties to a List:

 List updatedProperties = new ArrayList();

 updatedProperties.add(updatedProperty1);

 updatedProperties.add(updatedProperty2);

2. Invoke updateProperties:

 uddiNode.updateProperties(updatedProperties);

Managing Policies

Policies affecting behavior of the UDDI API are managed using the following UddiNode operations:

getPolicyGroups, getPolicyGroup, getPolicy, updatePolicy and updatePolicies.

See ManagePoliciesSample class for sample code that demonstrates the attributes and operations

described in this section.

Chapter 5. Web services 445

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

getPolicyGroups

Returns collection of all policy groups as PolicyGroup objects.

1. Invoke getPolicyGroups:

 List policyGroups = uddiNode.getPolicyGroups();

2. Cast each collection member to PolicyGroup:

 if (policyGroups != null) {

 for (Iterator iter = policyGroups.iterator(); iter.hasNext();) {

 PolicyGroup policyGroup = (PolicyGroup) iter.next();

 System.out.println(policyGroup);

 }

 }

Each policy group has an ID, name and description key, which you can look up in the messages.properties

resource in the sample package. Although the PolicyGroup class does have a getPolicies method,

PolicyGroup objects that are returned by the getPolicyGroups operation do not contain any Policy objects.

Because of this behavior, clients can determine the known policy groups, and their IDs, without retrieving

the entire set of policies in one request. To retrieve the policies within a policy group, use the

getPolicyGroup operation.

getPolicyGroup

Returns the PolicyGroup object with the supplied ID.

1. Convert policy group ID to a String:

 String groupId = Integer.toString(PolicyConstants.REG_APIS_GROUP);

2. Invoke getPolicyGroup:

 PolicyGroup policyGroup = uddiNode.getPolicyGroup(groupId);

getPolicy

Returns the Policy object for the specified ID. Like a ConfigurationProperty, a Policy object has an ID,

name and description keys, type, value and indicators specifying if the policy is read only or required for

node initialization.

1. Convert policy ID to a String:

 String policyId = Integer.toString(

 PolicyConstants.REG_AUTHORIZATION_FOR_INQUIRY_API);

2. Invoke getPolicy:

 Policy policy = uddiNode.getPolicy(policyId);

updatePolicy

Updates the value of the Policy object with the specified ID. Available policy IDs are specified in

PolicyConstants together with descriptions of the purpose of the corresponding policies. Although you can

invoke the setter methods in a Policy object, the only value that is updated in the UDDI node is the value.

So to update a policy, the steps are typically:

1. Create a Policy object and set its ID:

 Policy updatedPolicy = new Policy();

 String policyId =

 Integer.toString(PolicyConstants.REG_SUPPORTS_UUID_KEYS);

 updatedPolicy.setId(policyId);

2. Set the value:

 updatedPolicy.setBooleanValue(true);

3. Invoke updatePolicy:

 uddiNode.updatePolicy(updatedPolicy);

446 Administering WebSphere applications

updatePolicies

Updates several Policy objects in a single request. Set up the Policy objects as for the updatePolicy

operation.

1. Add updated policies to a List:

 List updatedPolicies = new ArrayList();

 updatedPolicies.add(updatedPolicy1);

 updatedPolicies.add(updatedPolicy2);

2. Invoke updatePolicies:

 uddiNode.updatePolicies(updatedPolicies);

Managing Tiers

Tiers control how many of each type of UDDI entities a publisher can save in the UDDI registry. A tier has

an ID, an administrator defined name and description, and a set of limits, one for each type of entity. Tiers

are managed using the following UddiNode operations: createTier, getTierDetail, getTierInfos,

getLimitInfos, setDefaultTier, updateTier, deleteTier and getUserCount.

See ManageTiersSample class for sample code that demonstrates the attributes and operations described

in this section.

createTier

Creates a new tier, with specified publish limits for each UDDI entity.

1. Set tier name and description in a TierInfo object.

 String tierName = "Tier 100";

 String tierDescription = "A tier with all limits set to 100.";

 TierInfo tierInfo = new TierInfo(null, tierName, tierDescription);

2. Define Limit objects for each UDDI entity:

 List limits = new ArrayList();

 Limit businessLimit = new Limit();

 businessLimit.setIntegerValue(100);

 businessLimit.setId(LimitConstants.BUSINESS_LIMIT);

 Limit serviceLimit = new Limit();

 serviceLimit.setIntegerValue(100);

 serviceLimit.setId(LimitConstants.SERVICE_LIMIT);

 Limit bindingLimit = new Limit();

 bindingLimit.setIntegerValue(100);

 bindingLimit.setId(LimitConstants.BINDING_LIMIT);

 Limit tModelLimit = new Limit();

 tModelLimit.setIntegerValue(100);

 tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

 Limit assertionLimit = new Limit();

 assertionLimit.setIntegerValue(100);

 assertionLimit.setId(LimitConstants.ASSERTION_LIMIT);

 limits.add(businessLimit);

 limits.add(serviceLimit);

 limits.add(bindingLimit);

 limits.add(tModelLimit);

 limits.add(assertionLimit);

3. Create Tier object:

Chapter 5. Web services 447

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

Tier tier = new Tier(tierInfo, limits);

4. Invoke create Tier and retrieve created tier:

 Tier createdTier = uddiNode.createTier(tier);

5. Inspect generated tier ID of created tier:

 tierId = createdTier.getId();

 System.out.println("created tier has ID: " + tierId);

getTierDetail

Returns the Tier object for the given tier ID. The Tier class has getter methods for the tier ID, tier name

and description (as set by the administrator), and the collection of Limit objects which specify how many of

each UDDI entity type may be published by UDDI publishers allocated to the tier. The isDefault method

indicates whether the tier is the default tier, that is, the tier that is allocated to UDDI publishers when auto

registration is enabled.

1. Invoke getTierDetail:

 Tier tier = uddiNode.getTierDetail("2");

updateTier

Updates tier contents with the supplied Tier object.

1. Update an existing Tier object (which may have been newly instantiated, or returned by the

getTierDetail or createTier operations). This example retains the tier name and description, and all the

limit values except the limit being updated:

 modifiedTier.setName(tier.getName());

 modifiedTier.setDescription(tier.getDescription());

 Limit tModelLimit = new Limit();

 tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

 tModelLimit.setIntegerValue(50);

 List updatedLimits = new ArrayList();

 updatedLimits.add(tModelLimit);

 modifiedTier.setLimits(updatedLimits);

2. Invoke updateTier:

 uddiNode.updateTier(modifiedTier);

getTierInfos

Returns collection of lightweight tier descriptor objects (TierInfo) which contain the tier ID, and tier name

and description values, and whether the tier is the default tier.

1. Invoke getTierInfos:

 List tierInfos = uddiNode.getTierInfos();

2. Output content of each TierInfo:

 if (tierInfos != null) {

 for (Iterator iter = tierInfos.iterator(); iter.hasNext();) {

 TierInfo tierInfo = (TierInfo) iter.next();

 System.out.println(tierInfo);

 }

 }

setDefaultTier

448 Administering WebSphere applications

Specifies the tier with the given tier ID is the default tier. The default tier is the tier that is allocated to

UDDI publishers when auto registration is enabled. Typically this would be set to a tier with low publish

limits to prevent casual users publishing too many entities.

1. Invoke setDefaultTier:

 uddiNode.setDefaultTier("4");

deleteTier

Removes the tier with the given tier ID. Tiers can only be removed if they have no UDDI publishers

assigned to them, and the tier is not the default tier.

1. Invoke deleteTier:

 uddiNode.deleteTier("4");

getUserCount

Returns the number of UDDI publishers assigned to tier specified by the tier ID.

1. Invoke getUserCount:

 Integer userCount = uddiNode.getUserCount("4");

 System.out.println("users in tier 4: " + userCount.intValue());

getLimitInfos

Returns collection of Limit objects representing the limit values for each type of UDDI entity. Limits are

used in Tier objects.

1. Invoke getLimitInfos:

 List limits = uddiNode.getLimitInfos();

2. Output the ID and limit value for each Limit object:

 for (Iterator iter = limits.iterator(); iter.hasNext();) {

 Limit limit = (Limit) iter.next();

 System.out.println("limit ID: "

 + limit.getId()

 + ", limit value: "

 + limit.getIntegerValue());

 }

Managing UDDI Publishers

UDDI publishers are managed using the UddiNode MBean operations createUddiUser, createUddiUsers,

updateUddiUser, deleteUddiUser, getUddiUser, getUserInfos, getEntitlementInfos, assignTier, getUserTier.

An example is provided for each, making use of the UddiNodeProxy client class.

See ManagePublishersSample class for sample code that demonstrates the attributes and operations

described in this section.

createUddiUser

Registers a single UDDI publisher, in a specified tier, with specified entitlements. The UddiUser class

represents the UDDI publisher, and this is constructed using a user ID, a TierInfo object which specifies

the tier ID to allocate the UDDI publisher to, and a collection of Entitlement objects which specify what the

UDDI publisher is permitted to do.

Tip: to allocate the UDDI publisher default entitlements, set the entitlements parameter to null.

1. Create the UddiUser object:

 UddiUser user = new UddiUser("user1", new TierInfo("3"), null);

Chapter 5. Web services 449

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

2. Invoke createUddiUser:

 uddiNode.createUddiUser(user);

createUddiUsers

Registers multiple UDDI publishers. This example shows how to register 7 UDDI publishers in one call,

with default entitlements.

1. Create TierInfo objects for tiers that publishers will be allocated to:

 TierInfo tier1 = new TierInfo("1");

 TierInfo tier4 = new TierInfo("4");

2. Create UddiUser objects for each UDDI publisher, specifying tier to allocate to:

 UddiUser publisher1 = new UddiUser("Publisher1", tier4, null);

 UddiUser publisher2 = new UddiUser("Publisher2", tier4, null);

 UddiUser publisher3 = new UddiUser("Publisher3", tier4, null);

 UddiUser publisher4 = new UddiUser("Publisher4", tier1, null);

 UddiUser publisher5 = new UddiUser("Publisher5", tier1, null);

 UddiUser cts1 = new UddiUser("cts1", tier4, null);

 UddiUser cts2 = new UddiUser("cts2", tier4, null);

3. Add the UddiUser objects to a List:

 List uddiUsers = new ArrayList();

 uddiUsers.add(publisher1);

 uddiUsers.add(publisher2);

 uddiUsers.add(publisher3);

 uddiUsers.add(publisher4);

 uddiUsers.add(publisher5);

 uddiUsers.add(cts1);

 uddiUsers.add(cts2);

4. Invoke createUddiUsers:

 uddiNode.createUddiUsers(uddiUsers);

updateUddiUser

Updates a UDDI publisher with the details in the supplied UddiUser object. This is typically used to change

the tier of one UDDI publisher or update their entitlements. Tip: only supply the entitlements you want to

update – the remainder of available entitlements will retain their existing value.

1. Create Entitlement objects with appropriate permission. (the entitlement IDs are found in

EntitlementConstants:

 Entitlement publishUuiDKeyGenerator =

 new Entitlement(PUBLISH_UUID_KEY_GENERATOR, true);

 Entitlement publishWithUuidKey =

 new Entitlement(PUBLISH_WITH_UUID_KEY, true);

2. Add Entitlement objects to a List:

 List entitlements = new ArrayList();

 entitlements.add(publishUuiDKeyGenerator);

 entitlements.add(publishWithUuidKey);

3. Update a UddiUser object with the updated entitlements:

 user.setEntitlements(entitlements);

4. Invoke updateUddiUser:

 uddiNode.updateUddiUser(user);

getUddiUser

Retrieves details about a UDDI publisher in the form of a UddiUser object. This specifies the UDDI

publisher ID, information about the tier they are assigned to and the entitlements they possess.

1. Invoke getUddiUser:

450 Administering WebSphere applications

UddiUser user1 = uddiNode.getUddiUser("user1");

2. Output the contents of UddiUser:

 System.out.println("retrieved user: " + user1);

getUserInfos

Returns a collection of UserInfo objects. Each UserInfo represents a UDDI publisher known to the UDDI

node, and the name of the tier they are allocated to. To get details about a specific UDDI publisher,

including the tier ID, and entitlements, use the getUddiUser operation.

1. Invoke getUserInfos:

 List registeredUsers = uddiNode.getUserInfos();

2. Output the UserInfo objects:

 System.out.println("retrieved registered users: ");

 System.out.println(registeredUsers);

getEntitlementInfos

Returns a collection of Entitlement objects. Each entitlement is a property that controls whether permission

is granted to a UDDI publisher to perform a specified action.

1. Invoke getEntitlementInfos:

 List entitlementInfos = uddiNode.getEntitlementInfos();

2. Specify where to find message resources:

 String messages = "com.ibm.uddi.v3.management.messages";

 ResourceBundle bundle = ResourceBundle.getBundle(

 messages, Locale.ENGLISH);

3. Iterate through the Entitlement objects, displaying the ID, name and description:

 for (Iterator iter = entitlementInfos.iterator(); iter.hasNext();) {

 Entitlement entitlement = (Entitlement) iter.next();

 StringBuffer entitlementOutput = new StringBuffer();

 String entitlementId = entitlement.getId();

 String entitlementName =

 bundle.getString(entitlement.getNameKey());

 String entitlementDescription =

 bundle.getString(entitlement.getDescriptionKey());

 entitlementOutput.append("Entitlement id: ");

 entitlementOutput.append(entitlementId);

 entitlementOutput.append("\n name: ");

 entitlementOutput.append(entitlementName);

 entitlementOutput.append("\n description: ");

 entitlementOutput.append(entitlementDescription);

 System.out.println(entitlementOutput.toString());

 }

deleteUddiUser

Removes the UDDI publisher with the specified user name (ID) from the UDDI registry.

1. Invoke deleteUddiUser:

 uddiNode.deleteUddiUser("user1");

assignTier

Chapter 5. Web services 451

Assigns UDDI publishers with supplied IDs to the specified tier. This is useful when you want to restrict

several UDDI publishers, perhaps by assigning them all to a tier that doesn’t allow publishing of any

entities.

1. Create list of publisher IDs:

 List uddiUserIds = new ArrayList();

 uddiUserIds.add("Publisher1");

 uddiUserIds.add("Publisher2");

 uddiUserIds.add("Publisher3");

 uddiUserIds.add("Publisher4");

 uddiUserIds.add("Publisher5");

 uddiUserIds.add("cts1");

 uddiUserIds.add("cts2");

2. Invoke assignTier:

 uddiNode.assignTier(uddiUserIds, "0");

getUserTier

Returns information about the tier a UDDI publisher is assigned to. The returned TierInfo has getters

methods for retrieving the tier ID, tier name, tier description, and whether the tier is the default tier.

1. Invoke getUserTier:

 TierInfo tierInfo = getUserTier("Publisher3");

2. Output the contents of the TierInfo object:

 System.out.println(tierInfo);

Managing Value Sets

Value sets are represented in a UDDI registry as value set tModels, with a UDDI types keyedReference

with value ‘categorization’. Such value sets are backed with a set of valid values and for user defined

value sets, this data is loaded into the UDDI registry using UddiNode MBean operations (although it is

more convenient to use the User defined value set tool for this purpose). Each value set can be controlled

by policy as being supported or not supported. When a value set is supported by policy, it can be

referenced within UDDI publish requests. The UddiNode operations available to manage value sets and

their data are: getValueSets, getValueSetDetail, getValueSetProperty, updateValueSet, updateValueSets,

loadValueSet, changeValueSetTModelKey, unloadValueSet and isExistingValueSet.

See ManageValueSetsSample class for sample code that demonstrates the attributes and operations

described in this section.

getValueSets

Returns collection of ValueSetStatus objects.

1. Invoke getValueSets:

 List valueSets = uddiNode.getValueSets();

2. Cast each element to ValueSetStatus and output contents:

 for (Iterator iter = valueSets.iterator(); iter.hasNext();) {

 ValueSetStatus valueSetStatus = (ValueSetStatus) iter.next();

 System.out.println(valueSetStatus);

 }

getValueSetDetail

Returns ValueSetStatus object for the given value set tModel key.

1. Invoke getValueSetDetail:

452 Administering WebSphere applications

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

uddiNode.getValueSetDetail(

 "uddi:uddi.org:ubr:categorization:naics:2002");

2. Retrieve and display details:

 String name = valueSetStatus.getName();

 String displayName = valueSetStatus.getDisplayName();

 boolean supported = valueSetStatus.isSupported();

 System.out.println("name: " + name);

 System.out.println("display name: " + displayName);

 System.out.println("supported: " + supported);

3. Display value set properties:

 List properties = valueSetStatus.getProperties();

 for (Iterator iter = properties.iterator(); iter.hasNext();) {

 ValueSetProperty property = (ValueSetProperty) iter.next();

 System.out.println(property);

 }

getValueSetProperty

Returns a property of a value set as a ValueSetProperty object. This is mainly for use by the

administrative console to render properties of a value set as a row in a table. For example, one such

property is the keyedReference which indicates whether the value set is checked.

1. Invoke getValueSetProperty:

 uddiNode.getValueSetProperty(

 "uddi:uddi.org:ubr:categorization:naics:2002",

 ValueSetPropertyConstants.VS_CHECKED);

2. Read and display boolean value of the property:

 boolean checked = valueSetProperty.getBooleanValue();

 System.out.println("checked: " + checked);

updateValueSet

Updates value set status. Only the supported attribute can be updated (all other setter methods are used

by the UDDI application).

1. Create a ValueSetStatus object specifying the tModel key and the updated supported value:

 ValueSetStatus updatedStatus = new ValueSetStatus();

 updatedStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 updatedStatus.setSupported(true);

2. Invoke updateValueSet:

 uddiNode.updateValueSet(updatedStatus);

updateValueSets

Updates value set status for multiple value sets. As for the updateValueSet operation, only the supported

attribute is updated.

1. Populate List with updated ValueSetStatus objects:

 List valueSets = new ArrayList();

 ValueSetStatus valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

Chapter 5. Web services 453

valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorizationgroup:wgs84");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

 valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:identifier:iso6523:icd");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

2. Invoke updateValueSets:

 uddiNode.updateValueSets(valueSets);

loadValueSet

Loads values for a value set from a UDDI registry V3/V2 taxonomy data file on the local file system. Note:

there is also a loadValueSet operation that takes a ValueSetData object but this is only for use by the user

defined value set tool.

1. Invoke loadValueSet:

 uddiNode.loadValueSet(

 "/valuesets/myvalueset.txt",

 "uddi:cell:node:server:myValueSet");

changeValueSetTModelKey

Any value set values that were allocated to one value set tModel are allocated to the new value set

tModel.

1. Invoke changeValueSetTModelKey with old and new tModel keys:

 uddiNode.changeValueSetTModelKey(

 "uddi:cell:node:server:myValueSet",

 "uddi:cell:node:server:myNewValueSet");

unloadValueSet

Unloads values for a value set with the given tModel key.

1. Invoke unloadValueSet:

 uddiNode.unloadValueSet("uddi:myValueSet");

isExistingValueSet

Determines if value set data exists for the given tModel key.

1. Invoke isExistingValueSet and display result:

 boolean exists = uddiNode.isExistingValueSet(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 System.out.println("NAICS 2002 is a value set: " + exists);

User-defined value set support in the UDDI registry

The UDDI Version 3 registry provides the structure and modeling tools to find information within a registry

effectively. Users can define multiple value sets and add custom value sets. In UDDI Version 2, this

functionality was called custom taxonomy support.

Data is worthless if it is lost within a mass of other data and cannot be distinguished or discovered. If a

client of UDDI cannot effectively find information within a registry, the purpose of UDDI is considerably

compromised. Providing the structure and modeling tools to address this problem is at the heart of UDDI’s

design. The verification of data within UDDI is core to its mission of description, discovery and integration.

It achieves this by several means.

454 Administering WebSphere applications

It allows users to define multiple value sets that can be used in UDDI. In such a way, multiple classification

schemes can be overlaid on a single UDDI entity. This capability allows organizations to extend the set of

such systems UDDI registries support. One is not tied to a single system, but can rather employ several

different classification systems simultaneously.

While default value sets are shipped with the product, the UDDI Version 3 registry provides tools enabling

’custom’ value sets to be added, potentially enabling UDDI entities to be more specifically categorized

when published and further enhancing the capability of client to find specific data.

These value sets can be either checked or unchecked, and this is indicated via a keyedReference in the

categoryBag of the tModel that represents a value set (a ″categorization tModel″). These keyedReferences

have the tModel key for uddi-org:types and are added to the categoryBag to further describe the behavior

of the categorization tModel, as follows:

checked

Marking a tModel with this classification asserts that it represents a categorization, identifier, or

namespace tModel that has a validation service to check that category values are present in a

specified value set.

unchecked

Marking a tModel with this classification asserts that it represents a categorization, identifier, or

namespace tModel that does not have a validation service.

The procedure defined below describes how to add additional user-defined value sets, and display their

allowed values in the UDDI user console value set tree display. Rational Application Developer has a Web

Services Explorer user interface that also allows addition and display of custom checked value sets. The

publisher of a value set categorization tModel may specify a ’display name’ for use in UDDI user console

implementations.

Procedure for adding a user defined value set

To add a user defined value set to the UDDI registry, perform the following tasks:

1. Publish a categorization tModel

2. Load the user defined value set data

3. Set the value set to supported status using the Administrative console. To do this you must be a user

in an administrative role. This means that user defined value sets cannot be added to the UDDI

registry without administrator permission.

The checked value set will only be referenced when the above tasks are complete. Value set data must be

provided for validating checked value sets.

Value set data may also be used by user consoles for unchecked value sets, but it is not a requirement

and is usually only used for presentation of deprecated value sets, such as unspc-org:unspc and

back-level compatibility.

If the value set is checked, any publish requests that have a categoryBag containing keyedReferences

with the new categorization tModel will be validated. If there is value set data corresponding to the

categorization tModel in the registry database, only valid values will be accepted. If there is no value set

data in the database all values will be rejected, and the publish request will fail. If the categorization

tModel is unchecked, all values will be allowed, regardless of whether there is a corresponding value set

present in the UDDI registry database. The value set tModel is not available for use until the administrator

enables support for it using the administrative console, or the JMX interface.

Suggested approach

To introduce a new value set:

1. Publish the categorization tModel with a keyedReference of type ’uddi-org:categorization:types’ with a

key value of categorization, a keyedReference of type ’uddi-org:categorization:types’ with a Key

Chapter 5. Web services 455

Name of ’Checked value set’ and a Key Value of ’checked’, or a Key Name of ’Unchecked value

set’ and a Key Value of ’unchecked’ and a keyedReference of type ’uddi-
org:categorization:general_keywords’ supplying the value set display name (as described below).

2. Load user defined value set data into the UDDI registry database using the UDDIUserDefinedValueSet

utility (described below).

3. Use the administrative Console to set the status of the value set to supported (as described in Value

set settings). This can also be achieved directly using the JMX interface.

Note: The SOAP and EJB interfaces will be able to make use of categorization tModels as soon as they

are published. However, the UDDI registry user console will require a restart of the UDDI

application because it currently gathers its list of categorizations for use in the value set tree display

when the application starts.

Publishing a Checked Categorization tModel

This section describes how to publish a checked categorization tModel with the ’Checked value set’ Key

Name for use by a user defined value set.

Publish a tModel to the UDDI registry with a categoryBag containing keyedReferences as follows:

 Note tModelKey KeyName KeyValue

1 uddi:uddi-org:categorization:types

In the UDDI registry user interface

this tModelKey can be chosen by

selecting the category type of UDDI

Types

categorization categorization

2 uddi:uddi-org:categorization:types

In the UDDI registry user interface

this tModelKey can be chosen by

selecting the category type of UDDI

Types

Checked value set checked

3 uddi:uddi-
org:categorization:general_keywords

In the UDDI registry user interface

this tModelKey can be chosen by

selecting the category type of

categorization:general_keywords

urn:x-ibm:uddi:customTaxonomy:displayName <User Defined

Value Set

displayName>

1. Indicates this tModel is a categorization tModel (required).

2. Indicates use of the tModel will be checked against a list of valid data (required). (Omitting this

keyedReference, or explicitly specifying a value of ’unchecked’ will indicate this categorization is

unchecked).

3. Indicates special use of the general keywords value set, with a proprietary uniform resource name

(URN) as the keyName value, defines a name for the user-defined value set that is intended for use in

user console implementations where the full tModel name might be too long. The value can be 1-255

characters (inclusive) long.

The displayName is intended to provide a way to label a value set such that, when the UDDI user console

displays it in a value set tree or in a pull-down list of available value sets, the meaning is clear to the user

without being restricted to 8 characters and without needing to be the same as the published tModelName,

which could be as long as 255 characters. An example is shown below:

456 Administering WebSphere applications

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

Categories:

Search Modifiers

Search behavior

Show category tree

Natural Foods

test1

udditype

unspec

geo

naics

other

unspsc7

Natural Foods

Locator

Type Key name

display name

The urn:x-ibm:customTaxonomy:displayName should be unique if only to avoid confusion when displayed

in user interfaces but this is not validated.

To publish a new categorization tModel using SOAP, the message would be:

<save_tModel generic="3.0" xmlns="urn:uddi-org:api_v3">

 <authInfo></authInfo>>

 <tModel tModelKey="">

 <name>Natural Foods tModel</name>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types" keyName="categorization"

 keyValue="categorization"/>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types" keyName="Checked value set"

 keyValue="checked"/>

 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"

 keyName="urn:x-ibm:uddi:customTaxonomy:displayName" keyValue="Natural Foods"/>

 </categoryBag>

 </tModel>

</save_tModel>

Note: to specify an unchecked categorization substitute the key name ’Checked value set’ with

’Unchecked value set’ and ’checked’ Key Value with ’unchecked’ or, more simply, omit the

keyedReference completely.

Loading User Defined Value Set Data

User Defined Value Set Data File Format

Value set data is identified by a unique code value, an optional description and a parent code that

specifies its relationship with other code values. Value set data must adhere to this format:

 Column name Maximum length Description of use

Code 765 Unique value within the value set used for validation

description 765 Typically used by UDDI user consoles and optionally in the

keyedReference as the keyName value

parentcode 765 Indicates which existing code is the logical parent of this one,

and is used in tree displays

Typically columns are delimited in the value set data file by ’#’ characters as in this example:

Chapter 5. Web services 457

00#Food#00

10#Fruit#00

101#Apples#10

102#Oranges#10

103#Pears#10

1031#Anjou#103

1032#Conference#103

1033#Bosc#103

104#Pomegranates#10

20#Vegetables#00

201#Carrots#20

202#Potatoes#20

203#Peas#20

204#Sprouts#20

In the example, ’Food’ is the description for the root node with child nodes of ’Fruit’ and ’Vegetables’ (both

of these have parentcode values the same as the code value for ’Food’).

The value set data in the example file could then be rendered in a tree like this:

Food

 Fruit

 Apples

 Oranges

 Pears

 Anjou

 Conference

 Bosc

 Pomegranates

 Vegetables

 Carrots

 Potatoes

 Peas

 Sprouts

The file must be saved in UTF-8 format.

Custom Taxonomy files used in UDDI Version 2 are also supported by the utility.

UDDIUserDefinedValueSet

A utility is provided to load value set data into the UDDI registry, assign existing value set data to another

tModel and unload existing value set data. This utility uses the UDDI registry’s JMX interface and therefore

requires a number of connection parameters.

Usage: UDDIUserDefinedValueSet ’{’function’}’ [options]

function:

-load <path> <key> Load value set data from specified file

-newKey <oldKey> <newKey> Move value set to a new tModel

-unload <key> Unload existing value set

options:

-properties <path> Specify location of configuration file

-host <host name> Application Server or Deployment Manager host

-port <port> SOAP Lister port number

-node <node name> Node running a UDDI server

-server <server name> Server with UDDI deployed

-columnDelimiter <delim> Character delimiter to denote field end

-stringDelimiter <delim> Character delimiter to denote strings

Connector security parameters

-userName <name>

-password <password>

458 Administering WebSphere applications

-trustStore <path>

-trustStorePassword <password>

-keyStore <name>

-keyStorePassword <password>

Note: Ensure that the command window from which the UDDIUserDefinedValueSet is run is using a

suitable codepage and font for displaying the characters contained in the value set name. Use of an

incorrect codepage/font may result in unclear messages on a successful load, and create difficulty

using the -unload and -newKey options.

The UDDIUserDefinedValueSet script is located in the app_server_root/bin directory.

If no connection parameters are supplied a connection is sought on the local host using the default SOAP

port number of the deployment manager, or, if there is no deployment manager running, the default

Application Server SOAP port number.

Command arguments are case insensitive.

Usage examples

Load a value set data for a tModel on the local UDDI registry using the percent sign as a column marker

in the valuesetdata.txt file.

Move value set data from one checked tModel to another on a UDDI registry in a network deployment

configuration.

Unload a value set from a tModel from a server with security turned on supplying the connection and

security parameters in myproperties.properties file, but supplying the server and password arguments on

the command line (which augment or override those contained in the properties file).

The configuration file, if specified by the optional -properties parameter, determines a number of optional

parameters. These parameters can be specified on the command line and, if so, override the values in the

properties file. These parameters are largely JMX connection parameters and security parameters.

The string.delimiter is typically used where a description value contains the same character as the column

delimiter character. For example, if the column.delimiter was set to ’,’ (a comma), and there was a value

set description value of ’Fruits, citrus’, you could include this in the value set data file by setting the

string.delimiter to ″ (double quote) and enclosing the description in quotes: ’Fruits, citrus’. Note that the

quote character is escaped with a backslash (’\’) to indicate the literal character is to be used.

If an attempt is made to load a value set to a tModel that has existing value set data, a warning message

is given. To override this error provide the -override argument. This argument is also required if moving

value set data to a new tModel using -newKey where the tModel is checked, and also unloaded value set

data for a checked tModel.

 Command line arguments and

example data

Property and example data Comments

-columnDelimiter # column.delimiter=# The column delimiter that is used in

value set data files

-stringDelimiter \″ string.delimiter=\″ The field delimiter (this value must

be different to the column.delimiter

value)

-host ibm.com® host=ibm.com The host name of the system that is

running the deployment manager or

application server

Chapter 5. Web services 459

-port 8880 port=8880 The SOAP port number of the

deployment manager or application

server

-node ibmNode node=ibmNode The name of the node that is

running the server with the UDDI

registry

-server server1 server=server1 The server that is running the UDDI

registry

-userName ibmuser security.username=ibmuser The user name. This value is

required if WebSphere Application

Server security is turned on

-password mypassword security.password=mypassword The password

-trustStore /TrustStoreLocation security.truststore=/TrustStoreLocation The truststore file location

-keyStore ibmkeystore security.keystore=ibmkeystore The keystore name

-trustStorepassword trustpass security.truststore.password=trustpass The truststore password

-keyStorePassword keypass security.keystore.password=keypass The keystore password

Set the value set to supported

Use the administrative console to set the value set to supported by:

v Click UDDI Nodes > <node> and Value Sets (under Additional Properties on the right of the screen)

v Select the Value Set (by checking the box next to it)

v Click Enable Support above the list of Value Sets

Validation and Error Handling

The UDDI registry user console performs validation while a save tModel request is being built, that is,

before the publish occurs. For example, if the user tries to add two customTaxonomy:displayName

keyedReferences the following message is displayed:

Advice: Only one ’urn:x-ibm:uddi:customTaxonomy:displayName’ key name is allowed for the ’Other’ taxonomy.

If a keyedReference containing a keyName value that starts with ’urn:x-ibm:uddi:customTaxonomy:’ is

followed by anything other than ’displayName’, the following message is displayed:

Advice: Only key name values of ’urn:x-ibm:uddi:customTaxonomy:displayName’ are supported.

For requests where the save_tModel message may have multiple tModels, if any one of the tModels is a

categorization tModel and it fails validation, the request fails with a UDDIInvalidValueException (plus

additional information explaining the likely cause), and none of the tModels is published. For example:

E_invalidValue (20200) A value that was passed in a keyValue attribute did not pass validation.

This applies to checked categorizations, identifiers and other validated code lists. The error

text will clearly indicate the key and value combination that failed validation. Invalid ’custo

mTaxonomy:dbKey’ keyValue [naics] in keyedReference. KeyValue already in use by tModelKey[UUID:

C0B9FE13-179F-413D-8A5B-5004DB8E5BB2]

UDDI Utility Tools

The UDDI Utility Tools is a suite of functions that you can use to migrate, move, or copy UDDI Version 2

entities, including child entities and their respective Version 2 entity keys, into a Version 3 UDDI registry.

Note: The UDDI Version 3 publish API supports publisher assigned keys (the Version 2 API did not) and

promotion of entities between Version 3 registries can be achieved using normal API functions.

UDDI Utility Tools supplied in this release is functionally equivalent to the version supplied in

WebSphere Application Server 5.1. However, it is important to know that all UDDI Utility Tools

460 Administering WebSphere applications

functions in this release are performed using the UDDI Version 2 API. You can export from Version

2 and 3 registries (supplying only the Version 2 representation of the UDDI Entity key) and import

into the Version 3 registry, using Version 2 API types. Entities from a Version 3 registry are exported

as Version 2 entities and, as such, elements such as digital signatures will not be present. See

section Saving Version 3 entities with a supplied key for an example on how to use the Version 3

API to assign your own keys to Version 3 entities.

Other uses of the tool include:

v Search and select entities from a source UDDI registry by specifying Version 2 keys or search criteria

v Publishing canonical tModels in a UDDI registry, including child entities

v Persist UDDI (Version 2) entities in an intermediate XML representation that can be used to customize

and copy those entities to multiple target UDDI Registries, by specifying Version 2 Keys

v Update existing entities in a target UDDI registry, including child entities

v Delete selected entities from a target UDDI registry by specifying Version 2 keys

Use the UDDI Utility Tools by running the UDDIUtilityTools.jar file. This file is located in the

app_server_root/UDDIReg/scripts directory. Alternatively, you can invoke all of the functions of UDDI Utility

Tools through the supplied public Java API.

There are five main functions in UDDI Utility Tools:

Export

Given an entity type and key, or a list of entity types and keys, UDDI Utility Tools gets the UDDI

entities from the specified registry and writes them to the UDDI Entity Definition File. The entity

type for each key can be one of business, service, bindingTemplate or tModel. The Entity

Definition File contains XML that exactly describes each of the specified entities, according to the

UDDI Utility Tools schema (which includes the UDDI Version 2 schema). The UDDI Entity

Definition File separates entities by type, and automatically detects and records tModels

referenced by the specified entities. You can use the ’referenced tModels’ section of the file to

ensure a target registry includes any referenced tModels before you try to import new entities to

that registry.

Import

Given a list of UDDI entities (which can be supplied using the UDDI Entity Definition File

generated by the export function, possibly with additional editing, or programmatically in a

container object), the import function detects if the entities already exist in the target registry and,

if they do not, creates a minimal entity (″stub″) with the specified key. The entities are then

published updating the stubs with the supplied data and overwriting, or ignoring, existing entities

as specified by the user. Note that the original key is maintained throughout.

Promote

Combines the export and import steps such that the specified entities are extracted (by key) from

the source registry and then imported into the target registry in a single logical step. The

generation of a UDDI Entity Definition File is optional for this function.

Delete Deletes the specified entities from the target UDDI registry. The entities to delete are specified as

an entity type, or a list of entity types, and keys, in the same way as for the export function.

Find Matching Entities

Takes as input search criteria in the form of UDDI Inquiry API objects for each of the various entity

types. The set of entities that match the search criteria are used to generate a list of entity keys,

and this in turn can be used as input to the export, promote and delete functions.

Note: This function is available only through the programmatic API.

Chapter 5. Web services 461

The relationship between the functions, their input and output, and the source and target UDDI

Registries is shown in this conceptual overview diagram:

UDDI source
registry

UDDI target
registry

UDDI
API

find

get

finder
keys
file

entity
keys

exporter importer

deleter

deserialize

DB
driver

UDDI
API

insert

delete

publish

serialize

promoter

entity
definition file

Setting up the configuration file

Configuration data for UDDI Utility Tools resides in a configuration properties file, which describes the

runtime environment, UDDI and database locations and access information, logging information, security

configuration, entity definition file location, and other flags to control whether referenced entities are to be

imported and/or overwritten.

UDDI Utility Tools is distributed with a sample configuration properties file (UDDIUtilityTools.properties) and

this is searched for by default in the current directory if no properties path is specified. By default, this file

is located in the app_server_root/UDDIReg/scripts directory. Modify the file, according to the following list,

and specify this modified file when running the utility tools.

v Set the classpath, which should include the current directory (.) and the UDDIUtilityTools.jar itself, plus

all the dependent jars, which are listed in the Prerequisites section later on in this topic. The classpath

must include the database driver jar (for example db2java.zip).

If you are configuring a JSSE provider, add the .jar file which contains the provider to the classpath. The

configuration of a JSSE provider is optional and is performed by setting the jsse.provider property.

The default value is com.ibm.jsse.IBMJSSEProvider. To specify the FIPS JSSE provider set the value of

the jsse.provider property to com.ibm.fips.jsse.IBMJSSEFIPSProvider.

v Set other properties, which are commented in the sample UDDIUtilityTools.properties file as shown

below.

v Change localhost to the name of your server.

v Change the port number 9080 to your internal HTTP port.

Runtime environment #

(if invoking via java -jar...) #

"X Y" required around paths with spaces. #

Replace WAS_HOME with your WAS home path. #

#

462 Administering WebSphere applications

db2java.zip is for DB2 - replace this with #

appropriate database driver file. #

classpath=.:WAS_HOME/UDDIReg/scripts/UDDIUtilityTools.jar:WAS_HOME/plugins/com.ibm.ws.runtime.jar:

WAS_HOME/plugins/com.ibm.uddi.jar:WAS_HOME/lib/j2ee.jar:/QIBM/UserData/Java400/ext/db2_classes.jar

SOAP entry points for source UDDI #

fromInquiryURL=http://localhost:9080/uddisoap/inquiryapi

fromGetURL=http://localhost:9080/uddisoap/get

SOAP entry points for target UDDI #

toInquiryURL=http://localhost:9080/uddisoap/inquiryapi

toPublishURL=http://localhost:9080/uddisoap/publishapi

UDDI Registry user information #

Note: this must match the user information #

that was used to publish the entities on #

the target UDDI registry. #

userID=UNAUTHENTICATED

password=NONE

Configuration for destination UDDI DB #

Userid and Password must have authority to #

the iSeries server and DB #

dbDriver=com.ibm.db2.jdbc.app.DB2Driver

dbUrl=jdbc:db2:localhost/ibmudi30

dbUser=iSeriesUserProfile

dbPasswd=iSeriesUserPassword

Security provider configuration #

Indicates whether security is required on the target registry

secure.connection=true

The location of the truststore if security is required

trustStore.fileName=TrustFile.jks

The password for the trust store

trustStore.password=WebAS

The JSSE Provider class name

jsse.provider=com.ibm.jsse.IBMJSSEProvider

Trace and message logging configuration #

detail level of message output (all functions)

verbose=true

detail level of trace output.

1: severe

2: normal

3: detail

traceLevel=3

path to message log file (relative or absolute)

messageLogFileName=logs/messages.log

Chapter 5. Web services 463

path to trace log file (relative or absolute)

traceLogFileName=logs/trace.log

Miscellaneous Options #

indicates if existing entities are overwritten (import/promote)

Note: tModels in referencedTModels section are never overwritten,

regardless of this setting. To overwrite tModels, they must

be present in the tModels section.

overwrite=false

indicates if referenced entities will be imported (import/promote)

importReferencedEntities=true

location of entity definition file, used for (export/import)

UddiEntityDefinitionFile=definitions/entities01.xml

namespace prefix to use in definition file (export)

namespacePrefix=promote

Prerequisites

Ensure that the following .jar files are available to the UDDI Utility Tools. The locations of the .jar files

should be specified in the classpath property in the UDDI Utility Tools properties file:

UDDIUtilityTools.jar

This is the tools JAR itself and is located in app_server_root/UDDIReg/scripts.

com.ibm.uddi.jar

This file contains the UDDI4J classes and is located in app_server_root/plugins.

j2ee.jar

This file contains some required Java platform for enterprise applications classes, and is located in

app_server_root/lib.

com.ibm.ws.runtime.jar

This is the Apache SOAP implementation and is located in app_server_root/plugins.

DbDriver

This is the driver needed to allow the UDDIUtilityTool to connect to your target database. See the

table below for the values you need to specify for your chosen database:

 DB2 Apache Derby Oracle

DBDriverLocation

for classpath on

distributed,

Windows and i5/OS

platforms

DB2_HOME/db2java.zip app_server_root/derby/lib/
derbyclient.jar

ORACLE_HOME/jdbc/lib/
ojdbc6.jar

Driver on

distributed,

Windows and i5/OS

platforms

com.ibm.db2.jdbc.app.DB2Driver, or

com.ibm.db2.jcc.DB2Driver if you are

using a remote DB2 database (you

can also set up a local alias to the

remote database using the DB2 client)

com.ibm.db2.jcc.DB2Driver oracle.jdbc.OracleDriver

URL on distributed,

Windows and i5/OS

platforms

jdbc:db2://host:database_name jdbc:db2j:net://host:1527/
database_name (see note below)

jdbc:oracle:thin:@host:1521:

database_name

where

v app_server_root is the directory location of WebSphere Application Server.

v DB2_HOME is the directory location of DB2, for example c:\Program Files\SQLLIB\java12\

v ORACLE_HOME is the directory location of Oracle, for example c:\oracle\ora92\

464 Administering WebSphere applications

v database_name is the name of the database. For Apache Derby, make sure that

database_name includes the path to the database, for example profile_root/databases/
com.ibm.uddi/UDDI30

Note:

v If you are using Apache Derby, make the database network enabled so that it can handle

multiple connections. For further details, refer to the section about managing the Derby

Network Server in the Derby Server and Administration Guide.

v If you are using DB2, add DB2_HOME/sqllib/lib to your LD_LIBRARY_PATH and

LIBPATH environment variables.

The Security provider configuration section in the above properties file shows the location of the default

DummyClientTrustFile.jks file. If you are using your own truststore, ensure that the location is placed here.

The UDDI Utility Tools use UDDI Version 2 SOAP inquiry and publish interfaces. These APIs are protected

as described in Access control for UDDI registry interfaces. The UDDI Utility Tools also access the UDDI

registry database through the database driver, and access to the database is controlled by the database

management system.

The UDDI Entity Definition File

You generate this file by the export and promote functions, or you can choose to create it (either by hand,

or by modifying a version of the file output by UDDI Utility Tools specifying the export function). It is the

input to the import function.

Note: The extension to the uddi:tModel type to add a ’deleted’ attribute is not currently used in UDDI

Utility Tools.
The file is validated for well formedness and that it complies with the UDDI Utility Tools schema, shown

here.

<?xml version="1.0" encoding="UTF-8" ?>

<xsd:schema id="uddiPromote" attributeFormDefault="unqualified" elementFormDefault="qualified"

 targetNamespace="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools" xmlns:xsd="http://www.w3.org

 /2001/XMLSchema"

xmlns:uddi="urn:uddi-org:api_v2" xmlns="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools"

xmlns:promote="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools">

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="xml.xsd" />

 <xsd:import namespace="urn:uddi-org:api_v2" schemaLocation="uddi_v2.xsd" />

 <!-- define a type to represent state of a tModel -->

 <xsd:simpleType name="tModelDeleted">

 <xsd:restriction base="xsd:NMTOKEN">

 <xsd:enumeration value="true" />

 <xsd:enumeration value="false" />

 </xsd:restriction>

 </xsd:simpleType>

 <!-- extend tModel with additional attribute of type tModelDeleted -->

 <!-- This is restricted to values true or false -->

 <xsd:complexType name="tModel">

 <xsd:complexContent>

 <xsd:extension base="uddi:tModel">

 <xsd:attribute name="deleted" type="promote:tModelDeleted" use="optional" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- Top level element definitions -->

 <xsd:element name="uddiEntities" type="promote:uddiEntities" />

Chapter 5. Web services 465

http://db.apache.org/derby/manuals/index.html#docs_10.3

<xsd:complexType name="uddiEntities">

 <xsd:sequence>

 <xsd:element ref="promote:tModels" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:businesses" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:services" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:bindings" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:referencedTModels" minOccurs="0" maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="businesses" type="promote:businesses" />

 <xsd:complexType name="businesses">

 <xsd:sequence>

 <xsd:element ref="uddi:businessEntity" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="tModels" type="promote:tModels" />

 <xsd:complexType name="tModels">

 <xsd:sequence>

 <xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="services" type="promote:services" />

 <xsd:complexType name="services">

 <xsd:sequence>

 <xsd:element ref="uddi:businessService" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="bindings" type="promote:bindings" />

 <xsd:complexType name="bindings">

 <xsd:sequence>

 <xsd:element ref="uddi:bindingTemplate" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="referencedTModels" type="promote:referencedTModels" />

 <xsd:complexType name="referencedTModels">

 <xsd:sequence>

 <xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

UDDI Entity Definition File example for canonical tModels

The example Entity Definition File following shows the five main sections for tModels, businesses,

services, bindings and referencedTModels:

UDDI Utility Tools can be used to create new UDDI entities in a target UDDI registry. A typical example of

this is to introduce a new canonical tModel, which has a publicly known tModel key.

<?xml version="1.0" encoding="UTF-8"?>

<promote:uddiEntities xmlns="urn:uddi-org:api_v2" xmlns:promote="http://www.ibm.com/xmlns/prod/WebSphere/

 UDDIUtilityTools">

 <!-- tModels -->

 <promote:tModels>

 <tModel tModelKey="uuid:ee3966a8-faa5-416e-9772-128554343571" >

 <name>http://schemas.xmlsoap.org/ws/2002/07/policytmodel</name>

 <description>WS-PolicyAttachment policy expression</description>

 </tModel>

466 Administering WebSphere applications

<tModel tModelKey="uuid:ad61de98-4db8-31b2-a299-a2373dc97212" >

 <name>uddi-org:wsdl:address</name>

 <description xml:lang="en">

This tModel is used to specify the URL fact that the address must be obtained from the WSDL deployment

file.

 </description>

 <overviewDoc>

 <overviewURL>

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm#Address

 </overviewURL>

 </overviewDoc>

 </tModel>

 </promote:tModels>

 <!-- businesses -->

 <promote:businesses>

 </promote:businesses>

 <!-- services -->

 <promote:services>

 </promote:services>

 <!-- bindings -->

 <promote:bindings>

 </promote:bindings>

 <!-- referenced tModels -->

 <promote:referencedTModels>

 </promote:referencedTModels>

</promote:uddiEntities>

Starting UDDI Utility Tools at a command prompt

Ensure that you are using the correct level of Java code by setting the PATH statement to include the

Java code that is supplied with WebSphere Application Server. For example, from the command line, type:

UDDI Utility Tools can be started using:

java - jar UDDIUtilityTools.jar <function> [options]

using a specified properties file that sets up classpath and other parameters, or it can be called

using:

java CommandLineProcessor

where CommandLineProcessor is the class which processes command line arguments for UDDI

Utility Tools, sets up configuration and invokes the appropriate function.

Note: Before you run UDDIUtilityTools.jar from the command line, ensure that you have edited the

UDDIUtilityTools.properties file. If you have saved this properties file in a different directory from the

directory containing the UDDIUtilityTools.jar file, make sure you specify the location of the properties

file as part of the command line arguments. See the Setting up the configuration file section earlier

in this topic for more details.

The usage is as follows:

Usage: java -jar UDDIUtilityTools.jar {function} [options]

function:

 -promote <entity source> Promote entities between registries

 -export <entity source> Extract entities from registry to XML

 -delete <entity source> Delete entities from registry

 -import Create entities from XML to registry

where <entity source> is one of:

 -tmodel|-business|-service|-binding <key> Specify single entity type and key

Chapter 5. Web services 467

-keysFile | -f <filename> Specify file containing entity types and keys

options:

 -properties <filename> Specify path to configuration file

 -overwrite | -o Overwrite an entity if it already exists

 -log | -v Output verbose messages

 -definitionFile <filename> Specify path to UDDI entity definition file

 -importReferenced Import entities referenced by source entities

The following options override property settings in configuration file:

 -overwrite

 -log

 -definitionFile

 -importReferenced

Example: java -jar UDDIUtilityTools.jar -promote -keysFile /uddikeys.txt

Below are a set of UDDI Utility Tools command line examples:

To export a single business to the EDF file specified in a properties file in the current directory.

java -jar UDDIUtilityTools.jar -export -business 28B8B928-2B2E-4EC9-A647-1E40651E4752

As above but this time using a keys file to specify the entities to be exported

java -jar UDDIUtilityTools.jar -export -keysFile /myKeyFiles/keyFile01.txt

As above but also specifying verbose output to appear on the command line.

java -jar UDDIUtilityTools.jar -export -keysFile /myKeyFiles/keyFile02.txt -v

To import the contents of the default EDF specified in a UDDIUtilitiyTools.properties file in the current

directory.

java -jar UDDIUtilityTools.jar -import

As above but also specifying that referenced tModels should be imported into the target registry.

java -jar UDDIUtilityTools.jar -import -importReferenced

To import the entities from an EDF at the specified location.

java -jar UDDIUtilityTools.jar -import -definitionFile /myEDFs/entities01.xml

To import the entities from the default EDF including referenced tModels. Overwrite specifies that any

entities excluding referenced tModels that are found in the target registry should be overwritten.

java -jar UDDIUtilityTools.jar -import -overwrite -importReferenced

To promote a single service from a source to a target registry using the properties file at a specified

location.

java -jar UDDIUtilityTools.jar -promote -service 67961D67-330F-4F14-8210-E74A58E710F3

-properties /UUT/myUUTProps.properties

To promote a set of entities specified in a keys file.

java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile03.txt

As above but specifying that existing entities in the target registry get overwritten.

java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile04.txt -overwrite

To promote a set of entities specified in a keys file including referenced tModels.

java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile05.txt -importReferenced

468 Administering WebSphere applications

To promote a set of entities specified in a keys file but also create an EDF containing the promoted

entities.

java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile06.txt

-definitionFile /myEDFs/entities02.xml

To logically delete a single tModel. Note that it is not possible to physically delete tModels.

java -jar UDDIUtilityTools.jar -delete -tModel UUID:1E2B9D1E-E53D-4D36-9D46-6CCC176C466A

To delete all the entities specified in the keys file. Note that with the exception tModels all other entities will

be physically deleted from the target registry.

java -jar UDDIUtilityTools.jar -delete -keysFile /myKeyFiles/keyFile04.txt

A keys file example

The following example shows the keys that are to be exported, promoted, or deleted from the target

registry:

Keys of entities to be exported, promoted from source registry or deleted from target registry

Note: keys must be comma separated and on SAME line

Note: property names are case sensitive. (’tmodels=’ will be ignored)

businesses=97C77097-AC6C-4CA0-A6C4-452F7045C470, 4975E949-581F-4FCA-AD5F-E08280E05F9F

services=BB3864BB-1578-4833-8179-14391F14791F

bindings=

tModels=273F1727-7BFF-4FB5-A1FD-BA5C45BAFD9C

Note: If the importReferenced property is set to true, the list of tModels in the referencedTModels section

is imported to the target registry. Minimal entities are created if the referencedTModel is new. If the

referencedTModel already exists it is never overwritten, regardless of the overwrite property value.

This is so that commonly referenced tModels such as categorization tModels do not keep being

updated unnecessarily.

Should you need to update a referencedTModel, you must manually move the referencedTModel

definition to the tModels section in the entity definition file and set overwrite to true.

Content of the log files

The following examples show the contents of two of the log files that are produced by running the tool.

Some comments have been added in square brackets and in italic to highlight important points in the log

file. The first is the messages.log, which shows successful and unsuccessful operations for export, import

and delete functions:

[29/07/04 17:39:57:531 BST] CWUDU0002I: ********** Starting UDDI Utility Tools ********** [timestamp and

 eyecatcher indicate when tool is run]

[29/07/04 17:39:57:531 BST] CWUDU0009I: Exporting entities...

[29/07/04 17:39:57:531 BST] CWUDU0015I: Exported 14 entities.

[29/07/04 17:39:57:531 BST] CWUDU0029I: Serializing...

[29/07/04 17:39:57:531 BST] CWUDU0030I: Serialized entities.

[29/07/04 17:39:57:531 BST] CWUDU0016I: Importing entities...

[29/07/04 17:39:57:531 BST] CWUDU0124I: Created tModel minimal entity with tModelKey [uuid:667e2766-4781-

4151-b3a0-809f7180a096].

[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with businessKey [263f5526-8708-4

834-9f5d-8f8c878f5d6e].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [0af2a30a-be70-401

f-a027-331a6c332712].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [61012761-d02c-4c7

0-ae98-435ffd4398f9].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [f97af9f9

-7cb7-47bd-8b90-b55e4db590df].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [17e4c017

Chapter 5. Web services 469

-d273-43ec-af4a-f9b841f94a30].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [9e2c239e

-3b30-40a9-9c25-ce64edce25b9].

[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with businessKey [49bb6949-4b0e-4

e81-88a7-e26bfbe2a7f1].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [003d2b00-f6c0-407

1-8b84-f235a2f28445].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [df1019df

-2d2f-4f32-bf18-4f21274f1835].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [b229aeb2

-f2b1-4115-a06f-536753536f10].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [84d8e584-2510-409

9-9b2a-6023f1602a0a].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [62a9a762

-7fff-4f7a-8463-af0c79af63ee].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [e08654e0

-b212-42c0-bcf3-655e9765f392].

[29/07/04 17:39:57:531 BST] CWUDU0115I: Imported 7 entities and 0 referenced entities. [this kind of

message indicates the operation worked!]

[29/07/04 17:39:57:531 BST] CWUDU0002I: ********** Starting UDDI Utility Tools **********

[29/07/04 17:39:57:531 BST] CWUDU0023I: Deleting entities...

[29/07/04 17:39:57:531 BST] CWUDU0028I: Deleted 7 entities.

The second log file shows a typical trace log file entry for an export:

[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools ********** [eyecatcher and timestamp

indicate when tool is run]

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities() [the ’>’ indicates

entry to the constructor of this class]

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded tModel keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded business keys

TransformConfiguration:

 nameSpacePrefix=promote

 uddiEntityDefinitionFile=/temp/MigToolFiles/Results/Promote_api_EDF_1.xml

ExportConfiguration:

 fromGetURL=http://yottskry:9080/uddisoap/

 fromInquiryURL=http://yottskry:9080/uddisoap/inquiryAPI

ImportConfiguration:

 overwrite=true

 uddiEntityDefinitionFile=/temp/MigToolFiles/Results/Promote_api_EDF_1.xml

 importReferencedEntities=true

PublishConfiguration:

 toInquiryURL=http://davep:9080/uddisoap/inquiryAPI

 toPublishURL=http://yottskry:9080/uddisoap/publishAPI

 userID=Publisher1

 trustStoreFileName=/WebSphere600/AppServer/etc/DummyClientTrustFile.jks

 secureConnection=false

DatabaseConfiguration:

 dbDriver=com.ibm.db2.jcc.DB2Driver

 dbURL=jdbc:db2:LOC1

 dbUser=db2admin

LoggerConfiguration:

 messageStream=null

 messageLogFileName=/temp/MigToolFiles/logs/message.log

 traceLogFileName=/temp/MigToolFiles/logs/trace.log

 traceLevel=3

 verbose=true

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI()

[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools **********

470 Administering WebSphere applications

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded tModel keys [log

entries without a ’>’ or ’<’ are status messages only]

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded business keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded service keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded binding keys

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UddiEntityKeys()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.UddiEntityKeys() [the ’<’ indicates exit from the

constructor]

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() removed duplicate, empty and

null keys

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.deleteEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.publish.EntityDeleter()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.publish.EntityDeleter()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UDDIClient()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.UDDIClient() client type: 1

Starting UDDI Utility Tools through the API

UDDI Utility Tools provides a public API to functions for exporting, importing, promoting, finding and

deleting UDDI entities. All of these functions can be invoked by using the PromoterAPI class. Usage of this

class to perform these functions is typically to:

1. Create a Configuration object and populate it from a Properties object or from a configuration

properties file.

2. Create a PromoterAPI object passing the Configuration in the constructor.

3. For keys based functions (export, delete and promote), set the keys by supplying a UDDIEntityKeys

object, the location of the keys file, or, for one entity, by specifying an entity type and a key value.

4. Invoke the corresponding method for the function required: exportEntities, promoteEntities(boolean),

importEntities, deleteEntities or extractKeysFromInquiry(FindTModel, FindBusiness, FindService,

FindBinding, FindRelatedBusinesses).

There is some sample code for UDDI Utility Tools, demonstrating usage of the API classes, available from

Samples Central.

The ″low-level″ API classes and methods have been deprecated in this release. Refer to the API

documentation for details.

Known limitations with UDDI Utility Tools and workarounds

There are some known limitations with UDDI Utility Tools and a workaround for each. See UDDI

troubleshooting tips for more information.

Embedded Apache Derby Restriction

The ’export’ and ’delete’ functions when referencing a source registry with an embedded Apache Derby

database are supported. However, the ’import’ and ’promote’ functions are not supported when referencing

a target registry because of a limitation with the UDDI registry when working with an embedded Apache

Derby database. To allow the ’promote’ and ’import’ functions to work, the embedded Apache Derby

database needs to be made network enabled. For information about configuring network Apache Derby,

refer to the section about managing the Derby Network Server in the Derby Server and Administration

Guide.

Saving Version 3 entities with a supplied key

An example of saving a Version 3 business with a defined key is shown below.

Chapter 5. Web services 471

http://www.ibm.com/websphere/developer/library/samples/AppServer.html
http://db.apache.org/derby/manuals/index.html#docs_10.3
http://db.apache.org/derby/manuals/index.html#docs_10.3

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Body>

 <save_business xmlns="urn:uddi-org:api_v3">

 <authInfo>a399c4a3-6387-47cd-a1bd-91f7bb91bdd7</authInfo>

 <businessEntity businessKey="uddi:mycompany-p1.com:computers">

 <name xml:lang="en">WithKey</name>

 </businessEntity>

 </save_business>

 </Body>

</Envelope>

Known limitations with UDDI Utility Tools and workarounds

There are known limitations with the UDDI Utility Tools and a workaround for each:

v PublisherAssertions are not supported and will not be promoted.

Workaround: After the user has promoted the businesses that are related, he must recreate the

publisherAssertion relationship.

v Referenced businesses in service projections are not added automatically to the EDF in the same

manner as referenced tModels.

Workaround: Add the referenced business that will ’own’ the projected service to the EDF. If the

business is not present in the target registry, it should be placed before the service’s owning business in

the EDF.

v Cycle detection for service projections are not detected in the same manner as for referenced tModels.

Workaround: If a circular reference is present between two or more service projections, break the cycle

by removing one of the projections temporarily, perform the import and update the changed entity to

reestablish the cycle in the target registry.

v tModels that were deleted (in the logical sense) in the source registry are imported and promoted as

undeleted in the target registry. This is because, in the UDDI Version 2 specification, the deleted state

of tModels is not exposed as API calls.

Workaround: After importing the tModel, perform a delete. This is done using the UDDI Utility Tools

delete function, or any other UDDI registry API access method.

v BindingTemplates referenced by hostingRedirectors are not added automatically to the EDF in the same

manner as referenced tModels.

Workaround: Add the referenced bindingTemplate to the EDF.

v Businesses referenced by an ’owningBusiness’ keyedReference are not automatically added to the EDF.

Workaround: Import the referenced business into the target registry before importing the tModel that

references it.

v A few combinations of command line arguments are not validated and prevented, for example, it is

possible to specify -import with -keysFile <path to file> in the same command, although the -keysFile is

ignored.

Java API for XML Registries (JAXR) provider for UDDI

The Java API for XML Registries (JAXR) is a Java client API for accessing both UDDI (Version 2 only) and

ebXML registries. It is part of the Java EE specification.

The JAXR API comprises the Java Platform, Enterprise Edition (Java EE) packages javax.xml.registry and

javax.xml.registry.infomodel. There is Java EE API documentation at Web Services Reference.

The preferred UDDI Java client APIs are:

v UDDI4J Version 2, for UDDI Version 2

v UDDI Version 3 Client for Java, for UDDI Version 3

472 Administering WebSphere applications

http://java.sun.com/webservices/reference/apis-docs/index.html

JAXR provider

The current JAXR specification (Version 1.0) defines a JAXR provider as an implementation of the JAXR

API. Generally, a JAXR provider can be a JAXR provider for UDDI, a JAXR provider for ebXML, or a

pluggable provider that supports both UDDI and ebXML. The JAXR provider for UDDI is a provider for

UDDI only.

UDDI versions

A JAXR provider for UDDI accesses a UDDI registry using the UDDI Version 2 SOAP APIs only. The UDDI

registry for UDDI Version 3 in this version of WebSphere Application Server supports the UDDI Version 1,

2 and 3 SOAP APIs. Therefore you can use the JAXR provider for UDDI to access this registry. You can

also use the JAXR provider to access the UDDI registry for UDDI Version 2 in WebSphere Application

Server Version 5.x.

To work with the UDDI Version 3 SOAP APIs, use the UDDI Version 3 Client for Java; you cannot use

JAXR.

Capability level

The JAXR specification defines two capability profiles, capability level 0 and capability level 1. The JAXR

API documentation categorizes each JAXR method as either level 0 or level 1. Generally, a JAXR provider

for UDDI has capability level 0 and supports all level 0 methods, while A JAXR provider for ebXML has

capability level 1 and supports all level 0 and level 1 methods. The JAXR provider for UDDI is a capability

level 0 provider, and supports only level 0 methods.

JAXR for UDDI - getting started and further information

A sample program demonstrates how to get started with the Java API for XML Registries (JAXR). This

topic also discusses class libraries, authentication and security, internal taxonomies, and logging and

messages.

A simple sample

The following sample program shows how to obtain the ConnectionFactory instance, create a Connection

to the registry and save an Organization in the registry.

Replace all references to ″localhost″ with references to the specific iSeries machine on which the UDDI

registry is running.

import java.net.PasswordAuthentication;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.Properties;

import java.util.Set;

import javax.xml.registry.BulkResponse;

import javax.xml.registry.BusinessLifeCycleManager;

import javax.xml.registry.Connection;

import javax.xml.registry.ConnectionFactory;

import javax.xml.registry.JAXRException;

import javax.xml.registry.RegistryService;

import javax.xml.registry.infomodel.Key;

import javax.xml.registry.infomodel.Organization;

public class JAXRSample

{

 public static void main(String[] args) throws JAXRException

 {

 //Tell the ConnectionFactory to use the JAXR Provider for UDDI

 System.setProperty("javax.xml.registry.ConnectionFactoryClass",

 "com.ibm.xml.registry.uddi.ConnectionFactoryImpl");

Chapter 5. Web services 473

ConnectionFactory connectionFactory = ConnectionFactory.newInstance();

 //Set the URLs for the UDDI inquiry and publish APIs.

 //These must be the URLs of the UDDI version 2 APIs.

 Properties props = new Properties();

 props.setProperty("javax.xml.registry.queryManagerURL", "http://localhost:9080/uddisoap/inquiryapi");

 props.setProperty("javax.xml.registry.lifeCycleManagerURL", "http://localhost:9080/uddisoap/publishapi");

 connectionFactory.setProperties(props);

 //Create a Connection to the UDDI registry accessible at the above URLs.

 Connection connection = connectionFactory.createConnection();

 //Set the user ID and password used to access the UDDI registry.

 PasswordAuthentication pa = new PasswordAuthentication("Publisher1", new char[] { ’p’, ’a’, ’s’,

 ’s’, ’w’, ’o’, ’r’, ’d’ });

 Set credentials = new HashSet();

 credentials.add(pa);

 connection.setCredentials(credentials);

 //Get the javax.xml.registry.BusinessLifeCycleManager interface, which contains

 //methods corresponding to UDDI publish API calls.

 RegistryService registryService = connection.getRegistryService();

 BusinessLifeCycleManager lifeCycleManager = registryService.getBusinessLifeCycleManager();

 //Create an Organization (UDDI businessEntity) with name "Organization 1".

 Organization org = lifeCycleManager.createOrganization("Organization 1");

 //Add the Organization to a Collection, ready to be saved in the UDDI registry.

 Collection orgs = new ArrayList();

 orgs.add(org);

 //Save the Organization in the UDDI registry.

 BulkResponse bulkResponse = lifeCycleManager.saveOrganizations(orgs);

 //Obtain the Organization’s Key (the UDDI businessEntity’s businessKey) from the response.

 if (bulkResponse.getExceptions() == null)

 {

 //1 Organization was saved, so 1 key will be returned in the response collection

 Collection responses = bulkResponse.getCollection();

 Key organizationKey = (Key)responses.iterator().next();

 System.out.println("\nOrganization Key = " + organizationKey.getId());

 }

 }

}

Classpath

The class libraries of the JAXR Provider for UDDI are contained within the com.ibm.uddi_1.0.0.jar file,

located in the app_server_root/plugins directory. When using the JAXR API from within a J2EE application

running under WebSphere Application Server, all required classes will automatically be on the classpath.

When using the JAXR API from outside this environment, the following jars must be on the Java classpath:

v app_server_root/lib/bootstrap.jar

v app_server_root/lib/j2ee.jar

v app_server_root/plugins/com.ibm.uddi_1.0.0.jar

v app_server_root/plugins/com.ibm.ws.runtime_6.1.0

javax.xml.registry.ConnectionFactory

To use the JAXR Provider for UDDI, the name of the ConnectionFactory implementation class must first be

specified by setting the System Property “javax.xml.registry.ConnectionFactoryClass” to

“com.ibm.xml.registry.uddi.ConnectionFactoryImpl”. Failure to specify this will result in the value defaulting

to “com.sun.xml.registry,common.ConnectionFactoryImpl”, which will not be found. This will result in a

JAXRException when the ConnectionFactory.newInstance() method is called. The JAXR Provider for UDDI

does not support lookup of the ConnectionFactory via JNDI.

474 Administering WebSphere applications

javax.xml.registry.Connection Properties

Connection specific properties must be specified by setting a java.util.Properties object on the JAXR

ConnectionFactory before obtaining a Connection. The JAXR specification defines the full list of these

properties. The table below lists the three most important properties, and what values they should take in

order to use the JAXR Provider for UDDI to access the UDDI registry. The only required Connection

property is “javax.xml.registry.queryManagerURL”, however it is recommended that

“javax.xml.registry.lifeCycleManagerURL” is also set, and that the default value of

“javax.xml.registry.security.authenticationMethod” is understood. The rest of the Connection properties

defined in the JAXR specification are optional, and their values are not specific to the UDDI registry. The

JAXR Provider for UDDI does not define any additional provider-specific properties.

 Property Description

javax.xml.registry.queryManagerURL The URL of the UDDI registry’s inquiry API for UDDI Version 2.

Typically this will be of the form: “http://<hostname>:<port>/
uddisoap/inquiryapi”. This property is required.

javax.xml.registry.lifeCycleManagerURL The URL of the UDDI registry’s publish API for UDDI v2. Typically

this will be of the form: “http://<hostname>:<port>/uddisoap/
publishapi”. If this property is not specified, it defaults to the

value of the javax.xml.registry.queryManagerURL property,

however the UDDI registry will typically have different URLs for

the inquiry and publish APIs, and it is recommended to specifiy

both properties.

javax.xml.registry.authenticationMethod The method of authentication to use when authenticating with the

registry. This may take one of two values,

“UDDI_GET_AUTHTOKEN” and “HTTP_BASIC”. The default

value is “UDDI_GET_AUTHTOKEN” if none is specified. See

section Authentication and Security below for more information.

Authentication and security

Authentication

The javax.xml.registry.authenticationMethod Connection property tells the JAXR Provider which method to

use when authenticating with the UDDI registry. The two supported values of this property are

“UDDI_GET_AUTHTOKEN” and “HTTP_BASIC”. The JAXR Provider for UDDI does not support the

“CLIENT_CERTIFICATE” or “MS_PASSPORT” methods of authentication. If this property is not set, the

default authentication method is “UDDI_GET_AUTHTOKEN”.

UDDI_GET_AUTHTOKEN

The JAXR Provider uses the UDDI V2 get_authToken API to authenticate with the registry. The

get_authToken call is made automatically by the JAXR Provider when the Connection credentials are set,

and the UDDI V2 authToken returned by the call is saved by the JAXR Provider for use on subsequent

UDDI publish API calls.

HTTP_BASIC

The JAXR Provider uses HTTP basic authentication to authenticate with the registry. This is supported by

WebSphere Application Server when security is on. No UDDI V2 get_authToken API call is made, instead

the username and password are sent in the HTTP headers using HTTP basic authentication every time a

UDDI API call is made (both inquiry and publish). If the UDDI registry does not require HTTP basic

authentication, the credentials are ignored.

Chapter 5. Web services 475

The JAXR Provider uses UDDI Version 2 SOAP inquiry and publish APIs. These APIs are protected as

described in Access control for UDDI registry interfaces.

USING SSL (Secure Sockets Layer)

SSL can be used to encrypt HTTP traffic between the JAXR Provider for UDDI and the UDDI registry. To

use SSL, the JAXR client program should do the following:

1. When setting the “javax.xml.registry.queryManagerURL” and “javax.xml.registry.lifeCycleManagerURL”

Connection properties, specify a URL with the protocol “https” and the correct port for using SSL to

access the UDDI registry. The UDDI registry’s default port for HTTPS is 9443. Often only the

lifeCycleManager URL (the UDDI Publish API URL) will require SSL.

2. Add a new Security Provider to the java.security.Security object, according to the JSSE (Java Secure

Sockets Extension) implementation being used. If running under the JVM provided in WebSphere

Application Server, the JSSE provided by IBM will automatically be on the classpath. Add the IBM

Security Provider as follows:

java.security.Security.addProvider(new com.ibm.jsse.JSSEProvider());

3. Set the System property “javax.net.ssl.trustStore” to be the file name of the client trust store file. The

client trust store file is a Java key store (.jks) file and must contain the server certificate of the UDDI

registry. Key store files can be managed using the ikeyman tool

4. Set the System property “javax.net.ssl.trustStorePassword”. This is the password used to open the

client trust store file.

5. If using an IBM version of JVM that is older than the level provided in this version of WebSphere

Application Server, it may be necessary to set the System property “java.protocol.handler.pkgs” to

“com.ibm.net.ssl.internal.www.protocol”. For more information on SSL and the ikeyman tool refer to

SSL and IKEYMAN within this Information Center.

Internal taxonomies

The JAXR Provider for UDDI supplies the following internal taxonomies:

 Taxonomy ClassificationScheme name

(UDDI tModel name)

ClassificationScheme id (UDDI Version 2

tModelKey)

NAICS 1997 ntis-gov:naics:1997 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

NAICS 2002 ntis-gov:naics:2002 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

UNSPSC 3.1 unspsc-org:unspsc:3-1 UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384

UNSPSC 7 unspsc-org:unspsc UUID:CD153257-086A-4237-B336-6BDCBDCC6634

ISO3166 2003 ubr-uddi-org:iso-ch:3166-2003 UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88

The tModels corresponding to all of these taxonomies are available in the UDDI Version 3 registry. If using

the JAXR Provider to access a UDDI Version 2 registry, only the tModels corresponding to NAICS 1997,

UNSPSC 3.1 and ISO3166 are available.

Custom internal taxonomies

A user may supply their own custom internal taxonomies. To create a new custom internal taxonomy and

make it available to the JAXR provider, follow these steps:

1. Create a text file containing the taxonomy element data. As an example, look at the file

iso3166-2003-data.txt in plugins/com.ibm.uddi_1.0.0. This is the taxonomy data file for the supplied

ISO 3166 taxonomy. The first few lines are:

iso3166#--#World#--

iso3166#AD#Andorra#--

iso3166#AE#United Arab Emirates#--

476 Administering WebSphere applications

iso3166#AE-AJ#’Ajm?n#AE

iso3166#AE-AZ#Ab? Z?aby[Abu Dhabi]#AE

iso3166#AE-DU#Dubayy [Dubai]#AE

iso3166#AE-FU#Al Fujayrah#AE

iso3166#AE-RK#Ra’s al Khaymah#AE

iso3166#AE-SH#Ash Sh?riqah [Sharjah]#AE

iso3166#AE-UQ#Umm al Qaywayn#AE

iso3166#AF#Afghanistan#--

iso3166#AF-BAL#Balkh#AF

iso3166#AF-BAM#B?m??n#AF

Each line represents one element of the taxonomy, or one Concept in the taxonomy Concept tree.

Each line has the form:

<taxonomy ID>#<element value>#<element name>#<parent element value>

 Token Description

<taxonomy ID> The taxonomy ID is the same for every element of a taxonomy.

<element value> The Concept value (UDDI keyValue).

<element name> The Concept name (UDDI keyName).

<parent element value> This defines the element’s parent element in the taxonomy tree. For every element

(except the root element) in the data file, there should be another line which defines the

element’s parent element. The root element is denoted by defining itself as its own

parent. There should be only one root element, and no parentless elements.

The delimiter character. This does not have to be “#” and can be defined for each

taxonomy in the taxonomyConfig.properties file.

2. Save a ClassificationScheme (UDDI tModel) in the UDDI registry to represent the new internal

taxonomy. This can be done using the

javax.xml.registry.BusinessLifeCycleManager.saveClassificationSchemes() method.

3. Add the new taxonomy to the taxonomyConfig.properties file:

a. Copy the supplied taxonomyConfig.properties file from the root of the com.ibm.uddi_1.0.0.jar file.

The content of the supplied taxonomyConfig.properties file is:

naics-1997 = UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2, naics-1997-data.txt, #

naics-2002 = UUID:1FF729F2-1948-46CF-B660-31EC107F1663, naics-2002-data.txt, #

unspsc = UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384, unspsc-data.txt, #

unspsc7_data = UUID:CD153257-086A-4237-B336-6BDCBDCC6634, unspsc7-data.txt, #

iso3166-2003 = UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88, iso3166-2003-data.txt,#

This file has one line per supplied internal taxonomy, which is of the form:

<taxonomy ID> = <tModelKey>,<data filename>,<data file delimiter>

 Token Description

<taxonomy ID> This is used internally by the JAXR provider to identify each taxonomy. It

does not have to be the same as the taxonomy ID in the corresponding

taxonomy data file.

<tModelKey> The tModelKey of the corresponding UDDI tModel. (The id of the

corresponding JAXR ClassificationScheme).

<data filename> The name of the corresponding taxonomy data file.

<data file delimiter> The delimiter character used in the taxonomy data file. All supplied internal

taxonomies use “#”, but user-supplied internal taxonomies may use different

delimiters.

b. Add a new line for the new taxonomy to the copy of the taxonomyConfig.properties file. Do not

remove any existing taxonomies from the file as this will make them unavailable to the JAXR

provider.

4. Add the copied taxonomyConfig.properties file to the Java classpath ahead of jaxruddi.jar.

Chapter 5. Web services 477

5. If any JAXR client programs are still running that were started before the new taxonomy was added to

the taxonomyConfig.properties file, a new Connection must be created in order to pick up the new

taxonomy.

Important notes on internal taxonomies

Each internal taxonomy is loaded into memory once per JAXR Connection. The taxonomy’s

ClassificationScheme is created when the Connection is created. At this time the associated UDDI tModel

is obtained from the registry and used to populate the ClassificationScheme attributes. The taxonomy’s

Concept object tree is not created until the first time the ClassificationScheme is requested by the user. All

subsequent requests for the same internal taxonomy using the same Connection will return the same

object tree.

Modification of the Concept object tree

Because there is only one ClassificationScheme and Concept object tree per internal taxonomy per

Connection, a user should not attempt to modify programmatically any part of the Concept tree, because

all future requests for this taxonomy using the same Connection will return the modified (and now possibly

invalid) objects. Programmatic modification of the Concept tree will not result in any changes to the

associated taxonomy data file. If a user wishes to make a change to the values in a user-defined internal

taxonomy, they must first make the changes in the taxonomy data file, and then create a new Connection

to pick up the changes in a new Concept tree.

Modification of the ClassificationScheme

Similarly, a user should not attempt to modify programmatically an internal ClassificationScheme, except in

the case where a user wishes to modify and then save a user-defined internal ClassificationScheme. A

new Connection is not required to pick up programmatic changes.

Logging and messages

UDDI4J Logging

The JAXR Provider for UDDI uses UDDI4J Version 2 to communicate with the UDDI registry. UDDI4J has

its own logging which can be switched on by setting the value of the System property

“org.uddi4j.logEnabled” to “true”. This outputs to the standard error log the XML request and response

bodies of every UDDI request.

Trace

Entry, exit, exception, warning and debug trace is provided using commons-logging. See

http://jakarta.apache.org/commons/logging/ for more information on commons-logging. Trace will only be

created if the JAXR client configures it. Entry, exit and debug trace uses the debug level of logging.

Exception and warning trace uses the info level of logging. Additionally, info level logging is provided

before each UDDI4J request is made.

Standard error log messages

The InternalTaxonomyManager, EnumerationManager and PostalSchemeManager send warning messages

to System.err if error conditions occur that do not warrant an exception, but that the user should be

informed of. Examples of these are if a taxonomy data file contains an invalid line, or if a tModel

corresponding to an internal taxonomy could not be found in the registry.

Planning to use Web services

You can plan to develop and implement Web services based on a variety of Java programming models.

478 Administering WebSphere applications

http://jakarta.apache.org/commons/logging/

Before you begin

The Samples Gallery includes Samples that demonstrate JAX-WS-based Web services. The JAX-WS Web

services Samples demonstrate the simple message exchange patterns using both synchronous and

asynchronous invocation of Web services in SOAP 1.1 and SOAP 1.2 environments. The Samples are

composed with Web service standards such as WS-Addressing (WS-A) , WS-Reliable Messaging

(WS-RM), and WS-Secure Conversation (WS-SC), which you can use to complete a broad range of

interoperability tests. The samples demonstrate the use of JavaBeans artifacts and static service endpoints

and proxy-based clients. Additionally, a Sample is provided that demonstrates Message Transmission

Optimization Mechanism (MTOM).

About this task

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)

programming model and the Java API for XML-based RPC (JAX-RPC) programming model.

JAX-WS is the next generation Web services programming model extending the foundation

provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,

development of Web services and clients is simplified through support of a standards-based

annotations model. Although the JAX-RPC programming model and applications are still supported,

take advantage of the easy-to-implement JAX-WS programming model to develop new Web

services applications and clients.

You must re-write existing JAX-RPC applications if you want to take advantage of the features of the

JAX-WS programming model.

Web services reflect the service-oriented architecture approach to programming. This approach is based

on the idea of building applications by discovering and implementing network-available services, or by

invoking the available applications to accomplish a task. Web services deliver interoperability, for example,

Web services applications provide a way for components created in different programming languages to

work together as if they were created using the same language. Web services rely on existing transport

technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup

Language (XML), for invoking the implementation.

1. Identify your goals and design Web services to fit your e-business solution. Consider what you want to

accomplish by using Web services. Decide how Web services fit into your current topology,

applications and programming model. Determine how the Web services process requests on the server

and how the clients manage and use the Web service.

2. Design your Web services for reliability, availability, manageability and security. For example, you want

your Web services to process a transaction in a reasonable time at all hours of the day and provide

users with optimal security, such as authentication for buyers. Planning to use Web services to work

with WebSphere Application Server helps to meet these requirements.

3. Review the standards used in developing and deploying Web services onto WebSphere Application

Server. Development and deployment are based on a variety of Java programming models.

4. Decide what development and implementation tools to use. You can use a variety of manual

development and implementation tasks. Whether you have an existing Web service to implement or

you want to develop your own from a JavaBeans implementation or from an Enterprise JavaBeans

(EJB) module, you can choose different tasks respective to your resources. You can also use

assembly tools to complete development and implementation tasks.

5. Install the application server. For detailed information on installing the application server, read about

installing your application serving environment.

6. Review Web services Samples.

Results

You have a design plan for implementing Web services applications into your business architecture.

Chapter 5. Web services 479

Learning about the Web Services Invocation Framework (WSIF)

The Web Services Invocation Framework (WSIF) is a WSDL-oriented Java API. You use this API to invoke

Web services dynamically, regardless of the service implementation format (for example enterprise bean)

or the service access mechanism (for example Java Message Service (JMS)).

About this task

Using WSIF, you can move away from the usual Web services programming model of working directly with

the SOAP APIs, towards a model where you interact with representations of the services. You can

therefore work with the same programming model regardless of how the service is implemented and

accessed.

To learn about WSIF, see the following topics:

v “Goals of WSIF.”

v “WSIF Overview” on page 482.

1. “WSIF architecture” on page 482.

2. “WSIF and WSDL” on page 483.

3. “WSIF usage scenarios” on page 483.

Goals of WSIF

WSIF aims to extend the flexibility provided by SOAP services into a general model for invoking Web

services, irrespective of the underlying binding or access protocols.

SOAP bindings for Web services are part of the WSDL specification, therefore when most developers think

of using a Web service, they immediately think of assembling a SOAP message and sending it across the

network to the service endpoint, using a SOAP client API. For example: using Apache SOAP the client

creates and populates a Call object that encapsulates the service endpoint, the identification of the SOAP

operation to invoke, the parameters to send, and so on.

While this process works for SOAP, it is limited in its use as a general model for invoking Web services for

the following reasons:

v “Web services are more than just SOAP services.”

v “Tying client code to a particular protocol implementation is restricting” on page 481.

v “Incorporating new bindings into client code is hard” on page 481.

v “Multiple bindings can be used in flexible ways” on page 481.

v “A freer Web services environment enables intermediaries” on page 481.

The goals of the Web Services Invocation Framework (WSIF) are therefore:

v To give a binding-independent mechanism for Web service invocation.

v To free client code from the complexities of any particular protocol used to access a Web service.

v To enable dynamic selection between multiple bindings to a Web service.

v To help the development of Web service intermediaries.

Web services are more than just SOAP services

You can deploy as a Web service any application that has a WSDL-based description of its functional

aspects and access protocols. If you are using the Java Platform, Enterprise Edition (Java EE)

environment, then the application is available over multiple transports and protocols.

For example, you can take a database-stored procedure, expose it as a stateless session bean, then

deploy it into a SOAP router as a SOAP service. At each stage, the fundamental service is the same. All

that changes is the access mechanism: from Java DataBase Connectivity (JDBC) to Remote Method

Invocation over Internet Inter-ORB Protocol (RMI-IIOP) and then to SOAP.

480 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

The WSDL specification defines a SOAP binding for Web services, but you can add binding extensions to

the WSDL so that, for example, you can offer an enterprise bean as a Web service using RMI-IIOP as the

access protocol. You can even treat a single Java class as a Web service, with in-thread Java method

invocations as the access protocol. With this broader definition of a Web service, you need a

binding-independent mechanism for service invocation.

Tying client code to a particular protocol implementation is restricting

If your client code is tightly bound to a client library for a particular protocol implementation, it can become

hard to maintain.

For example, if you move from Apache SOAP to Java Message Service (JMS) or enterprise bean, the

process can take a lot of time and effort. To avoid these problems, you need a protocol

implementation-independent mechanism for service invocation.

Incorporating new bindings into client code is hard

If you want to make an application that uses a custom protocol work as a Web service, you can add

extensibility elements to WSDL to define the new bindings. But in practice, achieving this capability is

hard.

For example you have to design the client APIs to use this protocol. If your application uses just the

abstract interface of the Web service, you have to write tools to generate the stubs that enable an

abstraction layer. These tasks can take a lot of time and effort. What you need is a service invocation

mechanism that allows you to update existing bindings, and to add new bindings.

Multiple bindings can be used in flexible ways

To take advantage of Web services that offer multiple bindings, you need a service invocation mechanism

that can switch between the available service bindings at run time, without having to generate or recompile

a stub.

Imagine that you have successfully deployed an application that uses a Web service which offers multiple

bindings. For example, imagine that you have a SOAP binding for the service and a local Java binding

that lets you treat the local service implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is deployed in the same environment

as the service. In this case, it is more efficient to communicate with the service by making direct Java calls

than by using the SOAP binding.

If your clients could switch the actual binding used based on run-time information, they could choose the

most efficient available binding for each situation.

A freer Web services environment enables intermediaries

Web services offer application integrators a loosely-coupled paradigm. In such environments,

intermediaries can be very powerful.

Intermediaries are applications that intercept the messages that flow between a service requester and a

target Web service, and perform some mediating task (for example logging, high-availability or

transformation) before passing on the message. The Web Services Invocation Framework (WSIF) is

designed to make building intermediaries both possible and simple. Using WSIF, intermediaries can add

value to the service invocation without needing transport-specific programming.

Chapter 5. Web services 481

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

WSIF Overview

The Web Services Invocation Framework (WSIF) provides a Java API for invoking Web services,

independent of the format of the service or the transport protocol through which it is invoked.

This framework addresses all of the issues identified in “Goals of WSIF” on page 480.

WSIF provides the following features:

v An API that provides binding-independent access to any Web service.

v A close relationship with WSDL, so it can invoke any service that you can describe in WSDL.

v A stubless and completely dynamic invocation of a Web service.

v The capability to plug a new or updated implementation of a binding into WSIF at run time.

v The option to defer the choice of a binding until run time.

WSIF provides runtime support for Web services, and for WSDL extensions and bindings, that were not

known at build time. This capability is known as dynamic invocation. Using WSIF, a client application can

choose dynamically the optimal binding to use for invoking Web service operations. For example, a Web

service might offer a SOAP binding, and also a local Java binding so that you can treat the local service

implementation (a Java class) as a Web service. If a client application is deployed in the same

environment as the service, then this client can use the local Java binding for the service. This provides

more efficient communication between the client and the service by making direct Java calls rather than

indirect calls using the SOAP binding. WSIF provides this runtime support through the use of providers.

The providers support Web services, WSDL extensions and bindings that were not known at build time by

using the WSDL description to access the target service.

WSIF is designed to work both in an unmanaged environment (stand-alone) and inside a managed

container. You can use the Java Naming and Directory Interface (JNDI) to find the WSIF service, or you

can use the location described in the WSDL.

For more conceptual information about WSIF and WSDL, see the following topics:

v WSIF and WSDL

v WSIF architecture

v WSIF usage scenarios

WSIF supports Internet Protocol Version 6, and Java API for XML-based Remote Procedure Calls

(JAX-RPC) Version 1.1 for SOAP.

WSIF architecture

A diagram depicting the Web Services Invocation Framework (WSIF) architecture, and a description of

each of the major components of the architecture.

The Web Services Invocation Framework (WSIF) architecture is shown in the figure.

WSDL

document

WSIF

operation

WSIF

service

1. Load WSDL
document

2. Create WSIF
service

3. Use WSIF
service to get

operation

4. Create message 5. Invoke service
with operation name

and message

Service

WSIF
provider

WSDL
describes

service
interface

WSIF

service

factory

 The components of this architecture include:

482 Administering WebSphere applications

WSDL document

The Web service WSDL document contains the location of the Web service. The binding

document defines the protocol and format for operations and messages defined by a particular

portType.

WSIF service

The WSIFService interface is responsible for generating an instance of the WSIFOperation

interface to use for a particular invocation of a service operation. For more information, see the

WSIFService interface topic.

WSIF operation

The run-time representation of an operation, called WSIFOperation is responsible for invoking a

service based on a particular binding. For more information, see the WSIFOperation interface

topic.

WSIF provider

A WSIF provider is an implementation of a WSDL binding that can run a WSDL operation through

a binding-specific protocol. WSIF includes SOAP providers, JMS providers, Java providers and

EJB providers. For more information, see Linking a WSIF service to the underlying implementation

of the service.

WSIF and WSDL

There is a close relationship between the metadata-based Web Services Invocation Framework (WSIF)

and the evolving semantics of Web Services Description Language (WSDL).

In WSDL, a service is defined in three distinct sections:

v The portType. This section defines the abstract interface offered by the service. A portType defines a

set of operations. Each operation can be In-Out (request-response), In-Only, Out-Only and Out-In

(Solicit-Response). Each operation defines the input and/or output messages. A message is defined as

a set of parts, and each part has a schema-defined type.

v The binding. This section defines how to map between the abstract portType and a real service format

and protocol. For example the SOAP binding defines the encoding style, the SOAPAction header, the

namespace of the body (the targetURI), and so on.

v The port. This section defines the actual location (endpoint) of the available service. For example, the

HTTP Web address at which a SOAP service is available.

Currently in WSDL, each port has one and only one binding, and each binding has a single portType. But

(more importantly) each service (portType) can have multiple ports, each of which represents an

alternative location and binding for accessing that service.

The Web Services Invocation Framework (WSIF) follows the semantics of WSDL as much as possible:

v The WSIF dynamic invocation API directly exposes run-time equivalents of the model from WSDL. For

example, invocation of an operation involves executing an operation with an input message.

v WSDL has extension points that support the addition of new ports and bindings. This enables WSDL to

describe new systems. The equivalent concept in WSIF is a provider, that enables WSIF to understand

a class of extensions and thereby to support a new service implementation type.

As a metadata-based invocation framework, WSIF follows the design of the metadata. As WSDL is

extended, WSIF is updated to follow.

The primary type system of WSIF is XML schema. WSIF supports invocation using dynamic proxies, which

in turn support Java type systems, but when you use the WSIFMessage interface it is your responsibility to

populate WSIFMessage objects with data based on the XML schema types as defined in the WSDL

document. You should define your object types by a canonical and fixed mapping from schema types into

the run-time environment.

WSIF usage scenarios

This topic describes two brief scenarios that illustrate the role WSIF plays in the emerging Web services

environment.

Chapter 5. Web services 483

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Scenario: Redevelopment and redeployment

When you first implement a Web service, you create a simple prototype. When you want to move a

prototype Web service into production, you often need to redevelop and redeploy it.

The Web Services Invocation Framework (WSIF) uses the same API calls irrespective of the underlying

technologies, therefore if you use WSIF:

v You can reimplement and redeploy your services without changing the client code.

v You can use existing reliable and high-performance infrastructures like Remote Method Invocation over

Internet Inter-ORB Protocol (RMI-IIOP) and Java Message Service (JMS) without sacrificing the

location-independence that the Web service model offers.

Scenario: Service Flow composition

A service flow typically invokes a Web service, then passes the response from one Web service to the

next Web service, perhaps performing some transformation in the middle.

There are two key aspects to this flow that WSIF provides:

v A representation of the service invocation based on the metadata in WSDL.

v The ability to build invocations based solely on the portType, which can therefore be used in any

implementation.

For example, imagine that you build a meta-service that uses a number of services to build a process.

Initially, several of those services are simple Java bean prototypes that are written and exposed through

SOAP, but you plan to reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation, because they pass through the

Web server and servlet engine and on to the SOAP router. If you use WSIF to call the beans directly, you

get much better performance compared to SOAP and you do not lose access or location transparency.

Using WSIF, you can replace the Java bean implementations with EJB implementations without changing

the client code. To move some of the Web services from local implementations to external SOAP services,

you just update the WSDL.

Setting up and deploying a new UDDI registry

A UDDI registry node consists of the UDDI registry application (an enterprise application that is supplied

as part of WebSphere Application Server), a store of data (using a relational database management

system) referred to as the UDDI database, and a means to connect the application to the data (a

datasource and related elements). To set up a new UDDI registry you create the UDDI database and

datasource, and deploy the supplied application.

Before you begin

Start WebSphere Application Server, and create a server to host the UDDI registry. Use Starting and

stopping quick reference for information about starting WebSphere Application Server using either

commands or the administrative console.

About this task

The subtopics describe how to create the UDDI database (which can be local or remote) and datasource,

and how to deploy the UDDI registry application.

484 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

You can create either a default UDDI node or a customized UDDI node. The main difference between

default and customized, in the context of these set up tasks, refers to a number of mandatory UDDI

registry properties such as the UDDI node ID and description, and the prefix to be used for generated

discovery URLs.

Default UDDI node

The mandatory properties are automatically set to default values and cannot be changed. A default

UDDI node is a suitable option for initial evaluation of the UDDI registry, and for development and

test purposes.

Customized UDDI node

You must set the mandatory properties, but once set they cannot be changed for this

configuration. With a customized UDDI node you have more control over the database

management system used for the UDDI database, and the properties used to set up the UDDI

database. With a customized UDDI node, you create the UDDI database and datasource to your

own specifications before deploying the UDDI registry application. A customized node is a suitable

option for production purposes. To move from a default UDDI node to a customized node, see

“Changing the UDDI registry application environment after deployment” on page 506.

v If you want to create a default UDDI registry with a database other than embedded Apache Derby, or if

you want an embedded Apache Derby database but you want to create the datasource manually, follow

the instructions in “Setting up a default UDDI node” on page 486.

v If you want to create a customized UDDI registry, follow the instructions in “Setting up a customized

UDDI node” on page 495.

Database considerations for production use of the UDDI registry

The UDDI registry fully supports a number of databases and can be used for development and test

purposes. However, there are factors to consider when you decide which database is appropriate for your

anticipated UDDI registry production use.

It is important to consult the information that is supplied by your chosen database vendor, but you also

need to consider the likely size and volume of requests, and whether the general performance and

scalability of the UDDI registry is important.

For example, the Apache Derby database supports the full function of the UDDI registry, but it is not an

enterprise level database and it does not have the same characteristics, for example, scaling or

performance, as enterprise databases such as DB2.

Note: Apache Derby is not supported for production use.

If you need multiple connections to the UDDI registry database (for example to use the UDDI registry in a

cluster configuration) and Apache Derby is your preferred database, you need to use the network option

for Apache Derby. This is because embedded Apache Derby has a limitation that allows only one Java

virtual machine to access or load a database instance at any one time. That is, two application servers

cannot access the same Apache Derby database instance at the same time.

Note: The UDDI registry can support multiple users, even if a single database connection exists.

Chapter 5. Web services 485

Related concepts

“Overview of the Version 3 UDDI registry” on page 434
The Universal Description, Discovery, and Integration (UDDI) specification defines a way to publish and

discover information about Web services. The term Web service describes specific business functionality

that is exposed by a company, usually through an Internet connection, to allow another company, its

subsidiaries, or software program, to use the service.

Related reference

“About Apache Derby” on page 1617
Use Apache Derby as a test and development database only. Apache Derby must run at a minimal version

of v10.3 or Cloudscape® v10.1x. The Apache Derby package that is bundled with the application server is

backed by full IBM Quality Assurance (QA).

“Data source minimum required settings for Apache Derby” on page 1512
These properties vary according to the database vendor requirements for JDBC driver implementations.

You must set the appropriate properties on every data source that you configure. These settings are for

Apache Derby and Cloudscape data sources.

Setting up a default UDDI node

Use this task to create a UDDI node with predetermined property values. This UDDI node is suitable for

initial evaluation of the UDDI registry and for development and test purposes.

About this task

You cannot change the mandatory node properties, such as node ID, either during the creation of the

node, or afterward. If you want to choose your own mandatory node properties, set up a customized node,

as detailed in “Setting up a customized UDDI node” on page 495.

Note: If you are deploying the UDDI registry application into a cluster, and you want to use Apache Derby

for your database, you must use the network version of Apache Derby. Embedded Apache Derby is

not supported for cluster configurations.

1. Create a database schema to hold the UDDI registry by completing one of the following tasks,

ensuring that you use the default node options where specified:

v “Creating a DB2 distributed database for the UDDI registry” on page 487

v “Creating a DB2 for iSeries database for the UDDI registry” on page 488

v “Creating an Apache Derby database for the UDDI registry” on page 490

v “Creating an Oracle database for the UDDI registry” on page 490

Note: If you are creating the UDDI node in a cluster, it is assumed that a single database is used for

all members of the cluster.

2. Set up a data source for the UDDI registry application to use to access the database, as described in

“Creating a data source for the UDDI registry” on page 492.

3. Deploy the UDDI registry application, as described in “Deploying the UDDI registry application” on

page 494.

4. Click Applications → Application Types → WebSphere enterprise applications to display the

installed applications. Start the UDDI registry application by selecting the check box next to it and

clicking Start. Alternatively, if the application server is not already running, start the application server.

This action automatically starts the UDDI registry application. The UDDI node is now active.

Note: Restarting the UDDI application, or the application server, always reactivates the UDDI node,

even if the node was previously deactivated.

486 Administering WebSphere applications

5. Click UDDI → UDDI Nodes → UDDI_node_id to display the properties page for the UDDI registry node.

Set Prefix for generated discoveryURLs to a valid URL for your configuration. This property specifies

the URL prefix that is applied to generated discovery URLs that are used by the HTTP GET service for

UDDI Version 2.

What to do next

Because you have chosen to use a default UDDI node, the node will be initialized when the UDDI

application is started for the first time. Follow the instructions in “Using the UDDI registry Installation

Verification Program (IVP)” on page 506 to verify that you have successfully set up the UDDI node.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

<DataBaseName>

The name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

<DB2UserID>

A DB2 userid with administrative privileges.

<DB2Password>

The password for the DB2 userid.

<BufferPoolName>

The name of a buffer pool to be used by the UDDI registry database. A suggested name is uddibp,

but any name can be used, because the buffer pool is created as part of this task.

<TableSpaceName>

The name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

The name of a temporary table space. A suggested value is udditstemp, but any name can be

used, because the temporary table space is created as part of this task.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt.

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

Chapter 5. Web services 487

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. [Optional] Enter the following command if you want the database to be used as a default UDDI node:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for iSeries database for the UDDI registry

Perform this task if you want to use DB2 for iSeries as the database store for your UDDI registry data.

Before you begin

IBMUDI30 and IBMUDS30 are the default names of the UDDI registry schema in the SQL scripts

mentioned below. These default names are the recommended values and are assumed throughout the

UDDI documentation. If you want to use different names, modify the SQL files listed below, then substitute

488 Administering WebSphere applications

your own names whenever you see ’IBMUDI30’ or ’IBMUDS30’ in other sections of the documentation.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Use iSeries Navigator to run SQL scripts.

a. Open iSeries Navigator.

b. Expand My Connections → iSeriesName → Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the i5/OS DB2 SQL files.

a. Map a network drive to the root directory of your i5/OS server’s integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (such as Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit → Select All.

b. Click Edit → Copy.

c. In the Run SQL Scripts window, click Edit → Paste.

d. Click Run → All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts

window.

f. Repeat the above steps for all the SQL scripts listed in step 2.

Note: iSeries Navigator for i5/OS V5R2 will encounter an error on the last line of the SQL script when

running the uddi30crt_25_tables_db2udb_iSeries.sql script. This error can be ignored. i5/OS

V5R2 does support running UDDI in a clustered high availability environment. For more

information, see the WebSphere Application Server for i5/OS tech notes.

4. This step should only be run if you want your database to be used as a default UDDI node.

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in Step 2 above.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in Step 3

above.

What to do next

Continue with setting up and deploying your UDDI registry node.

Chapter 5. Web services 489

Creating an Apache Derby database for the UDDI registry

Perform this task to use Apache Derby (embedded or network) as the database store (either local or

remote) for your UDDI registry.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, this is app_server_root/UDDIReg/
databasescripts

arg2 The path to the location where you want to install the Apache Derby database.

 For example, profile_root/databases/com.ibm.uddi

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

arg4 An optional argument, which must either be the string ’DEFAULT’, or be omitted. Specify

DEFAULT if you want the database to be used as a default UDDI node. This argument is case

sensitive.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Start a Qshell session by entering the STRQSH command from the i5/OS command line.

2. Run the following Java -jar command from the app_server_root/UDDIReg/databaseScripts directory, to

create a UDDI Apache Derby database using UDDIDerbyCreate.jar.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to recreate it. If you choose to

recreate the database, your existing database is deleted and a new one is created in its place. If you

choose not to recreate the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the

uddiDeploy.jacl script cannot recreate the database. Use the uddiRemove.jacl script to remove

the database, as described in “Removing a UDDI registry node” on page 1007, restart the

server, and run the uddiDeploy.jacl script again.

3. If you are using a remote database (which requires network Apache Derby), or you want to use

network Apache Derby for other reasons, for example, if you want to use Apache Derby with a cluster,

configure the Apache Derby Network Server framework. For details, see the section about managing

the Derby Network Server in the Derby Server and Administration Guide.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry

Perform this task if you want to use Oracle as the database store for your UDDI registry data. You need

only do this once for each UDDI registry, as part of setting up and deploying a UDDI registry.

490 Administering WebSphere applications

http://db.apache.org/derby/manuals/index.html#docs_10.3

About this task

The supported versions of Oracle are Version 9i1 and Version 10g2

You can create a remote database using Oracle, but not a local database. Because the database is

remote, use the database product documentation to familiarize yourself with the relevant capabilities of the

product before proceeding with this task.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas with these names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used are:

<OracleUserID>

is the Oracle userid to be used to create the database.

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the following actions depending on your level of Oracle:

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

v For Version 10g and later:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_constraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

1.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters; instanceParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

2.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters.

Chapter 5. Web services 491

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a data source for the UDDI registry

You create a data source so that the UDDI registry can use it to access the UDDI database.

Before you begin

You must have already created the database for the UDDI registry. These instructions assume that, if you

are installing into a cluster, a single database will be used by all members of the cluster.

About this task

Perform this task as part of setting up and deploying a new UDDI registry. The data source is used by the

UDDI registry to access the UDDI database.

1. Create a J2C Authentication Data Entry. This is not required for embedded Apache Derby, but is

required for network Apache Derby.

a. Click Security → Global security → [Authentication] Java Authentication and Authorization

Service → J2C authentication data.

b. Click New to create a new J2C authentication data entry.

c. Enter the following details:

Alias A suitable short name, for example UDDIAlias.

Userid

 The database user ID (for example db2admin for DB2, or IBMUDDI for Oracle), which is

used to read and write to the UDDI registry database. For network Apache Derby, the user

ID can be any value.

Password

The password associated with the user ID specified earlier. For network Apache Derby, the

password can be any value.

Description

A description of the user ID.

Click Apply, then save the changes to the master configuration.

2. Create a JDBC Provider, if a suitable one does not already exist, using the following table to determine

the provider type and implementation type for your chosen database:

 Database Provider type Implementation type

DB2 DB2 UDB for iSeries (Native) Connection Pool data source

Oracle Oracle JDBC Driver Connection Pool data source

Embedded Apache Derby Derby JDBC Driver Connection Pool data source

Network Apache Derby Derby Network Server JDBC Driver

provider

Connection Pool data source

Microsoft SQL Server DataDirect Connect JDBC Driver

Microsoft SQL Server JDBC Driver

Connection Pool data source

Note: If you are setting up a UDDI node in a cluster, select cluster as the scope of the JDBC provider.
For details on how to create a JDBC provider, see Creating and configuring a JDBC provider using the

administrative console.

3. Use the following steps to create the data source for the UDDI registry:

a. Click Resources → JDBC → JDBC Providers.

492 Administering WebSphere applications

b. Select the scope of the JDBC provider that you selected or created earlier, that is, the level at

which the JDBC provider is defined. For example, for a JDBC provider that is defined at the level

of server1, select the following:

Node=Node01, Server=server1

All the JDBC providers that are defined at the selected scope are displayed.

c. Select the JDBC provider that you created earlier.

d. Under Additional Properties, select Data sources. Do not select the Data sources (WebSphere

Application Server V4) option.

e. Click New to create a new data source.

f. In the Create a data source wizard, enter the following data:

Name A suitable name, for example UDDI Datasource.

JNDI name

Set this value to datasources/uddids. This is a mandatory field.

 You must not have any other data sources that use this JNDI name. If you have another

data source that uses this JNDI name, you must either remove it or change its JNDI name.

For example, if you created a default UDDI node previously using an Apache Derby

database, before you continue, use the uddiRemove.jacl script with the default option to

remove the data source and the UDDI application instance.

Component-managed authentication alias

v For DB2, Oracle, or network Apache Derby, select the alias that you created in step 2. It

is prefixed by the node name, for example MyNode/UDDIAlias.

v for embedded Apache Derby leave this set to (none).

g. Click Next.

h. On the database-specific properties page of the wizard, enter the following data:

v for DB2:

Database name

For example:

*LOCAL

v For Oracle - URL - for example:

 jdbc:oracle:oci8:@<Oracle database name>

v For Apache Derby (embedded or network) - Database name - for example:

profile_root/databases/com.ibm.uddi/UDDI30

For network Apache Derby, also make sure that the Server name and Port number match the

network server.

Use this Data Source in container-managed persistence (CMP)

Ensure that the check box is cleared.

i. Click Next, then check the summary and click Finish.

j. Click the data source to display its properties, and add the following information:

Description

A description of the data source.

Category

Set this value to uddi.

Data store helper class name

This value is provided automatically:

Chapter 5. Web services 493

Database Data store helper class name

DB2 com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Oracle 9i or 10g com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper

Oracle 11g com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Embedded Apache

Derby

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Network Apache Derby com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Mapping-configuration alias

Set this option to DefaultPrincipalMapping.

k. Click Apply.

l. Select Additional Properties → Custom Properties → libraries.

m. Enter IBMUDI30,IBMUDS30 in the Value field and click OK.

n. Save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and

clicking Test connection. A message similar to “Test Connection for datasource UDDI Datasource on

server server1 at node Node01 was successful” is displayed. If a different message is displayed, use

the information in that message to investigate and resolve the problem.

What to do next

Continue with setting up and deploying your UDDI registry node.

Deploying the UDDI registry application

You deploy a UDDI registry application as part of setting up a UDDI node. You can either use the supplied

script, or use the administrative console.

Before you begin

Before you deploy a UDDI registry application, you must create the database and data source for the

UDDI registry.

About this task

Use this task as part of “Setting up a default UDDI node” on page 486 or “Setting up a customized UDDI

node” on page 495.

1. Start a Qshell session by entering the STRQSH command from the i5/OS command line.

2. Run the uddiDeploy.jacl script as shown, from the app_server_root/bin directory.

This script deploys the UDDI registry to a server or cluster that you specify.

wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl

 {node_name server_name | cluster_name}

where:

v ’-conntype none’ is optional, and is needed only if the application server is not running.

v ’-profileName profile_name’ is the deployment manager profile. If you do not specify a profile, the

default profile is used.

v node_name is the name of the WebSphere Application Server node on which the target server runs.

The node name is case sensitive.

v server_name is the name of the target server on which you wish to deploy the UDDI registry, for

example, server1. The server name is case sensitive.

v cluster_name is the name of the target cluster into which you wish to deploy the UDDI registry. The

cluster name is case sensitive.

494 Administering WebSphere applications

For example, to deploy UDDI on node ’MyNode’ and server ’server1’, (assuming that server1 is

already started):

wsadmin -f uddiDeploy.jacl MyNode server1

To deploy UDDI into cluster ’MyCluster’:

wsadmin -f uddiDeploy.jacl MyCluster

You can also deploy the UDDI application (the uddi.ear file) using the administrative console, in the

normal way. However, if you use the administrative console, some steps that the uddiDeploy.jacl script

performs automatically do not occur. If you use the administrative console to install the UDDI

application, you must perform some actions manually. To do this, use the following steps:

a. Install the application.

b. Click Applications → Application Types → WebSphere enterprise applications →

uddi_application → [Detail Properties] Class loading and update detection.

c. Ensure that Class loader order is set to Classes loaded with application class loader first.

d. Ensure that WAR class loader policy is set to Single class loader for application.

Results

The UDDI application is deployed. If you see the following error message, check that you ran the

uddiDeploy.jacl script using the deployment manager profile.

WASX7017E: Exception received while running file "uddiDeploy.jacl"; exception in

formation: com.ibm.ws.scripting.ScriptingException: WASX7070E: The configuration

 service is not available.

What to do next

Continue setting up the UDDI node.

Setting up a customized UDDI node

You set up a UDDI node with your own property values so that it is suitable for production configurations.

About this task

Use this task to set up a UDDI node with property values that you choose. You cannot change the

mandatory node properties, such as node ID, after the initialization of the node. Such a node is suitable for

production purposes.

Note: If you deploy the UDDI registry application into a cluster, and you want to use Apache Derby for

your database, you must use the network version of Apache Derby. Embedded Apache Derby is not

supported for cluster configurations.

1. Review the information in “Database considerations for production use of the UDDI registry” on page

485 to decide which database system to use, then create a database schema to hold the UDDI

registry by completing one of the following tasks. Do not use the default node options where specified.

v “Creating a DB2 distributed database for the UDDI registry” on page 487

v “Creating a DB2 for iSeries database for the UDDI registry” on page 488

v “Creating an Apache Derby database for the UDDI registry” on page 490

v “Creating an Oracle database for the UDDI registry” on page 490

Note: If you are creating the UDDI node in a cluster, it is assumed that a single database is used for

all members of the cluster.

2. Set up a data source for the UDDI registry application to use to access the database, as described in

“Creating a data source for the UDDI registry” on page 492.

Chapter 5. Web services 495

3. Deploy the UDDI registry application, as described in “Deploying the UDDI registry application” on

page 494.

4. Click Applications → Application Types → WebSphere enterprise applications to display the

installed applications. Start the UDDI registry application by selecting the check box next to it and

clicking Start. Alternatively, if the application server is not already running, start the application server.

This action automatically starts the UDDI registry application. The UDDI node is now active.

Note: Restarting the UDDI application, or the application server, always reactivates the UDDI node,

even if the node was previously deactivated.

What to do next

Because you chose a user-customized UDDI node, you need to set the properties for the UDDI node

using UDDI administration, and initialize the node, before it is ready to accept UDDI requests. See

“Initializing the UDDI registry node” on page 504 for details.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

<DataBaseName>

The name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

<DB2UserID>

A DB2 userid with administrative privileges.

<DB2Password>

The password for the DB2 userid.

<BufferPoolName>

The name of a buffer pool to be used by the UDDI registry database. A suggested name is uddibp,

but any name can be used, because the buffer pool is created as part of this task.

<TableSpaceName>

The name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

The name of a temporary table space. A suggested value is udditstemp, but any name can be

used, because the temporary table space is created as part of this task.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt.

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

496 Administering WebSphere applications

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. [Optional] Enter the following command if you want the database to be used as a default UDDI node:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for iSeries database for the UDDI registry

Perform this task if you want to use DB2 for iSeries as the database store for your UDDI registry data.

Chapter 5. Web services 497

Before you begin

IBMUDI30 and IBMUDS30 are the default names of the UDDI registry schema in the SQL scripts

mentioned below. These default names are the recommended values and are assumed throughout the

UDDI documentation. If you want to use different names, modify the SQL files listed below, then substitute

your own names whenever you see ’IBMUDI30’ or ’IBMUDS30’ in other sections of the documentation.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Use iSeries Navigator to run SQL scripts.

a. Open iSeries Navigator.

b. Expand My Connections → iSeriesName → Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the i5/OS DB2 SQL files.

a. Map a network drive to the root directory of your i5/OS server’s integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (such as Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit → Select All.

b. Click Edit → Copy.

c. In the Run SQL Scripts window, click Edit → Paste.

d. Click Run → All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts

window.

f. Repeat the above steps for all the SQL scripts listed in step 2.

Note: iSeries Navigator for i5/OS V5R2 will encounter an error on the last line of the SQL script when

running the uddi30crt_25_tables_db2udb_iSeries.sql script. This error can be ignored. i5/OS

V5R2 does support running UDDI in a clustered high availability environment. For more

information, see the WebSphere Application Server for i5/OS tech notes.

4. This step should only be run if you want your database to be used as a default UDDI node.

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in Step 2 above.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in Step 3

above.

498 Administering WebSphere applications

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Apache Derby database for the UDDI registry

Perform this task to use Apache Derby (embedded or network) as the database store (either local or

remote) for your UDDI registry.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, this is app_server_root/UDDIReg/
databasescripts

arg2 The path to the location where you want to install the Apache Derby database.

 For example, profile_root/databases/com.ibm.uddi

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

arg4 An optional argument, which must either be the string ’DEFAULT’, or be omitted. Specify

DEFAULT if you want the database to be used as a default UDDI node. This argument is case

sensitive.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Start a Qshell session by entering the STRQSH command from the i5/OS command line.

2. Run the following Java -jar command from the app_server_root/UDDIReg/databaseScripts directory, to

create a UDDI Apache Derby database using UDDIDerbyCreate.jar.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to recreate it. If you choose to

recreate the database, your existing database is deleted and a new one is created in its place. If you

choose not to recreate the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the

uddiDeploy.jacl script cannot recreate the database. Use the uddiRemove.jacl script to remove

the database, as described in “Removing a UDDI registry node” on page 1007, restart the

server, and run the uddiDeploy.jacl script again.

3. If you are using a remote database (which requires network Apache Derby), or you want to use

network Apache Derby for other reasons, for example, if you want to use Apache Derby with a cluster,

configure the Apache Derby Network Server framework. For details, see the section about managing

the Derby Network Server in the Derby Server and Administration Guide.

What to do next

Continue with setting up and deploying your UDDI registry node.

Chapter 5. Web services 499

http://db.apache.org/derby/manuals/index.html#docs_10.3

Creating an Oracle database for the UDDI registry

Perform this task if you want to use Oracle as the database store for your UDDI registry data. You need

only do this once for each UDDI registry, as part of setting up and deploying a UDDI registry.

About this task

The supported versions of Oracle are Version 9i3 and Version 10g4

You can create a remote database using Oracle, but not a local database. Because the database is

remote, use the database product documentation to familiarize yourself with the relevant capabilities of the

product before proceeding with this task.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas with these names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used are:

<OracleUserID>

is the Oracle userid to be used to create the database.

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the following actions depending on your level of Oracle:

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

v For Version 10g and later:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_constraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

3.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters; instanceParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

4.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters.

500 Administering WebSphere applications

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a data source for the UDDI registry

You create a data source so that the UDDI registry can use it to access the UDDI database.

Before you begin

You must have already created the database for the UDDI registry. These instructions assume that, if you

are installing into a cluster, a single database will be used by all members of the cluster.

About this task

Perform this task as part of setting up and deploying a new UDDI registry. The data source is used by the

UDDI registry to access the UDDI database.

1. Create a J2C Authentication Data Entry. This is not required for embedded Apache Derby, but is

required for network Apache Derby.

a. Click Security → Global security → [Authentication] Java Authentication and Authorization

Service → J2C authentication data.

b. Click New to create a new J2C authentication data entry.

c. Enter the following details:

Alias A suitable short name, for example UDDIAlias.

Userid

 The database user ID (for example db2admin for DB2, or IBMUDDI for Oracle), which is

used to read and write to the UDDI registry database. For network Apache Derby, the user

ID can be any value.

Password

The password associated with the user ID specified earlier. For network Apache Derby, the

password can be any value.

Description

A description of the user ID.

Click Apply, then save the changes to the master configuration.

2. Create a JDBC Provider, if a suitable one does not already exist, using the following table to determine

the provider type and implementation type for your chosen database:

 Database Provider type Implementation type

DB2 DB2 UDB for iSeries (Native) Connection Pool data source

Oracle Oracle JDBC Driver Connection Pool data source

Embedded Apache Derby Derby JDBC Driver Connection Pool data source

Network Apache Derby Derby Network Server JDBC Driver

provider

Connection Pool data source

Microsoft SQL Server DataDirect Connect JDBC Driver

Microsoft SQL Server JDBC Driver

Connection Pool data source

Chapter 5. Web services 501

Note: If you are setting up a UDDI node in a cluster, select cluster as the scope of the JDBC provider.
For details on how to create a JDBC provider, see Creating and configuring a JDBC provider using the

administrative console.

3. Use the following steps to create the data source for the UDDI registry:

a. Click Resources → JDBC → JDBC Providers.

b. Select the scope of the JDBC provider that you selected or created earlier, that is, the level at

which the JDBC provider is defined. For example, for a JDBC provider that is defined at the level

of server1, select the following:

Node=Node01, Server=server1

All the JDBC providers that are defined at the selected scope are displayed.

c. Select the JDBC provider that you created earlier.

d. Under Additional Properties, select Data sources. Do not select the Data sources (WebSphere

Application Server V4) option.

e. Click New to create a new data source.

f. In the Create a data source wizard, enter the following data:

Name A suitable name, for example UDDI Datasource.

JNDI name

Set this value to datasources/uddids. This is a mandatory field.

 You must not have any other data sources that use this JNDI name. If you have another

data source that uses this JNDI name, you must either remove it or change its JNDI name.

For example, if you created a default UDDI node previously using an Apache Derby

database, before you continue, use the uddiRemove.jacl script with the default option to

remove the data source and the UDDI application instance.

Component-managed authentication alias

v For DB2, Oracle, or network Apache Derby, select the alias that you created in step 2. It

is prefixed by the node name, for example MyNode/UDDIAlias.

v for embedded Apache Derby leave this set to (none).

g. Click Next.

h. On the database-specific properties page of the wizard, enter the following data:

v for DB2:

Database name

For example:

*LOCAL

v For Oracle - URL - for example:

 jdbc:oracle:oci8:@<Oracle database name>

v For Apache Derby (embedded or network) - Database name - for example:

profile_root/databases/com.ibm.uddi/UDDI30

For network Apache Derby, also make sure that the Server name and Port number match the

network server.

Use this Data Source in container-managed persistence (CMP)

Ensure that the check box is cleared.

i. Click Next, then check the summary and click Finish.

j. Click the data source to display its properties, and add the following information:

Description

A description of the data source.

502 Administering WebSphere applications

Category

Set this value to uddi.

Data store helper class name

This value is provided automatically:

 Database Data store helper class name

DB2 com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Oracle 9i or 10g com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper

Oracle 11g com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Embedded Apache

Derby

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Network Apache Derby com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Mapping-configuration alias

Set this option to DefaultPrincipalMapping.

k. Click Apply.

l. Select Additional Properties → Custom Properties → libraries.

m. Enter IBMUDI30,IBMUDS30 in the Value field and click OK.

n. Save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and

clicking Test connection. A message similar to “Test Connection for datasource UDDI Datasource on

server server1 at node Node01 was successful” is displayed. If a different message is displayed, use

the information in that message to investigate and resolve the problem.

What to do next

Continue with setting up and deploying your UDDI registry node.

Deploying the UDDI registry application

You deploy a UDDI registry application as part of setting up a UDDI node. You can either use the supplied

script, or use the administrative console.

Before you begin

Before you deploy a UDDI registry application, you must create the database and data source for the

UDDI registry.

About this task

Use this task as part of “Setting up a default UDDI node” on page 486 or “Setting up a customized UDDI

node” on page 495.

1. Start a Qshell session by entering the STRQSH command from the i5/OS command line.

2. Run the uddiDeploy.jacl script as shown, from the app_server_root/bin directory.

This script deploys the UDDI registry to a server or cluster that you specify.

wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl

 {node_name server_name | cluster_name}

where:

v ’-conntype none’ is optional, and is needed only if the application server is not running.

v ’-profileName profile_name’ is the deployment manager profile. If you do not specify a profile, the

default profile is used.

v node_name is the name of the WebSphere Application Server node on which the target server runs.

The node name is case sensitive.

Chapter 5. Web services 503

v server_name is the name of the target server on which you wish to deploy the UDDI registry, for

example, server1. The server name is case sensitive.

v cluster_name is the name of the target cluster into which you wish to deploy the UDDI registry. The

cluster name is case sensitive.

For example, to deploy UDDI on node ’MyNode’ and server ’server1’, (assuming that server1 is

already started):

wsadmin -f uddiDeploy.jacl MyNode server1

To deploy UDDI into cluster ’MyCluster’:

wsadmin -f uddiDeploy.jacl MyCluster

You can also deploy the UDDI application (the uddi.ear file) using the administrative console, in the

normal way. However, if you use the administrative console, some steps that the uddiDeploy.jacl script

performs automatically do not occur. If you use the administrative console to install the UDDI

application, you must perform some actions manually. To do this, use the following steps:

a. Install the application.

b. Click Applications → Application Types → WebSphere enterprise applications →

uddi_application → [Detail Properties] Class loading and update detection.

c. Ensure that Class loader order is set to Classes loaded with application class loader first.

d. Ensure that WAR class loader policy is set to Single class loader for application.

Results

The UDDI application is deployed. If you see the following error message, check that you ran the

uddiDeploy.jacl script using the deployment manager profile.

WASX7017E: Exception received while running file "uddiDeploy.jacl"; exception in

formation: com.ibm.ws.scripting.ScriptingException: WASX7070E: The configuration

 service is not available.

What to do next

Continue setting up the UDDI node.

Initializing the UDDI registry node

Use this topic to initialize a UDDI registry node after set up or migration.

Before you begin

You must have already set up a UDDI registry node, either as a new node or to use for migrating a UDDI

registry Version 2 node.

About this task

The UDDI registry node has various properties, some of which must be set before initializing the node.

There are two categories of UDDI registry node properties:

v Mandatory node properties. These properties must be set before the UDDI node can be initialized. You

may set these properties as many times as you wish before initialization. However, once the UDDI node

has been initialized, these properties will become read only for the lifetime of that UDDI node. It is very

important to set these properties correctly.

v All other properties. These properties may be set before, and after, initialization.

Configure these properties and initialize the node using the UDDI administrative console or JMX

management interface.

1. Click UDDI → UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.

504 Administering WebSphere applications

2. Set the mandatory node properties to suitable, and valid, values. These properties are indicated by the

presence of a ’*’ next to the input field. The properties are listed below; more information on each

property is given in the context help of the administrative console.

UDDI node ID

This must be a text string beginning with ’uddi:’ that is unique to this UDDI node. The default

value may be sufficient, but if you accept it you should ensure that it is unique.

UDDI node description

This is a text string describing the node.

Root key generator

This must be a text string beginning with ’uddi:’ that is unique to this UDDI node. The default

value may be sufficient but may contain text, such as ’keyspace_id’, that you should modify to

match your system. If you accept the default value, ensure that it is unique for this UDDI node.

Prefix for generated discoveryURLs

This should be a valid URL.

3. If you are migrating from Version 2 of the UDDI registry, use the table below to perform the following

steps:

v Set any properties from uddi.properties that must remain the same as Version 2.

v Set any properties from uddi.properties that you would like to keep the same (such as

dbMaxResultCount).

 Version 2 UDDI property (set in

uddi.property file)

Version 3 UDDI Property (set via

Administrative Console or UDDI

Administrative Interface)

Recommended Version 3 UDDI property

setting

dbMaxResultCount maximum inquiry response set size You might want to retain the value from

Version 2, but can safely change this (or

use the default)

persister no equivalent Not applicable

defaultLanguage default language code You are recommended to retain the value

from Version 2

operatorName UDDI node ID You must use a valid value for the UDDI

node ID. This will be applied to your

Version 2 data as it is migrated.

maxSearchKeys maximum search keys You might want to retain the value from

Version 2, but can safely change this (or

use the default)

getServletURLprefix Prefix for generated discoveryURLs You should enter a valid value for your

configuration, which should therefore be

the same as the value used for Version 2.

getServletName no equivalent Not applicable

4. Set any other properties, such as policy values, that you wish to change from the default settings (or

these can be changed at a later time). For an explanation of policies and properties see “UDDI node

settings” on page 1018.

5. Click Apply to save your changes.

Note: You cannot change mandatory node properties after initialization. If you do not save your

changes before proceeding to the initialize step, you will have to delete and recreate the

database.

6. After saving your changes, initialize the UDDI node by clicking Initialize, at the top of the pane.

If you are migrating from Version 2 of the UDDI registry, the Version 2 data is migrated now. The

initialization may take some time to complete; to track its progress, return to the node collection page

Chapter 5. Web services 505

and click the refresh icon at the top of the Status column. Alternatively, open a second administrative

console window, and use the refresh icon in the same manner. The UDDI node passes through the

following states

a. Initialization pending.

b. Initialization in progress.

c. Migration in progress. (This state will only occur if you are migrating.)

d. Value set creation in progress.

e. Activated.

What to do next

If you have migrated the node from a previous version, return to Migrating to Version 3 of the UDDI

registry to verify that the migration was successful. If you have created a new node, follow the instructions

in “Using the UDDI registry Installation Verification Program (IVP)” to verify that you have successfully set

up the UDDI node.

Using the UDDI registry Installation Verification Program (IVP)

Use the Installation Verification Program (IVP) to verify that you have successfully deployed a UDDI

registry.

Before you begin

This topic describes a simple test that you can carry out as an Installation Verification Program (IVP) to

verify that you have deployed a UDDI registry successfully. You should perform this task after you have

followed the instructions in Setting up and Deploying a new UDDI registry.

1. Open a browser window and enter the URL that accesses the UDDI registry User Interface (see Using

the UDDI registry user interface).

2. Under the Quick Find heading on the Find tab, click the Business radio button and enter % in the

Starting with field.

3. Click Find. If you have deployed your UDDI registry successfully, the detail frame displays the

business entity which represents this UDDI node. You can click on the business entity to see its detail.

What to do next

As a further installation verification test, you can publish and find more UDDI entities by using the UDDI

registry User Interface, or you can compile and run one or more of the UDDI registry samples available

through the UDDI registry link on the Samples for WebSphere Application Server page of the IBM

developerWorks® WebSphere Web site.

Changing the UDDI registry application environment after deployment

You can change the environment of the UDDI registry application after you deploy it. This means you can

evaluate a UDDI registry using one database, then put it into production using a different database, or you

can move from a standalone application server to a network deployment cell.

About this task

After you deploy the UDDI registry application, you might want to change its environment. For example,

you might perform initial evaluation of the UDDI registry using an Apache Derby database, and then want

to put the UDDI registry into production using a DB2 database, or you might want to move from a

standalone application server to a network deployment cell.

506 Administering WebSphere applications

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

1. Optional: To incorporate a standalone application server into a network deployment cell, run the

addNode command included with WebSphere Application Server. Use the includeapps parameter to

ensure that the UDDI registry application, and any other applications on the server, are included in the

move. See the addNode command for details.

2. Optional: To move from a default UDDI node to a customized UDDI node, delete the UDDI registry

database and recreate it by completing one of the following tasks, ensuring that you do NOT use the

default node options where specified:

v “Creating a DB2 distributed database for the UDDI registry” on page 487

v “Creating a DB2 for iSeries database for the UDDI registry” on page 488

v “Creating an Apache Derby database for the UDDI registry” on page 490

v “Creating an Oracle database for the UDDI registry” on page 490

Note: Any data saved in the default node (policies, properties and user data) will be lost when you

delete the database. If you do not want to delete the database, you can instead create an

entirely new customized UDDI node in a separate application server. The default UDDI node will

still exist for you to use for test purposes.

3. Optional: To change the database type for the UDDI registry, perform the following steps:

a. Stop the UDDI registry application (click Applications → Application Types → WebSphere

enterprise applications, select the relevant check box and click Stop).

b. Either change the JNDI name of the existing datasource from datasources/uddids to another value,

or delete the datasource. To display the datasource properties click Resources → JDBC → JDBC

providers > database_type JDBC Provider > [Additional Properties] Data sources >

uddi_datasource.

c. Create the new database by referring to one of the following topics:

v “Creating a DB2 distributed database for the UDDI registry” on page 487

v “Creating a DB2 for iSeries database for the UDDI registry” on page 488

v “Creating an Apache Derby database for the UDDI registry” on page 490

v “Creating an Oracle database for the UDDI registry” on page 490

d. To transfer your UDDI data, use the standard capabilities of the database products to export the

data from the old database, and import it into the new one.

e. Create the new datasource. See “Creating a data source for the UDDI registry” on page 492.

f. Restart the UDDI registry application.

g. Check that you can access your UDDI data, then delete the old database.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

<DataBaseName>

The name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

<DB2UserID>

A DB2 userid with administrative privileges.

<DB2Password>

The password for the DB2 userid.

Chapter 5. Web services 507

<BufferPoolName>

The name of a buffer pool to be used by the UDDI registry database. A suggested name is uddibp,

but any name can be used, because the buffer pool is created as part of this task.

<TableSpaceName>

The name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

The name of a temporary table space. A suggested value is udditstemp, but any name can be

used, because the temporary table space is created as part of this task.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt.

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

508 Administering WebSphere applications

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. [Optional] Enter the following command if you want the database to be used as a default UDDI node:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for iSeries database for the UDDI registry

Perform this task if you want to use DB2 for iSeries as the database store for your UDDI registry data.

Before you begin

IBMUDI30 and IBMUDS30 are the default names of the UDDI registry schema in the SQL scripts

mentioned below. These default names are the recommended values and are assumed throughout the

UDDI documentation. If you want to use different names, modify the SQL files listed below, then substitute

your own names whenever you see ’IBMUDI30’ or ’IBMUDS30’ in other sections of the documentation.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Use iSeries Navigator to run SQL scripts.

a. Open iSeries Navigator.

b. Expand My Connections → iSeriesName → Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the i5/OS DB2 SQL files.

a. Map a network drive to the root directory of your i5/OS server’s integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (such as Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

Chapter 5. Web services 509

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit → Select All.

b. Click Edit → Copy.

c. In the Run SQL Scripts window, click Edit → Paste.

d. Click Run → All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts

window.

f. Repeat the above steps for all the SQL scripts listed in step 2.

Note: iSeries Navigator for i5/OS V5R2 will encounter an error on the last line of the SQL script when

running the uddi30crt_25_tables_db2udb_iSeries.sql script. This error can be ignored. i5/OS

V5R2 does support running UDDI in a clustered high availability environment. For more

information, see the WebSphere Application Server for i5/OS tech notes.

4. This step should only be run if you want your database to be used as a default UDDI node.

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in Step 2 above.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in Step 3

above.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Apache Derby database for the UDDI registry

Perform this task to use Apache Derby (embedded or network) as the database store (either local or

remote) for your UDDI registry.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, this is app_server_root/UDDIReg/
databasescripts

arg2 The path to the location where you want to install the Apache Derby database.

 For example, profile_root/databases/com.ibm.uddi

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

arg4 An optional argument, which must either be the string ’DEFAULT’, or be omitted. Specify

DEFAULT if you want the database to be used as a default UDDI node. This argument is case

sensitive.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Start a Qshell session by entering the STRQSH command from the i5/OS command line.

2. Run the following Java -jar command from the app_server_root/UDDIReg/databaseScripts directory, to

create a UDDI Apache Derby database using UDDIDerbyCreate.jar.

510 Administering WebSphere applications

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to recreate it. If you choose to

recreate the database, your existing database is deleted and a new one is created in its place. If you

choose not to recreate the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the

uddiDeploy.jacl script cannot recreate the database. Use the uddiRemove.jacl script to remove

the database, as described in “Removing a UDDI registry node” on page 1007, restart the

server, and run the uddiDeploy.jacl script again.

3. If you are using a remote database (which requires network Apache Derby), or you want to use

network Apache Derby for other reasons, for example, if you want to use Apache Derby with a cluster,

configure the Apache Derby Network Server framework. For details, see the section about managing

the Derby Network Server in the Derby Server and Administration Guide.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry

Perform this task if you want to use Oracle as the database store for your UDDI registry data. You need

only do this once for each UDDI registry, as part of setting up and deploying a UDDI registry.

About this task

The supported versions of Oracle are Version 9i5 and Version 10g6

You can create a remote database using Oracle, but not a local database. Because the database is

remote, use the database product documentation to familiarize yourself with the relevant capabilities of the

product before proceeding with this task.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas with these names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used are:

<OracleUserID>

is the Oracle userid to be used to create the database.

5.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters; instanceParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

6.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters.

Chapter 5. Web services 511

http://db.apache.org/derby/manuals/index.html#docs_10.3

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the following actions depending on your level of Oracle:

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

v For Version 10g and later:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_constraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Configuring Web services applications using scripting

You can use the wsadmin scripting tool to complete the several tasks for a Web services application.

Before you begin

Develop a Web services application.

About this task

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages.

To use the wsadmin tool to configure a Web services application, publish a Web Services Description

Language (WSDL) file, or to configure policy sets:

1. Launch a scripting command.

2. Follow the steps in one of the following topics, depending on what task you want to complete:

v Publish WSDL files.

v Configure Web service client deployed WSDL file names.

v Configure Web service client bindings.

v Configure Web service client preferred port mappings .

v Configure Web service client port information .

v Configure the scope of a Web service port .

512 Administering WebSphere applications

Results

You have configured Web services applications with the wsadmin tool.

Querying Web services with the wsadmin tool

You can use the Jython or Jacl scripting language to query for Web services properties with the wsadmin

tool. Use the commands in the WebServicesAdmin group to list all Web services and attributes, find

attributes of a specific Web service, determine the Web service endpoint, and determine the operation

name of a Web service.

Before you begin

The wsadmin administrative scripting program supports two scripting languages, Jacl and Jython. The Jacl

syntax is deprecated. This topic includes examples written only in the Jython scripting language.

Before you can complete the procedure for the commands in the WebServicesAdmin group, you must

launch the wsadmin tool.

About this task

Use the following commands to query for Web services and Web service attributes. If you receive a

NoItemFoundException error, the specified application, module, service, or endpoint cannot be found.

Verify that all input parameters are correct.

You can optionally specify the client parameter for any command in the WebServicesAdmin command

group. The client parameter indicates whether to return service providers or service clients. Specify false

to request service providers and true to request service clients.

v Query the configuration for all installed Web services for all enterprise applications.

Enter the following command. You do not need to specify the application parameter for this command.

AdminTask.listWebServices()

This command returns all installed Web services. The command also returns the application name,

module name, service name, and service type for each Web service.

Sample output:

’[[service {http://www.ibm.com}service1] [client false] [application

application1] [module webapp1.war] [type JAX-WS]]’

v Query the configuration for all installed Web services for a specific enterprise application.

Enter the following command, and specify the name of the application you want to query:

AdminTask.listWebServices(’[–application application_name -client false]’)

This command returns all installed Web services for the application_name that you specify. The

command also returns the application name, module name, service name, and service type for each

Web service.

Sample output:

’[[service {http://www.ibm.com}service1] [client false] [application

application1] [module webapp1.war] [type JAX-WS]]’

v Query the configuration for the Web service name and type for a enterprise application.

Enter the following command, and specify the application name, module name, and Web service name.

The client parameter is optional.

AdminTask.getWebService(’[–application application_name

-module module_name -service webservice_name -client false]’)

The command returns the Web service name and Web service type.

Sample output:

Chapter 5. Web services 513

’[[service {http://www.ibm.com}service1] [client false] [type JAX-WS]]’

v Query the configuration for the Web service endpoints for a enterprise application.

The logical endpoint name is the port name in the Web Services Description Language (WSDL)

document. Enter the following command, and specify the application name, module name, and Web

service name. The client parameter is optional.

AdminTask.listWebServiceEndpoints(’[–application application_name

 -module module_name -service webservice_name -client false]’)

This command returns the port on which the Web service is installed.

Sample output:

’[logicalEndpoint QuotePort01]’

v Query the configuration for the Web service operation names for a enterprise application.

Enter the following command, and specify the application name, module name, Web service name, and

endpoint name. The logical endpoint name is the port name in the Web Services Description Language

(WSDL) document. The client parameter is optional.

AdminTask.listWebServiceOperations(’[–application application_name -module module_name

-service webservice_name -logicalEndpoint endpoint_name -client false]’)

This command returns all Web service operations.

Sample output:

’[operation ivt_app_op1] [operation ivt_app_op2]’

v Query the configuration for the service providers, endpoints, and operations from each deployed asset.

The listServices command provides generic query functions. Use the following command to display

information about service providers, endpoints, and operations for enterprise applications and Web

Services Notification (WSN) clients. Each parameter is optional. If you do not specify the queryProps

parameter, the command returns each service provider in your configuration. If you do not specify the

expandResources parameter, the command does not return the logical endpoints or operations for each

service. The following command example returns each service provider and the corresponding

endpoints for the myApplication application:

AdminTask.listServices(’-queryProps "[[CompositionUnit=myApplication][client=false]" -expandResources endpoint’]

The following command example returns each JAX-WS service provider and the corresponding

endpoints and operations within a cell:

AdminTask.listServices(’[-queryProps "[[serviceType JAX-WS][client false]]"]’)

This command returns the service providers that match the search query.

Sample output:

’[[service {http://com/ibm/was/wssample/sei/echo/}EchoService] [assetType [J2EE Application]] [client false] [application WSSampleServicesSei]

 [module SampleServicesSei.war] [serviceType JAX-WS]]

[[service {http://com/ibm/was/wssample/sei/echo/}EchoService12] [assetType [J2EE Application]] [client false] [application WSSampleServicesSei]

 [module SampleServicesSei.war] [serviceType JAX-WS]]

[service {http://com/ibm/was/wssample/sei/ping/}PingService] [assetType [J2EE Application]] [client false] [application WSSampleServicesSei]

 [module SampleServicesSei.war] [serviceType JAX-WS]]

[[service {http://com/ibm/was/wssample/sei/ping/}PingService12] [assetType [J2EE Application]] [client false] [application WSSampleServicesSei]

 [module SampleServicesSei.war] [serviceType JAX-WS]]’

The following command example returns each WSN service client and the corresponding endpoints and

operations within a cell:

AdminTask.listServices(’[-queryProps "[[serviceType [JAX-WS (WSN)]][clie

nt true]]" -expandResource logicalEndpoint]’)

This command returns the service providers that match the search query.

Sample output:

’[[service {http://www.ibm.com/websphere/wsn/out/remote-publisher}OutboundRemotePublisherService] [assetType [WSN Service]] [client true]

 [bus bus1] [WSNService wsn1] [serviceType [JAX-WS (WSN)]]]

[[assetType [WSN Service]] [service {http://www.ibm.com/websphere/wsn/out/remote-publisher}OutboundRemotePublisherService]

 [bus bus1] [client true] [WSNService wsn1] [serviceType [JAX-WS (WSN)]] [logicalEndpoint OutboundRemotePublisherPort]]

[[service {http://www.ibm.com/websphere/wsn/out/notification}OutboundNotificationService] [assetType [WSN Service]] [client true]

514 Administering WebSphere applications

[bus bus1] [WSNService wsn1] [serviceType [JAX-WS (WSN)]]]

[[assetType [WSN Service]] [service {http://www.ibm.com/websphere/wsn/out/notification}OutboundNotificationService]

 [bus bus1] [client true] [WSNService wsn1] [serviceType [JAX-WS (WSN)]] [logicalEndpoint OutboundNotificationPort]]’

Related tasks

Starting the wsadmin scripting client
You can use the wsadmin tool to configure and administer application servers, application deployment, and

server run-time operations.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

Using scripting (wsadmin)
The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language.

WebServicesAdmin command group for the AdminTask object

Use this topic as a reference for the commands for the WebServicesAdmin group of the AdminTask object.

Use these commands with your administrative scripts to list available Web services, list web services

attributes, determine the endpoint configuration for a Web service, and determine a specific operation

name.

Use the commands in the WebServicesAdmin group to query information for installed web services. For

more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the WebServicesAdmin group of the AdminTask object.

v “getWebService”

v “listServices” on page 516

v “listWebServices” on page 518

v “listWebServicesEndpoints” on page 518

v “listWebServicesOperations” on page 519

getWebService

The getWebService command retrieves the attributes for a Web service. This command applies to

enterprise applications only.

Target object

None.

Required parameters

-application

Specifies the name of the deployed enterprise application. (String, required)

-module

Specifies the name of the module. (String, required)

-service

Specifies the name of the Web service. (String, required)

Optional parameters

-client

Specifies whether the Web service is a provider or a client. The default value is false (service

provider). When set to true, the command only returns Web service clients. (Boolean, optional)

Chapter 5. Web services 515

Return value

Returns a list of attributes, including service name, whether the service is a provider or client, and service

type. The service type attribute is only applicable for service providers.

Batch mode example usage

Using Jython string:

AdminTask.getWebService(’[–application application_name -module module_name -service webservice_name -client false]’)

Sample output:

’[[service {http://www.ibm.com}service1][type JAX-WS][client false]]’

Interactive mode example usage

Using Jython:

AdminTask.getWebService (’-interactive’)

listServices

The listServices command queries the configuration for services, endpoints, and operations. This

command provides more generic query functions than the rest of commands in this command group. It is

applicable to Java™ applications as well as other assets such as Web Services Notification (WSN) clients.

Target object

None.

Optional parameters

-queryProps

Specifies properties used to locate the service provider or client of interest. For example, if you specify

[[type=JAX-WS][client=true]], the command returns each JAX-WS reference in the enterprise

applications. (Properties, optional)

 The -queryProps parameter accepts the several properties. You can use one or multiple properties to

specify your query criteria. Do not mix the query properties between different asset types. For

example, if you specify application and bus, the command reports an error.

v Specify the following properties with the -queryProps parameter to query enterprise applications:

 Property and value Description

assetType=J2EE Application Queries each Java EE application.

application=application_name Queries a specific Java EE application.

module=module_name Queries a specific Java EE application module. You must

specify the application and module properties to query

for application modules.

v Specify the following properties with the -queryProps parameter to query for WSN clients:

 Property and value Description

assetType=WSN Service Queries each WSN service client.

bus=bus_name Queries a specific bus.

WSNService=WSN_service_name Queries a specific WSN service. You must specify the bus

and WSNService properties to query for a specific WSN

service.

516 Administering WebSphere applications

v Specify the following properties with the -queryProps parameter to query all assets:

 Property and value Description

serviceType=service_type Queries by service type. Specify JAX-WS to query for

Java™ API for XML-Based Web Services assets. Specify

JAX-WS (WSN) to query for Web Services Notification

assets.

client=Boolean Queries for clients or providers. Specify true to query for

clients. Specify false to query for providers.

service=service_name Queries for the logical endpoints and operations for a

specific service.

-expandResource

Specifies whether to return service names only or services and detailed resource information. Specify

logicalEndpoint or operation. If you specify the logicalEndpoint value, the command returns the

matching services and each endpoint in the services. If you specify the operation value, the command

returns the matching services and the corresponding endpoints and operations. (String, optional)

Return value

The command returns a list of properties for each service, as well as detailed endpoint and operation

information if you query for endpoints and operations.

Batch mode example usage

The following examples query each service provider in the myApplication application. The examples return

the logical endpoints for each service because the -expandResources parameter is set as

logicalEndpoint, as the following example output demonstrates:

[[service {http://com/ibm/was/wssample/sei/echo/}EchoService] [assetType [J2EE Application]]

 [client false] [application MyWSApplication] [module ServicesModule.war] [serviceType JAX-WS]]

[[assetType [J2EE Application]] [service {http://com/ibm/was/wssample/sei/echo/}EchoService]

 [client false] [application MyWSApplication] [module ServicesModule.war] [serviceType JAX-WS] [logicalEndpoint EchoServicePort]]

[[service {http://com/ibm/was/wssample/sei/ping/}PingService] [assetType [J2EE Application]]

 [client false] [application MyWSApplication] [module ServicesModule.war] [serviceType JAX-WS]]

[[assetType [J2EE Application]] [service {http://com/ibm/was/wssample/sei/ping/}PingService]

 [client false] [application MyWSApplication] [module ServicesModule.war] [serviceType JAX-WS]

 [logicalEndpoint PingServicePort]]

Using Jython string:

AdminTask.listServices(’[-queryProps [[application MyWSApplication][client false]] -expandResource logicalEndpoint]’)

Using Jython list:

AdminTask.listServices([’–queryProps’, ’[[application myApplication][client false]]’, ’-expandResource’, ’logicalEndpoint’])

The following examples query each service client under the myBus bus. The examples do not return logical

endpoints or operations for each service client because it does not specify the -expandResource

parameter.

Using Jython string:

AdminTask.listServices(’[–queryProps [[bus myBus][client true]]]’)

Using Jython list:

AdminTask.listServices([’–queryProps’, ’[[bus myBus][client true]]’])

Interactive mode example usage

Using Jython:

Chapter 5. Web services 517

AdminTask.listServices(’-interactive’)

listWebServices

The listWebServices command retrieves a list of available Web services for one or all applications. If an

application name is not supplied, the command lists all of the Web services. This command applies to

enterprise applications only.

Target object

None.

Required parameters

None.

Optional parameters

-application

Specifies the name of the deployed enterprise application. If you do not specify this parameter, the

command returns all Web services in the cell. (String, optional)

-client

Specifies whether the Web service is a provider or a client. The default value is false (service

provider). When set to true, the command only returns Web service clients. (Boolean, optional)

Return value

All Web services for the application specified. For each Web service, the command returns the following

attributes and corresponding values: application name, module name, service name, whether the Web

service is a service provider or client, and service type. The service type is only specified if the Web

service is a service provider.

Batch mode example usage

Using Jython string:

AdminTask.listWebServices(’[–application application1 -client false]’)

Using Jython list:

AdminTask.listWebServices([’–application’, ’application1’, ’-client’, ’false’])

Sample output:

’[[service {http://www.ibm.com}service1][application application1][module webapp1.war][type JAX-WS][client false]]’

Interactive mode example usage

Using Jython:

AdminTask.listWebServices(’-interactive’)

listWebServicesEndpoints

The listWebServicesEndpoints command returns a list of logical endpoints for a Web service. The logical

endpoint name is the port name in the Web Services Description Language (WSDL) document. This

command applies to enterprise applications only.

Target object

518 Administering WebSphere applications

None.

Required parameters

-application

Specifies the name of the deployed enterprise application. (String, required)

-module

Specifies the name of the module. (String, required)

-service

Specifies the name of the Web service. (String, required)

Optional parameters

-client

Specifies whether the Web service is a provider or a client. The default value is false (service

provider). When set to true, the command only returns Web service clients. (Boolean, optional)

Return value

Returns the logical endpoint name for the Web service specified.

Batch mode example usage

Using Jython string:

AdminTask.listWebServiceEndpoints(’[–application application_name -module module_name -service webservice_name -client false]’)

Using Jython list:

AdminTask.listWebServiceEndpoints([’–application’, ’application_name’, ’-module’, ’module_name’, ’-service’, ’webservice_name’, ’-client’, ’false’])

Sample output:

’[[logicalEndpoint QuotePort01]]’

Interactive mode example usage

Using Jython:

AdminTask.listWebServicesEndpoints(’-interactive’)

listWebServicesOperations

The listWebServicesOperations command returns a list of Web service operations. This command applies

to enterprise applications only.

Target object

None.

Required parameters

-application

Specifies the name of the deployed enterprise application. (String, required)

-module

Specifies the name of the module. (String, required)

-service

Specifies the name of the Web service. (String, required)

Chapter 5. Web services 519

-logicalEndpoint

The port name in the Web Services Description Language (WSDL) document. (String, required)

Optional parameters

-client

Whether the Web service is a provider or a client. The default value is false (service provider). When

set to true, the command only returns Web service clients. (Boolean, optional)

Return value

Returns the operation name for the Web service specified.

Batch mode example usage

Using Jython string:

AdminTask.listWebServiceOperations(’[–application application_name -module module_name -service webservice_name -client false

 -logicalEndpoint endpoint_name]’)

Using Jython list:

AdminTask.listWebServiceOperations([’–application’, ’application_name’, ’-module’, ’module_name’, ’-service’, ’webservice_name’, ’-client’,

 ’false’, ’-logicalEndpoint’, ’endpoint_name’])

Sample output:

’[[operation ivt_app_op1][operation ivt_app_op2]]’

Interactive mode example usage

Using Jython:

AdminTask.listWebServicesOperations(’-interactive’)

Configuring application and system policy sets for Web services using

scripting

Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

Before you begin

Develop a Web services application. For additional information, see the Web services applications topics

in the information center.

If you develop an application that uses a custom policy set, the custom policy set configuration is not

included in the application enterprise archive (EAR) file. Install the application and import the custom policy

set separately.

About this task

The commands in the PolicySetManagement group for the AdminTask object configure both application

and system policy sets. Use the following tasks to configure and manage policy sets for your Web

services.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

520 Administering WebSphere applications

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Use the following guidelines to manage bindings in your environment:

v To display or modify default Version 6.1 bindings, Version 7.0 trust service bindings, or to reference

bindings by attachment for an application, specify the attachmentId and bindingLocation parameters with

the getBinding or setBinding commands.

v To use or modify general Version 7.0 bindings, specify the bindingName parameter with the getBinding

or setBinding commands.

v To display the version of a specific binding, specify the version attribute for the getBinding command.

Use a Version 6.1 binding for an application in a Version 7.0 environment if:

v The module in the application is installed on at least one Web Services Feature Pack server.

v The application contains at least one Version 6.1 application-specific binding. The application server

does not assign general bindings to resource attachments for applications that are installed on a Web

Services Feature Pack server. All application-specific bindings for an application must be at the same

level.

General service provider and client bindings are not linked to a particular policy set and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

are deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by setting default

bindings for a security domain and assigning the security domain to one or more servers. You can specify

default bindings for your service provider or client that are used at the global security (cell) level, for a

security domain, for a particular server. The default bindings are used in the absence of an overriding

binding specified at a lower scope. The order of precedence from lowest to highest that the application

server uses to determine which default bindings to use is as follows:

1. Server level default

2. Security domain level default

3. Global security (cell) default

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding.

v Use the PolicySetManagement group of commands to configure application and client policy sets:

– Create a new policy set or copy an existing policy set.

– Add policies to your policy set.

– Attach your policy set to an application, Web service, endpoint, or operation.

Chapter 5. Web services 521

– Customize cell-wide, server-specific, or application binding configurations.

– Manage and edit your policy set configurations.

- Edit, enable, disable, or remove policies.

- Add, edit, or remove policy set attachments.

- Export and import policy sets.

- Delete policy sets.

v Use the PolicySetManagement group of commands to configure system policy sets.

– Create a new system policy set or copy an existing system policy set.

– Add policy types for your policy set.

– Add trust service attachments.

– Customize binding configurations.

– Manage and edit your policy set configurations.

- Edit, enable, disable or remove policies.

- Add, edit, or remove policy set attachments.

- Export and import policy sets.

- Delete policy sets.

Creating policy sets using the wsadmin tool

Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

Before you begin

In order to complete this task, you must use the Administrator role with cell-wide access when

administrative security is enabled.

About this task

There are three ways to create a new policy set using the wsadmin tool. You can create a new policy set

and its configuration, copy an existing policy set, or import a policy set.

When you create a new policy set, you must add policies. If you copy an existing policy set, you can

transfer the policies and attachments that are configured on the existing policy set. The command

examples in this topic use batch mode syntax. You can use the -interactive option with all commands in

the PolicySetManagement group.

v Create a new policy set using the Jython scripting language.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the policy requirements for your Web services.

3. Enter the command syntax to create a new policy set with a given name.

Based on your configuration, there are two types of policy sets to create. You can use both

application and system policy sets with Java API for XML-Based Web Services (JAX-WS)

applications. Use the -policySetType parameter to specify the type of policy set. To create an

application policy set, specify application for the value of the -policySetType parameter. To create a

policy set for the trust service, specify system or system/trust for the -policySetType parameter. For

WS-MetadataExchange attachments, specify system for the -policySetType parameter. The

-policySetType parameter is optional. The wsadmin tool creates an application policy set if the

-policySetType parameter is not specified.

Enter the following command to create an application policy set:

522 Administering WebSphere applications

AdminTask.createPolicySet(’[-policySet PolicySet1 -description policySet_description]’)

Enter the following command to create a policy set for the trust service:

AdminTask.createPolicySet(’[-policySet PolicySet1 -description policySet_description -policySetType system]’)

The command returns a success or failure message.

4. Add policies for your new policy set. Use this step to add a policy with default values for the

specified policy set.

Enter the following command to add and enable a policy:

AdminTask.addPolicyType(’[-policySet PolicySet1 -policyType policyType_name]’)

Enter the following command to add and disable a policy. Your configuration changes are contained

within the policy set, but will have no effect on the system if the -enabled parameter is set to false.

AdminTask.addPolicyType(’[-policySet PolicySet1 -policyType policyType_name -enabled false]’)

The command returns a success or failure message. Repeat this step to create additional policies

for your configuration.

5. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Copy an existing policy set using the Jython scripting language.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the policy requirements for your Web services.

3. Enter the command syntax to copy an existing policy set:

Set the -transferAttachments parameter to true to transfer the attachments from the existing policy

set to the new policy set. The default value for the -transferAttachments parameter is false.

Enter the following command to create the new policy set and to transfer the attachments of the

existing policy set:

AdminTask.copyPolicySet(’[-sourcePolicySet existingPolicySet_name -newPolicySet PolicySet1 -newDescription PolicySet1_description -transferAttachments true]’)

The command returns a success or failure message.

4. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Import a policy set from an archive file or import a default policy set using the Jython scripting language.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the policy requirements for your Web services.

3. Import a policy set.

Use the importPolicySet command to import the archive file containing the policy set configuration of

interest to the destination environment. Specify the verifyPolicySetType parameter to verify that the

policy set to import matches a specific type. Set the value as application, system, or system/trust

to specify the policy set type. You cannot import a policy set onto a server or client environment if

the policy set already exists in the destination environment.

For example, the following command creates a customSecureConversation policy set from the

customSC.zip archive file:

AdminTask.importPolicySet(’[-importFile /IBM/WebSphere/AppServer/bin/customSC.zip -verifyPolicySetType system/trust]’)

Additionally, you can also use the importPolicySet command to import a default policy set onto a

server environment, as the following example demonstrates:

AdminTask.importPolicySet(’[-defaultPolicySet SecureConversation -policySet copyOfdefaultSC -verifyPolicySetType system]’)

The command returns a success or failure message.

4. Save the configuration changes.

Chapter 5. Web services 523

Enter the following command to save your changes:

AdminConfig.save()

Results

If you receive a success message after entering the commands, you can now manage a policy set that is

customized for your Web services applications. You can further configure the policy set and policies.

What to do next

Use the validatePolicySet command to validate your policy set configurations after modifying attributes for

policies. For example, enter the following command to validate the PolicySet1 policy set:

AdminTask.validatePolicySet(’-policySet PolicySet1’)

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Related tasks

“Updating policy set attributes using the wsadmin tool”
Use policy sets to centrally manage policies that are customized for your Web services. Use the Jython or

Jacl scripting language with the wsadmin tool to update policy set attributes. You can also query the

configuration for an existing policy set and respective attributes.

“Deleting policy sets using the wsadmin tool” on page 569
Use the Jython or Jacl scripting language to delete policy sets from your configuration with the wsadmin

tool. You must remove all policy set attachments before removing the policy set.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy sets using the administrative console” on page 835
You can use the administrative console to either create a policy set by specifying all the necessary

information or by copying an existing policy set that you rename. You can use policy sets, or assertions

that define services, to simplify your Web services configuration because policy sets group security and

other Web services settings into reusable units.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Updating policy set attributes using the wsadmin tool

Use policy sets to centrally manage policies that are customized for your Web services. Use the Jython or

Jacl scripting language with the wsadmin tool to update policy set attributes. You can also query the

configuration for an existing policy set and respective attributes.

Before you begin

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to update policy sets.

Configurator The Configurator role cannot update policy sets.

524 Administering WebSphere applications

Administrative role Authorization

Deployer The Deployer role cannot update policy sets.

Operator The Operator role cannot update policy sets.

Monitor The Monitor role cannot update policy sets.

About this task

After creating a new policy set, you can update your policy set configuration with the updatePolicySet

command. The command uses a properties object to update all attributes or a subset of attributes for the

specified policy set.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. View the current attribute values for the policy set of interest.

Enter the following command to display the attribute values of the policySet1 policy set:

AdminTask.getPolicySet(’[-policySet policySet1]’)

3. Modify attributes for the policy set of interest.

Enter the following command to modify the type and description attributes for the policySet1 policy

set.

AdminTask.updatePolicySet(’-policySet policySet1 -attributes "[[type application] [description [my custom policy set to manage WSSecurity]]]"’)

You can also use the -interactive option to update a policy set. To start -interactive mode, enter this

command:

AdminTask.updatePolicySet(’-interactive’)

4. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

Results

If you received a success message after entering the commands, manage and customize the policy set for

your Web services applications.

What to do next

After updating policy set attributes, you can further configure policies and policy set attachments using the

commands and parameters for the PolicySetManagement group of the AdminTask object.

Chapter 5. Web services 525

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Related tasks

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Deleting policy sets using the wsadmin tool” on page 569
Use the Jython or Jacl scripting language to delete policy sets from your configuration with the wsadmin

tool. You must remove all policy set attachments before removing the policy set.

“Adding and removing policies using the wsadmin tool”
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy sets using the administrative console” on page 835
You can use the administrative console to either create a policy set by specifying all the necessary

information or by copying an existing policy set that you rename. You can use policy sets, or assertions

that define services, to simplify your Web services configuration because policy sets group security and

other Web services settings into reusable units.

“Policy configuration properties for all policies” on page 572
You can use the attributes parameter with the setPolicyType and setBinding commands to specify various

properties for each quality of service (QoS) within a policy set. You can use the properties in this topic with

each QoS within application and system policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Adding and removing policies using the wsadmin tool

You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

Before you begin

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

Additionally, if administrative security is enabled, verify that you use the correct administrative role, as the

following table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to create and remove policies.

Configurator The Configurator role cannot create or remove policies.

Deployer The Deployer role cannot create or remove policies.

Operator The Operator role cannot create or remove policies.

Monitor The Monitor role cannot create or remove policies.

526 Administering WebSphere applications

About this task

Policies define which Qualities of Service (QoS) to manage within a policy set. Policy definitions are based

on the standards set by the Organization for the Advancement of Structured Information (OASIS) and Web

Services Security specifications.

For application policy sets, you can add the following policies:

v WSSecurity

v WSReliableMessaging

v WSAddressing

v HTTPTransport

v SSLTransport

v WSTransaction

v JMSTransport

For system policy sets, you can add the following policies:

v WSSecurity

v WSAddressing

v HTTPTransport

v SSLTransport

v WS-MetadataExchange

Use the following steps to add or remove policy types from your policy set configurations:

v Add a policy to a policy set. Use this section to add a policy with default values to the specified policy

set. You can create and enable or create and disable the policy.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. List all policies for a specified policy set.

Enter the following command and specify the policy set of interest to list all policies that have been

added to the policy set:

AdminTask.listPolicyTypes(’[-policySet PolicySet1]’)

Enter the following command to list all the available policies:

AdminTask.listPolicyTypes()

3. Add the policy to your configuration.

Enter the following command to add and enable a policy:

AdminTask.addPolicyType(’[-policySet PolicySet1

-policyType policyType_name]’)

Enter the following command to add and disable a policy. Your configuration changes are contained

within the policy set, these changes do not effect the system if the -enabled parameter is set to

false.

AdminTask.addPolicyType(’[-policySet PolicySet1

-policyType policyType_name -enabled false]’)

4. Enter the following command to save your changes:

AdminConfig.save()

5. For your configuration changes to take effect, restart all applications with attachments to the policy

set.

The command returns a success or failure message. Repeat this step to create additional policies for

your configuration.

v Remove a policy from the policy set configuration. The deletePolicyType command removes the

specified policy from the policy set. Applications with attachments to the policy set are not affected until

the application restarts.

Chapter 5. Web services 527

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Enter the following command to list all policies for the policy set of interest:

AdminTask.listPolicyTypes(’[-policySet PolicySet1]’)

3. Enter the following command to remove the policy:

AdminTask.deletePolicyType(’[-policySet PolicySet1

-policyType policyType_name]’)

The command returns a success or failure message.

4. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

5. For your configuration changes to take effect, restart all applications with attachments to the policy

set.

What to do next

Use the validatePolicySet command to validate your policy set configurations after modifying attributes for

policies. For example, enter the following command to validate the PolicySet1 policy set:

AdminTask.validatePolicySet(’-policySet PolicySet1’)

528 Administering WebSphere applications

Related concepts

“Web services policies” on page 981
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

Related tasks

“Editing policy configurations using the wsadmin tool”
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to edit policy configurations

for your policy sets.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Enabling policies for policy sets using the administrative console” on page 979
Policies can be listed in a policy set in the disabled state so that they are not currently included in the

policy set. You can enable a policy to be included in a policy set using the administrative console.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding policies to policy sets using the administrative console” on page 932
You can use the administrative console to add policies to policy sets. Adding and configuring policies to a

policy set further defines the rules governing the policy set.

“Managing policies in a policy set using the administrative console” on page 931
When working with policy sets in the administrative console, you can customize the included policies to

ensure message security. You can enable, disable, customize, add, or delete policies from a policy set.

With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

Related reference

“Policy configuration properties for all policies” on page 572
You can use the attributes parameter with the setPolicyType and setBinding commands to specify various

properties for each quality of service (QoS) within a policy set. You can use the properties in this topic with

each QoS within application and system policy sets.

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Editing policy configurations using the wsadmin tool

Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to edit policy configurations

for your policy sets.

Before you begin

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

Chapter 5. Web services 529

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to modify policies.

Configurator The Configurator role cannot modify policies.

Deployer The Deployer role cannot modify policies.

Operator The Operator role cannot modify policies.

Monitor The Monitor role cannot modify policies.

About this task

Policies define the type of policy to manage within a policy set. Policies are based on the Quality of

Services (QoS), such as Web Services Security (WS-Security) and Web Services Addressing

(WS-Addressing). Policy definitions are based on the standards set by the Organization for the

Advancement of Structured Information (OASIS) and WS-Security specifications.

Use the following steps to edit existing policies in your policy set configurations:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine which policy set to edit.

To view a list of policies on a policy set, enter the listPolicyTypes command, specifying the policy set of

interest.

AdminTask.listPolicyTypes(’[-policySet PolicySet1]’)

Enter the listPolicyTypes command without the policySet parameter to view a list of available policies

for all policy sets in your configuration:

AdminTask.listPolicyTypes()

3. Review the policy attributes to edit.

Enter the getPolicyType command, specifying the policy and associated policy set of interest.

AdminTask.getPolicyType(’[-policySet PolicySet1 -policyType myPolicyType]’)

4. Modify the policy set attributes.

Use the setPolicyType command to update the policy configuration. Update one or multiple attributes

by passing a properties object for the -attributes parameter. The following example modifies the

enabled and provides properties:

AdminTask.setPolicyType(’[-policySet PolicySet1 -policyType myPolicyType

 -attributes "[[enabled true][provides security]]"’)

5. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

6. For your configuration changes to take effect, restart all applications with attachments to the policy set.

What to do next

Use the validatePolicySet to validate your policy set configurations after modifying attributes for policies.

For example, enter the following command to validate the PolicySet1 policy set:

AdminTask.validatePolicySet(’-policySet PolicySet1’)

530 Administering WebSphere applications

Related concepts

“Web services policies” on page 981
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

Related tasks

“Modifying policies using the administrative console” on page 934
With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Enabling policies for policy sets using the administrative console” on page 979
Policies can be listed in a policy set in the disabled state so that they are not currently included in the

policy set. You can enable a policy to be included in a policy set using the administrative console.

“Adding policies to policy sets using the administrative console” on page 932
You can use the administrative console to add policies to policy sets. Adding and configuring policies to a

policy set further defines the rules governing the policy set.

“Managing policies in a policy set using the administrative console” on page 931
When working with policy sets in the administrative console, you can customize the included policies to

ensure message security. You can enable, disable, customize, add, or delete policies from a policy set.

With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

Related reference

“Policy configuration properties for all policies” on page 572
You can use the attributes parameter with the setPolicyType and setBinding commands to specify various

properties for each quality of service (QoS) within a policy set. You can use the properties in this topic with

each QoS within application and system policy sets.

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Enabling secure conversation using the wsadmin tool

Use this topic and the commands in the SecureConversation group of the AdminTask object to enable

secure conversation client cache by creating a new policy set and bindings to attach to your applications.

Before you begin

Verify that the SecureConversation policy set is available in your configuration. By default, the

SecureConversation policy set is not available. Use the importPolicySet command to import the

SecureConversation policy to your configuration, as the following example demonstrates:

Chapter 5. Web services 531

AdminTask.importPolicySet(’-defaultPolicySet SecureConversation’)

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

About this task

This topic uses the default SecureConversation policy set and default WS-Security and

TrustServiceSecurityDefault bindings to enable secure conversation.

The default SecureConversation policy set contains an application policy with the symmetric binding, and a

bootstrap policy with the asymmetric binding. The application policy secures application messages. The

bootstrap policy secures RequestSecurityToken (RST) messages. The trust service, which issues security

context token providers, uses the TrustServiceSecurityDefault system policy and the

TrustServiceSecurityDefault bindings. The trust policy secures RequestSecurityTokenResponse (RSTR)

messages. If you modify the bootstrap policy, you must also modify the trust policy so that both of the

configurations match.

Note: Use the following steps in development and test environments only. The WS-Security bindings in

this procedure contain sample key files that you must customize before using the bindings in a

production environment. Create custom bindings for your production environment.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Copy the existing SecureConversation policy set.

Use the following command example to create a new policy set by copying the existing

SecureConversation policy set:

AdminTask.copyPolicySet(’[-sourcePolicySet SecureConversation -newPolicySet CopyOfSCPolicySet]’)

3. Change the binding for the global security domain. If you chose the Create the server using the

development template option when you created your profile with the Profile Management Tool or the

manageprofiles command utility, you can optionally skip this step.

a. List each WS-Security policy attribute.

To modify the binding for the global security domain, use the getDefaultBindings command to

determine the binding that is set as the default for the provider or client, as the following example

demonstrates:

AdminTask.getDefaultBinding(’-bindingType provider’)

b. Display the attributes for the binding.

Use the getBinding command to display the current attributes for the binding, as the following

example demonstrates:

AdminTask.getBinding(’-bindingLocation "" -bindingName myBinding’)

c. Modify the outbound configuration for the protection token.

Use the following commands to modify the outbound configuration for the protection token:

cmd1_attributes_value = "[[application.securityoutboundbindingconfig.tokengenerator_5.callbackhandler

.key.name [CN=Bob,O=IBM, C=US]] [application.securityoutboundbindingconfig.tokengenerator_5.callbackhandler

.keystore.storepass storepass] [application.securityoutboundbindingconfig.tokengenerator_5.callbackhandler

.keystore.type JCEKS] [application.securityoutboundbindingconfig.tokengenerator_5.callbackhandler.key.alias bob]

[application.securityoutboundbindingconfig.tokengenerator_5.callbackhandler.keystore.path ${USER_INSTALL_ROOT}

/etc/ws-security/samples/enc-sender.jceks]]"

AdminTask.setBinding(’[-policyType WSSecurity -bindingLocation "" -attributes cmd1_attributes_value

-attachmentType application]’)

cmd2_attributes_value = "[[application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore

.path ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks] [application.securityoutboundbindingconfig

.tokengenerator_0.callbackhandler.keystore.storepass client] [application.securityoutboundbindingconfig

.tokengenerator_0.callbackhandler.key.name [CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP]] [application

.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.key.keypass client] [application

.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.key.alias soaprequester]

532 Administering WebSphere applications

[application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore.type JKS]]"

AdminTask.setBinding(’[-policyType WSSecurity -bindingLocation "" -attributes cmd2_attributes_value

-attachmentType application]’)

4. Optional: Modify the TrustDefaultBindings binding. If you chose the Create the server using the

development template option when you created your profile with the Profile Management Tool or the

manageprofiles command utility, you can optionally skip this step.

If the TrustDefaultBindings are not yet customized, use the following commands to modify the

TrustDefaultBindings binding:

cmd3_attributes_value = "[[application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.keystore

.storepass storepass] [application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.key.alias bob]

[application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.keystore.type JCEKS] [application

.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.keystore.path ${USER_INSTALL_ROOT}/etc

/ws-security/samples/enc-sender.jceks] [application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler

.key.name [CN=Bob, O=IBM, C=US]]]"

AdminTask.setBinding(’[-policyType WSSecurity -bindingLocation "[attachmentId 2]"

-attributes cmd3_attributes_value -attachmentType system/trust]’)

cmd4_attributes_value = "[[application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore.path

${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks] [application.securityoutboundbindingconfig.tokengenerator_0

.callbackhandler.keystore.storepass client] [application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler

.key.name [CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP]] [application.securityoutboundbindingconfig.tokengenerator_0

.callbackhandler.key.keypass client] [application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.key

.alias soaprequester] [application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore.type JKS]]"

AdminTask.setBinding(’[-policyType WSSecurity -bindingLocation "[attachmentId 2]"

-attributes cmd4_attributes_value -attachmentType system/trust]’)

5. Attach the policy set and binding to the application.

Use the attachmentType parameter for the createPolicySetAttachment command to specify if your

application is a service client or a service provider. Use the following commands to attach the

CopyOfSCPolicySet policy set to the myTestApp service client application:

AdminTask.createPolicySetAttachment(’[-applicationName myTestApp -policySet CopyOfSCPolicySet

-resources WebService:/ -attachmentType client]’)

Use the following commands to attach the CopyOfSCPolicySet policy set to the myTestApp service

provider application:

AdminTask.createPolicySetAttachment(’[-applicationName myTestApp -policySet CopyOfSCPolicySet

-resources WebService:/ -attachmentType application]’)

This step automatically assigns the bindings.

Results

Your secure conversation configuration is updated in the WSSCCache.xml file located in the cell level

directory.

What to do next

Manage your secure conversation configurations with the SecureConversation command group for the

AdminTask object.

Chapter 5. Web services 533

Related concepts

Secure conversation client cache
For both distributed and local clients, the WebSphere Application Server secure conversation client cache

stores tokens on the client.

“SecureConversation default policy sets” on page 839
The SecureConversation default policy sets are based on the Web Services Secure Conversation

Language (SecureConversation) standard that establishes a secure context, based on shared keys for the

client and server to use for a series of messages. This standard provides a framework to define how to

secure the message exchange across organizations. The SecureConversation default policy sets include

the SecureConversation policy set, the Lightweight Third-Party Authentication (LTPA) SecureConversation

policy set, and the Username SecureConversation policy set.

Related tasks

Configuring the Web services security distributed cache using the administrative console
You can configure the Web services security runtime to use the security distributed cache to store security

tokens.

Example: Installing a Web Services Sample with the console
The product provides a Web Services sample application that you can install on a Version 7.x application

server.

Managing WS-Security distributed cache configurations using the

wsadmin tool

The distributed cache stores tokens on the client. Use this topic and the commands in the

WSSCacheManagement group of the AdminTask object to query, update, and remove custom and

non-custom properties for the distributed cache configuration.

Before you begin

Configure a policy set with WS-Security enabled.

About this task

The distributed cache stores tokens on both distributed and local clients. WebSphere Application Server

supports only the security context token for the WS-Trust security token service client and the security

trust service components.

You can use the administrative console or the wsadmin tool to manage your secure conversation

distributed cache configuration. You can use the wsadmin tool and the Jython scripting language syntax to:

v Query your current distributed cache configuration settings.

v Set the value for the renewal time after token expiration.

v Enable or disable distributed cache for clustered servers.

v Add custom properties to your configuration.

v Remove custom properties from your configuration.

v Query the configuration for your existing distributed cache configuration.

You can retrieve a list of your current distributed cache configuration settings and custom properties

with the queryWSSDistributedCacheConfig and queryWSSDistributedCacheCustomConfig commands.

There are no required or optional parameters for the query commands.

To list all non-custom configuration settings, run the following Jython command:

AdminTask.queryWSSDistributedCacheConfig()

To list all distributed cache custom properties, enter the following Jython command:

AdminTask.queryWSSDistributedCacheCustomConfig()

v Update your secure conversation distributed cache configuration settings and custom properties.

534 Administering WebSphere applications

Use the following steps to update all non-custom distributed cache configuration settings:

1. Review your existing configuration settings by running the queryWSSDistributedCacheConfig

command, as the following example demonstrates:

AdminTask.queryWSSDistributedCacheConfig()

The command returns a properties object that contains the configuration properties and values for

the distributed cache configuration. The following table displays the configuration properties that the

command returns:

 Property Description

tokenRecovery Specifies whether token recovery is enabled or disabled. If the

tokenRecovery property is set to true, the Datasource property specifies the

shared data source that is assigned to the distributed cache.

distributedCache Specifies whether distributed caching is enabled or disabled.

Datasource Specifies the name of the shared data source that is assigned to the

distributed cache if token recovery is enabled.

renewIntervalBeforeTimeoutMinutes Specifies the amount of time, in minutes, that the client waits before it

attempts to renew the token.

synchronousClusterUpdate Specifies whether the system performs a synchronous update of distributed

caches on cluster members. By default, synchronous cluster updating is

enabled.

minutesInCacheAfterTimeout Specifies the amount of time that the token remains in the cache after the

token times out.

2. Use the updateWSSDistributedCacheConfig command to enable or disable distributed cache and to

modify the amount of time after token expiration when downstream calls are allowed to complete.

The following command example enables distributed cache, and sets the mySharedDataSource as the

shared data source for token recovery:

AdminTask.updateWSSDistributedCacheConfig(’[-tokenRecovery true -Datasource

 mySharedDataSource -distributedCache true’)

3. Enter the following command to save your configuration changes:

AdminConfig.save()

Use the following steps to update custom properties for your distributed cache configuration:

1. Review your existing configuration settings by executing the

queryWSSDistributedCacheCustomConfig command. For example:

AdminTask.queryWSSDistributedCacheCustomConfig()

The command returns a properties object that contains the name and value pairs that correspond to

each custom property.

2. Use the updateWSSDistributedCacheCustomConfig command to add custom properties for your

distributed cache configuration. Specify and define each custom property by passing a properties

object with the -customProperties parameter using the following Jython format:

-customProperties [[property1 value1][property2 value2]]

For example, the following command adds the cancelActionRST custom property and defines the

value as http://schemas.xmlsoap.org/ws/2005/02/trust/RST/SCT/Cancel:

AdminTask.updateWSSDistributedCacheCustomConfig(’[-customProperties [[cancelActionRST

 http://schemas.xmlsoap.org/ws/2005/02/trust/RST/SCT/Cancel]]]’)

3. Enter the following command to save your configuration changes:

AdminConfig.save()

v Remove custom properties from your distributed cache configuration. Use the following steps to remove

custom properties from your distributed cache configuration:

1. Review your existing configuration settings by executing the

queryWSSDistributedCacheCustomConfig command. For example:

AdminTask.queryWSSDistributedCacheCustomConfig()

Chapter 5. Web services 535

2. Use the deleteWSSDistributedCacheConfigCustomProperties command to remove custom

properties for your distributed cache configuration. Specify the custom properties to delete by

passing a string array with the -propertyNames parameter. For example, the following command

removes the cancelActionRST custom property:

AdminTask.deleteWSSDistributedCacheConfigCustomProperties(’[-propertyNames

 [cancelActionRST]]’)

3. Enter the following command to save your configuration changes:

AdminConfig.save()

Results

Your WS-Security distributed cache configuration is updated.

Related concepts

Secure conversation client cache
For both distributed and local clients, the WebSphere Application Server secure conversation client cache

stores tokens on the client.

“SecureConversation default policy sets” on page 839
The SecureConversation default policy sets are based on the Web Services Secure Conversation

Language (SecureConversation) standard that establishes a secure context, based on shared keys for the

client and server to use for a series of messages. This standard provides a framework to define how to

secure the message exchange across organizations. The SecureConversation default policy sets include

the SecureConversation policy set, the Lightweight Third-Party Authentication (LTPA) SecureConversation

policy set, and the Username SecureConversation policy set.

Related tasks

Configuring the Web services security distributed cache using the administrative console
You can configure the Web services security runtime to use the security distributed cache to store security

tokens.

Example: Installing a Web Services Sample with the console
The product provides a Web Services sample application that you can install on a Version 7.x application

server.

Configuring custom policies and bindings for security tokens using

the wsadmin tool

Use the setPolicyType and setBinding commands for the AdminTask object to specify security tokens for

custom policy and binding configurations.

Before you begin

Create a new custom policy set.

About this task

The following scenarios configure the custom policy and bindings to use a Kerberos token based on the

Oasis Kerberos Token Profile V1.1 specification. You can also use the setPolicyType and setBinding

commands to configure other binary security tokens, such as username tokens, Lightweight Third-Party

Authentication (LTPA) and SecureConversation.

v Configure custom policies for security tokens.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Display the properties of the policy of interest.

Use the getPolicyType command to display detailed property information for the WS-Security policy

type, as the following command demonstrates:

AdminTask.getPolicyType(’-policySet AuthenticationTokenService -policyType

 WSSecurity’)

536 Administering WebSphere applications

The getPolicyType command returns a properties object that contains name and value pairs for

each property, as the following sample output displays:

’[[SupportingTokens.request:krb_token.CustomToken.IncludeToken

 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient] [enabled true] [type WSSecurity]

 [description [Policies for sending security tokens and providing message confidentiality and integrity, based on the OASIS Web

 Service Security and Token Profiles specifications.]] [SupportingTokens.request:krb_token.CustomToken.WssCustomToken.uri]

 [provides] [SupportingTokens.request:krb_token.CustomToken.WssCustomToken.localname

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ]]’

3. Specify the authentication token for the policy type.

Use the setPolicyType command to specify the Uniform Resource Identifier (URI) of the

authentication token for services as the value for the

SupportingTokens.request:krb_token.CustomToken.WssCustomToken.uri property. Use the []

syntax to specify an empty string. The following example specifies an empty string as the value for

the authentication token:

AdminTask.setPolicyType(’-policySet AuthenticationTokenService -policyType

 WSSecurity -attributes "[[SupportingTokens.request:krb_token.CustomToken.IncludeToken

 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient] [enabled true] [type

 WSSecurity] [description [Policies for sending security tokens and providing message confidentiality and integrity,

 based on the OASIS Web Service Security and Token Profiles specifications.]]

 [SupportingTokens.request:krb_token.CustomToken.WssCustomToken.uri []] [provides []]

 [SupportingTokens.request:krb_token.CustomToken.WssCustomToken.localname

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ]]"’)

v Configure custom bindings for security tokens.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Display the properties of the bindings of interest.

Use the getBinding command to display detailed property information for the binding of interest, as

the following command demonstrates:

AdminTask.getBinding(’-policyType WSSecurity -bindingLocation "" -bindingName

 AuthenticationTokenService’)

The getBinding command returns a properties object that contains name and value pairs for each

property, as the following sample output displays:

’[[application.securityinboundbindingconfig.tokenconsumer_0.properties_0.name

 com.ibm.wsspi.wssecurity.krbtoken.serviceSPN] [application.securityinboundbindingconfig.tokenconsumer_0.valuetype.localname

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ]

 [application.securityinboundbindingconfig.tokenconsumer_0.valuetype.uri]

 [application.securityinboundbindingconfig.tokenconsumer_0.callbackhandler.classname

 com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler] [application.name

 application][application.securityinboundbindingconfig.tokenconsumer_0.properties_0.value HTTP/derekho1.firehorse.austin.ibm.com]

 [application.securityinboundbindingconfig.tokenconsumer_0.jaasconfig.configname system.wss.consume.KRB5BST]

 [application.securityinboundbindingconfig.tokenconsumer_0.name

 con_krbtoken][application.securityinboundbindingconfig.tokenconsumer_0.classname

 com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenConsumer]

 [application.securityinboundbindingconfig.tokenconsumer_0.securitytokenreference.reference request:krb_token]]’

3. Specify the authentication token for the policy type.

Use the setBinding command to specify the Uniform Resource Identifier (URI) of the authentication

token for services as the value for the

application.securityinboundbindingconfig.tokenconsumer_0.valuetype.uri property. Use the []

syntax to specify an empty string. The following example specifies an empty string as the value for

the authentication token:

AdminTask.setBinding(’-policyType WSSecurity -bindingLocation ""

 -bindingName AuthenticationTokenService -attributes "[

 [application.securityinboundbindingconfig.tokenconsumer_0.properties_0.name com.ibm.wsspi.wssecurity.krbtoken.serviceSPN]

 [application.securityinboundbindingconfig.tokenconsumer_0.valuetype.localname

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ]

 [application.securityinboundbindingconfig.tokenconsumer_0.valuetype.uri []]

 [application.securityinboundbindingconfig.tokenconsumer_0.callbackhandler.classname

 com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler] [application.name

 application][application.securityinboundbindingconfig.tokenconsumer_0.properties_0.value

 HTTP/derekho1.firehorse.austin.ibm.com] [application.securityinboundbindingconfig.tokenconsumer_0.jaasconfig.configname

 system.wss.consume.KRB5BST][application.securityinboundbindingconfig.tokenconsumer_0.name

 con_krbtoken][application.securityinboundbindingconfig.tokenconsumer_0.classname

 com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenConsumer]

 [application.securityinboundbindingconfig.tokenconsumer_0.securitytokenreference.reference request:krb_token]

]"’)

Chapter 5. Web services 537

Results

If the setPolicyType and setBinding commands return a ’true’ value, the system successfully updated the

policy and binding configurations.

Related concepts

“WSSecurity default policy sets” on page 842
The WSSecurity default policy sets are based on the Web Services Security (WS-Security) 1.0 and Web

Services Addressing (WS-Addressing) specifications. The WSSecurity default policy sets include the

WSSecurity default policy set, the Lightweight Third-Party Authentication (LTPA) WSSecurity policy set,

and the Username WSSecurity policy set. Use the WSSecurity default policy sets to build secure Web

services.

Related tasks

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

“WSSecurity policy and binding properties” on page 572
Use the attributes parameter for the setPolicyType and setBinding commands to specify additional

configuration information for the WSSecurity policy and binding configurations. Application and system

policy sets can use the WSSecurity policy and binding configuration.

Creating policy set attachments using the wsadmin tool

Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

Before you begin

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to create policy set

attachments. If you have access to a specific resource only, you can create

policy set attachments for the resource for which you have access.

Configurator The Configurator role must have cell-wide access to create policy set

attachments. If you have access to a specific resource only, you can create

policy set attachments for the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can create

policy set attachments for application resources only.

Operator The Operator role cannot create policy set attachments.

Monitor The Monitor role cannot create policy set attachments.

538 Administering WebSphere applications

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

About this task

To use a new policy set to manage policies for your application, you must attach the policy set to an

application artifact or artifacts. When the application restarts, the application uses the policies from the

newly attached policy set.

1. Launch a scripting command.

2. Select an application with Web services to update. Use the listWebServices command to list all Web

services and the associated applications. Enter the following command to list all Web services and

attributes:

AdminTask.listWebServices()

For each Web service, the command returns the associated application name, module name, service

name, and service type. For example, the following information is returned:

’[[service {http://www.ibm.com}service1] [client false] [application application1]

 [module webapp1.war] [type JAX-WS]]’

3. Create a policy set attachment for an application.

For the commands in the PolicySetManagement group, the term resource refers to a Web service

artifact. For application and service client policy sets, the artifacts use the application hierarchy. The

application hierarchy includes a Web service, module name, endpoint, or operation. Enter the value for

the -resource parameter as a string, with a backslash (/) character as a delimiter.

Note: When attempting to connect to a Web service from a thin client, verify that the resources you

are specifying are valid before running the updatePolicySetAttachment command. No

configuration changes are made if the requested resource does not match a resource in the

attachment file for the application.

Use the following format for application and client policy set attachments:

v WebService:/

Attaches all artifacts in the application to the policy set.

v WebService:/webapp1.war:{http://www.ibm.com}myService

Attaches all artifacts within the Web service {http://www.ibm.com}myService to the policy set. You

must provide a fully qualified name (QName) for the service.

v WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA

Attaches all operations for the endpointA endpoint to the policy set.

v WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA/operation1

Attaches only the operation1 operation to the policy set.

The format for the -resource string differs for system policy set attachments for the trust service. Use

the following format for system policy set attachments:

v Trust.opName:/

The opName attribute can be issue, renew, cancel, or validate.

v Trust.opName:/url

The opName attribute can be issue, renew, cancel, or validate. You can specify any valid URL for the

url attribute.

a. Enter the command to attach the policy set to the application. This command attaches the

policyset1 application policy set to all artifacts in the WebService application.

Note: The application and system/trust values for the -attachmentType parameter are

deprecated. Specify the provider value in place of the application value. For system policy

Chapter 5. Web services 539

set attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For

WSNClient attachments, specify the client value for the attachmentType parameter and the

bus and WSNService properties with the -attachmentProperties parameter.

To attach a policy set to a Web service application, specify the provider value for the

-attachmentType parameter:

AdminTask.createPolicySetAttachment(’[-policySet policyset1 -resources

 "WebService:/" -applicationName WebService -attachmentType provider]’)

To attach a policy set to a service client application, specify the client value for the

-attachmentType parameter, as the following example demonstrates:

AdminTask.createPolicySetAttachment(’[-policySet policyset1 -resources

 "WebService:/" -applicationName WebService -attachmentType client]’)

To create a trust service attachment for a system policy set, specify the provider value for the

-attachmentType parameter and the [systemType trustService] value for the

-attachmentProperties parameter, as the following example demonstrates:

AdminTask.createPolicySetAttachment(’[-policySet policyset1 -resources

 "WebService:/" -applicationName WebService -attachmentType client -attachmentProperties "[systemType

 trustService]"]’)

This command returns an attachment ID number that you must use to reference this attachment. In

the next step, use the attachment ID number to set the binding configuration. For this example, the

attachment ID number is 124.

4. Run the command to set the binding. The following example demonstrates how to set the timestamp

expiration attribute on the SecureConversation123binding binding for the WSSecurity policy, on the

WebService Web service application. To attach a policy set to a Web services application, specify the

provider value for the -attachmentType parameter.

AdminTask.setBinding(’-policyType WSSecurity -bindingLocation "[[application WebService] [attachmentId 124]]" -attachmentType provider

 -bindingName SecureConversation123binding -attributes "[application.securityoutboundbindingconfig.timestampexpires.expires 5]"’)

5. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

Results

Your have attached the policy set to the application artifact or artifacts specified. Restart your application

to use the policies from the newly attached policy set.

What to do next

Manage and update your attachments.

540 Administering WebSphere applications

Related tasks

Configuring attachments for the trust service using the administrative console
You can attach the trust service operations for a service endpoint to a system policy set and binding. Each

new endpoint that is specified initially has the following four operations: issue, renew, cancel, and validate.

By default, all endpoints inherit the policy set and binding that are attached to the respective trust service

operation under Trust Service Defaults. However, you can explicitly attach a different policy set.

“Managing policy set attachments using the wsadmin tool”
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“Search attached applications collection” on page 986
Use this page to search for applications and other resources that are attached to a specific policy set or to

search for applications and other resources that have attached service resources.

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

“WebServicesAdmin command group for the AdminTask object” on page 515
Use this topic as a reference for the commands for the WebServicesAdmin group of the AdminTask object.

Use these commands with your administrative scripts to list available Web services, list web services

attributes, determine the endpoint configuration for a Web service, and determine a specific operation

name.

Managing policy set attachments using the wsadmin tool

Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

Before you begin

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

Chapter 5. Web services 541

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to manage policy set

attachments. If you have access to a specific resource only, you can

manage policy set attachments for the resource for which you have

access.

Configurator The Configurator role must have cell-wide access to manage policy set

attachments. If you have access to a specific resource only, you can

manage policy set attachments for the resource for which you have

access.

Deployer The Deployer role with cell-wide or resource specific access can manage

policy set attachments for application resources only.

Operator The Operator role cannot manage policy set attachments.

Monitor The Monitor role cannot manage policy set attachments.

About this task

Policy set attachments define how a policy set is attached to resources and binding configurations.

v Query the configuration for policy set attachments and attachment properties.

Before making configuration changes to your policy set attachments, use the

listAttachmentsForPolicySet and getPolicySetAttachments commands to view current configuration

information about your policy set attachments.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Use the listAttachmentsForPolicySet command to view all applications to which a specific policy set

is attached, for example:

AdminTask.listAttachmentsForPolicySet(’[-policySet PolicySet1]’)

Use the -attachmentType parameter to narrow your query. You can query for provider or client

attachments.

Note: The application and system/trust values for the -attachmentType parameter are

deprecated. Specify the provider value in place of the application value. For system policy

set attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

3. Use the getPolicySetAttachments command to view the properties for all policy set attachments in a

specified application, for example:

AdminTask.getPolicySetAttachments(’[-applicationName application1]’)

Use the -attachmentType parameter to narrow your query. You can query for provider or client

attachments.

v Determine the assets to which a specific policy set is attached.

Use the listAssetsAttachedToPolicySet command to display the assets that are attached to the policy

set of interest, as the following example demonstrates:

AdminTask.listAssetsAttachedToPolicySet(’[-policySet SecureConversation]’)

The command returns a list of properties that describe each asset. Each properties object contains the

assetType property, which specifies the type of asset.

v Modify resources that apply to a policy set attachment.

1. Launch the wsadmin scripting tool using the Jython scripting language.

542 Administering WebSphere applications

2. Determine the resource of interest and review the command syntax for the

updatePolicySetAttachment command.

For the commands in the PolicySetManagement group, the term resource refers to a Web service

artifact. For application and service client policy sets, the artifacts use the application hierarchy. The

application hierarchy includes a Web service, module name, endpoint, or operation. Enter the value

for the -resource parameter as a string, with a backslash (/) character as a delimiter.

Note: When attempting to connect to a Web service from a thin client, verify that the resources you

are specifying are valid before running the updatePolicySetAttachment command. No

configuration changes are made if the requested resource does not match a resource in the

attachment file for the application.

Use the following format for application and client policy set attachments:

– WebService:/

Attaches all artifacts in the application to the policy set.

– WebService:/webapp1.war:{http://www.ibm.com}myService

Attaches all artifacts within the Web service {http://www.ibm.com}myService to the policy set.

You must provide a fully qualified name (QName) for the service.

– WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA

Attaches all operations for the endpointA endpoint to the policy set.

– WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA/operation1

Attaches only the operation1 operation to the policy set.

The format for the -resource string differs for system policy set attachments for the trust service.

Use the following format for system policy set attachments:

– Trust.opName:/

The opName attribute can be issue, renew, cancel, or validate.

– Trust.opName:/url

The opName attribute can be issue, renew, cancel, or validate. You can specify any valid URL for

the url attribute.

3. Modify the attachment.

For example, the policy set attachment is connected to the operation1 operation, which is a specific

single operation. To attach the 124 attachment to all operations for the endpointA endpoint, enter the

following command:

AdminTask.updatePolicySetAttachment(’[-attachmentId 124 -resources

"WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA" -applicationName application1]’)

Note: The updatePolicySetAttachment command replaces all existing resources for an attachment

with the resources specified in the command. You can also update your policy set

attachments using the addToPolicySetAttachment command to add resources to an existing

attachment or the createPolicySetAttachment command to create an attachment for a specific

resource. For more information about these commands reference the commands for the

PolicySetManagement group for the AdminTask object.

4. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Remove resources that apply to a policy set attachment.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine which resources to remove with the command. You can remove a resource for each Web

service artifact, each operation for an endpoint, or for a specific operation. In the following example,

the command removes the newAttach attachment from operation1, which is associated with the

plantShop application.

Chapter 5. Web services 543

AdminTask.removeFromPolicySetAttachment(’[-attachmentId newAttach -resources

"WebService:/webapp1.war:{http://www.ibm.com}myPlantService/endpointA/operation1" -applicationName plantShop]’)

The command returns a success or failure message.

3. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Transfer attachments from one policy set to another policy set. This command detaches each Web

service from the source policy set and attaches those Web services to the destination policy set. The

destination policy set must have the same set of enabled policy types as the source policy set.

1. Enter the following command to transfer all attachments:

AdminTask.transferAttachmentsForPolicySet(’[-sourcePolicySet PolicySet1

-destinationPolicySet PolicySet2]’)

The command returns a success or failure message.

2. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

544 Administering WebSphere applications

Related tasks

Configuring attachments for the trust service using the administrative console
You can attach the trust service operations for a service endpoint to a system policy set and binding. Each

new endpoint that is specified initially has the following four operations: issue, renew, cancel, and validate.

By default, all endpoints inherit the policy set and binding that are attached to the respective trust service

operation under Trust Service Defaults. However, you can explicitly attach a different policy set.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“Search attached applications collection” on page 986
Use this page to search for applications and other resources that are attached to a specific policy set or to

search for applications and other resources that have attached service resources.

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Configuring general, cell-wide bindings for policies using the wsadmin

tool

You can use the Jython or Jacl scripting language to customize your cell-wide default binding

configuration. Create multiple cell-wide general bindings that you can attach to applications.

Before you begin

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

Chapter 5. Web services 545

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to configure bindings. If

you have access to a specific resource only, you can configure bindings for

the resource for which you have access. Only the Administrator role can

edit binding attributes.

Configurator The Configurator role with cell-wide or resource specific access can assign

or unassign bindings, but cannot edit attributes.

Deployer The Deployer role with cell-wide or resource specific access can assign or

unassign bindings, but cannot edit attributes.

Operator The Operator role can view, but cannot configure bindings.

Monitor The Monitor role can view, but cannot configure bindings.

.

About this task

Bindings are environment and platform-specific information such as key store information, keys used for

signature and encryption, or authentication information.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Use the following guidelines to manage bindings in your environment:

v To display or modify default Version 6.1 bindings, Version 7.0 trust service bindings, or to reference

bindings by attachment for an application, specify the attachmentId and bindingLocation parameters with

the getBinding or setBinding commands.

v To use or modify general Version 7.0 bindings, specify the bindingName parameter with the getBinding

or setBinding commands.

v To display the version of a specific binding, specify the version attribute for the getBinding command.

Use a Version 6.1 binding for an application in a Version 7.0 environment if:

v The module in the application is installed on at least one Web Services Feature Pack server.

v The application contains at least one Version 6.1 application-specific binding. The application server

does not assign general bindings to resource attachments for applications that are installed on a Web

Services Feature Pack server. All application-specific bindings for an application must be at the same

level.

General service provider and client bindings are not linked to a particular policy set and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

546 Administering WebSphere applications

are deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by setting default

bindings for a security domain and assigning the security domain to one or more servers. You can specify

default bindings for your service provider or client that are used at the global security (cell) level, for a

security domain, for a particular server. The default bindings are used in the absence of an overriding

binding specified at a lower scope. The order of precedence from lowest to highest that the application

server uses to determine which default bindings to use is as follows:

1. Server level default

2. Security domain level default

3. Global security (cell) default

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the policy to update.

To view a list of all available policies for a specific policy set, use the listPolicyType command. For

example:

AdminTask.listPolicyTypes(’[-policySet PolicySet1]’)

3. Retrieve the current binding configuration for the policy to determine the attributes to update.

Use the getBinding command to display a Properties object containing all configuration attributes for a

specific policy binding. Specify a Properties object for the -bindingLocation parameter using an empty

Properties object. For example:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "" -bindingName cellWideBinding1’)

To return a specific configuration attribute for the policy, use the -attributes parameter. For example,

enter this command to determine if the WSAddressing policy has workload management enabled:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "" -bindingName cellWideBinding1 -attributes "[preventWLM]"’)

The command returns a properties object which contains the value of the requested attribute,

preventWLM.

4. Edit the binding configuration.

Use the setBinding command to update your binding configuration for a policy. To specify that you are

editing a cell-wide binding, set the -bindingLocation parameter by passing a null or empty Properties

object and specify the name of the binding with the -bindingName parameter. You can further

customize your binding with the following parameters:

 Parameter Description Data type

-policyType Specifies the policy of interest. String, optional

-attributes Specifies the attribute values to update. This parameter can include

all binding attributes for the policy or a subset to update.

Properties, optional

-replace Specifies whether to replace all of the existing binding attributes with

the attributes specified in the command. Use this parameter to

remove optional parts of the configuration for policies with complex

data. The default value is false.

Boolean, optional

Chapter 5. Web services 547

Parameter Description Data type

-remove Use this parameter to remove a specific policy from the binding

configuration. The default value for the remove parameter is false. If

the policyType parameter is not specified, the command removes

the custom binding from the attachment. To delete the binding

configuration, provide a value for the bindingName parameter and

an asterisk character (*) for the attachmentId.

Boolean, optional

-domainName Specifies the domain name for the binding. Use this parameter to

scope a binding to a domain other than the global security domain.

String, optional

You must use the -attributes parameter when editing your binding configuration for cell-wide bindings.

The following example disables workload management within the cell-wide default binding for the

WSAddressing policy:

AdminTask.setBinding(’-policyType WSAddressing -bindingLocation "" -bindingName cellWideBinding1 -attributes "[preventWLM false]"’)

5. Save your configuration changes.

AdminConfig.save()

548 Administering WebSphere applications

Related tasks

“Reassigning bindings to policy sets” on page 885
After you create a custom attachment binding, you can reassign that binding to another service artifact if

necessary. You can reset a service artifact, such as an application, service, or endpoint to use the

inherited bindings or default bindings.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“Policy set bindings settings” on page 895
Use this page to view or define general or application specific bindings configuration information that is

specific to a system for policies that you can associate with the selected policy set. Use the links on this

page to work with bindings for each specific policy.

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Configuring Version 6.1 server-specific default bindings for policies

using the wsadmin tool

You can use the Jython or Jacl scripting language to customize WebSphere Application Server Version 6.1

server-specific default bindings for policies to match your installation environment or requirements.

Before you begin

Server-specific default bindings use the WebSphere Application Server Version 6.1 namespace.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to configure bindings. If you have

access to a specific resource only, you can configure bindings for the resource for

which you have access. Only the Administrator role can edit binding attributes.

Configurator The Configurator role with cell-wide or resource specific access can assign or

unassign bindings, but cannot edit attributes.

Chapter 5. Web services 549

Administrative role Authorization

Deployer The Deployer role with cell-wide or resource specific access can assign or unassign

bindings, but cannot edit attributes.

Operator The Operator role can view, but cannot configure bindings.

Monitor The Monitor role can view, but cannot configure bindings.

About this task

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Use the following guidelines to manage bindings in your environment:

v To display or modify default Version 6.1 bindings, Version 7.0 trust service bindings, or to reference

bindings by attachment for an application, specify the attachmentId and bindingLocation parameters with

the getBinding or setBinding commands.

v To use or modify general Version 7.0 bindings, specify the bindingName parameter with the getBinding

or setBinding commands.

v To display the version of a specific binding, specify the version attribute for the getBinding command.

Use a Version 6.1 binding for an application in a Version 7.0 environment if:

v The module in the application is installed on at least one Web Services Feature Pack server.

v The application contains at least one Version 6.1 application-specific binding. The application server

does not assign general bindings to resource attachments for applications that are installed on a Web

Services Feature Pack server. All application-specific bindings for an application must be at the same

level.

General service provider and client bindings are not linked to a particular policy set and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

are deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by setting default

bindings for a security domain and assigning the security domain to one or more servers. You can specify

default bindings for your service provider or client that are used at the global security (cell) level, for a

security domain, for a particular server. The default bindings are used in the absence of an overriding

binding specified at a lower scope. The order of precedence from lowest to highest that the application

server uses to determine which default bindings to use is as follows:

1. Server level default

2. Security domain level default

3. Global security (cell) default

550 Administering WebSphere applications

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the policy to update.

To view a list of all available policies for a specific policy set, use the listPolicyTypes command, as the

following example demonstrates:

AdminTask.listPolicyTypes(’[-policySet WSAddressing]’)

3. Retrieve the current binding configuration for the policy to determine the attributes to update.

Use the getBinding command to display a Properties object containing all configuration attributes for a

specific policy binding. Specify a Properties object for the -bindingLocation parameter using the

property names node and server. For example:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[node node1]

[server server1]]"’)

To return a specific configuration attribute for the policy, use the -attributes parameter. For example,

enter this command to determine if the policy is enabled:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[node node1]

[server server1]]" -attributes "[[preventWLM]]"’)

The command returns a properties object which contains the value of the requested attribute,

preventWLM.

4. Edit the binding configuration.

Use the setBinding command to update your binding configuration for a policy. To specify that you are

editing a server-specific default binding, set the -bindingLocation parameter using the node and server

property names in a Properties object. You can further customize your binding with the following

optional parameters:

 Parameter Description Data type

-policyType Specifies the policy of interest. String, optional

-remove Use this parameter to remove a server-level binding configuration.

The default value for the -remove parameter is false.

Boolean, optional

-attributes Specifies the attribute values to update. This parameter can include

all binding attributes for the policy or a subset to update. The

-attributes parameter is not required if you are removing your

server-level binding.

Properties, optional

-replace Specifies whether to replace all of the existing binding attributes with

the attributes specified in the command. Use this parameter to

remove optional parts of the configuration for policies with complex

data. The default value is false.

Boolean, optional

-domainName Specifies the domain name for the binding. Use this parameter to

scope a binding to a domain other than the global security domain.

String, optional

You should always specify the -attributes parameter when editing your configuration. The following

example disables workload management within the server-specific default binding for the WSAddressing

policy:

AdminTask.setBinding(’-policyType WSAddressing -bindingLocation "[[server server1] [node node01]]" -attributes "[preventWLM false]"’)

5. Save your configuration changes.

AdminConfig.save()

Chapter 5. Web services 551

Related tasks

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Configuring application-specific and system bindings using the

wsadmin tool

Use the Jython or Jacl scripting language to edit custom application bindings and system bindings for

policies to match your installation environment or system requirements.

Before you begin

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

552 Administering WebSphere applications

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to configure bindings. If

you have access to a specific resource only, you can configure bindings for

the resource for which you have access. Only the Administrator role can

edit binding attributes.

Configurator The Configurator role with cell-wide or resource specific access can assign

or unassign bindings, but cannot edit attributes.

Deployer The Deployer role with cell-wide or resource specific access can assign or

unassign bindings, but cannot edit attributes.

Operator The Operator role can view, but cannot configure bindings.

Monitor The Monitor role can view, but cannot configure bindings.

About this task

Binding configurations are environment- and platform-specific information such as keystore information,

keys used for signature and encryption, or authentication information. You can use the default binding for

each policy set or define application-specific bindings within an application.

There are three types of bindings to use with your policy sets, including cell-level, application server level,

and application-level. Default bindings are used at the cell-level or application server level. This topic

refers to system binding information or bindings that are defined at the application level, which overrides

the cell-level or application server level definition.

Use default bindings only to develop and test applications. You must change signing and encryption keys

before using your bindings in a production environment.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Use the following guidelines to manage bindings in your environment:

v To display or modify default Version 6.1 bindings, Version 7.0 trust service bindings, or to reference

bindings by attachment for an application, specify the attachmentId and bindingLocation parameters with

the getBinding or setBinding commands.

v To use or modify general Version 7.0 bindings, specify the bindingName parameter with the getBinding

or setBinding commands.

v To display the version of a specific binding, specify the version attribute for the getBinding command.

Use a Version 6.1 binding for an application in a Version 7.0 environment if:

v The module in the application is installed on at least one Web Services Feature Pack server.

Chapter 5. Web services 553

v The application contains at least one Version 6.1 application-specific binding. The application server

does not assign general bindings to resource attachments for applications that are installed on a Web

Services Feature Pack server. All application-specific bindings for an application must be at the same

level.

General service provider and client bindings are not linked to a particular policy set and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

are deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by setting default

bindings for a security domain and assigning the security domain to one or more servers. You can specify

default bindings for your service provider or client that are used at the global security (cell) level, for a

security domain, for a particular server. The default bindings are used in the absence of an overriding

binding specified at a lower scope. The order of precedence from lowest to highest that the application

server uses to determine which default bindings to use is as follows:

1. Server level default

2. Security domain level default

3. Global security (cell) default

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Retrieve the current binding data for the attachment of interest.

Use the getPolicySetAttachments command to determine the attachment ID. You will need to specify

the attachment ID in the getBinding and setBinding commands to specify that this is a

application-specific binding configuration. Use the following command to retrieve the attachment ID:

AdminTask.getPolicySetAttachments(’-applicationName application1’)

Use the getBinding command to display a properties object that contains each configuration attribute

for a specific policy binding configuration. For application and client policy set attachments, specify a

properties object for the -bindingLocation parameter using the application and attachmentId property

names. For a system policy set attachment for the trust service, specify only the attachmentId property

name. The following example queries for an application policy set binding configuration:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[application application1][attachmentId 123]]"’)

To return a specific configuration attribute for the policy, use the -attributes parameter.

3. Edit the binding configuration.

Use the setBinding command to update your binding configuration for a policy. To specify that you are

editing a application-specific binding configuration, set the -bindingLocation parameter by specifying the

application and attachmentId property names in a properties object. You can additionally specify the

-attachmentType parameter as provider or client.

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

554 Administering WebSphere applications

Customize your binding configuration with the following optional parameters:

 Parameter Description Data type

-policyType Specifies the policy of interest. String, optional

-remove Use this parameter to remove a specific policy from the binding

configuration. The default value for the -remove parameter is false. If

the -policyType parameter is not specified, the command removes

the application-specific binding from the attachment. To delete the

binding configuration, provide a value for the -bindingName

parameter and an asterisk character (*) for the -attachmentId

parameter.

Boolean, optional

-attributes Specifies the attribute values to update. This parameter can include

each binding configuration attribute for the policy or a subset of

attributes to update. If you do not specify the attributes parameter,

the command only updates the binding configuration location that

the specified attachment uses.

Properties, optional

-bindingName Specifies the name for the binding configuration. Use this parameter

to specify a name for the binding when you create a new

application-specific binding. You can also use this parameter to

switch an attachment to use a different, existing application-specific

binding configuration. Lastly, you must specify a value for this

parameter to delete a binding configuration.

String, optional

-replace Specifies whether to replace all of the existing binding configuration

attributes with the attributes specified in the command. Use this

parameter to remove optional parts of the configuration for policies

with complex data. The default value is false.

Boolean, optional

-domainName Specifies the domain name for the binding. Use this parameter to

scope a binding to a domain other than the global security domain.

String, optional

The following example disables workload management for the myApplication application’s binding

configuration for the WSAddressing policy:

AdminTask.setBinding(’[-policyType WSAddressing -bindingLocation "[[application myApplication] [attachmentId 123]]"

 -attributes "[preventWLM false]" -attachmentType provider]’)

4. Save the configuration changes.

Enter the following command to save your changes.

AdminConfig.save()

Chapter 5. Web services 555

Related tasks

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Creating application-specific and trust service-specific bindings using

the wsadmin tool

You can use the Jython or Jacl scripting language to create application-specific and trust service-specific

bindings to match your installation environment or requirements.

Before you begin

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

556 Administering WebSphere applications

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to configure bindings. If

you have access to a specific resource only, you can configure bindings for

the resource for which you have access. Only the Administrator role can

configure binding attributes.

Configurator The Configurator role with cell-wide or resource specific access can assign

or unassign bindings, but cannot edit attributes.

Deployer The Deployer role with cell-wide or resource specific access can assign or

unassign bindings, but cannot edit attributes.

Operator The Operator role can view, but cannot configure bindings.

Monitor The Monitor role can view, but cannot configure bindings.

About this task

Policy set bindings specify the details about how your quality of service (QoS) is configured. For example,

a policy set attachment determines that sign, encrypt, or reliable messaging should be enabled. The policy

set binding specifies how the protection is configured, for example, the path of the keystore file, the class

name of the token generator, or the Java™ Authentication and Authorization Service (JAAS) configuration

name.

For application policy sets, you can specify the policy set bindings at the cell-level using default binding

configurations, at the application level using application-specific binding configurations, or at the cell-level

with general bindings. Server-level default bindings are deprecated. If no binding information is specified

during policy set attachment, the policy set inherits the default binding. In WebSphere Application Server

Version 7.0, you can specify a general binding as the default for a server instead of server-default

bindings.

For system policy sets, you can specify the bindings at the cell-level and the server-level. The available

bindings for system policy sets are the TrustServiceSymmetricDefault and TrustServiceSecurityDefault

bindings. If no custom binding information is specified by the attachment, the resources inherit the

TrustServiceSymmetricDefault or TrustServiceSecurityDefault binding.

Note: Only use default binding for development and testing. You must customize the signing and

encryption keys in your binding configurations for a production environment.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Use the following guidelines to manage bindings in your environment:

Chapter 5. Web services 557

v To display or modify default Version 6.1 bindings, Version 7.0 trust service bindings, or to reference

bindings by attachment for an application, specify the attachmentId and bindingLocation parameters with

the getBinding or setBinding commands.

v To use or modify general Version 7.0 bindings, specify the bindingName parameter with the getBinding

or setBinding commands.

v To display the version of a specific binding, specify the version attribute for the getBinding command.

Use a Version 6.1 binding for an application in a Version 7.0 environment if:

v The module in the application is installed on at least one Web Services Feature Pack server.

v The application contains at least one Version 6.1 application-specific binding. The application server

does not assign general bindings to resource attachments for applications that are installed on a Web

Services Feature Pack server. All application-specific bindings for an application must be at the same

level.

General service provider and client bindings are not linked to a particular policy set and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

are deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by setting default

bindings for a security domain and assigning the security domain to one or more servers. You can specify

default bindings for your service provider or client that are used at the global security (cell) level, for a

security domain, for a particular server. The default bindings are used in the absence of an overriding

binding specified at a lower scope. The order of precedence from lowest to highest that the application

server uses to determine which default bindings to use is as follows:

1. Server level default

2. Security domain level default

3. Global security (cell) default

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the type of binding to create.

You can create application policy set bindings at the cell-level, server-level, or application-level, and

trust service policy set bindings at the cell-level or server-level.

3. Retrieve the current binding configuration for the policy of interest.

Use the getBinding command to display a Properties object containing all configuration attributes for a

specific binding. Specify the location of the binding by passing a properties object using the

-bindingLocation parameter and the following reference table:

 Type of binding -bindingLocation parameter value

Cell-level -bindingLocation ″″

Server-level (deprecated) -bindingLocation ″[[node node1][server server1]]″

Application -bindingLocation ″[[application application1][attachmentId 123]]″

Trust service -bindingLocation ″[[systemType trustService] [attachmentId 123]]″

558 Administering WebSphere applications

Type of binding -bindingLocation parameter value

WS-Notification client -bindingLocation ″[[bus myBus][WSNService myService][attachmentId

123]″

For this example, the command displays the current binding configuration for the WSAddressing policy,

with the 123 attachment ID, for the application1 application:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[application application1][attachmentId 123]]"’)

To return a specific configuration attribute for the policy, use the -attributes parameter. For example,

enter this command to determine if workload management is enabled:

AdminTask.getBinding(’-policyType WSaddressing -bindingLocation "[[application application1][attachmentId 123]]" -attributes "[preventWLM]"’)

The command returns a properties object which contains the value of the requested attribute,

preventWLM. You might receive an error message if the binding does not exist in your configuration.

4. Create a new application-specific binding for the policy of interest.

Use the setBinding command to create a binding configuration for a policy. To specify that you are

creating an application-specific binding, set the -bindingLocation parameter by passing the application

and attachmentId property names in a properties object. If you are creating a system policy set

binding for the trust service, you only need to specify the attachmentId property name. You can further

customize your binding with the following parameters:

 Parameter Description Data type

-policyType Specifies the policy of interest. String, optional

-attachmentType Specifies the type of policy set attachment. If the attachment is for

an application, you do not need to specify this parameter.

Note: The application and system/trust values for the

-attachmentType parameter are deprecated. Specify the provider

value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType

parameter and the ″[systemType trustService]″ value for the

-attachmentProperties parameter. For WSNClient attachments,

specify the client value for the attachmentType parameter and the

bus and WSNService properties with the -attachmentProperties

parameter.

String, optional

-attributes Specifies the attribute values to update. This parameter can include

all binding attributes for the policy or a subset of attributes.

Properties, optional

-bindingName Specifies the name for your new application-specific binding. A

name is generated if it is not specified.

String, optional

-domainName Specifies the domain name for the binding. Use this parameter to

scope a binding to a domain other than the global security domain.

String, optional

The following example creates the WSAddressing1234binding attachment-specific binding for the

WSAddressing policy, assigned to the application1 application attachment 123, and enables workload

management:

AdminTask.setBinding(’-policyType WSAddressing -bindingName

 WSAddressing123binding -bindingLocation "[[application application1] [attachmentId 123]]" -attributes

 "[preventWLM false]"’)

5. Optional: Add application-specific binding properties.

Use the setBinding command to add any additional custom properties for your application-specific

binding. The application server provides custom properties that are specific to each quality of service.

Use the following format to specify custom properties for the binding:

AdminTask.setBinding(’[-bindingLocation "[[application application1] [attachmentId 123]

]" -policyType WSAddressing -attributes "[[properties_x:name key_value] [properties_x:value

 value]"]’)

6. Save your configuration changes.

AdminConfig.save()

Chapter 5. Web services 559

Related tasks

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Deleting application-specific bindings from your configuration using

the wsadmin tool

You can use the Jython or Jacl scripting language to delete a custom application or system policy set

binding from your configuration. You cannot delete cell-level default bindings.

Before you begin

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to modify bindings. If

you have access to a specific resource only, you can modify bindings for

the resource for which you have access.

Configurator The Configurator role cannot modify bindings.

Deployer The Deployer role cannot modify bindings.

Operator The Operator role cannot modify bindings.

Monitor The Monitor role cannot modify bindings.

560 Administering WebSphere applications

About this task

Policy set bindings specify the details about how your quality of service (QoS) is configured. For example,

a policy set attachment determines that sign, encrypt, or reliable messaging is enabled. The policy set

binding specifies how the protection is configured, for example, the path of the keystore file, the class

name of the token generator, or the Java Authentication and Authorization Service (JAAS) configuration

name.

For application policy sets, policy set bindings exist at the cell-level and server-level using default binding

configurations, or at the application level using application-specific binding configurations. You can also

specify cell-level general bindings. For system policy sets, bindings exist at the cell level and server level,

or you can create application-specific bindings.

Use the following procedure to delete application-specific bindings for trust policy sets and application level

bindings for application policy sets:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Retrieve the current binding configuration for the policy of interest.

Use the getBinding command to display a properties object that contains all configuration attributes for

a specific binding. Specify the location of the binding by passing a properties object using the

bindingLocation parameter and the following reference table:

 Type of Binding Value for the -bindingLocation parameter

Application -bindingLocation ″[[application application1][attachmentId 123]]″

Trust service -bindingLocation ″[[attachmentId 123]]″

WS-Notification client -bindingLocation ″[[bus myBus][WSNService myService][attachmentId

123]″

General binding -bindingLocation []

In this example, the command displays the current binding configuration for the WSAddressing policy,

with the 123 attachmentId, for the application1 application:

AdminTask.getBinding(’[-policyType WSAddressing -bindingLocation "[[application

 application1][attachmentId 123]]"]’)

To display general policy set bindings, identify the bindings by specifying the -bindingName parameter,

as the following example demonstrates:

AdminTask.getBinding(’[-bindingLocation [] -attachmentType application

 -bindingName "General Provider Binding"]’)

3. Remove the binding of interest from each attachment.

You cannot remove a binding from your configuration if that binding is referenced by one or more

attachments. Modify and use the following example command to remove a binding from an attachment:

AdminTask.setBinding(’[-bindingLocation "[[application application1][attachmentId

 123]]" -remove true]’)

4. Delete the binding of interest.

Use the setBinding command to delete a application-specific binding configuration. Specify the binding

of interest with the -bindingName parameter, an asterisk (*) for the -attachmentId property, and set the

-remove parameter to true. The following example setBinding command removes the

WSAddressing123binding application policy set binding:

AdminTask.setBinding(’[-attachmentType application -bindingName

 WSAddressing123binding -bindingLocation "[[application application1][attachmentId *]]" -remove

 true]’)

The following example setBinding command removes the customTrust trust service binding:

AdminTask.setBinding(’[-attachmentType "system/trust" -bindingName

 customTrust -bindingLocation "[attachmentId *]" -remove true]’)

The following example setBinding command removes the General Provider Binding general binding:

AdminTask.setBinding(’[-attachmentType application -bindingName "General Provider

 Binding" -bindingLocation [] -bindingScope domain -remove true]’)

Chapter 5. Web services 561

Note: You cannot delete general bindings if an attachment references the binding, or if the binding is

set as the default for a server or domain.

5. Save your configuration changes.

Results

The application-specific binding of interest is removed from your configuration.

Related tasks

“Removing policy set bindings using the wsadmin tool” on page 563
You can use the Jython or Jacl scripting language to remove binding configurations for policies and

resources to match your installation environment or requirements.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Importing and exporting policy sets to client or server environments

using scripting

Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Before you begin

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

562 Administering WebSphere applications

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to import and export

policy sets.

Configurator The Configurator role cannot import and export policy sets.

Deployer The Deployer role cannot import and export policy sets.

Operator The Operator role cannot import and export policy sets.

Monitor The Monitor role cannot import and export policy sets.

About this task

You can use the exportPolicySet and importPolicySet commands to exchange system or application policy

sets between servers or between a client and a provider. To reuse a policy set on a new server or client,

export the policy set to an archive file, then import the archive file on the destination server or client. This

topic provides examples for exporting a policy set, importing a policy set from an archive file, and

importing a default policy set.

v Export an application or system policy set to an archive file.

Use the exportPolicySet command to create an archive file for the policy set of interest. For example,

the following command creates the customSC.zip archive file in the C:\IBM\WebSphere\AppServer\
PolicySets\ directory for the customSecureConversation policy set:

AdminTask.exportPolicySet(’[-policySet customSecureConversation

-pathName C:\IBM\WebSphere\AppServer\PolicySets\customSC.zip]’)

v Move the policy set archive file to the destination environment.

If you are exporting the policy set to a client environment, then place the archive file on the classpath of

the client.

v Import a policy set from an archive file or import a default policy set.

Use the importPolicySet command to import the archive file containing the policy set configuration of

interest to the destination environment. You cannot import a policy set onto a server or client

environment if the policy set already exists in the destination environment.

For example, the following command creates a customSecureConversation policy set from the

customSC.zip archive file:

AdminTask.importPolicySet(’[-importFile C:\IBM\WebSphere\AppServer\bin\customSC.zip]’)

Additionally, you can also use the importPolicySet command to import a default policy set onto a server

environment, as the following example demonstrates:

AdminTask.importPolicySet(’[-defaultPolicySet SecureConversation -policySet copyOfdefaultSC]’)

v Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

Removing policy set bindings using the wsadmin tool

You can use the Jython or Jacl scripting language to remove binding configurations for policies and

resources to match your installation environment or requirements.

Before you begin

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

Chapter 5. Web services 563

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to delete bindings. If

you have access to a specific resource only, you can delete bindings for

the resource for which you have access.

Configurator The Configurator role can unassign bindings, but cannot delete bindings.

Deployer The Deployer role can unassign bindings, but cannot delete bindings.

Operator The Operator role cannot modify bindings.

Monitor The Monitor role cannot modify bindings.

About this task

Use the following steps to remove specific policies from your application-specific binding configuration, or

to remove your entire binding configuration. For both of these removal options, you must use the

-bindingLocation parameter to specify whether you are deleting an application-specific binding,

server-specific default binding, or a binding for the trust service. Use the following table for examples using

Jython syntax when specifying the type of binding to modify or remove:

 Type of binding Value for the -bindingLocation parameter

Server-level (for Version 6.1 bindings

only)

-bindingLocation ″[[node node1][server server1]]″

Application -bindingLocation ″[[application application1][attachmentId 123]]″

Trust service binding -bindingLocation ″[[systemType trustService] [attachmentId 123]]″

WS-Notification client -bindingLocation ″[[bus myBus][WSNService myService][attachmentId

123]″

General bindings -bindingLocation []

v Remove a policy from your application-specific binding configuration.

Use the following steps to remove a specific policy from your binding configuration. If you remove the

last policy remaining in your binding configuration, the command removes binding information from all

attachments and deletes it from your configuration.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Review the binding configuration to edit.

Use the getBinding command to view the attributes for the binding, as the following example

demonstrates:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[application application1][attachmentId 1234]]"’)

If the binding of interest is not referenced by an attachment ID, specify an asterisk character (*) for

the attachmentId parameter to view the attributes for the binding, as the following example

demonstrates:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[application application1][attachmentId *]]"’)

3. Remove the policy from the binding configuration.

Use the setBinding command with the -policyType and -remove parameters to remove the policy of

interest from the binding configuration. For example, use the following command to remove the

WSAddressing policy from the binding configuration for the application1 application:

AdminTask.setBinding(’-policyType WSAddressing -remove true -bindingLocation "[[application application1][attachmentId 1234]]"

If the binding to delete is not referenced by an attachment ID, specify an asterisk character (*) for

the attachmentId parameter to delete the binding, as the following example demonstrates:

AdminTask.setBinding(’-policyType WSAddressing -remove true -bindingLocation "[[application application1][attachmentId *]]"’)

564 Administering WebSphere applications

4. Save your configuration changes.

v Remove binding configurations from an attachment.

Use the following steps to remove a server-specific default binding or a custom binding. You cannot

remove cell-level default bindings from your configuration. When a binding is removed from an

attachment, the resource it was removed from will inherit the server-level default binding, if one is

present, or the cell-level default binding if the server-level binding is not present. Use the following steps

to remove a binding configuration:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Verify the current binding configuration to delete.

Before removing the binding from the attachment, use the getBinding command to view the

attributes for the binding, as the following example demonstrates:

AdminTask.getBinding(’-policyType WSAddressing -bindingLocation "[[application application1][attachmentId 123]]"’)

3. Remove the current binding configuration from the attachment.

For this example, this command removes the bindings from the 123 attachment for the application1

application:

AdminTask.setBinding(’-bindingLocation "[[application application1][attachmentId 123]]" -remove true’)

If the binding to delete is not referenced by an attachment ID, specify an asterisk character (*) for

the -attachmentId parameter to remove the binding, as the following example demonstrates:

AdminTask.setBinding(’-bindingLocation "[[application application1][attachmentId *]]" -remove true’)

To remove a server-specific default binding, specify the node name and server name with the

-bindingLocation parameter. Server specific default bindings are deprecated. For example, this

command removes the server-level default binding for the WS-Addressing policy from the server1

server on the node1 node:

AdminTask.setBinding(’-policyType WSAddressing -bindingLocation "[[node node1][server server1]]" -remove true’)

4. Save your configuration changes.

v Remove a policy from a general binding.

Use the following steps to remove a

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Verify the current binding configuration to delete.

Before removing the binding from the attachment, use the getBinding command to view the

attributes for the binding, as the following example demonstrates:

AdminTask.getBinding(’-policyType WSAddressing -bindingName "General Provider Binding" -bindingLocation []’)

3. Remove the general binding.

For this example, this command removes the General Provider Binding general binding:

AdminTask.setBinding(’-bindingLocation [] -bindingName "General Provider Binding" -remove true’)

4. Save your configuration changes.

Chapter 5. Web services 565

Related tasks

“Reassigning bindings to policy sets” on page 885
After you create a custom attachment binding, you can reassign that binding to another service artifact if

necessary. You can reset a service artifact, such as an application, service, or endpoint to use the

inherited bindings or default bindings.

“Deleting application-specific bindings from your configuration using the wsadmin tool” on page 560
You can use the Jython or Jacl scripting language to delete a custom application or system policy set

binding from your configuration. You cannot delete cell-level default bindings.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool”
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Removing policy set attachments using the wsadmin tool

You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

Before you begin

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

566 Administering WebSphere applications

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to remove policy set

attachments. If you have access to a specific resource only, you can

remove policy set attachments for the resource for which you have access.

Configurator The Configurator role must have cell-wide access to remove policy set

attachments. If you have access to a specific resource only, you can

remove policy set attachments for the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can remove

policy set attachments for application resources only.

Operator The Operator role cannot remove policy set attachments.

Monitor The Monitor role cannot remove policy set attachments.

Determine which applications and policy sets to remove, detach, or transfer. Use the listWebServices

command to list all Web services and for the application to edit. Enter the command to list all Web

services and attributes for a specific application.

AdminTask.listWebServices(’[–application application_name]’)

To view a list of all Web services and associated applications, do not provide the -application parameter.

For each Web service, the command returns the associated application name, module name, service

name, and service type. You can also use the listAttachmentsForPolicySet and getPolicySetAttachments

administrative commands to view existing configuration data. For additional information about these

commands, use the information center topic for the PolicySetManagement group of commands for the

AdminTask object.

About this task

There are four ways to remove policy set attachments, including:

v Remove a policy set attachment from an application.

v Remove resources that apply to a policy set attachment.

v Remove all attachments for a specific policy set and application.

v Transfer attachments between policy sets for a specific application.

Choose the appropriate procedure to remove your policy set attachments.

v Remove a policy set attachment from the application.

1. Enter the following command to remove the policy set attachment from the application:

AdminTask.deletePolicySetAttachment(’[-attachmentId attachment_name -applicationName application_name]’)

The command returns a success or failure message. If you receive a success message, the policy

set attachment is successfully removed from your application. If you receive a failure message,

verify that the chosen policy set attachment exists in your configuration.

2. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Remove resources that apply to a policy set attachment.

1. You can customize the command to remove resources for the Web service, endpoint, or operation.

For the commands in the PolicySetManagement group, the term resource refers to a Web service

artifact. For application and service client policy sets, the artifacts use the application hierarchy: Web

service, module name, endpoint, or operation. Enter the value for the -resource parameter as a

string, with a backslash (/) character as a delimiter. Use the following format for application and

client policy set attachments:

Chapter 5. Web services 567

WebService:/

Refers to all artifacts in the application to the policy set.

WebService:/webapp1.war:{http://www.ibm.com}myService

Refers to all artifacts within the Web service {http://www.ibm.com}myService to the policy

set. You must provide a fully qualified name (QName) for the service.

WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA

Refers to all operations for the endpointA endpoint to the policy set.

WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA/operation1

Refers to only the operation1 operation to the policy set.

The format for the resource string differs for system policy set attachments for the trust service.

Use the following format for system policy set attachments:

Trust.<opName>:/

The <opName> attribute can be issue, renew, cancel, or validate.

Trust.<opName>:/url

The <opName> attribute can be issue, renew, cancel, or validate. You can specify any valid

URL for the url attribute.

In the following example, the command removes the attachment_name attachment from the

operation1 operation, which is associated with the application, application1.

AdminTask.removeFromPolicySetAttachment(’[-attachmentId attachment_name -resources

"WebService:/webapp1.war:{http://www.ibm.com}myService/endpointA/operation1" -applicationName application1]’)

The command returns a success or failure message. You can also use the

updatePolicySetAttachments command to remove attached resources.

2. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Remove all attachments for a specific policy set.

1. Remove application attachments for the policy set. To remove an attachment from an application,

use the following command:

AdminTask.deleteAttachmentsForPolicySet(’[-policySet PolicySet1 -applicationName application1]’)

To remove all attachments from the policy set, use the following command:

AdminTask.deleteAttachmentsForPolicySet(’[-policySet PolicySet1]’)

Both commands return a success or failure message.

2. Save the configuration changes.

Enter the following command to save your changes:

AdminConfig.save()

v Transfer attachments from one policy set to another policy set. This command detaches all Web

services from the source policy set and attaches the Web services to the destination policy set.

1. Enter the transferAttachmentsForPolicySet command to transfer all attachments within an

application. Use the following command to transfer the attachments from the PolicySet1 policy set to

the PolicySet2 policy set within the application1 application:

AdminTask.transferAttachmentsForPolicySet(’[-sourcePolicySet PolicySet1

-destinationPolicySet PolicySet2 -applicationName application1]’)

The command returns a success or failure message.

2. Save the configuration changes.

Enter this command to save your changes:

AdminConfig.save()

568 Administering WebSphere applications

Related tasks

Configuring attachments for the trust service using the administrative console
You can attach the trust service operations for a service endpoint to a system policy set and binding. Each

new endpoint that is specified initially has the following four operations: issue, renew, cancel, and validate.

By default, all endpoints inherit the policy set and binding that are attached to the respective trust service

operation under Trust Service Defaults. However, you can explicitly attach a different policy set.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Deleting policy sets using the wsadmin tool

Use the Jython or Jacl scripting language to delete policy sets from your configuration with the wsadmin

tool. You must remove all policy set attachments before removing the policy set.

Before you begin

To complete this task, you must use the Administrator role with cell-wide access when administrative

security is enabled.

Before deleting a policy set, you must delete or transfer all attachments to applications. You cannot delete

default policy sets.

Chapter 5. Web services 569

About this task

Use the following steps to delete custom policy sets from your configuration with the wsadmin tool:

1. Launch a scripting command.

2. List all policy sets in your configuration.

v Enter the following command to list all application policy sets:

AdminTask.listPolicySets()

v Enter the following command to list all policy sets for the trust service:

AdminTask.listPolicySets(’[-policySetType system/trust]’)

v Enter the following command to list all system policy sets:

AdminTask.listPolicySets(’[-policySetType system]’)

3. Determine which policy set to delete. Enter the following command to view the description and default

indicator for a specific policy set:

AdminTask.getPolicySet(’[-policySet policySet_name]’)

4. Delete the policy set.

Enter the following command to delete a specific policy set.

AdminTask.deletePolicySet(’[-policySet PolicySet1)’)

The command returns a success or failure response. If you receive an error message, make sure that

you have deleted all policy set attachments before entering the deletePolicySet command.

5. Save the configuration changes.

Enter the command to save your changes.

AdminConfig.save()

What to do next

If you deleted a policy set that was previously attached to an application, restart the affected application to

update the configuration changes.

570 Administering WebSphere applications

Related tasks

“Deleting policy sets using the administrative console” on page 851
You can use the administrative console to delete the default policy sets or the application specific policy

sets that you have created.

“Configuring application and system policy sets for Web services using scripting” on page 520
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure application or

system policy sets for Web services. You can manage the policies for the Quality of Service (QoS) by

creating policy sets and managing associated policies.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Adding and removing policies using the wsadmin tool” on page 526
You can use the Jython or Jacl scripting language and the wsadmin tool to query, add, and remove

policies for your policy sets.

Related reference

“PolicySetManagement command group for the AdminTask object” on page 596
You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Refreshing policy set configurations using scripting

Use the wsadmin tool to refresh the policy set configuration data. After refreshing the policy set

configuration, the changes apply after restarting the application.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Get the object name of each PolicySetManager object.

Use the completeObjectName option for the AdminControl object to set the object name for each

PolicySetManager type object to the objNameString variable, as the following example demonstrates:

objNameString = AdminControl.completeObjectName(’type=PolicySetManager,*’)

3. Connect to the Managed Bean (MBean).

The MBean supplies a remote interface to the MBean server that runs in the application server. The

following example shows how to look up the MBean:

import javax.management as mgmt

4. Set the PolicySetManager MBean object name.

The following example sets the PolicySetManager MBean object name to the mbeanObj variable,

parameters to the param variable, and signature settings to the sig variable:

mbeanObj = mgmt.ObjectName(objNameString)

param=[]

sig=[]

5. Refresh the PolicySetManager MBean.

The following example refreshes the policy set configuration:

AdminControl.invoke_jmx(mbeanObj, ’refresh’, param, sig)

Example

The following example provides the Jython script that refreshes the policy set configuration:

objNameString = AdminControl.completeObjectName(’type=PolicySetManager,*’)

import javax.management as mgmt

mbeanObj = mgmt.ObjectName(objNameString)

param=[]

sig=[]

AdminControl.invoke_jmx(mbeanObj, ’refresh’, param, sig)

Chapter 5. Web services 571

Policy configuration properties for all policies

You can use the attributes parameter with the setPolicyType and setBinding commands to specify various

properties for each quality of service (QoS) within a policy set. You can use the properties in this topic with

each QoS within application and system policy sets.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

Attributes to configure for all QoS policies

Use the following list of attributes to configure attributes across all QoS policies using the Jython scripting

language and the wsadmin tool:

enabled

 Specifies whether the policy type is enabled or disabled. The following example provides the

format to enter the attributes parameter:

-attributes "[[enabled true]]"

provides

 Provides a description for your configuration. The following example provides the format to enter

the attributes parameter:

-attributes "[[provides [Messaging Security]]]"

The following example uses the setPolicyType command to set the enabled and provides properties for

the myCustomSecurityPS custom policy set, which contains a ReliableMessaging policy:

AdminTask.setPolicyType(’[-policySet myCustomSecurityPS -policyType

WSReliableMessaging -attributes [[enabled true][provides

[Messaging security]]]]’)

WSSecurity policy and binding properties

Use the attributes parameter for the setPolicyType and setBinding commands to specify additional

configuration information for the WSSecurity policy and binding configurations. Application and system

policy sets can use the WSSecurity policy and binding configuration.

572 Administering WebSphere applications

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

If the attributes parameter is not specified for the getPolicyType or getBinding command, the command

returns all properties. If a partial property name is passed to the getPolicyType or getBinding command,

the command returns all properties with names that start with the partial property name. For example, If

SignatureProtection is passed to the getPolicyType command, the command returns all properties with

names that start with ″SignatureProtection″, which might include:

SignatureProtection.response:

 int_body.SignedParts.Body,SignatureProtection.response:int_body.SignedParts.Header_0.Name

, and

SignatureProtection.response:int_body.SignedParts.Header_0.Namespace

.

There are an extensive number of combinations of settings that are available to secure your Web service

applications. Because of the number of attributes and configuration options from the WS-Security Version

1.0 specification, all attributes are not defined in this topic. The following sections explain the hierarchy

structure for the WSSecurity policy and binding attributes:

Chapter 5. Web services 573

v WSSecurity policy properties

v WSSecurity binding properties

v “setPolicyType and setBinding command examples” on page 579

WSSecurity policy properties

Use the getPolicyType command to review a properties object with the properties that are configured in

your current WSSecurity policy file. Security policy schemata define the security assertions. Because the

elements in the schema have hierarchical relationship, the property names for security policy also have the

similar hierarchy. The hierarchical relationship between property names in the security policy is

represented by a period (.) between two levels, concatenating the parent and child attributes. Examples of

the properties include, but are not limited to, IncludeToken, Name, Namespace, XPath, XPathVersion. The

following list describes the top-level assertion policy property names for the WSSecurity policy file:

AsymmetricBinding

You can specify zero or one binding assertion.

SymmetricBinding

You can specify zero or one binding assertion. AsymmetricBinding and SymmetricBinding cannot

co-exist in a security policy file.

Wss11

You can specify zero or one Wss11 assertion.

Wss10

You can specify zero or one Wss10 assertion.

Trust10

You can specify zero or one Trust10 assertion.

SignatureProtection

You can specify zero or any number of signature protection assertions.

EncryptionProtection

You can specify zero or any number of encryption protection assertions

SupportingTokens

You can specify zero or any number of supporting token assertions.

For example, the following policy file example displays an AsymmetricBinding assertion:

 <sp:AsymmetricBinding>

 <wsp:Policy>

 <sp:InitiatorSignatureToken>

 <wsp:Policy>

 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy

 /200512/IncludeToken/AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:InitiatorSignatureToken>

 <sp:RecipientSignatureToken>

 <wsp:Policy>

 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy

 /200512/IncludeToken/AlwaysToInitiator">

 <wsp:Policy>

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:RecipientSignatureToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict/>

 </wsp:Policy>

574 Administering WebSphere applications

</sp:Layout>

 </wsp:Policy>

 </sp:AsymmetricBinding><sp:AsymmetricBinding>

 <wsp:Policy>

 <sp:InitiatorSignatureToken>

 <wsp:Policy>

 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy

 /200512/IncludeToken/AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:InitiatorSignatureToken>

 <sp:RecipientSignatureToken>

 <wsp:Policy>

 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy

 /200512/IncludeToken/AlwaysToInitiator">

 <wsp:Policy>

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:RecipientSignatureToken>

 </wsp:Policy>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict/>

 </wsp:Policy>

 </sp:Layout>

 </sp:AsymmetricBinding>

The AsymmetricBinding assertion returns the following property name and value pairs. The nested

wsp:Policy layers are not displayed in the returned properties. Additionally, some properties return the

true value which indicates that the WSSecurity configuration includes the related XML elements. To edit

these properties, set the value as true to include the property, or set the value as an empty string,″″, to

remove the property.

AsymmetricBinding.Layout = Strict

AsymmetricBinding.AlgorithmSuite.Basic256 = true

AsymmetricBinding.RecipientSignatureToken.X509Token_0.IncludeToken = http://docs.oasis-open.org

/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToInitiator

AsymmetricBinding.InitiatorSignatureToken.X509Token_0.WssX509V3Token10 = true

AsymmetricBinding.InitiatorSignatureToken.X509Token_0.IncludeToken = http://docs.oasis-open.org

/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient

AsymmetricBinding.RecipientSignatureToken.X509Token_0.WssX509V3Token10 = true

Additionally, the following policy file example displays a SupportingTokens assertion:

<sp:SupportingTokens>

 <wsp:Policy wsu:Id="request:custom_auth">

 <spe:CustomToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/

 ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient">

 <wsp:Policy>

 <spe:WssCustomToken uri=http://bar.com/MyCustomToken localname="tokenv1">

 </spe:WssCustomToken>

 </wsp:Policy>

 </spe:CustomToken>

 </wsp:Policy>

 </sp:SupportingTokens

The SupportingTokens assertion returns the following property name and value pairs. The nested

wsp:Policy layers are not displayed in the returned property.

SupportingTokens.request:custom_auth.CustomToken_0.WssCustomToken.uri=http://bar.com

/MyCustomToken

SupportingTokens.request:custom_auth.CustomToken_0.IncludeToken=http://docs.oasis-open.org

/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient

SupportingTokens.request:custom_auth.CustomToken_0.WssCustomToken.localname=tokenv1

Note: The CustomToken property contains a subscript zero notation (_0) because the property might be

displayed multiple times from the same type of token such as the RecipientSignatureToken or

InitiatorSignatureToken tokens.

Chapter 5. Web services 575

Although most property names follow the hierarchical relationship format described previously, the

following exceptions exist:

v The wsu:Id element

This element uses the actual value for the ID instead of using Id as the attribute name. The following

policy file example property:

<wsp:Policy wsu:Id="response:int_body">

 <sp:SignedParts>

 <sp:Body/>

 </sp:SignedParts>

</wsp:Policy>

The previous wsu:Id example returns the following properties:

SignatureProtection.response:int_body.SignedParts.Body = true

v The Header element

Because there can be multiple Header elements, the Header_n notation is used to represent this

property. See the following policy file example:

 <wsp:Policy wsu:Id="request:conf_body">

 <sp:EncryptedParts>

 <sp:Body/>

 <sp:Header Name="MyElement" Namespace="http://foo.com/MyNamespace" />

 </sp:EncryptedParts>

 </wsp:Policy>

The previous Header example returns the following properties:

EncryptionProtection.request:conf_body.EncryptedParts.Header_0.Name=MyElement

EncryptionProtection.request:conf_body.EncryptedParts.Header_0.Namespace=http://

foo.com/MyNamespace

v The XPath element

The XPath_n notation is used to represent this property because there can be multiple XPath elements.

See the following policy file example:

<wsp:Policy wsu:Id="request:int_body">

 <sp:SignedElements>

 <sp:XPath>SomeXPathExpression</sp:XPath>

 <sp:XPath>SomeOtherXPathExpression</sp:XPath>

 </sp:EncryptedElements>

 </wsp:Policy>

The previous XPath example returns the following properties:

SignatureProtection.request:int_body.SignedElements.XPath_0=SomeXPathExpression

SignatureProtection.request:int_body.SignedElements.XPath_1=SomeOtherXPathExpression

v The X509Token element

Use the X509Token_n notation to represent this property because multiple X509Token elements can

exist. For an example, see the AsymmetricBinding assertion.

v The CustomToken element

Use the CustomToken_n notation to represent this property because multiple CustomToken elements

can exist. For an example, see the SupportingTokens assertion.

WSSecurity binding properties

Use the getBinding command to review a properties object with the properties that are configured in your

current WSSecurity binding configuration. You can also use the administrative console to configure your

WSSecurity bindings. Use the information center topics for configuring WSSecurity bindings with

administrative console for more information.

The properties defined in this section reflect the hierarchy of the binding schema. Each part of the property

name is a lowercase version of the schema type. For example, the

application.securityinboundbindingconfig.tokenconsumer_0.jaasconfig.configname property follows the

hierarchal format. The attributes begin with application or bootstrap. Attributes that begin with

576 Administering WebSphere applications

application represent bindings that are associated with the main WS-Security policy. Attributes that begin

with bootstrap represent bindings that are associated with the WS-Security bootstrap policy, where the

WS-Security policy uses Secure Conversation.

Some property names might have an _n notation appended to them. This notation represents a list of

items. For example, multiple tokenconsumer properties exist and are listed from tokenconsumer_0

through tokenconsumer_n, where the set of tokenconsumer values are:

application.securityinboundbindingconfig.tokenconsumer_0.callbackhandler.

certpathsettings.certstoreref.reference

application.securityinboundbindingconfig.tokenconsumer_0.callbackhandler.

certpathsettings.trustanchorref.reference

application.securityinboundbindingconfig.tokenconsumer_0.callbackhandler.classname

application.securityinboundbindingconfig.tokenconsumer_0.classname

application.securityinboundbindingconfig.tokenconsumer_0.jaasconfig.configname

application.securityinboundbindingconfig.tokenconsumer_0.name

application.securityinboundbindingconfig.tokenconsumer_0.valuetype.localname

application.securityinboundbindingconfig.tokenconsumer_0.valuetype.uri

Additionally, some properties in the security binding file return a value of true when queried. To set these

properties, set the value to true to include the property, or set the value to an empty string (″″) to remove

the property. For example, the time stamp, nonce, and trustAnyCertificate properties follow this pattern.

Use the setBinding command and the attributes parameter to add or remove properties to your

WSSecurity binding configuration.

v To add a property, use the setBinding command to pass the property name with a non-zero length string

value. To add a list item, use the _n notation to reflect a numeric value that is greater than any current

numeric value for the property. For example, if the tokenconsumer_0 and tokenconsumer_1 properties

exist in your configuration, specify the new tokenconsumer property as tokenconsumer_2. After adding a

property, use the getBinding command to view the most recent list of configured properties.

v To remove a property, use the setBinding command to pass the property name with an empty string

(″″). For example, to remove all of the tokenconsumer_0 properties, specify the following property with

the attributes parameter:

application.securityinboundbindingconfig.tokenconsumer_0=""

The previous example removes all properties that begin with the

application.securityinboundbindingconfig.tokenconsumer_0 property name.

The following examples display several sets of properties to configure for your binding. This list does not

include all properties to configure for the WSSecurity binding. Use this information as a reference to

determine how to form specific property names.

signinginfo element

Use this property to configure signing information. For a custom binding, an unlimited number of

signinginfo elements specified for the securityoutboundbindingconfig and

securityinboundbindingconfig assertions can exist. In the default bindings, the system allows a

maximum of two signinginfo elements for the securityoutboundbindingconfig and

securityinboundbindingconfig assertions. The following example displays the format for two

signinginfo elements:

application.securityinboundbindingconfig.signinginfo_0.signingkeyinfo_0

.reference=con_signkeyinfo

application.securityinboundbindingconfig.signinginfo_0.signingpartreference_0

.reference=request:int_body

application.securityoutboundbindingconfig.signinginfo_0.signingpartreference_0

.reference=response:int_body

application.securityoutboundbindingconfig.signinginfo_0.signingpartreference_0.timestamp=true

encryptioninfo element

Use this property to configure encryption information. For a custom binding, an unlimited number

of encryptioninfo elements specified for the securityoutboundbindingconfig and

securityinboundbindingconfig assertions can exist. In the default bindings, the system accepts a

Chapter 5. Web services 577

maximum of two encryptioninfo elements for the securityoutboundbindingconfig and

securityinboundbindingconfig assertions. The following example displays the format for two

encryptioninfo properties:

application.securityinboundbindingconfig.encryptioninfo_0.encryptionpartreference

.nonce=true

application.securityinboundbindingconfig.encryptioninfo_0.encryptionpartreference

.reference=request:conf_body

application.securityoutboundbindingconfig.encryptioninfo_0.encryptionpartreference

.nonce=true

application.securityoutboundbindingconfig.encryptioninfo_0.encryptionpartreference

.timestamp=true

tokengenerator element

In the default bindings, the tokengenerator elements that the signinginfo or encryptioninfo

elements do not reference are considered to be authentication token generators. Each

authentication token generator must have a unique valuetype element. The following example

displays an example of a generator for an X.509 protection token:

application.securityoutboundbindingconfig.tokengenerator_0.name=gen_signtgen

application.securityoutboundbindingconfig.tokengenerator_0.classname=com.ibm.ws.wssecurity.wssapi.token

.impl.CommonTokenGenerator

application.securityoutboundbindingconfig.tokengenerator_0.valuetype.uri=

application.securityoutboundbindingconfig.tokengenerator_0.valuetype.localname=http://docs.oasis-open.org

/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.classname=com.ibm.websphere.wssecurity

.callbackhandler.X509GenerateCallbackHandler

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.key.alias=soaprequester

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.key.keypass={xor}PDM2OjEr

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.key.name=CN=SOAPRequester,

OU=TRL, O=IBM, ST=Kanagawa, C=JP

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore.path=${USER_INSTALL_ROOT}

/etc/ws-security/samples/dsig-sender.ks

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore.storepass={xor}PDM2OjEr

application.securityoutboundbindingconfig.tokengenerator_0.callbackhandler.keystore.type=JKS

application.securityoutboundbindingconfig.tokengenerator_0.jaasconfig.configname=system.wss.generate.x509

The following example displays a generator for a username authentication token:

application.securityoutboundbindingconfig.tokengenerator_1.name=gen_usernametoken

application.securityoutboundbindingconfig.tokengenerator_1.classname=com.ibm.ws.wssecurity

.wssapi.token.impl.CommonTokenGenerator

application.securityoutboundbindingconfig.tokengenerator_1.valuetype.uri=

application.securityoutboundbindingconfig.tokengenerator_1.valuetype.localname=http://docs

.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken

application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.classname=com.ibm

.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler

application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.basicAuth.userid=user1

application.securityoutboundbindingconfig.tokengenerator_1.callbackhandler.basicAuth.password=myPassword

application.securityoutboundbindingconfig.tokengenerator_1.securityTokenReference.reference=request:uname_token

application.securityoutboundbindingconfig.tokengenerator_1.jaasconfig.configname=system.wss.generate.unt

tokenconsumer element

In the default bindings, the tokenconsumer elements that the signinginfo or encryptioninfo

elements do not reference are authentication token consumers. Each authentication token

consumer must have a unique valuetype element. The following example displays the format for a

set of tokenconsumer elements:

application.securityinboundbindingconfig.tokenconsumer_0.name=con_unametoken

application.securityinboundbindingconfig.tokenconsumer_0.classname=com.ibm.ws.wssecurity.wssapi

.token.impl.CommonTokenConsumer

application.securityinboundbindingconfig.tokenconsumer_0.valuetype.localname=http://docs.oasis-open.org

/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken

application.securityinboundbindingconfig.tokenconsumer_0.valuetype.uri=

application.securityinboundbindingconfig.tokenconsumer_0.callbackhandler.classname=com.ibm.websphere

.wssecurity.callbackhandler.UNTConsumeCallbackHandler

application.securityinboundbindingconfig.tokenconsumer_0.jaasconfig.configname=system.wss.consume.unt

application.securityinboundbindingconfig.tokenconsumer_0.securitytokenreference.reference=request:uname_token

actor element

Defines the actor uniform resource identifier (URI) to be included in the WSSecurity headers of a

generated message, as displayed by the following example:

application.securityinboundbindingconfig.actor=http://myActor.com

application.securityoutboundbindingconfig.actor=http://myActor.com

certstorelist element

Defines certificate store configurations and signing information, as displayed by the following

example:

578 Administering WebSphere applications

application.securityinboundbindingconfig.certstorelist.collectioncertstores_0

.name=DigSigCertStore

application.securityinboundbindingconfig.certstorelist.collectioncertstores_0

.provider=IBMCertPath

application.securityinboundbindingconfig.certstorelist.collectioncertstores_0

.x509certificates_0.path=${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

keyinfo element

Defines key information for signing and encryption configurations, as displayed by the following

example:

application.securityinboundbindingconfig.keyinfo_0.classname=com.ibm.ws.wssecurity.wssapi

.CommonContentConsumer

application.securityinboundbindingconfig.keyinfo_0.name=con_signkeyinfo

application.securityinboundbindingconfig.keyinfo_0.tokenreference.reference=con_tcon

application.securityinboundbindingconfig.keyinfo_0.type=STRREF

trustanchor property

Defines configuration information that is used to validate the trust of the signer certificate, as

displayed by the following example:

application.securityinboundbindingconfig.trustanchor_0.keystore.path=${USER_INSTALL_ROOT}

/etc/ws-security/samples/dsig-receiver.ks

application.securityinboundbindingconfig.trustanchor_0.keystore.storepass={xor}LDotKTot

application.securityinboundbindingconfig.trustanchor_0.keystore.type=JKS

application.securityinboundbindingconfig.trustanchor_0.name=DigSigTrustAnchor

timestampexpires element

Defines an expiration date for the configuration, as displayed by the following example:

application.securityoutboundbindingconfig.timestampexpires.expires=5

application.securityinboundbindingconfig.caller_X.order

Specifies the order for a caller when using wsadmin scripts, where X is the unique string that

identifies the instance of the caller:

-attributes [[application.securityinboundbindingconfig.caller_0.order 2]]

setPolicyType and setBinding command examples

Use the previous reference information with the setPolicyType and setBinding commands to modify your

policy and binding configuration data.

Note: The administrative console command assistance provides incorrect Jython syntax for the

setPolicyType command. The XPath expression for the response message part protection of the

Username WSSecurity policy set contains single quotes (’) within each XPath property value, which

Jython does not support. To fix the command from the administrative console command assistance,

add a backslash character (\) before each single quote to escape the single quote.

The following example uses the setBinding command to set the enabled and provides properties for the

myCustomSecurityPS custom policy set, which contains a ReliableMessaging policy:

AdminTask.setBinding(’[-bindingLocation "" -bindingName cellWideBinding2 -policyType WSSecurity

 -attributes [[application.securityinboundbindingconfig.caller_0.order 2][inResponsewithSSL:configAlias NodeDefaultSSLSettings]

[inResponsewithSSL:config properties_directory/ssl.client.props][outAsyncResponsewithSSL:configFile properties_directory/ssl.client.props]

[outAsyncResponsewithSSL:configAlias NodeDefaultSSLSetings][outRequestwithSSL:configFile properties_directory/ssl.client.props]

[outRequestwithSSL:configAlias NodeDefaultSSLSettings]]]’)

The following setPolicyType command enables the WSSecurity policy and creates a signature protection

assertion:

AdminTask.setPolicyType(’-policySet myPolicySet -policyType WSSecurity -attributes "[[enabled true][provides

Some_amount_of_security][SignatureProtection.request:app_signparts.SignedElements.XPath_0 SignatureProtectionV2]]"’)

The following setBinding command specifies key information for a server-specific binding:

AdminTask.setBinding(’-policyType WSSecurity -bindingLocation "[[server server1][node node01]]"

-attributes "[[application.securityinboundbindingconfig.keyinfo_0.name dec_server_keyinfo]

[application.securityinboundbindingconfig.keyinfo_0.classname com.ibm.ws.wssecurity.wssapi.CommonContentGenerator]

[application.securityinboundbindingconfig.keyinfo_0.type STRREF]]"’)

The following setBinding command specifies key information for an attachment-specific binding:

Chapter 5. Web services 579

AdminTask.setBinding(’-policyType WSSecurity -bindingLocation "[[application PolicySet][attachmentId 999]]"

-attributes "[[application.securityinboundbindingconfig.keyinfo_0.name dec_app_keyinfo]

[application.securityinboundbindingconfig.keyinfo_0.classname com.ibm.ws.wssecurity.wssapi.CommonContentGenerator]

[application.securityinboundbindingconfig.keyinfo_0.type STRREF]]" -attachmentType application

 -bindingName myBindingName’)

The following setBinding command specifies trust anchor information for a cell-wide binding:

AdminTask.setBinding(’-policyType WSSecurity -bindingLocation "" -attributes

"[application.securityinboundbindingconfig.trustanchor_0.name DigSigTrustAnchor2]"’)

WSReliableMessaging policy and binding properties

Use the attributes parameter for the setPolicyType and setBinding commands to specify additional

configuration information for the ReliableMessaging policy and policy set binding. The

WSReliableMessaging quality of service (QoS) is only available for application policy sets.

WSReliableMessaging is an interoperability standard for the reliable transmission of messages between

two endpoints. Use WSReliableMessaging to secure and verify transactions when using Web services

between businesses.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

WSReliableMessaging policy properties

Configure the WSReliableMessaging policy by specifying the following properties with the setPolicyType

command:

580 Administering WebSphere applications

specLevel

Choose the WS-ReliableMessaging standard to use for reliable transmission of your messages.

The WS-ReliableMessaging specification Version 1.1 is the default value. Use the following

information to choose a specification level:

v Specify 1.0 as the value for the specLevel attribute to use the WS-ReliableMessaging

specification Version 1.0, February 2005 specification level.

v Specify 1.1 as the value for the specLevel attribute to use the OASIS WS-ReliableMessaging

specification Version 1.1, August 2006 specification level.

The following example code sets the specLevel property to the OASIS WS-ReliableMessaging

specification Version 1.1, August 2006:

AdminTask.setPolicyType(’[-policySet "CustomWSReliableMessaging" -policyType

 WSReliableMessaging -attributes "[[specLevel 1.1]]"]’)

inOrderDelivery

Specifies whether to process messages in the order that they are received. If you use the

inOrderDelivery property, then inbound messages might be queued while waiting for earlier

messages.

 The following example code enables the inOrderDelivery property:

AdminTask.setPolicyType(’[-policySet "CustomWSReliableMessaging" -policyType WSReliableMessaging -attributes "[[inOrderDelivery true]]"]’)

qualityOfService

 Specifies the quality of the WSReliableMessaging service to use. Define one of the following three

values for the qualityOfService attribute:

v unmanagedNonPersistent

This setting tolerates network and remote system failures. The unmanagedNonPersistent quality

of service is non-transactional. With this setting configured, messages are lost if a server fails.

This quality of service is supported for all environments only if the environment is configured as

a Web service requester.

v managedNonPersistent

This setting tolerates system, network, and remote system failures. However, the message state

is discarded when the messaging engine restarts. The managedNonPersistent quality of service

is non-transactional. This setting prevents message loss if a server fails. However, messages

are lost if the messaging engine fails. Managed and thin client applications cannot use this

quality of service.

v managedPersistent

This setting tolerates system, network, and remote system failures. With this setting, messages

are processed within transactions, persisted at the Web service requester and provider.

Messages can be recovered if a server fails. Messages that are not successfully transmitted at

the time of failure continue when the messaging engine or application restarts. Managed and

thin client applications cannot use this quality of service.

The following example sets the qualityOfService property as unmanaged nonpersistent:

AdminTask.setPolicyType(’[-policySet "CustomWSReliableMessaging" -policyType

 WSReliableMessaging -attributes "[[qualityOfService unmanagedNonPersistent]]"]’)

The following example uses the setPolicyType command to set a value for each policy property:

AdminTask.setPolicyType(’[-policySet "CustomWSReliableMessaging" -policyType

 WSReliableMessaging -attributes "[[specLevel 1.1][inOrderDelivery true][qualityOfService

 unmanagedNonPersistent]]"]’)

WSReliableMessaging binding configuration attributes

If you set the qualityOfService policy property to managedNonPersistent or managedPersistent, configure

the WSReliableMessaging binding by specifying values for the following properties with the setBinding

command:

Chapter 5. Web services 581

busName

The name of the service integration bus that contains the messaging engine to use for the

managedNonPersistent or managedPersistent Quality of Service options.

 The following example sets the busName property as myBus:

AdminTask.setBinding(’[-bindingLocation "" -bindingName cellWideBinding2 -policyType

 WSReliableMessaging -attributes "[[busName myBus]]"]’)

messagingEngineName

The name of the messaging engine to use for the managedNonPersistent or managedPersistent

quality of service options.

 The following example sets the messagingEngineName property as messagingEngine001:

AdminTask.setBinding(’[-bindingLocation "" -bindingName cellWideBinding2 -policyType

 WSReliableMessaging -attributes "[[messageEngineName messageEngine001]]"]’)

The following code example demonstrates how to use the setBinding command to set values for each

binding attribute:

AdminTask.setBinding(’[-bindingLocation "" -bindingName cellWideBinding2 -policyType

 WSReliableMessaging -attributes "[[busName myBus][messageEngineName messageEngine001]]"]’)

WSAddressing binding properties

Use the -attributes parameter for the setBinding command to enable or disable workload management for

the WSAddressing binding. Application and system policy sets use the WSAddressing policy and binding.

WSAddressing is an interoperability standard that you can use to create endpoint references that you can

distribute across firewalls and intermediary nodes. For more information, see the W3C Candidate

Recommendation (CR) versions of the WS-Addressing core and SOAP specifications.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

582 Administering WebSphere applications

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

WSAddressing binding properties

Configure the WSAddressing policy by specifying the following property with the setBinding command:

preventWLM

Specifies whether to prevent workload management for references to endpoints that were created

by the application programming interface (API) in a cluster environment. Messages that target

Endpoint References (EPRs) within a cluster environment are workload managed by default.

 Preventing workload management routes messages that target EPRs to the node or server on

which the EPR was created. You might disable workload management if the endpoint maintains

the in-memory state, which has not been replicated across other nodes or servers within the

cluster.
For example, the following command prevents workload management for a cell-wide general

binding, from the WSAddressing policy.

AdminTask.setBinding(’[-bindingLocation "" -bindingName cellWideBinding2 -policyType WSAddressing -attributes "[preventWLM true]"]’)

SSLTransport policy and binding properties

Use the -attributes parameter for the setPolicyType and setBinding commands to specify additional

configuration information for the SSLTransport policy and policy set binding. Application and system policy

sets can use the SSLTransport policy and binding.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

Chapter 5. Web services 583

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

SSLTransport policy properties

Use the SSLTransport policy to ensure message security.

Configure the SSLTransport policy by specifying the following properties with the setPolicyType command:

outRequestSSLenabled

Specifies whether to enable the SSL security transport for outbound service requests.

outAsyncResponseSSLenabled

Specifies whether to enable the SSL security transport for asynchronous service responses.

inResponseSSLenabled

Specifies whether to enable the SSL security transport for inbound service responses.

The following setPolicyType command example sets values for all SSLTransport policy properties:

AdminTask.setPolicyType(’[-policySet "WSHTTPS default" -policyType SSLTransport

-attributes "[[inReponseSSLenabled yes][outAsyncResponseSSLenabled yes][outRequestSSLenabled

 yes]]"]’)

SSLTransport binding properties

Use the SSLTransport policy type to ensure message security.

Configure the SSLTransport binding by specifying the following properties using the setBinding command:

outRequestwithSSL:configFile
outRequestwithSSL:configAlias

If you enable SSL outbound service requests, then these two attributes define the specific SSL

security transport binding and location. The default value for the outRequestwithSSL:configFile

attribute is the location of the ssl.client.props file. The default value for the

outRequestwithSSL:configAlias attribute is NodeDefaultSSLSettings.

outAsyncResponsewithSSL:configFile
outAsyncResponsewithSSL:configAlias
 If you enable SSL asynchronous service responses, then these two attributes define the specific

SSL security transport binding and location. The default value for the

outAsyncRequestwithSSL:configFile attribute is the location of the ssl.client.props file. The default

value for the outAsyncRequestwithSSL:configAlias attribute is NodeDefaultSSLSettings.

inResponsewithSSL:configFile
inResponsewithSSL:configAlias
 If you enable SSL inbound service responses, then these two attributes define the specific SSL

security transport binding and location. The default value for the inResponsewithSSL:configFile

attribute is the location of the ssl.client.props file. The default value for the

inResponsewithSSL:configAlias property is NodeDefaultSSLSettings.

The following setBinding command example sets values for all SSLTransport binding attributes:

AdminTask.setBinding(’[-bindingLocation "" -bindingName cellWideBinding2 -policyType

 SSLTransport -attributes "[[inResponsewithSSL:configAlias NodeDefaultSSLSettings] [inResponsewithSSL:config

 properties_directory/ssl.client.props][outAsyncResponsewithSSL:configFile properties_directory/ssl.client.props]

[outAsyncResponsewithSSL:configAlias NodeDefaultSSLSetings][outRequestwithSSL:configFile

 properties_directory/ssl.client.props][outRequestwithSSL:configAlias NodeDefaultSSLSettings]]"]’)

584 Administering WebSphere applications

HTTPTransport policy and binding properties

Use the -attributes parameter for the setPolicyType and setBinding commands to specify additional

configuration information for the HTTPTransport policy and policy set binding. Application and system

policy sets can use the HTTPTransport policy and binding.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

The following sections explain the policy and binding properties to configure:

v HTTPTransport policy properties

v HTTPTransport binding properties

HTTPTransport policy properties

The HTTPTransport policy set can be used for HTTPS, basic authorization, compression, and binary

encoding transport methods.

Configure the HTTPTransport policy by specifying the following attributes with the setPolicyType

command:

protocolVersion

Specifies the version of HTTP to use. The valid version values are HTTP/1.1 and HTTP/1.0.

Chapter 5. Web services 585

maintainSession

Specifies whether the HTTP session is enabled when a message is sent. The valid values are yes

or no.

chunkTransferEnc

Specifies whether to enable chunked transfer encoding. The valid values are yes or no.

sendExpectHeader

Specifies whether to send an expect 100-request header. The valid values are yes or no.

compressRequest:name

Specifies whether to compress the request. The valid values are gzip, x-gzip, deflate, or none.

compressResponse:name

Specifies whether to compress the response. The valid values are gzip, x-gzip, deflate, or none.

acceptRedirectionURL

Specifies whether to accept URL redirection automatically. The valid values are yes or no.

messageResendOnce

Specifies if a message can be sent more than once. The valid values are yes or no.

connectTimeout

Specifies the amount of time, in seconds, before a connection times out when sending a message.

Specify an integer value that is greater than zero. If a value of zero or less is specified, the

connectTimeout property is set to the default value of 180 seconds. No maximum value is set for

this property.

writeTimeout

Specifies the amount of time, in seconds, before the write time out occurs. Specify an integer

value. Specify an integer value that is greater than zero. If a value of zero or less is specified, the

connectTimeout property is set to the default value of 300 seconds. No maximum value is set for

this property.

readTimeout

Specifies the amount of time, in seconds, before the read time out occurs. Specify an integer

value. Specify an integer value that is greater than zero. If a value of zero or less is specified, the

connectTimeout property is set to the default value of 300 seconds. No maximum value is set for

this property.

persistConnection

Specifies whether to use a persistent connection when sending messages. Valid values are yes or

no.

The following setPolicyType example command sets values for each HTTPTransport binding property:

AdminTask.setPolicyType(’[-policySet "WSHTTPS custom" -policyType HTTPTransport -attributes "[[protocolVersion HTTP/1.1]

[sessionEnable yes][chunkTransferEnc yes][sendExpectHeader yes][compressRequest:name gzip][compressResponse:name

 gzip][acceptRedirectionURL yes][messageResendOnce no][connectTimeout 300][writeTimeout 300]

[readTimeout 300][persistConnection yes]]"]’)

HTTPTransport binding properties

Configure the HTTPTransport binding by specifying the following attributes with the setBinding command:

outAsyncResponseBasicAuth:userid

Specifies the user name for basic authentication of outbound asynchronous responses.

outAsyncResponseBasicAuth:password

Specifies the password for basic authentication of outbound asynchronous responses.

outAsyncResponseProxy:userid

Specifies the user name for the outbound asynchronous service responses proxy.

586 Administering WebSphere applications

outAsyncResponseProxy:password

Specifies the password for the outbound asynchronous service responses proxy.

outAsyncResponseProxy:port

Specifies the port number for the outbound asynchronous service responses proxy.

outAsyncResponseProxy:host

Specifies the host name for the outbound asynchronous service responses proxy.

outRequestBasicAuth:userid

Specifies the user name or basic authentication of outbound service requests.

outRequestBasicAuth:password

Specifies the password for basic authentication of outbound service requests.

outRequestProxy:userid

Specifies the user name for the outbound service request proxy.

outRequestProxy:password

Specifies the password for the outbound service request proxy.

outRequestProxy:port

Specifies the port number for the outbound service request proxy.

outRequestProxy:host

Specifies the host name for the outbound service request proxy.

The following setBinding example command sets values for each HTTPTransport binding property:

AdminTask.setBinding(’[-bindingLocation "" -bindingName generalCellWideBind1 -policyType HTTPTransport

-attributes "[[outAsyncResponseBasicAuth:userid myID][outAsyncResponseBasicAuth:password myPW][outAsyncResponseProxy:host hostname]

[outAsyncResponseProxy:port 9060][outAsyncResponseProxy:userid myID][outAsyncResponseProxy:password myPW]

[outRequestBasicAuth:userid myID][outRequestBasicAuth:password myPW][outRequestProxy:userid myID]

[outRequestProxy:password myPW][outRequestProxy:port 9061][outRequestProxy:host hostname]]"]’)

JMSTransport policy and binding properties

Use the -attributes parameter for the setPolicyType and setBinding commands to specify additional

configuration information for the JMSTransport policy and policy set binding. Application policy sets can

use the JMSTransport policy and binding.

Use the following commands and parameters in the PolicySetManagement group of the AdminTask object

to customize your policy set configuration.

v Use the attributes parameter for the getPolicyType and getBinding commands to view the properties for

your policy and binding configuration. To get an attribute, pass the property name to the getPolicyType

or getBinding command.

v Use the attributes parameter for the setPolicyType and setBinding commands to add, update, or

remove properties from your policy and binding configurations. To add or update an attribute, specify the

property name and value. The setPolicyType and setBinding commands update the value if the attribute

exists, or adds the attribute and value if the attribute does not exist. To remove an attribute, specify the

value as an empty string (″″). The attributes parameter accepts a properties object.

Note: If a property name or value supplied with the attributes parameter is not valid, then the

setPolicyType and setBinding commands fail with an exception. The property that is not valid is

logged as an error or warning in the SystemOut.log file. However, the command exception might

not contain the detailed information for the property that caused the exception. When the

setPolicyType and setBinding commands fail, examine the SystemOut.log file for any error and

warning messages that indicate that the input for the attributes parameter contains one or multiple

properties that are not valid.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

Chapter 5. Web services 587

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

The following sections explain the policy and binding properties to configure:

v JMSTransport policy properties

v JMSTransport binding properties

JMSTransport policy properties

Use the JMSTransport policy set to configure JMS transport for applications that use the Java Messaging

Service (JMS) to exchange request and response messages.

Configure the JMSTransport policy by specifying the following attributes with the setPolicyType command:

requestTimeout

Specifies the request timeout value. The request timeout value is the amount of time, in seconds,

that the client waits for a response after sending the request to the server. The default value is 300

seconds. If you specify an integer value of zero or less, the system sets the requestTimeout

property to the default value of 300 seconds. No maximum value exists for this property.

allowTransactionalAsyncMessaging

Specifies whether a client uses transactions in one-way or asynchronous two-way requests. The

default value for this property is false. Set the value of this property to true to enable

transactional messaging. When enabled, the client runtime exchanges SOAP request and

response messages with the server over the JMS transport in a transactional manner if the client

operates under a transaction.

 The client transaction is used to send the SOAP request message to the destination queue or

topic, and the server receives the request message only after the client commits the transaction.

Similarly, the server receives the request message under the control of a container-managed

transaction and sends the reply message, if applicable, back to the client using that same

transaction. Then, the client receives the reply message after the server transaction is committed.

The following setPolicyType example command sets values for each JMSTransport binding property:

AdminTask.setPolicyType(’[-policySet "JMS custom" -policyType JMSTransport

 -attributes "[[requestTimeout 300][allowTransactionalAsynMessaging false]]"]’)

JMSTransport binding properties

Configure the JMSTransport binding by specifying the following attributes with the setBinding command:

outRequestBasicAuth:userid

Specifies the user name or basic authentication of outbound service requests.

outRequestBasicAuth:password

Specifies the password for basic authentication of outbound service requests.

The following setBinding example command sets values for each HTTPTransport binding property:

588 Administering WebSphere applications

AdminTask.setBinding(’[-bindingLocation "" -bindingName generalCellWideBind1

 -policyType JMSTransport -attributes "[[outRequestBasicAuth:userid myID] [outRequestBasicAuth:password myPW]]"]’)

SecureConversation command group for the AdminTask object

(Deprecated)

Use this topic as a reference for the commands for the SecureConversation group of the AdminTask

object. Use these commands with your administrative scripts to query, update, and remove secure

conversation client cache configuration data.

Note: The commands in the SecureConversation command group are deprecated in WebSphere

Application Server Version 7.0. Use the commands in the WSSCacheManagement command group

to manage WS-Security distributed cache configurations.

Use the following commands in the SecureConversation group to manage your custom and non-custom

secure conversation client cache configurations:

v “querySCClientCacheConfiguration command”

v “querySCClientCacheCustomConfiguration command”

v “updateSCClientCacheConfiguration command” on page 590

v “updateSCClientCacheCustomConfiguration command” on page 591

v “deleteSCClientCacheConfigurationCustomProperties command” on page 591

querySCClientCacheConfiguration command

The querySCClientCacheConfiguration command lists all non-custom client cache configuration data for

WS-SecureConversation.

Target object

None

Required parameters

None.

Optional parameters

None.

Return value

This command returns a list of all non-custom client cache configuration data.

Batch mode example usage

v Using Jython:

print AdminTask.querySCClientCacheConfiguration()

Interactive mode example usage

v Using Jython:

AdminTask.querySCClientCacheConfiguration(’-interactive’)

querySCClientCacheCustomConfiguration command

The querySCClientCacheCustomConfiguration command lists all custom client cache configuration data for

WS-SecureConversation.

Chapter 5. Web services 589

Target object

None.

Required parameters

None.

Optional parameters

None.

Return value

This command returns a list of all custom client cache configuration data.

Batch mode example usage

v Using Jython:

print AdminTask.querySCClientCacheCustomConfiguration()

Interactive mode example usage

v Using Jython:

AdminTask.querySCClientCacheCustomConfiguration(’-interactive’)

updateSCClientCacheConfiguration command

The updateSCClientCacheConfiguration command sets the cache cushion time in minutes and enables or

disables distributed cache.

Target object

None.

Required parameters

None.

Optional parameters

-distributedCache

Specifies whether distributed cache is enabled or disabled. If you set the -distributedCache parameter

to true when you run the updateSCClientCacheConfiguration command, the system enables

distributed cache for the WS-Security runtime. (Boolean, optional)

-minutesInCacheAfterTimeout

Specifies the amount of time, in minutes, that the token remains in the cache after it expires. The

token is renewable for this amount of time. (Integer, optional)

-renewIntervalBeforeTimeoutMinutes

Specifies the amount of time, in minutes, that a renew request is allowed before the token expires.

(Integer, optional)

Return value

This command returns a success or failure message.

Batch mode example usage

590 Administering WebSphere applications

v Using Jython string:

AdminTask.updateSCClientCacheConfiguration(’-minutesInCacheAfterTimeout 100 -distributedCache true’)

v Using Jython list:

AdminTask.updateSCClientCacheConfiguration([’-minutesInCacheAfterTimeout’, ’100’, ’-distributedCache’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.updateSCClientCacheConfiguration(’-interactive’)

updateSCClientCacheCustomConfiguration command

The updateSCClientCacheCustomConfiguration command updates custom properties for the secure

conversation client cache configuration.

Target object

None.

Required parameters

None.

Optional parameters

-customProperties

The custom properties for the secure conversation client cache configuration. (Properties, optional)

Return value

This command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.updateSCClientCacheCustomConfiguration(’[-customProperties "[[property2 value2] [property1 value1]]"]’)

v Using Jython list:

AdminTask.updateSCClientCacheCustomConfiguration([’-customProperties’, ’[[property2 value2] [property1 value1]]’])

Interactive mode example usage

v Using Jython:

AdminTask.updateSCClientCacheCustomConfiguration(’-interactive’)

deleteSCClientCacheConfigurationCustomProperties command

The deleteSCClientCacheConfigurationCustomProperties command removes specific properties from a

custom secure conversation client cache configuration.

Target object

None.

Required parameters

-propertyNames

The names of the properties to delete. (String, required).

Chapter 5. Web services 591

Optional parameters

None.

Return value

This command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.deleteSCClientCacheConfigurationCustomProperties(’[-propertyNames [property1,property2]]’)

v Using Jython list:

AdminTask.deleteSCClientCacheConfigurationCustomProperties([’-propertyNames’, ’[property1,property2]’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteSCClientCacheConfigurationCustomProperties(’-interactive’)

WSSCacheManagement command group for the AdminTask object

Use this topic as a reference for the commands for the WSSCacheManagement group of the AdminTask

object. Use these commands with your administrative scripts to query, update, and remove distributed

cache configuration data.

Use the following commands in the WSSCacheManagement group to manage your custom and

non-custom distributed cache configurations:

v “deleteWSSDistributedCacheConfigCustomProperties command”

v “queryWSSDistributedCacheConfig command” on page 593

v “queryWSSDistributedCacheCustomConfig command” on page 594

v “updateWSSDistributedCacheConfig command” on page 594

v “updateWSSDistributedCacheCustomConfig command” on page 595

deleteWSSDistributedCacheConfigCustomProperties command

The deleteWSSDistributedCacheConfigCustomProperties command removes WS-Security distributed

cache custom properties.

Target object

None

Required parameters

-propertyNames

Specifies the names of the custom properties to delete from the distributed cache configuration.

(String[])

Optional parameters

None.

Return value

This command returns a message that indicates the success or failure of the command.

592 Administering WebSphere applications

Batch mode example usage

v Using Jython string:

AdminTask.deleteWSSDistributedCacheConfigCustomProperties(’[-propertyNames [prop1,prop2,prop3]]’)

v Using Jython list:

AdminTask.deleteWSSDistributedCacheConfigCustomProperties([’,-’propertyNames’, ’[prop1,prop2,prop3]’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteWSSDistributedCacheConfigCustomProperties(’-interactive’)

queryWSSDistributedCacheConfig command

The queryWSSDistributedCacheConfig command lists the WS-Security distributed cache configuration

non-custom properties.

Target object

None.

Required parameters

None.

Optional parameters

None.

Return value

This command returns a properties object that contains the configuration properties and values for the

distributed cache configuration. The following table displays the configuration properties that the command

returns:

 Property Description

tokenRecovery Specifies whether token recovery is enabled or disabled. If the

tokenRecovery property is set to true, the Datasource property specifies the

shared data source that is assigned to the distributed cache.

distributedCache Specifies whether distributed caching is enabled or disabled.

Datasource Specifies the name of the shared data source that is assigned to the

distributed cache if token recovery is enabled.

renewIntervalBeforeTimeoutMinutes Specifies the amount of time, in minutes, that the client waits before it

attempts to renew the token.

synchronousClusterUpdate Specifies whether the system performs a synchronous update of distributed

caches on cluster members. By default, synchronous cluster updating is

enabled.

minutesInCacheAfterTimeout Specifies the amount of time that the token remains in the cache after the

token times out.

Batch mode example usage

v Using Jython:

print AdminTask.queryWSSDistributedCacheConfig()

Interactive mode example usage

v Using Jython:

Chapter 5. Web services 593

AdminTask.queryWSSDistributedCacheConfig(’-interactive’)

queryWSSDistributedCacheCustomConfig command

The queryWSSDistributedCacheCustomConfig command lists the WS-Security distributed cache

configuration custom properties.

Target object

None.

Required parameters

None.

Optional parameters

None.

Return value

This command returns a properties object that contains the name and value pairs that correspond to each

custom property.

Batch mode example usage

v Using Jython:

AdminTask.queryWSSDistributedCacheCustomConfig()

Interactive mode example usage

v Using Jython:

AdminTask.queryWSSDistributedCacheCustomConfig(’-interactive’)

updateWSSDistributedCacheConfig command

The updateWSSDistributedCacheConfig command updates the WS-Security distributed cache

configuration non-custom properties.

Target object

None.

Required parameters

None.

Optional parameters

-renewIntervalBeforeTimeoutMinutes

Specifies the amount of time, in minutes, that a renew request is allowed before the token expires.

(Integer)

-minutesInCacheAfterTimeout

Specifies the amount of time, in minutes, that the token remains in the cache after it expires. The

token is renewable for this amount of time. (Integer)

-distributedCache

Specifies whether distributed cache is enabled or disabled. (Boolean)

594 Administering WebSphere applications

-synchronousClusterUpdate

Specifies whether the system performs a synchronous update of distributed caches on cluster

members. By default, synchronous cluster updating is enabled. Specify false to disable synchronous

cluster updating. (Boolean)

-tokenRecovery

Specifies whether token recovery is enabled or disabled. If you set the tokenRecovery property to

true, specify the shared data source to assign to the distributed cache with the -Datasource

parameter. (Boolean)

-Datasource

Specifies the name of the shared data source that is assigned to the distributed cache if token

recovery is enabled. (String)

Return value

This command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.updateWSSDistributedCacheConfig(’[-customProperties "[[property2 value2] [property1 value1]]"]’)

v Using Jython list:

AdminTask.updateWSSDistributedCacheConfig([’-customProperties’, ’[[property2 value2] [property1 value1]]’])

Interactive mode example usage

v Using Jython:

AdminTask.updateWSSDistributedCacheConfig(’-interactive’)

updateWSSDistributedCacheCustomConfig command

The updateWSSDistributedCacheCustomConfig command updates the WS-Security distributed cache

configuration custom properties.

Target object

None.

Required parameters

-customProperties

Specifies the name and value of each custom property to add or update in the WS-Security distributed

cache configuration. (java.util.Properties)

Optional parameters

None.

Return value

This command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.updateWSSDistributedCacheCustomConfig(’[-customProperties [[property1 value1][property2 value2]]]’)

v Using Jython list:

Chapter 5. Web services 595

AdminTask.updateWSSDistributedCacheCustomConfig([’-customProperties’, ’[[property1 value1][property2 value2]]’])

Interactive mode example usage

v Using Jython:

AdminTask.updateWSSDistributedCacheCustomConfig(’-interactive’)

PolicySetManagement command group for the AdminTask object

You can use the Jython or Jacl scripting languages to manage policy set configurations with the wsadmin

tool. Use the commands and parameters in the PolicySetManagement group to create, delete, and

manage policy set, policy, and policy set attachment configurations.

Before you use the commands in this topic, verify that you are using the most recent version of the

wsadmin tool. The policy set management commands that accept a properties object as the value for the

attributes or bindingLocation parameters are not supported on previous versions of the wsadmin tool.

For example, the commands do not run on a Version 6.1.0.x node.

Use the following command to manage policy set configurations:

v “listPolicySets ” on page 597

v “getPolicySet ” on page 597

v “createPolicySet ” on page 598

v “copyPolicySet ” on page 599

v “deletePolicySet ” on page 600

v “updatePolicySet ” on page 600

v “validatePolicySet ” on page 602

v “exportPolicySet ” on page 603

v “importPolicySet ” on page 603

Use the following command to manage policy settings:

v “addPolicyType ” on page 601

v “deletePolicyType ” on page 601

v “listPolicyTypes ” on page 604

v “getPolicyType ” on page 605

v “setPolicyType ” on page 606

v “getPolicyTypeAttribute ” on page 607

v “setPolicyTypeAttribute ” on page 607

Use the following commands to manage policy set attachments:

v “getPolicySetAttachments ” on page 608

v “createPolicySetAttachment ” on page 609

v “updatePolicySetAttachment ” on page 610

v “addToPolicySetAttachment ” on page 612

v “removeFromPolicySetAttachment ” on page 613

v “deletePolicySetAttachment ” on page 614

v “listAttachmentsForPolicySet ” on page 616

v “listAssetsAttachedToPolicySet” on page 616

v “deleteAttachmentsForPolicySet ” on page 617

v “transferAttachmentsForPolicySet ” on page 618

Use the following commands to manage policy set bindings:

596 Administering WebSphere applications

v “getBinding ” on page 619

v “setBinding ” on page 621

v “getDefaultBindings” on page 623

v “getRequiredBindingVersion ” on page 623

v “setDefaultBindings” on page 624

v “exportBinding ” on page 625

v “importBinding ” on page 625

v “copyBinding ” on page 626

v “upgradeBindings” on page 627

listPolicySets

The listPolicySets command returns a list of all existing policy sets. If administrative security is enabled,

each user role can use this command.

Target object

None.

Optional parameters

-policySetType

Specifies the type of policy set. Specify application to display application policy sets. Specify system

to display system policy sets for trust service or WS-MetadataExchange attachments. Specify

system/trust to display the policy sets for the trust service. Specify default to display the default

policy sets. The default value for this parameter is application. (String, optional)

-fromDefaultRepository

Specifies whether to use the default repository. (Boolean, optional)

Return value

The command returns a list of all existing policy sets. Each entry in the list is the name of a policy set.

Batch mode example usage

v Using Jython string:

AdminTask.listPolicySets(’[-policySetType system/trust]’)

v Using Jython list:

AdminTask.listPolicySets([’-policySetType’, ’system/trust’])

Interactive mode example usage

v Using Jython:

AdminTask.listPolicySets(’-interactive’)

getPolicySet

The getPolicySet command returns general attributes, such as description and default indicator, for the

specified policy set. If administrative security is enabled, each user role can use this command.

Target object

None.

Required parameters

Chapter 5. Web services 597

-policySet

Specifies the policy set name. For a list of all policy set names, use the listPolicySets command.

(String, required)

Optional parameters

-isDefaultPolicySet

Specifies whether to display a default policy set. The default value is false. (Boolean, optional)

-fromDefaultRepository

Specifies whether to use the default repository. (Boolean, optional)

Return value

The command returns a list of attributes for the specified policy set name.

Batch mode example usage

v Using Jython string:

AdminTask.getPolicySet(’[-policySet SecureConversation]’)

v Using Jython list:

AdminTask.getPolicySet([’-policySet’, ’SecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.getPolicySet(’-interactive’)

createPolicySet

The createPolicySet command creates a new policy set. Policies are not created with the policy set. The

default indicator is set to false.

If administrative security is enabled, you must use the Administrator role to create policy sets.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set. (String, required)

Optional parameters

-description

Adds a description for the policy set. (String, required)

-policySetType

Specifies the type of policy set. When the value is application, the command creates application

policy sets. When the value is system, the command creates a policy set that you can use for trust

service or WS-MetadataExchange attachments. When the value is system/trust, the command

creates a policy set for the trust service. The default value for this parameter is application. (String,

optional)

Return value

The command returns a success or failure message.

598 Administering WebSphere applications

Batch mode example usage

v Using Jython string:

AdminTask.createPolicySet(’[-policySet myCustomPS -description [my new custom policy

 set] -policySetType system/trust]’)

v Using Jython list:

AdminTask.createPolicySet([’-policySet’, ’myCustomPS’, ’-description’, ’[my new custom

 policy set]’, ’-policySetType’, ’system/trust’])

Interactive mode example usage

v Using Jython:

AdminTask.createPolicySet(’-interactive’)

copyPolicySet

The copyPolicySet command creates a copy of an existing policy set. By default, the policy set

attachments are transferred to the new policy set.

If administrative security is enabled, you must use the Administrator role to copy policy sets.

Target object

None.

Required parameters

-sourcePolicySet

Specifies the name of the existing policy set to copy. (String, required)

-newPolicySet

Specifies the name of the new policy set you are creating. (String, required)

-newDescription

Specifies a description for the new policy set. (String, required)

Optional parameters

-transferAttachments

If this parameter is set to true, all attachments transfer from the source policy set to the new policy

set. The default value is false. (Boolean, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.copyPolicySet(’[-sourcePolicySet SecureConversation -newPolicySet

 CustomSecureConversation -newDescription [my new copied policy set] -transferAttachments true]’)

v Using Jython list:

AdminTask.copyPolicySet([’-sourcePolicySet’, ’SecureConversation’, ’-newPolicySet’,

 ’CustomSecureConversation’, ’-newDescription’, ’[my new copied policy set]’, ’-transferAttachments’,

 ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.copyPolicySet(’-interactive’)

Chapter 5. Web services 599

deletePolicySet

The deletePolicySet command deletes the specified policy set. If attachments exist for the policy set, the

command returns a failure message.

If administrative security is enabled, you must use the Administrator role to delete policy sets.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set to delete. (String, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.deletePolicySet(’[-policySet customSecureConversation]’)

v Using Jython list:

AdminTask.deletePolicySet([’-policySet’, ’customSecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.deletePolicySet(’-interactive’)

updatePolicySet

The updatePolicySet command enables you to input an attribute list to update the policy set. You can use

this command to update all attributes for the policy set, or a subset of attributes.

If administrative security is enabled, you must use the Administrator role to update policy set

configurations.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set to update. (String, required)

-attributes

Specifies a properties object that contains the attributes to update for the specified policy set.

(Properties, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

600 Administering WebSphere applications

AdminTask.updatePolicySet(’-policySet policySet1 -attributes [[type application]

 [description [my policy set description]]]’)

v Using Jython list:

AdminTask.updatePolicySet([’-policySet’, ’policySet1’, ’-attributes’, ’[[type

 application] [description [my policy set description]]]’])

Interactive mode example usage

v Using Jython:

AdminTask.updatePolicySet(’-interactive’)

addPolicyType

The addPolicyType command adds a policy with default values for the specified policy set. You must

indicate whether to enable or disable the added policy.

If administrative security is enabled, you must use the Administrator role to add policies.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set to update. (String, required)

-policyType

Specifies the name of the policy to add to the policy set. (String, required)

-enabled

If this parameter is set to true, new policy is enabled in the policy set. If this parameter is set to false,

the configuration is contained within the policy set but the configuration does not have an effect on the

system. (Boolean, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.addPolicyType(’[-policySet customPolicySet -policyType WSTransaction

 -enabled true]’)

v Using Jython list:

AdminTask.addPolicyType([’-policySet’, ’customPolicySet’, ’-policyType’,

 ’WSTransaction’, ’-enabled’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.addPolicyType(’-interactive’)

deletePolicyType

The deletePolicyType command deletes a policy from a policy set.

If administrative security is enabled, you must use the Administrator role to remove policies from your

configuration.

Target object

Chapter 5. Web services 601

None.

Required parameters

-policySet

Specifies the name of the policy set to update. (String, required)

-policyType

Specifies the name of the policy to remove from the policy set. (String, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.deletePolicyType(’[-policySet customPolicySet -policyType WSTransaction]’)

v Using Jython list:

AdminTask.deletePolicyType([’-policySet’, ’customPolicySet’, ’-policyType’,

 ’WSTransaction’])

Interactive mode example usage

v Using Jython:

AdminTask.deletePolicyType(’-interactive’)

validatePolicySet

The validatePolicySet command validates the policy set configuration.

If administrative security is enabled, you must use the Administrator role to validate policy sets.

Target object

None.

Required parameters

-policySet

Specifies the policy set to update. (String, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.validatePolicySet(’[-policySet customSecureConversation]’)

v Using Jython list:

AdminTask.validatePolicySet([’-policySet’, ’customSecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.validatePolicySet(’-interactive’)

602 Administering WebSphere applications

exportPolicySet

The exportPolicySet command exports a policy set as an archive that can be copied onto a client

environment.

If administrative security is enabled, you must use the Administrator role to export policy sets.

Target object

None.

Required parameters

-policySet

Specifies the policy set to export. (String, required)

-pathName

Specifies the path name of the archive file to create. (String, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.exportPolicySet(’[-policySet customSecureConversation -pathName

 C:/IBM/WebSphere/AppServer/PolicySets/customSC.zip]’)

v Using Jython list:

AdminTask.exportPolicySet([’-policySet’, ’customSecureConversation;, ’-pathName’, ’

 C:/IBM/WebSphere/AppServer/PolicySets/customSC.zip’])

Interactive mode example usage

v Using Jython:

AdminTask.exportPolicySet(’-interactive’)

importPolicySet

The importPolicySet command imports a policy set from a compressed archive file or from a selection of

default policy sets onto the server environment.

If administrative security is enabled, you must use the Administrator role to import policy sets.

Target object

None.

Optional parameters

-importFile

Specifies the path name of the archive file to import. (String, optional)

-defaultPolicySet

Specifies the name of the default policy set to import. (String, optional)

-policySet

Specifies the name to assign to the new policy set. If you do not specify this parameter, the system

uses the original name of the policy set. (String, optional)

Chapter 5. Web services 603

-verifyPolicySetType

Specifies that the policy set type to import matches a specific type. Specify system or system/trust to

verify that the policy set to import is a type of system policy set, including trust service policy sets.

Specify application to verify that the policy set is an application policy set. (String, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.importPolicySet(’[-importFile C:/IBM/WebSphere/AppServer/PolicySets/customSC.zip]’)

v Using Jython list:

AdminTask.importPolicySet([’-importFile’, ’C:/IBM/WebSphere/AppServer/PolicySets/customSC.zip’])

Interactive mode example usage

v Using Jython:

AdminTask.importPolicySet(’-interactive’)

listPolicyTypes

The listPolicyTypes command returns a list of the names of the policies configured on your system. The

input parameters allow you to list each policy type configured in the system, the policy types configured in

a policy set, or the policy types in a binding.

If administrative security is enabled, each administrative role can list policy types.

Target object

None.

Optional parameters

-policySet

Specifies the name of the policy set to query for policies. If the policy set is not specified, the

command lists all policies defined in your configuration. (String, optional)

-bindingLocation

Specifies the location of the binding. This value is cell-wide default binding, server-specific default

binding, or attachment-specific binding. Specify the bindingLocation parameter as a properties object

following these guidelines:

v For cell-wide default binding, use a null or empty properties.

v For server-specific default binding, specify the node and server names in the properties. The

property names are node and server. Server-specific default bindings are deprecated.

v For attachment-specific binding, specify the application name and attachment ID in the properties.

The property names are application and attachmentId.

v For system bindings, set the systemType property as trustService.

v For WSNClient binding, specify the bus name, service name, and attachment ID in the properties.

The property names are bus, WSNService, and attachmentId.

(Properties, optional)

-attachmentType

Specifies whether the attachment type is an application binding, client binding, trust service binding, or

WS-Notification client binding. (String, optional)

604 Administering WebSphere applications

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-bindingName

Specifies a specific general binding. If you specify this parameter, the system displays policy types in

the specific binding. (String, optional)

-fromDefaultRepository

Specifies whether to use the default repository. (Boolean, optional)

Return value

The command returns a list of policy types.

Batch mode example usage

v Using Jython string:

AdminTask.listPolicyTypes(’[-policySet customSecureConversation]’)

v Using Jython list:

AdminTask.listPolicyTypes([’-policySet’, ’customSecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.listPolicyTypes(’[-interactive]’)

getPolicyType

The getPolicyType command returns the attributes for a specified policy.

If administrative security is enabled, each administrative role can query attributes for policies.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set to query. (String, required)

-policyType

Specifies the name of the policy of interest. (String, required)

Optional parameters

-attributes

Specifies the specific attributes to display. If this parameter is not used, the command returns all

attributes for the specified policy. (String[], optional)

-fromDefaultRepository

Specifies whether to use the default repository. (Boolean, optional)

Return value

The command returns a properties object containing the policy attributes.

Chapter 5. Web services 605

Batch mode example usage

v Using Jython string:

AdminTask.getPolicyType(’[-policySet customSecureConversation -policyType

 SecureConversation]’)

v Using Jython list:

AdminTask.getPolicyType([’-policySet’, ’customSecureConversation’, ’-policyType’, ’SecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.getPolicyType ([’-interactive’])

setPolicyType

The setPolicyType command updates the attributes of a specified policy.

Note: The administrative console command assistance provides incorrect Jython syntax for the

setPolicyType command. The XPath expression for the response message part protection of the

Username WSSecurity policy set contains single quotes (’) within each XPath property value, which

Jython does not support. To fix the command from the administrative console command assistance,

add a backslash character (\) before each single quote to escape the single quote.

If administrative security is enabled, you must use the Administrator role to configure policies.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set of interest. (String, required)

-policyType

Specifies the name of the policy of interest. (String, required)

-attributes

Specifies the specific attributes to be updated. The properties could include all of the policy attributes

or a subset of attributes. (Properties, required)

Optional parameters

-replace

Indicates whether the new attributes provided from the command replace the existing policy attributes.

For policies with complex data, you can remove optional parts of the configuration when necessary.

Use this parameter to get all attributes, perform edits, and replace the binding configuration with the

edited data. The default value is false. (Boolean, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.setPolicyType(’[-policySet customSecureConversation -policyType

 SecureConversation -attributes [[type application] [description [my new description]]]]’)

v Using Jython list:

AdminTask.setPolicyType([’-policySet’, ’customSecureConversation’, ’-policyType’, ’SecureConversation’, ’-attributes’,

 ’[[type application] [description [my new description]]]’])

606 Administering WebSphere applications

Interactive mode example usage

v Using Jython:

AdminTask.setPolicyType(’-interactive’)

getPolicyTypeAttribute

The getPolicyTypeAttribute command returns the value for the specified policy attribute.

If administrative security is enabled, each administrative role can query policy type attribute values.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set of interest. (String, required)

-policyType

Specifies the name of the policy of interest. (String, required)

-attributeName

Specifies the name of the attribute of interest. (String, required)

-fromDefaultRepository

Specifies whether to use the default repository. (Boolean, optional)

Optional parameters

-fromDefaultRepository

Specifies whether to use the default repository. (Boolean, optional)

Return value

The command returns a string that contains the value of the specified attribute.

Batch mode example usage

v Using Jython string:

AdminTask.getPolicyTypeAttribute(’[-policySet customSecureConversation -policyType

 SecureConversation -attributeName type]’)

v Using Jython list:

AdminTask.getPolicyTypeAttribute([’-policySet’, ’customSecureConversation’, ’-policyType’,

 ’SecureConversation’, ’-attributeName’, ’type’])

Interactive mode example usage

v Using Jython:

AdminTask.getPolicyTypeAttribute(’-interactive’)

setPolicyTypeAttribute

The setPolicyTypeAttribute command sets the value for the specified policy attribute.

If administrative security is enabled, you must use the Administrator role to configure policy attributes.

Target object

None.

Chapter 5. Web services 607

Required parameters

-policySet

Specifies the name of the policy set of interest. (String, required)

-policyType

Specifies the name of the policy of interest. (String, required)

-attributeName

Specifies the name of the attribute of interest. (String, required)

-attributeValue

Specifies the value of the attribute of interest. (String, required)

Return value

If the attribute is successfully added to the policy, the command returns the true string value.

Batch mode example usage

v Using Jython string:

AdminTask.setPolicyTypeAttribute(’[-policySet customPolicySet -policyType

 WSReliableMessaging -attributeName specLevel -attributeValue 1.0]’)

v Using Jython list:

AdminTask.setPolicyTypeAttribute([’-policySet’, ’customPolicySet’, ’-policyType’,

 ’WSReliableMessaging’, ’-attributeName’, ’specLevel’, ’-attributeValue’, ’1.0’])

Interactive mode example usage

v Using Jython:

AdminTask.setPolicyTypeAttribute(’-interactive’)

getPolicySetAttachments

The getPolicySetAttachments command lists the properties for all policy set attachments configured in a

specified application.

If administrative security is enabled, each administrative role can query for policy set attachments.

Target object

None.

Optional parameters

-applicationName

Specifies the name of the application to query for policy set attachments. For application and client

attachments, this parameter is required. This parameter is not required to query for trust service

attachments. (String, optional)

-attachmentType

Specifies the type of policy set attachments. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-expandResources

Provides expanded information that details the attachment properties for each resource. An asterisk (*

608 Administering WebSphere applications

) character returns all Web services. This parameter is valid if the value for the -attachmentType

parameter is set to provider or client. (String, optional)

-attachmentProperties

Specifies information that is required to identify the location of the attachment. For WSNClient

attachments, specify the attachmentType parameter as client, and use the -attachmentProperties

parameter to specify the bus and WSNService properties. For system policy set attachments, specify

the attachmentType parameter as provider, and use the -attachmentProperties parameter to set the

systemType property value to trustService. (Properties, optional)

Return value

The command returns a list of properties for each attachment in the application, including the policy set

name, attachment ID, and resource list. If you specify the expandResources parameter, the command

returns the resource, attachmentId, policySet, binding, and directAttachment properties. If a resource is not

attached to a policy set, then the system only displays the resource property. The binding property only

exists if the attachment contains a custom binding.

Batch mode example usage

v Using Jython string:

AdminTask.getPolicySetAttachments(’[-attachmentType provider -attachmentProperties "[systemType trustService]"]’)

v Using Jython list:

AdminTask.getPolicySetAttachments([’-attachmentType’, ’provider’, ’-attachmentProperties’,

 ’[systemType trustService]’])

Interactive mode example usage

v Using Jython list:

AdminTask.getPolicySetAttachments(’-interactive’)

createPolicySetAttachment

The createPolicySetAttachment command creates a new policy set attachment for an application.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to create policy set attachments. If you

have access to a specific resource only, you can create policy set attachments for the

resource for which you have access.

Configurator The Configurator role must have cell-wide access to create policy set attachments. If you

have access to a specific resource only, you can create policy set attachments for the

resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can create policy set

attachments for application resources only.

Operator The Operator role cannot create policy set attachments.

Monitor The Monitor role cannot create policy set attachments.

Target object

None.

Required parameters

Chapter 5. Web services 609

-policySet

Specifies the name of the policy set to attach. (String, required)

-resources

Specifies the name of the application resources to attach to the policy set. (String[], required)

Optional parameters

-applicationName

Specifies the name of the application of interest for policy set attachments. For application and client

attachments, this parameter is required. This parameter is not required for trust service attachments.

(String, optional)

-attachmentType

Specifies the type of policy set attachments. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-dynamicClient

Set this parameter to true, the system will not recognize the client resources. This option specifies

that the client resources are not validated. (Boolean, optional)

-attachmentProperties

Specifies information that is required to identify the location of the attachment. For WSNClient

attachments, specify the attachmentType parameter as client, and use the -attachmentProperties

parameter to specify the bus and WSNService properties. For system policy set attachments, specify

the attachmentType parameter as provider, and use the -attachmentProperties parameter to set the

systemType property value to trustService. (Properties, optional)

Return value

The command returns a string with the ID of the new attachment.

Batch mode example usage

v Using Jython string:

AdminTask.createPolicySetAttachment(’[-policySet policyset1 -resources "WebService:/" -applicationName WebService -attachmentType provider]’)

v Using Jython list:

AdminTask.createPolicySetAttachment([’-policySet’, ’policyset1’, ’-resources’, ’"WebService:/"’, ’-applicationName’, ’WebService’,

 ’-attachmentType’, ’provider’])

Interactive mode example usage

v Using Jython:

AdminTask.createPolicySetAttachment(’-interactive’)

updatePolicySetAttachment

The updatePolicySetAttachment command updates the resources that apply to a policy set attachment.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

610 Administering WebSphere applications

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to configure policy set

attachments. If you have access to a specific resource only, you can

configure policy set attachments for the resource for which you have

access.

Configurator The Configurator role must have cell-wide access to configure policy set

attachments. If you have access to a specific resource only, you can

configure policy set attachments for the resource for which you have

access.

Deployer The Deployer role with cell-wide or resource specific access can configure

policy set attachments for application resources only.

Operator The Operator role cannot configure policy set attachments.

Monitor The Monitor role cannot configure policy set attachments.

Target object

None.

Required parameters

-attachmentId

Specifies the name of the attachment to update. (String, required)

-resources

Specifies the names of the application resources to attach to the policy set. (String, required)

Optional parameters

-applicationName

Specifies the name of the application of interest for policy set attachments. For application and client

attachments, this parameter is required. This parameter is not required for trust service attachments.

(String, optional)

-attachmentType

Specifies the type of policy set attachments. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-dynamicClient

Set this parameter to true, the system will not recognize the client resources. This option specifies

that the client resources are not validated. (Boolean, optional)

-attachmentProperties

Specifies information that is required to identify the location of the attachment. For WSNClient

attachments, specify the attachmentType parameter as client, and use the -attachmentProperties

parameter to specify the bus and WSNService properties. For system policy set attachments, specify

the attachmentType parameter as provider, and use the -attachmentProperties parameter to set the

systemType property value to trustService. (Properties, optional)

Return value

The command returns a success or failure message.

Chapter 5. Web services 611

Batch mode example usage

v Using Jython string:

AdminTask.updatePolicySetAttachment(’[-attachmentId 123 -resources "WebService:/"]’)

v Using Jython list:

AdminTask.updatePolicySetAttachment([’-attachmentId’, ’123’, ’-resources’,

 ’"WebService:/"’])

Interactive mode example usage

v Using Jython:

AdminTask.updatePolicySetAttachment (’-interactive’)

addToPolicySetAttachment

The addToPolicySetAttachment command adds additional resources that apply to a policy set attachment.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to add resources to

policy set attachments. If you have access to a specific resource only, you

can add resources to policy set attachments for the resource for which you

have access.

Configurator The Configurator role must have cell-wide access to add resources to

policy set attachments. If you have access to a specific resource only, you

can add resources to policy set attachments for the resource for which you

have access.

Deployer The Deployer role with cell-wide or resource specific access can add

resources to policy set attachments for application resources only.

Operator The Operator role cannot add resources to policy set attachments.

Monitor The Monitor role cannot add resources to policy set attachments.

Target object

None.

Required parameters

-attachmentId

Specifies the name of the attachment to update. (String, required)

-resources

Specifies the names of the application resources to attach to the policy set. (String, required)

Optional parameters

-applicationName

Specifies the name of the application of interest for policy set attachments. For application and client

attachments, this parameter is required. This parameter is not required for trust service attachments.

(String, optional)

-attachmentType

Specifies the type of policy set attachments. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

612 Administering WebSphere applications

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-dynamicClient

Set this parameter to true, the system will not recognize the client resources. This option specifies

that the client resources are not validated. (Boolean, optional)

-attachmentProperties

Specifies information that is required to identify the location of the attachment. For WSNClient

attachments, specify the attachmentType parameter as client, and use the -attachmentProperties

parameter to specify the bus and WSNService properties. For system policy set attachments, specify

the attachmentType parameter as provider, and use the -attachmentProperties parameter to set the

systemType property value to trustService. (Properties, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.addToPolicySetAttachment(’[-attachmentId 123 -resources

 "WebService:/webapp1.war:{http://www.ibm.com}myService"]’)

v Using Jython list:

AdminTask.addToPolicySetAttachment([’-attachmentId’, ’123’, ’-resources’,

 ’"WebService:/webapp1.war:{http://www.ibm.com}myService"’])

Interactive mode example usage

v Using Jython:

AdminTask.addToPolicySetAttachment(’-interactive’)

removeFromPolicySetAttachment

The removeFromPolicySetAttachment command removes resources that apply to a policy set attachment.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to remove resources

from policy set attachments. If you have access to a specific resource only,

you can remove resources for which you have access.

Configurator The Configurator role must have cell-wide access to remove resources

from policy set attachments. If you have access to a specific resource only,

you can remove the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can remove

resources from policy set attachments for application resources only.

Operator The Operator role cannot remove resources from policy set attachments.

Monitor The Monitor role cannot remove resources from policy set attachments.

Target object

None.

Chapter 5. Web services 613

Required parameters

-attachmentId

Specifies the name of the attachment to remove. (String, required)

-resources

Specifies the names of the application resources to attach to the policy set. (String, required)

Optional parameters

-applicationName

Specifies the name of the application of interest for policy set attachments. For application and client

attachments, this parameter is required. This parameter is not required for trust service attachments.

(String, optional)

-attachmentType

Specifies the type of policy set attachments. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-attachmentProperties

Specifies information that is required to identify the location of the attachment. For WSNClient

attachments, specify the attachmentType parameter as client, and use the -attachmentProperties

parameter to specify the bus and WSNService properties. For system policy set attachments, specify

the attachmentType parameter as provider, and use the -attachmentProperties parameter to set the

systemType property value to trustService. (Properties, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.removeFromPolicySetAttachment(’[-attachmentId 123 -resources

 "WebService:/webapp1.war:{http://www.ibm.com}myService"]’)

v Using Jython list:

AdminTask.removeFromPolicySetAttachment([’-attachmentId’, ’123’, ’-resources’,

 ’"WebService:/webapp1.war:{http://www.ibm.com}myService"’])

Interactive mode example usage

v Using Jython:

AdminTask.removeFromPolicySetAttachment(’-interactive’)

deletePolicySetAttachment

The deletePolicySetAttachment command removes a policy set attachment from an application.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

614 Administering WebSphere applications

Administrative role Authorization

Administrator The Administrator role must have cell-wide access to delete policy set

attachments. If you have access to a specific resource only, you can delete

policy set attachments for the resource for which you have access.

Configurator The Configurator role must have cell-wide access to delete policy set

attachments. If you have access to a specific resource only, you can delete

policy set attachments for the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can delete

policy set attachments for application resources only.

Operator The Operator role cannot delete policy set attachments.

Monitor The Monitor role cannot delete policy set attachments.

Target object

None.

Required parameters

-attachmentId

Specifies the name of the attachment to delete. (String, required)

Optional parameters

-applicationName

Specifies the name of the application of interest for policy set attachments. For application and client

attachments, this parameter is required. This parameter is not required for trust service attachments.

(String, optional)

-attachmentType

Specifies the type of policy set attachments. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-attachmentProperties

Specifies information that is required to identify the location of the attachment. For WSNClient

attachments, specify the attachmentType parameter as client, and use the -attachmentProperties

parameter to specify the bus and WSNService properties. For system policy set attachments, specify

the attachmentType parameter as provider, and use the -attachmentProperties parameter to set the

systemType property value to trustService. (Properties, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.deletePolicySetAttachment(’[-attachmentId 123]’)

v Using Jython list:

AdminTask.deletePolicySetAttachment([’-attachmentId’, ’123’])

Chapter 5. Web services 615

Interactive mode example usage

v Using Jython:

AdminTask.deletePolicySetAttachment(’-interactive’)

listAssetsAttachedToPolicySet

The listAssetsAttachedToPolicySet command lists the applications or WS-Notification service clients to

which a specific policy set is attached.

If administrative security is enabled, each administrative role can list applications that are attached to

policy sets.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set of interest. (String, required)

Optional parameters

-attachmentType

Specifies the type of policy set attachments. The value for this parameter must be provider, client,

WSNClient, WSMex, or all. The default value is all. (String, optional)

Return value

The command returns a list of properties that describe each asset. Each properties object contains the

assetType property, which specifies the type of asset.

Batch mode example usage

v Using Jython string:

AdminTask.listAssetsAttachedToPolicySet(’[-policySet SecureConversation]’)

v Using Jython list:

AdminTask.listAssetsAttachedToPolicySet([’-policySet’, ’SecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.listAssetsAttachedToPolicySet(’-interactive’)

listAttachmentsForPolicySet

The listAttachmentsForPolicySet command lists the applications to which a specific policy set is attached.

If administrative security is enabled, each administrative role can query for policy set attachments.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set of interest. (String, required)

616 Administering WebSphere applications

Optional parameters

-attachmentType

Specifies the type of policy set attachments. The value for this parameter must be application,

client, or system/trust. The default value is application. (String, optional)

Return value

The command returns a list of application names.

Batch mode example usage

v Using Jython string:

AdminTask.listAttachmentsForPolicySet(’[-policySet SecureConversation]’)

v Using Jython list:

AdminTask.listAttachmentsForPolicySet([’-policySet’, ’SecureConversation’])

Interactive mode example usage

v Using Jython:

AdminTask.listAttachmentsForPolicySet(’-interactive’)

deleteAttachmentsForPolicySet

The deleteAttachmentsForPolicySet command removes all attachments for a specific policy set.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to delete policy set

attachments. If you have access to a specific resource only, you can delete

policy set attachments for the resource for which you have access.

Configurator The Configurator role must have cell-wide access to delete policy set

attachments. If you have access to a specific resource only, you can delete

policy set attachments for the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can delete

policy set attachments for application resources only.

Operator The Operator role cannot delete policy set attachments.

Monitor The Monitor role cannot delete policy set attachments.

Target object

None.

Required parameters

-policySet

Specifies the name of the policy set from which to remove the attachments. (String, required)

Optional parameters

-applicationName

Specifies the name of the application of interest. The command only deletes attachments for the

application of interest if you specify this parameter. (String, optional)

Chapter 5. Web services 617

-attachmentProperties

Specifies information that is required to identify the location of the attachment. You can specify values

for the bus and WSNService properties. (Properties, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAttachmentsForPolicySet(’[-policySet customSecureConversation

 -applicationName newApp1]’)

v Using Jython list:

AdminTask.deleteAttachmentsForPolicySet([’-policySet’, ’customSecureConversation’,

 ’-applicationName’, ’newApp1’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAttachmentsForPolicySet(’-interactive’)

transferAttachmentsForPolicySet

The transferAttachmentsForPolicySet command transfers all attachments from one policy set to another

policy set.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to transfer policy set

attachments. If you have access to a specific resource only, you can

transfer policy set attachments for the resource for which you have access.

Configurator The Configurator role must have cell-wide access to transfer policy set

attachments. If you have access to a specific resource only, you can

transfer policy set attachments for the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can transfer

policy set attachments for application resources only.

Operator The Operator role cannot transfer policy set attachments.

Monitor The Monitor role cannot transfer policy set attachments.

Target object

None.

Required parameters

-sourcePolicySet

Specifies the source policy set from which to copy attachments. (String, required)

-destinationPolicySet

Specifies the name of the policy set to which the attachments are copied. (String, required)

Optional parameters

618 Administering WebSphere applications

-applicationName

Specifies the name of the application of interest. The command only transfers attachments for the

application of interest if you specify this parameter. (String, optional)

-attachmentProperties

Specifies information that is required to identify the location of the attachment. You can specify values

for the bus and WSNService properties. (Properties, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.transferAttachmentsForPolicySet(’[-sourcePolicySet SecureConversation

 -destinationPolicySet customSecureConversation -applicationName newApp1]’)

v Using Jython list:

AdminTask.transferAttachmentsForPolicySet([’-sourcePolicySet’, ’SecureConversation’,

 ’-destinationPolicySet’, ’customSecureConversation’, ’-applicationName’, ’newApp1’])

Interactive mode example usage

v Using Jython:

AdminTask.transferAttachmentsForPolicySet(’-interactive’)

getBinding

The getBinding command returns the binding configuration for a specified policy and scope. You can use

the getBinding command to return a list of available custom bindings, which includes bindings that are and

are not referenced by attachments.

If administrative security is enabled, each administrative role can query for binding configuration

information.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Target object

None.

Required parameters

-policyType

Specifies the policy of interest. (String, required)

Chapter 5. Web services 619

-bindingLocation

Specifies the location of the binding. (Properties, required)

 Specify the bindingLocation parameter as a properties object following these guidelines:

v For cell-wide general binding or WebSphere Application Server Version 6.1 cell default bindings,

specify a null or empty properties.

v For WebSphere Application Server Version 6.1 server-specific default binding, specify the node and

server names in the properties. The property names are node and server. Server-specific default

bindings are deprecated.

v For WebSphere Application Server Version 7.0 server default bindings, specify a null or empty

properties. Use the bindingName parameter to identify the binding location.

v For attachment-specific, specify the application name and attachment ID in the properties. The

property names are application and attachmentId.

v For WSNClient bindings, specify the bus name, service name, and attachment ID in the properties.

The property names are bus, WSNService, and attachmentId. If you specify an asterisk character (*)

as the attachment ID, then the command returns the list of binding names that corresponds to the

attachment type of interest.

v For system/trust bindings, set the systemType property as trustService.

Optional parameters

-attachmentType

Specifies the type of policy set attachment. Use this parameter to distinguish between types of

attachment custom bindings. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-attributes

Specifies the names of the attributes to return. If this parameter is not specified, the command returns

all attributes. (String[], optional)

-bindingName

Specifies the binding name of interest. Specify this parameter to display a general cell-level binding or

a custom attachment binding. (String, optional)

Return value

The command returns a properties object that contains the requested configuration attributes for the policy

binding.

Batch mode example usage

v Using Jython string:

The following example returns a list of application bindings:

AdminTask.getBinding(’[-policyType WSAddressing -attachmentType provider

 -bindingLocation [[application application_name] [attachmentId *]]]’)

The following example returns a list of client bindings:

AdminTask.getBinding(’[-policyType WSAddressing -attachmentType client

 -bindingLocation [[application application_name] [attachmentId *]]]’)

The following example returns a list of system bindings:

AdminTask.getBinding(’[-policyType WSAddressing -attachmentType provider

 -bindingLocation [[systemType trustService] [application application_name] [attachmentId *]]]’)

620 Administering WebSphere applications

v Using Jython list:

AdminTask.getBinding([’-policyType’, ’WSAddressing’, ’-bindingLocation’, ’""’])

Interactive mode example usage

v Using Jython:

AdminTask.getBinding(’-interactive’)

setBinding

The setBinding command updates the binding configuration for a specified policy. Use this command to

add a server-specific binding, update an attachment to use a custom binding, edit binding attributes, or to

remove a binding configuration.

When administrative security is enabled, verify that you use the correct administrative role, as the following

table describes:

 Administrative role Authorization

Administrator The Administrator role must have cell-wide access to configure bindings. If

you have access to a specific resource only, you can configure custom

bindings for the resource for which you have access. The Administrator

role is the only role that can modify binding configurations.

Configurator The Configurator role must have cell-wide access to assign and unassign

bindings. If you have access to a specific resource only, you can assign

and unassign bindings for the resource for which you have access.

Deployer The Deployer role with cell-wide or resource specific access can assign or

unassign bindings for application resources only.

Operator The Operator role cannot configure bindings.

Monitor The Monitor role cannot configure bindings.

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general binding that are used as the default for an application server or a security domain.

To support a mixed-cell environment, WebSphere Application Server supports Version 7.0 and Version 6.1

bindings. General cell-level bindings are specific to Version 7.0 Application-specific bindings remain at the

version that the application requires. When the user creates an application-specific binding, the application

server determines the required binding version to use for application.

Target object

None.

Required parameters

-bindingLocation

Specifies the location of the binding. (Properties, required)

 Specify the bindingLocation parameter as a properties object following these guidelines:

Chapter 5. Web services 621

v For cell-wide general binding or WebSphere Application Server Version 6.1 cell default bindings,

specify a null or empty properties.

v For WebSphere Application Server Version 6.1 server-specific default binding, specify the node and

server names in the properties. The property names are node and server. Server-specific default

bindings are deprecated.

v For WebSphere Application Server Version 7.0 server default bindings, specify a null or empty

properties. Use the bindingName parameter to identify the binding location.

v For attachment-specific, specify the application name and attachment ID in the properties. The

property names are application and attachmentId.

v For WSNClient bindings, specify the bus name, service name, and attachment ID in the properties.

The property names are bus, WSNService, and attachmentId. If you specify an asterisk character (*)

as the attachment ID, then the command returns the list of binding names that corresponds to the

attachment type of interest.

v For system/trust bindings, set the systemType property as trustService.

-policyType

Specifies the policy of interest. (String, required)

Optional parameters

-attachmentType

Specifies the type of policy set attachment. Use this parameter to distinguish between types of

attachment custom bindings. (String, optional)

Note: The application and system/trust values for the -attachmentType parameter are deprecated.

Specify the provider value in place of the application value. For system policy set

attachments, specify the provider value for the attachmentType parameter and the

″[systemType trustService]″ value for the -attachmentProperties parameter. For WSNClient

attachments, specify the client value for the attachmentType parameter and the bus and

WSNService properties with the -attachmentProperties parameter.

-attributes

Specifies the attribute values to update. This parameter can include all binding attributes for the policy

or a subset to update. If the attributes parameter is not specified, the command only updates the

binding location used by the specified attachment. (Properties, optional)

-bindingName

Specifies the name for the binding. Specify this parameter to assign a new name to an attachment

binding or cell-level binding. A name is generated if it is not specified. (String, optional)

-domainName

Specifies the domain name for the binding. This parameter is required when using the command to

create and scope a binding to a specific domain other than the administrative security domain. The

default value is global. (String, optional)

-replace

Specifies whether to replace all of the existing binding attributes with the attributes specified in the

command. Use this parameter to remove optional parts of the configuration for policies with complex

data. The default value is false. (Boolean, optional)

-remove

Specifies whether to remove a server-specific default binding or to remove a custom binding from an

attachment. You cannot remove cell-level default binding. The default value is false. (Boolean,

optional)

Return value

The command returns a success or failure message.

622 Administering WebSphere applications

Batch mode example usage

v Using Jython string:

AdminTask.setBinding(’[-policyType WSAddressing -bindingLocation [[application myApplication] [attachmentId 123]] -attributes "[preventWLM false]"

 -attachmentType provider]’)

v Using Jython list:

AdminTask.setBinding([’-policyType’, ’WSAddressing’, ’-bindingLocation’, ’[[application myApplication] [attachmentId 123]]’, ’-attributes’, ’[preventWLM

 false]’, ’-attachmentType’, ’provider’])

Interactive mode example usage

v Using Jython:

AdminTask.setBinding(’-interactive’)

getDefaultBindings

The getDefaultBindings command displays the provider and client default bindings if the bindings are set.

If the command does not return output, then the system default binding is the current default.

If administrative security is enabled, each administrative role can query for default bindings.

Target object

None.

Optional parameters

-bindingLocation

Specifies the location of the binding. Specify the bindingLocation parameter as a properties object with

values for the node and server properties. (Properties, optional)

-domainName

Specifies the domain name for the binding of interest. This parameter is required if the domain of

interest is not in the global security domain and you specified the bindingLocation parameter. The

bindingLocation and domainName parameters are mutually exclusive. The default value is global.

(String, optional)

Return value

The command returns a properties object that contains the names of the provider and client default

bindings, if the bindings are set.

Batch mode example usage

v Using Jython string:

AdminTask.getDefaultBinding(’[-bindingLocation [[node myNode] [server myServer]]]’)

v Using Jython list:

AdminTask.getDefaultBinding([’-bindingLocation’, ’[[node myNode] [server myServer]]’])

Interactive mode example usage

v Using Jython:

AdminTask.getDefaultBinding(’-interactive’)

getRequiredBindingVersion

The getRequiredBindingVersion command displays the version number of the binding for a specific

application.

Target object

Chapter 5. Web services 623

None.

Optional parameters

-assetProps

Specifies the name of the application of interest. (Properties, optional)

Return value

The command returns the binding version number as a number, such as 7.0.0.0 or 6.1.0.0.

Batch mode example usage

v Using Jython string:

AdminTask.getRequiredBindingVersion(’[-assetProps [[application myApplication]]]’)

v Using Jython list:

AdminTask.getRequiredBindingVersion([’-assetProps’, ’[[application myApplication]]’])

Interactive mode example usage

v Using Jython:

AdminTask.getRequiredBindingVersion(’-interactive’)

setDefaultBindings

The setDefaultBindings command to set a binding as the default binding.

If administrative security is enabled, you must use the Administrator role with cell-wide access to configure

bindings. If you use the Administrator role and do not have cell-wide access, you can only configure

bindings on resources for which you have access.

Target object

None.

Required parameters

-defaultBinding

Specifies the names of the default bindings for the provider, client, or both. (Properties, required)

Optional parameters

-bindingLocation

Specifies the location of the binding. Specify the bindingLocation parameter as a properties object with

values for the node and server properties. (Properties, optional)

-domainName

Specifies the domain name for the binding of interest. This parameter is required if the domain of

interest is not in the global security domain and you specified the bindingLocation parameter. The

bindingLocation and domainName parameters are mutually exclusive. The default value is global.

(String, optional)

Return value

The command returns a value of true if the command successfully sets the default binding.

Batch mode example usage

v Using Jython string:

AdminTask.setDefaultBinding(’[-bindingName myDefaultBinding -bindingLocation [[node myNode] [server myServer]]]’)

624 Administering WebSphere applications

v Using Jython list:

AdminTask.setDefaultBinding([’-bindingName’, ’myDefaultBinding’, ’-bindingLocation’, ’[[node

 myNode] [server myServer]]’])

Interactive mode example usage

v Using Jython:

AdminTask.setDefaultBinding(’-interactive’)

exportBinding

The exportBinding command export a general, cell-level binding to an archive file. You can copy this file to

a client environment or import the archive to a server environment.

If administrative security is enabled, you must use the Administrator role with cell-wide access to export

bindings.

Target object

None.

Required parameters

-bindingName

Specifies the name of the binding to assign as the default binding. If you do not specify this parameter,

the system specifies the system default as the default binding. (String, required)

-pathName

Specifies the file path for the archive file to create. (String, required)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.exportBinding(’[-bindingName myDefaultBinding -pathName

 C:/IBM/WebSphere/AppServer/PolicySets/Bindings/]’)

v Using Jython list:

AdminTask.exportBinding([’-bindingName’, ’myDefaultBinding’, ’-pathName’,

 ’C:/IBM/WebSphere/AppServer/PolicySets/Bindings/’])

Interactive mode example usage

v Using Jython:

AdminTask.exportBinding(’-interactive’)

importBinding

The importBinding command imports a general, cell-level binding from a compressed archive file to a

server environment.

If administrative security is enabled, you must use the Administrator role with cell-wide access to import

bindings.

Target object

None.

Chapter 5. Web services 625

Required parameters

-pathName

Specifies the file path for the archive file to import. (String, required)

Optional parameters

-bindingName

Specifies the name of the binding to assign as the imported binding. If you do not specify this

parameter, the system specifies the binding name in the archive file. (String, optional)

-domainName

Specifies a new name of the domain of the binding to import. If you do not specify this parameter, the

command uses the domain specified in the archive file. (String, optional)

-verifyBindingType

Verifies that the type of binding to import matches a specific binding type. Specify provider to verify

that the binding to import is a provider binding, or specify client to verify that it is a client binding.

(String, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.importBinding(’[-bindingName myDefaultBinding -pathName

 C:/IBM/WebSphere/AppServer/PolicySets/Bindings/myBinding.ear]’)

v Using Jython list:

AdminTask.importBinding([’-bindingName’, ’myDefaultBinding’, ’-pathName’,

 ’C:/IBM/WebSphere/AppServer/PolicySets/Bindings/myBinding.ear’])

Interactive mode example usage

v Using Jython:

AdminTask.importBinding(’-interactive’)

copyBinding

The copyBinding command creates a new general, cell-level binding from an existing binding.

If administrative security is enabled, you must use the Administrator role with cell-wide access to copy

bindings.

Target object

None.

Required parameters

-sourceBinding

Specifies the name of the existing binding that the system uses to create the new binding. (String,

required)

-newBinding

Specifies the name of the binding to create. (String, required)

Optional parameters

-newDescription

Specifies the description text for the new binding. (String, optional)

626 Administering WebSphere applications

-domainName

Specifies the domain name for the binding. This parameter is only required if you scope the binding to

a domain other than the domain of the source binding. (String, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.copyBinding(’[-sourceBinding mySourceBinding -newBinding mySourceCopyBinding]’)

v Using Jython list:

AdminTask.copyBinding([’-sourceBinding’, ’mySourceBinding’, ’-newBinding’,

 ’mySourceCopyBinding’])

Interactive mode example usage

v Using Jython list:

AdminTask.copyBinding(’-interactive’)

upgradeBindings

The upgradeBindings command upgrades application bindings for a specific asset to the latest version.

If administrative security is enabled, you must use the Administrator role with cell-wide access to import

bindings.

Target object

None.

Required parameters

-assetProps

Specifies the name of the asset of interest. Specify the name of the application as the value for the

application property. (Properties, required)

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.upgradeBindings(’[-assetProps [[application myApplication]]]’)

v Using Jython list:

AdminTask.upgradeBindings([’-assetProps’, ’[[application myApplication]]’])

Interactive mode example usage

v Using Jython:

AdminTask.upgradeBindings(’-interactive’)

Chapter 5. Web services 627

WS-Policy commands for the AdminTask object

You can use the Jython or Jacl scripting languages to manage WS-Policy settings for Web service

resources with the wsadmin tool. You can view or manage how a service provider shares its policies, and

how a service client obtains and applies the policies of a service provider.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts

on multiple objects in one operation. The commands are provided to allow you to make the most

commonly-required types of update in a consistent manner, where modifying the underlying objects directly

would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

These commands are valid only when they are used with WebSphere Application Server Version 7 and

later application servers. Do not use them with earlier versions.

The commands to manage WS-Policy settings for Web service resources are part of the

PolicySetManagement command group for the AdminTask object.

For a list of the available policy set management administrative commands, plus a brief description of each

command, enter the following command at the wsadmin prompt:

print AdminTask.help(’PolicySetManagement’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using these commands, save your changes to the master configuration. For example, use the

following command:

AdminConfig.save()

The commands that are listed as subtopics are available to manage WS-Policy settings in the

PolicySetManagement group of the AdminTask object.

The following commands are available to manage WS-Policy settings in the PolicySetManagement group

of the AdminTask object:

v getProviderPolicySharingInfo command

v setProviderPolicySharingInfo command

v getClientDynamicPolicyControl command

v setClientDynamicPolicyControl command

getProviderPolicySharingInfo command

Use the getProviderPolicySharingInfo command to find out whether an application or service that is a Web

service provider can share its policy configuration, and list the properties that apply to sharing that

configuration.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

628 Administering WebSphere applications

For a list of the available policy set management administrative commands, plus a brief description of each

command, enter the following command at the wsadmin prompt:

print AdminTask.help(’PolicySetManagement’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the getProviderPolicySharingInfo command to find out how a Web services application, or a service in

a Web services application, shares its policy configuration with clients, service registries, or services that

support the WS-Policy specification. The policy configuration is shared in WS-PolicyAttachments format.

The command returns properties that show whether the policy configuration of the resource can be shared

with clients through a WS-MetadataExchange request or through Web Service Description Language

(WSDL) that is obtained by a ?WSDL HTTP Get request.

Target object

None.

Required parameters

-applicationName

The name of the application for which you want to find out how it shares its policy configuration. The

application must be a service provider. (String)

Optional parameters

-resource

The name of the resource for which you want to find out how it shares its policy configuration. If you

specify this parameter, only the properties for that resource are returned. To retrieve information for the

application, specify WebService:/. Alternatively, you can specify a service, endpoint or operation.

However, policy sets are attached only at the application or service level, so the properties returned for

an endpoint or operation are the settings that are inherited from the service. (String)

Return value

Returns a list of properties that include the resource name and that show whether the policy configuration

of the resource can be shared. The following properties can be returned:

wsMexPolicySetName

The name of the policy set that specifies message-level security when the resource shares its policy

configuration through a WS-MetadataExchange request. This property is returned if the value of the

sharePolicyMethods property is wsMex and a policy set to provide message-level security was

specified.

wsMexPolicySetBinding

The name of the binding that is applied when the resource shares its policy configuration through a

WS-MetadataExchange request. This property is returned if the value of the sharePolicyMethods

property is wsMex and a binding to provide message-level security was specified.

Chapter 5. Web services 629

resource

The resource that you specified.

directSetting

How the properties apply to the resource. Valid values for this property are:

true

The properties apply directly to the resource.

false

The properties are inherited from the parent application or service.

sharePolicyMethods

How the policy configuration of the resource can be shared. Valid values for this property are:

httpGet

The resource shares its policy configuration through an HTTP Get request.

wsMex

The resource shares its policy configuration through a WS-MetadataExchange request.

Example

The following command displays the policy sharing configuration properties for the EchoService service in

the WSSampleServices application. The provider is configured to share its policy through an HTTP Get

request, and a WS-MetadataExchange request with message-level security. Message-level security for the

WS-MetadataExchange request is provided using the SystemWSSecurityDefault policy set and the

“Provider sample” general binding.

AdminTask.getProviderPolicySharingInfo([’-applicationName’, ’WSSampleServices’,

’-resource’, ’WebService:/SampleServicesSei.war:{http://example_path/}EchoService’])

.

.

[[wsMexPolicySetName SystemWSSecurityDefault] [wsMexPolicySetBinding [Provider sample]]

[resource WebService:/SampleServicesSei.war:{http://example_path/}EchoService/]

[directSetting true] [sharePolicyMethods [httpGet wsMex]]]

setProviderPolicySharingInfo command

Use the setProviderPolicySharingInfo command to set how an application or service that is a Web service

provider can share its policy configuration with other clients, service registries, or services that support the

WS-Policy specification. You can set or remove this information about how a provider policy is shared.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each

command, enter the following command at the wsadmin prompt:

print AdminTask.help(’PolicySetManagement’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

630 Administering WebSphere applications

AdminConfig.save()

Purpose

Use the setProviderPolicySharingInfo command to set how an application, or a service in an application,

shares its policy configuration with clients, service registries, or services that support the WS-Policy

specification. The policy configuration is shared in WS-PolicyAttachments format.

The policy configuration of the resource can be shared with clients through a WS-MetadataExchange

request, through Web Service Description Language (WSDL) exported by a ?WSDL HTTP Get request, or

through both methods.

Target object

None.

Required parameters

-applicationName

The name of the application for which you want to set how the provider policy is shared. (String)

-resource

The name of the resource for which you want to set how the provider policy is shared. For all

resources in an application, specify WebService:/. For a service in an application, specify

WebService:/module:{namespace}service_name. Endpoints or operations inherit the settings of the

parent application or service. (String)

Optional parameters

-sharePolicyMethods

Specifies how the policy configuration of the resource can be shared. (String array)

 Enter either or both of the following values:

httpGet

The resource can share its policy configuration through WSDL that is obtained by a ?WSDL

HTTP Get request.

wsMex The resource can share its policy configuration through a WS-MetadataExchange request.

-wsMexProperties

Specifies that message-level security is required for WS-MetadataExchange requests and specifies the

settings that provide the message-level security. (Properties)

 Enter the following values, following each value with the setting that you require for that value:

wsMexPolicySetName

The name of the system policy set that specifies message-level security when the resource

shares its policy configuration through a WS-MetadataExchange request. Specify a system

policy set that contains only WS-Security policies, only WS-Addressing policies, or both. The

default policy set is SystemWSSecurityDefault.

wsMexPolicySetBinding

The name of the general binding for the policy set attachment when the resource shares its

policy configuration through a WS-MetadataExchange request. Specify a general binding that

is scoped to the global domain, or scoped to the security domain of this service. If you do not

specify this property, the default binding is used.

This parameter is valid only when you specify wsMex for the sharePolicyMethods parameter.

Chapter 5. Web services 631

-remove

Specifies whether the information about how the provider policy is shared is removed from the

resource. (Boolean)

 This parameter takes the following values:

true The information about how the provider policy is shared is removed from the resource.

false This value is the default. The information about how the provider policy is shared is not

removed from the resource.

Examples

The following example removes the information about how the provider policy is shared from the

WSSampleServices application:

AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices

-resource WebService:/ -remove true]’)

The following example enables policy sharing, using WSDL exported by a ?WSDL HTTP Get request, for the

EchoService service in the WSSampleServices application:

AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices

-resource WebService:/WSSampleServicesSei.war:{http://example_path/}EchoService

-sharePolicyMethods [httpGet]]’)

The following example enables policy sharing, using a WS-MetadataExchange request with message-level

security, for the WSSampleServices application. Message level security is provided using the MexPS

policy set and the “Client sample” general binding.

AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices

-resource WebService:/ -sharePolicyMethods [wsMex]

-wsMexProperties [[wsMexPolicySetName [SystemWSSecurityDefault]]

[wsMexPolicySetBinding [Provider sample]]]]’)

getClientDynamicPolicyControl command

Use the getClientDynamicPolicyControl command to find out whether an application that is a Web service

client obtains the policy configuration of a Web service provider, and to list the properties that apply to

obtaining that configuration.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each

command, enter the following command at the wsadmin prompt:

print AdminTask.help(’PolicySetManagement’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

632 Administering WebSphere applications

Purpose

Use the getClientDynamicPolicyControl command to find out how an application, or a service in an

application, obtains the policy configuration of a service provider. The client can obtain the policy

configuration of the provider through a Web Services Metadata Exchange (WS-MetadataExchange)

request or through an HTTP Get request.

Target object

None.

Required parameters

-applicationName

The name of the application for which you want to find out how it obtains the policy configuration of a

service provider. The application must be a service client. (String)

Optional parameters

-resource

The name of the resource for which you want to find out how it obtains the policy configuration of a

service provider. If you specify this parameter, only the properties for that resource are returned. To

retrieve information for the application, specify WebService:/. Alternatively, you can specify a service,

endpoint, or operation. However, policy sets are attached only at the application or service level, so

the properties returned for an endpoint or operation are the settings that are inherited from the service.

(String)

Return value

Returns a list of properties that include the resource name and that show how it obtains the policy

configuration of a service provider. The following properties can be returned:

httpGetTargetURI

The target URL of the HTTP Get request. This property is returned if the value of the

acquireProviderPolicyMethod property is httpGet.

wsMexPolicySetName

The name of the policy set that specifies message-level security when the resource shares its policy

configuration through a WS-MetadataExchange request. This property is returned if the value of the

acquireProviderPolicyMethod property is wsMex and a policy set to provide message-level security

was specified.

wsMexPolicySetBinding

The name of the binding that is used when the resource shares its policy configuration through a

WS-MetadataExchange request. This property is returned if the value of the

acquireProviderPolicyMethod property is wsMex and a binding to provide message-level security was

specified.

acquireProviderPolicyMethod

How the policy configuration of the provider can be obtained. Valid values for this property are:

wsMex

The resource can obtain the policy configuration of a service provider through a

WS-MetadataExchange request.

httpGet

The resource can obtain the policy configuration of a service provider through an HTTP Get

request.

Chapter 5. Web services 633

resource

The resource that you specified.

directSetting

How the properties apply to the resource. Valid values for this property are:

true

The properties apply directly to the resource.

false

The properties are inherited from the parent application or service.

Examples

The following example displays the properties that control how the EchoService service of the

WSPolicyClient application obtains the policy configuration of a service provider. The client is configured to

retrieve the provider policy through a WS-MetadataExchange request with message-level security, using

the SystemWSSecurityDefault policy set and the “Client sample” general binding.

AdminTask.getClientDynamicPolicyControl([’-applicationName’, ’WSPolicyClient’,

’-resource’, ’WebService:/WSPClient.war:{http://example_path/}EchoService’])

.

.

[[wsMexPolicySetName SystemWSSecurityDefault] [wsMexPolicySetBinding [Client sample]]

[acquireProviderPolicyMethod [wsMex]]

[resource WebService:/WSPClient.war:{http://example_path/}EchoService/]

[directSetting true]]

The following example displays the properties that control how the EchoService service of the

WSPolicyClient application obtains the policy configuration of a service provider when the client is

configured to retrieve the provider policy through an HTTP Get request.

AdminTask.getClientDynamicPolicyControl([’-applicationName’, ’WSPolicyClient’,

’-resource’, ’WebService:/WSPClient.war:{http://example_path/}EchoService’])

.

.

[[httpGetTargetURI http://example_path/EchoService?wsdl]

[acquireProviderPolicyMethod [httpGet]]

[resource WebService:/WSPClient.war:{http://example_path/}EchoService/]

[directSetting true]]

setClientDynamicPolicyControl command

Use the setClientDynamicPolicyControl command to set how an application that is a Web services client

obtains the policy configuration of a Web services provider. You can set, refresh, or remove this

information about how a provider policy is obtained.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each

command, enter the following command at the wsadmin prompt:

print AdminTask.help(’PolicySetManagement’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

634 Administering WebSphere applications

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the setClientDynamicPolicyControl command to set how a client obtains the policy configuration of a

service provider.

The client can obtain the policy configuration of the provider through a Web Services Metadata Exchange

(WS-MetadataExchange) request or through an HTTP Get request. The service provider must publish its

policy in WS-PolicyAttachment format in its Web Service Description Language (WSDL) and the client

must be able to support those provider policies.

At run time, the client uses the information to establish a policy configuration that is acceptable to both the

client and the service provider.

Target object

An application or service that is a Web services client.

Required parameters

-applicationName

The name of the application for which you want to obtain the policy configuration of the provider.

(String)

-resource

The name of the resource for which you want to obtain the policy configuration of the provider. For all

resources in an application, specify WebService:/. For a service in an application, specify

WebService:/module:{namespace}service_name. Endpoints or operations inherit the settings of the

parent application or service. (String)

Optional parameters

-acquireProviderPolicyMethod

Specifies how the policy configuration of the provider can be obtained. (String)

 Enter one of the following values:

httpGet

Obtain the policy configuration of the provider using an HTTP Get request. By default, the

HTTP Get request is targeted at the URL for each service endpoint followed by ?WSDL. If you

specify this value for a service, you can use the httpGetProperties parameter to change the

target of the request.

wsMex Obtain the policy configuration of the provider using a WS-MetadataExchange request.

-wsMexProperties

Specifies that message-level security is required for WS-MetadataExchange requests and specifies the

settings that provide the message-level security. (Properties)

 Enter the following values, following each value with the setting that you require for that value:

wsMexPolicySetName

The name of the system policy set that specifies message-level security when the policy

configuration of the provider is obtained through a WS-MetadataExchange request. Specify a

system policy set that contains only WS-Security policies, only WS-Addressing policies, or

both. The default policy set is SystemWSSecurityDefault.

Chapter 5. Web services 635

wsMexPolicySetBinding

The name of the general binding for the policy set attachment when the resource shares its

policy configuration through a WS-MetadataExchange request. Specify a general binding that

is scoped to the global domain, or scoped to the security domain of this service. If you do not

specify this property, the default binding is used.

This parameter is valid only when you specify wsMex for the acquireProviderPolicyMethod parameter.

-httpGetProperties

Specifies the target for an HTTP Get request for a service if you do not want to use the default.

(Properties)

 Enter the following value, followed by the setting that you require for that value:

httpGetTargetURI

The URL for the service endpoint followed by ?WSDL.

This parameter is valid only when you specify httpGet for the acquireProviderPolicyMethod

parameter and the resource is a service. Do not use this parameter if the resource is an application.

-remove

Specifies whether to remove the information about how the client obtains the policy configuration of

the provider. (Boolean)

 This parameter takes the following values:

true Information about how the client obtains the policy configuration of the provider is removed.

false This value is the default. Information about how the client obtains the policy configuration of

the provider is not removed.

Examples

The following example removes the information about how the client obtains the policy configuration of the

provider from the EchoService service of the WSPolicyClient client application.

AdminTask.setClientDynamicPolicyControl(’[-applicationName WSPolicyClient

-resource WebService:/WSPolicyClient.war:{http://example_path/}EchoService

-remove true]’)

The following example configures the EchoService service of the WSPolicyClient client application to

obtain the policy configuration of the provider using an HTTP Get request.

AdminTask.setClientDynamicPolicyControl(’[-applicationName WSPolicyClient

-resource WebService:/WSPolicyClient.war:{http://example_path/}EchoService

-acquireProviderPolicyMethod [httpGet]

-httpGetProperties [httpGetTargetURI http://example_path?WSDL]]’)

The following example configures the EchoService service of the WSPolicyClient client application to

obtain the the policy configuration of the provider through a WS-MetadataExchange request with

message-level security, using the SystemWSSecurityDefault policy set and the “Client sample” general

binding.

AdminTask.setClientDynamicPolicyControl(’[-applicationName WSPolicyClient

-resource WebService:/WSPolicyClient.war:{http://example_path/}EchoService

-acquireProviderPolicyMethod [wsMex]

-wsMexProperties [[wsMexPolicySetName [SystemWSSecurityDefault]]

[wsMexPolicySetBinding [Client sample]]]]’)

Configuring secure sessions between clients and services using the

wsadmin tool

Use the wsadmin tool, which supports the Jython and Jacl scripting language, to edit trust service

configurations. Use the STSManagement command group for the AdminTask object to specify details

related to secure sessions between clients and target services.

636 Administering WebSphere applications

About this task

The trust service uses the secure messaging mechanisms of the Web Services Trust (WS-Trust)

specification to define additional extensions for issuing, exchanging, and validating security tokens. Use

the STSManagement command group for the AdminTask object to configure the trust service using the

wsadmin tool. Complete any of the following tasks using the STSManagement commands:

v Manage token provider configurations.

Use the wsadmin tool to manage token providers. Customize token providers by defining properties

such as token type schema URI, handler factory, cache cushion time, class name, and token timeout.

You can also allow or restrict the use of post-dated tokens, distributed cache, and renewable tokens

after timeout.

v Query existing token provider configurations.

Use the wsadmin tool to query the existing trust service token provider configuration.

v Manage endpoint token assignments.

Use the wsadmin tool to assign, unassign, and modify endpoint token assignments.

v Refresh your configuration changes.

Use the wsadmin tool to force the trust service to reload the token provider configuration during run

time. Complete this action to use new configuration changes before you restart the application server.

What to do next

Use the information center topics for managing token providers using the STSManagement group of

commands and the AdminTask object.

Querying the trust service using scripting

Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to query the trust service

for existing configuration settings. Use the commands in this topic to view current trust service

configurations before adding, removing, or editing token provider and endpoint configurations.

About this task

Query your current token provider configurations or endpoint configurations using the STSManagement

group of commands. Use the following Jython syntax command examples when writing automation scripts

to retrieve configuration attributes and set the output to a variable. Pass the newly set variable to

administrative commands in the STSManagement group to automate the editing of token provider and

endpoint configurations.

v Use the following command examples to query the trust service for token provider configurations.

– Determine the local name of the default token provider and set it to the myDefaultTokenType

variable.

The following command sets the myDefaultTokenType variable to the local name string for the default

token provider:

myDefaultTokenType = AdminTask.querySTSDefaultTokenType()

print myDefaultTokenType

– List the local names of each configured token provider.

The following command sets the myTokenTypes variable to an array containing the local names of the

configured token providers:

myTokenTypes = AdminTask.listSTSConfiguredTokenTypes()

print myTokenTypes

– Display the non-custom properties for the default token provider.

The following command returns a java.util.Properties instance that contains the values for each

non-custom property for the default token provider stored in the myDefaultTokenType variable.

AdminTask.querySTSTokenTypeConfigurationDefaultProperties(myDefaultTokenType)

Chapter 5. Web services 637

To use this command to query a specific token provider, use the following Jython syntax:

AdminTask.querySTSTokenTypeConfigurationDefaultProperties(’"Security Context Token"’)

– Display a properties object containing all custom properties for a token provider configuration.

The following command returns a java.util.Properties instance that contains the values for each of

the custom properties for the token provider stored in the myDefaultTokenType variable.

AdminTask.querySTSTokenTypeConfigurationCustomProperties(myDefaultTokenType)

To use this command to query a specific token provider, use the following Jython syntax:

AdminTask.querySTSTokenTypeConfigurationCustomProperties(’"Security Context Token"’)

v Use the following command examples to query endpoint target configurations and security constraints

for endpoint targets.

– Display each uniform resource identifier (URI) for each assigned endpoint.

The following command sets the allMyURIs variable to an array containing the URIs for each

assigned endpoint:

allMyURIs = AdminTask.listSTSAssignedEndpoints()

print allMyURIs

– Display the token provider that is assigned to a specific endpoint URI.

The following command sets the myTokenType variable to the name of the token provider that is

assigned to the http://myserver.mysom.com:9080/Example endpoint URI:

myTokenType = AdminTask.querySTSEndpointTokenType(’http://myserver.mysom.com:9080/Example’)

print myTokenType

What to do next

Use the wsadmin tool to manage and edit token provider and endpoint configurations.

Related tasks

“Configuring secure sessions between clients and services using the wsadmin tool” on page 636
Use the wsadmin tool, which supports the Jython and Jacl scripting language, to edit trust service

configurations. Use the STSManagement command group for the AdminTask object to specify details

related to secure sessions between clients and target services.

“Managing existing token providers with scripting”
You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

trust service. Use this topic to modify token provider configuration data, and to add custom properties.

“Associating token providers with endpoint services (targets) using scripting” on page 643
You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

association of endpoints and tokens. Use this topic to query, assign, and unassign the association of a

token provider with an endpoint Uniform Resource Identifier (URI).

Related reference

“STSManagement command group for the AdminTask object” on page 645
You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the STSManagement group can be used to manage and query trust service

token provider configurations and endpoint configurations.

Related information

Trust service targets collection
Use this page to view a list of targets, which are application server service endpoints. You can manage

tokens by specifying which token is to be issued when access to a specific endpoint is requested.

Trust service token providers collection
Use this page to view information about or manage token providers for the trust service.

Managing existing token providers with scripting

You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

trust service. Use this topic to modify token provider configuration data, and to add custom properties.

638 Administering WebSphere applications

Before you begin

You must have an existing token provider configured in the trust service.

About this task

Use the commands in the STSManagement group of the AdminTask object to modify existing configuration

data. This topics includes examples for modifying existing non-custom configuration data.

Modify existing configuration data.

Use the updateSTSTokenTypeConfiguration command to update existing properties for a specific token

provider configuration. If you specify the -distributedCache parameter, the security context token provider

generates a warning and modifies the WS-Security distributed cache configuration. Do not specify a value

for the -distributedCache parameter for custom tokens.

1. Determine the token provider configuration to edit.

Enter the following command to view the list of names of the configured token providers:

AdminTask.listSTSConfiguredTokenTypes()

2. Review the current configuration data for the token provider configuration to edit.

Enter the following command to view a Properties object containing all non-custom configuration data

for the Security Context Token token provider:

AdminTask.querySTSTokenTypeConfigurationDefaultProperties(’Security Context Token’)

3. Update the token provider configuration with new configuration data.

Determine which parameters to update in your configuration, using the following table as a reference:

 Parameter Data type

LocalName

Specifies the unique token provider name as the target object of the command.

String, required

-HandlerFactory

Specifies the configuration class name, including package information.

String, required

-URI

Specifies the unique token type schema URI.

String, required

-lifetimeMinutes

Specifies the amount of time, in minutes, that the token is valid.

Integer, optional

Default: 120 (minutes)

Minimum: 10 (minutes)

-renewalWindowMinutes

Specifies the amount of time after the token expires during which the token can be

renewed.

Integer, optional

Default: 120 (minutes)

Minimum: 10 (minutes)

-postdatable

Set to true to specify that tokens of the token provider are valid at a later time. Tokens

can be created with or without a future start time.

Boolean, optional

Default: false

-distributedCache (deprecated)

Set to true to enable distributed cache. If you specify the -distributedCache parameter,

the security context token provider generates a warning and modifies the WS-Security

distributed cache configuration. Do not specify a value for the -distributedCache

parameter for custom tokens.

Boolean, optional

Default: false

-renewableAfterExpiration

Set to true to specify that tokens of the token provider are renewable after expiration.

Boolean, optional

Default: false

Chapter 5. Web services 639

Parameter Data type

-tokenCacheFactory (deprecated)

Specifies the fully qualified class name for the token provider. The secure conversation

token handler class does not recognize this parameter.

String, optional

Default:

com.ibm.ws.wssecurity.platform.websphere.trust

.server.sts.ext.cache.STSTokenCacheFactoryImpl

Use the updateSTSTokenTypeConfiguration command to update the configuration data for the

Security Context Token token provider. The following example changes the time that the token is valid

from 60 minutes to 100 minutes, disables token renewal after expiration, and enables distributed

caching:

AdminTask.updateSTSTokenTypeConfiguration(’Security Context Token’, ’[-lifetimeMinutes 100 -renewableAfterExpiration false -distributedCache true]’)

The command returns a message indicating the success or failure of the operation.

4. Save your configuration changes.

Use the following command to save your changes:

AdminConfig.save()

5. Reload the modified configuration changes.

Use the following command to force the trust service to reload your modified configuration without

restarting the application server:

AdminTask.refreshSTS()

Related tasks

“Configuring secure sessions between clients and services using the wsadmin tool” on page 636
Use the wsadmin tool, which supports the Jython and Jacl scripting language, to edit trust service

configurations. Use the STSManagement command group for the AdminTask object to specify details

related to secure sessions between clients and target services.

“Querying the trust service using scripting” on page 637
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to query the trust service

for existing configuration settings. Use the commands in this topic to view current trust service

configurations before adding, removing, or editing token provider and endpoint configurations.

“Adding and removing token provider custom properties using scripting”
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to administer the trust

service. Use this topic to set internal system configuration properties for your token provider configuration

by adding or removing custom properties.

“Associating token providers with endpoint services (targets) using scripting” on page 643
You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

association of endpoints and tokens. Use this topic to query, assign, and unassign the association of a

token provider with an endpoint Uniform Resource Identifier (URI).

Related reference

Trust service token provider settings

Use this page to modify information for an existing token provider.

“STSManagement command group for the AdminTask object” on page 645
You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the STSManagement group can be used to manage and query trust service

token provider configurations and endpoint configurations.

Adding and removing token provider custom properties using

scripting

Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to administer the trust

service. Use this topic to set internal system configuration properties for your token provider configuration

by adding or removing custom properties.

640 Administering WebSphere applications

Before you begin

You must have an existing token provider configured for the trust service.

About this task

Use custom properties to set internal system configuration properties and specify these properties using

the customProperties parameter. Custom properties are arbitrary name and value pairs of data, where the

name can be a property key or a class implementation, and where the value might be a string or Boolean

value. Use this topic and the commands in the STSManagement group for the AdminTask object to add or

remove custom properties from your configuration with the Jython scripting language.

v Add new custom properties to a specific token provider configuration.

Use the updateSTSTokenTypeConfiguration command to add or update custom properties to your

token provider configuration. Do not use the updateSTSTokenTypeConfiguration command to remove

custom properties. If you specify the -distributedCache parameter, the security context token provider

generates a warning and modifies the WS-Security distributed cache configuration. Do not specify a

value for the -distributedCache parameter for custom tokens.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the token provider configuration to edit.

Enter the following command to view a list of the names for each configured token provider:

AdminTask.listSTSConfiguredTokenTypes()

3. Review the configured custom properties for the token provider of interest.

Enter the following command to view a properties object containing custom configuration data for

the Security Context Token token provider:

AdminTask.querySTSTokenTypeConfigurationCustomProperties(’Security Context Token’)

4. Add custom properties to the token provider configuration.

Use the updateSTSTokenTypeConfiguration command to add the configuration data for the

Security Context Token token provider. Use the following example to add the

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound custom property with a value of false

and the com.ibm.ws.security.defaultLoginConfig custom property with a value of system.DEFAULT

to the configuration:

AdminTask.updateSTSTokenTypeConfiguration(’Security Context Token’, ’[-customProperties

[[com.ibm.ws.security.webChallengeIfCustomSubjectNotFound false]

[com.ibm.ws.security.defaultLoginConfig system.DEFAULT]]]’)

The command returns a message indicating the success or failure of the operation.

5. Save your configuration changes.

Use the following command to save your changes:

AdminConfig.save()

6. Reload the modified configuration changes.

Use the following command to force the trust service to reload your modified configuration without

restarting the application server.

AdminTask.refreshSTS()

v Edit custom properties for a specific token provider configuration.

1. View configured custom properties for the token provider of interest.

Enter the following command to view a properties object containing custom configuration data for

the Security Context Token token provider:

AdminTask.querySTSTokenTypeConfigurationCustomProperties(’Security Context Token’)

2. Modify the configuration data for the token provider of interest.

Use the updateSTSTokenTypeConfiguration command to modify the existing configuration data

for the Security Context Token token provider. This example specifies that the Security Context

Chapter 5. Web services 641

Token token provider configuration includes the

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound custom property with a value of false

and the com.ibm.ws.security.defaultLoginConfig custom property with a value of system.DEFAULT.

Use the following command to change the value of the com.ibm.ws.security.defaultLoginConfig

custom property from system.DEFAULT to system.CUSTOM, and does not change any other configured

custom properties:

AdminTask.updateSTSTokenTypeConfiguration(’Security Context Token’, ’[-customProperties

[[com.ibm.ws.security.defaultLoginConfig system.CUSTOM]]]’)

The command returns a message indicating the success or failure of the operation.

3. Save your configuration changes.

Use the following command to save your changes:

AdminConfig.save()

4. Reload the modified configuration changes.

Use the following command to force the trust service to reload your modified configuration without

restarting the application server:

AdminTask.refreshSTS()

v Remove custom properties from token provider configurations.

1. View configured custom properties for the token provider of interest.

Enter the following command to view a properties object containing custom configuration data for

the Security Context Token token provider:

AdminTask.querySTSTokenTypeConfigurationCustomProperties(’Security Context Token’)

2. Delete the custom property from the token provider configuration.

Use the deleteSTSTokenTypeConfigurationCustomProperties command to delete custom

properties from your configuration. Specify the names of the custom properties to remove using the

propertyNames parameter. If the specified name does not exist in the configuration, no configuration

changes are made. The following command removes the

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound and

com.ibm.ws.security.defaultLoginConfig custom properties from the Security Context Token token

provider configuration:

AdminTask.deleteSTSTokenTypeConfigurationCustomProperties(’Security Context Token’,

’[-propertyNames com.ibm.ws.security.webChallengeIfCustomSubjectNotFound

com.ibm.ws.security.defaultLoginConfig]’)

The command returns a message indicating the success or failure of the operation.

3. Save your configuration changes.

Use the following command to save your changes:

AdminConfig.save()

4. Reload the modified configuration changes.

Use the following command to force the trust service to reload your modified configuration without

restarting the service:

AdminTask.refreshSTS()

642 Administering WebSphere applications

Related tasks

“Configuring secure sessions between clients and services using the wsadmin tool” on page 636
Use the wsadmin tool, which supports the Jython and Jacl scripting language, to edit trust service

configurations. Use the STSManagement command group for the AdminTask object to specify details

related to secure sessions between clients and target services.

“Querying the trust service using scripting” on page 637
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to query the trust service

for existing configuration settings. Use the commands in this topic to view current trust service

configurations before adding, removing, or editing token provider and endpoint configurations.

“Managing existing token providers with scripting” on page 638
You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

trust service. Use this topic to modify token provider configuration data, and to add custom properties.

“Associating token providers with endpoint services (targets) using scripting”
You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

association of endpoints and tokens. Use this topic to query, assign, and unassign the association of a

token provider with an endpoint Uniform Resource Identifier (URI).

Related reference

Trust service token custom properties
WebSphere Application Server trust service provides several custom properties by default to define the

default security context token (SCT).

Trust service token provider settings

Use this page to modify information for an existing token provider.

“STSManagement command group for the AdminTask object” on page 645
You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the STSManagement group can be used to manage and query trust service

token provider configurations and endpoint configurations.

Associating token providers with endpoint services (targets) using

scripting

You can use the wsadmin tool, which supports the Jython and Jacl scripting languages, to manage the

association of endpoints and tokens. Use this topic to query, assign, and unassign the association of a

token provider with an endpoint Uniform Resource Identifier (URI).

Before you begin

Before you can assign and manage endpoint configurations, at least one token provider configuration and

a Web service must exist.

About this task

Use the STSManagement group of commands to specify a custom service endpoint Uniform Resource

Identifier (URI) and to assign and unassign the association of trust service token providers with endpoint

configurations. Complete the steps in this topic to query the trust service for the existing endpoint

configuration, associate the default token with an endpoint, and unassociate a token from an endpoint. You

can perform these steps in any order.

v Associate a token with a specific endpoint.

1. View a list of all endpoint URIs that are currently associated with a token provider.

Before invoking changes on your endpoint configurations, use the following

listSTSAssignedEndpoints command to examine your current settings:

AdminTask.listSTSAssignedEndpoints()

Chapter 5. Web services 643

If the endpoint of interest is currently associated with a token, do not use the

assignSTSEndpointTokenType command. To update the token that is associated with the endpoint,

use the updateSTSEndpointTokenType command in the next step.

2. Associate a token with an endpoint.

Use the assignSTSEndpointTokenType command to specify the token to issue for access to a

specific endpoint. You do not need to specify the name of the token provider to assign if the token

provider is set as the default configuration. For example, the following command assigns the

Security Context Token default token to the http://www.mycompany.com:8080/Ecommerce/Catalog

endpoint URI:

AdminTask.assignSTSEndpointTokenType(’http://www.mycompany.com:8080/Ecommerce/Catalog’)

If Security Context Token is not the default token provider, use the following command:

AdminTask.assignSTSEndpointTokenType(’http://www.mycompany.com:8080/Ecommerce/Catalog’,

’-LocalName Security Context Token’)

The command returns a message indicating the success of the operation.

3. Save your configuration changes.

Use the following command to save your changes:

AdminConfig.save()

4. Reload the modified configuration changes.

Use the following command to force the trust service to reload your modified configuration without

restarting the application server:

AdminTask.refreshSTS()

v Disassociate a token from an endpoint.

1. Examine the current endpoint configuration.

Use the listSTSAssignedEndpoints to view a list of each endpoint URI with assigned token

providers, as the following example describes:

AdminTask.listSTSAssignedEndpoints()

The following sample output is displayed:

’http://www.mycompany.com:8080/Ecommerce/Catalog’

2. Choose the endpoint to edit.

Use the querySTSEndpointTokenType to return the token provider associated with the endpoint of

interest. Enter the following command to view the token provider associated with the

http://www.mycompany.com:8080/Ecommerce/Catalog endpoint URI:

AdminTask.querySTSEndpointTokenType(’http://www.mycompany.com:8080/Ecommerce/Catalog’)

The following sample output is displayed:

’Security Context Token’

3. Disassociate the token type from the endpoint.

Use the unassignSTSEndpointTokenType command to disassociate the token provider and

endpoint configuration. The following command removes the Security Context Token token provider

that is associated with the http://www.mycompany.com:8080/Ecommerce/Catalog endpoint URI:

AdminTask.unassignSTSEndpointTokenType(’http://www.mycompany.com:8080/Ecommerce/Catalog’,

’-LocalName Security Context Token’)

The command returns a message indicating the success of the operation.

4. Save your configuration changes.

Use the following command to save your changes:

AdminConfig.save()

5. Reload the modified configuration changes.

644 Administering WebSphere applications

Use the following command to force the trust service to reload your modified configuration without

restarting the service:

AdminTask.refreshSTS()

STSManagement command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the STSManagement group can be used to manage and query trust service

token provider configurations and endpoint configurations.

The STSManagement command group contains commands that allow you to configure existing token

providers, assign token providers to endpoints, and modify general trust service configuration data. The

commands in this group that perform configuration changes require that you execute the save command to

commit the changes. No configuration changes are made if an exception is created when executing a

command.

Use the following commands to modify and query token provider configurations:

v “createSTSTokenTypeConfiguration ”

v “deleteSTSTokenTypeConfigurationCustomProperties ” on page 646

v “listSTSConfiguredTokenTypes ” on page 647

v “querySTSDefaultTokenType ” on page 647

v “querySTSTokenTypeConfigurationDefaultProperties ” on page 648

v “querySTSTokenTypeConfigurationCustomProperties ” on page 649

v “setSTSDefaultTokenType ” on page 649

v “updateSTSTokenTypeConfiguration ” on page 650

v “removeSTSTokenTypeConfiguration” on page 651

Use the following commands to assign, unassign, and query endpoint configurations:

v “assignSTSEndpointTokenType ” on page 651

v “listSTSAssignedEndpoints ” on page 652

v “listSTSEndpointTokenTypes ” on page 653

v “unassignSTSEndpointTokenType ” on page 653

v “updateSTSEndpointTokenType ” on page 654

Use the following commands to add, edit, delete, and list properties of the trust service:

v “addSTSProperty” on page 654

v “deleteSTSProperty” on page 655

v “editSTSProperty” on page 655

v “listSTSProperties” on page 656

Use the following command to force the trust service to reload your modified configuration without

restarting the application server:

v “refreshSTS ” on page 657

createSTSTokenTypeConfiguration

The createSTSTokenTypeConfiguration command is used to create a token provider configuration.

Target object

Specify the LocalName object, which is used as an identifier for the various configurations. The value for

the LocalName object must be unique.

Chapter 5. Web services 645

Required parameters

-URI

The URI of the token provider. This value must be unique across all configuration token type URIs.

(String, required)

-HandlerFactory

Provide the fully qualified class name of an implementation of the

org.eclipse.higgins.sts.IObjectFactory interface. (String, required)

Optional parameters

-lifetimeMinutes

Specifies the maximum lifetime to assign to an issued token provider. The default value is 120

minutes. (Integer, optional)

-distributedCache

Specifies whether to enable or disable distributed cache. Specify true to enable distributed cache

capability. The default value is false. If you specify this option, the security context token provider

generates a warning and modifies the WS-Security distributed cache configuration. Do not specify a

value for this parameter for custom tokens. (Boolean, optional)

-tokenCacheFactory

Specifies the fully qualified class name for the token provider. The secure conversation token handler

class does not recognize this parameter. (String, optional).

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.createSTSTokenTypeConfiguration(’myTokenType’, ’[-HandlerFactory

 test.ibm.samples.myTokenType -URI http://ibm.com/tokens/schema/myTokenType]’)

v Using Jython list:

AdminTask.createSTSTokenTypeConfiguration(’myTokenType’, [’-HandlerFactory’,

 ’test.ibm.samples.myTokenType’, ’-URI’, ’http://ibm.com/tokens/schema/myTokenType’])

Interactive mode example usage

v Using Jython:

AdminTask.createSTSTokenTypeConfiguration(’-interactive’)

deleteSTSTokenTypeConfigurationCustomProperties

The deleteSTSTokenTypeConfigurationCustomProperties command is used to remove custom properties

from a token provider configuration.

Target object

Specify the LocalName object of the token provider of interest.

Required parameters

None

Optional parameters

646 Administering WebSphere applications

-propertyNames

Specify the names of the custom properties to delete from the configuration. If any of the specified

properties do not exist in your configuration, you will receive an error message. (String[], optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.deleteSTSTokenTypeConfigurationCustomProperties(’myTokenType’, ’[-propertyNames

 com.ibm.ws.security.webChallengeIfCustomSubjectNotFound com.ibm.ws.security.defaultLoginConfig]’)

v Using Jython list:

AdminTask.deleteSTSTokenTypeConfigurationCustomProperties(’myTokenType’, [’-propertyNames’,

 ’com.ibm.ws.security.webChallengeIfCustomSubjectNotFound com.ibm.ws.security.defaultLoginConfig’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteSTSTokenTypeConfigurationCustomProperties(’-interactive’)

listSTSConfiguredTokenTypes

The listSTSConfiguredTokenTypes command is used to list the local names of all configured token

providers.

Target object

None

Required parameters

None

Optional parameters

None

Return value

The command returns the local names of all configured token providers.

Batch mode example usage

v Using Jython:

AdminTask.listSTSConfiguredTokenTypes()

Interactive mode example usage

v Using Jython:

AdminTasklistSTSConfiguredTokenTypes(’-interactive’)

querySTSDefaultTokenType

The querySTSDefaultTokenType command is used to determine the local name of the default token

provider.

Target object

Chapter 5. Web services 647

None

Required parameters

None

Optional parameters

None

Return value

The command returns the local name of the default token provider.

Batch mode example usage

v Using Jython:

AdminTask.querySTSDefaultTokenType()

Interactive mode example usage

v Using Jython:

AdminTask.querySTSDefaultTokenType(’-interactive’)

querySTSTokenTypeConfigurationDefaultProperties

The querySTSTokenTypeConfigurationDefaultProperties command is used to query the trust service for the

non-custom properties of a token provider.

Target object

Specify the LocalName object of the token provider to query.

Required parameters

None

Optional parameters

None

Return value

The command returns a java.util.Properties instance which contains the values of the non-custom

properties. Non-custom properties include URI, HandlerFactory, lifetimeMinutes, distributedCache,

postdatable, renewableAfterExpiration, and renewalWindowMinutes.

Batch mode example usage

v Using Jython:

AdminTask.querySTSTokenTypeConfigurationDefaultProperties(’TokenType2’)

Interactive mode example usage

v Using Jython:

AdminTask.querySTSTokenTypeConfigurationDefaultProperties(’-interactive’)

648 Administering WebSphere applications

querySTSTokenTypeConfigurationCustomProperties

The querySTSTokenTypeConfigurationCustomProperties command is used to query the trust service.

Target object

Specify the LocalName object of the token provider of interest.

Required parameters

None

Optional parameters

None

Return value

The command returns a java.util.Properties instance containing the values of the custom properties.

Batch mode example usage

v Using Jython:

AdminTask.querySTSTokenTypeConfigurationCustomProperties(’TokenType2’)

Interactive mode example usage

v Using Jython:

AdminTask.querySTSTokenTypeConfigurationCustomProperties(’-interactive’)

setSTSDefaultTokenType

The setSTSDefaultTokenType command is used to set the default token provider for the trust service.

Target object

Specify the LocalName object of the token provider as default.

Required parameters

None

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython:

AdminTask.setSTSDefaultTokenType(’TokenType2’)

Interactive mode example usage

v Using Jython:

AdminTask.setSTSDefaultTokenType(’-interactive’)

Chapter 5. Web services 649

updateSTSTokenTypeConfiguration

The updateSTSTokenTypeConfiguration command is used to update configuration data for a token

provider. All parameters are optional. The parameters that are specified are updated in the configuration if

the property already exists. If the property does not exist, it is added to the configuration. To remove

custom properties, use the deleteSTSTokenTypeConfigurationCustomProperties command.

Target object

Specify the LocalName object of the token provider of interest.

Required parameters

None

Optional parameters

-URI

The URI of the token provider. This value must be unique across all configuration token type URIs.

(String, optional)

-HandlerFactory

Provide the fully qualified class name of an implementation of the

org.eclipse.higgins.sts.utilities.IObjectFactory interface. (String, optional)

-lifetimeMinutes

The maximum lifetime to assign to an issued token provider. The default value is 120 minutes.

(Integer, optional)

-distributedCache

Specifies whether to enable or disable distributed cache. Specify true to enable distributed cache

capability. The default value is false. If you specify this option, the security context token provider

generates a warning and modifies the WS-Security distributed cache configuration. Do not specify a

value for this parameter for custom tokens. (Boolean, optional)

-postdatable

Set the value of this parameter to true to allow tokens of this token provider to be valid starting at a

future time. The default value is false. (Boolean, optional)

-renewableAfterExpiration

Set the value of this parameter to true to allow tokens of this token provider to be renewable after

expiration. The default value is false. (Boolean, optional)

-renewableWindowMinutes

Provide the number of minutes after a token has expired that a token of this token provider can be

renewed. If this specified time has elapsed after expiration, then the token will no longer be available

for renewal. The default value is 120 minutes. (Integer, optional)

-tokenCacheFactory

Specifies the fully qualified class name for the token provider. The secure conversation token handler

class does not recognize this parameter. (String, optional).

-customProperties

Provide any additional custom properties. (java.util.Properties, optional).

Return value

The command returns a success or failure message.

Batch mode example usage

650 Administering WebSphere applications

v Using Jython string:

AdminTask.updateSTSTokenTypeConfiguration(’myTokenType’, ’[-lifetimeMinutes 100

 -renewableAfterExpiration false -distributedCache true]’)

v Using Jython list:

AdminTask.updateSTSTokenTypeConfiguration(’myTokenType’, [’-lifetimeMinutes’, ’100’, ’

 -renewableAfterExpiration’, ’false’, ’-distributedCache’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.updateSTSTokenTypeConfiguration(’-interactive’)

removeSTSTokenTypeConfiguration

The removeSTSTokenTypeConfiguration command removes a token provider configuration.

Target object

Specify the LocalName object of the token provider of interest.

Required parameters

None

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython:

AdminTask.removeSTSTokenTypeConfiguration(’myTokenType’)

Interactive mode example usage

v Using Jython:

AdminTask.removeSTSTokenTypeConfiguration (’-interactive’)

assignSTSEndpointTokenType

The assignSTSEndpointTokenType command is used to give a token provider when a specific endpoint is

accessed.

Target object

Specify the endpointURI object of the endpoint to assign a given token provider. If the specified endpoint

has already been assigned a token provider, you will receive an error message.

Required parameters

None

Optional parameters

Chapter 5. Web services 651

-LocalName

Specify the local name of the token provider to assign to the specified endpoint. If the token provider

configuration does not exist, you will receive an error message. If this parameter is not specified, the

default token provider is used. (String, optional)

-issuer

Specify the URI of the issuer that specifies the token provider to issue. This value can be null. (String,

optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.assignSTSEndpointTokenType(’www.ibm.tokenservice/Ecommerce/’, ’[-LocalName

 tokenType1]’)

v Using Jython list:

AdminTask.assignSTSEndpointTokenType(’www.ibm.tokenservice/Ecommerce/’, [’-LocalName’,

 ’tokenType1’])

Interactive mode example usage

v Using Jython:

AdminTask.assignSTSEndpointTokenType (’-interactive’)

listSTSAssignedEndpoints

The listSTSAssignedEndpoints command is used to list the URIs of assigned endpoints.

Target object

None

Required parameters

None

Optional parameters

None

Return value

The command returns the URIs of all assigned endpoints.

Batch mode example usage

v Using Jython:

AdminTask.listSTSAssignedEndpoints()

Interactive mode example usage

v Using Jython:

AdminTask.listSTSAssignedEndpoints (’-interactive’)

652 Administering WebSphere applications

listSTSEndpointTokenTypes

The listSTSEndpointTokenTypes command is used to query the Trust Service for the token provider

assigned to a specific endpoint.

Target object

Specify the endpointURI object of the endpoint to query. An exception is raised if the specified endpoint

has not been assigned a token provider.

Required parameters

None

Optional parameters

None

Return value

The command returns the local name of the token provider assigned to the specified endpoint.

Batch mode example usage

v Using Jython:

AdminTask.listSTSEndpointTokenTypes()

Interactive mode example usage

v Using Jython:

AdminTask.listSTSEndpointTokenTypes (’-interactive’)

unassignSTSEndpointTokenType

The unassignSTSEndpointTokenType command is used to unassign an endpoint from its token provider.

Target object

Specify the endpointURI object of the endpoint to unassign from a given token provider. An exception is

raised if the specified endpoint has not been assigned a token provider.

Required parameters

-LocalName

Specify the local name of the token provider configuration to unassign from the specified endpoint.

(String, required)

Optional parameters

-issuer

Specify the URI of the issuer in the token provider assignment to remove. (String, optional)

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

Chapter 5. Web services 653

AdminTask.unassignSTSEndpointTokenType(’www.ibm.tokenservice/Ecommerce/’,’[-LocalName

 tokenType2]’)

v Using Jython list:

AdminTask.unassignSTSEndpointTokenType(’www.ibm.tokenservice/Ecommerce/’, [’-LocalName’,

 ’tokenType2’])

Interactive mode example usage

v Using Jython:

AdminTask.unassignSTSEndpointTokenType (’-interactive’)

updateSTSEndpointTokenType

The updateSTSEndpointTokenType command is used to assign a different token provider to a specified

endpoint.

Target object

Specify the endpointURI object of the endpoint to update. An exception is raised if the specified endpoint

has not been assigned a token provider.

Required parameters

-LocalName

Specify the local name of the token provider to assign to the specified endpoint. If the token provider

configuration does not exist, you will receive an error message. If this parameter is not specified, the

default token provider is used. (String, optional)

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.updateSTSEndpointTokenType(’www.ibm.tokenservice/Ecommerce/’, ’[-LocalName

 tokenType2]’)

v Using Jython list:

AdminTask.updateSTSEndpointTokenType(’www.ibm.tokenservice/Ecommerce/’, [’-LocalName’,

 ’tokenType2’])

Interactive mode example usage

v Using Jython:

AdminTask.updateSTSEndpointTokenType(’-interactive’)

addSTSProperty

The addSTSProperty command adds a new property for the trust service.

Target object

Specify a unique name for the new property (string, required).

Required parameters

654 Administering WebSphere applications

-propertyValue

Specifies the value of the property to add. (String, required)

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.addSTSProperty(’pluginSCTVersion’, ’[-propertyValue 2.0]’)

v Using Jython list:

AdminTask.addSTSProperty(’pluginSCTVersion’, [’-propertyValue’, ’2.0’])

Interactive mode example usage

v Using Jython:

AdminTask.addSTSProperty(’-interactive’)

deleteSTSProperty

The deleteSTSProperty command deletes an existing property from the trust service.

Target object

Specify the name of the property to delete.

Required parameters

None

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython:

AdminTask.deleteSTSProperty(’pluginSCTVersion’)

Interactive mode example usage

v Using Jython:

AdminTask.deleteSTSProperty(’-interactive’)

editSTSProperty

The editSTSProperty command modifies an existing property for the trust service.

Target object

Chapter 5. Web services 655

Specify the name of the property to edit. (String, required)

Required parameters

-propertyValue

Specifies the new value for the property of interest. (String, required)

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython string:

AdminTask.editSTSProperty(’pluginSCTVersion’, ’[-propertyValue 2.1]’)

v Using Jython list:

AdminTask.editSTSProperty(’pluginSCTVersion’, [’-propertyValue’, ’2.1’])

Interactive mode example usage

v Using Jython:

AdminTask.editSTSProperty(’-interactive’)

listSTSProperties

The listSTSProperties command lists all existing properties and their corresponding values for the trust

service.

Target object

None

Required parameters

None

Optional parameters

None

Return value

The command returns a java.util.Properties instance that contains the names and values of the properties.

Batch mode example usage

v Using Jython:

AdminTask.listSTSProperties()

Interactive mode example usage

v Using Jython:

AdminTask.listSTSProperties(’-interactive’)

656 Administering WebSphere applications

refreshSTS

The refreshSTS command refreshes your trust service configuration changes without restarting the

application server.

Target object

None

Required parameters

None

Optional parameters

None

Return value

The command returns a success or failure message.

Batch mode example usage

v Using Jython:

AdminTask.refreshSTS()

Adding assured delivery to Web services through

WS-ReliableMessaging

WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between

two endpoints. With WS-ReliableMessaging, you can make your SOAP over HTTP-based Web services

reliable without having to write custom code. You can get different qualities of service with

WS-ReliableMessaging. These range from protecting against loss of messages across a network, through

to protecting against a server becoming unavailable.

About this task

With WebSphere Application Server, you can use WS-ReliableMessaging with Java API for XML-Based

Web Services (JAX-WS) 2.1 Web services applications that use a SOAP over HTTP binding. To configure

a Web service application to use WS-ReliableMessaging, you attach a policy set that contains a

WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent.

Note:

Support for the WS-ReliableMessaging standard was first introduced as part of the IBM WebSphere

Application Server Version 6.1 Feature Pack for Web Services. At that time, the Reliable

Asynchronous Messaging Profile (RAMP) Version 1.0 specification used WS-ReliableMessaging to

ensure the reliable delivery of messages, and the Feature Pack for Web Services in WebSphere

Application Server Version 6.1 included default policy sets that support this specification. You can

migrate WebSphere Application Server Version 6.1 WS-ReliableMessaging configurations that use

RAMP-based policy sets to the current version of the product.

Following on from the RAMP Version 1.0 specification, the Web Services Interoperability

organization (WS-I) Reliable Secure Profile working group has developed Version 1.0 of an

interoperability profile dealing with secure, reliable messaging capabilities for Web services. This

Chapter 5. Web services 657

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

profile is similar to RAMP Version 1.0, except that it is updated to use WS-ReliableMessaging

Version 1.1 with the OASIS WS-SecureConversation Version 1.3 specification. The WS-I RSP

default policy sets provided in this version of WebSphere Application Server are an implementation

of the Reliable Secure Profile Version 1.0 specification.

If you create JAX-WS based WS-Notification services, you can apply WS-ReliableMessaging

policies to them to make your WS-Notification services reliable. For more information, see

Configuring WS-Notification for reliable notification.

The WS-Policy implementation in WebSphere Application Server supports Web Services Reliable

Messaging Policy Assertion Version 1.0 and Web Services Reliable Messaging Policy Assertion

Version 1.1. For more information, see “WS-Policy” on page 668.

To enable WS-ReliableMessaging for an application, you take the following broad actions:

1. Develop a Java API for XML-Based Web Services (JAX-WS) Web service provider or requester

application.

2. Install the application into WebSphere Application Server.

3. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an

aspect of your application (that is, application level or Web service level). Policy sets define the

reliability level (quality of service) and other configuration options that you want to apply to your reliable

messaging application.

4. Define the bindings for each attachment to a policy set that specifies a managed quality of service.

That is, choose the service integration bus and messaging engine to use to maintain the state for the

managed persistent and managed non-persistent qualities of service.

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

For more information about using WS-ReliableMessaging, see the following topics:

v Learn about WS-ReliableMessaging.

v Configure endpoints to only support clients that use WS-ReliableMessaging.

v Build a reliable Web service application.

v Configure a WS-ReliableMessaging policy set.

v Attach and bind a WS-ReliableMessaging policy set to a Web service application.

v Detect and fix problems with WS-ReliableMessaging.

Learning about WS-ReliableMessaging

WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between

two endpoints. Use these topics to learn more about WS-ReliableMessaging.

About this task

Without WS-ReliableMessaging, your Web services that require assured delivery of SOAP messages can

either use a vendor-specific binding such as SOAP over JMS (which provides limited interoperability) or

they can use SOAP over HTTP and rely upon you to write the associated durable message stores, custom

retry logic at the sender, and duplicate detection at the receiver. With WS-ReliableMessaging, you can

make your SOAP over HTTP-based Web services reliable without having to write custom code.

To enable WS-ReliableMessaging for an application, you take the following broad actions:

1. Develop a Java API for XML-Based Web Services (JAX-WS) Web service provider or requester

application.

658 Administering WebSphere applications

http://www.oasis-open.org/committees/download.php/19953/ws-secureconversation-1.3-spec-ed-01-r07-diff.pdf
friend.sib/tasks/tjwsn_task_config_wsrm.dita
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

2. Install the application into WebSphere Application Server.

3. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an

aspect of your application (that is, application level or Web service level). Policy sets define the

reliability level (quality of service) and other configuration options that you want to apply to your reliable

messaging application.

4. Define the bindings for each attachment to a policy set that specifies a managed quality of service.

That is, choose the service integration bus and messaging engine to use to maintain the state for the

managed persistent and managed non-persistent qualities of service.

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

To learn about the WS-ReliableMessaging implementation in WebSphere Application Server, see the

following topics:

v “WS-ReliableMessaging - How it works”

v “Benefits of using WS-ReliableMessaging” on page 660

v “Qualities of service for WS-ReliableMessaging” on page 660

v “Use patterns for WS-ReliableMessaging” on page 662

v “WS-ReliableMessaging sequences” on page 665

v “WS-ReliableMessaging - terminology” on page 666

v “WS-ReliableMessaging: supported specifications and standards” on page 666

WS-ReliableMessaging - How it works

WebSphere Application Server uses WS-ReliableMessaging as part of the transport layer for SOAP over

HTTP messages. The message exchange patterns supported at the API layer are one-way “fire and

forget”, or two-way request and reply.

The reliability is provided by reliable messaging middleware that sits between the Web service requester

and the Web service provider. This middleware layer is shown beneath the dotted line in the following

diagram, and includes the reliable messaging source and the reliable messaging destination.

Note: When using WS-ReliableMessaging with a two-way programming API, if the requesting application

fails and is restarted it will not receive its reply message. In this model, WS-ReliableMessaging is

being used to protect from network failures only. Moreover:

v Client-side retransmissions only start after the client starts sending new messages to the service

(this is true for both one-way and two-way operations).

v Two-way operations that resume cannot drive the response message right back to the client

application; the message only gets back as far as the inbound sequence on the client.

Chapter 5. Web services 659

In the previous diagram, the application source invokes a Web service. The sequence of interactions is as

follows:

v The invocation is passed to the reliable messaging source.

v The reliable messaging source stores the message and then returns control to the application.

v The reliable messaging source sends the message to the reliable messaging destination.

v After the reliable messaging destination receives the message, it stores it locally and sends an

acknowledgement message back to the reliable messaging source.

v The reliable messaging source can now delete its copy of the message.

v The reliable messaging destination can deliver the message to the application destination at any time

after it receives it from the reliable messaging source.

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent.

The managed qualities of service, managed persistent and managed non-persistent, are supported by the

service integration bus. For each attachment between an application and a policy set, you can select the

bus and messaging engine to use for the reliable messaging protocol state.

Benefits of using WS-ReliableMessaging

With WS-ReliableMessaging, along with the other components of the Reliable Secure Profile, you can

support your business-to-business Web services scenarios without having to write your own custom retry

logic, duplicate detection code and persistence code.

WS-ReliableMessaging composes with other Web services standards as described in

“WS-ReliableMessaging: supported specifications and standards” on page 666.

Qualities of service for WS-ReliableMessaging

You can get different qualities of service with WS-ReliableMessaging, depending on the level of durability

and transaction support provided by the store used to manage the reliable messaging state. These

qualities of service range from protecting against loss of messages across a network, through to protecting

against server failure.

WebSphere Application Server provides the following three qualities of service for WS-ReliableMessaging

using a SOAP over HTTP binding. All three qualities of service are supported when applications are

deployed to the application server. Thin client and client container applications use the first option only.

Unmanaged non-persistent

You can configure Web service applications to use WS-ReliableMessaging with a default

Initial Sender Ultimate Receiver

Acknowledge

Transmit

Application
Source

Application
Destination

RM Source RM Destination

Transmit Receive

Send Deliver

Figure 6. The interactions used to exchange Web services messages reliably.

660 Administering WebSphere applications

in-memory store. This quality of service requires minimal configuration. However it is

non-transactional and, although it allows for the resending of messages that are lost in the

network, if a server becomes unavailable you will lose messages. This quality of service is for

single server only and does not work in a cluster.

Managed non-persistent

This in-memory quality of service option uses a messaging engine to manage the sequence state,

and messages are written to disk if memory is low. This quality of service allows for the re-sending

of messages that are lost in the network, and can also recover from server failure. However, state

is discarded after a messaging engine restart so in this case you will lose messages. This option

supports clusters as well as single servers.

Managed persistent

This quality of service for asynchronous Web service invocations is recoverable. This option also

uses a messaging engine and message store to manage the sequence state. Messages are

persisted at the Web service requester server and at the Web service provider server, and are

recoverable if the server becomes unavailable. Messages that have not been successfully

transmitted when a server becomes unavailable can continue to be transmitted after the server

restarts.

Note:

v The quality of service you get when using WS-ReliableMessaging is a direct result of the

durability of the store managing the messages.

v When you use in-order delivery and either of the managed qualities of service, if the service

causes an error then the message is re-dispatched to the service.

v You must ensure that when interacting with other vendors implementations of

WS-ReliableMessaging, the other implementations provide the quality of service you require.

How the different qualities of service are implemented

When the Web service application invokes the Web service, the SOAP message is added into the

WS-ReliableMessaging store. For the Managed qualities of service, the sending application’s transaction is

used to put the message into the message store. After the transaction commits, the message is eligible for

delivery. The other quality of service option is not transactional, so it considers the message eligible for

delivery immediately.

The WS-ReliableMessaging protocol is used to reliably deliver the message to the target server where it is

stored and acknowledged.

The message is read from the store and dispatched to the receiving application. For the Managed

Persistent quality of service, a transaction is used to read the message and then dispatch the application.

For more information about using WS-ReliableMessaging transactions, see “Providing transactional

recoverable messaging through WS-ReliableMessaging” on page 676.

Chapter 5. Web services 661

The managed qualities of service, managed persistent and managed non-persistent, are supported by the

service integration bus. For each attachment between an application and a policy set, you can select the

bus and messaging engine to use for the reliable messaging protocol state.

Use patterns for WS-ReliableMessaging

Links to descriptions of the use patterns that motivate WS-ReliableMessaging. Each use pattern

description includes an overview of the business problem, of the technical solution without

WS-ReliableMessaging, of the shortcomings of this solution, and of how you can use

WS-ReliableMessaging to overcome these shortcomings.

Historically, most business-to-business integration has been implemented on a point-to-point basis.

However this situation is rapidly changing and hub-and-spoke is becoming more important, particularly for

supply chain use patterns. The point-to-point use pattern is also important because, although your

eventual goal might be to implement a business-to-business hub, you might nonetheless begin with

point-to-point prototypes and proofs of concept.

For a description of each use pattern, see the following topics:

v “Assured delivery for B2B Web services: point-to-point use pattern.”

v “Assured delivery for B2B Web services: hub-and-spoke use pattern” on page 664.

v “Interoperation with other WS-ReliableMessaging providers: use pattern” on page 665.

Assured delivery for B2B Web services: point-to-point use pattern:

In this use pattern, a manufacturer sells its products through a network of affiliated dealerships. This

manufacturer has initiated a pilot project to improve the IT integration between its own retail organization

and half a dozen of the largest, most important dealerships.

 The existing technical solution

Historically, business-to-business ″e-commerce″ has been conducted using Electronic Data Interchange

(EDI). EDI is a set of standards for the content and formatting of business-to-business messages. For

examples of these standards and messages, see the United Nations Directories for Electronic Data

Interchange.

If the identities of communication partners are known and unchanging, the use of industry standard

message definitions is not strictly necessary. Although other XML-based standards are available for

conducting business-to-business e-commerce (such as the OASIS Electronic Business using eXtensible

Markup Language (ebXML) specifications) the manufacturer has decided to investigate the use of Web

services technologies, and is using WSDL documents from a variety of sources to define the service

interfaces.

Server1

SOAP+WS-RM/HTTP

Server2

Sender App Receiver App

Figure 7. Using stores to exchange Web services messages reliably.

662 Administering WebSphere applications

http://www.unece.org/trade/untdid/welcome.htm
http://www.unece.org/trade/untdid/welcome.htm
http://www.ebxml.org
http://www.ebxml.org

The interactions between the manufacturer and its dealers for the initial pilot project fall into two

categories:

v Requests for information. The interaction is two-way, in that a request message is sent requesting some

information, and a reply message is sent in the reverse direction containing the requested information.

An example of a request for information going from a dealer to the manufacturer might be

″getOrderStatus″.

v Requests for update. These interactions are one-way, in that the sender of a request for update is not

dependent on receiving a response in order to proceed with other work. An example of a request for

update going from dealer to manufacturer might be ″placeOrder″. An example of a request for update

going from manufacturer to dealer might be ″deliveryConfirmed″.

The manufacturer uses WebSphere Application Server to implement requests for information using SOAP

over HTTP and SOAP over JMS. Dealers are free to choose their own implementation technology; they do

not have to use WebSphere Application Server.

The manufacturer implements requests for update in two different ways:

v Using SOAP over HTTP. In this case the service is represented as a request and reply interaction that

is considered to have succeeded when the requestor successfully receives a reply. The services have

to be implemented to detect and successfully respond to duplicate requests (this is termed an

idempotent operation), and the client has to be implemented to retry if the communication is interrupted

after the request has been sent but before the reply has been received.

v To avoid the above limitations, the manufacturer also uses SOAP over JMS support from WebSphere

Application Server and WebSphere MQ. In this case the request is represented as a one-way service,

and the messages are delivered reliably. The manufacturer uses WebSphere MQ as the JMS Provider,

and makes this solution available to all dealers that also use WebSphere Application Server and

WebSphere MQ. It is not required that the dealer and manufacturer be connected in order for the

message to be sent.

The messages are transmitted over Virtual Private Networks, to ensure the integrity and confidentiality of

messages transmitted between the two businesses, and as a part of establishing the identity of the sender.

The business problem

Although both the manufacturer and its dealers are happy with the implementation of the request for

information services, there are a number of issues in the request for update case:

v Using SOAP over HTTP:

– For the manufacturer, implementing idempotent services is complicated and therefore more

expensive in developer time. It increases the likelihood of coding errors, reducing the robustness of

the solution and introducing the possibility of expensive dropped or duplicated orders.

– For dealers, implementing the retry logic is similarly complex, expensive, and error-prone.

– For both the manufacturer and the dealers, the requirement for both to be available in order to

invoke the service is an issue. In particular, many dealers do not maintain seven-day availability of

their systems, whereas for the manufacturer weekends are the ideal time to deliver price updates to

the dealers. Similarly, being unable to place orders when connectivity between dealer and

manufacturer is unavailable is a real business issue.

v Using SOAP over JMS:

– Although requiring the use of WebSphere Application Server and WebSphere MQ is acceptable to

the current collection of dealers, as the project expands there might be other partners who are

unwilling or unable to use a common software platform.

Chapter 5. Web services 663

The solution using WS-ReliableMessaging

With WS-ReliableMessaging support in WebSphere Application Server, the manufacturer can replace their

existing custom-retry solutions for reliable one-way messaging with standard SOAP over HTTP one-way

messaging. The removal of the retry logic from the application simplifies the application code, enabling

simpler and quicker application development.

With WS-ReliableMessaging, the dealer and manufacturer do not need to be connected in order for the

message to be sent.

The WS-ReliableMessaging standard adds reliability to SOAP over HTTP messaging, reducing the need to

use SOAP over JMS.

Because WS-ReliableMessaging with SOAP over HTTP is an interoperable standard, the network of

dealers need not use a common software platform.

Assured delivery for B2B Web services: hub-and-spoke use pattern:

In this use pattern, a manufacturer is looking for more than the ability to conduct transactions electronically

with a fixed set of partners; the manufacturer needs a service that provides visibility to their inventory

levels, so that the suppliers can manage their own product and inventory levels accordingly.

 The manufacturer has many suppliers - around 2000 major suppliers and 250,000 other suppliers - and

the set of supplier companies with which they do business is constantly changing.

The existing technical solution

The manufacturer currently has a custom-built supplier purchasing system. The system provides a trading

hub into which suppliers can integrate, and a supplier portal that enables suppliers to continue with their

(largely manual) existing processes. The interactions fall into three tiers:

v Tier one: XML message exchanges.

v Tier two: FTP and similar tools.

v Tier three: Fax.

Tiers one and two are conducted over a combination of leased lines and Virtual Private Networks (VPNs).

The business problem

The custom purchasing system has had disappointing take-up by the suppliers, and as a result the

manufacturer continues to face large costs associated with the manual processes that it still uses with the

vast majority of its suppliers. A major barrier to adoption of the new system by suppliers has been the cost

of integrating supplier systems with the trading hub.

The current solution also has costs for the manufacturers. In particular, the use of leased lines is

expensive, and the use of VPNs is difficult to manage when scaled to a large number of suppliers.

The solution using WS-ReliableMessaging

Describing the services using WSDL, and using Web services standards to implement them, reduces the

costs incurred by the manufacturer and suppliers:

v The prevalence of support for Web services amongst diverse software vendors makes it easier and

cheaper for suppliers to exploit this technology.

v The familiarity of the developer community with Web services technologies (and WSDL in particular),

and the rich tool support, means that the use of WSDL-described messages make the message

schemas easier to use in the context of Web services.

664 Administering WebSphere applications

v WS-ReliableMessaging is used to ensure that messages are reliably delivered, and duplicate messages

are eliminated.

v Web services security technologies enable secure interactions across the Internet, without requiring

leased lines and VPNs.

Interoperation with other WS-ReliableMessaging providers: use pattern:

Web services enable interoperability between heterogeneous platforms. This requirement arises whenever

an organization finds itself with applications on one platform (for example WebSphere Application Server)

that need to work with applications on another platform, whether as a result of merger and acquisition

activity, of a deliberate multi-vendor strategy, or as a result of independent software purchasing decisions

taken in different parts of the business.

 The existing technical solution

A variety of technical solutions exist for application-to-application integration between WebSphere

Application Server and other environments. Most of these involve the use of additional third-party or IBM

software to facilitate the integration.

More recently, the introduction of Web services support has made interoperability possible without the use

of additional components.

The business problem

Basic Web services support (using SOAP over HTTP) does enable interoperability, but has the following

limitations:

v Reliability: The absence of a WS-ReliableMessaging implementation means that the application logic

needs to be extended to handle lost or duplicated messages.

v Flexibility: The absence of asynchronous support for Web services means that support is limited to

synchronous interactions.

Note: Although both request and reply and one-way messaging are supported in earlier version of

WebSphere Application Server, they were implemented in a synchronous fashion. This meant that

when a Web services client invoked a service it did not receive control back from the middleware

until after the service application endpoint had been invoked.

The absence of asynchronous, reliable support for Web services often leads you to use one of the other

approaches, involving additional components. The additional components often use proprietary

communication channels or APIs.

The solution using WS-ReliableMessaging

The addition of WS-ReliableMessaging support to WebSphere Application Server and to other

environments enables you to develop reliable asynchronous Web services on both platforms. These

services should interoperate without additional IBM or third-party components or proprietary bindings.

WS-ReliableMessaging sequences

The WS-ReliableMessaging protocol relies on a “sequence” to manage the transmission of messages from

reliable messaging source to reliable messaging destination. Each application message is given an

identifier that identifies both the sequence and the message number (the position) within the sequence.

Protocol flows are used to create sequences, to acknowledge messages and to terminate sequences.

You can think of a sequence as being a structured conversation between the reliable source and the

reliable destination, through which each message in the sequence is passed reliably. A sequence also

passes on the set of messages in the sequence in the order in which it receives them, so if it is important

Chapter 5. Web services 665

that messages are processed in a particular order - for example, if money must be credited to a bank

account before a debit instruction is received to pay for a purchase - then those messages should be

included in the same sequence.

The developer of a reliable Web services application does not need to be aware of sequences, but the

system administrator needs to monitor and manage sequences, as described in “Detecting and fixing

problems with WS-ReliableMessaging” on page 684.

WS-ReliableMessaging - terminology

Foreign destination

A foreign destination is a software agent, outside of the system, that receives messages reliably

using WS-ReliableMessaging.

Foreign source

A Foreign source is a software agent, outside of the system, that sends messages reliably using

WS-ReliableMessaging.

Implementation WSDL

A WSDL document that describes not only the interface to a service (that is the messages, port

types and bindings) but also the service implementation (that is, it has service and port elements).

The service interface should preferably be defined by importing a separate interface WSDL

document.

Interface WSDL

A WSDL document that describes only the interface to a service. That is, it defines messages, port

types and bindings, but not services and ports.

Policy set instance document

A document containing configuration details for a selection of Web services standards. For more

information, see Securing Web services applications with policy sets using the administrative

console

Provider application

A provider application is an application that implements a service.

Reliable Web service provider

See also the general definition of a provider application. The Reliable Web service provider is a

provider application that has been deployed into the system being modeled, and is configured to

use WS-ReliableMessaging. This is the WebSphere Application Server-hosted equivalent of a

foreign destination. It is outside of the boundary of the system and interacts with the system.

Reliable Web service requester

See also the general definition of a requester application. The Reliable Web service requester is a

requester application that has been deployed into the system being modeled, and is configured to

use WS-ReliableMessaging. This is the WebSphere Application Server-hosted equivalent of a

foreign source. It is outside of the boundary of the system and interacts with the system.

Requester application

A requester application is an application that makes Web service requests.

Terminate (a sequence)

When the reliable messaging source has completed its use of a sequence, it sends a

TerminateSequence message to the reliable messaging destination to indicate that the sequence

is complete and that it will not be sending any further messages related to the sequence. The

reliable messaging destination can then safely reclaim any resources associated with the

sequence.

WS-ReliableMessaging: supported specifications and standards

WebSphere Application Server provides support for two levels of the WS-ReliableMessaging specification.

This enables backward compatibility with vendors that provide WS-ReliableMessaging support at the

666 Administering WebSphere applications

February 2005 level, as well as meeting the requirements of the current OASIS specification. This

implementation of WS-ReliableMessaging also composes with many other Web services standards.

Details of the supported WS-ReliableMessaging specifications are available at the following Web

addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Support for the WS-ReliableMessaging standard was first introduced as part of the IBM WebSphere

Application Server Version 6.1 Feature Pack for Web Services. At that time, the Reliable Asynchronous

Messaging Profile (RAMP) Version 1.0 specification used WS-ReliableMessaging to ensure the reliable

delivery of messages, and the Feature Pack for Web Services in WebSphere Application Server Version

6.1 included default policy sets that support this specification. You can migrate WebSphere Application

Server Version 6.1 WS-ReliableMessaging configurations that use RAMP-based policy sets to the current

version of the product.

Following on from the RAMP Version 1.0 specification, the Web Services Interoperability organization

(WS-I) Reliable Secure Profile working group has developed Version 1.0 of an interoperability profile

dealing with secure, reliable messaging capabilities for Web services. This profile is similar to RAMP

Version 1.0, except that it is updated to use WS-ReliableMessaging Version 1.1 with the OASIS

WS-SecureConversation Version 1.3 specification. The WS-I RSP default policy sets provided in this

version of WebSphere Application Server are an implementation of the Reliable Secure Profile Version 1.0

specification.

The extent to which WS-ReliableMessaging composes with other Web services standards is described in

the following sections:

v “WS-Addressing”

v “WS-AtomicTransactions”

v “WS-MakeConnection” on page 668

v “WS-Notification” on page 668

v “WS-Policy” on page 668

v “WS-SecureConversation” on page 669

v “WS-Security” on page 669

WS-Addressing

The WS-ReliableMessaging specification uses WS-Addressing, and the implementation fully supports the

asynchronous request and reply model given in the WS-Addressing specification.

Note: WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If you use

a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and the

WS-Addressing policy is configured as optional, then WebSphere Application Server overrides the

WS-Addressing setting and automatically enables WS-Addressing.

WS-AtomicTransactions

WS-ReliableMessaging transactions do not use the WS-AtomicTransactions protocol. The relationship

between these two protocols is as follows:

v WS-AtomicTransactions and WS-ReliableMessaging are mutually exclusive when

WS-ReliableMessaging is being used, with a managed store, to provide transactional recoverable

messaging.

Chapter 5. Web services 667

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.oasis-open.org/committees/download.php/19953/ws-secureconversation-1.3-spec-ed-01-r07-diff.pdf
http://www.oasis-open.org/committees/download.php/19953/ws-secureconversation-1.3-spec-ed-01-r07-diff.pdf

v If WS-ReliableMessaging is configured to use an in-memory store, then there are cases where a

WS-AtomicTransaction can be flowed between the reliable messaging source and the reliable

messaging destination for two-way invocations. In this situation, WS-ReliableMessaging only protects

against network failures, not against server failure.

For more information about WS-AtomicTransactions, see Transaction support in WebSphere Application

Server. For more information about using WS-ReliableMessaging transactions, see “Providing transactional

recoverable messaging through WS-ReliableMessaging” on page 676.

WS-MakeConnection

WS-ReliableMessaging Version 1.1 uses the WS-MakeConnection protocol to enable synchronous

message exchange. For more information about this protocol, see the WS-MakeConnection specification

Version 1.1, February 28 2008.

WS-MakeConnection uses information contained in WS-Addressing message headers, so for any

application that uses reliable synchronous message exchange you must include both

WS-ReliableMessaging and WS-Addressing policy in the policy set.

WS-Notification

If you create JAX-WS based WS-Notification services, you can apply WS-ReliableMessaging policies to

them to make your WS-Notification services reliable. For more information, see Configuring

WS-Notification for reliable notification.

Note: In this release, there are two types of WS-Notification service:

v Version 7.0: You configure a Version 7.0 WS-Notification service and service points if you want

to compose a JAX-WS WS-Notification service with WS-ReliableMessaging, or if you want to

apply JAX-WS handlers to your WS-Notification service. This is the recommended type of service

for new deployments.

v Version 6.1: You configure a Version 6.1 WS-Notification service and service points if you want

to expose a JAX-RPC WS-Notification service using the same technology provided in

WebSphere Application Server Version 6.1, including the ability to apply JAX-RPC handlers to

the service.

WS-Policy

The WS-Policy implementation in WebSphere Application Server supports Web Services Reliable

Messaging Policy Assertion Version 1.0 and Web Services Reliable Messaging Policy Assertion Version

1.1.

You can use the WS-Policy protocol to exchange policies in standard format. You can communicate the

policy configuration to any other client, service registry or service that supports the WS-Policy

specification, including non-WebSphere Application Server products in a heterogeneous environment. For

a service provider, the policy configuration can be shared in published WSDL. For a client, the client can

obtain the policy of the service provider in the standard WS-PolicyAttachments format and use this

information to establish a configuration that is acceptable to both the client and the service provider. In

other words, the client can be configured dynamically, based on the policies supported by its service

provider.

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

668 Administering WebSphere applications

http://docs.oasis-open.org/ws-rx/wsmc/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702
friend.sib/tasks/tjwsn_task_config_wsrm.dita
friend.sib/tasks/tjwsn_task_config_wsrm.dita
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

WS-SecureConversation

WS-ReliableMessaging is designed to work with WS-SecureConversation. A secure conversation context is

established and this is used to secure the application messages and the WS-ReliableMessaging protocol

messages.

To use WS-SecureConversation, create or apply a policy set that includes both WS-ReliableMessaging

and WS-SecureConversation. For example, either of the WS-I RSP default policy sets.

WS-Security

WS-ReliableMessaging composes with WS-Security. The WS-ReliableMessaging headers appended to

application messages are signed if required. The WS-ReliableMessaging protocol messages are signed

and encrypted if required.

Security processing is done close to the transport: after WS-ReliableMessaging processing at the Web

service requester and before WS-ReliableMessaging processing at the Web service provider. This means

the messages held in the WS-ReliableMessaging store are not signed and encrypted, so the emphasis is

on the administrator to secure the store, if the store being used is the messaging engine in a service

integration bus.

Note: If possible, use WS-SecureConversation rather than WS-Security because the

WS-SecureConversation protocol is less susceptible to security attacks.

Configuring endpoints to only support clients that use

WS-ReliableMessaging

By default, when a WS-ReliableMessaging enabled policy set is attached to an endpoint, the server

supports clients that use reliable messaging and clients that do not use reliable messaging. In this version

of the product, you can configure endpoints to only support clients that use reliable messaging.

About this task

You configure endpoints to only support clients that use reliable messaging by setting a property in either

of the following ways:

v Set a property when packaging the application.

v Set a property as a JVM argument for the server.

This setting is reflected by WS-Policy if engaged. For information about how to engage WS-Policy, see

“Using WS-Policy to exchange policies in a standard format” on page 743.

v When packaging the application, configure endpoints to only support clients that use reliable messaging

by setting the strictlyEnforceWSRM property in the META-INF/MANIFEST.MF of a WAR file or EJB

module.

v Using a JVM argument for the server, configure endpoints to only support clients that use reliable

messaging by defining the Java virtual machine custom property

com.ibm.ws.websvcs.rm.strictlyEnforceWSRM on the server. For more information, see Configuring

the JVM.

Building a reliable Web service application

Develop a Java API for XML-Based Web Services (JAX-WS) provider or requester application, and

configure a policy set to enable WS-ReliableMessaging. Install your application then attach the policy set.

If you want to use either of the managed qualities of service, bind the application or policy set to a service

integration bus and messaging engine.

Chapter 5. Web services 669

Before you begin

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent. The managed qualities of service,

managed persistent and managed non-persistent, are supported by the service integration bus.For each

attachment between an application and a policy set, you can select the bus and messaging engine to use

for the reliable messaging protocol state.

To enable WS-ReliableMessaging for an application, you take the following broad actions:

1. Develop a Java API for XML-Based Web Services (JAX-WS) Web service provider or requester

application.

2. Install the application into WebSphere Application Server.

3. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an

aspect of your application (that is, application level or Web service level). Policy sets define the

reliability level (quality of service) and other configuration options that you want to apply to your reliable

messaging application.

4. Define the bindings for each attachment to a policy set that specifies a managed quality of service.

That is, choose the service integration bus and messaging engine to use to maintain the state for the

managed persistent and managed non-persistent qualities of service.

1. Develop your JAX-WS Web service application.

For a Web service requester application that sends messages reliably:

a. Get an implementation WSDL document, and select the SOAP over HTTP binding. The WSDL

should be WS-I Basic Profile compliant.

b. Build the JAX-WS application from the WSDL implementation document.

c. (Optional) Enable transaction support for outbound (requester) one-way message sends. For more

information, see “Providing transactional recoverable messaging through WS-ReliableMessaging”

on page 676.

d. (Optional) Use the waitUntilSequenceCompleted method on the sequenceManager to ensure that

reliable messaging state is released after the client finishes messaging, as described in “Example:

Code for waiting for a sequence to complete” on page 675.

e. (Optional) If you want to use in-order delivery (that is, you want WS-ReliableMessaging to make

messages available to your requester application in the order that they were sent), then you must

also configure your requester application to poll for the messages in the order in which it wants to

receive them. For more information, see “Configuring the WS-ReliableMessaging policy” on page

936.

For a Web service provider application that requires reliable messaging:

a. Write or get an interface WSDL document that describes the service interface. The document

should be compliant with the WS-I Basic Profile.

b. Write or get an implementation WSDL document, and select the SOAP over HTTP binding. The

WSDL should remain WS-I Basic Profile compliant.

c. Build the JAX-WS application from the WSDL implementation document.

Your client application can also take programmatic control of WS-ReliableMessaging sequences. This

helps manage resources on the server, for example by removing sequences after a client application

has finished messaging. You can add code to create sequences, send acknowledgement requests,

670 Administering WebSphere applications

close sequences, terminate sequences and wait until sequences are complete. For more information,

including example code, see “Controlling WS-ReliableMessaging sequences programmatically.”

2. Configure a policy set instance to enable WS-ReliableMessaging.

3. Install your reliable JAX-WS Web service application.

4. Attach and bind a WS-ReliableMessaging policy set to your application.

5. Save your changes to the master configuration.

6. Stop then restart the server.

Results

A reliable JAX-WS application is deployed into a suitably configured environment and started.

Controlling WS-ReliableMessaging sequences programmatically

Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server

SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. This helps

manage resources on the server, for example by removing sequences after a client application has

finished messaging. You can add code to create sequences, send acknowledgement requests, close

sequences, terminate sequences and wait until sequences are complete.

Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set

configuration that is applied to the client from which the SPI is called. It does not use any alternative policy

set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

About this task

By closing sequences programmatically, you limit the number of open sequences a single client has to

support in a single JVM at one time.

For your client application to gain programmatic control over reliable messaging sequences, it needs

access to a WSRMSequenceManager instance. Use the following code fragment to achieve this:

import com.ibm.wsspi.wsrm.WSRMSequenceManager;

import com.ibm.wsspi.wsrm.WSRMSequenceManagerFactory;

.........

 // Get the factory

 WSRMSequenceManagerFactory factory = WSRMSequenceManagerFactory

 .getInstance();

 // Get the sequence manager instance

 WSRMSequenceManager sequenceManager = factory.createWSRMSequenceManager();

All WSRMSequenceManager methods take the following parameters:

v The client instance object. This is either a Dispatch client instance, or the Dynamic proxy client. For

details of the client types, see JAX-WS client programming model.

v 2) The Port QName instance for the target endpoint.

To control WS-ReliableMessaging sequences programmatically, add code to your client application as

described in the following steps:

v Add code to create a sequence.

v Add code to send an acknowledgement request.

v Add code to close a sequence.

Chapter 5. Web services 671

v Add code to terminate a sequence.

v Add code to wait for a sequence to complete.

Example: Code for creating a sequence:

Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server

SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. Use these

code fragments as guidance for coding your reliable messaging client application to create a sequence.

 Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set

configuration that is applied to the client from which the SPI is called. It does not use any alternative policy

set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

For your client application to gain programmatic control over reliable messaging sequences, it needs

access to a WSRMSequenceManager instance. The first of the following code examples includes code to

create a WSRMSequenceManager object. If you need more information about working with this object, see

“Controlling WS-ReliableMessaging sequences programmatically” on page 671.

Example code

To create a new reliable messaging sequence, first create a WSRMSequenceProperties object:

import com.ibm.wsspi.wsrm.WSRMSequenceProperties

.........

WSRMSequenceManager sequenceManager = WSRMSequenceManagerFactory

 .getInstance().createWSRMSequenceManager();

WSRMSequenceProperties sequenceProperties = sequenceManager

 .createNewWSRMSequenceProperties();

To set the available properties use the following methods:

 /**

 * Sets the target provider endpoint.

 * A null value will cause a NullPointerException when the WSRMSequenceProperties object is used.

 *

 * @param providerEndPoint The target service endpoint URI

 */

 public void setTargetEndpointUri(String providerEndPoint);

 /**

 * This is used to indicate that a response flow is required between the provider and requester and the response

 * flow will be established at create sequence time

 *

 * By calling this method it will indicate that a response flow is required.

 */

 public void setUseOfferedSequenceId();

 /**

 * Set the Soap version for RM protocol messages.

 * The default value for this property is WSRMSequenceProperties.SOAP_11

 *

 * @param soapVersion

 */

 public void setSoapVersion(int soapVersion);

 /**

672 Administering WebSphere applications

* If the Sequence Acknowledgement messages are to be sent back asynchronously call this method.

 *

 */

 public void useAsyncTransport();

To create the reliable messaging sequence use the createNewWSRMSequence method on the

WSRMSequenceManager:

 /**

 * Initiates a new sequence handshake between this client and the target EPR specified in the

 * WSRMSequenceProperties instance.

 *

 * This sequence will only be valid for the client issuing the createNewWSRMSequence call.

 *

 * When returning from this call, there is no guarantee that the sequence has been established.

 *

 * @throws NullPointerException if the sequenceProperties object is null, or the target EPR is null

 *

 * @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.

 * @param sequencePropeties The properties for creating the reliable messaging sequence

 * @throws WSRMNotEnabledException

 * @throws WSRMSequenceAlreadyExistsException

 */

 public void createNewWSRMSequence(Object clientObject, QName portQName, WSRMSequenceProperties sequencePropeties)

 throws WSRMNotEnabledException,

 WSRMSequenceAlreadyExistsException;

Example: Code for sending an acknowledgement request:

Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server

SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. Use these

code fragments as guidance for coding your reliable messaging client application to send an

acknowledgement request.

 Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set

configuration that is applied to the client from which the SPI is called. It does not use any alternative policy

set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

For your client application to gain programmatic control over reliable messaging sequences, it needs

access to a WSRMSequenceManager instance. For information and example code explaining how to

achieve this, see “Controlling WS-ReliableMessaging sequences programmatically” on page 671.

For a more complete specification of sending an acknowledgement request, see the “WS-
ReliableMessaging: supported specifications and standards” on page 666.

Example code

To send an acknowledgement request for a WS-ReliableMessaging sequence, use the following method

on the WSRMSequenceManager:

 /**

 * Sending an acknowledgement request sends the ACK requested message to the specified target endPointUri.

 * The target will respond with a range of messages that can be acknowledged for the current reliable messaging

 * sequence.

 *

 * @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.

 * @param portQName

 * @param endPointUri The target endpoint uri

 * @throws WSRMNotEnabledException

 * @throws WSRMSequenceUnknownException

Chapter 5. Web services 673

* @throws WSRMSequenceTerminatedException

 * @throws WSRMSequenceClosedException

 */

 public void sendAcknowledgementRequest(Object clientObject, QName portQName, String endPointUri)

 throws WSRMNotEnabledException,

 WSRMSequenceUnknownException,

 WSRMSequenceTerminatedException,

 WSRMSequenceClosedException;

Example: Code for closing a sequence:

Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server

SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. Use these

code fragments as guidance for coding your reliable messaging client application to close a sequence.

 Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set

configuration that is applied to the client from which the SPI is called. It does not use any alternative policy

set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

For your client application to gain programmatic control over reliable messaging sequences, it needs

access to a WSRMSequenceManager instance. For information and example code explaining how to

achieve this, see “Controlling WS-ReliableMessaging sequences programmatically” on page 671.

For a more complete specification of closing a sequence, see the “WS-ReliableMessaging: supported

specifications and standards” on page 666.

By closing sequences programmatically, you limit the number of open sequences a single client has to

support in a single JVM at one time.

Example code

To close a WS-ReliableMessaging sequence use the following method on the WSRMSequenceManager:

 /**

 * Closes the Web services reliable messaging session from this application to

 * the endpoint url specified.

 *

 * Throws a WSRMSequenceTerminatedException if the session between this application

 * and the target endpoint url is already closed

 *

 * Throws a WSRMSequenceTerminatedException when the session between this application

 * and the target endpoint has already been terminated.

 *

 * Throws WSRMSequenceUnknownException exception when either reliable messaging is not engaged to

 * the specified endpoint url or the sequence has previously been terminated and removed.

 *

 * @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.

 * @param endPointUri The target endpoint url

 *

 * @throws WSRMNotEnabledException

 * @throws WSRMSequenceUnknownException

 * @throws WSRMSequenceClosedException

 * @throws WSRMSequenceTerminatedException

 */

 public void closeSequence(Object clientObject, QName portQName, String endPointUri)

 throws WSRMNotEnabledException,

 WSRMSequenceUnknownException,

 WSRMSequenceClosedException,

 WSRMSequenceTerminatedException;

674 Administering WebSphere applications

Example: Code for terminating a sequence:

Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server

SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. Use these

code fragments as guidance for coding your reliable messaging client application to terminate a sequence.

 Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set

configuration that is applied to the client from which the SPI is called. It does not use any alternative policy

set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

For your client application to gain programmatic control over reliable messaging sequences, it needs

access to a WSRMSequenceManager instance. For information and example code explaining how to

achieve this, see “Controlling WS-ReliableMessaging sequences programmatically” on page 671.

For a more complete specification of terminating a sequence, see the “WS-ReliableMessaging: supported

specifications and standards” on page 666.

By closing sequences programmatically, you limit the number of open sequences a single client has to

support in a single JVM at one time.

Example code

To terminate a WS-ReliableMessaging sequence use the following method on the

WSRMSequenceManager:

 /**

 * Terminates Web services reliable messaging session from this application to

 * the endpoint url specified.

 *

 * Throws a WSRMSequenceTerminatedException when the session between this application

 * and the target endpoint has already been terminated.

 *

 * Throws WSRMSequenceUnknownException exception when either reliable messaging is not engaged to

 * the specified endpoint url or the sequence has previously been terminated and removed.

 *

 * @param clientObject The JAX-WS Dispatch instance, or the Dynamic Proxy client instance.

 * @param endPointUri The target endpoint url

 * @throws WSRMNotEnabledException

 *

 * @throws WSRMSequenceTerminatedException

 * @throws WSRMSequenceUnknownException

 */

 public void terminateSequence(Object clientObject, QName portQName, String endPointUri) throws WSRMNotEnabledException;

Example: Code for waiting for a sequence to complete:

Your client application can use the WSRMSequenceManager, part of the WebSphere Application Server

SPI for reliable messaging, to gain programmatic control over reliable messaging sequences. Use the

waitUntilSequenceCompleted method on the sequenceManager to ensure that reliable messaging state

is released after the client finishes messaging.

 Before you begin

The WebSphere Application Server SPI for reliable messaging always uses the static policy set

configuration that is applied to the client from which the SPI is called. It does not use any alternative policy

set that is subsequently configured by WS-Policy to meet the requirements of a WS-Policy intersection.

For your client application to gain programmatic control over reliable messaging sequences, it needs

access to a WSRMSequenceManager instance. For information and example code explaining how to

achieve this, see “Controlling WS-ReliableMessaging sequences programmatically” on page 671.

Chapter 5. Web services 675

Example code

To wait for a reliable messaging sequence to complete, you use a method call that ensures that all

messages have been sent and acknowledged by the target service. After the sequence is completed, it is

terminated and cleaned up. By closing sequences programmatically, you limit the number of open

sequences a single client has to support in a single JVM at one time.

There are two ways of using the waitUntilSequenceCompleted method:

v public boolean waitUntilSequenceCompleted(Object clientObject,

QName portQName, String endPointUri, long waitTime)

This method call waits for the specified waitTime for the reliable messaging sequence to complete. If

the sequence does not complete in the specified time, the method returns false. If the sequence does

complete in time, the method returns true.

v public boolean waitUntilSequenceCompleted(Object clientObject,

QName portQName, String endPointUri)

This method call does not return until the reliable messaging sequence is completed.

Providing transactional recoverable messaging through WS-ReliableMessaging

If your WS-ReliableMessaging application is running inside the Web container and using a managed

quality of service, you can use WS-ReliableMessaging to provide transactional recoverable messaging.

About this task

The WS-ReliableMessaging transactional model is as follows:

v On the Web service requester side, the transaction is between the application and the local managed

store.

v The WS-ReliableMessaging protocol delivers the message to the Web service provider side, where a

different transaction is used between the second managed store and the application being dispatched.

For the outbound (requestor) case on a one-way message send, if the enableTransactionalOneWay

property is set to true, then the send is performed under any transactional context currently held by the

application’s thread. (Note that transactions are not supported under an outbound two-way message

exchange).

For the inbound (provider) case, if the inOrderDelivery property is set to true, then an inbound message

is dispatched to the application under a transaction. In the case of an inbound two way message

exchange, the response is also generated under that transaction and is not sent until that transaction has

committed.

Note:

WS-ReliableMessaging transactions do not use the WS-AtomicTransactions protocol. The

relationship between these two protocols is as follows:

v WS-AtomicTransactions and WS-ReliableMessaging are mutually exclusive when

WS-ReliableMessaging is being used, with a managed store, to provide transactional recoverable

messaging.

v If WS-ReliableMessaging is configured to use an in-memory store, then there are cases where a

WS-AtomicTransaction can be flowed between the reliable messaging source and the reliable

messaging destination for two-way invocations. In this situation, WS-ReliableMessaging only

protects against network failures, not against server failure.

For more information, see “WS-AtomicTransactions” on page 667.

676 Administering WebSphere applications

To provide transactional recoverable messaging through WS-ReliableMessaging, work through the steps

described in “Building a reliable Web service application” on page 669 and also complete the following

additional steps:

v To enable transactional messaging for outbound (requester) one-way message sends, when you

develop your JAX-WS Web service application set the enableTransactionalOneWay property to

Boolean.TRUE (or the string “true”) in the jaxWS request context map.

v To enable transactional messaging for inbound (provider) one-way and two-way message exchanges,

when you configure your WS-ReliableMessaging policy either use the administrative console to select

the option Deliver messages in the order that they were sent or use the wsadmin tool to set the

inOrderDelivery property to “true”.

Configuring a WS-ReliableMessaging policy set using the

administrative console

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent. Use the administrative console to

configure a policy set for reliable messaging.

Before you begin

You can configure a reliable messaging policy set using the administrative console as described in this

task, or you can configure a reliable messaging policy set using the wsadmin tool.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 840.

If you can use any of these default policy sets without needing to modify their configuration, you need not

complete this task. You are ready to attach and bind the default policy set to your application.

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure a reliable messaging policy set using the administrative console, complete the following steps:

1. Create a policy set. You can create a new policy set, or copy and rename an existing policy set - either

one that you have previously created, or one of the WS-ReliableMessaging default policy sets.

2. Check that your policy set includes the policy types WS-ReliableMessaging and WS-Addressing.

Add these policy types if necessary. These policy types contain the configuration options that support

WS-ReliableMessaging. WS-Addressing provides the asynchronous request and reply capabilities for

WS-ReliableMessaging, and is also required for WS-ReliableMessaging Version 1.1 synchronous

messaging.

Note:

Chapter 5. Web services 677

v If you want to use secure conversation and reliable messaging policies in the same policy

set, the secure conversation bindings must be configured to require that the reliable

messaging headers are signed. The reliable secure profile default policy sets (WS-I RSP and

WS-I RSP ND) are specifically designed and configured to use secure conversation and

reliable messaging in the same policy set. If you use a copy of one of the reliable secure

profile default policy sets (WS-I RSP and WS-I RSP ND), no further configuration of the

secure conversation bindings is required. Otherwise, see “Configuring

WS-SecureConversation to work with WS-ReliableMessaging” on page 680.

v WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If

you use a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and

the WS-Addressing policy is configured as optional, then WebSphere Application Server

overrides the WS-Addressing setting and automatically enables WS-Addressing.

3. Configure the WS-ReliableMessaging policy type attributes. For the WS-ReliableMessaging policy you

can configure the version of the WS-ReliableMessaging standard that you want to use, the order in

which messages are delivered, and the required quality of service (the reliability level) for message

delivery.

Note: In WebSphere Application Server Version 6.1, you could also configure whether or not to use

the WS-MakeConnection protocol. This configuration option has now been removed from the

administrative console panel, because the product now automatically determines whether

WS-MakeConnection is used, based on the following criteria:

v Whether you are using WS-ReliableMessaging Version 1.0 or Version 1.1.

v Whether the requester supports WS-MakeConnection.

v Whether the message exchange protocol is synchronous or asynchronous.

4. Save your changes to the master configuration.

What to do next

You are now ready to attach your application to the policy set and define the bindings that you want to

use.

Configuring a WS-ReliableMessaging policy set using the wsadmin tool

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent. Use command scripts to configure a

policy set for reliable messaging.

Before you begin

You can configure a reliable messaging policy set using the wsadmin tool as described in this task, or you

can configure a reliable messaging policy set using the administrative console.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 840.

678 Administering WebSphere applications

If you can use any of these default policy sets without needing to modify their configuration, you need not

complete this task. You are ready to attach your application to the default policy set and define the

bindings that you want to use.

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure a reliable messaging policy set using the wsadmin tool, complete the following steps:

1. Create a policy set. Use the createPolicySet command to create a new policy set, or the

copyPolicySet command to copy and rename an existing policy set - either one that you have

previously created, or one of the two “WS-ReliableMessaging default policy sets” on page 840. For

more information, see Creating and copying policy sets using the wsadmin tool.

2. If the policy set does not include both the policy types WSReliableMessaging and WSAddressing,

add these policy types using the addPolicyType command as described in Creating and copying policy

sets using the wsadmin tool. For example:

AdminTask.addPolicyType(’[-policySet PolicySet1 -policyType WSReliableMessaging]’)

AdminTask.addPolicyType(’[-policySet PolicySet1 -policyType WSAddressing]’)

These policy types contain the configuration options that support WS-ReliableMessaging.

WS-Addressing provides the asynchronous request and reply capabilities for WS-ReliableMessaging,

and is also required for WS-ReliableMessaging Version 1.1 synchronous messaging.

Note:

v If you want to use secure conversation and reliable messaging policies in the same policy

set, the secure conversation bindings must be configured to require that the reliable

messaging headers are signed. The reliable secure profile default policy sets (WS-I RSP and

WS-I RSP ND) are specifically designed and configured to use secure conversation and

reliable messaging in the same policy set. If you use a copy of one of the reliable secure

profile default policy sets (WS-I RSP and WS-I RSP ND), no further configuration of the

secure conversation bindings is required. Otherwise, see “Configuring

WS-SecureConversation to work with WS-ReliableMessaging” on page 680.

v WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If

you use a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and

the WS-Addressing policy is configured as optional, then WebSphere Application Server

overrides the WS-Addressing setting and automatically enables WS-Addressing.

3. Configure the WS-ReliableMessaging policy type attributes.

For the WS-ReliableMessaging policy you can configure the version of the WS-ReliableMessaging

standard that you want to use, the order in which messages are delivered, and the required quality of

service (the reliability level) for message delivery. For detailed information about these configurable

attributes, see “WS-ReliableMessaging settings” on page 937.

Use the setPolicyType command to configure these attributes. For example:

AdminTask.setPolicyType(’-policySet PolicySet1 -policyType WSReliableMessaging -attributes "[[inOrderDelivery false][specLevel 1.0]

[enabled true][qualityOfService managedPersistent][type WSReliableMessaging]]" -replace’

4. Save your changes to the master configuration.

To save your configuration changes, enter the following command:

AdminConfig.save()

What to do next

You are now ready to attach your application to the default policy set and define the bindings that you

want to use.

Chapter 5. Web services 679

Configuring WS-SecureConversation to work with WS-ReliableMessaging

Configure secure conversation to expect the reliable messaging headers to be signed, and to ensure that

the scoping security context token does not expire before reliable messaging recovers and resends

persistent messages.

v “Configure secure conversation to expect the reliable messaging headers to be signed”

v “Configure secure conversation to increase the timeout setting for the scoping security context token”

Configure secure conversation to expect the reliable messaging headers to be signed:

About this task

Although secure conversation allows message headers to remain unsigned, the reliable messaging policy

requires the reliable messaging headers to be signed. If you want to use secure conversation and reliable

messaging policies in the same policy set, the secure conversation bindings must be configured to require

that the reliable messaging headers are signed. To achieve this, complete one of the following steps:

v Create your policy set from a copy of one of the reliable secure profile default policy sets (WS-I RSP

and WS-I RSP ND). This policy set contains instances of the secure conversation and reliable

messaging policies that are configured to work together.

v Create your policy set from a copy of the secure conversation policy set:

1. Add the reliable messaging policy to your copy of the secure conversation policy set.

2. Specify in the secure conversation bindings that the reliable messaging headers must be signed.

For more information about how to do this, see “Defining and managing policy set bindings” on page

853.

3. Save your changes to the master configuration.

Note: The reliable secure profile default policy sets (WS-I RSP and WS-I RSP ND) are specifically

designed and configured to use secure conversation and reliable messaging in the same policy

set. Only create your policy set from a copy of the secure conversation policy set if you have a

clear business need to do so. Otherwise, always use a copy of one of the reliable secure profile

default policy sets (WS-I RSP and WS-I RSP ND).

Configure secure conversation to increase the timeout setting for the scoping security context

token:

About this task

When you use a persistent WS-I RSP policy set, which includes WS-SecureConversation, if the scoping

security context token is expired when the server is restarted then WS-ReliableMessaging cannot resend

its messages and system messages are written to the log file stating that the reliable messaging sequence

was not secured using the correct security token.

To ensure that the scoping security context token does not expire before WS-ReliableMessaging can

recover and resend its messages, use the administrative console to complete the following steps:

1. In the navigation pane, click Services → Security cache. The Security cache detail form is displayed.

2. Set the following values for the security distributed cache:

a. Set the Time token is in cache after timeout property to a value of at least 120 minutes. This

value specifies the length of time to keep tokens after they expire. By default, this is 10 minutes.

These expired tokens can be used for reliable messaging recovery.

b. Select the Enable distributed caching check box, and the default sub-option Synchronous

update of cluster members.

3. In the navigation pane, click Services → Trust service → Token providers. In the content pane, select

a security context token. The Security Context Token detail form is displayed.

4. Set the following values for the security context token:

a. Check that the Time in cache after expiration property is set to a value of at least 120 minutes.

680 Administering WebSphere applications

b. Check that the Token timeout property is set to a value of at least 120 minutes.

c. Select the Allow renewal after timeout check box.

d. Select the Distributed cache check box.

5. Save your changes to the master configuration.

Attaching and binding a WS-ReliableMessaging policy set to a Web

service application using the administrative console

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent. Use the administrative console to

attach the policy set to your application, and (for managed qualities of service) define bindings to a service

integration bus and messaging engine.

Before you begin

You can attach a WS-ReliableMessaging policy set and define bindings using the administrative console

as described in this task, or you can attach and bind a WS-ReliableMessaging policy set using the

wsadmin tool.

This task assumes that you have already developed and installed the Web service application to which

you want to attach a policy set.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 840.

If you can use any of these default policy sets, or you have configured your own reliable messaging policy

set, then you are ready to complete this task.

About this task

Use this task to complete the following broad actions:

1. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an

aspect of your application (that is, application level or Web service level). Policy sets define the

reliability level (quality of service) and other configuration options that you want to apply to your reliable

messaging application.

2. Define the bindings for each attachment to a policy set that specifies a managed quality of service.

That is, choose the service integration bus and messaging engine to use to maintain the state for the

managed persistent and managed non-persistent qualities of service.

To attach a WS-ReliableMessaging policy set and define bindings using the administrative console,

complete the following steps:

1. Attach a policy set to your reliable messaging application at either application level or service level..

Note:

Chapter 5. Web services 681

v You can attach one policy set at each level.

v You can only apply a WS-ReliableMessaging policy at application level or service level.

v If you apply reliable messaging at service level, then all services must use the same

WS-ReliableMessaging policy and bindings values.

v You can attach any policy set at operation level. For a policy set that includes the

WS-ReliableMessaging policy, attachment at the operation level configures the other

components of the policy set (for example WS-Security and WS-Addressing) but any

WS-ReliableMessaging configuration at operation level is ignored.

2. If your chosen policy set specifies a managed quality of service, define bindings to a service

integration bus and messaging engine.

If the policy set instance specifies managed non-persistent or managed persistent quality of service,

choose the service integration bus and messaging engine that is to manage the

WS-ReliableMessaging state. Use the “WS-ReliableMessaging policy binding” on page 939 panel to

select or create the service integration bus and messaging engine that you want to use.

Note: When many applications use the same messaging engine, it can impact performance. Factors

to consider include the number of applications that are already binding to the messaging

engine, the CPU utilization, and the message throughput. To improve performance for a single

server configuration, create a new messaging engine to bind to your application.

To define the default WS-ReliableMessaging policy binding for provider and client policy set

attachments within WebSphere Application Server Version 6.1 applications, and for attachments to

service applications that are deployed to a Version 6.1 server, navigate to Services → Policy sets →

Default policy set bindings → Version 6.1 default policy set bindings → WS-ReliableMessaging.

To define the bindings for a WebSphere Application Server Version 7.0 provider or client policy set,

navigate to Services → Policy sets → General provider policy set bindings →

provider_policy_set_binding_name → WS-ReliableMessaging or Services → Policy sets → General

client policy set bindings → client_policy_set_binding_name → WS-ReliableMessaging

To define the bindings for an application that you have attached to a service provider policy set,

navigate to Applications → Application Types → WebSphere enterprise applications →

application_name → [Web Service Properties] Service provider policy sets and bindings and

follow the instructions given in “Managing policy sets and bindings for service providers at the

application level using the administrative console” on page 772.

To define the bindings for an application that you have attached to a service client policy set, navigate

to Applications → Application Types → WebSphere enterprise applications → application_name →

[Web Service Properties] Service client policy sets and bindings and follow the instructions given

in “Managing policy sets and bindings for service clients at the application level using the

administrative console” on page 789.

Note: If the application that you have attached to a service client policy set is a Version 7.0

WS-Notification service client, you can instead use the context-specific version of the “Service

client policy sets and bindings” panel that can be reached through either of the following paths:

v Service integration → WS-Notification → Services → service_name → [Additional properties]

Outbound request policy sets and bindings

v Service integration → Buses → bus_name → [Services] WS-Notification services → service_name

→ [Additional properties] Outbound request policy sets and bindings

If you want to configure policy set and binding details for a single Version 7.0 WS-Notification service

client, rather than for all clients for the service, you can instead use the following panel:

v Services → Service clients → ws-notification_service_client_name

This panel also gives you links to the associated service integration bus and WS-Notification service.

3. Save your changes to the master configuration.

682 Administering WebSphere applications

Attaching and binding a WS-ReliableMessaging policy set to a Web service

application using the wsadmin tool

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent. Use the wsadmin tool to attach the

policy set to your application, and (for managed qualities of service) to define bindings to a service

integration bus and messaging engine.

Before you begin

You can attach a WS-ReliableMessaging policy set and define bindings using the wsadmin tool as

described in this task, or you can attach and bind a WS-ReliableMessaging policy set using the

administrative console.

This task assumes that you have already developed and installed the Web service application to which

you want to attach a policy set.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 840.

If you can use any of these default policy sets, or you have configured your own reliable messaging policy

set, then you are ready to complete this task.

About this task

Use this task to complete the following broad actions:

1. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an

aspect of your application (that is, application level or Web service level). Policy sets define the

reliability level (quality of service) and other configuration options that you want to apply to your reliable

messaging application.

2. Define the bindings for each attachment to a policy set that specifies a managed quality of service.

That is, choose the service integration bus and messaging engine to use to maintain the state for the

managed persistent and managed non-persistent qualities of service.

To attach a WS-ReliableMessaging policy set and define bindings using the wsadmin tool, complete the

following steps:

1. Attach a policy set to your reliable messaging application at either application level or service level.

Use the createPolicySetAttachment command as described in Creating policy set attachments using

the wsadmin tool. Set the -policySet parameter to the name of the reliable messaging policy set that

you want to use. For example: “WS-I RSP ND”

Note:

v You can attach one policy set at each level.

v You can only apply a WS-ReliableMessaging policy at application level or service level.

Chapter 5. Web services 683

v If you apply reliable messaging at service level, then all services must use the same

WS-ReliableMessaging policy and bindings values.

v You can attach any policy set at operation level. For a policy set that includes the

WS-ReliableMessaging policy, attachment at the operation level configures the other

components of the policy set (for example WS-Security and WS-Addressing) but any

WS-ReliableMessaging configuration at operation level is ignored.

This command returns an attachment ID number. If your chosen policy set specifies a managed quality

of service, make a note of this number. In the next step you use it to define the binding.

2. If your chosen policy set specifies a managed quality of service, define bindings to a service

integration bus and messaging engine.

If the policy set instance specifies managed non-persistent or managed persistent quality of service,

choose the service integration bus and messaging engine that is to manage the

WS-ReliableMessaging state. Use the setBinding command as described in Creating policy set

attachments using the wsadmin tool. Set the -policyType parameter to WSReliableMessaging. Set the

bus name and the messaging engine name by using the following syntax for the -attributes

parameter:

 -attributes "[[busName ReliableMessagingBus] [messagingEngineName nodeName.serverName-busName]]"

Note: When many applications use the same messaging engine, it can impact performance. Factors

to consider include the number of applications that are already binding to the messaging

engine, the CPU utilization, and the message throughput. To improve performance for a single

server configuration, create a new messaging engine to bind to your application.

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:

AdminConfig.save()

Detecting and fixing problems with WS-ReliableMessaging

The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

About this task

If a sequence fails, a message is written to the application server SystemOut.log file and a system event is

generated. Therefore you can detect failed sequences by looking at the SystemOut.log file, or by writing

an event listener (or using third party software) to monitor system events.

Note: After a sequence has been established, WS-ReliableMessaging provides retransmission of

messages to a service. However if the sequence is not established (that is, if the initial

CreateSequence request is refused) then the messages are not transmitted to the service. For

more information, see the troubleshooting tip “A sequence is not established, and therefore

WS-ReliableMessaging cannot ensure messages are transmitted” on page 691.

For more detailed status information at run time, and facilities to help you fix problems, use the

WS-ReliableMessaging administrative console runtime panels. These panels are available at many

different scopes (for example cell; application server; messaging engine). For a full list of the

WS-ReliableMessaging runtime panels, and details of the scopes at which they are available, see

“WS-ReliableMessaging - administrative console panels” on page 695.

At all scopes, the parent panel is “Reliable messaging state settings” on page 696. From this panel you

can investigate each of the three key runtime aspects of reliable messaging:

684 Administering WebSphere applications

v Message stores

v Inbound sequences

v Outbound sequences

The following icons are displayed here and on several other reliable messaging runtime panels:

OK Everything here, and (if there is a link) in all runtime panels below this link, is

running normally.

Warning Something here, or (if there is a link) in one of the runtime panels below this

link, is in an unusual state and you might need to take some action to resolve

it.

For example, the system might be awaiting a response from an endpoint. In this

case, either the response will be received (in which case you need take no

action and the runtime information will be updated to ″OK″) or the reliable

messaging destination has stopped acknowledging messages (in which case

you need to take some action to resolve the failed sequence).

Error There is a definite error that you need to take some action to resolve, either

here or (if there is a link) in one of the runtime panels below this link.

Note that for troubleshooting purposes you only need to follow links to the sub-panels if states other than

″OK″ are displayed.

To use the reliable messaging runtime panels to detect and fix problems with WS-ReliableMessaging,

complete one or more of the following steps:

v Investigate problems with message stores.

In the navigation pane, click one of the paths to this panel. For example Servers → Server Types →

WebSphere application servers → server_name → [Additional Properties] Reliable messaging state

→ Runtime → Message store. The list of reliable messaging storage managers for the current scope is

displayed in the “Message store collection” on page 697 form.

For the managed qualities of service, the messages are written to a messaging engine. For the

unmanaged non-persistent quality of service, the messages are stored in memory. For in-memory stores

the only possible value is ″Running″. For messages stored by a messaging engine, the possible values

are ″Running″ or ″Messaging engine not contactable″, probably because the messaging engine is not

running. The ″OK″ icon indicates that the message store is running. If the messaging engine is not

contactable, the ″Error″ icon is displayed.

For each message store in the list, the name of the associated reliable messaging application is given

in the description column. If a messaging engine is not contactable, restart the message store for that

application.

v Investigate problems with inbound sequences.

In the navigation pane, click one of the paths to this panel. For example Servers → Server Types →

WebSphere application servers → server_name → [Additional Properties] Reliable messaging state

→ Runtime → Inbound sequences. The runtime state of each of the inbound sequences for the current

scope is displayed in the “Inbound sequence collection” on page 703 form.

You can use a filter to look at sequences that are in a particular state (for example “Failed due to

missing message”) or that have a large number of messages awaiting dispatch to applications. If the

sequence status is Error, there is a problem with the sequence and the source server hosting the other

end of the sequence has terminated it. If the sequence is active and there are a large number of

messages awaiting dispatch to the application, then there could be a problem with the application or, if

in-order delivery is specified, delivery could be held up because the sequence has gaps in it.

You can select one or more sequences, then use the buttons provided to dispatch the messages to

their associated applications, to export the messages to ZIP files, to close or terminate the selected

sequences, or to delete the selected sequences and all their messages.

Chapter 5. Web services 685

To see more detailed information about a particular sequence, click the Sequence identifier field. The

“Inbound sequences settings” on page 705 form is displayed. This detailed information includes

addressing information to help you identify the source of the sequence, and the value (true or false) for

″in-order delivery″ for the sequence. From this panel you can also display the following forms:

– The “Acknowledgement state collection” on page 707 form. (The ranges of message sequence

numbers received from the WS-ReliableMessaging source. If more than one range is displayed, this

indicates a gap in the messages received. If ″In-order delivery″ is selected for the sequence

manager, messages with a sequence number greater than the lowest gap cannot be delivered to the

application until the gap is closed.)

– The “Inbound message collection” on page 707 form. (The messages on the inbound sequence. You

can use this form to delete individual messages.)

- The “Message settings” on page 702 form. (The contents of an individual message in the

sequence.)

For more guidance on diagnosing problems with inbound sequences, see “Diagnosing the problem

when a reliable messaging source cannot deliver its messages”

v Investigate problems with outbound sequences.

In the navigation pane, click one of the paths to this panel. For example Servers → Server Types →

WebSphere application servers → server_name → [Additional Properties] Reliable messaging state

→ Runtime → Outbound sequences. The runtime state of each of the outbound sequences for the

current scope is displayed in the “Outbound sequence collection” on page 698 form.

You can use a filter to look at sequences that are in a particular state. For example, the state “Cannot

contact the remote endpoint” indicates that the sequence has been established but the reliable

messaging destination has stopped acknowledging messages (which, coupled with a high number of

messages awaiting transmission, could indicate a potential problem). If the sequence status is Error,

there is a problem with the sequence and the server hosting the other end of the sequence has

terminated it.

You can select one or more sequences, and use one of the buttons provided to reallocate messages to

new sequences, to export the messages to ZIP files, to close or terminate the selected sequences, or to

delete the selected sequences and all their messages.

Note: Before you delete a sequence, you can reassign its messages to new sequences or export them

to a ZIP file. For more information, see “Deleting a failed WS-ReliableMessaging outbound

sequence” on page 687

To see more detailed information about a particular sequence, click the Sequence identifier field. The

“Outbound sequences settings” on page 700 form is displayed. This detailed information includes

addressing information to help you identify the server at which the sequence is targeted. From this

panel you can also display the following forms:

– The “Outbound message collection” on page 702 form. (The messages on the outbound sequence.

You can use this form to delete individual messages.)

- The “Message settings” on page 702 form. (The contents of an individual message in the

sequence.)

For more guidance on diagnosing problems with outbound sequences, see “Diagnosing and recovering

a WS-ReliableMessaging outbound sequence that is in retransmitting state” on page 687.

Diagnosing the problem when a reliable messaging source cannot deliver its

messages

If you know the sequence identifier, and the target URI for the messages, you can use the runtime

administrative console panels to examine the sequence and determine why a reliable messaging source is

not delivering its messages into the application server.

686 Administering WebSphere applications

About this task

To diagnose this problem, complete the following steps:

1. Identify the target server or cluster from the target URI.

2. Use the administrative console to view the inbound sequences runtime information for the target server

or cluster.

In the navigation pane, click either Servers → Server Types → WebSphere application servers →

server_name → [Additional Properties] Reliable messaging state → Runtime → Inbound sequences

or Servers → Clusters → WebSphere application server clusters → cluster_name → [Additional

Properties] Reliable messaging state → Runtime → Inbound sequences. The runtime state of each

of the inbound sequences for the current scope is displayed in the “Inbound sequence collection” on

page 703 form.

3. Specify a filter on the runtime view of the sequences, filtering on the Sequence identifier provided by

the reliable messaging source owner.

4. Click on the Sequence identifier of the displayed sequence to get a more detailed view of it.

5. If the sequence has failed, examine the runtime status of the failed sequence and provide the reliable

messaging source owner with details of which messages have been acknowledged, so that the owner

can decide whether to delete, or to process out of order, any undelivered messages.

6. If the sequence has not failed, see whether there is a communications problem between the reliable

messaging source and the application server.

Diagnosing and recovering a WS-ReliableMessaging outbound sequence that is in

retransmitting state

You need to resolve a sequence in retransmitting state, because messages are backing up awaiting

delivery to the target service. The retransmission could be due to a network failure, or a failure of the

target server. The problem should resolve automatically, but you might want to investigate the cause to

speed up recovery.

About this task

To resolve a sequence in retransmitting state, complete the following steps:

1. Check for network failures.

2. If no network failures are found, look up the target endpoint address (URI) for the sequence to

determine the owner of the target service, then contact the owner to check if the target server is

available.

The target endpoint address is shown in the “Outbound sequences settings” on page 700 form. Use

the administrative console to navigate to this form, as described in “Detecting and fixing problems with

WS-ReliableMessaging” on page 684.

3. After the communication link between the two servers is re-established, use the runtime panels to

confirm that messages in the sequence are now being delivered.

Deleting a failed WS-ReliableMessaging outbound sequence

You need to resolve an outbound sequence in failed state, so that messages can again be transmitted to

the target service. A sequence in failed state shows an unrecoverable error. The sequence can no longer

be used. If messages are being delivered in order, then the failed sequence must be resolved before a

new sequence can be established.

About this task

Deleting an outbound sequence allows the runtime environment to automatically create a new sequence

the next time that an application attempts to invoke a Web service at the destination address that the

failed sequence was targeting. To work with outbound sequences you use the administrative console

runtime panels as described in “Detecting and fixing problems with WS-ReliableMessaging” on page 684.

Chapter 5. Web services 687

To diagnose and delete a failed outbound sequence, use the administrative console to complete the

following steps:

1. In the navigation pane of the administrative console, click one of the paths to the outbound sequences

collection form. For example Servers → Server Types → WebSphere application servers →

server_name → [Additional Properties] Reliable messaging state → Runtime → Outbound

sequences. The runtime state of each of the outbound sequences for the current scope is displayed in

the “Outbound sequence collection” on page 698 form.

2. Examine the failure reason by clicking on the Sequence identifier field of the failed sequence. The

“Outbound sequences settings” on page 700 form is displayed. The failure reason is based on the fault

message received by the sequence manager from the target server.

3. If there are messages associated with the failed sequence, decide what to do with these messages.

The messages might have been transmitted and received at the target server, or they might not. You

might choose to delete messages from the sequence, re-allocate them to a new sequence or export

them to a ZIP file. If you choose to delete the messages, you can either delete individual messages or

you can delete all the messages.

a. Optional: To delete one or more messages from a failed sequence, complete the following steps:

1) In the main pane of the “Outbound sequences settings” on page 700 form, under the Additional

Properties section, click Messages. The messages for the failed outbound sequence are listed

in the “Outbound message collection” on page 702 form.

2) Select the check boxes next to the names of the messages that you want to delete.

3) Click Delete.

b. Optional: To re-allocate or export all the remaining messages in a failed sequence, complete the

following steps:

1) In the main pane of the “Outbound sequence collection” on page 698 form, select the check

box next to the name of the failed sequence.

2) Click Re-allocate messages or Export unsent messages. All remaining messages in the

sequence are re-allocated to a new sequence or exported to a ZIP file.

4. Close or terminate the failed sequence.

Note: In the WS-ReliableMessaging Version 1.1 specification, a sequence can be closed rather than

terminated. This allows the final ACK state to be sent from the reliable messaging destination to

the reliable messaging source. In the WS-ReliableMessaging Version 1.0 specification this does

not happen, so the final ACK state might not be known at the reliable messaging source. For

more information about the distinction between close and terminate, see “Outbound sequence

collection” on page 698.

a. In the main pane of the “Outbound sequence collection” on page 698 form, select the check box

next to the name of the failed sequence.

b. Click Close sequence or Terminate sequence.

5. Delete the failed sequence.

a. In the main pane of the “Outbound sequence collection” on page 698 form, select the check box

next to the name of the failed sequence.

b. Click Delete sequence.

WS-ReliableMessaging troubleshooting tips

Tips for troubleshooting your WS-ReliableMessaging configuration.

To help you identify and resolve problems with WS-ReliableMessaging, you can use the TCP/IP monitor to

view the messages that are flowing between your client applications and reliable messaging enabled Web

services. You can also use the WebSphere Application Server trace and logging facilities as described in

Tracing and logging configuration.

To enable trace for WS-ReliableMessaging, set the application server trace string as follows:

688 Administering WebSphere applications

v For either of the managed qualities of service:

org.apache.sandesha2*=all=enabled:com.ibm.ws.websvcs.rm*=all=enabled:org.apache.axis2*=all=enabled:com.ibm.ws.sib.wsrm*=all=enabled

v For the Unmanaged Non-Persistent quality of service:

org.apache.sandesha2*=all=enabled:com.ibm.ws.websvcs.rm*=all=enabled:org.apache.axis2*=all=enabled

If you encounter a problem that you think might be related to WS-ReliableMessaging, you can check for

error messages in the WebSphere Application Server administrative console, and in the application server

SystemOut.log file. You can also enable the application server debug trace to provide a detailed exception

dump.

A list of the main known restrictions that apply when using WS-ReliableMessaging is provided in

“WS-ReliableMessaging known restrictions” on page 693.

WebSphere Application Server system messages are logged from a variety of sources, including

application server components and applications. Messages logged by application server components and

associated IBM products start with a unique message identifier that indicates the component or application

that issued the message. The prefix for the WS-ReliableMessaging component is CWSKA.

The Troubleshooter reference: Messages topic contains information about all WebSphere Application

Server messages, indexed by message prefix. For each message there is an explanation of the problem,

and details of any action that you can take to resolve the problem.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “If reliable messaging is running on a cluster, when you examine the runtime state of inbound or

outbound sequences you see multiple entries for each sequence”

v “You get runtime errors when you migrate persisted WS-ReliableMessaging messages from Version

6.1.0.9 or 6.1.0.11 of the Feature Pack for Web Services to a later version of the product” on page 690

v “When an application server starts, a messaging engine used for reliable messaging is reported as

unavailable” on page 690

v “A client application is unable to invoke a reliable messaging enabled Web service” on page 690

v “A sequence is not established, and therefore WS-ReliableMessaging cannot ensure messages are

transmitted” on page 691

v “A sequence is established but cannot be used, and therefore WS-ReliableMessaging cannot ensure

messages are transmitted” on page 691

v “The reliable messaging managed store is not initialized because the policy set binding is not complete

or not valid” on page 692

v “Reliable messaging is interrupted because a server is unavailable” on page 692

v “Socket timeout errors are received when running multiple reliable messaging client applications in a

cluster” on page 692

v “A message is not recovered after a server becomes unavailable, even with the managed persistent

quality of service” on page 692

v “When using reliable messaging with a persistent WS-I RSP profile and WS-SecureConversation, an

exception message states that the security context token is not valid” on page 692

If reliable messaging is running on a cluster, when you examine the runtime state of

inbound or outbound sequences you see multiple entries for each sequence

This is because, although reliable messaging only binds to one messaging engine in a cluster, the runtime

panel is calculating and displaying the sequence information once for every cluster member. Ignore the

duplicate entries. Note that the slight differences in the statistics being displayed for each duplicate entry is

due to the entries being created sequentially, while polling for messages continues.

Chapter 5. Web services 689

You get runtime errors when you migrate persisted WS-ReliableMessaging messages from

Version 6.1.0.9 or 6.1.0.11 of the Feature Pack for Web Services to a later version of the

product

If you are migrating from WebSphere Application Server Version 6.1, and you are using Version 6.1.0.9 or

6.1.0.11 of the Feature Pack for Web Services, and your configuration includes WS-ReliableMessaging

configured for the managed persistent quality of service, you need to remove all persisted messages

before you migrate.

Each message is persisted as part of a sequence that is currently being processed. To remove all

persisted messages, use the administrative console to complete the following steps:

1. Navigate to the “Inbound sequence collection” on page 703 runtime panel for your reliable messaging

application.

2. Select all the inbound sequences, then click the delete sequence and messages button to delete the

sequences.

3. Navigate to the “Outbound sequence collection” on page 698 runtime panel, then repeat the previous

steps for the outbound sequences.

When an application server starts, a messaging engine used for reliable messaging is

reported as unavailable

When you use reliable messaging with a managed quality of service, you might see the following

exception message when your application server starts:

CWSIT0019E: No suitable messaging engine is available on bus yourBus that matched the specified connection properties

In a network deployment environment, this can occur because the messaging engine is on an application

server or cluster member that has started later than the server that hosts your reliable messaging

application. In this case you need do nothing but wait; reliable messaging will keep trying to connect until

the messaging engine becomes available.

If you suspect there is an underlying problem, for example the bindings are incorrect or the server that

hosts the messaging engine is not going to start, complete the following checks:

v Check that the specified messaging engine and service integration bus exist.

v Check the system out log to ensure that the server that hosts the messaging engine has started.

A client application is unable to invoke a reliable messaging enabled Web service

If your client application is unable to invoke a reliable messaging enabled Web service, you can use the

TCP-IP monitor to view the messages that are flowing between the client and the service. You should also

check the following:

v The endpoint is available.

v The service is running.

v The service has been invoked.

v WS-ReliableMessaging is running.

v WS-ReliableMessaging is correctly configured. In particular, for either of the managed qualities of

service, check that you have configured a valid binding to a service integration bus and messaging

engine, and that the messaging engine is running. For more information, see “Attaching and binding a

WS-ReliableMessaging policy set to a Web service application using the administrative console” on

page 681 or “Attaching and binding a WS-ReliableMessaging policy set to a Web service application

using the wsadmin tool” on page 683.

v There are not too many applications sharing a single messaging engine.

690 Administering WebSphere applications

Note: When many applications use the same messaging engine, it can impact performance. Factors to

consider include the number of applications that are already binding to the messaging engine,

the CPU utilization, and the message throughput. To improve performance for a single server

configuration, create a new messaging engine to bind to your application.

A sequence is not established, and therefore WS-ReliableMessaging cannot ensure

messages are transmitted

After a sequence has been established, WS-ReliableMessaging provides retransmission of messages to a

service. However if the sequence is not established then the messages are not transmitted to the service

and a message similar to the following example is displayed:

org.apache.axis2.AxisFault: The Create Sequence request has been refused by the RM Destination

The initial createSequence message has been refused. This is propagated back, and causes the client to

fail. For information about CreateSequence and CreateSequenceRefused, see the “WS-
ReliableMessaging: supported specifications and standards” on page 666.

You might also see a subsequent message to help explain why the request has been refused. For

example:

Caused by: javax.xml.ws.soap.SOAPFaultException: com.ibm.ws.sib.wsrm.exceptions.WSRMRuntimeException:

CWSJZ0202I: A messaging engine connection is unavailable for bus myBus.

There is a problem with your reliable messaging configuration. Complete the following checks:

v Check that the policy sets are correctly applied. Specifically, check that the destination has reliable

messaging correctly enabled.

v Check the logs for server-side problems.

v For the managed persistent quality of service, check that the associated messaging engine is available.

For further checks that might help you resolve the problem, see also the following troubleshooting tips:

v “A sequence is established but cannot be used, and therefore WS-ReliableMessaging cannot ensure

messages are transmitted.”

v “A client application is unable to invoke a reliable messaging enabled Web service” on page 690.

A sequence is established but cannot be used, and therefore WS-ReliableMessaging

cannot ensure messages are transmitted

If you get an exception like the following exception, then the sequence is established but cannot be used:

javax.xml.ws.WebServiceException: org.apache.axis2.AxisFault: The value of wsrm:Identifier is not a known Sequence identifier.

The most common reason is that you are working in a clustered environment but your server-side policy

set specifies the unmanaged non-persistent quality of service. For example: The WS-I RSP default policy

set specifies the unmanaged non-persistent quality of service. To use reliable asynchronous messaging in

a clustered environment, you must use a managed quality of service to enable the cluster members to

correlate reliable messaging state. To do this, either use the WS-I RSP ND default policy set, or modify

your custom policy set so that the WS-ReliableMessaging policy specifies a managed quality of service,

and an associated binding to a service integration bus and messaging engine. For information about how

to do this, see “Configuring a WS-ReliableMessaging policy set using the administrative console” on page

677 and “Attaching and binding a WS-ReliableMessaging policy set to a Web service application using the

administrative console” on page 681.

For further checks that might help you resolve the problem, see also the following troubleshooting tips:

v “A sequence is not established, and therefore WS-ReliableMessaging cannot ensure messages are

transmitted.”

v “A client application is unable to invoke a reliable messaging enabled Web service” on page 690.

Chapter 5. Web services 691

The reliable messaging managed store is not initialized because the policy set binding is

not complete or not valid

If your policy set specifies a managed quality of service, but you have not specified a binding to a

messaging engine to support that quality of service, you get the following exception message:

CWSKA0102E: The managed Web services reliable messaging storage manager could not be initialized because the policy set binding

 was incomplete or invalid.

Perhaps you have attached a managed policy set to your application, and used the default bindings (which

do not support the managed qualities of service). You need to create a new binding for your application

that specifies a service integration bus and messaging engine to support the managed qualities of service.

To do this, see “Attaching and binding a WS-ReliableMessaging policy set to a Web service application

using the administrative console” on page 681.

Reliable messaging is interrupted because a server is unavailable

Clustering offers maximum protection against servers becoming unavailable. It provides highly available

service endpoints, and (through the service integration bus) high availability of the reliable messaging

layer.

For more information about configuring high availability for Web services and messaging engines, see

Balancing workloads with clusters and Adding a messaging engine to a cluster.

Socket timeout errors are received when running multiple reliable messaging client

applications in a cluster

When many applications use the same messaging engine, it can impact performance and in some cases

lead to timeout errors.

For more information about configuring high availability for Web services and messaging engines, see

Balancing workloads with clusters and Adding a messaging engine to a cluster.

A message is not recovered after a server becomes unavailable, even with the managed

persistent quality of service

When the reliable messaging layer receives a request message, it sends an acknowledgement then

delivers the message to the target service. There is a marginal possibility that the server hosting the

reliable messaging layer could become unavailable after the request message has been acknowledged

and before it has been delivered. In this case, the message is only recovered if you are using in-order

delivery as well as managed persistent quality of service. To specify in-order delivery, select the

WS-ReliableMessaging policy option to “Deliver messages in the order that they were sent” as described

in “Configuring the WS-ReliableMessaging policy” on page 936.

Note: There is a performance overhead in using in-order delivery, because messages are held in a queue

until they can be delivered in order. However, where the highest level of reliability is paramount it is

recommended that you always specify in-order delivery in conjunction with the managed persistent

quality of service.

When using reliable messaging with a persistent WS-I RSP profile and

WS-SecureConversation, an exception message states that the security context token is

not valid

When you use a persistent WS-I RSP policy set, which includes WS-SecureConversation, if the scoping

security context token is expired when the server is restarted then WS-ReliableMessaging cannot resend

its messages and system messages are written to the log file stating that the reliable messaging sequence

was not secured using the correct security token. For example:

692 Administering WebSphere applications

friend.sib/tasks/tjj0042_.dita
friend.sib/tasks/tjj0042_.dita

CWWSS7215E: Cannot get valid security context token from the cache.

To ensure that the scoping security context token does not expire before WS-ReliableMessaging can

recover and resend its messages, complete the following task: “Configuring WS-SecureConversation to

work with WS-ReliableMessaging” on page 680.

WS-ReliableMessaging known restrictions:

The main known restrictions that apply to the implementation of WS-ReliableMessaging in WebSphere

Application Server.

 v “IBM HTTP Server is not supported as a proxy server with WS-ReliableMessaging”

v “A WS-ReliableMessaging policy can only be applied at application or service level.”

v “WS-SecureConversation must expect the WS-ReliableMessaging headers to be signed”

IBM HTTP Server is not supported as a proxy server with WS-ReliableMessaging

When WS-ReliableMessaging is enabled, you cannot use IBM HTTP Server as a proxy server to route

responses back to an individual server in a clustered environment. If you use IBM HTTP Server in this

scenario, replies to protocol messages, such as WS-ReliableMessaging CreateSequenceResponse

messages, are not routed back to the originating server. This is because WS-ReliableMessaging protocol

messages use WS-Addressing affinity headers to ensure that the protocol responses are routed back to

the originating server. These affinity headers are supported in IBM WebSphere Application Server proxy

server, but are not supported in IBM HTTP Server.

Use the IBM WebSphere Application Server proxy server to route messages from and back to the cluster,

instead of IBM HTTP Server.

A WS-ReliableMessaging policy can only be applied at application or service level.

You can only apply a WS-ReliableMessaging policy at application level or service level.

If you apply reliable messaging at service level, then all services must use the same

WS-ReliableMessaging policy and bindings values.

You can attach any policy set at operation level. For a policy set that includes the WS-ReliableMessaging

policy, attachment at the operation level configures the other components of the policy set (for example

WS-Security and WS-Addressing) but any WS-ReliableMessaging configuration at operation level is

ignored.

WS-SecureConversation must expect the WS-ReliableMessaging headers to be signed

Although secure conversation allows message headers to remain unsigned, the reliable messaging policy

requires the reliable messaging headers to be signed. If you want to use secure conversation and reliable

messaging policies in the same policy set, the secure conversation bindings must be configured to require

that the reliable messaging headers are signed.

The reliable secure profile default policy sets (WS-I RSP and WS-I RSP ND) are specifically designed and

configured to use secure conversation and reliable messaging in the same policy set. If you use a copy of

one of the reliable secure profile default policy sets (WS-I RSP and WS-I RSP ND), no further

configuration of the secure conversation bindings is required. Otherwise, see “Configuring

WS-SecureConversation to work with WS-ReliableMessaging” on page 680.

WS-ReliableMessaging roles and goals

Computing roles that members of your organization might perform, and how you can use

WS-ReliableMessaging to help meet the goals of each role.

Chapter 5. Web services 693

For a general description of each of the following roles, see “WebSphere Application Server roles and

goals” on page 421.

Application developer

The application developer is responsible for creating the WS-ReliableMessaging requester applications

and provider applications. The application developer is responsible for writing the application code and

packaging the application into a deployable unit.

Developing

v Goal: Develop a JAX-WS Web service application.

System administrator

The system administrator is responsible for providing the infrastructure, such as configured application

servers, through which the applications can be deployed and executed. The system administrator is also

responsible for deploying applications into the configured environment, and for maintaining the

environment and applications in good working order. This maintenance role includes operational

management of state, such as messages and transaction state, and problem diagnosis to determine

message or transaction outcomes.

Deploying

v Goal: Configure a policy set instance to enable WS-ReliableMessaging.

v Goal: Install your reliable JAX-WS Web service application.

v Goal: Attach and bind a WS-ReliableMessaging policy set to your application.

Operating

v Goal: Detect and fix problems with WS-ReliableMessaging.

WS-ReliableMessaging - requirements for interaction with other

implementations

The information and configuration that is needed for another vendor’s reliable messaging source to send

messages to a WebSphere Application Server reliable messaging destination, or for a WebSphere

Application Server reliable messaging source to send messages to another vendor’s reliable messaging

destination.

Using another vendor’s reliable messaging source to send messages to a

WebSphere Application Server reliable messaging destination

For another vendor’s WS-ReliableMessaging implementation to interact with a WebSphere Application

Server WS-ReliableMessaging endpoint, the other vendor’s reliable messaging source needs to know the

target endpoint address and port for the WebSphere Application Server application that is enabled for

reliable messaging. The WS-ReliableMessaging protocol messages are sent to the same endpoint address

as the application messages. You can get this address from the WSDL published by the WebSphere

Application Server endpoint.

The reliable messaging source controls the endpoint reference used for acknowledgement messages, so

the other vendor’s product might need to use the WS-Addressing anonymous URI. For more information,

see WS-ReliableMessaging - How it works. Whether or not the reliable messaging source uses the

WS-Addressing anonymous URI, the WebSphere Application Server reliable messaging destination can

work with the reliable messaging source without further configuration.

A WebSphere Application Server reliable messaging destination cannot tell whether or not the reliable

messaging source is durable and transactional. If you want durable transactional Web services, check that

694 Administering WebSphere applications

the other vendor’s reliable messaging source supports that mode of operation, as well as configuring the

WebSphere Application Server end of the link.

Using a WebSphere Application Server reliable messaging source to send

messages to another vendor’s reliable messaging destination

For an application in WebSphere Application Server to invoke a Web service using

WS-ReliableMessaging, the information required is the target endpoint address and port for the Web

service being invoked. The WS-ReliableMessaging protocol messages are sent to the same endpoint

address as the application messages. You can usually get this address from the WSDL published by the

target Web service.

The WebSphere Application Server Source is provided with additional WS-ReliableMessaging

configuration, modeled as part of the policy set associated with the Web service client. The policy set

might configure the reliable messaging source to use the WS-Addressing anonymous URI as the address

within the endpoint reference used for acknowledgement messages. For more information, see

“WS-ReliableMessaging - How it works” on page 659

WebSphere Application Server cannot tell whether the reliable messaging destination is durable and

transactional. If you want durable transactional Web services, check that the other vendor’s reliable

messaging destination supports that mode of operation, as well as configuring the WebSphere Application

Server end of the link.

WS-ReliableMessaging - administrative console panels

Links to topics that describe the contents of the administrative console panels that you can use to

configure and operate WS-ReliableMessaging. Each topic gives details of the purpose and use of a panel,

the administrative console navigation path to the panel, and the values that you can set in each field of the

panel.

Configuration panels

v “WS-ReliableMessaging settings” on page 937

v “WS-ReliableMessaging policy binding” on page 939

Runtime panels

This set of panels is available at any of the following scopes within the administrative console:

Cell: Services → Reliable messaging state

Application server:

Servers → Server Types → WebSphere application servers → server_name → [Additional

Properties] Reliable messaging state

Cluster:

Servers → Clusters → WebSphere application server clusters → cluster_name → [Additional

Properties] Reliable messaging state

Enterprise application:

Applications → Enterprise Applications → application_name → [Web Services Properties]

Reliable messaging state

Bus: Service integration → Buses → bus_name → [Services] Reliable messaging state

Messaging engine:

Service integration → Buses → bus_name → [Topology] Messaging engines →

messaging_engine_name → [Additional Properties] Reliable messaging state

At each of the previous scopes, the panels navigation structure is as follows:

Chapter 5. Web services 695

v “Reliable messaging state settings”

– “Message store collection” on page 697

– “Inbound sequence collection” on page 703

- “Inbound sequences settings” on page 705

v “Acknowledgement state collection” on page 707

v “Inbound message collection” on page 707

– “Message settings” on page 702

- “Export messages settings” on page 708

– “Outbound sequence collection” on page 698

- “Outbound sequences settings” on page 700

v “Outbound message collection” on page 702

– “Message settings” on page 702

- “Export messages settings” on page 708

Reliable messaging state settings

This page provides an overview of the WS-ReliableMessaging runtime state. Use this page to manage

reliable messaging at run time.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime

environment, but are not preserved when that environment is stopped. To preserve runtime property

values, change the equivalent property values on the Configuration tab. See the information center task

descriptions for information about how to apply configuration changes to the runtime environment.

Reliable messaging state

Select the aspect of WS-ReliableMessaging for which you want to view runtime information.

The following icons are displayed here and on several other reliable messaging runtime panels:

OK Everything here, and (if there is a link) in all runtime panels below this link, is

running normally.

696 Administering WebSphere applications

Warning Something here, or (if there is a link) in one of the runtime panels below this

link, is in an unusual state and you might need to take some action to resolve

it.

For example, the system might be awaiting a response from an endpoint. In this

case, either the response will be received (in which case you need take no

action and the runtime information will be updated to ″OK″) or the reliable

messaging destination has stopped acknowledging messages (in which case

you need to take some action to resolve the failed sequence).

Error There is a definite error that you need to take some action to resolve, either

here or (if there is a link) in one of the runtime panels below this link.

Note that for troubleshooting purposes you only need to follow links to the sub-panels if states other than

″OK″ are displayed.

Message stores

This page displays the collection of reliable messaging storage managers for the current scope.

Inbound sequences

This page displays the collection of inbound sequences for the current scope. Each inbound

sequence is used to receive messages that have been transmitted reliably.

Outbound sequences

This page displays the collection of outbound sequences for the current scope. Outbound

sequences are used to transmit messages reliably from the local application to the remote

endpoint. Each sequence has a unique identifier.

Message store collection

This page displays the collection of reliable messaging storage managers for the current scope.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Message store.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

The following icons are displayed here and on several other reliable messaging runtime panels:

OK Everything here, and (if there is a link) in all runtime panels below this link, is

running normally.

Warning Something here, or (if there is a link) in one of the runtime panels below this

link, is in an unusual state and you might need to take some action to resolve

it.

For example, the system might be awaiting a response from an endpoint. In this

case, either the response will be received (in which case you need take no

action and the runtime information will be updated to ″OK″) or the reliable

messaging destination has stopped acknowledging messages (in which case

you need to take some action to resolve the failed sequence).

Error There is a definite error that you need to take some action to resolve, either

here or (if there is a link) in one of the runtime panels below this link.

Note that for troubleshooting purposes you only need to follow links to the sub-panels if states other than

″OK″ are displayed.

Chapter 5. Web services 697

Message store type

For the managed qualities of service, the messages are written to a messaging engine. For the

unmanaged non-persistent quality of service, the messages are stored in memory.

Description

The quality of service being used and the application name.

Details

For in-memory stores the only possible value is ″Running″. For messages stored by a messaging

engine, the possible values are ″Running″ or ″Messaging engine not contactable″, probably

because the messaging engine is not running.

Status

The ″OK″ icon indicates that the message store is running. If the messaging engine is not

contactable, the ″Error″ icon is displayed.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Outbound sequence collection

This page displays the collection of outbound sequences for the current scope. Outbound sequences are

used to transmit messages reliably from the local application to the remote endpoint. Each sequence has

a unique identifier.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Outbound sequences.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

The following icons are displayed here and on several other reliable messaging runtime panels:

OK Everything here, and (if there is a link) in all runtime panels below this link, is

running normally.

Warning Something here, or (if there is a link) in one of the runtime panels below this

link, is in an unusual state and you might need to take some action to resolve

it.

For example, the system might be awaiting a response from an endpoint. In this

case, either the response will be received (in which case you need take no

action and the runtime information will be updated to ″OK″) or the reliable

messaging destination has stopped acknowledging messages (in which case

you need to take some action to resolve the failed sequence).

Error There is a definite error that you need to take some action to resolve, either

here or (if there is a link) in one of the runtime panels below this link.

698 Administering WebSphere applications

Note that for troubleshooting purposes you only need to follow links to the sub-panels if states other than

″OK″ are displayed.

Note:

If reliable messaging is running on a cluster, when you examine the runtime state of inbound or

outbound sequences you see multiple entries for each sequence. This is because, although reliable

messaging only binds to one messaging engine in a cluster, the runtime panel is calculating and

displaying the sequence information once for every cluster member.

Ignore the duplicate entries. Note that the slight differences in the statistics being displayed for each

duplicate entry is due to the entries being created sequentially, while polling for messages

continues.

Sequence identifier

This URI is the unique identifier for the sequence.

Associated application

The application that created the sequence.

Target endpoint URI

The destination to which messages are transmitted.

Message depth

The count of messages, held by the reliable messaging layer, that have not yet been transferred.

Messages sent

The total count of messages sent by the application for this sequence.

Details

The current state of the sequence. ″Establishing″ indicates that the sequence is awaiting a

CreateSequenceResponse message from the reliable messaging destination; ″Active″ indicates

that the sequence has been established; ″Cannot contact the remote endpoint″ indicates that the

sequence has been established but the reliable messaging destination has stopped acknowledging

messages; ″Sequence closing″ indicates that the sequence is closing and will accept no new

messages; ″Sequence closed″ indicates that the sequence has been closed and will accept no

new messages; ″Sequence terminating″ indicates that the sequence is terminating and will accept

no new messages; ″The inbound side has lost state in a terminate″ indicates that the sequence

has terminated with unacknowledged messages outstanding; ″The sequence has timed out″

indicates that the sequence has timed out.

Status

The icon indicates ″OK″, ″Warning″ or ″Error″ as previously described on this page. A more

precise indication of the sequence state is given in the ″Details″ column.

Buttons

 Re-allocate messages Click this button to re-allocate the messages on the

selected sequences to new sequences.

Export unsent messages Click this button to export the messages from the

selected sequences to ZIP files. If you select any

sequences that have no messages to export, a warning

or error message is displayed.

Chapter 5. Web services 699

Close sequence Click this button to close the selected sequences and

send a CloseSequence message to indicate that the

sequence is complete and will not be sending any further

messages. The close protocol does not delete the

resources for the sequence, so you can still access any

undispatched or unsent messages. If you are using

Version 1.0 of the WS-ReliableMessaging specification

(which does not support this option) an error message is

displayed. For more information on the reliable

messaging close protocol, see “WS-ReliableMessaging:

supported specifications and standards” on page 666.

Terminate sequence Click this button to close the selected sequences and

send a TerminateSequence message to indicate that the

sequence is complete and will not be sending any further

messages. The terminate protocol deletes all resources

for the sequence. For more information on the reliable

messaging terminate protocol, see “WS-
ReliableMessaging: supported specifications and

standards” on page 666.

Delete sequence Click this button to delete the selected sequences without

sending a TerminateSequence message.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Outbound sequences settings

This page displays the collection of outbound sequences for the current scope. Outbound sequences are

used to transmit messages reliably from the local application to the remote endpoint. Each sequence has

a unique identifier.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Outbound sequences → outbound_sequence_name.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime

environment, but are not preserved when that environment is stopped. To preserve runtime property

values, change the equivalent property values on the Configuration tab. See the information center task

descriptions for information about how to apply configuration changes to the runtime environment.

700 Administering WebSphere applications

General properties

Sequence identifier

This URI is the unique identifier for the sequence.

 Required No

Data type Text

Runtime identifier

The identifier that is used within the application server runtime environment.

 Required No

Data type Text

Associated application

The application that created the sequence.

 Required No

Data type Text

WS-Addressing namespace

The WS-Addressing namespace that is associated with the sequence.

 Required No

Data type Text

WS-ReliableMessaging namespace

The namespace that is defined by the version of the WS-ReliableMessaging specification used by

the sequence.

 Required No

Data type Text

Target endpoint URI

The destination to which messages are transmitted.

 Required No

Data type Text

Reply to address

The WS-Addressing replyTo address that is used for WS-ReliableMessaging protocol messages.

 Required No

Data type Text

Acknowledgement address

The address used for WS-ReliableMessaging acknowledgements.

 Required No

Data type Text

Message depth

The count of messages, held by the reliable messaging layer, that have not yet been transferred.

 Required No

Data type Text

Chapter 5. Web services 701

Messages sent

The total count of messages sent by the application for this sequence.

 Required No

Data type Text

Outbound message collection

The messages on the outbound sequence.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Outbound sequences → outbound_sequence_name → [Additional

properties] Messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

Message number

The index number of the message in the sequence.

State The two possible states are ″Sendable″ (indicating that it is expected to be sent soon) and

″Awaiting sequence initialization″.

Buttons

 Refresh Click this button to refresh the list of items.

Delete Click this button to delete the selected items.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Message settings

The details of an individual message.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

At each scope, this panel is available for both inbound and outbound sequences. For example:

v Servers → Server Types → WebSphere application servers → server_name → [Additional Properties]

Reliable messaging state → Runtime → Inbound sequences → inbound_sequence_name →

[Additional properties] Messages → message_number

702 Administering WebSphere applications

v Servers → Server Types → WebSphere application servers → server_name → [Additional Properties]

Reliable messaging state → Runtime → Outbound sequences → outbound_sequence_name →

[Additional properties] Messages → message_number

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime

environment, but are not preserved when that environment is stopped. To preserve runtime property

values, change the equivalent property values on the Configuration tab. See the information center task

descriptions for information about how to apply configuration changes to the runtime environment.

General properties

Message number

The index number of the message in the sequence.

 Required No

Data type Text

Message contents

The contents of the message.

 Required No

Data type Custom

Inbound sequence collection

This page displays the collection of inbound sequences for the current scope. Each inbound sequence is

used to receive messages that have been transmitted reliably.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Inbound sequences.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

The following icons are displayed here and on several other reliable messaging runtime panels:

OK Everything here, and (if there is a link) in all runtime panels below this link, is

running normally.

Chapter 5. Web services 703

Warning Something here, or (if there is a link) in one of the runtime panels below this

link, is in an unusual state and you might need to take some action to resolve

it.

For example, the system might be awaiting a response from an endpoint. In this

case, either the response will be received (in which case you need take no

action and the runtime information will be updated to ″OK″) or the reliable

messaging destination has stopped acknowledging messages (in which case

you need to take some action to resolve the failed sequence).

Error There is a definite error that you need to take some action to resolve, either

here or (if there is a link) in one of the runtime panels below this link.

Note that for troubleshooting purposes you only need to follow links to the sub-panels if states other than

″OK″ are displayed.

Note:

If reliable messaging is running on a cluster, when you examine the runtime state of inbound or

outbound sequences you see multiple entries for each sequence. This is because, although reliable

messaging only binds to one messaging engine in a cluster, the runtime panel is calculating and

displaying the sequence information once for every cluster member.

Ignore the duplicate entries. Note that the slight differences in the statistics being displayed for each

duplicate entry is due to the entries being created sequentially, while polling for messages

continues.

Sequence identifier

This URI is the unique identifier for the sequence.

Associated application

The application that is receiving messages from the sequence.

Message depth

The count of messages, held by the reliable messaging layer, that have not yet been transferred.

Messages received

The total count of application messages received for the sequence since its creation.

Details

The current state of the sequence. ″Connected″ indicates that the sequence has been established;

″Awaiting redelivery of a missing msg.″ indicates that there is a gap in the sequence; ″Closed″

indicates that the sequence has been closed; ″Failed due to missing message″ indicates that the

sequence terminated with a gap in the sequence.

Status

The icon indicates ″OK″, ″Warning″ or ″Error″ as previously described on this page. A more

precise indication of the sequence state is given in the ″Details″ column.

Buttons

 Dispatch messages to application Click this button to dispatch the messages on the

selected sequences to the associated applications.

Export undispatched messages Click this button to export the messages from the

selected sequences to ZIP files. If you select any

sequences that have no messages to export, a warning

or error message is displayed.

704 Administering WebSphere applications

Close sequence Click this button to close the selected sequences and

send a CloseSequence message to indicate that the

sequence is complete and will not be sending any further

messages. The close protocol does not delete the

resources for the sequence, so you can still access any

undispatched or unsent messages. If you are using

Version 1.0 of the WS-ReliableMessaging specification

(which does not support this option) an error message is

displayed. For more information on the reliable

messaging close protocol, see “WS-ReliableMessaging:

supported specifications and standards” on page 666.

Terminate sequence Click this button to close the selected sequences and

send a TerminateSequence message to indicate that the

sequence is complete and will not be sending any further

messages. The terminate protocol deletes all resources

for the sequence. For more information on the reliable

messaging terminate protocol, see “WS-
ReliableMessaging: supported specifications and

standards” on page 666.

Delete sequence and messages Click this button to delete the selected sequences and all

their messages. Use this in cases where the remote

endpoint is unable to respond to any reliable messaging

protocol messages, and therefore the sequence cannot

be closed or terminated.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Inbound sequences settings

This page displays the collection of inbound sequences for the current scope. Each inbound sequence is

used to receive messages that have been transmitted reliably.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Inbound sequences → inbound_sequence_name.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime

environment, but are not preserved when that environment is stopped. To preserve runtime property

values, change the equivalent property values on the Configuration tab. See the information center task

descriptions for information about how to apply configuration changes to the runtime environment.

Chapter 5. Web services 705

General properties

Sequence identifier

This URI is the unique identifier for the sequence.

 Required No

Data type Text

Associated application

The application that is receiving messages from the sequence.

 Required No

Data type Text

WS-Addressing namespace

The WS-Addressing namespace that is associated with the sequence.

 Required No

Data type Text

WS-ReliableMessaging namespace

The namespace that is defined by the version of the WS-ReliableMessaging specification used by

the sequence.

 Required No

Data type Text

Target endpoint URI

The destination to which messages are transmitted.

 Required No

Data type Text

Reply to address

The WS-Addressing replyTo address that is used for WS-ReliableMessaging protocol messages.

 Required No

Data type Text

Acknowledgement address

The address used for WS-ReliableMessaging acknowledgements.

 Required No

Data type Text

Message depth

The count of messages, held by the reliable messaging layer, that have not yet been transferred.

 Required No

Data type Text

Highest inbound message number

The highest message number that has been received within the sequence.

 Required No

Data type Text

706 Administering WebSphere applications

In-order delivery

When this parameter is true, messages are dispatched to the application in the order that they

were assigned to the sequence.

 Required No

Data type Text

Inbound message collection

The messages on the inbound sequence.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Inbound sequences → inbound_sequence_name → [Additional

properties] Messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

Message number

The index number of the message in the sequence.

State The only possible state is ″Awaiting dispatch to application″.

Buttons

 Refresh Click this button to refresh the list of items.

Delete Click this button to delete the selected items.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Acknowledgement state collection

The ranges of message sequence numbers received from the WS-ReliableMessaging source. If more than

one range is displayed, this indicates a gap in the messages received. If ″In-order delivery″ is selected for

the sequence manager, messages with a sequence number greater than the lowest gap cannot be

delivered to the application until the gap is closed.

To view this pane in the console, click one of the paths to this panel. For example Servers → Server

Types → WebSphere application servers → server_name → [Additional Properties] Reliable

messaging state → Runtime → Inbound sequences → inbound_sequence_name → [Additional

properties] Ack state.

Chapter 5. Web services 707

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

Low end of range

The message number for the lowest numbered message in this range.

High end of range

The message number for the highest numbered message in this range.

Buttons

 Refresh Click this button to refresh the list of items.

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

Export messages settings

Export the messages from the selected sequences to ZIP files.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative

console. For more information, see “WS-ReliableMessaging - administrative console panels” on page 695.

At each scope, this panel is available for both inbound and outbound sequences. For example:

v Servers → Server Types → WebSphere application servers → server_name → [Additional Properties]

Reliable messaging state → Runtime → Inbound sequences → [Button bar] Export undispatched

messages

v Servers → Server Types → WebSphere application servers → server_name → [Additional Properties]

Reliable messaging state → Runtime → Outbound sequences → [Button bar] Export unsent

messages

General properties

Export messages

A list of the exported messages ZIP files that have been created. To save these ZIP files to your

file system, click each file individually then use your Web browser ″save file″ option.

708 Administering WebSphere applications

Related tasks

“Detecting and fixing problems with WS-ReliableMessaging” on page 684
The nature of WS-ReliableMessaging is that network and server failures are assumed, and therefore the

target Web service or message store might not be available. In these cases, message sequences cannot

be completed and collections of Web service messages are held awaiting transmission. You can use the

SystemOut.log file, system events, and the runtime administrative panels to monitor the system and detect

and fix problems with WS-ReliableMessaging.

WS-Notification Service client settings

Use this page to manage policy sets and bindings or to access additional information for this

WS-Notification service client.

To view this pane in the console, click the following path:

Services → Service clients → ws-notification_service_client_name

This panel shows the policy set and binding configuration information for a single Version 7.0

WS-Notification service client, and also gives you links to the associated service integration bus and

WS-Notification service.

Note: The same policy set and binding configuration information can also be viewed and modified through

the “Service client policy sets and bindings” panel, which gives an upper-level view of all service

clients associated with a particular WS-Notification service. Through the “Service client policy sets

and bindings” panel, you can assign a policy set or binding to a specific service client, or to all

clients for the service. To view the “Service client policy sets and bindings” panel for a given

WS-Notification service, click one of the following paths:

v Service integration → WS-Notification → Services → service_name → [Additional properties]

Outbound request policy sets and bindings

v Service integration → Buses → bus_name → [Services] WS-Notification services →

service_name → [Additional properties] Outbound request policy sets and bindings

Chapter 5. Web services 709

Related concepts

WS-Notification and policy set configuration

“WS-ReliableMessaging default policy sets” on page 840
The WS-ReliableMessaging default policy sets are pre-configured to provide reliable message exchange

between Web services. Two of these policy sets (WS-I RSP and WS-I RSP ND) are immediately available,

and the rest are readily available for import from a default repository.

Related tasks

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Adding assured delivery to Web services through WS-ReliableMessaging” on page 657
WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between

two endpoints. With WS-ReliableMessaging, you can make your SOAP over HTTP-based Web services

reliable without having to write custom code. You can get different qualities of service with

WS-ReliableMessaging. These range from protecting against loss of messages across a network, through

to protecting against a server becoming unavailable.

Using WS-Notification for publish and subscribe messaging for Web services

Related reference

“Service client policy set and bindings collection” on page 792
Use this page to attach and detach policy sets to an application, a service client, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use existing

bindings for an attached policy set. You can view or change whether the client uses the policy of the

service provider.

Web services: Client security bindings collection
Use this page to view a list of application-level, client-side binding configurations for Web services security.

These bindings are used when a Web service is a client to another Web service.

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console

panel. The preference settings vary from one administrative console panel to another.

Configuration tab: Configuration properties for this object. These property values are preserved even if

the runtime environment is stopped then restarted. See the information center task descriptions for

information about how to apply configuration changes to the runtime environment.

General Properties

Service client

Specifies the name of the service client that is displayed.

710 Administering WebSphere applications

friend.sib/concepts/cjwsn_policy_sets.dita
friend.sib/tasks/tjwsn_ep.dita

Additional Properties

Service integration bus

The system integration bus hosting this WS-Notification service Web service client.

WS-Notification service

The WS-Notification service hosting this client.

Policy Set Attachments

This section allows you to attach a policy set to the WS-Notification service client. You can complete the

attachment by providing system-specific configuration when you assign the appropriate binding.

For more information about the policy set attachment options, see “Service client settings” on page 785.

Note: For WS-Notification service clients, policy set attachments are not supported at the endpoint (port)

or operation level. Therefore, endpoints or operations are not selectable, and they are shown as

inheriting any policy set or binding that is attached to the service client.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

About policy set bindings

In WebSphere Application Server Version 7.0, there are two types of bindings, application-specific bindings

and general bindings.

Application specific binding

You can create application-specific bindings only at a policy set attachment point. These bindings are

specific to and constrained to the characteristics of the defined policy. Application specific bindings are

capable of providing configuration for advanced policy requirements, such as multiple signatures; however,

these bindings are only reusable within an application. Furthermore, application-specific bindings have very

limited reuse across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application-specific bindings.

For service providers, you can only create application-specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set. See

service providers policy sets and bindings collection. Similarly, for service clients, you can only create

application-specific bindings by selecting Assign Binding > New Application Specific Binding for

service client resources that have an attached policy set. See service client policy set and bindings

collection.

General bindings

General bindings are new for WebSphere Application Server Version 7.0. These bindings can be

configured to be used across a range of policy sets and can be reused across applications and for trust

Chapter 5. Web services 711

service attachments. Though general bindings are highly reusable, they are however not able to provide

configuration for advanced policy requirements, such as multiple signatures. There are two types of

general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See “Defining and managing service client or provider bindings” on page 860. General provider

policy set bindings might also be used for trust service attachments.

Buttons

 Attach Client Policy Set Click this button to view a list of policy sets available for

attachment to the selected WS-Notification service client.

Select a policy set from the list to attach the policy set to

the selected service client. To close the drop-down list,

click Attach Client Policy Set.

Detach Client Policy Set Click this button to detach a policy set from a selected

WS-Notification service client. After the policy set is

detached, if there is no policy set attached at the upper

level (that is, at the level of the WS-Notification service),

the Attached Client Policy Set column displays None

and the Binding column displays Not Applicable.

If there is a policy set attached at the level of the

WS-Notification service, the Attached Client Policy Set

column displays policy_set_name(inherited) and the

binding used for the upper level attachment is applied.

The binding name is displayed with (inherited) after it.

Assign Binding Click this button to select from a list of available bindings

for the selected policy set attachment. All the bindings are

listed along with the following options:

v Default

v New Application Specific Binding

For more information about these options, see “Service

client settings” on page 785.

To close the drop-down list, click Assign Binding.

Using WS-Transaction policy to coordinate transactions or business

activities for Web services

You can use WS-Transaction policy to configure how a Java API for XML Web Services (JAX-WS) service

or client handles Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA)

context.

About this task

The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional

quality of service to the Web services environment. Distributed Web services applications, and the

resources they use, can take part in distributed global transactions. With Web Services Business Activity

(WS-BA) support in the application server, Web services on different systems can coordinate activities that

are more loosely coupled than atomic transactions. Such activities can be difficult or impossible to roll

712 Administering WebSphere applications

back atomically, and therefore require a compensation process if an error occurs.

v Learn about WS-Transaction policy.

v Configure a JAX-WS client for WS-Transaction context.

v Configure a JAX-WS Web service for WS-Transaction context.

v Configure the WS-Transaction policy.

v Configure a WS-Transaction policy set using the wsadmin tool.

v Configure transaction properties for an application server.

v Configure the WS-Transaction specification level using the wsadmin tool.

v Configure WS-Transaction support in a secure environment.

v Configure an intermediary node for Web services transactions.

v Enable WebSphere Application Server to use an intermediary node for Web services transactions.

v Configure a server to use business activity support.

v Create an application that uses the Web Services Business Activity support.

Learning about WS-Transaction

WS-Transaction is an interoperability standard that includes the WS-AtomicTransaction,

WS-BusinessActivity, and WS-Coordination specifications. Use these topics to learn more about

WS-Transaction.

About this task

Note: In this release, when you work with policy sets, you can configure the WS-Transaction policy type

for the WS-AtomicTransaction (WS-AT) and the WS-BusinessActivity (WS-BA) protocols. You can

configure the way in which a Java API for XML Web Services (JAX-WS) client handles WS-AT or

WS-BA context. You can specify that the client must send context, can send context if it is

available, or must not send context.

The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional

quality of service to the Web services environment. Distributed Web services applications, and the

resources they use, can take part in distributed global transactions. With Web Services Business Activity

(WS-BA) support in the application server, Web services on different systems can coordinate activities that

are more loosely coupled than atomic transactions. Such activities can be difficult or impossible to roll

back atomically, and therefore require a compensation process if an error occurs. Web Services

Coordination (WS-COOR) specifies a CoordinationContext and a Registration service with which

participant Web services can enlist to take part in the protocols that are offered by specific coordination

types.

To learn about WS-Transaction in WebSphere Application Server, see the following topics:

v “Web Services Atomic Transaction support in the application server”

v “Web Services Business Activity support in the application server” on page 717

v “Web Services transactions, firewalls and intermediary nodes” on page 719

v “Transaction compensation and business activity support” on page 722

v “WS-Transaction and mixed-version cells” on page 727

Web Services Atomic Transaction support in the application server

The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional

quality of service to the Web services environment. Distributed Web services applications, and the

resources they use, can take part in distributed global transactions.

Web Services protocols provide standard ways of defining Web services applications, allowing the

applications to operate independently of the product, platform, or programming language that is used. The

Chapter 5. Web services 713

WS-AT support is an implementation of the following specifications on the application server. These

specifications define a set of Web services that enable Web services applications to participate in global

transactions that are distributed across the heterogeneous Web services environment.

v WS-AT is a specific coordination type that defines protocols for atomic transactions. The specifications

are:

– Web Services Atomic Transaction Version 1.0

– Web Services Atomic Transaction Version 1.1

v Web Services Coordination (WS-COOR) specifies a CoordinationContext and a Registration service

with which participant Web services can enlist to take part in the protocols that are offered by specific

coordination types. The specifications are:

– Web Services Coordination Version 1.0

– Web Services Coordination Version 1.1

The WS-AT support is an interoperability protocol that introduces no new programming interfaces for

transactional support. Global transaction demarcation is provided by standard enterprise application use of

the Java Transaction API (JTA) UserTransaction interface. If an application component that is running

under a global transaction makes a Web services request, a WS-AT CoordinationContext is implicitly

propagated to the target Web service, but only if the appropriate application deployment descriptors have

been set, as described in Configuring transactional deployment attributes.

If the application server is the system hosting the target endpoint for a Web services request that contains

a WS-AT CoordinationContext, the application server automatically establishes a subordinate JTA

transaction in the target runtime environment that becomes the transactional context under which the

target Web services application runs.

The following figure, shows a transaction context shared between two application servers for a Web

services request that contains a WS-AT CoordinationContext.

 You can configure the policies for the WS-AtomicTransaction protocol. You can configure whether a client

propagates, and a server receives, a WS-AT context. To ensure that a client always sends

WS-AtomicTransaction context when it makes an outbound service request, you must associate a policy

set with the client, where the policy set must include the WS-Transaction policy type, and this policy type

must have a WS-AtomicTransaction setting of Mandatory. Alternatively, if you know that the client always

invokes remote endpoints that include the WS-AtomicTransaction ATAssertion policy type attribute, you

can configure the client to apply the WS-Policy configuration of the provider so that the client adopts the

mandatory policy of the provider automatically.

Web service
client

application server
server1

XA
Resources

Web service
application

application server
server2

XA
Resources

Atomic transaction

Figure 8. Transaction context shared between two application servers

714 Administering WebSphere applications

http://www.ibm.com/developerworks/library/specification/ws-tx/#atom
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#coor
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html

To ensure that any requests that a Web services provider receives include a WS-AtomicTransaction

context, you must associate a policy set with the provider, where the policy set must include the

WS-Transaction policy type, and this policy type must have a WS-AtomicTransaction setting of Mandatory.

To ensure that a client or provider never use WS-AtomicTransaction context, you must associate a policy

set with the client or provider, where the policy set includes the WS-Transaction policy type, and this policy

type must have a WS-AtomicTransaction setting of Never. You might use this configuration for

environments where you do not want Web services requests to create a tight coupling between a client

and a provider, for example when there are requests between enterprises.

If there is no policy set associated with a client or provider, or the WS-Transaction policy type is not

included in the policy set, the default WS-Transaction behavior is used.

WS-AT support restrictions

In this version of the application server, WS-AT contexts cannot be started from a non-recoverable client

process.

Application design considerations

WS-AT is a two-phase commit transaction protocol and is suitable for short duration transactions only.

An atomic transaction coordinates resource managers that isolate transactional updates by holding

transactional locks on resources. Therefore, it is generally not recommended that WS-AT transactions are

distributed across enterprise domains. Inter-enterprise transactions typically require a looser semantic than

two-phase commit, and in such scenarios, it can be more appropriate to use a compensating business

transaction, for example, a Web Services Business Activity, or be part of a Business Process Execution

Language (BPEL) process.

WS-AT is most appropriate for distributing transaction context across Web services that are deployed in a

single enterprise. Only request-response message exchange patterns carry transaction context because

the originator (application or container) of a transaction must be sure that all business tasks that are run

under that transaction have finished before requesting the completion of a transaction. Web services

invoked by a one-way request never run under the transaction of the requesting client.

The effect of service faults on WS-AT transactions is similar to the effect of Enterprise JavaBeans (EJB)

application exceptions on transactions, as described in the EJB specification. If a service that is running

under a requester’s WS-AT transaction returns a fault, the application server does not automatically mark

the transaction rollback-only. The exception handler of the requester decides whether the transaction can

progress and chooses whether to mark the transaction rollback-only. If the requester is running in the

application server, the standard JTA or EJB APIs can be used to mark the transaction rollback-only. The

service component that generates the fault might, itself, mark the transaction rollback-only before returning

the fault. If the implementation of the service component encounters a system exception, it typically allows

its container to handle the exception. Application server containers automatically mark any received

transaction context rollback-only when handling a system exception that is generated by a service

implementation.

Application development considerations

There are no specific development tasks required for Web services applications to take advantage of

WS-AT.

For Java API for XML-based RPC (JAX-RPC) applications, there are some application deployment

descriptors that you must set appropriately, as described in Configuring transactional deployment

attributes. The JAX-RPC run time supports WS-AT 1.0.

Chapter 5. Web services 715

Note: WebSphere Application Server supports both the WS-Transaction 1.1 and the WS-Transaction 1.0

specifications. You can configure the default WS-Transaction specification level to use for outbound

requests if the specification level that the server requires cannot be determined from the provider

policy. This applies to outbound requests that include a Web Services Atomic Transaction (WS-AT)

or Web Services Business Activity (WS-BA) coordination context.

For Java API for XML-Based Web Services (JAX-WS) applications, enable WS-AT support by creating a

policy set, adding the WS-Transaction policy type to the policy set, optionally configuring the policy type,

and attaching the policy set to the application or client that will be involved in the WS-AT communication.

The JAX-WS run time supports WS-AT 1.0, WS-AT 1.1 and the WS-Policy assertion for WS-AT.

When the JAX-WS runtime receives an inbound request, both WS-Transaction 1.0 and WS-Transaction

1.1 specification levels are supported. When an outbound JAX-WS request is sent, only one specification

level can be used. If WS-Transaction WS-Policy assertions are available, either from the Web Services

Description Language (WSDL) of the target Web service, or from the WS-Transaction policy type of the

client, the specification level that is applicable to the client and the target Web service is used. For

example, if the hosting environment of the target Web service supports only WS-Transaction 1.0, WS-AT

1.0 is used. If both specification levels are applicable, or if no WS-Transaction WS-Policy assertions are

available, the default WS-Transaction specification level that is set in the Transaction service settings is

used.

To move a JAX-WS application that was using WS-AT 1.0 to use WS-AT 1.1, alter the policy set that is

attached to the application; you do not need to change the application.

The default behavior when there is no effective policy set, or when the WS-Transaction policy type is not

included in the effective policy set, is as follows:

v For a client, if the client does not consider the policy of the provider, the client does not send any

WS-AT or Web Services Business Activity (WS-BA) context. This behavior is equivalent to a

WS-Transaction policy setting of Never.

v For a client, if the client considers the policy of the provider, the client sends WS-AT or WS-BA context

if the policy of the provider includes WS-AT or WS-BA assertions. This behavior is equivalent to a

WS-Transaction policy setting of Supports.

v For a server, the server does not receive any WS-AT or WS-BA context. This behavior is equivalent to a

WS-Transaction policy configuration setting of Never.

Application developers do not need to explicitly register WS-AT participants. The application server run

time takes responsibility for the registration of WS-AT participants, in the same way as the registration of

XAResources in the JTA transaction to which the WS-AT transaction is federated. At transaction

completion time, all XAResources and WS-AT participants are coordinated atomically by the application

server transaction service.

If a JTA transaction is active on the thread when a Web services application request is made, the

transaction is propagated across on the Web services request and established in the target environment.

This process is similar to the distribution of transaction context over IIOP, as described in the EJB

specification. Any transactional work performed in the target environment becomes part of the same global

transaction.

WS-Transaction policy assertions

If you configure the policies for the WS-Transaction protocol for a provider, this configuration affects the

assertions that are included in any WSDL that is generated for the Web service with which the policy type

is associated. The WS-Policy assertion that is used to describe the transactional requirements of a client

or provider that uses WS-AtomicTransaction is ATAssertion. If the WS-Transaction policy type has a

WS-AtomicTransaction setting of Mandatory or Supports, a policy assertion is included in the WSDL.

716 Administering WebSphere applications

The application server can also parse, understand, and apply such assertions that are in WSDL that it

parses.

The following example shows WSDL where the WS-AtomicTransaction ATAssertion indicates that an

endpoint must be invoked with WS-AT context included in the request message, and that the context can

be in WS-Transaction 1.0 or 1.1 format. There are two namespaces and there are two assertions; one for

each WS-Transaction specification level, using the WS-Policy ExactlyOne operator to show that the client

must choose which specification level to use.

<wsdl:definitions targetNamespace="bank.example.com"

 xmlns:tns="bank.example.com"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsat11="http://docs.oasis-open.org/ws-tx/wsat/2006/06"

 xmlns:wsat10="http://schemas.xmlsoap.org/ws/2004/10/wsat"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsp:Policy wsu:Id="ATPolicy">

 <wsp:ExactlyOne>

 <wsat11:ATAssertion />

 <wsat10:ATAssertion />

 <!-- omitted assertions -->

 </wsp:ExactlyOne />

 </wsp:Policy>

 <!-- omitted elements -->

 <wsdl:binding name="BankBinding" type="tns:BankPortType">

 <!-- omitted elements -->

 <wsdl:operation name="TransferFunds">

 <wsp:PolicyReference URI="#ATPolicy" wsdl:required="true"/>

 <!-- omitted elements -->

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

Web Services Business Activity support in the application server

With Web Services Business Activity (WS-BA) support in the application server, Web services on different

systems can coordinate activities that are more loosely coupled than atomic transactions. Such activities

can be difficult or impossible to roll back atomically, and therefore require a compensation process if an

error occurs.

Web Services protocols are defined by the Organization for the Advancement of Structured Information

Standards (OASIS) group and provide standard ways of defining Web services applications, allowing the

applications to operate independently of the product, platform or programming language that is used. The

Web Services Business Activity (WS-BA) support is an implementation of the following specifications in the

application server. These specifications define a set of protocols that enable Web services applications to

participate in loosely coupled business processes that are distributed across the heterogeneous Web

services environment, with the ability to compensate actions if an error occurs. For example, an application

that sends an e-mail cannot retrieve that e-mail following a failure in the business task. However, the

application can provide a business-level compensation handler that sends another e-mail advising of the

new circumstances. A business activity is a group of general tasks that you want to link together so that

the tasks have an agreed outcome.

v WS-BA is a specific coordination type that defines protocols for business activities. The specifications

are:

– Web Services Business Activity Version 1.0

– Web Services Business Activity Version 1.1

v Web Services Coordination (WS-COOR) specifies a CoordinationContext and a Registration service

with which participant Web services can enlist to take part in the protocols that are offered by specific

coordination types. The specifications are:

– Web Services Coordination Version 1.0

– Web Services Coordination Version 1.1

Chapter 5. Web services 717

http://www.ibm.com/developerworks/library/specification/ws-tx/#ba
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/#coor
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html

In addition to supporting the WS-BA interoperability protocol, the application server provides a

programming interface for creating business activities and compensation handlers. With this programming

interface, you can specify compensation data and check or alter the status of a business activity.

You can also use this compensation facility with applications that are not Web services, as long as these

applications involve communication between WebSphere Application Servers only. See the related topics

for more information.

You can configure the policies for the WS-BusinessActivity protocol. You can configure whether a client

propagates, and a server receives, a WS-BA context. To ensure that a client always sends

WS-BusinessActivity context when it makes an outbound service request, you must associate a policy set

with the client, where the policy set must include the WS-Transaction policy type, and this policy type must

have a WS-BusinessActivity setting of Mandatory. Alternatively, if you know that the client always invokes

remote endpoints that include the WS-BusinessActivity BAAtomicOutcomeAssertion policy type attribute,

you can configure the client to apply the WS-Policy configuration of the provider so that the client adopts

the mandatory policy of the provider automatically.

To ensure that any requests that a Web services provider receives includes a WS-BusinessActivity

context, you must associate a policy set with the provider, where the policy set must include the

WS-Transaction policy type, and this policy type must have a WS-BusinessActivity setting of Mandatory.

To ensure that a client or provider never use WS-BusinessActivity context, you must associate a policy set

with the client or provider, where the policy set includes the WS-Transaction policy type, and this policy

type must have a WS-BusinessActivity setting of Never. You might use this configuration for environments

where you do not want Web services requests to create a tight coupling between a client and a provider,

for example when there are requests between enterprises.

If no policy set is associated with a client or provider, or the WS-Transaction policy type is not included in

the policy set, the default WS-Transaction behavior is used.

Application development considerations

No specific development tasks are required for Web services applications to take advantage of WS-BA.

For Java API for XML-based RPC (JAX-RPC) applications, any Enterprise JavaBeans (EJB) component

that is configured to run under a BusinessActivity scope automatically propagates that scope when it

makes an outbound JAX-RPC Web services request. The JAX-RPC run time supports WS-BA 1.0.

For Java API for XML-Based Web Services (JAX-WS) applications, enable WS-BA support by creating a

policy set, adding the WS-Transaction policy type to the policy set, optionally configuring the policy type,

and attaching the policy set to the application or client that will be involved in the WS-BA communication.

The JAX-WS run time supports WS-BA 1.0, WS-BA 1.1, and the WS-Policy assertion for WS-BA.

When the JAX-WS run time receives an inbound request, both WS-Transaction 1.0 and WS-Transaction

1.1 specification levels are supported. When an outbound JAX-WS request is sent, only one specification

level can be used. If WS-Transaction WS-Policy assertions are available, either from the Web Services

Description Language (WSDL) of the target Web service, or from the WS-Transaction policy type of the

client, the specification level that is applicable to the client and the target Web service is used. For

example, if the hosting environment of the target Web service supports only WS-Transaction 1.0, WS-BA

1.0 is used. If both specification levels are applicable, or if no WS-Transaction WS-Policy assertions are

available, the default WS-Transaction specification level that is set in the Transaction service settings is

used.

The default behavior when there is no effective policy set, or when the WS-Transaction policy type is not

included in the effective policy set, is as follows:

718 Administering WebSphere applications

v If a client does not consider the policy of the provider, the client does not send any Web Service Atomic

Transaction (WS-AT) or WS-BA context. This behavior is equivalent to a WS-Transaction policy

configuration setting of Never.

v If a client does consider the policy of the provider, the client sends WS-AT or WS-BA context if the

policy of the provider includes WS-AT or WS-BA assertions. This behavior is equivalent to a

WS-Transaction policy configuration setting of Supports.

v A server does not receive any WS-AT or WS-BA context. This behavior is equivalent to a

WS-Transaction policy configuration setting of Never.

WS-Transaction policy assertions

If you configure the policies for the WS-BusinessActivity protocol for a provider, this affects the assertions

that are includes in any WSDL that is generated for the Web service with which the policy type is

associated. The WS-Policy assertion that is used to describe the compensation requirements of a client or

provider that uses WS-BusinessActivity is BAAtomicOutcomeAssertion. If the WS-Transaction policy type

has a WS-BusinessActivity setting of Mandatory or Supports, a policy assertion is included in the WSDL.

The application server can also parse, understand, and apply such assertions that are in WSDL that it

parses.

The following example shows WSDL where the WS-BusinessActivity BAAtomicOutcomeAssertion indicates

that an endpoint must be invoked with WS-BA context included in the request message, and that the

context can be in WS-Transaction 1.0 or 1.1 format. There are two namespaces and two assertions; one

for each WS-Transaction specification level, using the WS-Policy ExactlyOne operator to show that the

client must choose which specification level to use.

<wsdl:definitions targetNamespace="bank.example.com"

 xmlns:tns="bank.example.com"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsat11="http://docs.oasis-open.org/ws-tx/wsba/2006/06"

 xmlns:wsat10="http://schemas.xmlsoap.org/ws/2004/10/wsba"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsp:Policy wsu:Id="BAPolicy">

 <wsp:ExactlyOne>

 <wsat11:BAAtomicOutcomeAssertion />

 <wsat10:BAAtomicOutcomeAssertion />

 <!-- omitted assertions -->

 </wsp:ExactlyOne />

 </wsp:Policy>

 <!-- omitted elements -->

 <wsdl:binding name="BankBinding" type="tns:BankPortType">

 <!-- omitted elements -->

 <wsdl:operation name="TransferFunds">

 <wsp:PolicyReference URI="#BAPolicy" wsdl:required="true"/>

 <!-- omitted elements -->

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

Web Services transactions, firewalls and intermediary nodes

You can configure your system to enable propagation of Web Services Atomic Transactions (WS-AT)

message contexts and Web Service Business Activities (WS-BA) message contexts across firewalls or

outside the WebSphere Application Server domain. With these configurations, you can distribute Web

service applications that use WS-AT or WS-BA across disparate systems. The topology that you use can

affect the high availability and affinity behavior of the transactions.

When Web services transactions are distributed between applications in different servers or clusters or to

systems that are not WebSphere Application Server systems, you must consider the transaction-routing

affinity of Web service requests, as well as the high availability of the transaction service on each

WebSphere Application Server. If a remote client sends a series of transactional requests to a target

service that is deployed in a cluster, usually you want the first request to establish a transactional affinity

Chapter 5. Web services 719

from the client application to the target server, such that subsequent requests in the same transaction are

delivered to the same target server. When the transaction completes, the transaction protocol messages

are also sent to this same target server, unless and until transaction high availability failover occurs.

The topologies that are available to you are as follows:

Direct connection

 Use this topology for non-clustered configurations. No intermediary node exists in this topology.

The client communicates directly with the specific WebSphere Application Server on which the

target service resides. This topology supports transaction affinity and high availability, but only

when the client runs on a WebSphere Application Server Version 6.0.2 or later in the same

administrative cell as the target service.

Proxy Server for IBM WebSphere Application Server

 Use this topology when the client is not part of the same administrative cell as the target service,

and you require transaction affinity or transaction high availability. In this topology, the client

communicates with a Proxy Server for IBM WebSphere Application Server, which dynamically

routes the client requests and Web services transaction protocol messages to the appropriate

server in a WebSphere Application Server cluster. The proxy server is configured in the same

administrative cell as the target service.

The proxy server provides the routing support for transaction high availability and affinity at the

edge of the administrative cell. As for any HTTP proxy configuration, you must provide HTTP

endpoint URL information, that is, configure the HTTP server URL prefix for the target Web service

module. Also, you must configure the proxy server for Web services transactions, that is, configure

it to deliver Web services transaction protocol messages to the appropriate WebSphere Application

Server.

HTTP server, such as IBM HTTP Server

 Use this topology when transaction high availability and affinity routing is not required by the client,

for example because the target service is deployed to a non-clustered server.

In this topology, the client communicates with an HTTP server, which always routes the client

requests and Web services transaction protocol messages to a specific WebSphere Application

Server. As for any HTTP proxy configuration, you must provide HTTP endpoint URL information,

that is, configure the HTTP server URL prefix for the target Web service module. Also, you must

configure the HTTP server for Web services transactions, that is, configure it to deliver Web

services transaction protocol messages to the appropriate WebSphere Application Server.

Intermediary
node

Web service
client

WebSphere Application
Server

cluster1

server1

server2

server3

Proxy Server
for

WebSphere

firewallfirewall

720 Administering WebSphere applications

The HTTP server cannot provide either affinity or high availability for transactions. However,

transactional integrity is assured, because recovery processing occurs after the failed server

restarts.

Note: You can still enable high availability on the WebSphere Application Server. Clients that

access this server through an HTTP server cannot benefit from the high availability of

transactions, but other clients that access the same server can.

 If you have an existing HTTP server, but want the high availability and workload management

capabilities of a Proxy Server for WebSphere, create a Proxy Server for IBM WebSphere

Application Server and configure the HTTP server to route all requests to the proxy server, as in

the following scenario.

HTTP server in conjunction with a Proxy Server for IBM WebSphere Application Server

 Use this topology when the client is not part of the same administrative cell as the target service

and you require transaction affinity or transaction high availability. The topology is similar to the

Proxy Server for IBM WebSphere Application Server topology, but supports the use of any HTTP

server as the external reverse proxy.

In this topology, the client communicates with an HTTP server, which you configure, by routing

requests from a plug-in to a proxy server, to forward the client’s requests and Web services

transaction protocol messages to a Proxy Server for IBM WebSphere Application Server. The

proxy then dynamically routes the requests to the appropriate server in WebSphere Application

Server. The proxy server is configured in the same administrative cell as the target service.

The proxy server provides the routing support for transaction high availability and affinity at the

edge of the administrative cell. As for any HTTP proxy configuration, you must provide HTTP

endpoint URL information, that is, configure the HTTP server URL prefix for the target Web service

module. Also, you must configure the HTTP server and proxy server for Web services

transactions, that is, configure them to deliver Web services transaction protocol messages to the

appropriate WebSphere Application Server.

HTTP server

firewall firewall

cluster1

server1

server2

server3

WebSphere Application
Server Node

vhost1=server1
vhost2=server2
vhost3=server3

Web service
client

message

to vhost2

Chapter 5. Web services 721

Transaction compensation and business activity support

A business activity is a collection of tasks that are linked together so that they have an agreed outcome.

Unlike atomic transactions, activities such as sending an e-mail can be difficult or impossible to roll back

atomically, and therefore require a compensation process in the event of an error. The WebSphere

Application Server business activity support provides this compensation ability through business activity

scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application

requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because

of one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have

Requires new as the setting for the Transaction field in the container transaction deployment

descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple Web service application that uses the business activity support. The

Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application Server

environments. The Retailer service calls the Supplier service, running on WebSphere Application Server,

which delegates tasks to the Warehouse and Manufacturing services. The implementation of the Supplier

service contains a stateless session bean, which calls other stateless session beans that are associated

with the Warehouse and Manufacturing services, and that perform work that can be compensated. These

other session beans each have a compensation handler; a piece of logic that is associated with an

application component at run time, and performs compensation activity such as resending an e-mail.

Proxy Server
for WebSphere

HTTP ServerWeb service
client

WebSphere Application
Server

cluster1

server1

server2

server3

firewall firewall

722 Administering WebSphere applications

Application design considerations

Business activity contexts are propagated with application messages, and can therefore be distributed

between application components that are not co-located in the same server. Unlike atomic transaction

contexts, business activity contexts are propagated on both synchronous (blocking) call-response

messages and asynchronous one-way messages. An application component that runs under a business

activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the

component’s own processing is complete. An application that initiates asynchronous work using a

fire-and-forget message pattern must not use business activity scopes, because such applications have no

means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity

functionality. Enterprise beans that exploit business activity scopes can offer Web service interfaces, but

can also offer standard enterprise bean local or remote Java interfaces. Business activity context is

propagated in Web service messages using a standard, interoperable Web Services Business Activity

(WS-BA) CoordinationContext element. WebSphere Application Server can also propagate business

activity context on RMI calls to enterprise beans when Web services are not being used, but this form of

the context is not interoperable with non-WebSphere Application Server environments. You might want to

use this homogeneous scenario if you require compensation for an application that is internal to your

business. If you want to use business activity compensation in a heterogeneous environment, expose your

application components as Web services.

Supplier
Web service

Warehouse
service

Retailer
service

Manufacturing
service

WebSphere Application
Server

TX_Required

TX_Required

TX_NotSupported

Stateless
session bean

Stateless
session bean

Stateless
session bean

Business
activity scope Compensation

handler

Compensation
handler

Chapter 5. Web services 723

Business activity contexts can be propagated across firewalls and outside the WebSphere Application

Server domain. The topology that you use to achieve this propagation can affect the high availability and

affinity behavior of the business activity transaction.

Application development and deployment considerations

WebSphere Application Server provides a programming model for creating business activity scopes, and

for associating compensation handlers with those business activity scopes. WebSphere Application Server

also provides an application programming interface to specify compensation data, and check or alter the

status of a business activity. To use the business activity support you must set certain application

deployment descriptors appropriately, provide a compensation handler class if required, and enable

business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere

Application Server at Version 6.1 or later. Applications cannot use the business activity support if

you deploy them to a cluster that includes WebSphere Application Server Version 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a core WebSphere Application Server unit of work: a global

transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a

new unit of work (UOW); it is an attribute of an existing core UOW. Therefore, a one-to-one relationship

exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

v The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global

transaction.

v The UOW can be a local transaction containment (LTC) where the container is responsible for initiating

and ending resource manager local transactions (RMLTs). That is, in the transactional deployment

descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To

use WS-BA, you must not set the Resolver attribute to Application.

Any core UOW can have a business activity scope associated with it. If a component running under a

UOW that is associated with a business activity scope calls another component, that request propagates

the business activity scope; any work done by the new component is associated with the same business

activity scope as the calling component. The called component can create a new UOW, for example if an

enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling

component. If a new UOW is started then a new business activity scope is created and associated with

the new UOW. The newly created business activity scope is a child of the business activity scope

associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two

components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The

enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.

Because each new UOW is created by a calling component whose UOW already has an association with

business activity scope BAScope1, the newly created UOWs are associated with new inner business

activity scopes, BAScope2 and BAScope3.

724 Administering WebSphere applications

Inner business activity scopes must complete before the outer business activity scope completes. Inner

business activity scopes, for example BAScope2, have an association with the outer business activity

scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW

completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,

any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are

directed in the same way as the completion direction of BAScope1: either compensate or close. If

BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved

to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW

failing, an application server exception is thrown to the to calling application component, running in the

outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the

calling application can handle the exception, for example by retrying the called component or by calling

another component, then the calling UOW, and its associated business activity scope, can complete

successfully even though the inner business activity scope failed. If the application design requires the

calling UOW to fail, and for its associated business activity scope to be compensated, then the calling

application component must cause its UOW to fail, for example by allowing any system exception from the

UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion

direction (close or compensate) of any active compensation handlers that are owned by the outer business

activity scope, including those promoted by the successful completion of inner business activity scopes. If

the outer business activity scope completes successfully, it drives all active compensation handlers to

close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

BAScope1

BAScope2 BAScope3

UOW2 UOW3

EJB2
Transaction=
Requires new

EJB3
LTC

UOW1

EJB1a
Transaction=
Requires new

EJB1b
Transaction=

Supports

Chapter 5. Web services 725

Table 5. Compensation behavior for a single business activity scope

Inner

business

activity scope

Outer

business

activity scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the

outer UOW to complete. When the outer UOW succeeds, the outer business activity scope

drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are

compensated. An exception is thrown to the outer UOW; if this exception is caught, when the

outer UOW succeeds, the outer business activity scope drives all remaining active compensation

handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are

compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer

business activity scope fails. When the outer business activity scope fails, either because of the

unhandled exception or for some other reason, all remaining active compensation handlers are

compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the

outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all

compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always

completes in the same direction as the UOW that it is associated with. The only way that you can

influence the direction of the business activity scope is to influence the UOW that it is associated with,

which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending

on the method invoked from the business activity API. Inactive handlers in this situation become active

when the UOW in which that handler is declared completes successfully. A compensation handler that is

registered outside a transactional UOW always becomes active immediately. For more information, see

“Business activity API” on page 728.

Each business activity scope in the diagram represents a business activity. For example, the outer

business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a

flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall

holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want

your application to try booking a flight using another component that represents a different airline. If the

overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels

that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere

Application Server assembly tools to specify the use of a business activity scope and to identify any

compensation handler class for the component:

Default configuration

If a business activity context is present on a request received by a component with no business

activity scope configuration, the context is stored by the container but never used during the

method scope of the target component. A new business activity scope is not created. If the target

component invokes another component, the stored business activity context is propagated and can

be used by other compensating components.

Run enterprise bean methods under a business activity scope

Any business activity context present on the incoming request is received by the container and

made available to the target component. If a new UOW is created for the target method, for

example because the enterprise bean method has a Transaction setting of Requires new, the

received business activity scope becomes an outer business activity scope to a newly created

business activity. If the UOW is propagated from the calling component and used by the method,

726 Administering WebSphere applications

then the received business activity scope is used by the method. If a business activity scope does

not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise

bean to run enterprise bean methods under a business activity scope. You must also configure the

deployment descriptors for the method being invoked, to specify the creation of a new UOW upon

invocation. For instructions on how to perform these actions, see “Creating an application that uses the

Web Services Business Activity support” on page 739.

WS-Transaction and mixed-version cells

Considerations exist for WS-Transaction policy type enablement and behavior, and the WS-Transaction

specification level to use, when a cell contains servers at different versions; for example, WebSphere

Application Server Version 7.0 and WebSphere Application Server Version 6.1 Feature Pack for Web

Services.

WS-Transaction policy type enablement

For a Version 6.1 Feature Pack for Web Services server, you can enable the WS-Transaction policy type

by including it in a policy set, but you cannot configure it. For a Version 7.0 server, you can both enable

and configure the WS-Transaction policy type. Configuration information is written to the WS-Transaction

policy type file.

In a cell with both Version 6.1 Feature Pack for Web Services and Version 7.0 servers, the following

behavior occurs:

v If a Version 6.1 Feature Pack for Web Services server reads a WS-Transaction policy type file that is

generated by a Version 7.0 server, the server enables the WS-Transaction policy type, but ignores any

configuration information in the file.

v If a Version 7.0 server reads a WS-Transaction policy type that is generated by a Version 6.1 Feature

Pack for Web Services server, the server enables the WS-Transaction policy type using a value of

Supports for the WS-AtomicTransaction and WS-BusinessActivity protocols. This value is equivalent to

the existing behavior of a Version 6.1 Feature Pack for Web Services server.

WS-Transaction specification level

A WebSphere Application Server Version 6.x server supports WS-Transaction 1.0. A Version 7.0 server

supports WS-Transaction 1.0 and 1.1.

No special considerations exist for a cell with both and Version 7.0 servers, except for a mixed-version

cluster that requires failover for high availability. In a mixed-version cluster, a Version 7.0 server might fail

over to an earlier version server that does not support WS-Transaction 1.1, and that therefore cannot

recover WS-Transaction 1.1 protocol messages. In this situation, there are the following implications:

v For a cluster of Version 7.0 servers that are configured to fail over and that are configured to use

WS-Transaction 1.1, you cannot add an earlier version server to the cluster.

v For a mixed-version cluster, where the servers are configured to fail over, any Version 7.0 server in the

cluster must not use WS-Transaction 1.1.

v For a cluster of servers that are configured to fail over, any Version 7.0 server in the cluster that is

configured to use WS-Transaction 1.1 cannot start if there are also servers at an earlier version.

Chapter 5. Web services 727

Related concepts

“Using WS-Transaction policy to coordinate transactions or business activities for Web services” on page

712
You can use WS-Transaction policy to configure how a Java API for XML Web Services (JAX-WS) service

or client handles Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA)

context.

Highly available messaging engine configuration

Related reference

“WS-Transaction policy settings” on page 961
Use this page to specify the policies for the WS-AtomicTransaction (WS-AT) and WS-BusinessActivity

(WS-BA) protocols. WS-AT supports coordination of activities so that either all the activities occur, or none

of them occur. WS-BA supports coordination of activities that are more loosely coupled than atomic

transactions, and that therefore, require a compensation process if an error occurs.

“Transaction service settings” on page 2256
Use this page to specify settings for the transaction service. The transaction service is a server runtime

component that can coordinate updates to multiple resource managers to ensure atomic updates of data.

Transactions are started and ended by applications or the container in which the applications are

deployed.

Business activity API

Use the business activity application programming interface (API) to create business activities and

compensation handlers for an application component, and to log data that is required to compensate an

activity if there is a failure in the overall business activity.

Overview

The business activity support provides a UserBusinessActivity API and two interfaces: a

serializable.CompensationHandler interface and a CompensationHandler interface. Each interface has two

exceptions: RetryCompensationHandlerException and CompensationHandlerFailedException. You can look

up the UserBusinessActivity interface from the application server Java Naming and Directory Interface

(JNDI) at java:comp/websphere/UserBusinessActivity. For example:

InitialContext ctx = new InitialContext();

UserBusinessActivity uba = (UserBusinessActivity) ctx.lookup(“java:comp/websphere/UserBusinessActivity”);

You can use the getId method to access the unique identifier for the business activity that is currently

associated with the calling thread. The identifier is the same as the one that is generated for the business

activity scope at run time and that is used for information, warning, and error messages. For example, the

application can use the identifier in audit or diagnostic messages, and it is possible to correlate between

application-generated and runtime-generated messages.

InitialContext initialContext = new InitialContext();

UserBusinessActivity uba = initialContext.lookup(“java:comp/websphere/UserBusinessActivity”);

...

String activityId = uba.getId();

if (activityId == null)

// No activity on the thread

else

// Output audit message including activity id

If an application component runs work that might require compensating upon failure in the business

activity, you must provide a compensation handler class that is assembled as part of the deployed

application. This Java class must implement one of the following interfaces:

v com.ibm.websphere.wsba.serializable.CompensationHandler, which takes a takes a parameter of a

serializable object

v com.ibm.websphere.wsba.CompensationHandler, which takes a parameter of a Service Data Object

(SDO)

728 Administering WebSphere applications

Typically, applications that already have their data available in DataObject format will use the

CompensationHandler interface, and applications that do not will use the

serializable.CompensationHandler interface. Both interfaces support the close and compensate methods.

An application must register a compensation handler implementation that works with the type of

compensation data (serializable object or SDO) that the application uses. If there is a mismatch between

the type of data that the application component uses and the compensation handler implementation, there

is an error.

During normal application processing, the application can make one or more invocations to the

setCompensationDataImmediate or setCompensationDataAtCommit methods, passing in either a serializable

object or an SDO that represents the current state of the work performed.

When the underlying unit of work (UOW) that the root business activity is associated with completes, all

registered compensators are coordinated to complete. During completion, either the compensate or the

close method is called on the compensation handler, passing in the most recent compensation data logged

by the application component as a parameter. Your compensation handler implementation must be able to

understand the data that is stored in either the serializable object or the SDO DataObject; using this data,

the compensation handler must be able to determine the nature of the work performed by the enterprise

bean and compensate or close in an appropriate way, for example by undoing changes made to database

rows if there is a failure in the business activity. You associate the compensation handler with an

application component by using the assembly tooling, such as Rational Application Developer.

Active and inactive compensation handlers

You implement the serializable.CompensationHandler or CompensationHandler interface for any

application component that executes code that might need to be compensated within a business activity

scope. Compensation handler objects are registered implicitly with the business activity scope under which

the application runs, whenever the application calls the UserBusinessActivity API to specify compensation

data. Compensation handlers can be in one of two states, active or inactive, depending on any

transactional UOW under which they are registered. A compensation handler that is registered within a

transactional UOW might initially be inactive until the transaction commits, at which point the compensation

handler becomes active (see the following section). A compensation handler that is registered outside a

transactional UOW always becomes active immediately.

When a business activity completes, it drives only active compensation handlers. Any inactive

compensation handlers that are associated with the business activity are discarded and never driven.

Logging compensation data

The business activity API specifies two methods that allow the application to log compensation data. This

data is made available to the compensation handlers during their processing when the business activity

completes. The application calls one of these methods, depending on whether it expects transactions to be

part of the business activity.

setCompensationDataAtCommit()

 Call the setCompensationDataAtCommit method when the application expects a global transaction

on the thread.

v If a global transaction is present on the thread, the CompensationHandler object is initially

inactive. If the global transaction fails, it rolls back any transactional work done within its

transaction context in an atomic manner, and drives the business activity to compensate other

completed UOWs. The compensation handler does not need to be involved. If the global

transaction commits successfully, the compensation handler becomes active because if the

overall business activity fails, the compensation handler is required to compensate the durable

work that is completed by the global transaction. The setCompensationDataAtCommit method

configures the CompensationHandler instance to perform this compensation function.

Chapter 5. Web services 729

v If a global transaction is not present when the setCompensationDataAtCommit method is called,

the compensation handler becomes active immediately.

For example, for an SDO, using the same business activity instance as in the previous example:

DataObject compensationData = doWorkWhichWouldNeedCompensating();

uba.setCompensationDataAtCommit(compensationData);

setCompensationDataImmediate()

 Call the setCompensationDataImmediate method when the application does not expect a global

transaction on the thread.

The setCompensationDataImmediate method makes a CompensationHandler instance active

immediately, regardless of the current UOW context at the time that the method is invoked. The

compensation handler is always able to participate during completion of the business activity.

The role of the setCompensationDataImmediate method is to compensate any non-transactional

work, in other words, work that can be performed either inside or outside a global transaction, but

that is not governed by the transaction. An example of this type of work is sending an e-mail. The

compensation handler must be active immediately so that if a failure occurs in a business activity,

this non-transactional work is always compensated.

For example, for a serializable object, using the same business activity instance as in the previous

example:

Serializable compensationData = new MyCompensationData();

uba.setCompensationDataImmediate(compensationData);

Although these two compensation data logging methods, if called in the same enterprise bean, use the

same compensation handler class, they create two separate instances of the compensation handler class

at run time. Therefore, the actions of the methods are mutually exclusive; calling one of the methods does

not overwrite any work carried out by the other method.

If a compensation handler instance is already added to the Business Activity using one of these methods,

and then the same method is called, passing in null as a parameter, that compensation handler instance

is removed from the business activity, and is not driven to close or compensate during completion of the

business activity.

As described previously, the business activity support adds a compensation handler instance to the

business activity when a compensation data logging method is called for the first time by the enterprise

bean that uses that business activity. At the same time, a snapshot of the enterprise application context is

taken and logged with the compensation data. When the business activity competes, all the compensation

handlers that were added to the business activity are driven to compensate or close. The code that you

create in the CompensationHandler or serializable.CompensationHandler class is guaranteed to run in the

same enterprise application context that was captured in the earlier snapshot.

For details about the methods available in the business activity API, see Additional Application

Programming Interfaces (APIs).

Configuring a JAX-WS client for WS-Transaction context

You can configure the way that a Java API for XML Web Services (JAX-WS) client handles Web Services

Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) context by configuring the Web

Services Transaction (WS-Transaction) policy type. You can specify that the client must send context, can

send context if it is available, or must not send context.

Before you begin

A JAX-WS client must be installed.

730 Administering WebSphere applications

About this task

You can configure a WS-Transaction policy set using the administrative console, as described in this task,

or you can configure a WS-Transaction policy set using the wsadmin tool.

To configure a JAX-WS client for WS-Transaction context using the administrative console, complete the

following steps.

1. Create a new policy set, or copy and rename an existing policy set. You can copy an existing

user-defined policy set, or one of the WS-Transaction default policy sets (WSTransaction or SSL

WSTransaction). See “Creating policy sets using the administrative console” on page 835.

2. Check that your policy set includes the WS-Transaction policy type. If necessary, add the

WS-Transaction policy type. See “Adding policies to policy sets using the administrative console” on

page 932.

3. Configure the WS-Transaction policy.

4. Associate the policy set with the JAX-WS client. See Managing policy sets and bindings for service

clients.

5. Choose a WS-Policy application rule that includes the configured policy of the client, that is, client only

or client and provider. See “Configuring the client policy using a service provider policy” on page 753.

6. Save your changes to the master configuration.

What to do next

The JAX-WS client is configured to use WS-Transaction context in the way that you specified.

Configuring a JAX-WS Web service for WS-Transaction context

You can configure the way that a Java API for XML Web Services (JAX-WS) service handles Web

Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) context by configuring

the Web Services Transaction (WS-Transaction) policy type. You can specify that the Web service must

receive context, can receive context if it is available, or must not receive context.

Before you begin

A JAX-WS client must be installed.

About this task

You can configure a WS-Transaction policy set using the administrative console as described in this task,

or you can configure a WS-Transaction policy set using the wsadmin tool.

To configure a JAX-WS service for WS-Transaction context using the administrative console, complete the

following steps.

1. Create a new policy set, or copy and rename an existing policy set. You can copy an existing

user-defined policy set, or one of the WS-Transaction default policy sets (WSTransaction or SSL

WSTransaction). See “Creating policy sets using the administrative console” on page 835.

2. Check that your policy set includes the WS-Transaction policy type. If necessary, add the

WS-Transaction policy type. See “Adding policies to policy sets using the administrative console” on

page 932.

3. Configure the WS-Transaction policy.

4. Associate the policy set with the JAX-WS Web service, endpoint, or operation for which the specified

behavior is required. See Managing policy sets and bindings for service providers.

5. Save your changes to the master configuration.

Chapter 5. Web services 731

What to do next

The JAX-WS Web service, endpoint, or operation is configured to use WS-Transaction context in the way

that you specified.

Configuring a WS-Transaction policy set using the wsadmin tool

You can configure the way that a Java API for XML Web Services (JAX-WS) client or Web service handles

Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) context by

configuring the Web Services Transaction (WS-Transaction) policy type. You can specify that the client or

service must use context, can use context if it is available, or must not use context. Use command scripts

to configure a policy set for Web services transactions.

About this task

You can configure a WS-Transaction policy set using the wsadmin tool as described in this task, or you

can configure a WS-Transaction policy set using the administrative console.

1. Start the wsadmin tool if it is not already running.

2. Use the createPolicySet command to create a new policy set, or the copyPolicySet command to copy

and rename an existing policy set. You can copy an existing user-defined policy set, or one of the

WS-Transaction default policy sets (WSTransaction or SSL WSTransaction).

3. Check that your policy set includes the WS-Transaction policy type. If necessary, add the

WS-Transaction policy type. For example:

AdminTask.importPolicySet(’[-defaultPolicySet WSTransaction]’)

AdminTask.addPolicyType(’[-policySet PolicySet1

-policyType WSTransaction -enabled true]’)

4. Use the setPolicyType command to configure the WS-Transaction policy type attributes. For example:

AdminTask.setPolicyType(’[-policySet PolicySet1

-policyType WSTransaction

-attributes "[[BAAtomicOutcomeAssertion mandatory] [ATAssertion supports]]"]

-replace’)

For detailed information about these configurable attributes, see “WS-Transaction policy settings” on

page 961.

5. Save your changes to the master configuration. For example, enter the following command:

AdminConfig.save()

What to do next

You are now ready to associate the policy set with the JAX-WS client, or with the JAX-WS Web service,

endpoint, or operation.

Configuring Web Services Transaction support in a secure

environment

If you use Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) support

when administrative security is enabled, you might need to change the default transaction service

configuration. You can disable the transaction coordination authorization setting, create a new Web

container transport chain, or do both.

About this task

You might disable transaction coordination authorization if you want to interoperate with other servers and

you do not want to set up security for the transaction manager to support the Common Criteria EAL4

evaluated configuration. When transaction coordination authorization is disabled, WebSphere Application

Server does not automatically reject secure WS-Transactions protocol messages.

732 Administering WebSphere applications

You might configure a new Web container transport chain for use by WS-Transactions in the following

situations:

v You want to use an alternative port number for WS-AT or WS-BA protocol messages.

v You want to interoperate with a non-WebSphere Application Server product that requires client

certificate authentication on the Secure Sockets Layer (SSL) connection that is used for protocol

messages.

The transaction service, by default, selects a suitable Web container transport chain from the list of those

configured and uses it for protocol messages. You can configure a new transport chain and specify your

own settings. For example, you can specify an alternative SSL configuration that requires client certificate

authentication, which is then used specifically for WS-Transactions protocol messages.

1. Optionally, use the following steps to disable transaction coordination authorization.

a. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name → [Container Settings] Container Services → Transaction Service.

b. Clear the Enable transaction coordination authorization check box.

c. Click Apply or OK.

d. Save your changes to the master configuration.

2. Optionally, use the following steps to create a new Web container transport chain.

a. In the administrative console, click Servers → Application servers → server_name → [Container

Settings] Web Container Settings → Web container transport chains.

b. Click New to create a new transport chain.

c. Type a name for the transport chain.

d. From the Transport chain template list, select an appropriate template.

e. Click Next to select a new port for the chain.

f. Type a name, host, and port number for the port. For a secure chain, the host must match the

common name in the certificate that is used.

g. Click Next, confirm the settings, then click Finish.

h. Save your changes to the master configuration.

i. If necessary, create a new SSL configuration and associate it with the SSL channel associated with

your new chain. For more information, see Creating a Secure Sockets Layer configuration. You are

now ready to configure the transaction service to use the new transport chain.

j. Click Servers → Application servers → server_name → [Container Settings] Container Services

→ Transaction Service.

k. In the External WS-Transaction HTTP(S) URL prefix section, click Select prefix, then select the

Web container transport chain that you have just created from the list.

If you are using an intermediary, such an HTTP proxy, in front of the application server, click

Specify custom prefix, then type the external endpoint URL information for the intermediary node

in the field. For more information, see “Enabling WebSphere Application Server to use an

intermediary node for Web services transactions” on page 736.

l. Click Apply or OK, then save your changes to the master configuration.

3. After you save all the configuration changes, restart the server for the changes to take effect.

Results

You configured your system to use WS-AT or WS-BA in a secure environment.

Chapter 5. Web services 733

Configuring an intermediary node for Web services transactions

Intermediary nodes allow the exchange of Web Services Atomic Transaction (WS-AT) and Web Services

Business Activity (WS-BA) protocol messages across firewalls and outside the WebSphere Application

Server domain. You configure an intermediary node to specify which WebSphere Application servers the

node routes requests to.

1. Decide what type of intermediary node to configure: a Proxy Server for IBM WebSphere Application

Server, an HTTP server, or both.

2. Perform one of the following steps, according to the choice you made in the previous step.

v If you are creating an intermediary node that is a Proxy Server for IBM WebSphere Application

Server, follow the instructions in Setting up the proxy server and follow-on topics, ensuring that you

enable Web services support on the proxy server.

v If you are creating an intermediary node that is an HTTP server, configure the HTTP server so that

it routes WS-AT and WS-BA protocol messages to the appropriate WebSphere Application Server,

rather than processing them itself, as follows.

a. Allocate a set of unique virtual hosts to the HTTP server; one virtual host for each WebSphere

Application Server that you want the HTTP server to communicate with.

b. In the HTTP server, map each virtual host to a WebSphere Application Server. For example, you

might allocate a virtual host name of vhost1 to the HTTP server, then within the HTTP server,

map vhost1 to a WebSphere Application Server called server1.

See the associated example subtopic for details of the configuration XML for IBM HTTP server.

v If you are using both a Proxy Server for IBM WebSphere Application Server and an HTTP server,

perform the following steps.

a. Follow the instructions in Setting up the proxy server and follow-on topics, ensuring that you

enable Web services support on the proxy server.

b. Configure the HTTP server to route requests to the proxy server, as described in Routing

requests from a plug-in to a proxy server.

c. Additionally, configure the HTTP server so that it routes WS-AT and WS-BA requests that are

targeted at WebSphere Application Server to the proxy, rather than processing them itself. See

the associated example for details of the configuration XML for IBM HTTP server.

Results

You configured the intermediary node ready for use by WebSphere Application Server.

What to do next

Configure WebSphere Application Server to use the intermediary node by specifying, for each server, the

appropriate virtual host of the intermediary node.

Example: Configuring IBM HTTP server as an intermediary node for Web services

transactions

You can use an HTTP server intermediary nodes to enable the exchange of Web Services Atomic

Transaction and Web Services Business Activity protocol messages across firewalls and outside the

WebSphere Application Server domain. For IBM HTTP server, you achieve this behavior by modifying the

plugin-cfg.xml file of the IBM HTTP server node.

Routing requests to WebSphere Application Server

You can use the IBM HTTP server as a single intermediary node, or you can combine it with a Proxy

Server for IBM WebSphere Application Server. In both cases, update the plugin-cfg.xml file to indicate that

the HTTP server should route requests that are targeted at WebSphere Application Server, those of the

form http://host:port/_IBMSYSAPP/*, to WebSphere Application Server, rather than processing them itself.

734 Administering WebSphere applications

To update the plugin-cfg.xml file, add a URI element with a name of _IBMSYSAPP, as shown in the

following example. Add this URI to all UriGroup elements in the plugin-cfg.xml file.

<UriGroup Name="default_host_server1_99T73NKNode01_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/snoop/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hello" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hitcount" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="*.jsp" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="*.jsv" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="*.jsw" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/j_security_check" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/ibm_security_logout" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/servlet/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/SamplesGallery/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/WSsamples/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/docs/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/_IBMSYSAPP/*" />

</UriGroup>

Configuring virtual host mapping

If you are using IBM HTTP as the only intermediary node, in other words you are not also using Proxy

Server for IBM WebSphere Application Server, configure virtual hosts to represent each WebSphere

Application Server that the HTTP node routes requests to. Update the plugin-cfg.xml file by adding

VirtualHostGroup, VirtualHost and Route elements.

The following example shows part of the plugin-cfg.xml file for a configuration in which the IBM HTTP

server routes requests to one of two servers, server1 and server2, in WebSphere Application Server.

The plugin-cfg.xml file contains two virtual host aliases, with names name1.acme.com and

name2.acme.com, that are defined using VirtualHost and VirtualHostGroup elements. The Route elements

define the association between the virtual hosts and the ServerCluster elements. When a request is made,

IBM HTTP server finds the best matching route to dispatch the request to. A request made to virtual host

name1.acme.com, with a URI that matches a pattern in the default_URIs URI group, is sent to the

server1_Cluster server cluster. This server cluster contains only one server, server1, so requests targeted

at virtual host name1.acme.com are sent to server1, and similarly, requests targeted at virtual host

name2.acme.com are sent to server2.

<UriGroup Name="default_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/snoop/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hello" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hitcount" />

...

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/*" />

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/docs/*" />

 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/_IBMSYSAPP/*" />

</UriGroup>

<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin" Name="server1_Cluster" PostBufferSize="64"

PostSizeLimit="-1" RemoveSpecialHeaders="true" RetryInterval="60">

 <Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1" Name="server1" ServerIOTimeout="0" WaitForContinue="false">

 ...

 </Server>

 <PrimaryServers> <Server Name="server1"/> </PrimaryServers>

 </ServerCluster>

<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin" Name="server2_Cluster" PostBufferSize="64" PostSizeLimit="-1" RemoveSpecialHeaders="true" RetryInterval="60">

 <Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1" Name="server2" ServerIOTimeout="0" WaitForContinue="false">

 ...

 </Server>

 <PrimaryServers> <Server Name="server2"/> </PrimaryServers>

</ServerCluster>

<VirtualHostGroup Name="vhost_server1"> <VirtualHost Name="name1.acme.com:9081"/> </VirtualHostGroup>

<VirtualHostGroup Name="vhost_server2"> <VirtualHost Name="name2.acme.com:9081"/> </VirtualHostGroup>

<Route ServerCluster="server1_Cluster" UriGroup="default_URIs" VirtualHostGroup=" vhost_server1 "/>

<Route ServerCluster="server2_Cluster" UriGroup="default_URIs" VirtualHostGroup=" vhost_server2"/>

Chapter 5. Web services 735

Related concepts

“Web Services transactions, firewalls and intermediary nodes” on page 719
You can configure your system to enable propagation of Web Services Atomic Transactions (WS-AT)

message contexts and Web Service Business Activities (WS-BA) message contexts across firewalls or

outside the WebSphere Application Server domain. With these configurations, you can distribute Web

service applications that use WS-AT or WS-BA across disparate systems. The topology that you use can

affect the high availability and affinity behavior of the transactions.

Enabling WebSphere Application Server to use an intermediary node

for Web services transactions

You can use intermediary nodes with Web Services Atomic Transactions (WS-AT) or Web Services

Business Activities (WS-BA) to support the exchange of associated requests across firewalls and outside

the WebSphere Application Server domain. You configure WebSphere Application Server to use an

intermediary node by specifying the external endpoint URL information for the intermediary node in each

server that is accessed through the intermediary.

Before you begin

Configure the intermediary node that you want to use, and ensure that you know the address or addresses

of the intermediary node that you want to map to servers in your WebSphere Application Server

configuration.

Configure the intermediary to listen on a specific port for protocol messages and to route these messages

to the specific WebSphere Application Server instance that you want to enable. See the related information

for an example configuration where an IBM HTTP server is the intermediary.

1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name → [Container Services] Transaction Service.

2. In the External WS-Transaction HTTP(S) URL prefix section, click Specify custom prefix, then type

the external endpoint URL information for the intermediary node in the field. Use one of the following

formats for the prefix, where host_name and port represent the intermediary node that is an HTTP or

HTTPS proxy for the server, and port is optional.

v

http://host_name:port

v

https://host_name:port

3. Click Apply or OK.

4. Save your changes to the master configuration.

5. Repeat the previous steps for each server that is accessed through the intermediary node.

6. Restart the servers.

Results

You configured your system to use an intermediary node. Test your configuration to ensure that messages

are routed as you expect.

Configuring a server to use business activity support

Business activity support provides compensation for activities such as sending an e-mail, which can be

difficult or impossible to roll back atomically. With this compensation, applications on disparate systems

can coordinate activities that are more loosely coupled than atomic transactions. To use the business

activity support, you must first enable it on each server that you plan to use.

736 Administering WebSphere applications

About this task

If an application component uses business activity support, you must enable the support on each server

that runs the application.

1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name → [Container Settings] Container Services → Compensation Service.

2. Select the Enable service at server startup check box.

3. If required, modify the compensation handler retry interval and limit. These values control the

frequency with which the compensation handler compensate and close methods are retried, when

either throw a RetryCompensationHandlerException exception, and the number of times that these

methods are retried.

4. Save your changes to the master configuration.

5. Repeat the previous steps for each server that you plan to use.

6. Restart all the servers for the changes to take effect.

Results

The business activity support is enabled for the application server. Verify a successful enablement by

checking for the message, CWSCP0005I: The Compensation service started successfully. in the

SystemOut.log file for the relevant server.

What to do next

Deploy the business-activity-enabled application to the server.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere

Application Server at Version 6.1 or later. Applications cannot use the business activity support if

you deploy them to a cluster that includes WebSphere Application Server Version 6.0.x servers.

Compensation service settings

Use this page to manage the compensation service. The compensation service supports server-level

configuration for compensation enablement and logging.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → [Container Settings] Container services → Compensation service.

Enable service at server startup:

Specifies whether the application server attempts to start the compensation service when the server next

starts up.

 Default Selected

Range Selected

When the application server starts, it attempts to

start the compensation service automatically.

Cleared

The server does not try to start the compensation

service. If compensation is used in applications

that run on this server, the system administrator

must start the service manually or select this

property and then restart the server.

Recovery log directory:

Chapter 5. Web services 737

Specifies a directory path that, if set, overrides the location where the compensation service stores log

files for recovery of this server.

 A blank value in the server configuration is expanded by the compensation service at startup as the

directory profile_root/recoveryLogs/cell_name/node_name/server_name/compensation. The variable

profile_root is the home directory for the WebSphere Application Server profile used for the server.

When compensation is used, the WebSphere product stores information that is needed to perform

compensation after a system failure on a physical storage device. In a higher application load, this

persistence slows down performance of the application server because the application server is dependent

on the operating system and the underlying storage systems.

To achieve better performance, move the compensation log files to a storage device with more physical

disk drives, or preferably Redundant Array of Independent Disks (RAID) disk drives. When the log files are

moved to the file systems on the RAID disks, the task of writing data to the physical media is shared

across the multiple disk drives. This sharing provides more concurrent access to make compensation

information persistent and provides faster access to that data from the logs. Depending upon the design of

the application and storage subsystem, typical performance gains can be 10% to 100% or greater.

This change applies only to the configuration where the application has compensation configured.

Consider setting this property when the application server shows one or more of following signs:

v CPU use remains low despite an increase in requests that can be compensated

v Transactions fail with several time outs

v The server stops and needs to be restarted

v The disk on which the server is running shows higher use

 Data type String

Default profile_root/recoveryLogs/cell_name/node_name/
server_name/compensation

Where profile_root is the home directory for the

WebSphere Application Server profile used for the server.

Recommended Create a file system with at least 3 to 4 disk drives

grouped together in a RAID-0 configuration. Create the

compensation log on this file system with the default size.

When the server is running under load, check the disk

input and output. If the disk input and output time is more

then 5%, consider adding more physical disks to lower the

value. If the disk input and output is low, but the server

load is still high, consider increasing the size of the log

files.

Recovery Log File Size:

Specifies the maximum megabyte (MB) size of the recovery log file that the compensation service uses for

recovery data. The default value is 5 megabytes.

 The amount of data logged by the compensation service is influenced by the number of concurrently-active

applications that use compensation, and the size of the application data that is provided as input to the

compensation logic.

The compensation service reserves space on a physical storage device at server start for compensation

recovery data. If this size is not enough for active compensation data, the log files grow dynamically until

they reach the maximum size that this value specifies.

 Data type Integer

Units Megabytes

738 Administering WebSphere applications

Default 5

Range 1 through 2147483647 megabytes

Although the allowed range for Recovery Log File Size is 1 through 2147483647, the maximum size that is

actually possible depends on the maximum size allowed by the operating system for a mapped file.

Compensation handler retry limit:

Specifies the maximum number of times that the compensation service retries a compensation handler.

 This value specifies the number of times that the compensation service calls the CompensationHandler

methods compensate() and close(). Each time that the compensation handler is retried, the

Compensation handler retry interval doubles.

Set this value to -1 to retry the compensate() and close() methods indefinitely. Set the value to 0 to never

retry either method.

 Data type Integer

Default -1

Range -1 or above

Compensation handler retry interval:

Specifies the time interval, in seconds, that the compensation service waits before retrying a compensation

handler. Each time that the compensation handler is retried, the interval doubles.

 The compensation service retries a compensation handler by recalling the CompensationHandler methods

compensate() and close() if either throws a RetryCompensationHanderException.

 Data type Integer

Units Seconds

Default 30

Range 0 or above

Creating an application that uses the Web Services Business Activity

support

To create an application component that uses the business activity support, you must set Run EJB

methods under a Business Activity scope in the deployment descriptor of the relevant application

component, and if required, create and specify a compensation handler for the application to use if there is

an error. You then build the component into the application and deploy the application onto a server that

has the business activity support enabled. The application component can be either an enterprise bean or

a Web service that is implemented as an enterprise bean.

Before you begin

For information about editing deployment descriptors, refer to topics about the Application Deployment

Descriptor editor in the Application Server Toolkit information, in the navigation pane of this information

center.

About this task

Perform this task for an application that runs on a business-activity-enabled sever to use the business

activity support at run time, and to perform work that might later be compensated by a compensation

Chapter 5. Web services 739

handler. If the application requires compensation when a business activity scope ends, the application

passes the data that is required by the compensation process to a compensation handler indirectly, by

using the business activity API. The data that is required by the compensation process can be in the form

of either a serializable object or a Service Data Object (SDO).

1. Design the application component that requires the business activity support. In particular, define the

application component requirements for compensation and close activities. If the application

component requires compensation, define the nature of the data in the serializable object or the SDO

that the application component passes to the compensation handler.

2. Using the information from your application design, create the compensation handler for the application

component, if required. This handler defines the close and compensation logic that runs upon

completion of a business activity scope that has the handler added to it through an application

component.

a. Open your chosen WebSphere Application Server assembly tool.

b. Create a new Java class that implements the appropriate interface, depending on the format of the

data that is required by the compensation process:

v For a serializable object, implement the

com.ibm.websphere.wsba.serializable.CompensationHandler interface.

v For an SDO, implement the com.ibm.websphere.wsba.CompensationHandler interface.

c. Implement the close and compensate methods on the new compensation handler object, to

perform appropriate actions depending on the serializable or SDO data that passes to the handler

when it is invoked.

The compensation handler class is now ready for the application component to reference, and for

assembly into an application.

3. Open the application component in the assembly tool.

4. Open the deployment descriptor for the application component in the deployment descriptor viewer.

5. Scroll to the Compensation section and select the Run EJB methods under a Business Activity

scope check box.

6. In the Compensation handler class text field, type the fully qualified class name of the compensation

handler class that you created earlier.

7. Save the deployment descriptor.

8. Build the application, including both the application component and the compensation handler. If the

application is a Web service, the application must be compliant with the Java Specification Request

(JSR) 109 standard.

9. Deploy the application onto an application server that is business-activity-enabled.

Results

The application is now business-activity-enabled, and can use the business activity support at run time

through the business activity API. The application component has a compensation handler associated with

it, and can therefore call the setCompensationDataImmediate and setCompensationDataAtCommit

methods at run time to add the compensation handler to the business activity scope. For more information

about these methods, see “Business activity API” on page 728. If the unit of work with which the business

activity scope is associated fails, the compensation handler performs actions to compensate for the error.

What to do next

Ensure that the compensation handler class is on the application class path for the WebSphere Application

Server runtime environment.

740 Administering WebSphere applications

Business activity API

Use the business activity application programming interface (API) to create business activities and

compensation handlers for an application component, and to log data that is required to compensate an

activity if there is a failure in the overall business activity.

Overview

The business activity support provides a UserBusinessActivity API and two interfaces: a

serializable.CompensationHandler interface and a CompensationHandler interface. Each interface has two

exceptions: RetryCompensationHandlerException and CompensationHandlerFailedException. You can look

up the UserBusinessActivity interface from the application server Java Naming and Directory Interface

(JNDI) at java:comp/websphere/UserBusinessActivity. For example:

InitialContext ctx = new InitialContext();

UserBusinessActivity uba = (UserBusinessActivity) ctx.lookup(“java:comp/websphere/UserBusinessActivity”);

You can use the getId method to access the unique identifier for the business activity that is currently

associated with the calling thread. The identifier is the same as the one that is generated for the business

activity scope at run time and that is used for information, warning, and error messages. For example, the

application can use the identifier in audit or diagnostic messages, and it is possible to correlate between

application-generated and runtime-generated messages.

InitialContext initialContext = new InitialContext();

UserBusinessActivity uba = initialContext.lookup(“java:comp/websphere/UserBusinessActivity”);

...

String activityId = uba.getId();

if (activityId == null)

// No activity on the thread

else

// Output audit message including activity id

If an application component runs work that might require compensating upon failure in the business

activity, you must provide a compensation handler class that is assembled as part of the deployed

application. This Java class must implement one of the following interfaces:

v com.ibm.websphere.wsba.serializable.CompensationHandler, which takes a takes a parameter of a

serializable object

v com.ibm.websphere.wsba.CompensationHandler, which takes a parameter of a Service Data Object

(SDO)

Typically, applications that already have their data available in DataObject format will use the

CompensationHandler interface, and applications that do not will use the

serializable.CompensationHandler interface. Both interfaces support the close and compensate methods.

An application must register a compensation handler implementation that works with the type of

compensation data (serializable object or SDO) that the application uses. If there is a mismatch between

the type of data that the application component uses and the compensation handler implementation, there

is an error.

During normal application processing, the application can make one or more invocations to the

setCompensationDataImmediate or setCompensationDataAtCommit methods, passing in either a serializable

object or an SDO that represents the current state of the work performed.

When the underlying unit of work (UOW) that the root business activity is associated with completes, all

registered compensators are coordinated to complete. During completion, either the compensate or the

close method is called on the compensation handler, passing in the most recent compensation data logged

by the application component as a parameter. Your compensation handler implementation must be able to

understand the data that is stored in either the serializable object or the SDO DataObject; using this data,

the compensation handler must be able to determine the nature of the work performed by the enterprise

bean and compensate or close in an appropriate way, for example by undoing changes made to database

rows if there is a failure in the business activity. You associate the compensation handler with an

Chapter 5. Web services 741

application component by using the assembly tooling, such as Rational Application Developer.

Active and inactive compensation handlers

You implement the serializable.CompensationHandler or CompensationHandler interface for any

application component that executes code that might need to be compensated within a business activity

scope. Compensation handler objects are registered implicitly with the business activity scope under which

the application runs, whenever the application calls the UserBusinessActivity API to specify compensation

data. Compensation handlers can be in one of two states, active or inactive, depending on any

transactional UOW under which they are registered. A compensation handler that is registered within a

transactional UOW might initially be inactive until the transaction commits, at which point the compensation

handler becomes active (see the following section). A compensation handler that is registered outside a

transactional UOW always becomes active immediately.

When a business activity completes, it drives only active compensation handlers. Any inactive

compensation handlers that are associated with the business activity are discarded and never driven.

Logging compensation data

The business activity API specifies two methods that allow the application to log compensation data. This

data is made available to the compensation handlers during their processing when the business activity

completes. The application calls one of these methods, depending on whether it expects transactions to be

part of the business activity.

setCompensationDataAtCommit()

 Call the setCompensationDataAtCommit method when the application expects a global transaction

on the thread.

v If a global transaction is present on the thread, the CompensationHandler object is initially

inactive. If the global transaction fails, it rolls back any transactional work done within its

transaction context in an atomic manner, and drives the business activity to compensate other

completed UOWs. The compensation handler does not need to be involved. If the global

transaction commits successfully, the compensation handler becomes active because if the

overall business activity fails, the compensation handler is required to compensate the durable

work that is completed by the global transaction. The setCompensationDataAtCommit method

configures the CompensationHandler instance to perform this compensation function.

v If a global transaction is not present when the setCompensationDataAtCommit method is called,

the compensation handler becomes active immediately.

For example, for an SDO, using the same business activity instance as in the previous example:

DataObject compensationData = doWorkWhichWouldNeedCompensating();

uba.setCompensationDataAtCommit(compensationData);

setCompensationDataImmediate()

 Call the setCompensationDataImmediate method when the application does not expect a global

transaction on the thread.

The setCompensationDataImmediate method makes a CompensationHandler instance active

immediately, regardless of the current UOW context at the time that the method is invoked. The

compensation handler is always able to participate during completion of the business activity.

The role of the setCompensationDataImmediate method is to compensate any non-transactional

work, in other words, work that can be performed either inside or outside a global transaction, but

that is not governed by the transaction. An example of this type of work is sending an e-mail. The

compensation handler must be active immediately so that if a failure occurs in a business activity,

this non-transactional work is always compensated.

For example, for a serializable object, using the same business activity instance as in the previous

example:

742 Administering WebSphere applications

Serializable compensationData = new MyCompensationData();

uba.setCompensationDataImmediate(compensationData);

Although these two compensation data logging methods, if called in the same enterprise bean, use the

same compensation handler class, they create two separate instances of the compensation handler class

at run time. Therefore, the actions of the methods are mutually exclusive; calling one of the methods does

not overwrite any work carried out by the other method.

If a compensation handler instance is already added to the Business Activity using one of these methods,

and then the same method is called, passing in null as a parameter, that compensation handler instance

is removed from the business activity, and is not driven to close or compensate during completion of the

business activity.

As described previously, the business activity support adds a compensation handler instance to the

business activity when a compensation data logging method is called for the first time by the enterprise

bean that uses that business activity. At the same time, a snapshot of the enterprise application context is

taken and logged with the compensation data. When the business activity competes, all the compensation

handlers that were added to the business activity are driven to compensate or close. The code that you

create in the CompensationHandler or serializable.CompensationHandler class is guaranteed to run in the

same enterprise application context that was captured in the earlier snapshot.

For details about the methods available in the business activity API, see Additional Application

Programming Interfaces (APIs).

Using WS-Policy to exchange policies in a standard format

WS-Policy is an interoperability standard that is used to describe and communicate the policies of a Web

service so that service providers can export policy requirements in a standard format. Clients can combine

the service provider requirements with their own capabilities to establish the policies required for a specific

interaction. WebSphere Application Server conforms to the WS-Policy specification, so that policy

information can be exchanged and received in accordance with the WS-Policy standard.

About this task

For more information about using WS-Policy, see the following topics.

v Learn about WS-Policy

v Configure a service provider to share its policy configuration

v Configure the client policy using a service provider policy

v Configure a service provider to share its policy configuration using the wsadmin tool

v Configure the client policy based on a service provider policy using the wsadmin tool

v Configure security for a WS-MetadataExchange request

Learning about WS-Policy

WS-Policy is an interoperability standard that is used to describe and communicate the policies of a Web

service so that service providers can export policy requirements in a standard format. Clients can combine

the service provider requirements with their own capabilities to establish the policies required for a specific

interaction.

WebSphere Application Server conforms to the Web services Policy Framework (WS-Policy) specification.

You can use the WS-Policy protocol to exchange policies in standard format. A policy represents the

capabilities and requirements of a Web service, for example whether a message is secure and how to

secure it, and whether a message is delivered reliably and how this is achieved. You can communicate the

policy configuration to any other client, service registry, or service that supports the WS-Policy

specification, including non-WebSphere Application Server products in a heterogeneous environment.

Chapter 5. Web services 743

For a service provider, the policy configuration can be shared in published Web Services Description

Language (WSDL), WSDL that is obtained by a client using an HTTP Get request, or by using the Web

Services Metadata Exchange (WS-MetadataExchange) protocol. The WSDL is in the standard

WS-PolicyAttachments format.

For a client, the client can obtain the policy of the service provider in the standard WS-PolicyAttachments

format and use this information to establish a configuration that is acceptable to both the client and the

service provider. In other words, the client can be configured dynamically, based on the policies supported

by its service provider. The provider policy can be attached at the application or service level.

The WS-Policy assertion specifications that are supported in this version of WebSphere Application server

are:

v WS-Policy. See Web Services Policy 1.5

v WS-Addressing. See Web Services Addressing 1.0 - Metadata.

v WS-AtomicTransaction. See Web Services Atomic Transaction Version 1.0 and Web Services Atomic

Transaction Version 1.1.

v WS-ReliableMessaging. See Web Services Reliable Messaging Policy Assertion Version 1.0 and Web

Services Reliable Messaging Policy Assertion Version 1.1.

v WS-SecurityPolicy. See WS-SecurityPolicy 1.2.

For details of the WS-Policy domains that are supported, see the following topics:

v “WS-Addressing policy settings” on page 940

v “WS-ReliableMessaging settings” on page 937

v “WS-Security policy settings” on page 964

v “WS-Transaction policy settings” on page 961

Web service providers and policy configuration sharing

A WebSphere Application Server service provider can share its current policy configuration through its

Web Service Description Language (WSDL). The policy configuration is in standard WSDL

WS-PolicyAttachment format so that it can be shared with other clients, service registries, or services that

support the Web Services Policy (WS-Policy) specification.

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service

endpoint available to share in two ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to

publish, or to obtain using an HTTP Get request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy

configuration of the service provider is included in the WSDL and is available to a

WS-MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange

protocol is that you can apply message-level security to WS-MetadataExchange GetMetadata requests

by using a suitable system policy set.

The policy configuration in the WSDL is in the standard WS-PolicyAttachments format. Any WS-Policy

attachments that were in the WSDL previously are removed. Note that policy configuration information

becomes available in the WSDL to publish, but it is not available if you just view the WSDL document

using the administrative console. Also, policy configuration information is not available in WSDL that is

published remotely by using an administrative agent.

By default, the policy configuration of the service provider is not included in the WSDL. To include the

policy configuration of the service provider in the WSDL, and specify how it is shared, you can use the

administrative console or wsadmin commands.

744 Administering WebSphere applications

http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

Application developers can specify that a service provider shares its policy configuration, and how it is

shared, using Rational Application Developer tools when a Web service is generated. For more

information, see the Rational Application Developer documentation.

Transport policy information is not included in the policy configuration because transport policies such as

HTTP, SSL, and JMS cannot be expressed in WS-PolicyAttachment format.

Bootstrap policy information, for example, the policy to access a WS-Trust service, can be included in the

policy configuration if the bootstrap policy is expressed in WS-PolicyAttachment format.

You can configure a service provider to share its policy configuration at application or service level. The

policy configuration that is represented by the policy sets attached to any lower levels will also be shared.

Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

Troubleshooting policy configuration sharing

A service provider might not be able to share its policy configuration because the configuration cannot be

expressed in the standard WS-PolicyAttachments format. One reason might be because multiple

incompatible policies are defined for a particular attach point. Another reason might be because there is

not enough binding information to generate the standard policy. Policy configuration might include

bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also

be expressed in WS-PolicyAttachments format.

If the policy configuration cannot be shared, an error that describes the problem is written to the service

provider error log, and the following policy is attached to the WSDL of the service provider:

<wsp:Policy>

<wsp:ExactlyOne>

</wsp:ExactlyOne>

</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects

of the WSDL are unaffected.

Web service clients and policy configuration using the service provider policy

If a service provider publishes its policy in its Web Services Description Language (WSDL), the policy

configuration of a WebSphere Application Server service client can be configured dynamically, based on

the policies supported by its service provider.

The service provider must publish its policy in WS-PolicyAttachment format in its WSDL and the client

must be able to support those provider policies. The client can base its policy configuration entirely on the

policy of the provider, or partly on the policy of the provider with restrictions that are defined by the policy

set configuration of the client.

A client acquires the provider policy by using either an HTTP Get request or the Web Services Metadata

Exchange (WS-MetadataExchange) protocol to obtain the WSDL of the provider. You can configure how

the client obtains the provider policy, and the endpoint at which the policy is acquired, by using the

administrative console or wsadmin commands. If you use the WS-MetadataExhange protocol to obtain the

policy of the provider, this has the advantage that you can secure WS-MetadataExchange GetMetadata

requests by using a suitable system policy set.

The Web application client-side policy is calculated and cached as a runtime configuration. This calculated

policy is known as the effective policy and is used for subsequent outbound Web service requests to the

endpoint or operation for which the calculation was performed. The original policy set configuration of the

client does not change.

Chapter 5. Web services 745

For a specific set of WSDL, dynamic policy configuration occurs once, and it is assumed that this

configuration is the same for all endpoints that implement a service, because they have the same WSDL.

The policy calculations that are based on this WSDL are cached in the client runtime (they are not

persisted) and shared with each target service.

For example, in a cluster environment, this means that the client does not obtain the provider policy again

for each endpoint instance of a Web service.

If you require a different policy configuration for each endpoint implementation, you must create a new port

for each endpoint. Then you can specify a different policy configuration for each endpoint.

Transport policies such as HTTP, SSL, and JMS, cannot be expressed in WS-PolicyAttachment format, so

the client cannot acquire the transport policies of the service provider. If the client requires transport

policies, you must configure these policies as part of the policy set configuration of the client.

Policy inheritance

The provider policy can be attached at the application or service level. Endpoints and operations inherit

their policy configuration from the relevant service.

Calculating policy

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are

compatible, and the calculation of a new policy that complies with both their requirements and capabilities.

When you obtain the policy of a service provider, you can choose to use the provider policy only, or to use

the client and the provider policy. The outcome of policy intersection is as follows:

v When you specify provider policy only, the calculated policy is based on all the policies that the

WebSphere Application Server client supports intersected by the provider policy. Effectively, the provider

determines the policy, as long as the client can support that policy. This policy configuration is available

if the scope point (endpoint operation) where the provider policy is attached is not attached to a client

policy set and does not inherit a policy set attachment from parent scope points.

v When you specify client and provider policy, the calculated policy is based on the policy that is

acceptable to the client intersected by the provider policy. Effectively, the policy conforms to the client

policy set, but might be restricted further by the policies dictated by the provider. The policy that is

acceptable to the client is defined by the policy set that is either attached to the client scope point, or

that the client scope point inherits from a parent scope point. This policy configuration is available if the

scope point (endpoint operation) where the provider policy is attached is attached to a client policy set

or inherits a policy set attachment from parent scope points.

The WS-Policy language provides a way to express multiple policy choices, so the policy calculation might

produce more than one result. For example, the service provider might support both

WS-ReliableMessaging 1.0 and WS-ReliableMessaging 1.1. If the client also supports both versions, the

client could use either version in its Web service requests to the provider. In this situation, where more

than one specification version is acceptable to both the client and the provider, the effective policy is

calculated using the most recent version.

Policy intersection in the JAX-WS dispatch client

Invocations that use the JAX-WS dispatch client (javax.xml.ws.Dispatch) use provider policy in their

configuration if this is the administered behavior for the service. If the operation for the invocation is

unknown, the client behaves as follows:

v The client complies with the provider policy scoped to the operation only if the provider policy is

identical for all the operations provided by the service (both semantically and syntactically).

746 Administering WebSphere applications

v If the provider policy is not identical for all the operations provided by the service, the client returns a

JAX-WS WebserviceException with the cause WSPolicyException (CWPOL0106E), and an appropriate

error message.

v If there is no policy on any of the operations, the client uses the effective provider policy for the service

endpoint.

Refreshing the provider policy held by the client

The provider policy that the client holds for a service is refreshed the first time that the Web service is

invoked after the application is loaded. After that, the provider policy is refreshed when the application

restarts, or when you explicitly invoke an update of the provider policy.

You can invoke an update of the provider policy in the application code. This might be useful if a JAX-WS

invocation fails; in the exception handling, you can force a retry with refreshed policy. You can set the

following property (available in the WSPConstants class of the API) on the JAX-WS client proxy, then

reissue the JAX-WS request: com.ibm.wsspi.wspolicy.refreshProviderPolicy.

When the com.ibm.wsspi.wspolicy.refreshProviderPolicy property is set, the provider policy that the client

holds for a service is refreshed, and the effective policy is recalculated at the next request. After the

refresh and recalculation have occurred, the com.ibm.wsspi.wspolicy.refreshProviderPolicy property is

unset.

After an update of the policy provider is invoked, the next time that the Web service that is associated with

the endpoint you selected is invoked, the policy of the service provider is obtained and the policy

intersection is recalculated.

The following example of code for a dispatch client shows the identification of an exception that might be

resolved by refreshing the provider policy, followed by the invocation of the refresh.

try

{

dispatch.invoke(params);

}

catch (javax.xml.ws.WebServiceException e)

{

Throwable cause = e.getCause();

if ((cause instanceof NullPolicyException) || (cause instanceof PolicyException))

{

// The exception might be because the policy of the provider is not up to date.

//

// There is also a message on the console that starts with the characters CWPOL,

// which helps to decipher and debug the cause of the error.

// This message is also available by using

// String nlsedMessage = cause.getMessage();

Map<String, Object> requestContext = dispatch.getRequestContext();

requestContext.put(WSPConstants.REFRESH_PROVIDER_POLICY, Boolean.TRUE);

// The following method might cause another jax-ws invocation exception.

// The cause might still be policy, in which case, a message is written to the

// console.

dispatch.invoke(params);

}

// For all other exceptions, use the normal exception handling for the

// application. In this case, assume there are no other exceptions and rethrow the

// initial exception. Remember that the WebServiceException might be caused by a

// WSPolicyAdministrationException. In this situation, a message is written to the

// console, but forcing a refresh in the application cannot resolve the problem.

throw e;

}

WS-MetadataExchange requests

You can use the Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request to

exchange Web Services Definition Language (WSDL) that is annotated with WS-Policy information. A

service provider can use a WS-MetadataExchange request to share its policies, and a service client can

use a WS-MetadataExchange request to apply the policies of a provider. You can secure

WS-MetadataExchange requests by using transport-level or message-level security.

Chapter 5. Web services 747

The WS-MetadataExchange specification defines a mechanism to retrieve metadata from an endpoint.

WebSphere Application Server supports the use of the WS-MetadataExchange 1.1 GetMetadata request to

return metadata in a response. A service provider can use this mechanism to make WSDL that is

annotated with WS-Policy information available, that is, the service provider can share its policies. A

service client can use this mechanism to obtain WSDL that is annotated with WS-Policy information from a

service provider and then apply those policies. The policy configuration must be in WS-PolicyAttachments

format in the WSDL of the service provider.

You can use a WS-MetadataExchange request as an alternative to using an HTTP Get request.

By default, a service provider or a service client does not use WS-MetadataExchange to share or obtain

WS-Policy information. You must configure the service provider to share its policies, or configure the

service client to apply the policies of a service provider, and specify that a WS-MetadataExchange request

is used to share or obtain the policy configuration. WS-Policy information can be shared or obtained at the

application or service level. You can configure the service provider or service client by using the

administrative console or using wsadmin commands.

Application developers can configure the service provider or service client using Rational Application

Developer tools when a Web service is generated. For more information, see the Rational Application

Developer documentation.

When a service provider is configured to share its policies through WS-MetadataExchange, the service

supports incoming WS-MetadataExchange GetMetadata requests that are limited to the WSDL dialect.

When the service receives such a request, the WSDL of the service is returned inline through a

conformant WS-MetadataExchange response. The WSDL of the service contains WS-PolicyAttachments

annotations that represent the current policy configuration. The policy configuration is in

WS-PolicyAttachments format in the WSDL so that it is then available to other clients, service registries or

services that support the Web Services Policy (WS-Policy) specification and the WS-MetadataExchange

GetMetadata request.

When a service client is configured to use WS-MetadataExchange to obtain the policy of a service

provider, the service client sends a WS-MetadataExchange GetMetadata request that specifies the WSDL

dialect whenever it needs to obtain or refresh the policy of the provider.

WS-MetadataExchange security

You must ensure that the GetMetadata request is secured so that there is effective authentication,

authorization, integrity, and confidentiality. End-to-end authentication is particularly important for the

exchange of security metadata (SecurityPolicy), because if an unauthorized party could access this

information, security credentials could be sent to non-trusted endpoints.

The GetMetadata request is targeted at the same port as the application endpoint, so if the application

uses transport-level security, the GetMetadata request is also be targeted at the secure port and will, by

default, use the same transport-level security configuration of the application.

Additionally, you can apply message-level security (WS-Security) to the metadata exchange. You might

want to apply message-level security if transport-level security is not available on the application endpoint,

or if transport-level security is not adequate for your requirements. An advantage of message-level security

is that it provides end-to-end security by incorporating security features in the header of the SOAP

message.

To provide message-level security, you attach system policy sets and general (named) bindings to the

endpoint when you configure the service provider or service client to exchange policy configurations.

System policy sets are used for system messages that are not business-related, whereas application

policy sets specify policy assertions for business-related messages. For example, system policy sets are

748 Administering WebSphere applications

used for messages that apply qualities of service (QoS), which includes the messages that are defined in

the WS-MetadataExchange protocol. To provide message-level security for a GetMetadata request, you

must attach a system policy set that contains only Web Services Security (WS-Security) or Web Services

Addressing (WS-Addressing) policies. You can specify general bindings that are scoped either to the

global domain or to the security domain of the service.

When you apply message-level security, any transport policy of the application is always used.

Configuring a service provider to share its policy configuration

A WebSphere Application Server service provider can share its policy configuration in published Web

Services Description Language (WSDL), or WSDL that is obtained using an HTTP Get request or the Web

Services Metadata Exchange (WS-MetadataExchange) GetMetadata request.

Before you begin

You have developed a Web services service provider that contains all the necessary artifacts and

deployed your Web services application into your application server instance. You have attached the policy

sets and managed the associated bindings.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see “Learning

about WS-Policy” on page 743.

About this task

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service

endpoint available to share in two ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to

publish, or to obtain using an HTTP Get request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy

configuration of the service provider is included in the WSDL and is available to a

WS-MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange

protocol is that you can apply message-level security to WS-MetadataExchange GetMetadata requests

by using a suitable system policy set.

The policy configuration in the WSDL is in the standard WS-PolicyAttachments format. Any WS-Policy

attachments that were in the WSDL previously are removed. Note that policy configuration information

becomes available in the WSDL to publish, but it is not available if you just view the WSDL document

using the administrative console. Also, policy configuration information is not available in WSDL that is

published remotely by using an administrative agent.

You must configure a service provider to share its policy configuration because by default the policy

configuration is not available in its WSDL. You can configure the service provider to include the policy

configuration in its WSDL, to use WS-MetadataExchange so that the policy configuration is available, or

both. This topic describes how to configure a service provider to share its policy configuration using the

administrative console. You can also configure a service provider to share its policy configuration by using

wsadmin commands or Rational Application Developer tools.

You can configure a service provider to share its policy configuration at application or service level. The

policy configuration that is represented by the policy sets attached to any lower levels will also be shared.

Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

1. From the navigation pane of the administrative console, click Applications → Application Types →

WebSphere enterprise applications → service_provider_application_instance → [Web services

properties] Service provider policy sets and bindings.

Chapter 5. Web services 749

2. In the row for the application or service where the provider policy that you want to share is attached,

click the link in the Policy sharing column. The link is either Enabled or Disabled. The Policy Sharing

pane is displayed.

3. To include the policy configuration of the service provider in its WSDL so that it can be either published

or obtained using an HTTP Get request, select Exported WSDL.

4. To enable WS-MetadataExchange and make the policy configuration of the service provider available

to a WS-MetadataExchange GetMetada request, select WS-MetadataExchange request.

5. Optional: If you select WS-MetadataExchange request and you want to use message-level security,

select Attach a system policy set to the WS-MetadataExchange, then select a suitable policy set

and binding from the drop-down lists. See “Configuring security for a WS-MetadataExchange request”

on page 757.

6. Click OK and save your changes to the master configuration.

Results

The policy configuration of the service provider is available to its clients. The WSDL of the service provider

contains the current policy configuration in WS-PolicyAttachments format so that it is available to other

clients, service registries, or services that support the Web Services Policy (WS-Policy) specification. The

link in the Policy Sharing column on the Service provider policy sets and bindings pane changes to

Enabled.

If the policy configuration cannot be shared, an error that describes the problem is written to the service

provider error log, and the following policy is attached to the WSDL of the service provider:

<wsp:Policy>

<wsp:ExactlyOne>

</wsp:ExactlyOne>

</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects

of the WSDL are unaffected.

A service provider might not be able to share its policy configuration because the configuration cannot be

expressed in the standard WS-PolicyAttachments format. One reason might be because multiple

incompatible policies are defined for a particular attach point. Another reason might be because there is

not enough binding information to generate the standard policy. Policy configuration might include

bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also

be expressed in WS-PolicyAttachments format.

Configuring a service provider to share its policy configuration using the wsadmin

tool

A WebSphere Application Server service provider can share its policy configuration in published Web

Services Description Language (WSDL), or WSDL that is obtained using an HTTP Get request or the Web

Services Metadata Exchange (WS-MetadataExchange) GetMetadata request.

Before you begin

You have developed a Web services service provider that contains all the necessary artifacts and

deployed your Web services application into your application server instance. You have attached the policy

sets and managed the associated bindings.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see “Learning

about WS-Policy” on page 743.

750 Administering WebSphere applications

About this task

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service

endpoint available to share in two ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to

publish, or to obtain using an HTTP Get request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy

configuration of the service provider is included in the WSDL and is available to a

WS-MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange

protocol is that you can apply message-level security to WS-MetadataExchange GetMetadata requests

by using a suitable system policy set.

The policy configuration in the WSDL is in the standard WS-PolicyAttachments format. Any WS-Policy

attachments that were in the WSDL previously are removed. Note that policy configuration information

becomes available in the WSDL to publish, but it is not available if you just view the WSDL document

using the administrative console. Also, policy configuration information is not available in WSDL that is

published remotely by using an administrative agent.

You must configure a service provider to share its policy configuration because by default the policy

configuration is not available in its WSDL. You can configure the service provider to include the policy

configuration in its WSDL, to use WS-MetadataExchange so that the policy configuration is available, or

both. This topic describes how to configure a service provider to share its policy configuration using

wsadmin commands. You can also use the administrative console or Rational Application Developer (RAD)

tools.

You can configure a service provider to share its policy configuration at application or service level. The

policy configuration that is represented by the policy sets attached to any lower levels will also be shared.

Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

1. Start the wsadmin tool if it is not already running.

2. Use the SetProviderPolicySharingInfo command. For example:

AdminTask.setProviderPolicySharingInfo(’[-applicationName WebServiceProviderApplication

-resource WebService:/WebServiceProvider.war:{http://example_path/}Service1

-sharePolicyMethods [httpGet]]’)

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:

AdminConfig.save()

Results

The policy configuration of the service provider is available to its clients. The WSDL of the service provider

contains the current policy configuration in WS-PolicyAttachments format so that it is available to other

clients, service registries, or services that support the Web Services Policy (WS-Policy) specification.

If the policy configuration cannot be shared, an error that describes the problem is written to the service

provider error log, and the following policy is attached to the WSDL of the service provider:

<wsp:Policy>

<wsp:ExactlyOne>

</wsp:ExactlyOne>

</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects

of the WSDL are unaffected.

A service provider might not be able to share its policy configuration because the configuration cannot be

expressed in the standard WS-PolicyAttachments format. One reason might be because multiple

incompatible policies are defined for a particular attach point. Another reason might be because there is

Chapter 5. Web services 751

not enough binding information to generate the standard policy. Policy configuration might include

bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also

be expressed in WS-PolicyAttachments format.

What to do next

Optionally, you can publish the WSDL files.

Policy sharing settings

Use this pane to view and change whether the policy configuration of a Web services service provider is

shared. You can configure the service provider to include the policy configuration in its Web Service

Description Language (WSDL) so that it can be accessed using an HTTP Get request, or published. You

can also make the policy configuration available to a Web Services Metadata Exchange

(WS-MetadataExchange) request.

To view this administrative console page for an application or service, complete the following steps. The

application must be a Web services service provider.

1. Click Applications → Application Types → WebSphere enterprise applications →

service_provider_application_name → [Web Services Properties] Service provider policy sets

and bindings.

2. Select the link in the Policy Sharing column for the application or service you require. The link is

available if the application or service has a policy set attached.

To view this administrative console page for a service, complete the following steps.

1. Click Services → Service providers → service_name.

2. Select the link in the Policy Sharing column for the service. The link is available if the service has a

policy set attached.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Exported WSDL:

Select Exported WSDL to include the policy configuration of the service provider in the WSDL. The policy

configuration is in WS-PolicyAttachments format in the WSDL so that it is then available to other clients,

service registries, or services that support the Web Services Policy (WS-Policy) specification. The policy

configuration will be available in published WSDL, or a client can use an HTTP Get request that is

targeted at the target URL followed by ?WSDL to obtain the provider policy.

WS-MetadataExchange request:

Select WS-MetadataExchange to make the policy configuration of the service provider available to a

WS-MetadataExchange GetMetadata request. The policy configuration is in WS-PolicyAttachments format

in the WSDL so that it is then available to other clients, service registries or services that support the Web

Services Policy (WS-Policy) specification and the WS-MetadataExchange GetMetadata request.

 When WS-MetadataExchange is selected, the Attach a system policy set to the

WS-MetadataExchange option is available.

Attach a system policy set to the WS-MetadataExchange:

Select Attach a system policy set to the WS-MetadataExchange to set message-level security for the

WS-MetadataExchange request. By default, this option is not selected and the transport policy of the

application is used. This option is available only when WS-MetadataExchange is selected.

752 Administering WebSphere applications

When Attach a system policy set to the WS-MetadataExchange is selected, the Policy set and

Binding lists are available.

Policy set:

Select the policy set you require from the list to provide message-level security for the

WS-MetadataExchange request. You can select from system policy sets that contain only WS-Security

policies, only WS-Addressing policies, or both. The default policy set is SystemWSSecurityDefault.

 System policy sets are used for system messages that are not business-related, for example, messages

that apply qualities of service (QoS), including the messages that are defined in the

WS-MetadataExchange protocol.

Note that any transport policy of the application is always used.

This option is available only when Attach a system policy set to the WS-MetadataExchange is

selected.

Binding:

Select the binding you require from the list to provide message-level security for the

WS-MetadataExchange request. You can select from general bindings that are scoped to the global

domain, or scoped to the security domain of this service.

 This option is available only when Attach a system policy set to the WS-MetadataExchange is

selected.

Configuring the client policy using a service provider policy

An application that is a Web service client can obtain the policy configuration of a Web service provider

and use this information to establish a policy configuration that is acceptable to both the client and the

service provider.

Before you begin

You have developed a Web service client that contains all the necessary artifacts, and deployed your Web

services application into your application server instance. If you require them, you have attached the policy

sets and managed the associated bindings.

The service provider must publish its policy in its Web Services Description Language (WSDL) and that

policy must contain its policy configuration at run time in WS-PolicyAttachments format. The client must be

able to support those provider policies.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see “Learning

about WS-Policy” on page 743.

About this task

The client can obtain the policy of the service provider in the standard WS-PolicyAttachments format. You

can apply the provider policy at the application or service level. Endpoints and operations inherit their

policy configuration from the relevant service.

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are

compatible, and the calculation of a new policy, known as the effective policy, that complies with both their

requirements and capabilities.

Chapter 5. Web services 753

This topic describes how to configure the client policy to use a service provider policy by using the

administrative console. You can also configure the client policy to use a service provider policy by using

wsadmin commands.

1. From the navigation pane of the administrative console, click Applications → Application Types →

WebSphere enterprise applications → service_client_application_instance → [Web services

properties] Service client policy sets and bindings.

2. In the row for the application or service where you want to apply the policy, click the link in the Policies

Applied column. The Policies Applied pane is displayed.

3. Select one of the following options from the drop-down list:

v Provider policy only. Configure the client based solely on the policy of the service provider. This

option is available when a client policy set is not attached.

v Client and provider policy. Configure the client based on both the client policy set and the policy of

the service provider. This option is available when a client policy set is attached.

The other options in the list do not apply to this task.

4. To obtain the provider policy using an HTTP Get request, click HTTP Get request. By default, the

HTTP Get request is targeted at the URL for the service endpoint followed by ?WSDL. When you apply a

policy to an application, you cannot change this value.

a. Optional: If you are applying a policy to a service and you want to change the target of the HTTP

Get request from the default, click Specify request target, then enter the URL you require,

followed by ?WSDL, in the field. For example:

http://service1/service1?WSDL

b. Optional: If you are applying a policy to a service and you want to change the target of the HTTP

Get request to the default, click Use the default request target. The HTTP Get request is targeted

at the URL for the service endpoint followed by ?WSDL.

5. To obtain the provider policy using a Web Services Metadata Exchange (WS-MetadataExchange)

GetMetadata request, click WS-MetadataExchange request.

6. Optional: If you select WS-MetadataExchange request and you want to use message-level security,

select Attach a system policy set to the WS-MetadataExchange, then select a suitable policy set

and binding from the drop-down lists. See “Configuring security for a WS-MetadataExchange request”

on page 757.

7. Click OK.

8. Save your changes to the master configuration.

Results

The Web application client-side policy is calculated based either on the policy of the service provider, or on

the client policy set and the policy of the service provider, depending on which option you selected, and

cached as a runtime configuration. The effective policy is used for subsequent outbound Web service

requests to the endpoint or operation for which the dynamic policy calculation was performed. The policy

set configuration of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the Web service is

invoked after the application is loaded. After that, the provider policy is refreshed when the application

restarts, or if the application explicitly invokes a refresh.

Configuring the client policy based on a service provider policy using the

wsadmin tool

An application that is a Web service client can obtain the policy configuration of a Web service provider

and use this information to establish a policy configuration that is acceptable to both the client and the

service provider.

754 Administering WebSphere applications

Before you begin

You have developed a Web service client that contains all the necessary artifacts, and deployed your Web

services application into your application server instance. If you require them, you have attached the policy

sets and managed the associated bindings.

The service provider must publish its policy in its Web Services Description Language (WSDL) and that

policy must contain its policy configuration at run time in WS-PolicyAttachments format. The client must be

able to support those provider policies.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see “Learning

about WS-Policy” on page 743.

About this task

The client can obtain the policy of the service provider in the standard WS-PolicyAttachments format. You

can apply the provider policy at the application or service level. Endpoints and operations inherit their

policy configuration from the relevant service.

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are

compatible, and the calculation of a new policy, known as the effective policy, that complies with both their

requirements and capabilities.

This topic describes how to configure the client policy to use a service provider policy by using the

administrative console. You can also configure the client policy to use a service provider policy by using

wsadmin commands.

1. Start the wsadmin tool if it is not already running.

2. Use the SetClientDynamicPolicyControl command. For example:

AdminTask.setClientDynamicPolicyControl(’[-applicationName WebServiceClientApplication

-resource WebService:/ClientApplication.war:{http://example_path/}Service1

-acquireProviderPolicyMethod [httpGet]

-httpGetProperties [httpGetTargetURI http://example_path?WSDL]]’)

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:

AdminConfig.save()

Results

The Web application client-side policy is calculated based either on the policy of the service provider, or on

the client policy set and the policy of the service provider, depending on which option you selected, and

cached as a runtime configuration. The effective policy is used for subsequent outbound Web service

requests to the endpoint or operation for which the dynamic policy calculation was performed. The policy

set configuration of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the Web service is

invoked after the application is loaded. After that, the provider policy is refreshed when the application

restarts, or if the application explicitly invokes a refresh.

Policies applied settings

Use this pane to view and change whether the policy configuration of a WebSphere Application Server

service client is configured dynamically, based on the policies supported by its service provider. You can

view or change how the client obtains the policy of the service provider; the client can use an HTTP Get

request or a Web Services Metadata Exchange (WS-MetadataExchange) request. You can specify a policy

set and binding to provide message-level security for WS-MetadataExchange.

Chapter 5. Web services 755

To view this administrative console page for an application or service, complete the following steps. The

application must be a Web services service client.

1. Click Applications → Application Types → WebSphere enterprise applications →

service_client_application_name → [Web Services Properties] Service client policy sets and

bindings.

2. Select the link in the Policies Applied column for the application or service you require.

To view this administrative console page for a service, complete the following steps:

1. Click Services → Service clients → service_name.

2. Select the link in the Policies Applied column for the service. The link is available if the service or the

parent application has a policy set attached.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Apply the following policies:

Specifies whether the client policy is based on the policy of the service provider, and how that policy is

used.

 Select from the following options:

v Client policy only. Configure the client based solely on the client policy set. Do not use the policy of the

service provider. This option is available when a client policy set is attached to the resource.

v Client and provider policy. Configure the client based on both the client policy set and the policy of the

service provider. This option is available when a client policy set is attached to the resource.

v Inherit application attachment. Inherit the setting of the parent application. This option is available for a

service when a client policy set is not attached to the service. If there is a policy set attached to the

parent application, the inherited properties are displayed on this pane, but you cannot change them. If

there is no policy set attached to the parent application, when you return to the Service clients policy

sets and bindings pane, the Policies applied column shows a value of None.

v Provider policy only. Configure the client based solely on the policy of the service provider. This option

is available when a client policy set is not attached to the resource.

HTTP GET request:

Click HTTP GET request to obtain the policy of the service provider by using an HTTP Get request. The

policy configuration must be in WS-PolicyAttachments format in the WSDL of the service provider.

 This option is available when Apply the following policies is set to Client and provider policy or Provider

policy only.

By default, the HTTP Get request is targeted at the URL for each service endpoint followed by ?WSDL.

Use the default request target:

When you apply a policy to a service, click Use the default request target to target the HTTP Get

request at the URL for each service endpoint followed by ?WSDL.

 This option is available when HTTP GET request is selected and you apply a policy to a service.

When you apply a policy to an application, this option is not available.

Specify request target:

756 Administering WebSphere applications

When you apply a policy to a service, click Specify request target to change the target of the HTTP Get

request. Enter the URL you require, followed by ?WSDL, in the field.

 This option is available when HTTP GET request is selected and you apply a policy to a service.

When you apply a policy to an application, this option is not available.

WS-MetadataExchange request:

Click WS-MetadataExchange to obtain the policy of the service provider by using a

WS-MetadataExchange GetMetadata request. The policy configuration must be in WS-PolicyAttachments

format in the WSDL of the service provider.

 This option is available when Apply the following policies is set to Client and provider policy or Provider

policy only.

Attach a system policy set to the WS-MetadataExchange:

Select Attach a system policy set to the WS-MetadataExchange to set message-level security for the

WS-MetadataExchange request. By default, this option is not selected and the transport policy of the

application is used. This option is available when WS-MetadataExchange is selected.

 When Attach a system policy set to the WS-MetadataExchange is selected, the Policy set and

Binding lists are available. If you select Attach a system policy set to the WS-MetadataExchange, you

must also select a policy set and a binding.

Policy set:

Select the policy set you require from the list to provide message-level security for the

WS-MetadataExchange request. You can select from system policy sets that contain only WS-Security

policies, only WS-Addressing policies, or both. The default policy set is SystemWSSecurityDefault.

 System policy sets are used for system messages that are not business-related, for example, messages

that apply qualities of service (QoS), including the messages that are defined in the

WS-MetadataExchange protocol.

Note that any transport policy of the application is always used.

This option is available when Attach a system policy set to the WS-MetadataExchange is selected.

Binding:

Select the binding you require from the list to provide message level security for the

WS-MetadataExchange request. You can select from general bindings that are scoped to the global

domain or scoped to the security domain of this service.

 This option is available when Attach a system policy set to the WS-MetadataExchange is selected.

Configuring security for a WS-MetadataExchange request

You can configure message-level security for a Web Services Metadata Exchange (WS-
MetadataExchange) GetMetadata request by specifying a suitable policy set and binding. You do this when

you configure a Web service provider to share its policies or a Web service client to obtain the policies of

a service provider.

Chapter 5. Web services 757

Before you begin

For a service provider, you have completed the procedure to configure a service provider to share its

policy configuration, up to and including the step to enable WS-MetadataExchange.

For a service client, you have completed the procedure to configure the client policy using a service

provider policy, up to and including the step to use WS-MetadataExchange.

About this task

By default, the WS-MetadataExchange GetMetadata request uses the transport-level security configuration

of the application. You might want to apply message-level security if transport-level security is not available

on the application endpoint, or if transport-level security is not adequate for your requirements. An

advantage of message-level security is that it provides end-to-end security, which is especially important

for the exchange of security metadata.

This topic describes how to configure security for a WS-MetadataExchange request using the

administrative console. You can also configure security for a WS-MetadataExchange request using

wsadmin commands.

1. For a service provider, in the Policy Sharing panel on the administrative console, select Attach a

system policy set to the WS-MetadataExchange. For a service client, in the Policies Applied panel

on the administrative console, select Attach a system policy set to the WS-MetadataExchange.

2. Select a system policy set to provide message-level security from the Policy set list. You can select

from system policy sets that contain only WS-Security policies, only WS-Addressing policies, or both.

The default policy set is SystemWSSecurityDefault. If the policy sets that are listed are not suitable for

your requirements, create your own system policy set, then return to this procedure.

3. Select a general binding for the policy set attachment from the Binding list. You can select from

general bindings that are scoped to the global domain, or the security domain of this service. If the

bindings that are listed are not suitable for your requirements, create your own general binding, then

return to this procedure.

4. Click OK.

5. Save your changes to the master configuration.

Results

Message-level security is applied to the WS-MetadataExchange GetMetadata request.

Administering deployed Web services applications

You can administer deployed Web services applications using the administrative console.

Before you begin

Before you can administer a Web service application, you need to deploy your Web service application.

About this task

You can use the administrative console to administer Java API for XML-Based Web Services (JAX-WS)

service provider or service client applications or Java API for XML-based RPC (JAX-RPC) Web services.

v Administer service providers. You can administer your service providers using the following ways:

– View service providers at the cell level using the administrative console. You can view the details of

your service provider, manage the policy sets for the service, its endpoints and operations, and

assign bindings for the policy set attachment at the cell level.

758 Administering WebSphere applications

– View service providers at the application level using the administrative console. You can view the

details of your service provider, manage the policy sets for the service, its endpoints and operations,

and assign bindings for the policy set attachment at the application level.

– Manage policy sets and bindings for service providers. You can view the details of your service

provider, manage the policy sets for the service, its endpoints and operations, and assign bindings

for the policy set attachment.

– Manage policy sets and bindings for service providers at the application level using the

administrative console. You can manage policy sets for the provider, its endpoints, and operations,

and assign bindings for the policy set attachment at the application level.

– View WSDL document using the administrative console . You can view the WSDL document for your

JAX-WS application.

v Administer service clients. You can administer your service clients using the following ways:

– View service clients at the cell level . Your application server instance can have one or more

applications deployed on it that contain service clients. You can view a list of your service clients at

the cell level using the administrative console.

– View service clients at the application level . Your application server instance can have one or more

applications deployed on it that contains service clients. You can view the service client names that

are referenced in an application.

– Manage policy sets and bindings for service clients. You can view details of your service client

reference, manage the policy sets for the service, its endpoints and operations, and assign bindings

for the policy set attachment.

– Manage policy sets and bindings for service clients at the application level. You can manage policy

sets for your service client applications or its service references, endpoints, or operations and assign

bindings for the policy set attachment at the application level.

v View the deployment descriptors.. View the Web services server and client deployment descriptors for a

deployed Web services application. You can view the bindings in the deployment descriptors. The

deployment descriptors are required for JAX-RPC Web services. You can optionally use the

webservices.xml deployment descriptor to augment or override application metadata specified in

annotations within your JAX-WS Web services.

v Configure the scope of a Web service port..(JAX-RPC applications only) When a Web service

application is deployed into WebSphere Application Server, an instance is created for each application

or module. The instance contains deployment information for the Web module or enterprise bean

module, including implementation scope and client bindings information. There are three levels of scope

that you can set: application, session and request.

Overview of service and endpoint listeners

The administration function of the product is enhanced to support the service listener. This topics

describes the service listener and endpoint listener.

The administrative enhancements to the product include the ability to control throughput by starting and

stopping individual service and endpoint listeners. By stopping a service listener, it effectively throttles back

the inbound requests to all the endpoints for that service, while the whole application and the other

services run to serve requests.

Service listener

 The service listener can be started or stopped. When a service listener is stopped, all the

endpoints for the service are stopped and new inbound requests are no longer processed. The

endpoints for the service send out 404 error message response code to indicate that the service

listener is currently stopped and cannot service new inbound requests. When the service listener

is started, all the endpoints for the service resume processing of new inbound requests.

Endpoint listener

Chapter 5. Web services 759

The endpoint listener can be started or stopped. When a service endpoint listener is stopped, the

specific endpoint stops listening to any new inbound request. The requests that are already being

processed are not affected. The endpoint sends out a 404 error message response code to

indicate that the endpoint is currently stopped and cannot service a new, inbound request. When

the endpoint listener is started, the specific endpoint resumes listening on new inbound requests.

The state of a particular service endpoint does not impact the listening function of other endpoints

for the same service.

Administration of service and endpoint listeners

The administration function of the product is enhanced to support service and endpoint listeners. MBeans

such as EndpointManager and the EndpointCentralManager can be used to invoke service and endpoint

listeners.

After an application containing a Web service is installed, you want to verify that the service is installed

correctly. You also want to monitor its service listener state, and update the listener state as needed to

control the throughput. One option is to use the collection view of service providers in the administrative

console of the product to locate the service provider of interest and observe its listener state.

If you do not want the listener state, then select the service and choose to start or stop the service

listener. As the system starts or stops the service listener, the status indicator for the service is updated to

show that it is started or stopped. This scenario helps you to throttle back traffic to a specific service as

needed but leaves the containing application and other services in the application running. See service

providers at the cell level using the administrative console. You can also reference service providers at the

application level using the administrative console.

Note: You can only start or stop the service listener using the administrative console.

Another option is to use MBeans. With MBeans, you can invoke the startListener or stopListener

operations in the EndpointCentralManager MBean or EndpointManager MBean to start or stop the listener

service. The administrative console option does not expose the function of starting or stopping the listening

state of a specific endpoint in a service. However, the MBeans option provides this capability. You can use

scripting to invoke the MBean operations to start or stop the endpoint listener.

EndpointCentralManager MBean

 There is an EndpointCentralManager MBean instance in the deployment manager, AdminAgent,

and stand-alone server. The EndpointCentralManager MBean provides the administrative

convenience to start and stop the service or endpoint listeners across all the deployment targets

such as the cluster members in a cluster. You do not have to know the target servers for the

service application.

EndpointManager MBean

 There is an EndpointManager MBean instance for each Web services application module in a

server. This MBean instance is created when the application module is started. The MBean

instance is deleted when the module is stopped. The MBean provides the start and stop

operations to change the service and endpoint listener state. The MBean can also send a Java

Management Extension (JMX) notification whenever the listener state has changed.

Viewing service providers at the cell level using the administrative

console

You can use this administrative console page to view and manage your service providers at the cell level.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services

(JAX-WS).

760 Administering WebSphere applications

About this task

You can view a list of your installed service providers, such as JAX-WS Web services providers in a cell.

You can start or stop the service listener.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. In the navigation pane, expand Services > Service providers.

3. Locate the Web service of interest by name and the associated deployed asset in Deployed Asset

column.

4. [Optional] Click the service of interest in the Name column to view the detail of the service and

manage the policy sets and bindings for that service.

5. Click Start Listener or Stop Listener to start or stop the service listener. Starting the service listener

makes all the endpoints for the service provider available and ready to receive messages. Stopping the

listener makes all the endpoints for the service provider unavailable.

Results

When you finish this task, you have viewed the service providers at the cell level. You have also started or

stopped the service listener.

What to do next

Proceed to view service providers at the application level using the administrative console.

Service providers collection at the cell level

Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

To view a service provider using this administrative console page, perform the following steps:

1. Expand Services > Service Providers.

2. Locate the service of interest by name in the Name column.

3. Click the service of interest in the Name column.

4. View the detail of the service.

To change the listening state of a service, perform the following steps:

1. Select the service of interest, and click Start Listener to start the listener service or click Stop

Listener to stop the listener service. Starting the service listener makes all the endpoints for the

service provider to be available and to receive messages. Stopping the listener makes all the

endpoints for the service provider unavailable.

2. [Optional] Select the deployed asset link in the Deployed Asset column to access the deployed asset

settings page.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Chapter 5. Web services 761

Related tasks

“Viewing service providers at the application level using the administrative console” on page 763
You can use this administrative console page to view and manage your service providers at the application

level.

“Viewing service clients at the application level using the administrative console” on page 781
You can view your installed service clients for an application using this task.

“Viewing service providers at the cell level using the administrative console” on page 760
You can use this administrative console page to view and manage your service providers at the cell level.

“Viewing service clients at the cell level using the administrative console” on page 780
You can view all your service clients at the cell level using the administrative console.

Related reference

“Service client collection at the cell level” on page 780
Use this page to view and manage service clients at the cell level. Server-based Java API for XML-Based

Web Services (JAX-WS) service clients are the only clients that are displayed in this view. Java API for

XML-based RPC (JAX-RPC) service clients are not displayed in this view.

“Service providers collection at the application level” on page 764
Use this page to view and manage service providers at the application level.

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Name:

Specifies the name of the service provider. The service, QName (Java class javax.xml.namespace.QName),

is displayed when you hover your mouse pointer over the Name field.

Type:

Specifies the type of service, such as a JAX-WS Web service and Web Services Notification (WSN) client

service. You can filter by the type of service. If your service was migrated from the Feature Pack for Web

Services, you can only filter by the name of the service.

Deployed Asset:

Represents a Java Platform, Enterprise Edition (Java EE) application or a WS-Notification service point.

Java EE application

Web Services Notification client service point application

Status:

Indicates the status for the service listener.

Service endpoints are listening.

762 Administering WebSphere applications

Service endpoints are running, but the listener control is not supported because of the

characteristics of this service; for example, the application is installed on a Feature Pack for

Web Services server.

Either the deployed asset is partially started or the service endpoints are listening on some,

but not all the target servers.

The deployed asset is partially started and the listener control is not supported.

Service endpoints are not listening, but the deployed asset is running.

Service endpoints are not listening because the deployed asset is not running.

Service endpoints are not listening because the deployed asset is not running. Listener

control is not supported.

Deployed asset is partially stopped. Service endpoints are not listening.

Deployed asset is partially stopped. Service endpoints are not listening. Listener control is

not supported because of the characteristics of this service; for example, the application is

installed on a Feature Pack for Web Services server.

Status cannot be determined.

Viewing service providers at the application level using the

administrative console

You can use this administrative console page to view and manage your service providers at the application

level.

Before you begin

Before completing this task, you need to install a Java API for XML-Based Web Service.

About this task

You can view a list of your service providers, such as JAX-WS Web services providers at the application

level. You can start the service listener to make all the endpoints for the service to be available and to

receive messages. You can also stop the service listener.

1. Open the administrative console.

2. To view the service providers, click Applications > Application Types > WebSphere enterprise

applications >Service_provider_application_instance > Service providers.

3. [Optional] Click a module that contains a service to view the module information.

4. Depending on the current application status, click Start Listener or Stop Listener to start or stop the

service listener. Starting the service listener makes all the endpoints for the service available and ready

to receive messages. Stopping the listener makes all the endpoints for the service unavailable. See

Endpoint and service listeners overview.

Results

When you complete this task, you have viewed and managed the service providers at the application level.

What to do next

You can proceed to managing policy sets using the administrative console. You can click on a service

provider to manage the policy sets and bindings for that service.

Chapter 5. Web services 763

Service providers collection at the application level

Use this page to view and manage service providers at the application level.

To view a service provider using this administrative console page, perform the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications

>Service_provider_application_instance > Service providers.

2. Locate the service of interest by name in the Name column.

3. Click the service of interest in the Name column.

4. View the detail of the service.

To change the listening state of a service, perform the following steps:

1. Select the service of interest, and click Start Listener, to start the service listener or Stop Listener, to

stop the service listener. Starting the service listener makes all the endpoints for the service provider to

be available and to receive messages. Stopping the listener makes all the endpoints for the service

provider to be unavailable.

2. [Optional] Click a module name in the Module column to access the module detail page.

Related concepts

“Overview of service and endpoint listeners” on page 759
The administration function of the product is enhanced to support the service listener. This topics

describes the service listener and endpoint listener.

Related tasks

“Viewing service providers at the application level using the administrative console” on page 763
You can use this administrative console page to view and manage your service providers at the application

level.

“Viewing service providers at the cell level using the administrative console” on page 760
You can use this administrative console page to view and manage your service providers at the cell level.

Related reference

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

Name:

Specifies the name of the service provider. The service QName (Java class javax.xml.namespace.QName)

is displayed when you hover your mouse pointer over the Name field.

Type:

Specifies the type of service.

Module:

Specifies the name of the module that contains the service.

Status:

Indicates the status for the service listener.

764 Administering WebSphere applications

Service endpoints are listening.

Service endpoints are running, but the listener control is not supported because of the

characteristics of this service; for example, the application is installed on a Feature

Pack for Web Services server.

Either the deployed asset is partially started or the service endpoints are listening on

some, but not all the target servers.

The deployed asset is partially started and the listener control is not supported.

Service endpoints are not listening, but the deployed asset is running.

Service endpoints are not listening because the deployed asset is not running.

Service endpoints are not listening because the deployed asset is not running. Listener

control is not supported.

Deployed asset is partially stopped. Service endpoints are not listening.

Deployed asset is partially stopped. Service endpoints are not listening. Listener control

is not supported because of the characteristics of this service; for example, the

application is installed on a Feature Pack for Web Services server.

Status cannot be determined.

Viewing the detail of a service provider and managing policy sets

using the administrative console

Use this administrative console task to view the detail of your service provider and to manage the policy

sets for the service, its endpoints and operations.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services

(JAX-WS) artifacts.

About this task

You have developed a Web service that contains all the necessary artifacts and deployed your Web

services application into your application server instance. Now, you can attach or detach policy sets and

manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly

attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set

attached, and a policy set is attached at a higher level, then the word inherited in parentheses is

appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there

is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is

displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher level resource.

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Chapter 5. Web services 765

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and constrained to the characteristics of the defined policy. Application specific bindings are

capable of providing configuration for advanced policy requirements, such as multiple signatures; however,

these bindings are only reusable within an application. Furthermore, application specific bindings have very

limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set. See

service providers policy sets and bindings collection. Similarly, for service clients, you can only create

application specific bindings by selecting Assign Binding > New Application Specific Binding for

service client resources that have an attached policy set. See service client policy set and bindings

collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they are however not able to provide configuration for advanced policy

requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings. General provider policy set bindings

might also be used for trust service attachments.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. In the navigation pane, expand Services > Service providers >Service_provider_application_instance

Service providers.

3. Select one or more service, endpoints and operations of interest and view the associated service,

endpoints and operations.

4. Do one or more of the following actions:

v Click Attach, to attach a policy to a selected service, endpoint or operation.

v Click Detach, to detach a policy set from a list of attached policy sets for a service, endpoint or

operation.

5. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.

All the bindings are listed along with the following options:

v Default

v New Application Specific Binding

766 Administering WebSphere applications

v Provider sample

Default

Specifies the default binding for the selected service, endpoint or operation. You can specify client and

provider default bindings to be used at the cell level or global security domain level, for a particular

server, or for a security domain. The default bindings are used when an application specific binding

has not been assigned to the attachment. When you attach a policy set to a service resource, the

binding is initially set to the Default. If you do not specifically assign a binding to the attachment point

using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime checks to see if the attachment includes a binding. If so, it

uses that binding. If not, the runtime checks in the following order and uses the first available default

binding:

a. Default general bindings for the server

b. Default general bindings for the domain that the server resides

c. Default general bindings for the global security domain

New Application Specific Binding

Select this option to create a new application specific binding for the policy set attachments. The new

binding you create is used for the selected resources. If you select more than one resource, ensure

that all selected resources have the same policy set attached.

Provider sample

Select this option to use the provider sample binding.

6. To close the drop down list for the assign binding action, click Assign Binding.

Results

When you finish this task, a policy set is attached, detached or a binding is assigned to the service artifact.

Example

You have configured a service provider, EchoService12 in the application instance, WSSampleServicesSei.

Now you want to attach the WS-Security policy to the EchoService12Port endpoint of the EchoService12

service provider. First locate EchoService12 in the Services > Service providers collection. Click the

EchoService12 service provider. Select the check box for the columoService12Port resource. Click Attach

and select WSSecurity default policy from the list. Click Save, to save your changes to the master

configuration.

What to do next

You can now proceed to manage policy sets and bindings for service providers at the application level

using the administrative console.

Service provider settings

Use the Service provider settings page to manage the settings for your service providers. You can attach

and detach policy sets to an application, its service, endpoints or operations. You can create new bindings,

or use bindings that you have already created for an attached policy set. You can view or change whether

the service provider can share its current policy configuration.

Use the WSDL document link to view the Web Services Description Language (WSDL) for the service.

The Application and Module links provide access to the application and module settings page.

To view this administrative console page, click Services → Service providers →

service_provider_instance.

Chapter 5. Web services 767

You can also view this page by clicking Applications → Application Types → WebSphere enterprise

applications → service_provider_application_instance → Service providers →

service_provider_instance.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

768 Administering WebSphere applications

Related tasks

“Managing policy sets and bindings for service providers at the application level using the administrative

console” on page 772
Use this administrative console task to manage policy sets for an application or its services, endpoints,

and operations.

“Viewing detail of a service client and managing policy sets using the administrative console” on page 783
Use this administrative console task to view the detail of your service client reference and to manage the

policy sets for the service, its endpoints and operations.

“Viewing service clients at the application level using the administrative console” on page 781
You can view your installed service clients for an application using this task.

Related reference

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

“Service providers collection at the application level” on page 764
Use this page to view and manage service providers at the application level.

“Service client settings” on page 785
Use this administrative console page to manage the settings for your service clients. You can attach and

detach policy sets to a service, its endpoints, or operations. You can select default bindings, create new

application-specific bindings, or use existing bindings for an attached policy set. You can view or change

whether the client uses the policy of the service provider.

“Service clients collection at the application level” on page 782
Use this page to view and manage service clients at the application level.

“Policy sharing settings” on page 752
Use this pane to view and change whether the policy configuration of a Web services service provider is

shared. You can configure the service provider to include the policy configuration in its Web Service

Description Language (WSDL) so that it can be accessed using an HTTP Get request, or published. You

can also make the policy configuration available to a Web Services Metadata Exchange

(WS-MetadataExchange) request.

Enterprise application settings
Use this page to configure an enterprise application.

“Web module deployment settings” on page 39

Use this page to configure an instance of Web module deployment.

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console

panel. The preference settings vary from one administrative console panel to another.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Service provider:

Specifies the name of the service provider that is displayed.

Chapter 5. Web services 769

Policy Set Attachments:

Service/Endpoint/Operation:

Specifies the name of the service provider, endpoint, or operation that is contained in a service.

Attached Policy Set:

Specifies the policy set that is attached to a service provider, endpoint, or operation.

 The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for

example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service

resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy

set.

Binding:

Specifies the binding configuration that is available for a service provider, endpoint, or operation.

 The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are

specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can

provide configuration for advanced policy requirements such as multiple signatures; however, these

bindings are reusable only within an application. Also, application-specific bindings have very limited reuse

across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding, and fully configure the bindings for each policy that you add. For

WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,

SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the

application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >

New Application Specific Binding, on the Service providers policy sets and bindings collection page, for

770 Administering WebSphere applications

service provider resources that have an attached policy set. Similarly, for service clients, you can create

application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on

the Service clients policy sets and bindings collection page, for service client resources that have an

attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused

across applications and for trust service attachments. Although general bindings are highly reusable, they

cannot provide configuration for advanced policy requirements such as multiple signatures. There are two

types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. For details about defining and managing service client or provider bindings, see the related links.

General provider policy set bindings might also be used for trust service attachments.

Policy Sharing:

Specifies whether the service provider can share its current policy configuration.

 The Policy sharing column can contain the following values:

v Not applicable. The resource does not have a policy set attached, so there is no policy configuration to

share.

v Disabled. The policy set of the resource cannot be shared. This is the default setting if a policy set is

attached to a service.

v Enabled. The policy set of the resource can be shared.

When the value in the column is a link, click the link to view or change settings about how the policy

configuration can be shared.

For a service, if the policy set is inherited from the parent application, the policy sharing value is also

inherited, and you cannot change it. The value is not a link and it is followed by the term inherited in

parentheses.

For an endpoint or operation, the value is not a link and it is followed by the term inherited in

parentheses. The setting is inherited from the parent application or service and you cannot change it.

Buttons:

 Attach Policy Set Click this button to view a list of policy sets available for attachment to the selected

service, endpoint, or operation. Select a policy set from the list to attach and it is

attached to the selected service, endpoint, or operation. To close the menu list, click

Attach Policy Set.

Detach Policy Set Click this button to detach a policy set from a selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper level

service resource, the Attached Policy Set column displays None and the Binding

column displays Not Applicable.

If there is a policy set attached to an upper level service resource, the Attached

Policy Set column displayspolicy_set_name (inherited) and the binding used for the

upper level attachment is applied. The binding name is displayed followed by

(inherited).

Chapter 5. Web services 771

Assign Binding Click this button to select from a list of available bindings for the selected policy set

attachment. All the bindings are listed along with the following options:

v Default

v New Application Specific Binding

v Provider sample

Default Specifies the default binding for the selected service, endpoint, or operation.

You can specify client and provider default bindings to be used at the cell

level or global security domain level, for a particular server, or for a security

domain. The default bindings are used when an application-specific binding

has not been assigned to the attachment. When you attach a policy set to a

service resource, the binding is initially set to the default. If you do not

specifically assign a binding to the attachment point using this Assign Binding

action, the default specified at the nearest scope is used.

 For any policy set attachment, the run time checks to see if the attachment

includes a binding. If so, it uses that binding. If not, the run time checks in the

following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding

Select this option to create a new application-specific binding for the policy

set attachments. The new binding you create is used for the selected

resources. If you select more than one resource, ensure that all selected

resources have the same policy set attached.

Provider sample

Select this option to use the Provider sample binding.

To close the menu list, click Assign Binding.

Managing policy sets and bindings for service providers at the

application level using the administrative console

Use this administrative console task to manage policy sets for an application or its services, endpoints,

and operations.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services

(JAX-WS) and attach a policy set to each Web service.

About this task

You have developed a Web service that contains all the necessary artifacts and deployed your Web

services application into your application server instance. Now, you can attach or detach policy sets and

manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly

attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set

attached, and a policy set is attached at a higher level, then the word inherited in parentheses is

appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there

is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is

displayed in the Binding column. The Binding column can contain the following values:

772 Administering WebSphere applications

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher level resource.

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and constrained to the characteristics of the defined policy. Application specific bindings are

capable of providing configuration for advanced policy requirements, such as multiple signatures; however,

these bindings are only reusable within an application. Furthermore, application specific bindings have very

limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set. See

service providers policy sets and bindings collection. Similarly, for service clients, you can only create

application specific bindings by selecting Assign Binding > New Application Specific Binding for

service client resources that have an attached policy set. See service client policy set and bindings

collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they are however not able to provide configuration for advanced policy

requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings. General provider policy set bindings

might also be used for trust service attachments.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. Applications > Application Types > WebSphere enterprise applications

>Service_provider_application_instance > Service provider policy sets and bindings.

3. Select the check box next to a service resource of interest.

4. Click Attach to attach a policy set to an application, service, endpoint or operation.

Chapter 5. Web services 773

5. [Optional] Click Detach to detach a policy set from a list of attached policy sets for an application,

service provider, endpoint or operation.

6. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.

All the bindings are listed along with the following options:

v Default

v New Application Specific Binding

v Provider sample

Default

Specifies the default binding for the selected service, endpoint or operation. You can specify client and

provider default bindings to be used at the cell level or global security domain level, for a particular

server, or for a security domain. The default bindings are used when an application specific binding

has not been assigned to the attachment. When you attach a policy set to a service resource, the

binding is initially set to the Default. If you do not specifically assign a binding to the attachment point

using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime checks to see if the attachment includes a binding. If so, it

uses that binding. If not, the runtime checks in the following order and uses the first available default

binding:

a. Default general bindings for the server

b. Default general bindings for the domain that the server resides

c. Default general bindings for the global security domain

New Application Specific Binding

Select this option to create a new application specific binding for the policy set attachments. The new

binding you create is used for the selected resources. If you select more than one resource, ensure

that all selected resources have the same policy set attached.

Provider sample

Select this option to use the provider sample binding.

7. To close the drop down list for the assign binding action, click Assign Binding.

Results

When you finish this task, a policy set is attached or detached, and a binding is assigned to the service

artifact.

Example

If you have configured a service provider application instance, app1 and you want, for example, to attach

theUsername WSSecurity default policy set to your application, first locate app1 application in the

Applications > Application Types > WebSphere enterprise applications. Click app1 > Service

provider policy sets and bindings under the Web Services Properties section. Select the check box next

to the app1 service application. Click Attach and select Username WSSecurity default policy set. Click

Save, to save your changes to the master configuration. You are returned to the Applications >

Application Types > WebSphere enterprise applications page.

To assign a binding to the attached policy set, click app1 > Service provider policy sets and bindings.

Select the check box next to the app1 service application and click Assign Binding. Select Provider

sample binding from the list. Click Save, to save your changes to the master configuration.

What to do next

You can proceed to view service providers at the cell level using the administrative console.

774 Administering WebSphere applications

Service provider policy sets and bindings collection

Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

This page provides detail information for an application and its associated Web service providers,

endpoints, and operations. You can view and manage policy set attachments and bindings information

using this page.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → Service_provider_application_instance → Service provider policy sets and

bindings.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Chapter 5. Web services 775

Related tasks

“Managing policy sets and bindings for service providers at the application level using the administrative

console” on page 772
Use this administrative console task to manage policy sets for an application or its services, endpoints,

and operations.

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Defining and managing service client or provider bindings” on page 860
Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Viewing detail of a service client and managing policy sets using the administrative console” on page 783
Use this administrative console task to view the detail of your service client reference and to manage the

policy sets for the service, its endpoints and operations.

“Viewing service clients at the application level using the administrative console” on page 781
You can view your installed service clients for an application using this task.

Related reference

“Policy sharing settings” on page 752
Use this pane to view and change whether the policy configuration of a Web services service provider is

shared. You can configure the service provider to include the policy configuration in its Web Service

Description Language (WSDL) so that it can be accessed using an HTTP Get request, or published. You

can also make the policy configuration available to a Web Services Metadata Exchange

(WS-MetadataExchange) request.

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

“Service providers collection at the application level” on page 764
Use this page to view and manage service providers at the application level.

“Service client settings” on page 785
Use this administrative console page to manage the settings for your service clients. You can attach and

detach policy sets to a service, its endpoints, or operations. You can select default bindings, create new

application-specific bindings, or use existing bindings for an attached policy set. You can view or change

whether the client uses the policy of the service provider.

“Service client policy set and bindings collection” on page 792
Use this page to attach and detach policy sets to an application, a service client, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use existing

bindings for an attached policy set. You can view or change whether the client uses the policy of the

service provider.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console

776 Administering WebSphere applications

panel. The preference settings vary from one administrative console panel to another.

Application/Service/Endpoint/Operation:

Specifies the name of the application and the associated service providers, endpoints or operations.

 The Application/Service/Endpoint/Operation column lists the service application and the service providers,

endpoints, or operations that the application contains.

Attached Policy Set:

Specifies the policy set that is attached to a service provider, endpoint, or operation.

 The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for

example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service

resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy

set.

Binding:

Specifies the binding configuration that is available for a service provider, endpoint, or operation.

 The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are

specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can

provide configuration for advanced policy requirements such as multiple signatures; however, these

bindings are reusable only within an application. Also, application-specific bindings have very limited reuse

across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding, and fully configure the bindings for each policy that you add. For

WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,

SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the

application-specific bindings.

Chapter 5. Web services 777

For service providers, you can create application-specific bindings only by selecting Assign Binding >

New Application Specific Binding, on the Service providers policy sets and bindings collection page, for

service provider resources that have an attached policy set. Similarly, for service clients, you can create

application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on

the Service clients policy sets and bindings collection page, for service client resources that have an

attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused

across applications and for trust service attachments. Although general bindings are highly reusable, they

cannot provide configuration for advanced policy requirements such as multiple signatures. There are two

types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. For details about defining and managing service client or provider bindings, see the related links.

General provider policy set bindings might also be used for trust service attachments.

Policy Sharing:

Specifies whether the service provider can share its current policy configuration.

 The Policy sharing column can contain the following values:

v Not applicable. The resource does not have a policy set attached, so there is no policy configuration to

share.

v Disabled. The policy set of the resource cannot be shared. This is the default setting if a policy set is

attached to a service.

v Enabled. The policy set of the resource can be shared.

When the value in the column is a link, click the link to view or change settings about how the policy

configuration can be shared.

For a service, if the policy set is inherited from the parent application, the policy sharing value is also

inherited, and you cannot change it. The value is not a link and it is followed by the term inherited in

parentheses.

For an endpoint or operation, the value is not a link and it is followed by the term inherited in

parentheses. The setting is inherited from the parent application or service and you cannot change it.

Buttons:

 Attach Policy Set Click this button to view a list of policy sets available for attachment to the selected

service, endpoint, or operation. Select a policy set from the list to attach and it is

attached to the selected service, endpoint, or operation. To close the menu list, click

Attach Policy Set.

Detach Policy Set Click this button to detach a policy set from a selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper level

service resource, the Attached Policy Set column displays None and the Binding

column displays Not Applicable.

If there is a policy set attached to an upper level service resource, the Attached

Policy Set column displays policy_set_name (inherited) and the binding used for the

upper level attachment is applied. The binding name is displayed followed by

(inherited).

778 Administering WebSphere applications

Assign Binding Click this button to select from a list of available bindings for the selected policy set

attachment. All the bindings are listed along with the following options:

v Default

v New Application Specific Binding

v Provider sample

Default Specifies the default binding for the selected service, endpoint, or operation.

You can specify client and provider default bindings to be used at the cell

level or global security domain level, for a particular server, or for a security

domain. The default bindings are used when an application-specific binding

has not been assigned to the attachment. When you attach a policy set to a

service resource, the binding is initially set to the default. If you do not

specifically assign a binding to the attachment point using this Assign Binding

action, the default specified at the nearest scope is used.

 For any policy set attachment, the run time checks to see if the attachment

includes a binding. If so, it uses that binding. If not, the run time checks in the

following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding

Select this option to create a new application-specific binding for the policy

set attachments. The new binding you create is used for the selected

resources. If you select more than one resource, ensure that all selected

resources have the same policy set attached.

Provider sample

Select this option to use the Provider sample binding.

To close the menu list, click Assign Binding.

Viewing WSDL document using the administrative console

You can locate and view a Web Services Description Language (WSDL) document from the administrative

console.

Before you begin

Before completing this task, you need to install or deploy a Java API for XML Web Services (JAX-WS).

Read about the JAX-WS application deployment model.

About this task

JAX-WS integration with the WebSphere Application Server provides the option to view a Web Services

Description Language (WSDL) document that is associated with your Web service using the administrative

console.

A Web service application that contains all the necessary artifacts has been developed and deployed to

the Application Server. Now you can view the WSDL document for each service using the administrative

console.

1. Open the administrative console.

2. In the navigation pane, expand Services > Service providers.

3. Select a Web service of interest in the Service providers collection view.

4. Click the WSDL document link to view the WSDL document.

Chapter 5. Web services 779

Results

When you finish this task, you have viewed the WSDL document for a service artifact.

What to do next

You can attach and detach policy sets and configure bindings information for your application. See

managing policy sets and bindings for service providers at the application level using the administrative

console.

Viewing service clients at the cell level using the administrative

console

You can view all your service clients at the cell level using the administrative console.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services

(JAX-WS).

About this task

You can view a list of your service clients, such as JAX-WS Web services clients using the administrative

consolel.The Name column displays the service client references. The Deployed Asset column displays the

name of the deployed asset that contains the service client.

1. Open the administrative console.

2. In the navigation pane, expand Services > Service clients.

3. View the Web service client of interest in the Name column and the associated application in the

Deployed Asset column. For JAX-WS (WSN) references, the name of the containing WS-Notification

service that is a part of the System Integration (SI) is displayed. Hovering over this name displays the

Bus:<busName>.

Results

When you complete this task, you have viewed the service clients at the cell level.

What to do next

Proceed to view service clients at the application level using the administrative console. Click each service

to see and manage the policy sets and bindings associated with a particular service.

Service client collection at the cell level

Use this page to view and manage service clients at the cell level. Server-based Java API for XML-Based

Web Services (JAX-WS) service clients are the only clients that are displayed in this view. Java API for

XML-based RPC (JAX-RPC) service clients are not displayed in this view.

To view this administrative console page, click Services > Service clients. Select the service name link in

the Name column to access the service client settings page. Select the deployed asset link in the

Deployed Asset column to access the deployed asset settings page.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

780 Administering WebSphere applications

Related tasks

“Viewing service clients at the cell level using the administrative console” on page 780
You can view all your service clients at the cell level using the administrative console.

“Viewing service providers at the cell level using the administrative console” on page 760
You can use this administrative console page to view and manage your service providers at the cell level.

“Viewing service providers at the application level using the administrative console” on page 763
You can use this administrative console page to view and manage your service providers at the application

level.

“Viewing service clients at the application level using the administrative console”
You can view your installed service clients for an application using this task.

Related reference

“Service client settings” on page 785
Use this administrative console page to manage the settings for your service clients. You can attach and

detach policy sets to a service, its endpoints, or operations. You can select default bindings, create new

application-specific bindings, or use existing bindings for an attached policy set. You can view or change

whether the client uses the policy of the service provider.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Name:

Specifies the name of the service client, which is the name of the service provider that is referenced by

the client. The full QName, Java class javax.xml.namespace.QName, is displayed when you hover the mouse

pointer over the Name field.

Type:

Specifies the type of service such as a JAX-WS client service and Web Services Notification (WSN) client

service. You can filter by the type of service.

Deployed Asset:

Represents a Java Platform, Enterprise Edition (Java EE) application or a WS-Notification service. For

JAX-WS or WSN clients, the name of the containing WS-Notification service that is a part of the System

Integration (SI) is displayed. Hovering over this name displays the Bus:<busName>.

Java EE application

WS-Notification service

Viewing service clients at the application level using the administrative

console

You can view your installed service clients for an application using this task.

Before you begin

Before completing this task, you need to install a Java API for XML-based Web Service.

About this task

You can view a list of your service client references.

Chapter 5. Web services 781

Your application server instance can have one or more applications deployed on it that contain service

clients. Use this task enables you to view the service names that are referenced in an application.

1. Open the administrative console.

2. View the service clients in an application by expanding Applications > Application Types >

WebSphere enterprise applications >Service_client_application_instance > Service clients.

3. Select a client from the Name column to view the client and to manage the policy sets and bindings

associated with it.

4. [Optional] Select a module name from the Module column to access the module detail page.

Results

When you finish this task, you have viewed service clients at the application level.

What to do next

You can now proceed to managing policy sets using the administrative console.

Service clients collection at the application level

Use this page to view and manage service clients at the application level.

To view this administrative console page, click Applications > Application Types > WebSphere

enterprise applications >Service_client_application_instance > Service client.

Related tasks

“Viewing service clients at the application level using the administrative console” on page 781
You can view your installed service clients for an application using this task.

“Viewing service providers at the application level using the administrative console” on page 763
You can use this administrative console page to view and manage your service providers at the application

level.

“Viewing service providers at the cell level using the administrative console” on page 760
You can use this administrative console page to view and manage your service providers at the cell level.

“Viewing service clients at the cell level using the administrative console” on page 780
You can view all your service clients at the cell level using the administrative console.

Related reference

“Service providers collection at the application level” on page 764
Use this page to view and manage service providers at the application level.

“Service client collection at the cell level” on page 780
Use this page to view and manage service clients at the cell level. Server-based Java API for XML-Based

Web Services (JAX-WS) service clients are the only clients that are displayed in this view. Java API for

XML-based RPC (JAX-RPC) service clients are not displayed in this view.

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

“Service client settings” on page 785
Use this administrative console page to manage the settings for your service clients. You can attach and

detach policy sets to a service, its endpoints, or operations. You can select default bindings, create new

application-specific bindings, or use existing bindings for an attached policy set. You can view or change

whether the client uses the policy of the service provider.

Name:

Specifies the name of the service client. The service QName, Java class javax.xml.namespace.QName, is

displayed when you hover your mouse pointer over the Name field.

782 Administering WebSphere applications

Type:

Specifies the type of service such as a Java™ API for XML-Based Web Services (JAX-WS) Web service.

You can filter by the type of service.

Module:

Specifies the name of the module that contains the service. Selecting a module name accesses the

module detail page.

Viewing detail of a service client and managing policy sets using the

administrative console

Use this administrative console task to view the detail of your service client reference and to manage the

policy sets for the service, its endpoints and operations.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Service

(JAX-WS) Web service and attach a policy set to that Web service.

About this task

You have developed a Web service that contains all the necessary artifacts and deployed your Web

services application into your application server instance. Now, you can attach or detach policy sets and

manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly

attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set

attached, and a policy set is attached at a higher level, then the word inherited in parentheses is

appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there

is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is

displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher level resource.

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and constrained to the characteristics of the defined policy. Application specific bindings are

capable of providing configuration for advanced policy requirements, such as multiple signatures; however,

these bindings are only reusable within an application. Furthermore, application specific bindings have very

limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

Chapter 5. Web services 783

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application specific bindings.

For service clients, you can only create application specific bindings by selecting Assign Binding > New

Application Specific Binding for service client resources that have an attached policy set. See service

clients policy sets and bindings collection. Similarly, for service clients, you can only create application

specific bindings by selecting Assign Binding > New Application Specific Binding for service client

resources that have an attached policy set. See service client policy set and bindings collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they are however not able to provide configuration for advanced policy

requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general client policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. In the navigation pane, click Applications > Application Types > WebSphere enterprise

applications >Service_client_application_instance > Service clients.

3.

4. Select one or more service, endpoints and operations of interest and view the associated service,

endpoints and operations.

5. You can perform any of the following actions:

v Click Attach, to attach a policy set to a selected service, endpoint or operation.

v Click, Detach, to detach a policy set from a list of attached policy sets for a service, endpoint or

operation. The service name is the service client reference in the application.

6. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.

All the bindings are listed along with the following options:

v Default

v New Application Specific Binding

v Client sample

Default

Specifies the default binding for the selected service, endpoint or operation. You can specify client and

provider default bindings to be used at the cell level or global security domain level, for a particular

server, or for a security domain. The default bindings are used when an application specific binding

has not been assigned to the attachment. When you attach a policy set to a service resource, the

binding is initially set to the Default. If you do not specifically assign a binding to the attachment point

using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime checks to see if the attachment includes a binding. If so, it

uses that binding. If not, the runtime checks in the following order and uses the first available default

binding:

784 Administering WebSphere applications

a. Default general bindings for the server

b. Default general bindings for the domain that the server resides

c. Default general bindings for the global security domain

New Application Specific Binding

Select this option to create a new application specific binding for the policy set attachments. The new

binding you create is used for the selected resources. If you select more than one resource, ensure

that all selected resources have the same policy set attached.

Client sample

Select this option to use the client sample binding.

7. To close the drop down list for the assign binding action, click Assign Binding.

Results

When you finish this task, a policy set is attached, detached or a binding is assigned to the service artifact.

Example

You have configured a service client reference, EchoService12 in the application instance,

WSSampleClientSei. Now you want to attach the WSSecurity default policy to the EchoService12Port

endpoint of the EchoService12 service client reference. First locate EchoService12 in the Services >

Service clients collection. Click the EchoService12 service client reference. Select the check box for the

EchoService12Port resource and click Attach. Select the WSSecurity default policy from the list. Click

Save, to save your changes to the master configuration.

What to do next

You can now proceed to manage policy sets and bindings for service clients at the application level using

the administrative console.

Service client settings

Use this administrative console page to manage the settings for your service clients. You can attach and

detach policy sets to a service, its endpoints, or operations. You can select default bindings, create new

application-specific bindings, or use existing bindings for an attached policy set. You can view or change

whether the client uses the policy of the service provider.

This service client page displays configuration information for a service client and the associated endpoints

and operations. You can view and manage policy set attachments, bindings information, and whether the

client uses the policy of the service provider.

The Application and Module links provide access to the application and module settings page.

To view this administrative console page, click Services → Service clients → service_client_instance.

You can also view this page by clicking Applications → Application Types → WebSphere enterprise

applications → service_client_application_instance → Service clients → service_client_instance.

Chapter 5. Web services 785

Related tasks

“Viewing detail of a service client and managing policy sets using the administrative console” on page 783
Use this administrative console task to view the detail of your service client reference and to manage the

policy sets for the service, its endpoints and operations.

Related reference

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

“Service client policy set and bindings collection” on page 792
Use this page to attach and detach policy sets to an application, a service client, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use existing

bindings for an attached policy set. You can view or change whether the client uses the policy of the

service provider.

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

“Service providers collection at the application level” on page 764
Use this page to view and manage service providers at the application level.

“Service client collection at the cell level” on page 780
Use this page to view and manage service clients at the cell level. Server-based Java API for XML-Based

Web Services (JAX-WS) service clients are the only clients that are displayed in this view. Java API for

XML-based RPC (JAX-RPC) service clients are not displayed in this view.

“Policies applied settings” on page 755
Use this pane to view and change whether the policy configuration of a WebSphere Application Server

service client is configured dynamically, based on the policies supported by its service provider. You can

view or change how the client obtains the policy of the service provider; the client can use an HTTP Get

request or a Web Services Metadata Exchange (WS-MetadataExchange) request. You can specify a policy

set and binding to provide message-level security for WS-MetadataExchange.

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console

panel. The preference settings vary from one administrative console panel to another.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Service client:

Specifies the name of the service client that is displayed.

Policy Set Attachments:

Service/Endpoint/Operation:

Specifies the name of the service client, endpoints or operations. The full QName (Java

class javax.xml.namespace.QName) is displayed when you hover the mouse pointer over a service client

name.

Attached Client Policy Set:

786 Administering WebSphere applications

Specifies the policy set that is attached to the service client, endpoints or operations.

 The Attached Client Policy Setcolumn can contain the following values:

v None. No policy set is attached, either directly or to a higher level service resource.

v policy_set_name. The name of the policy set that is attached directly to the service resource, for

example, WS-I RSP.

v policy_set_name (inherited). The name of the policy set that is not attached directly to a service

resource, but that is attached to a higher level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy

set.

Policies Applied:

Specifies the policies that are applied to the resource.

 The Policies Applied column can contain the following values:

v None. No policies are applied to the service. This is the default setting if there is no policy set attached

to the client.

v Client only. The client policy set is applied to the service. This is the default setting if a policy set is

attached to the client.

v Provider only. The policy configuration of the service provider is applied to the service, as long as the

client can support those policies.

v Client and provider. A policy that is based on both the client policy set and the policy of the service

provider is applied to the service.

When the value in the column is a link, click the link to view or change settings about how the policies are

applied.

For a service, if the value in the column is a link followed by the word inherited in parentheses, this

shows a setting that is inherited from the parent application. You can click the link to change the setting for

the service.

For an endpoint or operation, the value is not a link and it is followed by the word inherited in

parentheses. The setting is inherited from the parent application or service and you cannot change it. If

there is no applied policy, the entries in the column are None or None (inherited).

Binding:

Specifies the binding information available for a service client, endpoint, or operation.

 The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

Chapter 5. Web services 787

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are

specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can

provide configuration for advanced policy requirements such as multiple signatures; however, these

bindings are reusable only within an application. Also, application-specific bindings have very limited reuse

across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding, and fully configure the bindings for each policy that you add. For

WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,

SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the

application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >

New Application Specific Binding, on the Service providers policy sets and bindings collection page, for

service provider resources that have an attached policy set. Similarly, for service clients, you can create

application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on

the Service clients policy sets and bindings collection page, for service client resources that have an

attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused

across applications and for trust service attachments. Although general bindings are highly reusable, they

cannot provide configuration for advanced policy requirements such as multiple signatures. There are two

types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. For details about defining and managing service client or provider bindings, see the related links.

General provider policy set bindings might also be used for trust service attachments.

Buttons:

 Attach Client Policy Set Click this button to view a list of policy sets available for

attachment to the selected service, endpoint, or

operation. Select a policy set from the list to attach and it

is attached to the selected service, endpoint, or operation.

To close the menu list, click Attach Client Policy Set.

788 Administering WebSphere applications

Detach Client Policy Set Click this button to detach a policy set from a selected

service, endpoint, or operation. After the policy set is

detached, if there is no policy set attached to an upper

level service resource, the Attached Client Policy Set

column displays None and the Binding column displays

Not Applicable.

If there is a policy set attached to an upper level service

resource, the Attached Client Policy Set column displays

policy_set_name (inherited) and the binding used for

the upper level attachment is applied. The binding name

is displayed followed by (inherited).

Assign Binding

Default Specifies the default binding for the selected

service, endpoint, or operation. You can specify

client and provider default bindings to be used at

the cell level or global security domain level, for

a particular server, or for a security domain. The

default bindings are used when an

application-specific binding has not been

assigned to the attachment. When you attach a

policy set to a service resource, the binding is

initially set to the default. If you do not

specifically assign a binding to the attachment

point using this Assign Binding action, the

default specified at the nearest scope is used.

 For any policy set attachment, the run time

checks to see if the attachment includes a

binding. If so, it uses that binding. If not, the run

time checks in the following order and uses the

first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in

which the server resides

3. Default general bindings for the global

security domain

New Application Specific Binding

Select this option to create a new

application-specific binding for the policy set

attachments. The new binding you create is

used for the selected resources. If you select

more than one resource, ensure that all selected

resources have the same policy set attached.

Provider sample

Select this option to use the Provider sample

binding.

To close the menu list, click Assign Binding.

Managing policy sets and bindings for service clients at the

application level using the administrative console

Use this administrative console task to manage policy sets for service clients applications or its services,

endpoints, or operations.

Chapter 5. Web services 789

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services

(JAX-WS) applications.

About this task

You have developed a Web service that contains all the necessary artifacts and deployed your Web

services application into your application server instance. Now, you can attach or detach policy sets and

manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly

attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set

attached, and a policy set is attached at a higher level, then the word inherited in parentheses is

appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there

is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is

displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher level resource.

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and constrained to the characteristics of the defined policy. Application specific bindings are

capable of providing configuration for advanced policy requirements, such as multiple signatures; however,

these bindings are only reusable within an application. Furthermore, application specific bindings have very

limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application specific bindings.

For service clients, you can only create application specific bindings by selecting Assign Binding > New

Application Specific Binding for service client resources that have an attached policy set. See service

clients policy sets and bindings collection. Similarly, for service clients, you can only create application

specific bindings by selecting Assign Binding > New Application Specific Binding for service client

resources that have an attached policy set. See service client policy set and bindings collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they are however not able to provide configuration for advanced policy

requirements, such as multiple signatures. There are two types of general bindings:

790 Administering WebSphere applications

v General provider policy set bindings

v General client policy set bindings

You can create general client policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. In the navigation pane, click Applications > Application Types > WebSphere enterprise

applications >Service_client_application_instance > Service client policy sets and bindings.

3. Select the check box next to the Application/Service/Endpoint/Operation column. The service name

is the service client reference in the application.

4. Click Attach to attach a policy set to an application, service, endpoint or operation.

5. [Optional] Click Detach to detach a policy set from a list of attached policy sets for an application,

service client, endpoint or operation.

6. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.

All the bindings are listed along with the following options:

v Default

v New Application Specific Binding

v Client sample

Default

Specifies the default binding for the selected service, endpoint or operation. You can specify client and

provider default bindings to be used at the cell level or global security domain level, for a particular

server, or for a security domain. The default bindings are used when an application specific binding

has not been assigned to the attachment. When you attach a policy set to a service resource, the

binding is initially set to the Default. If you do not specifically assign a binding to the attachment point

using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime checks to see if the attachment includes a binding. If so, it

uses that binding. If not, the runtime checks in the following order and uses the first available default

binding:

a. Default general bindings for the server

b. Default general bindings for the domain that the server resides

c. Default general bindings for the global security domain

New Application Specific Binding

Select this option to create a new application specific binding for the policy set attachments. The new

binding you create is used for the selected resources. If you select more than one resource, ensure

that all selected resources have the same policy set attached.

Client sample

Select this option to use the client sample binding.

Results

When you finish this task, a policy set is attached or detached, and a binding is assigned to the service

artifact.

Chapter 5. Web services 791

Example

If you have configured a service client application instance, app1 and you want, for example, to attach the

Username WSSecurity default policy set to your application, first locate app1 application in the

Applications > Application Types > WebSphere enterprise applications. Click app1 > Service client

policy sets and bindings under the Web Services Properties section. Select the check box next to the

app1 service application. Click Attach and select Username WSSecurity default policy set. Click Save, to

save your changes to the master configuration.

To assign a binding to the attached policy set, click app1 > Service client policy sets and bindings.

Select the check box next to the app1 service application and click Assign Binding. Select client sample

binding from the list. Click Save, to save your changes to the master configuration.

What to do next

You can proceed to view service clients at the cell level using the administrative console.

Service client policy set and bindings collection

Use this page to attach and detach policy sets to an application, a service client, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use existing

bindings for an attached policy set. You can view or change whether the client uses the policy of the

service provider.

This page displays detail information for an application and its associated Web service clients, endpoints,

and operations. You can view and manage policy set attachments and bindings information using this

page.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → service_client_application_instance → Service client policy sets and

bindings.

This console page can also be viewed for WS-Notification service clients by clicking one of the following

paths:

v Service integration → WS-Notification → Services → service_name → [Additional properties]

Outbound request policy sets and bindings

v Service integration → Buses → bus_name → [Services] WS-Notification services → service_name →

[Additional properties] Outbound request policy sets and bindings

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

792 Administering WebSphere applications

Related tasks

“Managing policy sets and bindings for service providers at the application level using the administrative

console” on page 772
Use this administrative console task to manage policy sets for an application or its services, endpoints,

and operations.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Defining and managing service client or provider bindings” on page 860
Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

Related reference

Web services: Client security bindings collection
Use this page to view a list of application-level, client-side binding configurations for Web services security.

These bindings are used when a Web service is a client to another Web service.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

“Search attached applications collection” on page 986
Use this page to search for applications and other resources that are attached to a specific policy set or to

search for applications and other resources that have attached service resources.

“Policies applied settings” on page 755
Use this pane to view and change whether the policy configuration of a WebSphere Application Server

service client is configured dynamically, based on the policies supported by its service provider. You can

view or change how the client obtains the policy of the service provider; the client can use an HTTP Get

request or a Web Services Metadata Exchange (WS-MetadataExchange) request. You can specify a policy

set and binding to provide message-level security for WS-MetadataExchange.

“Service providers collection at the cell level” on page 761
Use this page to view and manage service providers at the cell level. Java Application Programming

Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java

API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

“Service providers collection at the application level” on page 764
Use this page to view and manage service providers at the application level.

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console

panel. The preference settings vary from one administrative console panel to another.

Application/Service/Endpoint/Operation:

Chapter 5. Web services 793

Specifies the name of the application and the associated service client, endpoints, or operations. For

WS-Notification service clients, the first entry is associated with the WS-Notification service, not an

application.

Attached Client Policy Set:

Specifies the policy set that is attached to the application, service clients, endpoints, or operations.

 The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached directly, or is attached at an upper level.

v policy_set_name. The name of the policy set that is directly attached, for example, WS-I RSP.

v policy_set_name (inherited). A policy set is not directly attached to the resource, but a policy set is

attached to a higher-level resource.

When the value in the column is a link, click the link to view or change settings about the attached policy

set.

Policies Applied:

Specifies the policies that are applied to the resource. This column is not applicable and is not shown for

WS-Notification service clients.

 The Policies Applied column can contain the following values:

v None. No policies are applied to the application or service. This is the default setting if there is no policy

set attached to the client.

v Client only. The client policy set is applied to the application or service. This is the default setting if a

policy set is attached to the client.

v Provider only. The policy configuration of the service provider is applied to the application or service,

as long as the client can support those policies.

v Client and provider. A policy that is based on both the client policy set and the policy of the service

provider is applied to the application or service.

When the value in the column is a link, click the link to view or change settings about how the policies are

applied.

For a service, if the value in the column is a link followed by the word inherited in parentheses, this

shows a setting that is inherited from the parent application. You can click the link to change the setting for

the service.

For an endpoint or operation, the value is not a link and it is followed by the word inherited in

parentheses. The setting is inherited from the parent application or service and you cannot change it.

Binding:

Specifies the name of the binding associated with a policy set.

 The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindings1. Default is

displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an

attachment to a higher-level resource.

794 Administering WebSphere applications

When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are

specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can

provide configuration for advanced policy requirements such as multiple signatures; however, these

bindings are reusable only within an application. Also, application-specific bindings have very limited reuse

across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding, and fully configure the bindings for each policy that you add. For

WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,

SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the

application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >

New Application Specific Binding, on the Service providers policy sets and bindings collection page, for

service provider resources that have an attached policy set. Similarly, for service clients, you can create

application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on

the Service clients policy sets and bindings collection page, for service client resources that have an

attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused

across applications and for trust service attachments. Although general bindings are highly reusable, they

cannot provide configuration for advanced policy requirements such as multiple signatures. There are two

types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. For details about defining and managing service client or provider bindings, see the related links.

General provider policy set bindings might also be used for trust service attachments.

Buttons:

 Attach Client Policy Set Click this button to view a list of policy sets available for

attachment to the selected service, endpoint, or

operation. Select a policy set from the list to attach and it

is attached to the selected service, endpoint, or operation.

To close the menu list, click Attach Client Policy Set.

Chapter 5. Web services 795

Detach Client Policy Set Click this button to detach a policy set from a selected

service, endpoint, or operation. After the policy set is

detached, if there is no policy set attached to an upper

level service resource, the Attached Client Policy Set

column displays None and the Binding column displays

Not Applicable.

If there is a policy set attached to an upper level service

resource, the Attached Client Policy Set column displays

policy_set_name (inherited) and the binding used for

the upper level attachment is applied. The binding name

is displayed followed by (inherited).

Assign Binding Click this button to select from a list of available bindings

for the selected policy set attachment. All the bindings are

listed along with the following options:

v Default

v New Application Specific Binding

v Client sample

Default Specifies the default binding for the selected

service, endpoint or operation. You can specify

client and provider default bindings to be used at

the cell level or global security domain level, for

a particular server, or for a security domain. The

default bindings are used when an

application-specific binding has not been

assigned to the attachment. When you attach a

policy set to a service resource, the binding is

initially set to the default. If you do not

specifically assign a binding to the attachment

point using this Assign Binding action, the

default specified at the nearest scope is used.

 For any policy set attachment, the run time

checks to see if the attachment includes a

binding. If so, it uses that binding. If not, the run

time checks in the following order and uses the

first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain that

the server resides

3. Default general bindings for the global

security domain

New Application Specific Binding

Select this option to create a new

application-specific binding for the policy set

attachments. The new binding you create is

used for the selected resources. If you select

more than one resource, ensure that all selected

resources have the same policy set attached.

Client sample

Select this option to use the Client sample

binding.

To close the menu list, click Assign Binding.

796 Administering WebSphere applications

Viewing Web services deployment descriptors in the administrative

console

You can view the Web services client and server deployment descriptors for a deployed Web services

application. You can view the bindings in the deployment descriptors.

Before you begin

Before you can view the deployment descriptors, you need to complete all tasks required to implement a

JAX-RPC Web service, create the deployment descriptor templates that were generated by the

WSDL2Java command-line tool, configure the deployment descriptors and bindings, and deploy the Web

service application into WebSphere Application Server. Review the implementing Web services application

documentation for more information on developing and implementing Web services.

About this task

Deployment descriptors contain the information that is needed by a Web services client to communicate

with the server for which the Web services is installed. This information is added to the deployment

descriptor templates after a Web service is developed or an existing Web service is located. The data that

you can view in the deployment descriptor includes the following:

v The Web service description including the name, WSDL file, WSDL file location and the mapping file.

v The port description, including the port component name, the WSDL port, the service endpoint interface

that indicate the service’s bindings, and the EJB that is used to implement the Web service.

After you have developed a Web service that contains all the necessary artifacts, created the deployment

descriptors from the deployment descriptor templates, configured the deployment descriptors, and

deployed the Web services application into WebSphere Application Server; now you can view the

deployment descriptors and bindings in the administrative console.

Similar to Java API for XML-based RPC (JAX-RPC) Web services, you can use deployment descriptors to

describe JAX-WS Web services. For JAX-WS Web services, the use of the webservices.xml deployment

descriptor is optional because you can use annotations to specify all of the information that is contained

within the deployment descriptor file. You can use the deployment descriptor file to augment or override

existing JAX-WS annotations. Any information that you define in the webservices.xml deployment

descriptor overrides any corresponding information that is specified by annotations.

1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Manage Modules.

v Click View Web services client deployment descriptor extension.

v Click View Web services server deployment descriptor.

v Click View Web services server deployment descriptor extension.

3. Click Expand All to view the deployment descriptor contents.

4. Verify deployment descriptor and bindings configurations.

What to do next

You have viewed and verified the deployment descriptors and bindings for the Web services application.

Configuring the scope of a Web service port

When a Java API for XML-based RPC (JAX-RPC) Web service application is deployed into WebSphere

Application Server, an instance is created for each application or module. The instance contains

Chapter 5. Web services 797

deployment information for the Web module or enterprise bean module, including implementation scope,

client bindings and deployment descriptor information. There are three levels of scope that can be set:

application, session and request.

Before you begin

Deploy a Web service into the WebSphere Application Server. To learn more, read about deploying Web

services applications onto application servers.

About this task

The Web Services for Java Platform, Enterprise Edition (Java EE) specification states that Web services

implementations must be stateless. Therefore, to maintain specification compliance, the scope can remain

at the application level because the state relevant to the individual sessions level or the requests level is

not supposed to be maintained in the implementation. If you want to deviate from the specification and

want to access a different JavaBean instance, because you are looking for information that is located in

another JavaBean implementation, the scope settings need to change.

The setting that you configure for the scope determines how frequently a new instance of a service

implementation class is created for the Web service ports in a module. Use this task to configure the

scope of a Web service port.

This task applies only to Java API for XML-based RPC (JAX-RPC) Web services.

To change the scope setting in the administrative console:

1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications application_name

> Manage Modules > module instance > Web services implementation scope

3. Set the scope to application, session or request. The application scope causes the same instance of

the implementation to be used for all requests on the application. The session scope causes the same

instance to be used for all requests in each session. The request scope causes a new instance to be

used for every request. For example, with the scope set to application, every message that comes to

the server accesses the same JavaBean instance because that is the way the scope settings are

configured.

4. Click Apply.

5. Click OK.

Results

The scope for a Web service port is configured.

What to do next

Now you can finish any other configurations, start or stop the application, and verify the expected behavior

of the Web service.

Web services implementation scope

Use this page to view and manage the scope of the ports of a Web service application.

To view this administrative console page, click Applications > Application Types > WebSphere

enterprise applications > application_name > Manage Modules > module_instance > Web services

implementation scope.

This administrative console panel applies only to Java API for XML-based RPC (JAX-RPC) applications.

798 Administering WebSphere applications

Related tasks

“Configuring the scope of a Web service port” on page 797
When a Java API for XML-based RPC (JAX-RPC) Web service application is deployed into WebSphere

Application Server, an instance is created for each application or module. The instance contains

deployment information for the Web module or enterprise bean module, including implementation scope,

client bindings and deployment descriptor information. There are three levels of scope that can be set:

application, session and request.

Port:

Specifies a port name for a Web service. A module can contain one or more Web services, each of which

can contain one or more ports.

Web service:

Specifies the name of the Web service. A module can contain one or more Web services.

URI:

Specifies the Uniform Resource Identifier (URI) of the binding file that defines the scope. The URI is

relative to the Web module.

Scope:

Specifies the scope of a port. The valid values for scope are request, session and application.

 The scope value determines when a new instance of a service implementation is created for the Web

service ports in a module. When the scope value is set to application, the same instance of the

implementation is used for all requests on the application. When the scope value is set to session, the

same instance is used for all requests on each session. When the scope value is set to request, a new

instance is created for every request.

Making deployed Web services applications available to clients

You can publish WSDL files to the file system. If you are a client developer or a system administrator, you

can use WSDL files to enable clients to connect to Web services.

Before you begin

The publish WSDL administrative console panel supports both JAX-RPC and JAX-WS services. The

publish WSDL panel generates a zip file that contains WSDL files for all modules in an application that

contains JAX-WS or JAX-RPC Web services. Read about providing the HTTP endpoint URL information to

learn how the URL information affects the content of the published WSDL.

To publish a Web Services Description Language (WSDL) file you need an enterprise application, also

known as an enterprise archive (EAR) file, that contains a Web services-enabled module and has been

deployed into WebSphere Application Server. To learn how to deploy Web services, see the documentation

on deploying Web services onto application servers.

About this task

The purpose of publishing the WSDL file is to provide clients with a description of the Web service,

including the URL identifying the location of the service.

Chapter 5. Web services 799

After installing a Web services application, and optionally modifying the endpoint information, you might

need WSDL files containing the updated endpoint informations to make deployed Web services application

to be available to clients.

Before you publish a WSDL file, you can configure Web services to specify endpoint information in the

form of URL fragments to enable full URL specification of WSDL ports. Refer to the tasks describing

configuring endpoint URL information.

The WSDL files for each Web services-enabled module are published to the file system location you

specify. You can provide these WSDL files to clients that want to invoke your Web services.

You can specify endpoint information for HTTP ports, for Java Message Service (JMS) ports, or you can

directly access enterprise beans that are acting as Web services.

1. Configure the Web services client bindings.

2. Configure the URL endpoint information for HTTP bindings. Do one of the following depending on what

kind of bindings you are using:

v Configure the URL endpoint information for JMS bindings.

3. Externalize or publish the WSDL file out of the application. You can complete this task in the following

ways:

v Publish a WSDL file with the wsadmin command tool.

What to do next

Apply security to the Web service.

Configuring Web services client bindings

When a Web services application is deployed into WebSphere Application Server, an instance is created

for each application or module. The instance contains deployment information for the Web module or

enterprise JavaBean (EJB) module, including client bindings.

Before you begin

Deploy a Web service into your WebSphere Application Server instance. Read about deploying Web

services applications onto application servers.

You must know the topology of the URL endpoint address of the Web services servers and which Web

service the client depends upon. You can view the deployment descriptors in the administrative console to

find the topology information. View Web services server deployment descriptors for more information.

About this task

The client bindings define the Web Services Description Language (WSDL) file name and preferred ports.

The relative path of a Web service in a module is specified within a compatible WSDL file that contains the

actual URL to be used for requests. The address is only needed if the original WSDL file did not contain a

URL, or when a different address is needed. For a service endpoint with multiple ports, you need to define

an alternative WSDL file name.

The following steps describe how to edit bindings for a Web service after these bindings are deployed on

a server. When one Web service communicates with another Web service, you must configure the client

bindings to access the downstream Web service.

To configure client bindings through the administrative console:

1. Open the administrative console.

800 Administering WebSphere applications

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >

module_instance > Web services client bindings.

3. Find the Web service you want to update.

The Web services are listed in the Web Service field.

4. Select the WSDL file name from the drop down box in the WSDL file name field.

5. Click Edit in the Preferred port mappings field to configure the default port to use.

a. Specify the port type and the preferred ports in the Port type and Preferred ports fields.

Configuring the preferred port enables you to select an optimal port implementation use non-SOAP

protocols. See RMI-IIOP Web services using JAX-RPC for more information about using

non-SOAP protocols.

b. Click Apply and OK.

6. Click Edit in the Port information field to configure the request timeout, the overridden endpoint, and

the overridden binding namespace for a port.

Configuring the request timeout accommodates complex topologies that can have multiple cascaded

Web services that involve multiple hops or long-running services.

You can configure Timeout values based on observed behavior of the overall system as integration

proceeds. For example, a Web service client might time out because of changing network conditions or

the performance of an external Web service. When you have applications containing Web services

clients that timeout, you can change the request time out values for the clients.

You can specify an endpoint URL to override the current endpoint. A client invoking a request on this

port uses this endpoint instead of the endpoint specified in the WSDL file. You can specify the

Overridden endpoint URL value for both Java API for XML-Based Web Services (JAX-WS) clients

and Java API for XML-based RPC (JAX-RPC) clients.

Note: The Overridden endpoint URL field is applicable for both JAX-WS and JAX-RPC clients. The

other fields on this administrative console page are only applicable for JAX-RPC clients.

a. Click Apply and OK.

Results

Your Web service client bindings are configured.

What to do next

Now you can finish any other configurations, start or restart the application, and verify the expected

behavior of the Web service.

Web services client bindings

The client bindings define the Web Service Description Language (WSDL) file name, preferred ports and

other port information. Use this page to specify the client bindings and the port mappings for the Web

services in a module.

A Web service can specify the relative path within the module of a compatible WSDL file containing the

actual URL to be used for requests. The relative path only needs to be specified if the original WSDL file

does not contain a URL or when a different URL is needed. For a service endpoint with multiple ports

defined, a preferred mapping specifies the default port to use for a port type.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name

.

2. Click Manage modules > URI_file_name > Web services client bindings .

This administrative console panel applies only to Java API for XML-based RPC (JAX-RPC) applications.

Chapter 5. Web services 801

Web service:

Identifies the name of this Web service. A module can contain one or more Web services.

EJB:

Identifies the name of the EJB for the EJB modules.

WSDL file name:

Specifies the WSDL file name, which is relative to the module. Locate the WSDL file name in the drop

down menu.

Preferred port mappings:

Specifies and manages the preferred port type mapping for a Web service when a particular port type is

requested.

 Click Edit to edit the preferred port mapping information on the Preferred port mappings panel.

Port information:

Specifies additional configuration information for the ports of this Web service.

 Click Edit to edit the port information on the Port information panel. You can set a request timeout,

override an endpoint and override a binding namespace for each client port.

Preferred port mappings:

Use this page to view and manage a preferred portType mapping for a Web service.

 This administrative console panel applies only to Java API for XML-based RPC (JAX-RPC) applications.

When you have multiple ports that reference the same portType (service endpoint interface), a preferred

port specifies the port to use when the Service.getPort(Class SEI) method is called with only the service

endpoint interface.

To view this administrative console page, click Applications > Application Types > WebSphere

enterprise applications application_name > Manage Modules > module instance > Web services

client bindings > Edit > preferred_port_instance.

portType:

Specifies the portType.

 The preferred port and the portType values are both of the type java.xml.namespace.QName.

Preferred port:

Specifies the preferred port to be associated with a particular portType. The Service.getPort(Class)

method returns the preferred port associated with the specified service endpoint interface class (portType).

 The preferred ports available are listed, as well as a value of None, which indicates no preferred port is

selected.

Web services client port information:

802 Administering WebSphere applications

Use this page to specify a request timeout, override an endpoint, and override a binding namespace for a

Web services client port.

 A Web service can have multiple ports. You can view and configure the port attributes for each defined

Web service port. The Web services are listed on the Web services client bindings panel.

To view this page, click Applications > Application Types > WebSphere enterprise applications

application_name > Manage Modules > module_instance > Web services client bindings > Edit .

This administrative console panel applies to both Java API for XML-Based Web Services (JAX-WS) and

Java API for XML-based RPC (JAX-RPC) Web services. The Overridden endpoint URL field is the only

field supported for JAX-WS clients. The other fields are not applicable for JAX-WS clients.

Port:

Specifies the name of a port.

Request timeout:

Specifies the time, in seconds, that a Web service client waits for a request to complete on this port. If a

timeout is not specified, the default request timeout for the client to wait is 360 seconds. If the value is set

at 0 (zero), the client’s request does not timeout. This field is supported only for JAX-RPC clients.

 A typical use for this setting is to customize the client’s behavior when it is configured to use a JMS

transport to access a Web service to make it wait longer for an expected completion. Depending upon

network conditions, or the nature of a Web service implementation, it might be necessary to tune the

timeout.

Overridden endpoint URL:

Specifies the name of an endpoint that is used to override the current endpoint. A client invoking a request

on this port uses this endpoint instead of the endpoint specified in the WSDL file. This field is supported

for both JAX-WS and JAX-RPC clients.

 If an assembled application contains a Web service client that is statically bound, the client is locked into

using the implementation (service end point) identified in the WSDL file used during development.

Overriding the endpoint is an alternative to configuring the deployed WSDL attribute.

The overridden endpoint URI attribute is specified on a per port basis. It does not require an alternative

WSDL file within the module. The overridden endpoint URI takes precedence over the deployed WSDL

attribute. The client uses this value for the service end point URI or SOAP address, instead of the value in

the static client bindings.

Overridden binding:

Specifies the WSDL file binding namespace URI to use with this port, instead of the namespace in the

WSDL file. This binding does not need to exist in the WSDL file. A client invoking a request on this port

uses this binding instead of the binding specified in the WSDL file. An overridden binding namespace

cannot be specified unless an overridden endpoint is specified. This field is supported only for JAX-RPC

clients.

Configuring endpoint URL information for HTTP bindings

Configuring a service endpoint is necessary to connect Java API for XML-Based Web Services (JAX-WS)

and Java API for XML-based RPC (JAX-RPC) Web services clients to any Web services among the

components being assembled or to any external Web services.

Chapter 5. Web services 803

Before you begin

You can develop an HTTP accessible Java API for XML-based remote procedure call (JAX-RPC) or Java

API for XML Web Services (JAX-WS) Web service when you already have a JavaBean object to enable as

a Web service. For additional information, see the using HTTP to transport Web services requests

documentation.

About this task

You can specify HTTP URL prefixes for Web services that are accessed through HTTP by using the

Provide HTTP endpoint URL information panel in the administrative console. The HTTP URL prefixes

provide location specific information and are used to form complete endpoint URLs that are included within

published WSDL files.

Note: The Provide HTTP panel in the administrative console displays modules that contain Java API for

XML-Based Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) Web services.

You can use the Provide HTTP panel to provide URL information for both types of Web services,

however, the panel does not indicate which type of service that you are working with.

To configure these prefixes with the administrative console:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide HTTP endpoint URL

information.

3. Specify the URL prefixes for the Web service.

In this step you specify the protocol (HTTP or HTTPS), as well as the host_name and port_number

used in the endpoint URL. You can select a prefix from a predefined list, by selecting the default HTTP

URL prefix, or you can use a custom HTTP URL prefix.

a. Select Default HTTP URL prefix or Custom HTTP URL Prefix.

If you select the default HTTP URL prefix, a list provides you with a choice of endpoint URL

prefixes. The list is a combination of two sets of ports in the module: the virtual host ports and the

application server ports. Use a prefix from this list if the application server of the Web service is

accessed directly. Select a value and also select the check box of the modules to use the prefix.

If you want to use a custom HTTP URL prefix, type the value in the field. Select the check box to

use in the prefix.

If you configure a custom HTTP URL prefix, , you must also configure the custom JVM property,

com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true.

You must restart the application server after this custom property has been defined so that this

property is used by the system. Setting this custom JVM property is required so the custom HTTP

endpoint prefix information is correctly displayed in the ?WSDL query that is returned from the

browser and the URL field of the WSDL file that is returned to the client. If this custom property is

not defined with the value of true, the custom HTTP URL prefix is not reflected in the WSDL file

that the service returns to the client. To learn how to configure this custom JVM property, see the

documentation on configuring additional HTTP transport properties using the JVM custom property

panel in the administrative console.

b. Click Apply.

The URL prefix, whether default or custom, is copied to the selected module HTTP URL prefix

field.

c. Click OK. The URL information is saved to your workspace.

Results

You have specified the partial URL information that is used to form the target endpoint addresses in the

WSDL files that are published using the Publish WSDL files panel.

804 Administering WebSphere applications

What to do next

Configure any other URL endpoint information for Java Message Service (JMS) bindings and direct

Enterprise JavaBeans (EJB) access. Then publish the WSDL files to make the deployed Web services

application available to clients.

Provide HTTP endpoint URL information

Use this page to specify endpoint URL prefix information for Web services accessed by HTTP. Prefixes are

used to form complete endpoint addresses included in published Web Services Description Language

(WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere

enterprise applications > application_name > Provide HTTP endpoint URL information.

You can specify a portion of the endpoint URL to be used in each Web service module. In a published

WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s

soap:address element.

This administrative console panel applies for Java API for XML-Based Web Services (JAX-WS) and Java

API for XML-based RPC (JAX-RPC) Web services.

Specify endpoint URL prefixes for Web services:

Specifies the protocol (either http or https), host_name, and port_number to be used in the endpoint URL.

 You can select a prefix from a predefined list using the HTTP URL prefix or Custom HTTP URL prefix

field.

The URL prefix format is protocol://host_name:port_number, for example, http://myHost:9045. The actual

endpoint URL that is contained in a published WSDL file consists of the prefix followed by the module’s

context-root and the Web service url-pattern, for example, http://myHost:9045/services/myService.

Select default HTTP URL prefix:

Specifies the drop down list associated with a default list of URL prefixes. This list is the intersection of the

set of ports for the module’s virtual host and the set of ports for the module’s application server. Use items

from this list if the Web services application server is accessed directly.

 To set an HTTP endpoint URL prefix, select Select default HTTP URL prefix and select a value from the

drop down list. Select the check box of the modules that are to use the prefix and click Apply. When you

click Apply, the entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields,

depending on which is selected, is copied into the HTTP URL prefix field of any module whose check box

is selected.

Select custom HTTP URL prefix:

Specifies the protocol, host, and port_number of the intermediate service if the Web services in a module

are accessed through an intermediate node, for example the Web services gateway or an IHS server.

 To set a custom HTTP endpoint URL prefix, you must also configure the custom JVM property,

com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true. Setting

this custom JVM property is required so the custom HTTP URL is correctly populated in the URL field of

the WSDL file that is returned to the client. If this custom JVM property is not configured, the custom

HTTP URL prefix is not in the URL field in the copy of the WSDL file that the service returns to the client.

To learn how to configure this custom JVM property, see the documentation on configuring additional

Chapter 5. Web services 805

HTTP transport properties using the JVM custom property panel in the administrative console. You must

restart the application server after this custom property has been defined so that this property is used by

the system.

After the com.ibm.ws.webservices.enableHTTPPrefix custom JVM property is configured, select Select

custom HTTP URL prefix and enter a value. Select the check box of the modules that are to use the

prefix and click Apply. When you click Apply, the entry in the Select default HTTP URL prefix or Select

custom HTTP URL prefix fields, depending on which is selected, is copied into the HTTP endpoint URL

prefix field of any module whose check box is selected.

Configuring endpoint URL information for JMS bindings

WebSphere Application Server supports the use of the Java Message Service (JMS) API to transport Web

services requests, as an alternative to using HTTP.

Before you begin

The application server supports use of the Java Message Service (JMS) API to transport Web services

requests, as an alternative to HTTP transport. Read about using the Java Message Service (JMS) to

transport Web services requests to learn more about how Web service clients and servers can

communicate through JMS queues and topics instead of through HTTP connections.

About this task

Configuring a service endpoint is necessary to connect Web service clients to any Web services among

the components being assembled or to any external Web services. You can configure the endpoint URL

information for JMS during application installation

In this task, enter the JMS endpoint URL prefix to use for each Web service-enabled Enterprise

JavaBeans (EJB) Java archive (JAR) file that belong to the application. The JMS endpoint URLs are

included in the Web Service Description Language (WSDL) files published for clients to use.

You can specify HTTP URL prefixes for Web services that are accessed through HTTP by using the

Provide HTTP endpoint URL information panel in the administrative console. These prefixes are used to

form complete endpoint addresses that are included in WSDL files when published.

You can specify JMS URL prefixes by using the Provide JMS and EJB endpoint URL information panel in

the administrative console during or after application installation.

This task applies for Java API for XML-Based Web Services (JAX-WS) and Java API for XML-based RPC

(JAX-RPC) Web services.

To configure JMS URL prefixes:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB

endpoint URL information.

3. Locate the list of Web services modules that are accessible through JMS transport.

4. Type the JMS URL fragment in the URL fragment field. Enter a URL fragment that is a prefix to the

initial URL part that is obtained by examining the deployment information of the Web service. See the

usage scenario following this task for more information.

The value that you enter is used to define the location attribute of the port soap:address element within

the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip or the

application_name_WSDLFiles.zip file on the Publish WSDL zip files panel.

806 Administering WebSphere applications

Results

You have a Web service that is accessible through the JMS transport and configured with JMS bindings.

Example

Suppose an application called StockQuoteService contains an EJB JAR file that is named StockQuoteEJB,

which contains one or more Web services that are accessible through the JMS transport. In Using SOAP

over Java Message Service to transport Web services requests, you defined a queue with the Java

Naming and Directory Interface (JNDI) name of jms/StockQuote_Q, and a connection factory with the JNDI

name of jms/StockQuote_CF, for your application. In this example, you specify the following string as the

JMS URL prefix within the Provide JMS and EJB endpoint URL information panel:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

The WSDL publisher uses this partial URL string to produce the actual JMS URL for each port component

that is defined in the module. The targetService=<port_name> string is added to the end of the JMS URL,

for example:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF&targetService=getQuote

The published WSDL file is used by clients to invoke the Web service.

What to do next

Publish the WSDL files to make the deployed Web services application available to clients.

Provide JMS and EJB endpoint URL information

Use this page to specify endpoint URL fragments for Web services accessed through SOAP and Java

Message Service (JMS) or directly as enterprise beans. Fragments are used to form complete endpoint

addresses included in published Web Services Description Language (WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere

enterprise applications > application_name > Provide JMS and EJB endpoint URL information.

You can specify a fragment of the endpoint URL to be used in each Web service module. In a published

WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s

soap:address element.

If you are using Web services modules that are configured to use JMS or configured to access enterprise

beans directly, these modules are listed on this panel.

This administrative console panel applies for Java API for XML-Based Web Services (JAX-WS) and Java

API for XML-based RPC (JAX-RPC) Web services.

URL fragment for JMS:

Specifies a URL fragment for Web services accessed through a JMS transport. You can enter a value that

is used to define the soap:address of a Web service. When WSDL files are published, a URL is formed

using this fragment and is contained in the WSDL files.

 The URL fragment that is entered as a value is a prefix to which the targetService=property is appended

to form a complete JMS URL endpoint. The default value is obtained by examining the installed service’s

deployment information, for example, jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF.

This information is obtained from the Web service’s configured JMS endpoint, which is a Message Driven

Bean (MDB) defined by the endpointEnabler command-line tool. You can modify the URL fragment, for

Chapter 5. Web services 807

example, by adding properties. The URL fragment is combined with the targetService property to form the

complete URL, for example, jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF
&priority=5&targetService=GetQuote.

URL fragment for EJB:

Specifies a URL fragment for Web services accessed through an EJB binding. You can enter a value used

to define the location attribute of the port’s generic:address element of a Web service. This port address

is contained in the WSDL zip file when the zip file is published using the

application_name_ExtendedWSDLFiles.zip field on the Publish WSDL zip file panel.

 The URL fragment value entered is a suffix, which is appended to the initial part of the URL obtained by

examining the Web service’s deployment information. For example, the following URL fragment can be

obtained from the EJB’s deployment information: wsejb:/
com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome.

In this case, you can enter the following information in the URL fragment field,

jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809, which results in this endpoint URL,

wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome
&jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809.

Configuring endpoint URL information to directly access enterprise

beans

WebSphere Application Server supports directly accessing an enterprise bean as a Web service, as an

alternative to using HTTP or Java Message Service (JMS) to transport requests between the server and

the client. The EJB module that is used as a Web service contains a Web Services Description Language

(WSDL) file that contains EJB bindings.

Before you begin

To learn more about the process of directly accessing an enterprise bean as a Web service, review the

topic Using EJB bindings to invoke an enterprise bean from a Web services client .

About this task

Configuring a service endpoint is necessary to connect Web service clients to any Web services among

the components being assembled or to any external Web services.

You can specify Web address endpoints of the enterprise bean for Web services that are accessed directly

by EJB bindings using the Provide JMS and EJB endpoint Web address information panel in the

administrative console.

If you have modules that are configured for using direct EJB access, the modules are listed on the Provide

JMS and EJB endpoint Web address information panel in the administrative console. The EJB endpoint is

only available in the WSDL that is found in the application_name_ExtendedWSDLfiles.zip file.

You can specify a fragment of the endpoint Web address for the Web services in each module.

To configure the Web address endpoints of the enterprise bean with the administrative console:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB

endpoint URL information.

3. Locate the list of EJB modules.

4. Select the application module.

808 Administering WebSphere applications

5. Type the Web address fragment in the URL fragment field.

Enter a Web address fragment that is a suffix to the initial Web address part that is obtained by

examining the Web service deployment information. See the example following this task for more

information.

The value that you enter is used to define the location attribute of the port generic:address element

within the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip file name

link on the Publish WSDL zip files panel. The zip file names are listed as links on the panel.

6. Click OK.

7. Click Save.

Results

You have configured endpoints of the enterprise bean for Web services that are accessed directly by EJB

bindings.

Example

The following example illustrates a Web address fragment to enter in the URL fragment field.

The following Web address information can be obtained from the deployment descriptor of an enterprise

bean:

wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome

Enter the following Web address fragment in the URL fragment field:

jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2089

The results are shown in the following example:

wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome&jndiProviderURL=

corbaloc:iiop:myhost.mycompany.com:2089

What to do next

Provide a description of the Web service to the service requestor by publishing WSDL files.

Publishing WSDL files using the administrative console

You can publish a Web Services Description Language (WSDL) file using the WebSphere Application

Server administrative console.

Before you begin

Before completing this task, you need to install or deploy the Web service. After deployment, configure the

URL endpoint tasks for your transport:

v Configure endpoint URL information for HTTP bindings.

v Configure endpoint URL information for JMS bindings.

v Configure endpoint URL information to directly access enterprise beans

About this task

By publishing a WSDL file, you are providing clients with a description of the Web service, including the

URL identifying the location of the service.

Chapter 5. Web services 809

The WSDL files in each Web services-enabled module are published to the file system location you

specify. You can provide these WSDL files in the development and configuration process of the Web

service clients so they can invoke your Web services.

This task applies for Java API for XML-Based Web Services (JAX-WS) and Java API for XML-based RPC

(JAX-RPC) Web services.

Review Publishing WSDL files for more ways to publish WSDL files.

To publish an application’s WSDL file with the administrative console:

1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications >

application_name.

3. Under Web Services Properties, click Publish WSDL files. This takes you to the Publish WSDL zip

files page.

4. Click the WSDL zip file to download. The zip file contains the application’s published WSDL files. The

zip file ExtendedWDLFiles.zip contains EJB binding information. It can also contain JMS or HTTP

binding information. The zip file WSDLFiles.zip only contains JMS or HTTP binding information.

What to do next

Apply security to your Web service.

Publish WSDL zip files settings

Use this page to publish Web Services Description Language (WSDL) files.

This administrative console panel applies for Java API for XML-Based Web Services (JAX-WS) and Java

API for XML-based RPC (JAX-RPC) Web services.

The publish WSDL panel generates a zip file that contains WSDL files for all modules in an application

that contains a JAX-WS or JAX-RPC Web service. Read about providing the HTTP endpoint URL

information to learn how the URL information affects the content of the published WSDL.

To view this administrative console page, click Applications > Application Types > WebSphere

enterprise applications > application_name > Publish WSDL files.

When you click OK, a panel showing one or several zip file names displays. Each zip file contains a

WSDL file that represents the Web services-enabled modules in the application. When you select a zip file

to publish, a dialogue displays from which you can choose where to create the zip file. Within the

published zip files, the directory structure is application_name/module_name/[META-INF|WEB-INF]/wsdl/
wsdl_file_name.

In a published WSDL file, the location attribute of a port’s soap:address element contains the endpoint

URL through which the Web service is accessed. Using the Provide HTTP endpoint URL information

and the Provide JMS and EJB endpoint URL information panels, configure the endpoint URLs to be

used for the Web services in each module.

application_name_WSDLFiles.zip:

Specifies the application_name_WSDLFiles.zip file containing the WSDL that describes Web services that

are accessible by standard SOAP-based ports.

application_name_ExtendedWSDLFiles.zip:

810 Administering WebSphere applications

Specifies the application_name_ExtendedWSDLFiles.zip file containing the WSDL file that describes the

Web services available, including SOAP-based and non-SOAP based (for example, EJB) ports.

 If there are no Web services configured for direct EJB access, this zip file name is not displayed. Do not

use this zip file if you want to produce a WSDL file compliant to standards.

Publishing WSDL files using a URL

You can publish a Web Services Description Language (WSDL) file using a URL.

Before you begin

Before you can publish a WSDL file using a URL, ensure the Web services-enabled application is installed

and running.

The files referenced by the <wsdl-file> element in the webservices.xml might import other WSDL or XML

Schema Definition (XSD) files. Typically, all WSDL or XSD files are initially placed into the META-INF/wsdl

directory when using Enterprise JavaBeans (EJB) or the WEB-INF/wsdl directory when using JavaBeans. If

your WSDL or XSD files are not placed in one of these directories, the file referenced by the <wsdl-file>

and its imported files are copied to the wsdl directory for publishing purposes.

There are two different forms of URL query strings. The first appends /wsdl to the service and returns only

HTTP and JMS bindings. The second appends /extwsdl to the service and returns the extended WSDL

file, including HTTP, JMS, and EJB bindings. If a WSDL file contains only EJB bindings and the /wsdl

query is used, an error message displays in the browser saying there are no HTTP or JMS bindings in the

WSDL file. The error message suggests using the /extwsdl query instead. Publishing a WSDL file using a

URL requires that the application have a Web module; either provided by the application or in the form of

an HTTP router module. If an EJB application contains a WSDL file with only JMS or EJB Web service

bindings, the endptEnabler command can be used to add an HTTP router module to the application.

Note: Only HTTP URLs are supported for publishing.

About this task

To publish a WSDL file using a URL:

1. Retrieve the outer-most WSDL file. The outer-most WSDL file is the WSDL file defined by the

<wsdl-file> element in the webservices.xml file.

Each Web service has an endpoint address, like http://example.com/services/stockquote. You can

retrieve the outer-most WSDL file (defined by the <wsdl-file> element within the webservices.xml file)

by appending the string ″/wsdl″ or ″/wsdl/″ to the endpoint address, for example,http://example.com/
services/stockquote/wsdl.

2. Retrieve the imported WSDL files. When the outer-most WSDL file imports other WSDL or XSD files,

these imported files can be retrieved by appending the relative path to the URL, which is used to

retrieve the outer-most WSDL file. This is also true for WSDL files that import other files. This process

is similar to the use of relative hyperlinks in HTML documents. If an HTML document contains a

hyperlink to other documents, the relative path is appended to create the URL to access the

hyperlinked documents.

Example

Suppose you have an application with the following directory structure:

<module-root>/

 WEB-INF/

 webservices.xml /* the <wsdl-file> element points to "WEB-INF/wsdl/fooImpl.wsdl"*/

 web.xml

 ibm-webservices-bnd.xml

Chapter 5. Web services 811

wsdl/

 fooImpl.wsdl /* imports foo.wsdl which is an interface wsdl */

 foo.wsdl /* type definition for the interface */

If the SOAP address for the foo service is http://examples.com:9080/services/foo, the simple way to

retrieve the foo service’s outer-most WSDL is with the following form: http://examples.com:9090/
services/foo/wsdl or http://examples.com:9090/services/foo/wsdl/. The URL is redirected to

http://examples.com:9090/services/foo/wsdl/fooImpl.wsdl, where fooImpl.wsdl is the name of the

outer-most WSDL file.

Since the fooImpl.wsdl file has the import <import namespace=″http://examples.com/foo″

location=″a/b/foo.wsdl>, use the URL http://examples.com:9090/services/foo/wsdl/a/b/foo.wsdl to

obtain the foo.wsdl file.

Creating a monitor for WebSphere Application Server for WSDM

resources (deprecated)

The Web Services Distributed Management (WSDM) monitoring support provided in the Version 6.1

Feature Pack for Web Services uses an external management software. It is, however, more useful to

build a custom WebSphere Application Server monitor for WSDM. Use this task to create a WSDM

monitor that is based on the Java API for XML Web Services (JAX-WS) programming model.

Before you begin

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)

programming model and the Java API for XML-based RPC (JAX-RPC) programming model.

JAX-WS is the next generation Web services programming model extending the foundation

provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,

development of Web services and clients is simplified through support of a standards-based

annotations model. Although the JAX-RPC programming model and applications are still supported,

take advantage of the easy-to-implement JAX-WS programming model to develop new Web

services applications and clients.

About this task

Complete the following steps to create a WSDM monitor:

1. Retrieve the relative URLs. The following table contains a list of URLs that you can use to retrieve the

Web Services Description Language (WSDL) files for each supported resource that is in the product.

 Table 6. Relative URLs to WSDM WSDL files

Resource URL

Service group /websphere-management/services/service-group?wsdl

Application /websphere-management/services/application?wsdl

Application server /websphere-management/services/applicationserver?wsdl

Data source /websphere-management/services/datasource?wsdl

Enterprise JavaBeans /websphere-management/services/ejb?wsdl

Java virtual machine (JVM) /websphere-management/services/jvm?wsdl

Servlet /websphere-management/services/servlet?wsdl

WebSphere cluster /websphere-management/services/webspherecluster?wsdl

WebSphere domain /websphere-management/services/
webspheredomain?wsdl

812 Administering WebSphere applications

Table 6. Relative URLs to WSDM WSDL files (continued)

Resource URL

Web service /websphere-management/services/webservices?wsdl

2. Create a skeleton code for the service endpoint interface (SEI) files for the Web services client. After

retrieving the relative URLs, create a skeleton code for the SEI files by running the WSDL to Java

tooling against the WSDM WSDL files. You can use the IBM Rational Application Developer or

wsimport command utility for this task. Run the wsimport utility against the retrieved WSDL file.

Note: At a minimum, WSDL files for the service group resource and the resource that you want must

be compiled.
When you finish this step, you have created the client code that is used to communicate with the

service provider, which is the WSDM service endpoint.

3. Write the code for the JAX-WS WSDM client. Review the following JAX-WS WSDM client sample code

before you start writing the client code. The sample client code demonstrates a complete

implementation of a client suitable for polling statistics for a resource and is used to delegate the

setting up of WS-Addressing resource references and request and response processing.

Sample WSDM JAX-WS client

import java.net.URI;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import javax.xml.bind.JAXBElement;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import org.oasis_open.docs.wsrf.rp_2.GetResourcePropertyResponse;

import org.oasis_open.docs.wsrf.sg_2.EntryType;

import org.oasis_open.docs.wsrf.sgw_2.ServiceGroupPortType;

import org.oasis_open.docs.wsrf.sgw_2.ServiceGroupService;

import org.w3c.dom.Element;

import com.ibm.wsspi.wsaddressing.AttributedURI;

import com.ibm.wsspi.wsaddressing.EndpointReference;

import com.ibm.wsspi.wsaddressing.EndpointReferenceManager;

import com.ibm.wsspi.wsaddressing.WSAConstants;

import com.ibm.wsspi.wsaddressing.WSAddressingFactory;

import com.ibm.xmlns.prod.websphere.management.servlet.ServletPortType;

import com.ibm.xmlns.prod.websphere.management.servlet.ServletService;

public class WsdmJaxWsClient {

 static QName WAS_MBEAN_ID = new QName("http://ibm.com/2006/v1.3", "WAS_Resource_MbeanIdentifier");

 static QName WAS_RESOURCE_ID = new QName("http://ibm.com/2006/v1.3", "WAS_Resource_MRID");

 static QName WAS_RESOURCE_TYPE = new QName("http://ibm.com/2006/v1.3", "WAS_Resource_Type");

 private String ServerAndHost = null;

 public WsdmJaxWsClient(String serverAndHost) {

 this.ServerAndHost = serverAndHost;

 }

 /**

 * Get a list of available resources from WSDM application

 */

 public List<EntryType> getResources() throws Exception {

 // Create service and obtain service reference

 ServiceGroupService sgs = new ServiceGroupService();

 ServiceGroupPortType sgp = sgs.getServiceGroupPort();

 // Create wsa:Action

 URI actionUri = new URI(

 "http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest");

 AttributedURI wsaAction = WSAddressingFactory

 .createAttributedURI(actionUri);

 // Create wsa:To and populate reference parameters

 String sgServicePortURI = "http://" + ServerAndHost

 + "/websphere-management/services/service-group";

 QName resourceId = new QName("http://ws.apache.org/muse/addressing",

 "ResourceId", "muse-wsa");

 EndpointReference wsaDestinationEpr = EndpointReferenceManager

 .createEndpointReference(new URI(sgServicePortURI));

 wsaDestinationEpr.setReferenceParameter(resourceId, "MuseResource-1");

 // Populate requestContext

Chapter 5. Web services 813

Map<String, Object> rc = ((BindingProvider) sgp).getRequestContext();

 rc.put(WSAConstants.WSADDRESSING_ACTION, wsaAction);

 rc.put(WSAConstants.WSADDRESSING_DESTINATION_EPR, wsaDestinationEpr);

 rc.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);

 rc

 .put(

 BindingProvider.SOAPACTION_URI_PROPERTY,

 "http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest");

 rc.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, sgServicePortURI);

 // Retrieve a list of available resources

 QName entryQName = new QName("http://docs.oasis-open.org/wsrf/sg-2",

 "Entry");

 GetResourcePropertyResponse grpr = sgp.getResourceProperty(entryQName);

 // The returned list<object> must be converted to a more meaningful type

 List<Object> inputList = grpr.getAny();

 List<EntryType> outputList = new ArrayList<EntryType>(inputList.size());

 // Complete the element by element conversion

 for (Object obj : inputList) {

 JAXBElement jbe = (JAXBElement) obj;

 EntryType entry = (EntryType) jbe.getValue();

 outputList.add(entry);

 }

 return outputList;

 }

 /**

 * Read a property of specified entry

 */

 public Object getResourceProperty(EntryType entry, QName property)

 throws Exception {

 // Create service and obtain service reference

 ServletService rs = new ServletService();

 ServletPortType rp = rs.getServletPort();

 // Create wsa:Action

 URI actionUri = new URI(

 "http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest");

 AttributedURI wsaAction = WSAddressingFactory

 .createAttributedURI(actionUri);

 // Create wsa:To and populate resource parameters

 String servicePortURI = getResourceAddress(entry);

 // QName resourceId = new QName("http://ws.apache.org/muse/addressing",

 // "ResourceId", "muse-wsa");

 EndpointReference wsaDestinationEpr = EndpointReferenceManager

 .createEndpointReference(new URI(servicePortURI));

 wsaDestinationEpr.setReferenceParameter(WAS_RESOURCE_ID,

 findListMember(entry, WAS_RESOURCE_ID));

 wsaDestinationEpr.setReferenceParameter(WAS_MBEAN_ID, findListMember(

 entry, WAS_MBEAN_ID));

 wsaDestinationEpr.setReferenceParameter(WAS_RESOURCE_TYPE,

 findListMember(entry, WAS_RESOURCE_TYPE));

 // Populate requestContext

 Map<String, Object> rc = ((BindingProvider) rp).getRequestContext();

 rc.put(WSAConstants.WSADDRESSING_ACTION, wsaAction);

 rc.put(WSAConstants.WSADDRESSING_DESTINATION_EPR, wsaDestinationEpr);

 rc.put(BindingProvider.SOAPACTION_USE_PROPERTY, Boolean.TRUE);

 rc

 .put(

 BindingProvider.SOAPACTION_URI_PROPERTY,

 "http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest");

 rc.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, servicePortURI);

 // Retrieve a list of available resources

 GetResourcePropertyResponse response = null;

 response = rp.getResourceProperty(property);

 // Return the property

 if (response != null) {

 return ((JAXBElement) response.getAny().get(0)).getValue();

 } else {

 return null;

 }

 }

 public String getResourceMBeanID(EntryType entry) {

 return findListMember(entry, WAS_MBEAN_ID);

 }

 public String getResourceMRID(EntryType entry) {

 return findListMember(entry, WAS_RESOURCE_ID);

 }

 public String getResourceType(EntryType entry) {

814 Administering WebSphere applications

return findListMember(entry, WAS_RESOURCE_TYPE);

 }

 /**

 * Extract the ERPs address

 */

 public String getResourceAddress(EntryType entry) {

 if (entry == null)

 return null;

 else

 return entry.getMemberServiceEPR().getAddress().getValue();

 }

 /**

 * EPRs cannot be looked up by their QName. This method does a linear search

 * of the EPR to find a particular reference parameter

 */

 private String findListMember(EntryType entry, QName name) {

 if (name == null || entry == null) return null;

 List<Object> res = entry.getMemberServiceEPR().getReferenceParameters()

 .getAny();

 for (Object ob : res) {

 Element e = (Element) ob;

 if (name.getLocalPart().equals(e.getNodeName()))

 return e.getTextContent();

 }

 return null;

 }

}

4. Create the WSDM monitor. The following example is used for polling a servlet for the number of

requests that the servlet it is responding to.

WSDM monitor

// Instantiate the client and instruct it to poll

// the server at localhost:9080

WsdmJaxWsClient wjc = new WsdmJaxWsClient(“localhost:9080”);

// Get a list of all available resources

List<EntryType> entries = wjc.getResources();

// Iterate through available resources until you find

// a servlet resource

EntryType servlet = null;

for (EntryType entry: entries){

 if ("servlet".equals(wjc.getResourceType(entry))){

 servlet = entry;

 System.out.println("URL " + wjc.getResourceAddress(entry));

 System.out.println("Type " + wjc.getResourceType(entry));

 System.out.println("MbeanID" + wjc.getResourceMBeanID(entry));

 System.out.println("ResourceID " + wjc.getResourceMRID(entry));

 break;

 }

}

// Request Concurrent Requests PMI statistics from this servlet

Object servletConcurrentRequests =

 wjc.getResourceProperty(servlet, J2EEConstants.CONCURRENT_REQUESTS_QNAME);

System.out.println(servletConcurrentRequests);

5. Obtain a list of available resources. The sample JAX-WS WSDM client provided in code example 1

shows a list of available resources. The list is filtered to obtain some resources and statistics from

these resource objects. In this step, the client is initialized for an application server that is installed on

a local machine and it is servicing HTTP requests on port 9080.

Initialize WSDM client

// Instantiate the client and instruct it to poll

// the server at localhost:9080

WsdmJaxWsClient wjc = new WsdmJaxWsClient(“localhost:9080”);

// Get a list of all available resources

List<EntryType> entries = wjc.getResources();

6. Filter the available resources. The list of resources returned by getResources call is lengthy. This call

returns a list of all resources that are currently available, not necessarily the particular resource type

that you might be interested in.

Filter resources

Chapter 5. Web services 815

// Iterate through available resources until you find a servlet resource

EntryType servlet = null;

for (EntryType entry: entries){

 if ("servlet".equals(wjc.getResourceType(entry))){

 servlet = entry;

 System.out.println("URL " + wjc.getResourceAddress(entry));

 System.out.println("Type " + wjc.getResourceType(entry));

 System.out.println("MbeanID" + wjc.getResourceMBeanID(entry));

 System.out.println("ResourceID " + wjc.getResourceMRID(entry));

 break;

 }

}

You might want to expand this example to find a particular resource instead of finding the first available

servlet. To complete this action, you need to do further filtering based on getResourceMBeanID. The

string representing the resource is similar to the following code example:

Sample resource MBean identifier string

WebSphere:WebModule=WSDMDemo.war,name=myServlet,process=server1,Application=wsdm-demo,platform=dynamicproxy,

J2EEApplication=wsdmdDemo,node=demoNode01,J2EEName=wsdm-demo#WSDMDemo.war#mySelvlet,j2eeType=Servlet,

J2EEServer=server1,Server=server1,version=6.1.0.7,type=Servlet,mbeanIdentifier=

wsdm-demo#WSDMDemo.war#myServlet,cell=demoCell01,spec=1.0

7. Poll resources for statistics. Finally, you can now request the resource property. A list of available

URLs for a given resource can be obtained from the WSDL file in Table 1. The following example is a

list of properties for a servlet:

Available properties for a servlet resource

<xsd:element name="ServletResourceProperties">

xsd:complexType>

 xsd:sequence>

 !-- WSDM MUWS Part 1 - Identity -->

 <xsd:element ref="muws1:ResourceId"></xsd:element>

 !-- WSDM MUWS Part 1 - ManageabilityCharacteristics -->

 <xsd:element ref="muws1:ManageabilityCapability" minOccurs="0" maxOccurs="unbounded"></xsd:element>

 !-- WSDM MUWS Part 2 - Description -->

 <xsd:element ref="muws2:Caption" minOccurs="0" maxOccurs="unbounded"></xsd:element>

 <xsd:element ref="muws2:Description" minOccurs="0" maxOccurs="unbounded"></xsd:element>

 <xsd:element ref="muws2:Version" minOccurs="0"></xsd:element>

 !-- WSDM MUWS Part 2 - Metrics -->

 <xsd:element ref="muws2:CurrentTime"></xsd:element>

 !-- J2EE Servlet -->

 <xsd:element ref="servlet:ConcurrentRequests"></xsd:element>

 <xsd:element ref="servlet:TotalRequests"></xsd:element>

 <xsd:element ref="servlet:NumberOfErrors"></xsd:element>

 <xsd:element ref="servlet:ResponseTime"></xsd:element>

 !-- J2EE ManagedObject -->

 <xsd:element ref="j2ee:ObjectName"></xsd:element>

 <xsd:element ref="j2ee:StateManageable"></xsd:element>

 <xsd:element ref="j2ee:EventProvider"></xsd:element>

 <xsd:element ref="j2ee:StatisticsProvider"></xsd:element>

 </xsd:sequence>

</xsd:complexType>

</xsd:element>

8. Obtain statistics. You can use the following code example to poll for the concurrent requests property.

Then, you can resolve the property to a QName and pass the property onto the client.

Obtain statistics

// Request Concurrent Requests PMI statistics from this servlet

Object servletConcurrentRequests =

 wjc.getResourceProperty(servlet, new QName(“http://www.ibm.com/xmlns/prod/websphere/management/j2ee/servlet”, “ConcurrentRequests”));

System.out.println(servletConcurrentRequests);

Results

You have created a custom WSDM monitor that you can use to manage and control resources.

816 Administering WebSphere applications

Use the code examples to help you in creating your custom monitor, including the SOAP conversation

code example.

In addition to these code examples, there is a built-in code sample in the product that you can use to

retrieve the statistics for a servlet resource. To execute this sample, run java –classpath

wsdm-demo.jar;<install_root>/runtimes/com.ibm.jaxws.thinclient_7.0.0.jar

samples.wsdm.servlet.WsdmDemo.

Example

SOAP conversation example

Requesting available resources

The following code example demonstrates how to request for all available resources.

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

 <soap:Header>

 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">http://test.ibm.com:8080/websphere-management/services/service-group</wsa:To>

 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">

 http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest</wsa:Action>

 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">uuid:2f1abf03-ef3e-0837-b8e6-d34dc8e352e2</wsa:MessageID>

 <wsa:From xmlns:wsa="http://www.w3.org/2005/08/addressing"><wsa:Address>

 http://www.w3.org/2005/08/addressing/role/anonymous</wsa:Address></wsa:From>

<muse-wsa:ResourceId xmlns:muse-wsa="http://ws.apache.org/muse/addressing" xmlns:wsa="http://www.w3.org/2005/08/addressing" wsa:IsReferenceParameter=

"true">MuseResource-1</muse-wsa:ResourceId>

</soap:Header>

 <soap:Body>

 <wsrf-rp:GetResourceProperty xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2" xmlns:wsrf-sg=

"http://docs.oasis-open.org/wsrf/sg-2">wsrf-sg:Entry</wsrf-rp:GetResourceProperty>

</soap:Body>

</soap:Envelope>

Available resources

This example is a response that has two available resources that are represented as wsrf-sg:Entry XML

elements.

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

xmlns:soapenc="http:www.w3.org/2003/05/soap-encoding"

xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <env:Header>

 <wsa:To>http://www.w3.org/2005/08/addressing/role/anonymous</wsa:To>

 <wsa:Action>http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyResponse</wsa:Action>

 <wsa:MessageID>uuid:4eda30ea-c8ca-2998-2c9f-e2519175a1aa</wsa:MessageID>

 <wsa:RelatesTo RelationshipType="wsa:Reply">uuid:2f1abf03-ef3e-0837-b8e6-d34dc8e352e2</wsa:RelatesTo>

 <wsa:From>

 <wsa:Address>http://test.ibm.com:8080/websphere-management/services/service-group</wsa:Address>

 <wsa:ReferenceParameters><muse-wsa:ResourceId xmlns:muse-wsa="http://ws.apache.org/muse/addressing" IsReferenceParameter="true">

 MuseResource-1</muse-wsa:ResourceId></was:From>

 <was:RelatesTo>uuid:2f1abf03-ef3e-0837-b8e6-d34dc8e352e2</was:RelatesTo>

</env:Header>

<env:Body>

 <wsrf-rp:GetResourcePropertyResponse xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"

 <wsrf-rp:Entry xmlns:wsrf-sg="http://docs.oasis-open.org/wsrf/sg-2"

 <wsrf-sg:ServiceGroupEntryEPR

 <wsa:Address> "http://test.ibm.com:8080/websphere-management/services/service-group-entry</wsa:Address>

 <wsa:ReferenceParameters><muse-wsa:ResourceId xmlns:muse-wsa="http://ws.apache.org/muse/addressing">MuseResource-103</muse-wsa:ResourceId>

 </wsa:ReferenceParameters>

 </wsrf-sg:ServiceGroupEntryEPR>

 <wsrf-sg:MemberServiceEPR>

 <wsa:Address>http://test.ibm.com:8080/websphere-management/services/ejb</wsa:Address>

 <wsa:ReferenceParameters>

 <was-wsdm:WAS_Resource_Type>

 <was-wsdm:WAS_Resource_ManagedNodeID xmlns:was-wsdm="http://ibm.com/2006/v1.3"

 <was-wsdm:WAS_Resource_Type xmlns:was-wsdm="http://ibm.com/2006/v1.3">ejb <was-wsdm:WAS_Resource_MbeanIdentifier

 xmlns:was-wsdm="http://ibm.com/2006/v1.3">

WebSphere:name=EjbClient,process=server1,Application=jms-client,platform=dynamicproxy,J2EEApplication=jms-client,node=

Node01,J2EEName=jms-client#jms-ejb-client.jar#EjbClient,j2eeType=StatelessSessionBean,J2EEServer=server1,Server=server1,version=

7.0.0.0,type=StatelessSessionBean,mbeanIdentifier=jms-client#jms-ejb-client.jar#EjbClient,EJBModule=jms-ejb-client.jar,cell=

Cell01,spec=1.0</was-wsdm:WAS_Resource_MbeanIdentifier>

 <was-wsdm:WAS_Resource_MRID xmlns:was-wsdm="http://ibm.com/2006/v1.3">

ejb:WebSphere:name=EjbClient,process=server1,Application=jms-client,platform=dynamicproxy,J2EEApplication=jms-client,node=

Node01,J2EEName=jms-client#jms-ejb-client.jar#EjbClient,j2eeType=StatelessSessionBean,J2EEServer=server1,Server=server1,version=

7.0.0.0,type=StatelessSessionBean,mbeanIdentifier=jms-client#jms-ejb-client.jar#EjbClient,EJBModule=jms-ejb-client.jar,cell=

Chapter 5. Web services 817

Cell01,spec=1.0</was-wsdm:WAS_Resource_MRID>

 </wsa:ReferenceParameters>

 </wsrf-sg:MemberServiceEPR>

 <wsrf-sg:Content/>

 </wsrf-sg:Entry>

 <wsrf-sg:Entry xmlns:wsrf-sg="http://docs.oasis-open.org/wsrf/sg-2">

 <wsrf-sg:ServiceGroupEntryEPR><wsa:Address>http://test.ibm.com:8080/websphere-management/services/service-group-entry</wsa:Address>

 <wsa:ReferenceParameters><muse-wsa:ResourceId xmlns:mus-wsa="http://ws.apache.org/muse/addressing"<MuseResource-97</muse-wsa:

ResourceId></wsa:ReferenceParameters>

 </wsrf-sg:ServiceGroupEntryEPR>

 <wsrf-sg:MemberServiceEPR>

 <wsa:Address>http://test.ibm.com:8080/websphere-management/services/datasource</wsa:Address>

 <wsa:ReferenceParameters>

 <was-wsdm:WAS_Resource_ManagedNodeID xmlns:was-wsdm="http://ibm.com/2006/v1.3"/>

 <was-wsdm:WAS_Resource_Type xmlns:was-wsdm="http://ibm.com/2006/v1.3">datasource</was-wsdm:WAS_Resource_Type>

 <was-wsdm:WAS_Resource_MbeanIdentifier xmlns:was-wsdm="http://ibm.com/2006/v1.3">WebSphere:name=Default Datasource,process=

server1,platform=dynamicproxy,node=Node01,JDBCProvider=Derby JDBC Provider,diagnosticProvider=true,j2eeType=JDBCDataSource,J2EEServer=

server1,Server=server1,version=7.0.0.0,type=DataSource,mbeanIdentifier=cells/Cell01/nodes/Node01/servers/server1/resources.xml#DataSource_1,

JDBCResource=Derby JDBC Provider,cell=Cell01,spec=1.0</was-wsdm:WAS_Resource_MbeanIdentifier>

 <was-wsdm:WAS_Resource_MRID xmlns:was-wsdm="http://ibm.com/2006/v1.3">datasource:WebSphere:name=Default Datasource,process=

server1,platform=dynamicproxy,node=Node01,JDBCProvider=Derby JDBC Provider,diagnosticProvider=true,j2eeType=JDBCDataSource,J2EEServer=

server1,Server=server1,version=7.0.0.0,type=DataSource,mbeanIdentifier=cells/Cell01/nodes/Node01/servers/server1/resources.xml#DataSource_1,

JDBCResource=Derby JDBC Provider,cell=Cell01,spec=1.0</was-wsdm:WAS_Resource_MRID>

 </wsa:ReferenceParameters>

 </wsrf-sg:MemberServiceEPR>

 <wsrf-sg:Content/>

 </wsrf-sg:Entry>

 </wsrf-rp:GetResourcePropertyResponse>

</env:Body>

</env:Envelope>

Request for concurrentRequests performance metrics from a servlet resource

This example shows how to request concurrentRequests metrics from a servlet resource. The resource

that is of interest here is specified as reference parameters in the SOAP header. These parameters

appear in bold font.

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

 <soap:Header>

 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">http://test.ibm.com:8080/websphere-management/services/servlet</wsa:To>

 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/

GetResourcePropertyRequest</wsa:Action>

 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">uuid:2737b4e1-31af-5b0d-cb6e-17e2c812ffbb</wsa:MessageID>

 <wsa:From xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <wsa:Address>http://www.w3.org/2005/08/addressing/role/anonymous</wsa:Address>

 </wsa:From>

 <wsa-wsdm:WAS_Resource_ManagedNodeID xmlns:wsa="http://www.w3.org/2005/08/addressing" wsa:IsReferenceParameter=

"true" xmlns:was-wsdm="http://ibm.com/2006/v1.3">

<was-wsdm:WAS_Resource_Type xmlns:wsa="http://www.w3.org/2005/08/addressing" wsa:IsReferenceParameter="true" xmlns:was-wsdm=

"http://ibm.com/2006/v1.3">

 servlet</was-wsdm:WAS_Resource_Type>

<was-wsdm:WAS_Resource_MbeanIdentifier xmlns:wsa="http://www.w3.org/2005/08/addressing" wsa:IsReferenceParameter="true"

 xmlns:was-wsdm="http://ibm.com/2006/v1.3">WebSphere:WebModule=WSDMUtil.war,name=ejb,process=server1,Application=

wsdm-util,platform=dynamicproxy,J2EEApplication=wsdm-util,node=Node01,J2EEName=wsdm-util#WSDMUtil.war#ejb,j2eeType=

Servlet,J2EEServer=server1,Server=server1,version=7.0.0.0,type=Servlet,mbeanIdentifier=wsdm-util#WSDMUtil.war#ejb,cell=

Cell01,spec=1.0</was-wsdm:WAS_Resource_MbeanIdentifier>

<was-wsdm:WAS_Resource_MRID xmlns:wsa="http://www.w3.org/2005/08/addressing" wsa:IsReferenceParameter="true" xmlns:was-wsdm=

"http://ibm.com/2006/v1.3">servlet:WebSphere:WebModule=WSDMUtil.war,name=ejb,process=server1,Application=wsdm-util,platform=

dynamicproxy,J2EEApplication=wsdm-util,node=Node01,J2EEName=wsdm-util#WSDMUtil.war#ejb,j2eeType=Servlet,J2EEServer=server1,Server=

server1,version=7.0.0.0,type=Servlet,mbeanIdentifier=wsdm-util#WSDMUtil.war#ejb,cell=Cell01,spec=1.0</was-wsdm:WAS_Resource_MRID>

 <soap:Body>

<wsrf-rp:GetResourceProperty xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2" xmlns:servlet=

"http://www.ibm.com/xmlns/prod/websphere/management/j2ee/servlet">servlet:ConcurrentRequests</wsrf-rp:GetResourceProperty>

 </soap:Body>

 </soap:Envelope>

Number of concurrentRequests response

This example is the server response. The exact resource is identified in SOAP header and the metric is

available in SOAP body.

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

xmlns:soapenc="http://www.w3.org/2003/05/soap-encoding"

xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:xsd="http://www.w3.org/20001/XMLSchema-instance">

<env:Header>

<wsa:To>http://www.w3.org/2005/08/addressing/role/anonymous</wsa:To>

<wsa:Action>http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyResponse</wsa:Action>

<wsa:MessageID>uuid:91400c29-8c50-9f62-7df2-1bb0212083f1</wsa:MessageID>

818 Administering WebSphere applications

<wsa:RelatesTo RelationshipType="wsa:Reply">uuid:2737b4e1-31af-5b0d-cb6e-17e2c812ffbb</wsa:RelatesTo>

<wsa:From>

<wsa:Address>http://test.ibm.com:8080/websphere-management/services/servlet</wsa:Address>

<wsa:ReferenceParameters>

<was-wsdm:WAS_Resource_ManagedNodID xmlns:was-wsdm="http://ibm.com/2006/v1.3" IsReferenceParameter="true"

<was-wsdm:WAS_Resource_Type xmlns:was-wsdm="http://ibm.com/2006/v1.3" IsReferenceParameter="true">servlet</was-wsdm:WAS_Resource_Type>

<was-wsdm:WAS_Resource_MbeanIdentifier xmlns:was-wsdm="http://ibm.com/2006/v1.3" IsReferenceParameter="true">

WebSphere:WebModule=WSDMUtil.war,name=ejb,process=server1,Application=wsdm-util,platform=dynamicproxy,J2EEApplication=wsdm-util,node=

Node01,J2EEName=wsdm-util#WSDMUtil.war#ejb,j2eeType=Servlet,J2EEServer=server1,Server=server1,version=7.0.0.0,type=

Servlet,mbeanIdentifier=wsdm-util#WSDMUtil.war#ejb,cell=Cell01,spec=1.0</was-wsdm:WAS_Resource_MbeanIdentifier>

<was-wsdm:WAS_Resource_MRID xmlns:was-wsdm="http://ibm.com/2006/v1.3" IsReferenceParameter="true">servlet:WebSphere:WebModule=

WSDMUtil.war,name=ejb,process=server1,Application=wsdm-util,platform=dynamicproxy,J2EEApplication=wsdm-util,node=Node01,J2EEName=

wsdm-util#WSDMUtil.war#ejb,j2eeType=Servlet,J2EEServer=server1,Server=server1,version=7.0.0.0,type=Servlet,mbeanIdentifier=

wsdm-util#WSDMUtil.war#ejb,cell=Cell01,spec=1.0</was-wsdm:WAS_Resource_MRID>

</wsa:ReferenceParameters>

</wsa:From>

<wsa:RelatesTo>uuid:2737b4e1-31af-5b0d-cb6e-17e2c812ffbb</wsa:RelatesTo>

</env:Header>

<env:Body>

<wsrf-rp:GetResourcePropertyResponse xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"

<servlet:ConcurrentRequests

xmlns:servlet="http://www.ibm.com/xmlns/prod/websphere/management/j2ee/servlet>11</servlet:ConcurrentRequests>

</wsrf-rp:GetResourcePropertyResponse>

</env:Body>

</env:Envelope>

Web Services Distributed Management

Web Services Distributed Management (WSDM) is an OASIS approved standard that supports managing

resources through a standardized Web service interface. Your environment, such as WebSphere

Application Server host or an operating system host that has an exposed resource as a Web service

within a single interface is used to manage and control resources. WSDM is a distributed management

model, but it does not replace any existing WebSphere Application Server administration models. WSDM

provides a new way to expose the internal product administration functions for a Web service interface.

The existing administration interfaces, such as managed bean (MBean), wsadmin, and Java Application

Programming Interface (API), are more language and platform specific. WSDM provides a common,

flexible infrastructure to manage the product resources by leveraging the Web services protocols.

WSDM defines two specifications: Management Using Web Services (MUWS) and Management of Web

Services (MOWS). MUWS defines how resources interact with the resources managed through a set of

accessible Web services interfaces. MOWS extends the MUWS concepts to define how a Web service

resource, itself, is managed. See Specifications and API documentation for MOWS and MUWS

specifications. In addition to the manageability capabilities defined in the MUWS specifications,

WebSphere Application Server WSDM also defines manageability capabilities unique to the product

environment.

There is a general pattern that managed resources use to expose their manageability services through

WSDM compliant Web services interfaces. First, you must create a model of the managed resource.

Typically the model of the resource is created using a modeling tool such as the Test and Performance

Tools Platform (TPTP), an eclipse plug-in tool; however, a simple text document is sufficient. Use the

modeling tool to develop the model of WebSphere Application Server managed resources. The following

graphic illustrates the process.

Chapter 5. Web services 819

Code artifacts are generated from the resource model. Generated artifacts for each resource model

include:

v A Web Services Description Language (WSDL) document that describes the Web service interface for

the management functions for that resource

v An implementation stub for the service implementation classes for that Web service

v A client proxy for the service that is used in a program that needs to invoke the management functions

of that resource

v A unit test code for invoking test cases that exercises the functions of that service

v Additional XML documents and schema that describe the properties, operations, and notifications

associated with the managed resource

The code generated from the resource model is essentially an empty shell of the management Web

service for the modeled resource. The next step in the process is to enter code that acts as an adapter

between the implementation stub for the service and the real resource management functions. In the case

of the WSDM support implementation, this adapter code contain calls to theWebSphere Application Server

AdminService APIs that expose normal product management functions. You must install the completed

service implementation in a hosting Web service environment. To install your WSDM application, see

Deploying and administering enterprise applications and follow the steps for installing enterprise

application files on an application server.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

Web Services Distributed Management resource management

Web Services Distributed Management (WSDM) is an OASIS approved standard that supports the

management of resources through a standardized Web service interface. WSDM delivers Web services

based interfaces to manage application server resources using a manageability endpoint.

The manageability endpoint contains manageability capabilities for the resources. A manageability

capability uniquely identifies and associates with a set of properties, operations, and events. A resource

that supports one or more manageability capabilities becomes a manageable resource. For example, a

Web service hosting run-time

Resource model

Implementation
stub

Adapter

Actual resource

Web Service Resource Interface
generates

invokes

Web service interface and implementation stub
for resource adapter are generated by tooling,
based on the resource model. They can also be
manually created.

The resource adapter maps between
the WSDM service implementation
stub and the real resource interface.
Typically manually coded.

Model of the resource,
either extracted from the
resource itself or manually
developed in the tooling.

The actual resource which can
expose manageability in a

variety of different programming
model interfaces.

WS-DM, WS-RF,
WS-A, WS-N

Figure 9. Generic WSDM Concept

820 Administering WebSphere applications

manageable resource is a server or an application resource that supports a capability, which includes stop,

start, and remove operations. To leverage the functions that a manageable resource provides, a

manageability consumer is used. Manageability consumer queries and discovers the available manageable

resources through the Web services endpoints. After the service is discovered, the manageability

consumer exchanges messages to gather property information, invoke operations or receive notifications.

The following graphics illustrates the relationships between the manageability consumer and manageable

resources linked by the Web service endpoints.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

WSDM manageability capabilities for WebSphere Application Server

resource types

A resource that supports one or more manageability capabilities is a manageable resource. Each resource

type that is exposed within the product supports a number of manageability capabilities.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

A manageable resource is a server or an application that supports a capability which includes stop, start,

and remove operations. A manageability capability includes some properties, operations, and notifications.

You can obtain and view performance data about the managed resources when you enable Performance

Monitoring Infrastructure (PMI) in your server environment.

Resource types

WSDM manageable resources, in general, are an aggregation of manageability capabilities. There are

manageability capabilities that are globally applicable to many resource types. State management fits into

this category. There are manageability capabilities that are unique to a single-managed resource, for

example the Java virtual machine (JVM) manageability capability only applies to JVM-managed resources.

The autonomic manager (AC), which can be any client with management capability interact with the

resources. Before the AC can interact with the resources, the AC needs to query what resources are

available in the application server via the service group. The service group is an aggregation of

WS-Resources within the same domain. The WebSphere Application Server WSDM service group

contains all of the resources. Each resource becomes a member in the service group. The AC can get a

Information,
event,

acknowledgement

Web service
endpoints

Request,
subscription,

control
Manageability

consumer
(A management

system, any Web service
application.)

Manageable
resources

(A server that can notify
when the server is stopped.)

(3)

(2)

Discovery

(1)

Figure 10. Relationship between the different parts of WSDM

Chapter 5. Web services 821

particular resources endpoint reference (EPR) from the service group based on the resource type or the

reference parameters. After the EPR is obtained, the AC can send the request to the resource. The

service group can be accessed using the following endpoint address: http://<hostname>:<port>/
websphere-management/services/service-group.

After the AC gets the resources EPR list from the service group, the AC can send requests to the resource

provider. Each resource endpoint is listed below. The associated Web Service Definition Language

(WSDL) can be obtained by attaching ?wsdl to the end of the endpoint address.

 Resource type Resource endpoint address

WebSphere Application

Server profile, also called

runtime configuration

instance or WebSphere

Application Server domain

http://<hostname>:<port>/websphere-management/services/webspheredomain

WebSphere Application

Server

http://<hostname>:<port>/websphere-management/services/applicationserver

WebSphere Application

Server cluster

http://<hostname>:<port>/websphere-management/services/webspherecluster

Java virtual machine http://<hostname>:<port>/websphere-management/services/jvm

Application http://<hostname>:<port>/websphere-management/services/application

WebSphere Application

Server deployed object

http://<hostname>:<port>/websphere-management/services/deployedobject

Servlet http://<hostname>:<port>/websphere-management/services/servlet

Enterprise JavaBeans http://<hostname>:<port>/websphere-management/services/ejb

Web services http://<hostname>:<port>/websphere-management/services/webservices

JAX-WS Web services http://<hostname>:<port>/websphere-management/services/jaxwswebservices

JAX-RPC Web services http://<hostname>:<port>/websphere-management/services/jaxrpcwebservices

Data source http://<hostname>:<port>/websphere-management/services/datasource

Manageability capabilities of the resource types

Each resource type that is exposed in the product supports a number of manageability capabilities. These

resources are defined by the WSDM specification, AC touchpoint, and the product’s built-in management.

A touchpoint is a combination of port types and operations defined in WSDL that exposes the

manageability interface for a managed resource in a way that complies with different specifications for

Web services. Each manageability capability includes a number of properties, operations, and notifications.

The following table lists the manageability capabilities that each resource aggregates. For information

about an Application Programming Interface (API) or a specification that is listed with a manageability

capability, see Specifications and API documentation.

822 Administering WebSphere applications

Resource types and manageability capabilities

 Resource type Manageability capabilities Specification

WebSphere Application Server

domain

v J2EEDomain

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v Configuration

v ApplicationManagement

v ConfigChangeNotifier

v NotificationProducer

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v MUWS – WSDM

v WebSphere Application Server

unique

v WebSphere Application Server

unique

v WSBN - WS-N

WebSphere Application Server v J2EEServer

v J2EEManagedObject

v Identity

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v NotificationProducer

v ApplicationServer

v StateManageable

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WSBN – WS-N

v WebSphere Application Server

unique

v WebSphere Application Server

unique

WebSphere Application Server cluster v Identity

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v ClusterManagement

v MUWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server

unique

Java virtual machine v JVM

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

Chapter 5. Web services 823

Resource type Manageability capabilities Specification

Application v J2EEApplication

v J2EEDeployedObject

v J2EEManagedObject

v Identity

v State

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v Application

v StateManageable

v JSR 77 – J2EE

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS - WSDM

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server

unique

v WebSphere Application Server

unique

Servlet v Servlet

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

Enterprise JavaBeans v EJB

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

Web service v Metrics

v J2EEManagedObject

v Identity

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v WebService

v MOWS – WSDM

v JSR 77 – J2EE

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server

unique

824 Administering WebSphere applications

Resource type Manageability capabilities Specification

JAXWS Web services v J2EEManagedObject

v Identification

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v WebService

v Manageability references

v OperationalStatus

v Operational state

v Operation operational status

v Request processing state

v Identity

v JSR 77 – J2EE

v MOWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server

unique

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MUWS – WSDM

JAXRPC Web services v Metrics

v J2EEManagedObject

v Identification

v Metrics

v State

v ManageabilityCharacteristics

v Description

v ResourceType

v WebService

v Manageability references

v OperationalStatus

v Operational state

v Operation operational status

v Request processing state

v Identity

v MOWS – WSDM

v JSR 77 – J2EE

v MOWS – WSDM

v MUWS – WSDM

v MUWS – WSDM

v MUWS

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server

unique

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MOWS – WSDM

v MUWS – WSDM

Data source v JDBCDatasource

v J2EEResource

v J2EEManagedObject

v Identity

v Metrics

v ManageabilityCharacteristics

v Description

v ResourceType

v DataSource

v JSR 77 – J2EE

v JSR 77 – J2EE

v JSR 77 – J2EE

v MUWS - WSDM

v MUWS - WSDM

v MUWS – WSDM

v MUWS – WSDM

v AC touchpoint

v WebSphere Application Server

unique

Specific application server manageability capabilities

The following table lists the attributes and operations for the product’s manageability capabilities.

Chapter 5. Web services 825

Manageability Capabilities Attributes Operations

J2EEDomain None v String getAttribute(String, String)

v String[] queryNames(String

queryString)

J2EEManagedObject v objectName

v stateMangeable

v eventProvider

v statisticsProvider

None

ConfigChangeNotifier None None (however, it has notification of

ConfigChange)

ApplicationManagement None v String installApplication(String,

String, HashMap)

v String uninstallApplication(String)

v String updateApplication(String,

String, HashMap)

v String, HashMap

v EndpointReference

listApplications(String

applicationName)

J2EEServer v serverVendor

v serverVersion

v DepolyedObjects

v javaVMs

None

StateManageable v state

v startTime

v stop()

v start()

v startRecursive()

ApplicationServer v name

v versionsForAllEFixes

v versionsForAllExtensions

v VersionsForAllPTFs

v shortName

v threadMonitorInterval

v threadMonitorthreshold

v threadMonitorAdjustmentThreshold

v ProcessId

v cellName

v nodeName

v processType

v platformName

v platformVersion

v stopImmediate()

v restart()

v String getproductVersion(String)

826 Administering WebSphere applications

Manageability Capabilities Attributes Operations

ClusterManagement v clusterName

v preferLocal

v wlcId

v state

v backupName

v backupBootstrapHost

v backupBootstrapPort

v start()

v stop()

v stopImmediate()

v rippleStarT()

v exportRouteTable()

v dumpClusterInfo()

v boolean getAvailable(String, String)

v boolean setAvailable(String, String)

v boolean setUnavailable(String,

String)

Java virtual machine v javaVersion

v javaVendor

v node

v stats

v freeMemory

v usedMemory

v heapSize

v upTime

v GCCount

v GCTime

v GCInternalTime

v waitsForLockCount

v waitForLockTime

v objectAllocatedCount

v objectMovedCount

v objectFreedCount

v threadStartedCount

v threadEndedCount

None

J2EEDeployedObject v deploymentDescriptor

v server

None

J2EE Application module None

Application implementationVersion None

Servlet v concurrentRequest

v responseTime

v numErrors

v totalRequests

None

EJB v createCount

v loadCount

v storeCount

v readyCount

v liveCount

v pooledCount

v waitTime

None

Chapter 5. Web services 827

Manageability Capabilities Attributes Operations

WebService v payloadSize

v replyPayloadSize

v requestPayloadSize

v requestResponseTime

v replyResponseTime

v responseTime

v processRequestCount

v dispatchedRequestCount

v receivedRequestCount

v loadedWebServiceCount

None

DataSource v jdbcDriver

v connectionFactoryType

v dataSourceName

v dataStoreHelperClass

v loginTimeout

v statementCacheSize

v jtaEnabled

v name

v jndiName

v testConnection

v testConnectionInterval

v stuckTimerTime

v stuckTime

v stuckThreshold

v surgeThrehold

v surgeCreationInterval

v connectionTimeout

v maxConnections

v minConnctions

v purgePolicy

v reapTime

v unusedTimeout

v agedTimeout

v freePoolDistributionTableSize

v freePoolPartions

v sharedPoolPartitions

v String showPoolContents()

v void purgePoolContents()

v void pause()

v void resume()

v String getStatus()

Web Services Distributed Management support in the application

server

The Web Services Distributed Management (WSDM) support for a Web service in WebSphere Application

Server runs within an application server that has exposed management functions.

In the application server implementation of WSDM, a WSDM application is packaged as a Java Platform,

Enterprise Edition (Java EE) Enterprise archive (EAR) file. The EAR file is deployed as an application

server system application.

828 Administering WebSphere applications

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

WSDM support for the product consists of two parts:

v WSDM runtime environment and support

v WSDM resource model and service implementation

WSDM runtime environment and support

The WSDM runtime environment provides fundamental capabilities for the manageable resources. The

WSDM runtime environment interacts with the underlying Web services platform and the WSDM resources

to service the requests and responses. There are multiple specifications that the WSDM runtime

environment uses in order to provide the WSDM functions, namely WS-Addressing, WS-ResourceFramework,

and WS-Notification. For each request, the WSDM runtime environment routes the request to the

appropriate resource service implementation based on the endpoint reference, (EPR). The EPR is defined

by the WS-Addressing specification. Each EPR contains target address, runtime specific data and reference

properties to uniquely identify an instance of a WSDM resource. After the resource service implementation

returns a response, the WSDM runtime environment wraps the response into an appropriate SOAP

message format specified in the Management Using Web Services (MUWS) specification and returns the

response back to the requester. The application server leverages Apache Muse 2.0 to provide the runtime

support for WSDM. The Apache MUSE 2.0 provides both the development tool and the WSDM runtime

environment.

WSDM resource model and service implementation

The WSDM resource model for the application server identifies the elements of the product that are

managed resources and further defines the specific properties, operations, and notifications that are

managed resources support. The resource model defines the interfaces to interact with the resources and

administrative functions in the product. The resource model includes appropriate capabilities defined in the

two WSDM specifications, Management Using Web Services (MUWS) and Management of Web Services

(MOWS). What this means is that the implementation is a mapping of the WSDM specification interfaces

onto the product administration and programming interfaces. The implementation does not introduce new

functions into the product, but rather, an alternative interface for accessing existing administration and

programming functions in the product. In addition, the resource model defines specific capabilities to

provide additional manageability functions. Each of the capabilities defines a set of properties, operations,

and events for managed resources in an autonomically managed system. Each resource is associated

with a Web Services Description Language (WSDL) file that contains the definition of its manageability

capabilities.

Security

The implementation is attached to the WSSecurity default policy set and runs the administrative operations

from the client user identity. This user identity must have privileges to perform any administrative action. It

is the role of the autonomic computing (AC) manager that makes requests for the WSDM implementation

to ensure that the user of that manager has appropriate authorization to perform administration and any

other functions exposed by the AC manager.

The benefit of WSDM support in the application server is that the product can participate in multiple

product management solutions in a standard way. By exposing the product management functions through

a standard Web services interoperable interface, you can combine the application server with large

management systems based on the WSDM specification.

Chapter 5. Web services 829

Web Services Distributed Management in a standalone application

server instance

In a standalone application server environment, there is one Web Services Distributed Management

(WSDM) application deployed for each application server instance.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

The WSDM application acts as an administrative client to the management code running inside the single

Java virtual machine for that instance. Figure 1 illustrates an Autonomic Computing Manager (ACM)

interacting with two application server instances, each with its own WebSphere Application Server WSDM

application exposing the manageability for that individual instance.

Web Services Distributed Management in a Network Deployment cell

You can use Web Services Distributed Management (WSDM) to manage application server instances

within a Network Deployment cell. The administrative support and visibility for WSDM in a cell is obtained

through interaction with each WSDM application deployed on the application server.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

In the multinode Network Deployment environment, the management code runs across a distributed

network of Java virtual machines with a central access point as the deployment manager process for the

entire network or cell. Several different application server Java virtual machines might be managed within

a cell. You can manage an application server Java virtual machines within a cell through the WSDM

application installed on deployment manager. The WSDM application acts as an administrative client to the

managed application server. Figure 1 illustrates this environment with an Autonomic Computing Manager

interacting with the single application server implementation of WSDM to expose the manageability of that

application server. You can build a federated deployment manager cell from individual application server

instances by running the addNode utility program to add the application server instances to the centrally

Autonomic Computing
Manager

WebSphere WSDM
Application

WebSphere WSDM
Application

Java virtual machine

Administrative
logic

Java virtual machine

Administrative
logic

Administrative
requests

Administrative
requests

WebSphere Application Server
instance A

WebSphere Application Server
instance B

Figure 11. WSDM application in a stand-alone server instance

830 Administering WebSphere applications

managed cell. After a node is added to the cell, the manager can still manage each application server

within the cell through the installed WSDM application on the deployment manager.

Web Services Distributed Management in an administrative agent

environment

You can use Web Services Distributed Management (WSDM) to manage application server profiles in an

administrative agent (AdminAgent) environment.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

You can manage multiple base application servers within profiles using the AdminAgent. You can also use

the Web Services Distributed Management (WSDM) to manage each profile within the AdminAgent.

WSDM is deployed inside the AdminAgent as a system application. Each profile is represented as a

domain resource within the product. You can get and manage the resources within a profile through the

product’s domain resource. Figure 1 illustrates the AdminAgent topology.

Notifications from the application server Web Services Distributed

Management resources

Use this topic to learn about application server Web Services Distributed Management (WSDM) resources

and their life cycle events.

Note: WSDM is a system application and it is disabled by default when the product is installed. You must

first enable WSDM before you can use it to manage the product resources. Use scripting to enable

WSDM.

There are different life cycle events that can occur for any resource. The notifications associated with

these lifecycle events are resource definition events and resource state events. Resource definition events

are:

v Created

v Deleted

v Changed

Resource state events are:

v Started

v Stopped

v Suspended

The following resources are discussed in detail. You can review WSDM manageability capabilities for

application server resource types for information about each resource endpoint address and manageability

capabilities.

Application server

Figure 12. WSDM application in a Network Deployment cell

Figure 13. WSDM application in an AdminAgent environment

Chapter 5. Web services 831

The application server instances support definitional notifications. Whenever a resource definition event

occurs, the configuration of an application server is created, modified, or deleted and a notification is

generated by the WebSphere Application Server domain. The notification includes the configuration

documents that have been changed.

Application server installation

The product installation is performed and managed by the underlying operating system. There is no

runtime entity that represents the product installation. There are no life cycle notifications currently planned

for events related to the product installation. There are no state event notifications associated with the

lifecycle of the overall product installation.

Application server domain: profile or runtime configuration instance

There is an administrative agent process that is created as part of a WebSphere Application Server profile.

This administrative agent process, once created, becomes available to emit life cycle notifications for the

profile. Since any configuration modification might be considered a change to the profile, there is no

generic profile changed notification. Instead, there are specific notifications for some configuration

changes. In addition, there is no state change notification for profiles because a profile does not actually

run, it simply exists or does not exist.

Hosted applications

Applications that are installed into the product support both definitional and operational notifications.

Whenever an application is installed, a notification is produced to indicate that an instance of that

application managed resource has been created. A notification is generated each time the application is

started, stopped, or updated. When an application is uninstalled, the resource destroyed notification is

produced.

Application server deployed object

Individual deployed modules have independent life cycles. There are create, modify, delete, start, and stop

notifications for individual deployed objects in the product.

Web services

Even though Web services are not robust applications, there is a need to understand the life cycle for

these essential deployed objects. Notifications are produced in accordance to the MOWS specification

such as when a Web service is installed, modified, started, stopped or uninstalled.

Managing policy sets using the administrative console

You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

Before you begin

Before creating policy sets, first identify the security and other requirements of the Web service.

Note: You can only use policy sets with JAX-WS applications that run on the Axis2 Web service engine.

You cannot use policy sets for JAX-RPC applications.

832 Administering WebSphere applications

About this task

You can use the administrative console to view and manage policy sets. From the administrative console,

click Services > Policy sets > Application policy sets or Services > Policy sets > System policy sets.

The Application policy sets collection displays a listing of the custom (if you have created custom policy

sets) and default policy sets. Use the Application or System policy sets collection page to create, copy,

delete, export, and import policy sets.

The following policy sets are ready for you to use as is.

v LTPA WSSecurity Default

v Kerberos V5 HTTPS default

v SSL WSTransaction

v Username SecureConversation

v Username WSSecurity default

v WS-Addressing default

v WSHTTPS default

v WS-I RSP ND

v WS-ReliableMessaging persistent

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

v “Viewing policy sets using the administrative console” on page 834.

This topic describes the process of viewing and evaluating policy sets.

v “Creating policy sets using the administrative console” on page 835.

This topic describes two ways to create policy sets: creating new policy sets or copying and renaming

policy set templates.

v “Modifying policy sets using the administrative console” on page 849.

This topic describes how to edit custom policy sets you have created.

v “Importing policy sets using the administrative console” on page 845.

This topic describes how to import policy sets from the default repository or from a selected location.

v “Exporting policy sets using the administrative console” on page 982.

This topic describes how to export policy sets.

v “Deleting policy sets using the administrative console” on page 851.

This topic describes how to delete custom policy sets. You can delete policy set templates and re-import

them if needed.

v “Managing policies in a policy set using the administrative console” on page 931

This topic describes how you can define policies with policy sets to secure messages.

v “Defining and managing policy set bindings” on page 853

This topic describes configuring custom binding configurations.

Results

Using these tasks, you can determine how to create a new policy set and verify whether you can reuse an

existing policy set. You can configure a policy set, and define policies for that policy set.

Chapter 5. Web services 833

What to do next

Depending on how you are using policy sets, you might want to revisit some of the tasks listed in this topic

to tweak the configuration for your policy set. You can also proceed to configure bindings for your policy

set. See Defining binding information for policy sets.

Viewing policy sets using the administrative console

You can use the administrative console to view lists of policy sets. Policy sets can either be default policy

sets that you cannot edit or custom policy sets that you have created and can edit. You can use policy

sets, or assertions that define services, to simplify your Web services configuration because policy sets

group security and other Web services settings into reusable units.

Before you begin

If you are creating a custom policy set by copying an existing default policy set, you might want to view

the existing policy sets to choose a policy set with properties similar to the one you are planning to create.

About this task

You can view a list of policy sets to decide which policy sets can be reused or copied, modified and

reused.

1. To view policy sets from the administrative console, click Services > Policy sets > Application policy

sets or Services > Policy sets > System policy sets.

2. Set the number of policy set rows that you want to view at a time using the Preferences settings. The

default value is 20. The Editable column on the table in this view shows which policy sets you can edit.

You can only edit the custom policy sets that you create. You cannot edit the provided default policy

sets.

3. To view the details for any of the policy sets, click the name of the policy set in the Name column of

the table. The Policy set settings page displays details about the selected policy set. If the policy set is

a custom policy set you can edit the fields on the page. If the policy set is a provided default, then you

can copy and reuse the policy set. You cannot edit the fields otherwise.

Results

After you have viewed the available policy sets and their settings, you can then decide if you want to

create a new policy set, copy an existing policy set that you can rename, or use one of the existing policy

sets that meets your needs.

834 Administering WebSphere applications

Related tasks

“Creating policy sets using the administrative console”
You can use the administrative console to either create a policy set by specifying all the necessary

information or by copying an existing policy set that you rename. You can use policy sets, or assertions

that define services, to simplify your Web services configuration because policy sets group security and

other Web services settings into reusable units.

“Modifying policy sets using the administrative console” on page 849
You can use the administrative console to modify existing custom policy sets that you have created. If you

have copied an existing default policy set or created a policy set yourself, you can always go back and

make changes to them to make them better suit the changing needs of your business.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Creating policy sets using the administrative console

You can use the administrative console to either create a policy set by specifying all the necessary

information or by copying an existing policy set that you rename. You can use policy sets, or assertions

that define services, to simplify your Web services configuration because policy sets group security and

other Web services settings into reusable units.

Before you begin

To create a new policy set, you can either specify the information to create a new policy set or you can

copy and rename an existing policy set. Using either method, you need basic information about the policy

set that you want to create, such as the name, description, policies to include, policy details, attachments,

and binding configurations. If you are creating a policy set by copying an existing policy set, then you

should also view the existing policy sets to choose one with properties that are most similar to the one you

plan to create.

About this task

Whether you choose to create a new policy set or copy and rename an existing one, start from the

Applications policy sets collection in the administrative console.

1. From the administrative console, click Services > Policy sets > Application policy sets or Services

> Policy sets > System policy sets.

2. If the policy set you are creating is:

v a new policy set, then click New.

v an existing policy set to be copied and renamed, click the Select box beside the name of the policy

set to be copied in theName column and click Copy.

Using either method, this action opens the Policy set settings view to specify the required information

about the policy set being created or copied.

3. Enter the name of the policy set that you want to create or copy in the Name field.

4. Enter a brief description of the policy set in the Description field. This is the description that displays

in the Application policy sets or the System policy set collection, so it must be meaningful to you and

other potential users of this policy set.

Chapter 5. Web services 835

5. Optional: If you created a new policy set, you do not have any policies to edit until you add them to the

policy set. The policy set is initially empty.

Results

You have provided the basic information to create a policy set.

Example

After you have looked at your Web services, you might decide that the WS-I RSP default policy set most

closely meets your needs. You would go to the administrative console and click Services > Policy sets >

Application policy sets to access the Application policy sets collection. Locate the WS-I RSP default in

the Name column of the table and click the box beside it (in the Select column). Click Copy. This opens

the Policy set settings window. You might want to name your policy set by your company or division so

you could provide a name like ABC WS-I RSP in the Name field. Because you know others in your

organization might access and use it, you’ve chosen a name that is meaningful to those people too. You

want to be sure everyone knows exactly what this copy of the WS-I RSP policy is used for, so you add a

description in the Description field describing it. Now you want to customize the policy set so you edit the

policy information by clicking the name of a policy to edit it.

When you identify the requirements of your web service, you might decide that none of the default policy

sets meet your needs closely enough to use them as a template so you might decide to create your own

policy set. You would first create the policy set with the name you choose to give it. As if you were reusing

an existing template, you would go to the administrative console and click Services > Policy sets >

Application policy sets and click New. The Policy set settings window opens but note that the Policy set

name field is blank and there are not yet any associated policies in the table. Enter the name and add any

policies necessary.

When you add policies to a policy set, the policies are set to their default values. You can then edit the

policies to modify any attribute values that need to be changed and save the settings.

What to do next

If you are creating a new policy set without copying an existing policy set, you need to specify the policy

information. If you are copying an existing policy set, you can either accept the default policies associated

with the policy set or you can change the policies.

836 Administering WebSphere applications

Related concepts

Web Services Addressing support
The Web Services Addressing (WS-Addressing) support in this product provides the environment for Web

services that use the Worldwide Web Consortium (W3C) WS-Addressing specifications. This family of

specifications provide transport-neutral mechanisms to address Web services and to facilitate end-to-end

addressing.

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

“Web services policies” on page 981
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

Related tasks

“Modifying policy sets using the administrative console” on page 849
You can use the administrative console to modify existing custom policy sets that you have created. If you

have copied an existing default policy set or created a policy set yourself, you can always go back and

make changes to them to make them better suit the changing needs of your business.

“Deleting policy sets using the administrative console” on page 851
You can use the administrative console to delete the default policy sets or the application specific policy

sets that you have created.

“Managing policies in a policy set using the administrative console” on page 931
When working with policy sets in the administrative console, you can customize the included policies to

ensure message security. You can enable, disable, customize, add, or delete policies from a policy set.

With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

“Creating policy sets using the wsadmin tool” on page 522
Create policy sets to centrally manage policies that are customized for your Web services. Use the

wsadmin tool, which supports the Jython and Jacl scripting languages, to create new policy sets, copy

existing policy sets, or import a policy set configuration. You can also query for an existing policy set and

respective attributes.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Chapter 5. Web services 837

WS-I RSP default policy sets

The Reliable Asynchronous Message Profile (WS-I RSP) default policy sets are based on the Reliable

Asynchronous Message Profile specification. The WS-I RSP default policy sets include the WS-I RSP

default policy set, the Lightweight Third-Party Authentication (LTPA) WS-I RSP default policy set and the

Username WS-I RSP default policy set. You can use these policy sets to simplify your Web services

configuration.

The WS-I RSP default policy sets are composed of a set of policies to provide reliable and secure Web

services. The WS-I RSP default policy sets use the WS-Addressing, WS-ReliableMessaging, and

WS-Security specifications. Use the WS-I RSP default policy set, the LTPA WS-I RSP default policy set, or

the Username WS-Security WS-I RSP default policy set as provided with the application server. To

customize the policy sets, you must first copy the policy set, and then configure custom policy settings and

bindings to meet your needs.

The WS-I RSP default policy sets include the following policies:

WS-Addressing policy

You can use the WS-Addressing policy to enable the addressing capability of the WS-Addressing

specification.

WS-ReliableMessaging policy

You can use the WS-ReliableMessaging policy to specify the quality of service for reliable delivery.

WS-Security policy

The WS-Security policy in the WS-I RSP default policy set provides the following security:

v Message integrity through digital signature that includes signing the body, time stamp,

WS-Addressing headers and WS-ReliableMessaging headers using the

WS-SecureConversation and WS-Security specifications.

v Confidentiality through encryption that includes encrypting the body, signature elements, using

the WS-SecureConversation and WS-Security specifications.

v Traditional RSA cryptography is used to secure a request to a Trust Server to obtain a Secure

Context Token (SCT). Thereafter, the conversation is secured using symmetric keys derived

from the SCT.

The application server provides additional policy sets that you can use or customize. To use the following

default policy sets, you must import the policy sets from the default repository. Read about importing policy

sets using the administrative console for more information.

The following WS-I RSP default policy sets exist:

WS-I RSP default

This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging.

v Message integrity through digital signature that includes signing the body, time stamp,

WS-Addressing headers and WS-ReliableMessaging headers using the

WS-SecureConversation and WS-Security specifications.

v Confidentiality through encryption that includes encrypting the body, signature elements, using

the WS-SecureConversation and WS-Security specifications.

LTPA WS-I RSP default

This policy set provides the WS-I RSP default policy set and adds a Lightweight Third Party

Authentication (LTPA) token included in the request message to authenticate the client to the

service.

838 Administering WebSphere applications

Username WS-I RSP default

This policy set provides the WS-I RSP default policy set and adds a username token included in

the request message to authenticate the client to the service. The username token is encrypted in

the request.

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Related tasks

“Importing policy sets using the administrative console” on page 845
You can import predefined policy sets or import policy sets from a selected location using the

administrative console.

SecureConversation default policy sets

The SecureConversation default policy sets are based on the Web Services Secure Conversation

Language (SecureConversation) standard that establishes a secure context, based on shared keys for the

client and server to use for a series of messages. This standard provides a framework to define how to

secure the message exchange across organizations. The SecureConversation default policy sets include

the SecureConversation policy set, the Lightweight Third-Party Authentication (LTPA) SecureConversation

policy set, and the Username SecureConversation policy set.

The SecureConversation default policy sets are based on the WS-SecureConversation, the WS-Security,

and the WS-Addressing specifications. Use the SecureConversation policy set, the LTPA

SecureConversation policy set, or the Username SecureConversation policy set as provided with the

application server. To customize the policy sets, you must first copy the policy set, and then configure

custom policy settings and bindings to meet your needs.

The WS-SecureConversation specification alone does not provide a complete security solution. The

WS-SecureConversation is built on the WS-Security and WS-Trust specifications to provide secure

communication across one or more messages. Specifically, this specification defines mechanisms for

establishing and sharing security contexts, and deriving keys from established security contexts or any

shared secret.

WS-Security focuses on the message authentication model but not in a security context. The

WS-SecureConversation specification defines mechanisms for establishing and sharing security contexts,

and deriving keys from security contexts, to enable a secure conversation. By using the SOAP extensibility

model, modular SOAP-based specifications are designed to be composed with each other to provide a rich

messaging environment.

The following SecureConversation default policy sets exist:

SecureConversation

This policy set provides:

v Message integrity by digital signature that includes signing the body, timestamp, and

WS-Addressing headers using WS-SecureConversation and WS-Security specifications.

v Message confidentiality by encryption that includes encrypting the body, signature and signature

confirmation elements, using WS-SecureConversation and WS-Security specifications.

LTPA SecureConversation

This policy set provides the SecureConversation policy set and adds a Lightweight Third Party

Authentication (LTPA) token included in the request message to authenticate the client to the

service.

Chapter 5. Web services 839

Username SecureConversation

This policy set provides the SecureConversation policy set and adds a username token included in

the request message to authenticate the client to the service. The username token is encrypted in

the request

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

“WS-I RSP default policy sets” on page 838
The Reliable Asynchronous Message Profile (WS-I RSP) default policy sets are based on the Reliable

Asynchronous Message Profile specification. The WS-I RSP default policy sets include the WS-I RSP

default policy set, the Lightweight Third-Party Authentication (LTPA) WS-I RSP default policy set and the

Username WS-I RSP default policy set. You can use these policy sets to simplify your Web services

configuration.

WS-ReliableMessaging default policy sets

The WS-ReliableMessaging default policy sets are pre-configured to provide reliable message exchange

between Web services. Two of these policy sets (WS-I RSP and WS-I RSP ND) are immediately available,

and the rest are readily available for import from a default repository.

With WS-ReliableMessaging, you can make your SOAP over HTTP-based Web services reliable without

writing custom code. You can use the provided non-editable default policy sets without change, or you can

create customized copies of them.

All the default policy sets that include the WS-ReliableMessaging policy also include the WS-Addressing

policy. The WS-ReliableMessaging policy provides the ability to deliver a message reliably to its intended

receiver. The WS-Addressing policy provides a transport-neutral way to uniformly address Web services

and messages, and WS-ReliableMessaging uses WS-Addressing to provide asynchronous request and

reply capabilities.

Note: WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If you use

a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and the

WS-Addressing policy is configured as optional, then WebSphere Application Server overrides the

WS-Addressing setting and automatically enables WS-Addressing.

The following default policy sets that include the WS-ReliableMessaging policy are immediately available,

as described in “Viewing policy sets using the administrative console” on page 834:

WS-I RSP

This policy set enables WS-ReliableMessaging Version 1.1 and uses the minimum quality of

service, unmanaged non-persistent. This quality of service requires minimal configuration.

However it is non-transactional and, although it allows for the resending of messages that are lost

in the network, if a server becomes unavailable you will lose messages. This quality of service is

for single server only and does not work in a cluster. In-order delivery is set to “false”, so

messages are not necessarily delivered in the order in which they were sent. Message integrity is

provided by digitally signing the body, the time stamp, and the WS-Addressing headers. Message

confidentiality is provided by encrypting the body and the signature. This policy set follows the

WS-SecureConversation and WS-Security specifications.

WS-I RSP ND

This is the network deployment version of the WS-I RSP policy set. This policy set provides the

WS-I RSP default policy set and adds a managed non-persistent quality of service. This

in-memory quality of service option uses a messaging engine to manage the sequence state, and

messages are written to disk if memory is low. This quality of service allows for the re-sending of

840 Administering WebSphere applications

messages that are lost in the network, and can also recover from server failure. However, state is

discarded after a messaging engine restart so in this case you will lose messages. This option

supports clusters as well as single servers.

The following additional default policy sets that include the WS-ReliableMessaging policy are readily

available for import, as described in “Importing policy sets using the administrative console” on page 845:

LTPA WS-I RSP

This policy set provides the WS-I RSP default policy set and adds a Lightweight Third Party

Authentication (LTPA) token included in the request message to authenticate the client to the

service.

Username WS-I RSP

This policy set provides the WS-I RSP default policy set and adds a username token included in

the request message to authenticate the client to the service. The username token is encrypted in

the request.

WSReliableMessaging 1_0

This policy set enables both WS-ReliableMessaging Version 1.0 and WS-Addressing and uses the

minimum quality of service, unmanaged non-persistent. This quality of service requires minimal

configuration. However it is non-transactional and, although it allows for the resending of

messages that are lost in the network, if a server becomes unavailable you will lose messages.

This quality of service is for single server only and does not work in a cluster. In-order delivery is

set to “false”, so messages are not necessarily delivered in the order in which they were sent.

 You can use this policy set with .NET-based Web services.

WSReliableMessaging default

This policy set enables both WS-ReliableMessaging Version 1.1 and WS-Addressing and uses the

minimum quality of service, unmanaged non-persistent. This quality of service requires minimal

configuration. However it is non-transactional and, although it allows for the resending of

messages that are lost in the network, if a server becomes unavailable you will lose messages.

This quality of service is for single server only and does not work in a cluster. In-order delivery is

set to “false”, so messages are not necessarily delivered in the order in which they were sent.

WSReliableMessaging persistent

This policy set enables both WS-ReliableMessaging and WS-Addressing and uses the maximum

quality of service, managed persistent. This quality of service supports asynchronous Web service

invocations and uses a service integration messaging engine and message store to manage the

sequence state. Messages are processed within transactions, are persisted at the Web service

requester server and at the Web service provider server, and are recoverable in the event of

server failure. In-order delivery is set to “false”, so messages are not necessarily delivered in the

order in which they were sent.

 Because this policy set specifies managed persistent quality of service, you need to define

bindings to the service integration bus and messaging engine that you want to use to manage the

WS-ReliableMessaging state. For more information, see “Attaching and binding a

WS-ReliableMessaging policy set to a Web service application using the administrative console”

on page 681 or using the wsadmin tool.

Chapter 5. Web services 841

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

“WS-I RSP default policy sets” on page 838
The Reliable Asynchronous Message Profile (WS-I RSP) default policy sets are based on the Reliable

Asynchronous Message Profile specification. The WS-I RSP default policy sets include the WS-I RSP

default policy set, the Lightweight Third-Party Authentication (LTPA) WS-I RSP default policy set and the

Username WS-I RSP default policy set. You can use these policy sets to simplify your Web services

configuration.

Related tasks

“Adding assured delivery to Web services through WS-ReliableMessaging” on page 657
WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between

two endpoints. With WS-ReliableMessaging, you can make your SOAP over HTTP-based Web services

reliable without having to write custom code. You can get different qualities of service with

WS-ReliableMessaging. These range from protecting against loss of messages across a network, through

to protecting against a server becoming unavailable.

“Learning about WS-ReliableMessaging” on page 658
WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between

two endpoints. Use these topics to learn more about WS-ReliableMessaging.

WSAddressing default policy set

The WSAddressing default policy set provides a transport-neutral way to uniformly address Web services

and messages.

The WSAddressing default policy set is based on the WS-Addressing specification. The WS-Addressing

standard uses endpoint references and message addressing properties to facilitate the addressing of Web

services in a standard and interoperable way.

Use the WSAddressing default policy set as provided with the application server. To customize the policy

set, you must first copy the policy set, and then configure custom policy settings and bindings to meet your

needs.

To learn more about the WS-Addressing standard, read about Web Services Addressing support.

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Web Services Addressing support
The Web Services Addressing (WS-Addressing) support in this product provides the environment for Web

services that use the Worldwide Web Consortium (W3C) WS-Addressing specifications. This family of

specifications provide transport-neutral mechanisms to address Web services and to facilitate end-to-end

addressing.

WSSecurity default policy sets

The WSSecurity default policy sets are based on the Web Services Security (WS-Security) 1.0 and Web

Services Addressing (WS-Addressing) specifications. The WSSecurity default policy sets include the

WSSecurity default policy set, the Lightweight Third-Party Authentication (LTPA) WSSecurity policy set,

and the Username WSSecurity policy set. Use the WSSecurity default policy sets to build secure Web

services.

842 Administering WebSphere applications

The WSSecurity default policy sets use the WS-Security 1.0 specification enhancements to SOAP

messaging to provide quality of protection through message integrity, message confidentiality, and single

message authentication. Providing quality of protection means to prevent the following potential threats to

SOAP messages:

v The message being modified or read by antagonists

v An antagonist sending messages to a service that are formed correctly, but lack the appropriate security

claims to be processed

The WSSecurity default policy sets provide message protection by using WS-Security to digitally sign the

WS-Addressing headers, the time stamp and the body. This policy set also encrypts the signature and the

body. RSA public key cryptography is used for the signature and for encryption operations.

The WS-Addressing specification defines XML 1.0 and XML Namespaces elements to identify Web

services endpoints and to secure end-to-end endpoint identification in messages.

Use the WSSecurity default policy set, the LTPA WSSecurity policy set, or the Username WSSecurity

policy set as provided with the application server. To customize the policy sets, you must first copy the

policy set, and then configure custom policy settings and bindings to meet your needs.

The following WSSecurity default policy sets exist:

WSSecurity default

This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the

body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the

body, and signature elements using WS-Security specifications.

LTPA WSSecurity default

This policy set provides the WSSecurity default policy set and adds aLightweight Third Party

Authentication (LTPA) token included in the request message to authenticate the client to the

service.

Username WSSecurity default

This policy set provides the WSSecurity default policy set and adds a username token included in

the request message to authenticate the client to the service. The username token is encrypted in

the request.

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

WSTransaction default policy sets

The WSTransaction default policy sets are based on the WS-Transaction specification and provide

transactional integrity for Web services. The WSTransaction default policy sets include the WSTransaction

policy set and the SSL WSTransaction policy set.

You can use the WSTransaction default policy sets to make your SOAP over HTTP-based Web services

interoperable and coordinate atomic transactions or business activities without writing custom code. Use

the WSTransaction policy set or the SSL WSTransaction policy set as provided with the application server.

To customize the policy sets, you must first copy the policy set, and then configure custom policy settings

and bindings to meet your needs.

The WSTransaction default policy sets are:

WSTransaction

Use this policy set to coordinate distributed transactional work atomically and interoperably using

Chapter 5. Web services 843

the WS-AtomicTransaction specification. Also, use this policy set to coordinate loosely coupled

business processes that are distributed across the heterogenous Web service environment, with

the ability to compensate actions if a failure occurs in the business activity, using the

WS-BusinessActivity specification.

SSL WSTransaction

Use this policy set to coordinate distributed transactional work atomically, interoperably and

securely using the WS-AtomicTransaction specification and SSL Transport security. Also, use this

policy set to coordinate loosely coupled business processes, with the ability to compensate actions

if a failure occurs in the business activity, securely, using the WS-BusinessActivity specification

and SSL Transport security.

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

“Web Services Atomic Transaction support in the application server” on page 713
The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional

quality of service to the Web services environment. Distributed Web services applications, and the

resources they use, can take part in distributed global transactions.

“Web Services Business Activity support in the application server” on page 717
With Web Services Business Activity (WS-BA) support in the application server, Web services on different

systems can coordinate activities that are more loosely coupled than atomic transactions. Such activities

can be difficult or impossible to roll back atomically, and therefore require a compensation process if an

error occurs.

WSHTTPS default policy set

The WSHTTPS default policy set provides SSL transport security for the HTTP protocol with Web services

applications.

The WSHTTPS default policy set is provided with the application server and it contains the HTTP transport

policy, the SSL transport policy and the WS-Addressing policy.

You can use the WSHTTPS default policy set as provided with the application server. You cannot edit the

WSHTTPS default policy set. You can create a copy of the default policy set and then configure custom

policy settings and bindings to meet your needs. Alternatively, you can create a new policy set and specify

the policies for it.

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Copy of default policy set and bindings settings

Use this page to copy a policy set that you select from a list of available policy sets.

To view this administrative console page:

1. Click Services > Policy sets > Application policy sets.

2. Select the policy set that you want to copy, and click Copy.

3. Enter a name for the copy of the policy set in the Name field.

4. [Optional] Enter a description for the copy of the policy set in the Description field.

Name:

Specifies the name of the policy set. Use this field to enter a name for the copy of the policy set.

844 Administering WebSphere applications

Description:

Specifies a description of the policy set that you want to copy.

Transfer attachments:

If the policy set that you want to copy is attached to one or more applications, services, or endpoints, then

the check box option for Attach this policy set in place of the original for all attached applications,

services, endpoints, and operations, is available. The default setting for this check box is cleared. You

can perform the following actions:

 1. Select the Attach this policy set in place of the original for all attached applications, services,

endpoints, and operations check box to move the attachments to a new policy set. Selecting the

check box detaches the original policy set and attaches the replacement policy set in its place.

2. Select Copy bindings if you want to copy the bindings of the policy set that is currently attached.

3. [Optional] Select Restore default bindings if you want to restore the default bindings.

Importing policy sets using the administrative console

You can import predefined policy sets or import policy sets from a selected location using the

administrative console.

Before you begin

Before you begin this task, review Application policy sets collection.

About this task

The policy sets panel has an Import button to allow the import of policy sets. You can import a policy set

from the default repository or from a selected location.

1. From the administrative console navigation, click Services > Policy sets > Application policy sets or

Services > Policy sets > System policy sets. The policy sets collection page displays a listing of the

custom and default policy sets. Custom policy sets are displayed only if you have created them. If you

have not created a custom policy set, then only the default policy sets are displayed.

2. From the Application policy sets panel, click Import.

3. Choose the option for importing the policy set. You can choose to import a policy set from the default

repository or from a selected location. Selecting Import from Default Repository accesses the next

panel that displays a set of predefined default policy sets that are available for you to import. Some of

the predefined policy sets have already been imported for you from the default repository. You can

import additional predefined policy sets that are available in the predefined policy set repository.

Select Import from Selected Location to provide a path or browse your file system for a policy set

file to import.

v To import a policy set from the default repository, select Import from Default Repository and

perform task step 4.

v To import a policy set from a selected location, select Import from Selected Location and perform

task step 7.

4. Select Import from Default Repository and select either the Import or the Import a Copy radio

button.

The behavior of Import policy set:

v Available for selection of one or more policy sets.

v Imports the default, not editable, policy set. You are returned to the Application policy sets panel

after the import of the policy set.

v The imported policy set can be deleted, but it cannot be modified.

The behavior of Import a Copy for a policy set:

Chapter 5. Web services 845

v Not available for multiple selection. If multiple policy sets are selected and the Import a Copy radio

button is selected, an error message is displayed, indicating that only one policy set can be copied

at a time.

v Prompts you for a name and description for the copy. You are returned to the Application policy sets

panel after you import the policy set.

v The imported policy set can be modified or deleted.

5. If you selected Import from the previous step, select one or more policy sets to import in the Name

column.

a. Click OK. You are returned to the Application policy set panel.

b. Click Save, to save your changes to the configuration.

6. If you selected Import a Copy from step 4, select the policy set to import a copy in the Name column.

You can only select one policy set in the Name column to import its copy.

a. Provide a different name for the copy.

b. Click OK. You are returned to the Application policy set panel.

c. Click Save, to save your changes to the configuration.

7. Select Import from Selected Location.

a. Specify the full path or browse for the policy set file in your file system.

b. Select either Use current policy set name or Specify a different name to use for this policy

set.

c. Click OK. You are returned to the Application policy set panel.

d. Click Save to save your changes to the configuration.

Results

When you finish this task, you have been able to import a policy set using either the default repository or

from a selected location.

Example

If you have a policy set, XYZ_ps and you want to import it from a selected location, perform the following

steps:

1. From the Application policy set panel, click Import.

2. Select Import from Selected Location.

3. Specify the full path or browse to where the XYZ_ps policy set file is located in your file system.

4. Select either Use the current policy set name, XYZ_ps, or Specify a different name for the policy

set.

5. Click OK.

6. Click Save, to save your changes to the configuration.

What to do next

You can modify or use the policy set that you just imported.

846 Administering WebSphere applications

Related tasks

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

Import policy sets from default repository settings

Use this page to specify a policy set to import from a default repository. You can import predefined policy

sets from the default repository.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets.

2. Click Import.

3. Select From Default Repository.

4. You have the Import and Import a copy options. Select Import a copy.

5. In the Name of copy field, enter a name for the copy of the policy set that you select to import from

the list of policy sets.

The behavior of Import:

v Available for selection of one or more policy sets.

v Imports the default, not editable, policy set. You are returned to the Application policy sets panel after

the import of the policy set.

v The imported policy set can be deleted, but it cannot be modified.

The behavior of Import a copy policy set:

v Not available for multiple selection. If multiple policy sets are selected and the Import a copy radio

button is selected, an error message is displayed, indicating that only one policy set can be copied at a

time.

v Prompts you for a name for the copy. The description of the imported policy set is kept, but you can edit

the description after you have imported the policy set. You are returned to the Application policy sets

panel after the import of the policy set.

v The imported policy set can be modified or deleted.

Chapter 5. Web services 847

Related tasks

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Import policy sets from a selected location settings”
Use this page to specify a policy set to import from a selected location.

Import a copy:

Use this field to enter a name for the copy of the policy set that you select to import from the list.

 Before you can edit this field, you must select Import a copy option.

Buttons:

Click the appropriate button:

 Button Resulting Action

OK Imports the specified policy set. You are returned to the Application policy set panel

after the import.

Cancel Returns you to the Application policy set panel without importing a policy set.

Import policy sets from a selected location settings

Use this page to specify a policy set to import from a selected location.

To view this administrative console page, click Services > Policy sets > Application policy sets >

Import policy set from selected location.

On this page, specify a policy set to import from a selected location.

848 Administering WebSphere applications

Related tasks

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Import policy sets from default repository settings” on page 847
Use this page to specify a policy set to import from a default repository. You can import predefined policy

sets from the default repository.

Path and file name for the policy set file:

Specify a fully qualified path and file name to the policy set file or use the Browse to locate the file in your

file system.

 Select Use current policy set name if you are not changing the policy set name and click OK.

Select Specify a different name for this policy set if you are changing the policy set name. Provide a

new name and click OK.

 Button Resulting action

OK Imports the specified policy set file if valid or returns an error if an invalid file is

provided. You are returned to the Application policy set panel after the import.

Cancel Returns you to the Application policy set panel without importing a policy set.

Modifying policy sets using the administrative console

You can use the administrative console to modify existing custom policy sets that you have created. If you

have copied an existing default policy set or created a policy set yourself, you can always go back and

make changes to them to make them better suit the changing needs of your business.

Before you begin

You can create a copy of a policy set and modify the copy. You must first copy a default policy set before

you can modify it. See copy of default policy set and bindings settings.

About this task

To modify a custom policy set, you can use the Policy set settings view to access configuration information

for the policy set.

1. Create a policy set using the steps in “Creating policy sets using the administrative console” on page

835

2. From the administrative console, click Services > Policy sets > Application policy sets

>policy_set_name or Services > Policy sets > System policy sets >policy_set_name where

Chapter 5. Web services 849

policy_set_name is the custom policy set of interest that is displayed in the table. This opens the

Policy set settings view. You must specify the required information about the policy set that you want to

modify.

3. Change the description of the policy set. Edit the brief description of the policy set in the Description

field. This is the description that displays in the Application policy sets collection so it must be

meaningful to you and other potential users of this policy set.

4. Edit the policy information. You can include, exclude, add or delete policies from this policy set using

the settings in the Policies table. To work more extensively with policies, see “Managing policies in a

policy set using the administrative console” on page 931.

5. This step does not apply to system policy sets. Detach the policy set from an application or replace the

policy set attached to the application with another policy set. Click the Attached applications link to

access applications that are attached to this policy set and applications that contain attached service

resources. To detach a policy set from an application, use the following steps:

a. In the Filter list, click Name.

b. Find the application. In the Search term(s) field, enter all or part of the name of the application you

want to detach and click Go.

c. Detach the application. Find and select the application in the listing and click Detach Policy Set.

To change the policy set that is attached to an application, use the following steps:

a. In the Filter list, click Name.

b. Find the application. In the Search term(s) field, enter all or part of the name of the application and

click Go.

c. Replace the policy set for this application. Find and select the application in the listing and click

Replace Policy Set. You then have one of the following options:

v If there are fewer than 25 policy sets to choose from, the Replace Policy Set button is a drop

down list and you can click a policy set to attach to the application.

v If there are more than 25 policy sets to choose from, the Replace Policy Set button opens a

collection of policy sets and you can select the policy set to replace from the listing.

Results

Performing these tasks modifies the application to which the custom policy set is attached.

Example

If you had a custom policy set ABC WS-I RSP, for example, that had a misleading description and you

want to change the description so that other users know what the policy set really includes, you would

access the Policy Set settings view for that policy set. To do this, from the administrative console, you

would click Services > Policy sets > Application policy sets > ABC WS-I RSP. Then you would click

the description field and edit the text so that it better represents the scope of the policy set.

What to do next

If the policy set you have modified is an attached policy set, restart all affected applications to pick up the

changes you made. If the policy set is unattached, then no further action is required.

850 Administering WebSphere applications

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Related tasks

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Creating policy sets using the administrative console” on page 835
You can use the administrative console to either create a policy set by specifying all the necessary

information or by copying an existing policy set that you rename. You can use policy sets, or assertions

that define services, to simplify your Web services configuration because policy sets group security and

other Web services settings into reusable units.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

Related reference

“Search attached applications collection” on page 986
Use this page to search for applications and other resources that are attached to a specific policy set or to

search for applications and other resources that have attached service resources.

“Copy of default policy set and bindings settings” on page 844
Use this page to copy a policy set that you select from a list of available policy sets.

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Deleting policy sets using the administrative console

You can use the administrative console to delete the default policy sets or the application specific policy

sets that you have created.

Before you begin

If you are deleting an attached policy set, stop all applications and the associated endpoints or operations,

then detach and delete the policy set. If the policy set is unattached, then you do not need to detach the

policy set before deleting it.

Chapter 5. Web services 851

About this task

If a application specific policy set is no longer needed, you might choose to delete it. To delete a

application specific policy set, use the Application policy set collection panel.

1. From the administrative console, click Services > Policy sets > Application policy sets or Services

> Policy sets > System policy sets.

2. Click the box in the Select column next to the policy set that you want to delete.

3. Click Delete.

4. Verify that you want to delete this policy set.

Results

The selected application specific policy set is deleted from the list of policy sets and is no longer available.

Example

You might decide that the ABC WS-I RSP policy set that you created did not meet your needs as you had

expected and you have already created the DEF WS-I RSP policy set to better meet your needs. You

have detached all the applications and endpoints from the ABC WS-I RSP policy set and you want to

delete the policy set. Click Services > Policy sets > Application policy sets and find the ABC WS-I RSP

policy set in the listing. Select the ABC WS-I RSP policy set and click Delete. Confirm that you want to

delete the policy set and it is removed from the listing of policy sets. Restart the applications that you

detached the ABC WS-I RSP policy from, and you have successfully deleted the policy set.

Alternatively, and depending on your use case, you might want to reassign the attachment to another

resource before deleting the policy set. Make a copy of the policy set that you are about to delete, then

attach it later to your application or service artifact. See attaching a policy set to a service artifact. You can

now delete the policy set.

What to do next

If you have detached and then deleted a policy set from an application, restart all affected applications to

pick up this change.

852 Administering WebSphere applications

Related concepts

“Web services policy sets” on page 990
Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Related tasks

“Modifying policy sets using the administrative console” on page 849
You can use the administrative console to modify existing custom policy sets that you have created. If you

have copied an existing default policy set or created a policy set yourself, you can always go back and

make changes to them to make them better suit the changing needs of your business.

“Creating policy sets using the administrative console” on page 835
You can use the administrative console to either create a policy set by specifying all the necessary

information or by copying an existing policy set that you rename. You can use policy sets, or assertions

that define services, to simplify your Web services configuration because policy sets group security and

other Web services settings into reusable units.

“Attaching a policy set to a service artifact” on page 930
Attach a policy set to a service artifact, such as an application, service, or endpoint to define the quality of

services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,

WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and

Secure Sockets Layer (SSL) transport.

“Deleting policy sets using the wsadmin tool” on page 569
Use the Jython or Jacl scripting language to delete policy sets from your configuration with the wsadmin

tool. You must remove all policy set attachments before removing the policy set.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Defining and managing policy set bindings

Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

Chapter 5. Web services 853

About this task

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific bindings

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and constrained to the characteristics of the defined policy. Application specific bindings are

capable of providing configuration for advanced policy requirements, such as multiple signatures; however,

these bindings are only reusable within an application. Furthermore, application specific bindings have very

limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set. See

service providers policy sets and bindings collection. Similarly, for service clients, you can only create

application specific bindings by selecting Assign Binding > New Application Specific Binding for

service client resources that have an attached policy set. See service client policy set and bindings

collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they are however not able to provide configuration for advanced policy

requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings. General provider policy set bindings

might also be used for trust service attachments.

Note: The general bindings that are shipped with the product are provider and client sample bindings.

These bindings are initially set as the cell default bindings. Do not use these bindings in their

current state in a production environment. To use the sample bindings, modify them to meet your

security needs in a production environment. Alternatively, create a copy of the bindings and then

modify the copy. For example, change the key and keystore settings to ensure security, and modify

other settings to match your environment. You must also configure the username and password for

Username or LTPA token authentication. See the topic Configuring the username and password for

WS-Security Username or LTPA token authentication for more information.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

To view or work with your current policy sets bindings, perform the following:

854 Administering WebSphere applications

1. To view your current policy set and application specific bindings from the administrative console, click

Services > Policy sets > Application policy sets >policy_set_name > Attached applications and

then click an application. Depending on the application that you select, use one of the following topics

for help with the bindings attached to policy sets:

v Service provider policy sets and bindings

v Service client policy sets and bindings

Sort on the Attached policy set column on either of the policy sets and bindings pages to select the

service resources with the same policy set attached. Likewise, sort on the Binding column to select

the service resources that share the same custom binding to attach to a different policy set. If you sort

on the Policy Set or the Binding column, the hierarchical relationship of the service resources in the

first column is not accurate. You can sort again on the Application/Service/Endpoint/Operation

column to restore the hierarchical relationship. The entries in the Application/Service/Endpoint/
Operation column display in ascending order.

2. To work with an existing bindings from the administrative console, click Services > Policy sets >

Application policy sets >policy_set_name > Attached applications. Click an application name, and

then click either the Service provider policy sets and bindings or the Service client policy sets

and bindings. Then click a binding name in the Bindings column of the table.

Note: If no applications appear when you click Attached applications, you do not have any

applications attached to the selected policy set. To attach a policy set and binding to an

application using the administrative console, click Applications > Enterprise Applications >

application name. Then, click either Service provider policy sets and bindings or Server

client policy sets and bindings to attach resources to your policy set and to assign bindings.
.

3. [Optional] To work with general bindings, click Services > Policy sets > General client policy set

bindings or Services > Policy sets > General provider policy set bindings.

You can complete the following actions for general bindings:

v “Importing policy set bindings using the administrative console” on page 856

v “Export policy sets bindings settings” on page 865

v “Defining and managing service client or provider bindings” on page 860

v “Creating new or configuring existing general binding settings” on page 864

v “Copy policy set binding settings” on page 865

v “Deleting policy set bindings” on page 866

Results

When you finish this task, you would have performed one or more of the following:

v Created an application specific or general policy set binding

v Imported a policy set binding

v Exported a policy set binding

v Deleted a policy set binding

v Modified an application attachment to apply an application specific binding for single security domain

v Modified an application attachment to apply an application specific binding for multiple security domain

Chapter 5. Web services 855

Related reference

“Keys and certificates” on page 898
Use this page to link to key and certificate binding configuration panels. This panel defines key and

certificate bindings for JAX-WS Web services only. These keys and certificates can be centrally managed

by the product or in an external keystore.

“WS-Security authentication and protection” on page 907
Use the links on this page to configure authentication, signature, and encryption information that the policy

requires.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

“Service client policy set and bindings collection” on page 792
Use this page to attach and detach policy sets to an application, a service client, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use existing

bindings for an attached policy set. You can view or change whether the client uses the policy of the

service provider.

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

Importing policy set bindings using the administrative console

You can import predefined client or provider policy set bindings using the administrative console.

Before you begin

This task only applies to general client or provider bindings. Before you begin this task, review the defining

and managing service client or provider bindings.

About this task

The general bindings panel has an Import button to allow the import of client or provider policy set

bindings. You can import a policy set binding by specifying the full path and filename of the binding to

import.

1. Navigate to the General client policy set bindings or the General provider policy set bindings panel

using one of the following ways:

v Services > Policy sets > General client policy set bindings

v Services > Policy sets > General provider policy set bindings

2. Click Import.

3. Specify the full path and file name of the policy set binding to import.

4. Select either Use current binding name or Specify a different name to use for this binding. If you

are importing a binding and that binding name already exists in the repository, you must specify a

different name to use for the binding import.

5. Click OK.

Results

When you finish this task, you have been able to import a policy set binding using the administrative

console.

856 Administering WebSphere applications

Example

If you have a policy set binding, XYZ_psbind and you want to import it, perform the following steps:

1. From the General client or provider policy set bindings panel, click Import.

2. Specify the full path and file name of the policy set binding to import or use Browse to locate the

binding in your file system.

3. Select either Use current binding name or Specify a different name to use for this binding.

4. Click OK.

5. Click Save, to save your changes to the configuration.

What to do next

You can export a policy set binding to reuse it.

Related tasks

“Defining and managing service client or provider bindings” on page 860
Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Import policy sets from a selected location settings” on page 848
Use this page to specify a policy set to import from a selected location.

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

Import policy set bindings settings:

Use this page to specify a service client or provider policy set binding to import for your service.

 Navigate to the General client policy set bindings or the General provider policy set bindings panel using

one of the following ways:

v Services > Policy sets > General client policy set bindings

v Services > Policy sets > General provider policy set bindings

Click Import. Specify a fully qualified path and binding name that you want to use to import the policy set

binding. The policy set binding file must be a compressed file.

Chapter 5. Web services 857

Related tasks

“Defining and managing service client or provider bindings” on page 860
Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Import policy sets from default repository settings” on page 847
Use this page to specify a policy set to import from a default repository. You can import predefined policy

sets from the default repository.

“Import policy sets from a selected location settings” on page 848
Use this page to specify a policy set to import from a selected location.

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

Full Path with file name:

Specify a fully qualified path and file name to the policy set file or use the browse button to locate the file

in your file system.

 Select Use current binding name if you are not changing the binding name and click OK.

Select Specify a different name for this binding if you are changing the binding name. Provide a new

name and click OK.

 Button Resulting action

OK Imports the specified binding file if valid or returns an error if an incorrect file is

provided. You are returned to the General client or provider policy set binding panel

after the import.

Cancel Returns you to the General client or provider policy set binding panel without importing

a binding.

Web services policy set bindings

A set of bindings is a named object that is associated with a specific policy set and service resource that is

attached to the policy set.

Bindings contain environment and platform specific information, like the following types of information:

v Keys used for signature and encryption

v Keystore information

858 Administering WebSphere applications

v Authentication information

v Persistent information

Typically, bindings are specific to the application or the platform, and they are not shared.

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and defined by the characteristics of the policy. Application specific bindings are capable of

providing configuration for advanced policy requirements, such as multiple signatures; however, these

bindings are only reusable within an application. Furthermore, application specific bindings have limited

reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that

you want to override the default binding and fully configure the bindings for each policy that you have

added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,

TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not

configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set. See

service providers policy sets and bindings collection. Similarly, for service clients, you can only create

application specific bindings by selecting Assign Binding > New Application Specific Binding for

service client resources that have an attached policy set. See service client policy set and bindings

collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Although general

bindings are highly reusable, they do not provide configuration for advanced policy requirements, such as

multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings. General provider policy set bindings

might also be used for trust service attachments.

Note:

The sample general bindings that are shipped with the product are provider and client sample. Do

not use these sample bindings in their current state in a production environment. However, if they

were modified to contain non-sample data, you can use these sample bindings in a production

environment.

You cannot assign a binding to a service provider resource that does not have a policy set or has

an inherited attachment. To assign a binding to such a service provider resource, you must first

attach a policy set to the resource. Also, you cannot assign a binding to a service client resource

Chapter 5. Web services 859

that does not have an effective policy configuration or has an inherited policy attachment. To assign

a binding to such a service client resource, you must first attach a policy set or specify the use of

the provider policy.

Defining and managing service client or provider bindings

Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

Before you begin

You cannot assign a binding to a service provider resource that does not have a policy set or has an

inherited attachment. To assign a binding to such a service provider resource, you must first attach a

policy set to the resource. Also, you cannot assign a binding to a service client resource that does not

have an effective policy configuration or has an inherited policy attachment. To assign a binding to such a

service client resource, you must first attach a policy set or specify the use of the provider policy. See

attaching a policy set to a service artifact.

About this task

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and defined by the characteristics of the policy. Application specific bindings are capable of

providing configuration for advanced policy requirements, such as multiple signatures; however, these

bindings are only reusable within an application. Furthermore, application specific bindings have limited

reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in an

unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that you want to

override the default binding and fully configure the bindings for each policy that you have added. For

WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,

SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the

application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set.

Similarly, for service clients, you can only create application specific bindings by selecting Assign Binding

> New Application Specific Binding for service client resources that have an attached policy set.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they do not provide configuration for advanced policy requirements, such as

multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

Note: The general bindings that are included with the product are provider and client sample bindings. Do

not use these bindings in their current state in a production environment. However, if they were

modified to contain non-sample data, they could be used in a production environment.

860 Administering WebSphere applications

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

You can complete the following tasks to define and manage general client or provider policy set bindings.

1. To create a new general client or provider policy set binding or to manage the binding configuration

from the administrative console, click Services > Policy sets > General client policy set bindings >

New. You can also access this panel by clicking Services > Policy sets > General provider policy

set bindings > New. Use the resulting detail panel to create a new client or provider policy set

binding. See creating new or configuring existing general binding settings.

2. To copy a specific policy set binding, select the binding name from the table and click Copy. See

copying a policy set binding settings.

3. To import a client or provider policy set binding, click Import. Use the importing policy set bindings

using the administrative console to complete the import task that you select.

4. To export a client or provider policy set binding, select the binding name from the table, and click

Export. See export policy set binding settings.

5. To delete a policy set binding, select the binding name from the table, and click Delete. See deleting

policy set bindings.

Results

When you finish this task, you have created, copied, exported, imported or deleted a client or provider

policy set binding.

Related tasks

“Attaching a policy set to a service artifact” on page 930
Attach a policy set to a service artifact, such as an application, service, or endpoint to define the quality of

services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,

WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and

Secure Sockets Layer (SSL) transport.

“Importing policy set bindings using the administrative console” on page 856
You can import predefined client or provider policy set bindings using the administrative console.

Related reference

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

“Copy policy set binding settings” on page 865
Use this page to view and copy general policy set bindings for either a single security or a multiple

security domain environment.

“Deleting policy set bindings” on page 866
Use this task to delete general policy set bindings using the administrative console.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Service client or provider policy set bindings collection:

Use this page to create, copy, and manage general policy set bindings, such as the service client or

provider bindings. These bindings provide system-specific configuration, and can be reused across policy

set attachments. You can select the general default bindings, create new general bindings, or use existing

bindings for an attached policy set.

Chapter 5. Web services 861

To view this administrative console page, click Services → Policy Sets → General client policy set

bindings. You can also view this page by clicking Services → Policy Sets → General provider policy set

bindings.

About policy set bindings

In Version 7.0, there are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are

specific to and defined by the characteristics of the defined policy. Application specific bindings can provide

onfiguration for advanced policy requirements, such as multiple signatures; however, these bindings are

only reusable within an application. Furthermore, application specific bindings have limited reuse across

policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in an

unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that you want to

override the default binding and fully configure the bindings for each policy that you have added. For

WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,

SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the

application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >

New Application Specific Binding for service provider resources that have an attached policy set. See

service providers policy sets and bindings collection. Similarly, for service clients, you can only create

application specific bindings by selecting Assign Binding > New Application Specific Binding for

service client resources that have an attached policy set. See service client policy set and bindings

collection.

General bindings

General bindings are new for Version 7.0. These bindings can be configured to be used across a range of

policy sets and can be reused across applications and for trust service attachments. Though general

bindings are highly reusable, they are however not able to provide configuration for advanced policy

requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General

provider policy set bindings > New in the general provider policy sets panel or by accessing Services >

Policy sets > General client policy set bindings > New in the general client policy set and bindings

panel. See defining and managing service client or provider bindings. General provider policy set bindings

might also be used for trust service attachments.

Note:

The sample general bindings that are shipped with the product are provider and client sample. Do

not use these sample bindings in their current state in a production environment. However, if they

were modified to contain non-sample data, you can use these sample bindings in a production

environment.

You cannot assign a binding to a service provider resource that does not have a policy set or has

an inherited attachment. To assign a binding to such a service provider resource, you must first

attach a policy set to the resource. Also, you cannot assign a binding to a service client resource

862 Administering WebSphere applications

that does not have an effective policy configuration or has an inherited policy attachment. To assign

a binding to such a service client resource, you must first attach a policy set or specify the use of

the provider policy.

Depending on your assigned security role when security is enabled, you might not have access to

text entry fields or buttons to create or edit configuration data. Review the administrative roles

documentation to learn more about the valid roles for the application server.

Related tasks

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Importing policy set bindings using the administrative console” on page 856
You can import predefined client or provider policy set bindings using the administrative console.

Related reference

“Creating new or configuring existing general binding settings” on page 864
Use this page to create a new client or provider policy set binding. You can also use this page to configure

an existing general binding. Empty bindings will be deleted. Scoping a binding to a security domain

constrains the configuration options to those applicable to that domain and limits use of the binding to the

specified domain.

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

“Copy policy set binding settings” on page 865
Use this page to view and copy general policy set bindings for either a single security or a multiple

security domain environment.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Name:

Specifies the name of the service client or provider policy set binding.

 The following list of buttons are available to create and manage service client or provider policy set

bindings:

 Button Resulting Action

New Creates a new client or provider policy set binding. This option accesses the New

binding panel. The binding is empty initially; you must enter a name and an optional

description for a new client or provider policy set binding.

Delete Removes the selected client or provider general policy set binding. The default general

bindings are being used as the default for a server or a security domain, including the

global security domain. You cannot delete global security default bindings. An attempt

to delete such default general binding generates an error message that the selected

binding cannot be deleted because it is currently the default binding for the global

security domain.

Copy Creates a modifiable copy of the selected client or provider policy set binding using a

new name that you provide.

Import Imports a client or provider policy set binding. This is a menu item with the option of

importing a binding with the same name or providing a different name for the import.

Export Exports the selected client or provider policy set binding to an archive file.

Description:

Chapter 5. Web services 863

Specifies the user-defined description for the client or provider policy set bindings.

Creating new or configuring existing general binding settings:

Use this page to create a new client or provider policy set binding. You can also use this page to configure

an existing general binding. Empty bindings will be deleted. Scoping a binding to a security domain

constrains the configuration options to those applicable to that domain and limits use of the binding to the

specified domain.

 To view this administrative console page, click Services > Policy sets > General client policy set

bindings > New. You can also view this page by clicking Services > Policy sets > General provider

policy set bindings > New.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Related tasks

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Importing policy set bindings using the administrative console” on page 856
You can import predefined client or provider policy set bindings using the administrative console.

“Deleting policy set bindings” on page 866
Use this task to delete general policy set bindings using the administrative console.

Related reference

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

“Copy policy set binding settings” on page 865
Use this page to view and copy general policy set bindings for either a single security or a multiple

security domain environment.

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Bindings configuration name:

Specifies the name of the new binding configuration.

 You must enter a binding configuration name to proceed. The name of the binding is automatically applied

when you add a policy type and provide additional configuration information. At that time, the initial Cancel

button is replaced with an OK button. Each binding that you add is initially empty, and you are directed to

the binding configuration panel to provide additional information for the binding.

 Button Resulting Action

Add Adds a policy type, such as WS-Security, to a new binding that you create or to an

existing binding. You can access the configuration of each policy type binding through

the policy type name link. If you click Cancel without providing any configuration

information for the policy type, that policy type is not saved or included in the list of

policy types. You might receive an attention message that the policy type was not

saved as part of the binding configuration.

Delete Deletes a policy type from the list.

864 Administering WebSphere applications

Button Resulting Action

OK Associates the name of the binding to the policy type information after you add a

policy type and provide additional configuration information.

Cancel Returns you to the General client or provider policy set bindings panel without creating

a new binding configuration.

Security domain:

This field is only available in a multiple security domain environment and specifies a valid security domain.

You can scope the binding to that particular security domain, which is scoped to the global security domain

by default.

Description:

Specifies a brief description of the new client or provider policy set binding.

Export policy sets bindings settings

This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

Navigate to the General client policy set bindings or the General provider policy set bindings panel using

one of the following paths:

v Services > Policy sets > General client policy set bindings

v Services > Policy sets > General provider policy set bindings

1. Select a binding from the list and click Export.

2. Click the binding to download the archive file.

3. Use the file dialog box to select a location for the exported binding. The policy set binding file is

exported as a compressed file.

4. Click Done.

Related tasks

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Import policy sets from default repository settings” on page 847
Use this page to specify a policy set to import from a default repository. You can import predefined policy

sets from the default repository.

Copy policy set binding settings

Use this page to view and copy general policy set bindings for either a single security or a multiple

security domain environment.

Chapter 5. Web services 865

To access this administrative console page, perform the following steps:

1. Click Services > Policy sets > General client policy set bindings. You can also access this page by

clicking Services > Policy sets > General provider policy set bindings.

2. Select an existing binding from the list, and click Copy.

3. Provide a name and description for the copy.

4. Click OK.

5. Click Save, to save your changes.

Related tasks

“Importing policy set bindings using the administrative console” on page 856
You can import predefined client or provider policy set bindings using the administrative console.

Related reference

“Creating new or configuring existing general binding settings” on page 864
Use this page to create a new client or provider policy set binding. You can also use this page to configure

an existing general binding. Empty bindings will be deleted. Scoping a binding to a security domain

constrains the configuration options to those applicable to that domain and limits use of the binding to the

specified domain.

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

Name:

Specifies the name of copy. You must provide a different name for the copy of the binding configuration.

Security domain:

Specifies a valid security domain. This field is only available in a multiple security domain environment.

You can scope the binding to a particular security domain; it is scoped to the global security domain by

default.

Description:

Specifies a brief description of the copy of the policy set binding.

Deleting policy set bindings

Use this task to delete general policy set bindings using the administrative console.

About this task

You cannot delete general bindings specified as the default for any server or domain. You also cannot

delete general bindings that are assigned to a policy set attachment. To delete other bindings, perform the

following steps:

1. Click Services > Policy sets > General client policy set bindings. You can also access this page by

clicking Services > Policy sets > General provider policy set bindings.

2. Select an existing binding from the list, and click Delete.

3. Click Save, to save your changes.

Results

When you finish this task, you have deleted a general policy set binding.

866 Administering WebSphere applications

Related tasks

“Importing policy set bindings using the administrative console” on page 856
You can import predefined client or provider policy set bindings using the administrative console.

Related reference

“Service client or provider policy set bindings collection” on page 861
Use this page to create, copy, and manage general policy set bindings, such as the service client or

provider bindings. These bindings provide system-specific configuration, and can be reused across policy

set attachments. You can select the general default bindings, create new general bindings, or use existing

bindings for an attached policy set.

“Creating new or configuring existing general binding settings” on page 864
Use this page to create a new client or provider policy set binding. You can also use this page to configure

an existing general binding. Empty bindings will be deleted. Scoping a binding to a security domain

constrains the configuration options to those applicable to that domain and limits use of the binding to the

specified domain.

“Export policy sets bindings settings” on page 865
This task only applies to general client or provider bindings. Use this page to export either a client or

provider policy set binding for reuse.

“Copy policy set binding settings” on page 865
Use this page to view and copy general policy set bindings for either a single security or a multiple

security domain environment.

Creating application specific bindings for policy set attachment

After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

Before you begin

Before you can start this task, you must deploy an application containing Web services, and attach a

policy set. See attaching a policy set to a service artifact.

About this task

The application specific binding panels display options based on the definitions in the attached policy set.

For example, if the policy set does not have WS-ReliableMessaging configured, then the application

specific binding panels do not display an option to configure WS-ReliableMessaging bindings. To create

application specific bindings for an attached policy set, perform the following steps:

1. Open the administrative console.

2. To create application specific bindings for a service provider policy attachment, click Applications >

Application Types > WebSphere enterprise applications >Service_provider_application_instance >

Service provider policy sets and bindings.

To create application specific bindings for a service client policy attachment, click Applications >

Enterprise applications > application_name > Service client policy sets and bindings.

3. Select the check box for the service artifact with an attached policy set.

4. Click Assign Binding to see a list of available bindings to assign.

5. [Optional] Select a previously defined application specific attachment binding from the list.

If you decide to create a new application specific binding, complete steps 6 through 9.

6. Click New.

7. Specify a name for the binding and select which policies that you want to include in this application

specific binding. Click Add, and select the policies to add.

8. Complete the information for the specified policies to define associated configuration data.

9. Click Save, to save your changes to the master configuration.

Chapter 5. Web services 867

Results

When you finish this task, a application specific binding is created for the service artifact with the attached

policy set.

Example

You have the application, app1 with the attached policy set Username WSSecurity default, and you want to

define application specific bindings. First locate the application in the Applications > Application Types >

WebSphere enterprise applications collection. Click the app1 application. You can then click the Service

provider policy sets and bindings link or the Service client policy sets and bindings link. Select the

check box for the app1 application where the policy set is attached. Click Assign Binding and click New.

Specify a name for the binding, such as myBinding. Click Add and select WS-Security from the list. Next,

click the link for WS-Security policy and complete the panels with the appropriate information. Click Save,

to save your changes to the master configuration.

What to do next

Restart the application that contains the service artifact with the application specific bindings you created.

Related tasks

“Attaching a policy set to a service artifact” on page 930
Attach a policy set to a service artifact, such as an application, service, or endpoint to define the quality of

services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,

WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and

Secure Sockets Layer (SSL) transport.

“Defining and managing service client or provider bindings” on page 860
Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

Related reference

“Creating new or configuring existing general binding settings” on page 864
Use this page to create a new client or provider policy set binding. You can also use this page to configure

an existing general binding. Empty bindings will be deleted. Scoping a binding to a security domain

constrains the configuration options to those applicable to that domain and limits use of the binding to the

specified domain.

Setting server default bindings for policy sets

You can set server default bindings if you want the policy set attachments for service providers and clients

that are deployed to the server to use bindings that are different than those that are specified for the cell.

If you use multiple security domains, your default server bindings will also override the security domain

default bindings.

Before you begin

Before you can set server default bindings for your Java API for XML-Based Web Services (JAX-WS)

application, you must first configure at least one general provider policy set binding or general client policy

set binding. To define and manage these general bindings, use the administrative console and select

Services > Policy sets > General provider policy set bindings or Services > Policy sets > General

client policy set bindings .

About this task

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

868 Administering WebSphere applications

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general bindings that are used as the default for an application server or a security domain.

General service provider and client bindings are not linked to a particular policy set, and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings, and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

are deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by setting default

bindings for a security domain and assigning the security domain to one or more servers.

You can specify default bindings for your service provider or client that are used at the global security

(cell) level, for a security domain, for a particular server. The default bindings are used in the absence of

an overriding binding specified at a lower scope. The following list is the order of precedence from lowest

to highest that the application server uses to determine which default bindings to use:

1. Server level default

2. Security domain level default

3. Global security (cell) default

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding. To specify your global

security (cell) default bindings, use the administrative console, and click Services > Policy sets > Default

policy set bindings. For environments with multiple security domains, you can optionally choose the

general provider and general client bindings that you want to use as the default bindings for a domain.

In addition to choosing default bindings for the global security (cell), you can also choose the general

provider and general client bindings that you want to use as the default bindings for a server. This is only

necessary if you want to use different default bindings for a particular server than those used by the other

servers in the security domain or cell.

To choose the default bindings for a server from the administrative console, click Servers > Server Types

> WebSphere application servers > server_name and then under Security, click Default policy set

bindings. If you do not choose a general binding as the default for a server, the default bindings for the

domain in which the server resides is used. If you do not choose a binding as the default for a domain, the

default bindings for the global security (cell) are used. You must choose a default service provider and

default service client bindings for the cell. The general bindings that are included with the product are

initially set as the global security (cell) default bindings. You cannot delete a binding that is used as part of

any policy set attachment or specified as the default binding for server, a domain, or the cell. To learn

more about defining default bindings for a server, see the server default bindings documentation.

Note:

If you have an application that contains one or more application specific bindings that are

configured at the WebSphere Application Server V6.1 level, this application is a V6.1 application. If

you have applications that are deployed to Version 6.1 servers within the Version 7.0 application

Chapter 5. Web services 869

server environment or you have V6.1 applications that are deployed to V7.0 application servers,

you can specify Version 6.1 default policy set bindings for the cell. These bindings are used for both

client and provider policy set attachments within V6.1 applications and attachments to service

applications that are deployed to a V6.1 server. Additionally, these default bindings are used for

V6.1 attachments unless they are overridden at the attachment point by an application specific

binding or a V6.1 server default binding. You can upgrade V6.1 bindings to WebSphere Application

Server V7.0 bindings for by using the upgradeBindings command using the wsadmin tool, if the

V6.1 application is not installed on WebSphere Application Server V6.1.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. To set default policy set bindings for your server, selectServers > Server Types > WebSphere

application servers > server_name > Default policy set bindings.

3. Select the server default provider binding.

If you specify a server default provider binding, the selected binding overrides the default provider

bindings that are specified for the cell or the security domain to which the server is deployed. The

default setting is None.

If multiple security domains are in use, the name of the security domain to which each binding is

scoped displays beside the name of each available provider binding. Only the bindings that are scoped

to the global security level or to the security domain to which the server is deployed are displayed.

4. Select the server default client binding.

If you specify a server default client binding, the selected binding overrides the default client bindings

that are specified for the cell or the security domain to which the server is deployed. The default

setting is None.

If multiple security domains are in use, the name of the security domain to which each binding is

scoped displays beside the name of each available provider binding. Only the bindings that are scoped

to the global security level or to the security domain to which the server is deployed are displayed.

5. Click Apply or OK to submit your changes.

6. Click Save to save your changes to the master configuration.

7. (optional) If you are using a Version 6.1 application, you can specify server V6.1 default policy set

bindings. To set these bindings, select Servers > Server Types > WebSphere application servers >

server_name > Default policy set bindings > Version 6.1 default policy set bindings.

Note: Select the V6.1 default bindings for this server. If your application contains one or more

application specific bindings that are configured at the WebSphere Application Server V6.1

level, this application is a V6.1 application. These default bindings are used for client and

provider policy set attachments for applications that are deployed to V6.1 servers, and for V6.1

applications that are deployed to V7.0 servers. These bindings are used for both client and

provider policy set attachments within V6.1 applications and attachments to service applications

that are deployed to a V6.1 server. Additionally, these default bindings are used for V6.1

attachments unless they are overridden at the attachment point by an application specific

binding or a V6.1 server default binding.

Results

When you complete these steps, the server default bindings are defined and all policy set attachments that

specify use of the default binding for your Web service applications that are deployed to the server will use

server level default bindings.

870 Administering WebSphere applications

Example

Suppose you have configured an application server, server1, and you have deployed several Web service

applications to the server1 application server. Because these applications have similar security and quality

of service requirements and you plan for them to share security configuration, you want to define the

default bindings for policy set attachments to service providers and clients using the server1.

Suppose also that you want to modify the provided general provider binding, Provider sample. You can

copy and modify this provided sample to take advantage of existing bindings.

1. Copy and modify the provided Provider sample and Client sample to meet your security and quality

of service requirements. Include binding configuration for all policy types.

v Click Services > Policy sets > General provider policy set bindings. Select Provider sample >

copy. Name the new general provider binding, MyServiceProviderbinding , and provide a description

for the new binding.

v Click Services > Policy sets > General client policy set bindings. Select Client sample > copy.

Name the new general client binding, MyServiceClientbinding, and provide a description for the new

binding.

2. Locate server1 in the Application servers collection and click the instance. From the administrative

console, select Servers > Server Types > WebSphere application servers , and click the server1

instance.

3. Click Default policy set bindings.

4. Select the bindings that you want to use for your provider and client policy set attachments. In this

example, select your customized general bindings, MyServiceProviderbinding and

MyServiceClientbinding.

5. Click Apply or OK to submit your changes.

6. Click Save to save your changes to the master configuration.

Each time you attach a policy set to a service or client deployed to the server1 application server, it is

initially set to use the specified bindings.

.

What to do next

After setting server default bindings, you can start deploying services to the server and start attaching

policy sets. Alternatively, you might already have services deployed to the server, and the server is using

the global default bindings because there is no server default binding. Now that you have set server

default bindings, ensure that the server default bindings are used for the service messages as specified.

Chapter 5. Web services 871

Related tasks

“Attaching a policy set to a service artifact” on page 930
Attach a policy set to a service artifact, such as an application, service, or endpoint to define the quality of

services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,

WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and

Secure Sockets Layer (SSL) transport.

“Setting default policy set bindings” on page 875
You can set provider and client default policy set bindings that are used as the global security default

policy set bindings. The specified global security default bindings apply to all Web services unless the

bindings are overridden at the attachment point, at the server, or at a security domain.

“Default policy set bindings collection” on page 879
Use this page to specify the service provider and client default bindings. The specified service provider

and client bindings are used at the cell (global security) level unless these specified bindings are

overridden at the attachment point, at the server, or at a security domain.

Related reference

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Server default binding settings:

Use this page to specify the server default bindings if you want to override the default bindings that are

specified for the cell (global security) or the security domain to which the server is deployed.

 To view this administrative console page, complete the following actions:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. From Security, click Default policy set bindings.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Policy set bindings for servers

To understand default policy set bindings, it is important to first understand policy set bindings.

Policy set bindings contain platform-specific information, such as keystore, authentication information or

persistent information that is required by a policy set attachment. A policy set attachment is a policy set

that is attached to an application resource. In WebSphere Application Server Version 7.0, there are two

types of bindings, general bindings and application specific bindings.

There are two types of general bindings, general service provider bindings and general service client

bindings. You can configure one or more general service provider bindings and one or more general

service client bindings across a range of policy sets. Additionally, you can re-use these general bindings

across applications and for trust service attachments. To define and manage general bindings, in the

administrative console click Services > Policy sets > General provider policy set bindings or Services

> Policy sets > General client policy set bindings. The general service provider and client bindings

have independent settings that you can customize to meet the needs of your environment. To learn more

about general bindings, read about defining and managing policy set bindings.

You can create application specific bindings when you attach a policy set to an application resource.

These bindings are specific to and defined to the characteristics of the policy. Application specific bindings

are capable of providing configuration for advanced policy requirements, such as multiple signatures;

however, these bindings are only reusable within an application. Furthermore, application specific bindings

have limited reuse across policy sets. To assign application specific bindings to an application for service

providers, in the administrative console click Applications > Applications Types > WebSphere

872 Administering WebSphere applications

enterprise applications > application_name> Service provider policy sets and bindings > Assign

Binding > New Application Specific Binding. To assign application specific bindings to an application for

service clients, in the administrative console click Applications > Applications Types > WebSphere

enterprise applications > application_name> Service client policy sets and bindings > Assign

Binding > New Application Specific Binding.

Default policy set bindings for servers

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default cell (global

security) level and default server level bindings has also changed in this version of the product. In

the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can configure

one set of default bindings for the cell and optionally configure one set of default bindings for each

server. In Version 7.0, you can configure one or more general service provider bindings and one or

more general service client bindings.

General service provider and client bindings are not linked to a particular policy set, and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding to use as the default

for an application server. Setting the server default bindings is useful if you want the services that are

deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by assigning a security

domain with a default binding to your server.

You can specify default bindings for your service provider or client that are used at the cell (global

security) level, for a security domain, or for a particular server. The default bindings are used in the

absence of an overriding binding specified at a lower scope. The application server uses the following

order of precedence, from lowest to highest, when determining which default bindings to use:

1. Server level default

2. Security domain level default

3. Cell (global security) default

The general bindings that are provided with the product are initially set as the cell (global security) default

bindings. The default service provider binding and the default service client bindings are used when no

application specific bindings or trust service bindings are assigned to a policy set attachment. If you do not

want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding. To specify a cell

(global security) default bindings, in the administrative console click Services > Policy sets > Default

policy set bindings. For environments with multiple security domains, you can optionally choose the

general provider and general client bindings that you want to use as the default bindings for a domain. To

learn more about default policy set bindings for the cell (global security), see the default policy set bindings

documentation.

In addition to choosing default bindings for the cell (global security), you can also choose the general

provider and general client bindings that you want to use as the default bindings for a server. Use this

page to choose the default bindings for a server from the administrative console. Click Servers > Server

Types > WebSphere application servers > server_name and then from Security, click Default policy set

bindings. If you do not choose a general binding as the default for a server, the default bindings for the

domain in which the server resides is used. If you do not choose a binding as the default for a domain, the

default bindings for the cell (global security) is used. You must choose a default service provider and

default service client bindings for the cell. The general bindings that are included with the product are

initially set as the cell (global security) default bindings. You cannot delete a binding that has been

Chapter 5. Web services 873

selected as the default binding for server, a domain, or the cell. Before you delete the binding, you must

select a different binding as the default or choose to use the defaults for the cell (global security).

Note:

If you have an application that contains one or more application specific bindings that are

configured at the WebSphere Application Server V6.1 level, this application is a V6.1 application. If

you have applications that are deployed to Version 6.1 servers within the Version 7.0 application

server environment or you have V6.1 applications that are deployed to V7.0 application servers,

you can specify Version 6.1 default policy set bindings for the cell. These bindings are used for both

client and provider policy set attachments within V6.1 applications and attachments to service

applications that are deployed to a V6.1 server. Additionally, these default bindings are used for

V6.1 attachments unless they are overridden at the attachment point by an application specific

binding or a V6.1 server default binding. You can upgrade V6.1 bindings to WebSphere Application

Server V7.0 bindings for by using the upgradeBindings command using the wsadmin tool, if the

V6.1 application is not installed on WebSphere Application Server V6.1.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Server default provider binding:

Specifies the default server binding. Select the name of the binding you want to use as the default for

service providers deployed to this server.

 If you are using multiple security domains, the name of the security domain to which the binding is scoped

is specified with the name of the server default provider binding. Only bindings that are scoped to global

security or to the security domain to which the server is assigned are available in the list.

Note: It is a best practice to specify a default binding that includes all of the policy types. This practice

ensures that your default service provider binding has the necessary configuration for all policy

types that you want to use.

Server default client binding:

Specifies the default client binding. Select the name of the binding you want to use as the default for

service clients deployed to this server.

 If you are using multiple security domains, the name of the security domain to which the binding is scoped

is specified with the name of the server default client binding. Only bindings that are scoped to global

security or to the security domain to which the server is assigned are available in the list.

Note: It is a best practice to specify a default binding that includes all of the policy types. This practice

ensures that your default service client binding has the necessary configuration for all policy types

that you want to use.

Version 6.1 default bindings:

If you have a Version 6.1 application that you want to use in the Version 7.0 application server

environment and you want to specify Version 6.1 default bindings for this server, you can click this link to

specify Version 6.1 default bindings.

Server Version 6.1 default policy set bindings:

874 Administering WebSphere applications

Use this page to specify the server Version 6.1 default policy set bindings for this server. These default

bindings are used for client and provider policy set attachments for applications that are deployed to

Version 6.1 servers, and for Version 6.1 applications that are deployed to Version 7.0 servers. The default

bindings are used for Version 6.1 attachments unless overridden at the attachment point.

 To view this administrative console page, complete the following actions:

1. Click Servers > Server Types > WebSphere application servers > server_name

2. Under Security, click Default policy set bindings

3. Click Version 6.1 default policy set bindings

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Version 6.1 default policy set bindings

You can install a WebSphere Application Server Version 6.1 Feature Pack for Web Services application

within the WebSphere Application Server Version 7.0 environment. If your application contains Version 6.1

custom bindings, the application is defined as a Version 6.1 application to the application server.

Additionally, if your application is installed on a WebSphere Application Server Version 6.1 Feature Pack

for Web Services server within the WebSphere Application Server Version 7.0 environment, the custom

binding is created as a Version 6.1 custom binding.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Bindings configuration name:

Specifies the name of the policy set bindings configuration. This field is read-only for default policy set

bindings.

 Button Resulting action

Add Adds a policy to the collection.

Delete Removes a policy from the collection.

Setting default policy set bindings

You can set provider and client default policy set bindings that are used as the global security default

policy set bindings. The specified global security default bindings apply to all Web services unless the

bindings are overridden at the attachment point, at the server, or at a security domain.

Before you begin

You must first install and configure an application server. After the application server is installed, you must

install a Java API for XML-Based Web Services (JAX-WS) application onto your server. Now, you are

ready to attach a policy set to the Web service application. You can define and manage general service

provider and client policy set bindings for your Web service resource by using the administrative console.

About this task

Policy set bindings for servers

After you understand policy set bindings, then it is easier to understand how the default bindings are used.

Policy set bindings contain platform-specific information, such as keystore, authentication information or

persistent information that is required by a policy set attachment. A policy set attachment is a policy set

Chapter 5. Web services 875

that is attached to an application resource. In WebSphere Application Server Version 7.0, there are two

types of bindings, general bindings and application specific bindings.

There are two types of general bindings, general service provider bindings and general service client

bindings. You can configure one or more general service provider bindings and one or more general

service client bindings and then use them across a range of policy sets. Additionally, you can re-use these

general bindings across applications and for trust service attachments. To define and manage general

bindings, in the administrative console click Services > Policy sets > General provider policy set

bindings or Services > Policy sets > General client policy set bindings. The general service provider

and client bindings have independent settings that you can customize to meet the needs of your

environment.

You can create application specific bindings when you attach a policy set to a Web service application

resource. These bindings are specific to and defined by to the characteristics of the defined policy.

Application specific bindings are capable of providing configuration for advanced policy requirements, such

as multiple signatures; however, these bindings are only reusable within an application. Furthermore,

application specific bindings have limited reuse across policy sets. To assign application specific bindings

to an application for service providers, in the administrative console click Applications > Applications

Types > WebSphere enterprise applications > application_name > Service provider policy sets and

bindings. Select a Web service resource with an attached policy and click Assign Binding > New

Application Specific Binding. To assign application specific bindings to an application for service clients,

in the administrative console click Applications > Applications Types > WebSphere enterprise

applications > application_name > Service client policy sets and bindings . Select a Web services

resource with an attached policy and click Assign Binding > New Application Specific Binding. You can

additionally assign application specific bindings for service providers or service clients using the

administrative console and click Services > Service providers > application_name or Services >

Service clients > application_name and then select a Web services resource with an attached policy

and assign your bindings.

To learn more about general bindings or application specific bindings, read about defining and managing

policy set bindings.

Default policy set bindings

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default global

security (cell) level and default server level bindings has also changed in this version of the product.

In the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can

configure one set of default bindings for the cell and optionally configure one set of default bindings

for each server. In Version 7.0, you can configure one or more general service provider bindings

and one or more general service client bindings. After you have configured general bindings, you

can specify which of these bindings is the global default binding. You can also optionally specify

general bindings that are used as the default for an application server or a security domain.

General service provider and client bindings are not linked to a particular policy set, and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding type to use as the

default for an application server. Setting the server default bindings is useful if you want the services that

are deployed to a server to share binding configuration. You can also share binding configuration by either

assigning the binding to each application that is deployed to the server or by setting default bindings for a

security domain and assigning the security domain to one or more servers.

You can specify default bindings for your service provider or client that are used at the global security

(cell) level, for a security domain, for a particular server. The default bindings are used in the absence of

an overriding binding specified at a lower scope. The following list is the order of precedence from lowest

to highest that the application server uses to determine which default bindings to use:

876 Administering WebSphere applications

1. Server level default

2. Security domain level default

3. Global security (cell) default

The sample general bindings that are provided with the product are initially set as the global security (cell)

default bindings. The default service provider binding and the default service client bindings are used when

no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust

service attachments, the default bindings are used when no trust specific bindings are assigned. If you do

not want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding. To specify your global

security (cell) default bindings, in the administrative console click Services > Policy sets > Default policy

set bindings. For environments with multiple security domains, you can optionally choose the general

provider and general client bindings that you want to use as the default bindings for a domain.

In addition to choosing default bindings for the global security (cell), you can also choose the general

provider and general client bindings that you want to use as the default bindings for a server. This is only

necessary if you want to use different default bindings for a particular server than those used by the other

servers in the security domain or cell. To choose the default bindings for a server from the administrative

console, click Servers > Server Types > WebSphere application servers > server_name and then from

Security, click Default policy set bindings. If you do not choose a general binding as the default for a

server, the default bindings for the domain in which the server resides is used. If you do not choose a

binding as the default for a domain, the default bindings for the global security (cell) are used. You must

choose a default service provider and default service client bindings for the cell. The general bindings that

are included with the product are initially set as the global security (cell) default bindings. You cannot

delete a binding that is used as part of any policy set attachment or specified as the default binding for the

server, a domain, or the cell. To learn more about defining default bindings for a server, see the server

default bindings documentation.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Open the administrative console.

2. To set global security default policy set bindings, select Services > Policy sets > Default policy set

bindings.

3. Select the default service provider binding. The default service provider binding is used as the default

for policy set attachments unless the provider or client binding is overridden at the attachment point, at

the server, or at a security domain. The default setting is Provider sample.

4. Select the default service client binding. If you specify a default service client binding, the selected

binding overrides the default bindings that are specified for the cell or the security domain to which the

server is deployed. The default setting is Client sample.

5. If multiple security domains are enabled, you can view the default provider bindings and the default

client bindings for each security domain that is defined in the security domain default bindings

collection. You can select the security domain name link if you want to access the domain and select

different default bindings. Additionally, you can select the default provider binding links or the default

client binding links to access the default bindings and select different default binding settings.

6. Click Apply to apply selected bindings as the global default bindings.

7. Click Save to save your changes to the master configuration.

8. (optional) If you are using a Version 6.1 application, you can specify server V6.1 default policy set

bindings. To set these bindings, select Services > Policy sets > Default policy set bindings >

Version 6.1 default policy set bindings.

Chapter 5. Web services 877

Note:

If you have an application that contains one or more application specific bindings that are

configured at the WebSphere Application Server V6.1 level, this application is a V6.1

application. If you have applications that are deployed to Version 6.1 servers within the Version

7.0 application server environment or you have V6.1 applications that are deployed to V7.0

application servers, you can specify Version 6.1 default policy set bindings for the cell. These

bindings are used for both client and provider policy set attachments within V6.1 applications

and attachments to service applications that are deployed to a V6.1 server. Additionally, these

default bindings are used for V6.1 attachments unless they are overridden at the attachment

point by an application specific binding or a V6.1 server default binding. You can upgrade V6.1

bindings to WebSphere Application Server V7.0 bindings for by using the upgradeBindings

command using the wsadmin tool, if the V6.1 application is not installed on WebSphere

Application Server V6.1.

Results

When you complete these steps, you have defined your global security (cell) default policy set bindings

and domain default policy set bindings, if applicable.

Example

Suppose that you do not want to use the provided general provider binding, Provider sample, as your

default service provider binding. To take advantage of existing bindings, you can copy and modify the

Provider sample to meet your business needs. This example assumes that your server environment has

SecurityDomain1 and SecurityDomain2 defined.

1. Copy and modify the provided Provider sample general service provider binding. Click Services >

Policy sets > General provider policy set bindings. Select Provider sample > copy. Name the

new general provider binding, MyServiceProviderbinding, and provide a description for the new

binding.

2. Copy and modify the provided Client sample general service client binding. Click Services > Policy

sets > General client policy set bindings. Select Client sample > copy. Name the new general

client binding, MyServiceClientbinding, and provide a description for the new binding.

3. To specify the default policy set bindings for your global security (cell) and for your domains, click

Services > Policy sets > Default policy set bindings. From this page, select

MyServiceProviderbinding as the default service provider binding, and select MyClientProviderbinding

as the default service client binding.

4. Click Apply and Save to save your changes to the master configuration.

Assigning a domain default binding is optional. Generally, you assign domain default policy set bindings

only when you want the servers in the domain to use different default bindings than the rest of the cell. In

this example, suppose you have defined another general provider binding, MyServiceProviderbinding2,

and you want to specify this binding as the domain default binding for your SecurityDomain1 domain.

1. From the security domain default bindings collection click SecurityDomain1 > Default policy set

bindings. From this page, you can select MyServiceProviderbinding2 as the service provider domain

default binding.

2. Click Apply and Save to save your changes to the master configuration.

878 Administering WebSphere applications

Related tasks

“Managing policy sets using the administrative console” on page 832
You can use policy sets, or assertions that define services, to simplify your Web services configuration

because policy sets group security and other Web services settings into reusable units. You can use the

administrative console to create, modify, and delete custom policy sets.

“Server default binding settings” on page 872
Use this page to specify the server default bindings if you want to override the default bindings that are

specified for the cell (global security) or the security domain to which the server is deployed.

“Setting server default bindings for policy sets” on page 868
You can set server default bindings if you want the policy set attachments for service providers and clients

that are deployed to the server to use bindings that are different than those that are specified for the cell.

If you use multiple security domains, your default server bindings will also override the security domain

default bindings.

Related reference

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Default policy set bindings collection:

Use this page to specify the service provider and client default bindings. The specified service provider

and client bindings are used at the cell (global security) level unless these specified bindings are

overridden at the attachment point, at the server, or at a security domain.

 To view this administrative console page, click Services > Policy sets > Default policy set bindings.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Policy set bindings for servers

To understand default policy set bindings, it is important to first understand policy set bindings.

Policy set bindings contain platform-specific information, such as keystore, authentication information or

persistent information that is required by a policy set attachment. A policy set attachment is a policy set

that is attached to an application resource. In WebSphere Application Server Version 7.0, there are two

types of bindings, general bindings and application specific bindings.

There are two types of general bindings, general service provider bindings and general service client

bindings. You can configure one or more general service provider bindings and one or more general

service client bindings across a range of policy sets. Additionally, you can re-use these general bindings

across applications and for trust service attachments. To define and manage general bindings, in the

administrative console click Services > Policy sets > General provider policy set bindings or Services

> Policy sets > General client policy set bindings. The general service provider and client bindings

have independent settings that you can customize to meet the needs of your environment. To learn more

about general bindings, read about defining and managing policy set bindings.

You can create application specific bindings when you attach a policy set to an application resource.

These bindings are specific to and defined to the characteristics of the policy. Application specific bindings

are capable of providing configuration for advanced policy requirements, such as multiple signatures;

however, these bindings are only reusable within an application. Furthermore, application specific bindings

have limited reuse across policy sets. To assign application specific bindings to an application for service

providers, in the administrative console click Applications > Applications Types > WebSphere

enterprise applications > application_name> Service provider policy sets and bindings > Assign

Binding > New Application Specific Binding. To assign application specific bindings to an application for

Chapter 5. Web services 879

service clients, in the administrative console click Applications > Applications Types > WebSphere

enterprise applications > application_name> Service client policy sets and bindings > Assign

Binding > New Application Specific Binding.

Default policy set bindings for servers

Note: In WebSphere Application Server Version 7.0, the security model is enhanced to a domain-centric

security model instead of a server-based security model. The configuration of the default cell (global

security) level and default server level bindings has also changed in this version of the product. In

the WebSphere Application Server Version 6.1 Feature Pack for Web Services, you can configure

one set of default bindings for the cell and optionally configure one set of default bindings for each

server. In Version 7.0, you can configure one or more general service provider bindings and one or

more general service client bindings.

General service provider and client bindings are not linked to a particular policy set, and they provide

configuration information that you can reuse across multiple applications. You can create and manage

general provider and client policy set bindings and then select one of each binding to use as the default

for an application server. Setting the server default bindings is useful if you want the services that are

deployed to a server to share binding configuration. You can also accomplish this sharing of binding

configuration by assigning the binding to each application deployed to the server or by assigning a security

domain with a default binding to your server.

You can specify default bindings for your service provider or client that are used at the cell (global

security) level, for a security domain, or for a particular server. The default bindings are used in the

absence of an overriding binding specified at a lower scope. The application server uses the following

order of precedence, from lowest to highest, when determining which default bindings to use:

1. Server level default

2. Security domain level default

3. Cell (global security) default

The general bindings that are provided with the product are initially set as the cell (global security) default

bindings. The default service provider binding and the default service client bindings are used when no

application specific bindings or trust service bindings are assigned to a policy set attachment. If you do not

want to use the provided Provider sample as the default service provider binding, you can select an

existing general provider binding or create a new general provider binding to meet your business needs.

Likewise, if you do not want to use the provided Client sample as the default service client binding, you

can select an existing general client binding or create a new general client binding. To specify a cell

(global security) default bindings, in the administrative console click Services > Policy sets > Default

policy set bindings. For environments with multiple security domains, you can optionally choose the

general provider and general client bindings that you want to use as the default bindings for a domain. To

learn more about default policy set bindings for the cell (global security), see the default policy set bindings

documentation.

In addition to choosing default bindings for the cell (global security), you can also choose the general

provider and general client bindings that you want to use as the default bindings for a server. Use this

page to choose the default bindings for a server from the administrative console. Click Servers > Server

Types > WebSphere application servers > server_name and then from Security, click Default policy set

bindings. If you do not choose a general binding as the default for a server, the default bindings for the

domain in which the server resides is used. If you do not choose a binding as the default for a domain, the

default bindings for the cell (global security) is used. You must choose a default service provider and

default service client bindings for the cell. The general bindings that are included with the product are

initially set as the cell (global security) default bindings. You cannot delete a binding that has been

selected as the default binding for server, a domain, or the cell. Before you delete the binding, you must

select a different binding as the default or choose to use the defaults for the cell (global security).

880 Administering WebSphere applications

Note:

If you have an application that contains one or more application specific bindings that are

configured at the WebSphere Application Server V6.1 level, this application is a V6.1 application. If

you have applications that are deployed to Version 6.1 servers within the Version 7.0 application

server environment or you have V6.1 applications that are deployed to V7.0 application servers,

you can specify Version 6.1 default policy set bindings for the cell. These bindings are used for both

client and provider policy set attachments within V6.1 applications and attachments to service

applications that are deployed to a V6.1 server. Additionally, these default bindings are used for

V6.1 attachments unless they are overridden at the attachment point by an application specific

binding or a V6.1 server default binding. You can upgrade V6.1 bindings to WebSphere Application

Server V7.0 bindings for by using the upgradeBindings command using the wsadmin tool, if the

V6.1 application is not installed on WebSphere Application Server V6.1.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Default service provider binding:

Specifies the default service provider binding that is used as the default for policy set attachments. You

can override this default at the attachment point or by a lower level default.

Note: It is a best practice to specify a default binding that includes all of the policy types. This practice

ensures that your default service provider binding has the necessary configuration for all policy

types that you want to use..

Default service client binding:

Specifies the default service client binding that is used as the default for policy set attachments. You can

override this default at the attachment point or by a lower level default.

Note: It is a best practice to specify a default binding that includes all of the policy types. This practice

ensures that your default service client binding has the necessary configuration for all policy types

that you want to use.

Security domain default bindings:

Specifies a collection of security domain default bindings. This collection only displays if you are using

multiple security domains.

 If you are using multiple security domains, this collection displays the default client and provider bindings

for each security domain. You can select the security domain name link if you want to access the domain

and select different default bindings.

Security domain:

Specifies the name of a security domain.

Default provider binding:

Specifies the default service provider binding for the security domain. You can view the default provider

binding settings by clicking on the name of default provider binding.

Default client Binding:

Chapter 5. Web services 881

Specifies the default client binding for the security domain. You can view the default client binding settings

by clicking on the name of default client binding.

Version 6.1 default bindings:

If you have a Version 6.1 application that you want to use in the Version 7.0 application server

environment and you want to specify Version 6.1 default bindings for this server, you can click this link to

specify Version 6.1 default bindings.

Version 6.1 default policy set bindings:

Use this page to specify Version 6.1 default policy set bindings for the cell (global security). These

bindings are used for both client and provider policy set attachments within Version 6.1 applications and

attachments to service applications that are deployed to a Version 6.1 server. These default bindings are

used for Version 6.1 attachments unless they are overridden at the attachment point or by a Version 6.1

server default binding.

 To view this administrative console page when you are specifying Version 6.1 cell level default policy set

bindings, complete the following actions:

1. Click Services > Policy sets > Default policy set bindings

2. Click Version 6.1 default policy set bindings

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Version 6.1 default policy set bindings

You can install a WebSphere Application Server Version 6.1 Feature Pack for Web Services application

within the WebSphere Application Server Version 7.0 environment. If your application contains Version 6.1

custom bindings, the application is defined as a V6.1 application to the application server. Additionally, if

your application is installed on a WebSphere Application Server Version 6.1 Feature Pack for Web

Services server within the WebSphere Application Server Version 7.0 environment, the custom binding is

created as a V6.1 custom binding.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Bindings configuration name:

Specifies the name of the policy set bindings configuration. This field is read-only for default policy set

bindings.

Policies – HTTP transport:

Links to the HTTP transport policy settings page where you define the HTTP transport settings. The HTTP

features and HTTP connection polices are applied to outbound messages. The response listener policy is

enforced on inbound messages.

Policies – SSL transport:

Links to the SSL transport policy configuration settings page where you define the SSL transport settings.

882 Administering WebSphere applications

Policies – WS-Addressing:

Links to the configuration settings page for the WS-Addressing policy. In a network deployment

environment, use this page to enable or disable workload management. Otherwise, you can attach the

WS-Addressing policy set to service resources. No additional configuration is required.

Policies – WS-ReliableMessaging:

Links to the page where you configure the WS-ReliableMessaging bindings.

Policies – WS-Security:

Links to the WS-Security policy set bindings settings page where the WS-Security binding are configured.

Domain default bindings settings:

Use this page to specify the default policy set bindings for this security domain.

 To view this administrative console page, complete the following actions:

1. Click Security domains > domain_name

2. From Web Services Bindings, click Default policy set bindings

Alternatively, you can view this administrative console page when multiple security domains are defined:

1. Click Services > Policy sets > Default policy set bindings>domain_name

2. In the Security Domain Default Bindings collection, click domain_name

3. From Web Services Bindings, click Default policy set bindings

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Domain default provider binding:

Specifies the default provider binding for a specific security domain. You can specify None if you want to

use the server or global default bindings for services deployed to this server. If you specify a server default

binding, this binding takes precedence over the default bindings that are specified for the security domain

to which the server is deployed. The name of the security domain to which each binding is scoped is

displayed to the right of the name of the binding.

Note: It is a best practice to specify a binding that includes all of the policy types. This practice ensures

that your default service provider binding has the necessary configuration for all policy types that

you want to use.

Domain default client binding:

Specifies the default client binding for a specific security domain. You can specify None if you want to use

the server or global default bindings for services deployed to this server. If you specify a server default

binding, this binding will take precedence over the default bindings specified for the security domain to

which the server is deployed. The name of the security domain to which each binding is scoped is

displayed to the right of the name of the binding.

Chapter 5. Web services 883

Note: It is a best practice to specify a binding that includes all of the policy types. This practice will ensure

that your default client binding has the necessary configuration for all policy types that you want to

use.

Modifying default bindings at the server or cell level for policy sets

You can define default bindings for HTTP transport, JMS transport, Secure Sockets Layer (SSL) transport,

WS-Addressing, WS-ReliableMessaging, and WS-Security policies.

Before you begin

To create or modify server default bindings, you must first install and configure an application server.

About this task

You can modify default cell bindings that are delivered with the product. Default bindings are not linked to

a particular policy set and they provide default settings that might be used for sharing configuration

information across multiple applications.

You can create default bindings for individual application servers and customize those bindings to meet

your requirements. The policy set bindings are optional. If a policy set binding is not defined at the server

level, then the default cell level bindings are used. To modify these default bindings, complete the following

steps:

1. Open the administrative console.

2. To see which bindings are defined as the defaults for the cell or server, click Services > Policy sets >

Default policy sets bindings.

After seeing which bindings are defaults, you can select and edit them from the General provider or

General client policy set bindings pages.

3. To edit the default bindings, see “Setting default policy set bindings” on page 875.

Results

When you finish these steps, the default policy set bindings are modified. If you created default bindings at

the server level, those default bindings are used instead of the default bindings at the cell level.

What to do next

You can create application specific bindings for your policy sets. Read about creating application specific

bindings for policy set attachments.

884 Administering WebSphere applications

Related tasks

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Reassigning bindings to policy sets”
After you create a custom attachment binding, you can reassign that binding to another service artifact if

necessary. You can reset a service artifact, such as an application, service, or endpoint to use the

inherited bindings or default bindings.

Related reference

“Version 6.1 default policy set bindings” on page 882
Use this page to specify Version 6.1 default policy set bindings for the cell (global security). These

bindings are used for both client and provider policy set attachments within Version 6.1 applications and

attachments to service applications that are deployed to a Version 6.1 server. These default bindings are

used for Version 6.1 attachments unless they are overridden at the attachment point or by a Version 6.1

server default binding.

“Default policy set bindings collection” on page 879
Use this page to specify the service provider and client default bindings. The specified service provider

and client bindings are used at the cell (global security) level unless these specified bindings are

overridden at the attachment point, at the server, or at a security domain.

Reassigning bindings to policy sets

After you create a custom attachment binding, you can reassign that binding to another service artifact if

necessary. You can reset a service artifact, such as an application, service, or endpoint to use the

inherited bindings or default bindings.

Before you begin

To reassign a application specific binding or a default binding, there must be an assigned binding for the

service artifact.

About this task

You can assign bindings to policy sets and other service artifacts. If you created a policy set and attached

it to a service artifact, you can reassign the binding that was initially assigned to that policy set.

1. Open the administrative console.

2. To reassign a binding for your service provider, click Applications > Application Types > WebSphere

enterprise applicationsapplication_name > Service provider policy sets and bindings.

To reassign a binding for your service client, click Applications > Application Types > WebSphere

enterprise applicationsapplication_name > Service client policy sets and bindings.

3. Select the check box for the service artifact with an attachment binding.

4. Select Assign Binding.

5. Select the binding that you want to assign.

6. Click Save, to save your changes to the master configuration.

Results

The service artifact now inherits the policy set bindings that are indicated in either the Service provider

policy sets and bindings or Service client policy sets and bindings panel.

Note: Reassigning the binding for a service artifact only reassigns it for that service artifact and any

inherited artifacts. It does not reassign the binding for other non-related and non-inherited

attachments to the same policy set or to a different policy set.

Chapter 5. Web services 885

Example

If you have the application, app1 with an attached policy set Username WSSecurity default, and you want

to define custom bindings, then perform the following steps:

1. Locate the application in the Applications > Application Types > WebSphere enterprise

applicationsapplication_name collection.

2. Click the app1 application.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings link.

4. Select the check box for theapp1 application where the custom attachment binding is defined.

5. Click Assign Binding and select New.

6. Provide a name for the application specific bindings.

7. Add required policies to the new application specific bindings.

8. Configure the bindings.

9. Click Save, to save your changes to the master configuration.

What to do next

Restart the application that contains the policy set where you reassigned the bindings.

Related tasks

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

Transformation of policy and binding assertions for WSDL

Web Services security does not fully support the OASIS WS-SecurityPolicy Version 1.2 standard.

However, several of the policy and binding assertions supported by WebSphere Application Server can be

transformed and represented as WS-SecurityPolicy Version 1.2 assertions. The supported assertions are

transformed when a Web Services Description Language (WSDL) or Web Services MetadataExhange

(WS-MEX) request is received in a message, and also when the client receives a policy containing

WS-SecurityPolicy 1.2 assertions.

When the WebSphere Application Server receives a WSDL or WS-MEX request, some policy and binding

assertions are transformed into standard assertions and included in the policy that is embedded into the

WSDL. In addition, when the client receives a policy containing these WS-SecurityPolicy assertions, the

assertions are transformed back into product-specific assertions so that the Application Server run time

can process them. This transformation provides interoperability between Application Server and other

systems that support the WS-SecurityPolicy version 1.2 standard.

The following WS-SecurityPolicy 1.2 assertions can be represented in the policy returned on WSDL, or a

WS-MEX request.

EncryptSignature

Represented in the product using XPath expressions in the encrypted elements.

EncryptBeforeSigning

The order attribute of the encryptionInfo and signingInfo elements on the outbound section of the

bindings determines the order in which the transform takes place, and whether this assertion is

set. The default behavior is to sign before encrypting.

ContentEncryptedElements

Represented using XPath expressions ending with /node() in the encrypted elements. The

Application Server can consume this policy assertion, but existing XPath expressions that end with

/node() are not transformed.

886 Administering WebSphere applications

KerberosToken

Represented using the custom token in the policy and bindings. The Kerberos custom token

assertion specifies a local name of http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ, or http://docs.oasis-open.org/wss/oasis-wss-kerberos-
token-profile-1.1#Kerberosv5_AP_REQ, depending on the desired Kerberos token type. Also, there

is a custom property in the bindings, com.ibm.wsspi.wssecurity.krbtoken.requireDerivedKey, which

specifies use of derived keys for Kerberos. Using the local name of the custom token, along with

the derived key custom property from the product representation, an equivalent Version 1.2

representation can be created.

Require<variable>Reference, where <variable> is one of the following: KeyIdentifier, IssuerSerial,

EmbeddedToken, or Thumbprint

Rrepresented using the type attribute on keyInfo in the bindings.

MustSupportRef<variable>, where <variable> is one of the following: KeyIdentifier, IssuerSerial,

EmbeddedToken, or Thumbprint

This assertion is not represented in the WebSphere Application Server policies, but the product

supports all four types of references.

Protection of the SignatureConfirmation element

The SignatureConfirmation element is implicitly signed and encrypted. However, if nothing is

encrypted on the response, then the SignatureConfirmation element is not encrypted, and if

nothing is signed on the response, then the SignatureConfirmation element is not signed. All

XPath expressions representing the signing or encryption of the SignatureConfirmation element

are removed from the policy during transformation. The explicitlyProtectSignatureConfirmation

attribute in the Web services security binding is provided to disable implicit signature and

encryption of the SignatureConfirmation element on the response message. This provides

interoperability with WebSphere Application Server Version 6.1.x. To add the attribute, check the

option Disable implicit protection for Signature Confirmation in the Authentication and

protection panel for the default policy set bindings. If the explicitlyProtectSignatureConfirmation

attribute is present in the binding, all XPath expressions representing the signing or encryption of

the SignatureConfirmation element remain unchanged during transformation.

SC13SecurityContextToken

Version 1.3 of the Security Context Token is supported by specifying the local name

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512, in the binding for the security

context token.

RequireImpliedDerivedKeys

This is supported by adding the custom property,

com.ibm.ws.wssecurity.token.generateImpliedDerivedKey, in the token generator bindings.

ExactlyOne

This assertion is transformed when callers are used. Callers specify which token to use for

authentication. The ExactlyOne assertion communicates the caller tokens that the service expects.

All caller options are enclosed inside the <ExactlyOne> assertion, and each option is enclosed

inside the <wsp:All> assertion. As the name implies, the client sends only one of the token types.

For example, in the server side bindings, using the product representation, the following caller

options are specified:

 <caller order="1">

 <jAASConfig configName="system.wss.caller"/>

 <callerIdentity uri="" localName="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken"/>

 </caller>

 <caller order="2">

 <jAASConfig configName="system.wss.caller"/>

 <callerIdentity localName="LTPA" uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2" />

</caller>

This assertion indicates that a UsernameToken token or an LTPA token is used as the caller. The

requirement to use one of these two types of tokens is communicated to the client in the

transformed policy, as in the following example:

Chapter 5. Web services 887

<sp:ExactlyOne>

<wsp:All>

<sp:SupportingTokens>

 <wsp:Policy wsu:Id="request:token_auth">

 <sp:UsernameToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient">

 <wsp:Policy>

 <sp:WssUsernameToken10 />

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

</sp:SupportingTokens>

</wsp:All>

<wsp:All>

<sp:SupportingTokens>

<wsp:Policy wsu:Id="request:token_auth">

 <spe:LTPAToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/AlwaysToRecipient" />

</wsp:Policy>

 </sp:SupportingTokens>

<wsp:All>

</sp:ExactlyOne>

The product-specific policy assertions LTPAToken and LTPAPropagationToken are not altered during

transformation. These assertions are included in the embedded policy in the WSDL if they are present in

the policy being transformed. This allows a WebSphere Application Server client and WebSphere

Application Server service provider to interoperate.

Related concepts

“WSDL” on page 362
Web Services Description Language (WSDL) is an Extensible Markup Language (XML)-based description

language. This language was submitted to the World-Wide Web Consortium (W3C) as the industry

standard for describing Web services. The power of WSDL is derived from two main architectural

principles: the ability to describe a set of business operations and the ability to separate the description

into two basic units. These units are a description of the operations and the details of how the operation

and the information associated with it are packaged.

Related reference

“WS-Security authentication and protection for general bindings” on page 907
Use the links on this page to configure authentication, signature, and encryption information that the policy

requires when using general bindings.

Configuring the callers for general and default bindings

The caller specifies the token or message part that is used for authentication.

Before you begin

Before you can complete this task, you must create a new policy set and attach it to a service, or copy

and edit one of the sample system policy sets. For more information, read the topics Creating policy sets

using the administrative console and Attaching a policy set to a service artifact.

About this task

The caller is used to indicate which of the tokens on the incoming message is the caller of the request.

This information is used to create authentication credentials. You can use the WebSphere Application

Server administrative console to access, view and configure caller settings for tokens and message parts.

Note: WebSphere Application Server Version 7.0 provides support for multiple callers. The caller token

used for authentication is the one with highest priority, based on decreasing order of preference.

You can modify the order of the callers, as described in the topic Changing the order of the callers

for a token or message part.

1. Create a new policy set and attach it to a service, or copy and edit a sample system policy set. Add

the WS-Security policy, as described in the topic Creating policy sets using the administrative console.

2. Edit the general or default bindings for the WS-Security policy.

888 Administering WebSphere applications

v To edit general provider bindings for WebSphere Application Server version 7.0, click Services →

Policy Sets → General Provider policy set bindings. A caller is specified for the provider bindings

only, not for the client bindings.

v To edit default bindings for WebSphere Application Server Version 6.x, click Services → Policy Sets

→ Default policy set bindings.

3. Navigate to the Callers panel by clicking on the WS-Security policy, then click the Caller link.

4. Click New to create a new caller.

5. Enter the Name and Caller identity local part information for the new caller. For more information, read

about caller settings.

6. When you have finished entering the configuration information for the caller, click Apply to save the

caller.

7. If this is the first caller created for the policy set, the caller is automatically assigned as the highest

priority caller, with an order of 1 (one). If other callers are already defined, the new caller is added at

the end of the ordered list and is automatically assigned the lowest priority. You can change the order

of the callers using the Move up and Move down buttons.

Results

When assigning orders to callers for migrated bindings, the callers are initially displayed with no order

attribute. You cannot save the bindings until you assign order attributes to all the callers. Use the Move up

and Move down buttons to change the order of the callers until they are in the correct order.

Signing and encrypting message parts using policy sets

With Web services, you can sign message parts, encrypt message parts, or both, based on the quality of

service defined for a policy set. You can accomplish these actions by defining the binding information in a

custom attachment binding.

Before you begin

Before you begin this task, attach a policy set to a service artifact such as an application, service or

endpoint and create a custom attachment binding. Read about creating custom attachment bindings for

policy sets. The policy set that is attached to the service artifact must include a WS-Security policy that

specifies message parts to be signed or encrypted. Read about securing message parts using the

administrative console.

About this task

To sign message parts, encrypt message parts, or both, based on the quality of service defined for a

policy set, perform the following steps:

 1. Open the administrative console.

 2. To sign and encrypt message parts for a service provider, click Applications > Enterprise

applications > application_name > Service provider policy sets and bindings. To sign and

encrypt message parts for a service client, click Applications > Enterprise applications >

application_name > Service client policy sets and bindings.

 3. Click the binding name link of the service artifact with a custom attachment binding.

 4. If the binding does not contain WS-Security policy set bindings, then click Add and select

WS-Security from the list.

 5. Click WS-Security policy set bindings.

 6. Click Authentication and protection. The resulting panel contains the following four tables:

v Protection tokens: Specifies the tokens that are defined for the symmetric or asymmetric signature

and encryption policies in the policy set.

v Authentication tokens: Specifies the tokens that are defined for the request and response token

policies.

Chapter 5. Web services 889

v Request message signature and encryption protection: Specifies the message parts that are

defined in the Request message part protection for the policy set.

v Response message signature and encryption protection: Specifies the message parts that are

defined in the response message part protection in the policy set.

Initially, each table displays information that is generated based on the policy set which is attached to

the service artifact. The possible configuration objects based on the policy set are displayed. The

Status column indicates whether the object is currently configured in the custom attachment binding.

 7. If the protection tokens have a status of Not configured, then create the protection tokens by clicking

the default name, verifying the default values. Click OK.

 8. [Optional] If you use the X.509 protection tokens, then you must configure the keystores and keys to

be used to sign, verify, encrypt or decrypt message parts. You might need to also configure keystores

and keys when using custom protection tokens, depending on the requirements of the custom tokens.

When using a security context token for protection (secure conversation), you do not need to

configure keystores or keys. If you need to configure the keystores and keys, then perform the

following actions:

a. Click the token name link.

b. Click the Callback handler link under Additional bindings. If the Callback handler link is not

click-able, click Apply, then click the Callback handler link.

c. Either use a predefined keystore or custom keystore. To use a predefined keystore, select the

keystore from the list. To use a custom keystore, select Custom from the list and click the

Custom key store configuration link to specify the configuration.

d. Click OK.

 9. Click the name of the request or response message part reference to be signed or encrypted. The

Protection column displays whether the message part is signed or encrypted based on the policy set.

10. Specify a name for the message part.

11. For encrypted parts, select the type of encryption from Usage of key information references. For

asymmetric encryption, or X.509, select Key encryption. For symmetric encryption, or secure

conversation, select Data encryption.

12. [Optional] For encrypted parts, select the Include time stamp or Include nonce options to include a

time stamp or nonce in the encrypted message part. You can include one or both of these options in

the encrypted message part.

13. For signed parts, specify one or more Message part references. Select a reference from the Available

column and click Add.

14. [Optional] For signed parts, you can also choose to add a time stamp or nonce to the signed

message part. Select a Message part reference from the Assigned column and click Edit. Select the

Include time stamp or the Include nonce options to include a time stamp or nonce in the signed

message part. You can select one or both of these options in the signed message part.

15. If there are no available key information entries, then create one using the following actions:

a. Click New.

b. Specify a name.

c. Select a protection token from the Token generator or Consumer name list.

d. Click OK.

16. Select a key information entry from the Available list and click Add.

17. [Optional] Specify custom properties if needed.

a. To use Message Transmission Optimization Mechanism (MTOM) for the cipher text of the

encrypted data, add the custom property, com.ibm.wsspi.wssecurity.enc.MTOM.Optimize, with

value true to outbound encrypted parts for client requests or server responses.

b. To use encryption headers as described in the WS-Security 1.0 specification instead of the

encrypted header support described in WS-Security 1.1, add the custom property,

890 Administering WebSphere applications

com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.0, with value true to outbound

encrypted parts for client requests or server responses.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application

Server versions prior to version 7.0, specify the

com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.1.pre.V7 property with a value of true

on the <encryptionInfo> element in the binding. When this property is specified, the

<EncryptedHeader> element includes a wsu:Id parameter and the <EncryptedData> element

omits the Id parameter. This property should only be used if compliance with Basic Security

Profile 1.1 is not required.

18. Click OK.

19. Click Save, to save the changes to the master configuration.

Results

When you finish this task, the message parts are signed and encrypted, or both, based on the

configuration used when communicating with the service artifact.

Example

You have an application, app1, with an attached policy set, RAMP default and a custom attachment

binding, myBinding, and you want to sign and encrypt the message parts.

 1. Click the app1 application in the Applications > Enterprise Applications collection.

 2. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings link.

 3. Click the myBinding link.

 4. [Optional] If WS-Security is not listed, then select Add > WS-Security.

 5. Click the WS-Security link.

 6. Click the Authentication and protection link.

 7. In the Protection tokens table, click each of the four links and OK on the resulting panel. Each entry

is now shown as Configured in the Status column.

 8. In the Request message signature and encryption protection table, click request:app_encparts.

Specify the name, requestEncParts.

 9. Click New from Key information. Specify the name, requestEncKeyInfo.

10. Select SymmetricBindingRecipientEncryptionToken, and click OK.

11. Select requestEncKeyinfo in the Available list, and click Add. Click OK.

12. In the Request message signature and encryption protection table, click request:app_signparts.

13. Specify the name, requestSignParts.

14. Click New from Key information. Specify a name of requestSignKeyInfo.

15. Select SymmetricBindingInitiatorSignatureToken, and click OK.

16. Select requestSignKeyinfo in the Available list, and click Add. Click OK.

17. Repeat steps 8 to 16 for the links in the Response message signature and encryption protection

table.

18. Click Save, to save the changes to the master configuration.

What to do next

Start the application.

Chapter 5. Web services 891

Related tasks

“Attaching a policy set to a service artifact” on page 930
Attach a policy set to a service artifact, such as an application, service, or endpoint to define the quality of

services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,

WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and

Secure Sockets Layer (SSL) transport.

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Configuring the WS-Security policy” on page 962
When working with policy sets in the administrative console, you can customize policies to ensure

message security. The WS-Security policy can be configured to apply a message security (WS-Security)

profile to requests. Message security policies are applied to requests and enforced on responses to

support interoperability.

“Securing message parts using the administrative console” on page 986
If you are working with policy sets, then you can secure message parts using the administrative console.

To secure message parts with WS-Security using policy sets, you must define the elements for the

message parts to be protected in the WS-Security policy within a policy set.

Signed or Encrypted message part settings:

Use this page to configure or create new signed or encrypted message parts. Message part bindings

define how the part (which is defined in a policy set) is handled.

 You can configure or create new signed or encrypted message parts when you are editing a default cell or

server binding. You can also configure application specific bindings for tokens and message parts that are

required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Authentication and protection link in the Main message security policy bindings section.

4. Select a signature or an encrypted message part in the Request message signature and encryption

protection section or the Response message signature and encryption protection section.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

7. Select a signature or an encrypted message part in the Request message signature and encryption

protection section or the Response message signature and encryption protection section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

892 Administering WebSphere applications

Name:

Specifies the name of the message part reference. The name field displays the name of the part reference

you are editing, or you can enter a name if you are creating a message part reference.

Include time stamp:

This check box is available on this panel if you are configuring encryption protection and it specifies

whether to include a time stamp. Select this check box to indicate that a time stamp is included or leave it

unchecked to indicate that the time stamp is not included with the part reference.

 For default bindings, to specify if a time stamp is included for signature protection, click the Signed part

reference default link under the Additional bindings section.

For application specific bindings, to specify if a time stamp is included for signature protection, highlight an

assigned signature message part reference and click Edit. The time stamp check box is located in the

Reference section.

Include nonce:

This check box is available on this panel if you are configuring encryption protection and it specifies

whether to include nonce. Select this check box to indicate that a nonce is to be used or leave it

unchecked to indicate that nonce is not to be included with this part reference.

 For default bindings, to specify if a nonce is included for signature protection, click the Signed part

reference default link under the Additional bindings section.

For application specific bindings, to specify if a nonce is included for signature protection, highlight an

assigned signature message part reference and click Edit. The nonce check box is located in the

Reference section.

Usage of key information reference:

This field is available on this panel if you are configuring encryption protection and it specifies that the

encryption key information is either data encryption key information or key encryption key information.

Select Data encryption for symmetric algorithms and Key encryption for asymmetric algorithms.

 Click one of the following radio buttons:

Data encryption

Indicates that the key information is used for data encryption.

Key encryption

Indicates that the key information is key encryption key information.

Key information (Request):

If you are configuring a request message signature or encryption protection, this field specifies the key

information for a token request message part. This section provides interactive fields to assign the key

information.

 The Available field contains a listing of available key information entries for the message part. The

Assigned field contains a listing of one or more of the key information entries that are assigned to the

message part. Use the following actions to work with multiple request message part key information

entries:

Chapter 5. Web services 893

Button Resulting action

Add > Add the selected key information entry in the Available

list to the Assigned list.

New... Create a new key information entry.

< Remove Remove the selected key information entry from the

Assigned list.

Key information (Response):

If you are configuring a response message signature or a response encryption protection, this field

specifies the key information for a token response message part. This field provides a menu used to

assign the key information. You can only assign one key information entry for response message parts.

The New button enables you to add a new key information entry to the menu for selection.

Custom properties – Name:

Specifies the name of the custom property to be used.

 Custom properties are not initially displayed in this column. The following actions are available:

 Button Resulting Action

New Creates a new custom property entry. To add a custom

property, enter the name and value.

Edit Specifies that you can edit the selected custom property.

Select this action to provide input fields and create the

listing of cell values for editing. The Edit button is not

available until at least one custom property has been

added.

Delete Removes the selected custom property.

Custom properties – Value:

Specifies the value of the custom property to be used. With the Value entry field, you can edit, enter or

delete the value for a custom property.

Additional bindings – Signed part reference default:

If you are configuring signature protection, this section is displayed on this panel. It links to a panel where

you can configure part reference properties such as including a time stamp or nonce and transform

algorithms. Part reference properties include the transform algorithms used to protect the message part.

Changing the order of the callers for a token or message part

Specifying a caller in default and general bindings indicates which token or tokens to use to create

authentication credentials. When there are multiple tokens on an incoming message, the order of the

callers determines which token is used for the credentials. You can rearrange the order of the callers using

the administrative console.

Before you begin

Before you can complete this task, you must create a new policy set and attach it to a service, or copy

and edit one of the sample system policy sets. For more information, read the topics Creating policy sets

using the administrative console and Attaching a policy set to a service artifact. You can also create

multiple new callers in the default provider bindings associated with the policy set, as described in the

894 Administering WebSphere applications

topic Configuring the callers for general and default bindings

1. Edit the bindings for the policy by clicking Services → Policy sets → General Provider policy set

bindings, then click on the name of the bindings. A caller is specified for the provider bindings only,

not for the client bindings.

2. Navigate to the Callers panel by clicking on the policy name, then click the Caller link.

3. In the caller collection table, the callers are listed with the order of each caller displayed in the Order

column. The order number indicates the order of preference in which the callers are used when

multiple authentication tokens are received on an incoming message. Use the Move up and Move

down buttons to change the order of the callers.

a. To change the order of a caller to a higher priority, click the selection box next to the caller name,

then click the Move up button. When a caller is moved up in priority, a caller that is above it will be

moved down.

b. To change the order of a caller to a lower priority, click the selection box next to the caller name,

then click the Move down button.

Example

The order attribute is assigned only for callers on bindings in WebSphere Application Server Version 7.0.

Bindings created with earlier versions of WebSphere Application server may have callers, but these callers

do not have an order attribute. These callers can appear in the Callers collection table, but do not have an

order number in the order column. If these bindings were migrated to Version 7.0, then order attributes

must be assigned before saving and using these bindings. You can use the Move up and Move down

buttons to assign orders to the callers.

Policy set bindings settings

Use this page to view or define general or application specific bindings configuration information that is

specific to a system for policies that you can associate with the selected policy set. Use the links on this

page to work with bindings for each specific policy.

To view this administrative console page when you are editing a general binding, click Services > Policy

sets > General provider policy set bindings or Services > Policy sets > General client policy set

bindings.

To view this administrative console page when you are creating or editing an application specific binding,

complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click Service provider policy sets and bindings or Service client policy sets and bindings in the

Web Services Properties section.

4. Select a binding by clicking the binding name in the table if the binding has been assigned to an

attachment. You must have previously attached a policy set and assigned an application specific

binding.

5. [Optional] To edit a default cell binding or default server binding, click eitherServices > Policy sets >

General provider policy set bindings or Services > Policy sets > General client policy set

bindings.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

About Policy set bindings

Policy set bindings contain platform-specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Each policy set attachment to a service

provider or service client must have exactly one binding. When you create a policy set attachment, the

Chapter 5. Web services 895

general default bindings are used initially. When general bindings are used in association with a policy set

attachment, the cell-level general bindings are applied at run time. If application server level bindings exist,

the server-level general bindings override the cell-level definition. General bindings specify configuration

for both service client and service provider attachments and the general bindings are not tailored to a

specific policy set or application. When you define server-level general bindings, the binding begins in a

completely unconfigured state. You must add each policy, such as WS-Security or HTTP Transport, that

you want to override the general binding and you must fully configure the bindings for each policy that you

have added.

An application specific binding is a named binding that you create. Application specific bindings enable you

to provide platform-specific configuration information for specific policy set attachments. When you create

an application specific binding, the available binding configuration options are tailored to the definitions in

the attached policy set. You can reuse application specific bindings for multiple service resources within an

application. For example, if you create a trust service specific binding, that binding can be reused only for

trust service attachments. When you create an application specific binding for a policy set attachment, the

binding begins in a completely unconfigured state. You must add each policy, such as WS-Security or

HTTP Transport, that you want to override the general binding and you must fully configure the bindings

for each policy that you have added.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Bindings configuration name:

Specifies the name of the policy set bindings configuration. The binding name is not editable when you are

editing a binding. When you are creating a new binding, you must specify the binding name.

Note: If you are running a Version 6.1 application, the Binding configuration name is displayed as Version

6.1 default policy set bindings.

Use the following actions to create, edit, or delete policy set bindings.

 Button Resulting action

Add Adds the selected policy set binding to the application.

Delete Removes the selected policy set binding from the application.

Policies – HTTP transport:

Links to the HTTP transport policy configuration settings page where you define the HTTP transport

settings. The HTTP features and HTTP connection polices are applied to outbound messages. The

response listener policy is enforced on inbound messages.

Policies – SSL transport:

Links to the SSL transport policy configuration settings page where you define the SSL transport settings.

Policies – JMS transport:

Links to the JMS transport policy configuration settings page where you define the JMS transport settings.

Policies – WS-Addressing:

896 Administering WebSphere applications

Links to the configuration settings page for the WS-Addressing policy. In a Network Deployment

environment, use this page enable or disable workload management. Otherwise, you can attach the

WS-Addressing policy set to service resources. No additional configuration is required.

Policies – WS-ReliableMessaging:

Links to the panel where the WS-ReliableMessaging bindings are configured.

Policies – WS-Security:

Links to the WS-Security policy set bindings settings page where the WS-Security bindings are configured.

Policy set bindings settings for WS-Security

Use this page to view, define or configure general bindings and application specific properties for the

WS-Security policy. You can configure the main policy or the secure conversation bootstrap policy by

editing the general bindings.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

To use this administrative console page to view the general default bindings, click Services > Policy sets

> Default policy set bindings. You can use this navigation path for viewing only. To edit or configure the

general default bindings, complete the following steps:

1. Navigate to the general bindings collection panel by clickingServices > Policy sets > General client

policy set bindings or Services > Policy sets > General provider policy set bindings path.

2. Click a general binding in the Name column.

3. Click the WS-Security policy in the Policies table.

If you choose to use a sample binding that is provided in the product, you must edit the sample user name

and password that are provided for the Username token and LTPA token. The values provided are only

examples; to use them successfully, you must modify the values for your own environment. You can

change the user ID and password for authentication using a scripting command or by editing a copy of the

general binding.

The following configuration links are provided for both the main security policy and for secure conversation

bootstrap policy bindings.

Authentication and protection:

Links to the collection of policy authentication and protection configuration settings. Click this link to access

the collection of authentication and protection settings where you can configure authentication, signature,

and encryption information that the policy requires.

Keys and certificates:

Links to the collection of WS-Security policy keys and certificates.

Caller:

Links to a panel to configure the caller settings. The caller specifies the token or message part that

represents the identity to be set in the caller subject of the service.

 The caller settings are available only for the service provider policy sets and bindings. The caller settings

are not available for service client policy sets and bindings.

Message expiration:

Chapter 5. Web services 897

Links to a panel to define settings for message expiration. When you enable message expiration, the

message expires after the specified interval.

Custom properties:

Links to a panel where you can specify custom properties that apply to both inbound and outbound

messages or specify properties that apply only to inbound or only to outbound messages.

Custom property settings:

Use this page to configure name-value pairs for custom binding properties, where the name is a property

key and the value is a string value that can be used to set internal system configuration properties. You

can specify custom properties that apply to both inbound and outbound messages, or properties that apply

only to inbound messages, or only to outbound messages.

 Click New to create a new custom property, or click the check box for an existing property name. Click

Delete to delete an existing property.

Name:

Specifies the name, or key, for the property.

 Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property that has that name is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in the product.

Value:

Specifies the value paired with the specified name.

Keys and certificates

Use this page to link to key and certificate binding configuration panels. This panel defines key and

certificate bindings for JAX-WS Web services only. These keys and certificates can be centrally managed

by the product or in an external keystore.

You can define key and certificate bindings for message parts when you are editing a default cell or server

binding. You can also configure application specific bindings for tokens and message parts that are

required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > General provider policy set bindings (for provider bindings), or

Services > Policy sets > General client policy set bindings (for client bindings).

2. Click the WS-Security policy in the Policies table.

3. Click the Keys and certificates link in the Main message security policy bindings section.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

898 Administering WebSphere applications

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Key information – Name:

Specifies the key information name. The key names listed in this field are links that are used to define key

information attributes. Key information attributes define how cryptographic keys are generated or

consumed.

 Use the following buttons to work with this table:

 Button Resulting Action

New Inbound... Creates a new inbound key information name.

New Outbound... Creates a new outbound key information name.

Delete Removes the selected key information name listing.

Key information – Type:

Specifies the type of key information.

Key information – Direction:

Specifies the whether the direction of the key is inbound or outbound. .

Certificate store – Name:

Specifies the certificate store name. The certificate store names listed in this table are used to configure

certificate stores.

 Use the following actions to work with this table:

 Button Resulting Action

New Inbound... Creates a new inbound certificate store.

New Outbound... Creates a new outbound certificate store.

Delete Removes the selected certificate store.

Certificate store – Direction:

Specifies whether the direction of the certificate store is inbound or outbound.

Trust anchor – Name:

Specifies the trust anchor name. The trust anchor names in this table are links that are used to configure

trust anchor certificate stores.

Chapter 5. Web services 899

You can use the following buttons to work with this table:

 Button Resulting Action

New... Creates a new trust anchor entry.

Delete Removes the selected trust anchor.

Trust anchor – Keystore:

Specifies the type of keystore for the trust anchor.

Key information settings:

Use this page to configure the key information for the selected policy set binding. Key information

attributes define how cryptographic keys are generated or consumed.

 You can configure the key information for the selected policy set binding when you are editing a default

cell or server binding. You can also configure application specific bindings for tokens and message parts

that are required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set

bindings.

2. Click on a binding name in the Name column.

3. Click the WS-Security policy in the Policies table.

4. Click the Keys and certificates link in the Main message security policy bindings section.

5. Click a key in the Name column of the Key information table.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

7. Click a key in the Name column of the Key information table.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Name:

Specifies the unique name for the key information configuration.

 The key information name field displays the unique name of the key that is being configured if you are

editing a key. If you are creating one, enter a unique name.

Type:

900 Administering WebSphere applications

Lists the type of key reference.

 This field appears only if you selected an encryption or signing key for the generator binding, such as

gen_signkeyinfo, gen_signsctkeyinfo, gen_encsctkeyinfo, or gen_enckeyinfo.

You can select one of the following key types from this list:

Key identifier

The associated attribute in the binding file is KEYID.

Security token reference

The associated attribute in the binding file is STRREF.

Embedded token

The associated attribute in the binding file is EMB.

X.509 issuer name and issuer serial

The associated attribute in the binding file is X509ISSUER.

Thumbprint

The associated attribute in the binding file is THUMBPRINT.

 The Thumbprint key information type requires a keystore with the public and private key pair

instead of a shared key.

 Data type: Selection list

Token generator or consumer name:

Specifies the name of the token generator or consumer. Specifies a unique name for the token

configuration.

 The token generator or consumer name field displays the name of the pre-configured tokens that can be

used in the key information configuration if you are editing a key or creating a new key.

You can select a token generator or consumer name from this list. The list of names changes, depending

on whether the key information selected is for inbound (consumer) keys or outbound (generator) keys. For

keys with outbound direction, the list of defined token generators is displayed. For keys with inbound

direction, the list of defined token consumers is displayed.

 Data type: String

Direction:

Specifies whether the direction of the key is inbound or outbound.

 The direction of generator tokens are outbound whereas the direction for consumer tokens and decryption

keys are inbound.

 Data type: String

Default values: Inbound (for consumer bindings) or Outbound (for

generator bindings)

Requires derived keys:

Specifies whether the key information requires derived keys.

Chapter 5. Web services 901

Explicit derived keys

Requires that derived keys be explicitly specified with a WS-SecureConversation

<DerivedKeyToken> element.

Implicit derived keys

Requires that derived keys be implicitly specified with a WS-SecureConversation Nonce attribute

on the WS-Security <SecurityTokenReference> element.

Override Defaults:

Specifying derived key values overrides the derived key information that the runtime generates by default.

Note: It is recommended that you do not override the following optional attributes. Web Services Security

automatically provides default values for each attribute. Overriding the default values might be

required if the service is running cross-vendors. The vendors can use different attribute values for

derived key generation.

Key length

Specifies the derived key length. If an override value is not specified, the default value is provided

based on the algorithm suite policy assertion. It is recommended that you leave this field empty so

the default value can be used. Valid values for the key length range between 16 and 32.

Nonce length

Specifies the nonce length. A nonce is generated for each request, and included for derived key

generation. This value is optional, and if an override value is not specified, a default value is used

to generate the nonce. A valid value for the nonce length is any integer between 16 and 128.

Client label

Specifies the client label. The label is used in the P_SHA-1 function to generate the derived key. If

unspecified, the default value used is WS-SecureConversation.

Service label

Specifies the service label. The label is used in the P_SHA-1 function to generate the derived key.

If unspecified, the default value used is WS-SecureConversation.

Custom properties:

Specifies additional configuration settings that token types might require.

 Custom properties are arbitrary name-value pairs of data.

This table lists custom properties. Use custom properties to set internal system configuration properties.

You are not required to define a custom property when you define a custom token.

Select:

Specifies custom properties that you can add, edit, or delete from policy set bindings.

 Click New to add and define a new custom property.

For existing custom properties, select the check box for the name of the custom property, and click one of

the following actions:

 Action Description

New Creates a new custom property entry. To add a custom

property, enter the name and value.

902 Administering WebSphere applications

Action Description

Edit Specifies that you can edit the selected custom property.

Click this option to provide input fields and create the list

of cell values to edit. At least one custom property must

exist before the Edit option is displayed.

Delete Removes the selected custom property.

 Data type: Check box (unchecked)

Name:

Specifies the name of the custom property that you can use with default policy set bindings.

 Custom properties are arbitrary name-value pairs of data. Custom properties are not initially displayed in

this column until at least one custom property has been added.

 Data type: String

Value:

Specifies the custom property value.

 This column displays the value for the custom property (for example, true). The value can be a string or

the value can be a true or false Boolean value.

 Data type: String or Boolean

Certificate store settings:

Use this page to specify the location where certificates are stored. You can reference certificate revocation

for service generators or consumers.

 You can specify the location where certificates are stored when you are editing a default cell or server

binding. You can also configure application specific bindings for tokens and message parts that are

required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Keys and certificates link in the Main message security policy bindings section.

4. Click the certificate_store_name link in the Certificate store section.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

Chapter 5. Web services 903

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

7. Click the certificate_store_name link in the Certificate store section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Name:

Specifies the name of the certificate store. The name field displays the name of the certificate store if you

are editing a certificate store, or enter a name if you are creating a new certificate store.

Revoked certificates – Full path:

Specifies, in the Revoked certificates table, the paths for any certificates that are revoked. The Full Path

column of this table lists any certificates that have been revoked.

 You can add, edit, or remove these entries with the following buttons:

 Button Resulting Action

New Creates a revoked generator or consumer certificate

store.

Delete Removes the selected revoked generator or consumer

certificate store.

Edit Allows you to edit the applied entries selected in the

checkbox. This button is only displayed if revoked

certificates exist in your configuration.

Intermediate X.509 certificates – Full Path:

Specifies, for the consumer certificate store only, the paths for any intermediate X.509 certificates. The Full

Path column of this table lists any intermediate X.509 certificate stores. This table is only displayed for the

consumer version of this panel. It is not valid for generator certificate stores.

 Note: If the certificate store is outbound, the Intermediate X.509 certificates field is not displayed.

You can create, edit, or remove intermediate X.509 certificates with the following buttons:

 Button Resulting Action

New Creates an intermediate X.509 consumer certificate store.

Delete Removes an intermediate X.509 consumer certificate

store.

Edit Allows you to edit the applied entries selected in the

checkbox.

Trust anchor settings:

Use this page to specify the trust anchor configuration. These trust anchor certificates are used to validate

the X.509 certificate that is embedded in the SOAP message.

 Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted root

or self-signed certificates. This information enables you to specify a name for the trust anchor and the

information that is needed to access a keystore. The application binding uses this name to reference a

predefined trust anchor definition in the binding file (or the default).

904 Administering WebSphere applications

You can configure a trust anchor when you are editing a default cell or server binding. You can also

configure application specific bindings for tokens and message parts that are required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Keys and certificates link in the Main message security policy bindings section.

4. Click a name link in the Name column of the Trust anchor table.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Keys and certificates link in the Main message security policy bindings section.

7. Click a name link in the Name column of the Trust anchor table.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Name:

Specifies the unique name that is used by the application binding to reference a predefined trust anchor

definition in the default binding.

 A trust anchor specifies the keystore that contains trusted root certificates. This field displays the name for

the trust anchor that is being edited. If you are creating a new trust anchor configuration, enter a unique

name.

Keystore files contain public and private keys, root certificate authority (CA) certificates, the intermediate

CA certificate, and so on. Keys that are retrieved from the keystore files are used to sign and validate or

encrypt and decrypt messages or message parts.

 Data type: String

Centrally managed keystore:

Specifies to use a centrally managed keystore. After selecting the Centrally managed keystore option,

choose one of the centrally managed keystore names from the list. Centrally managed keystores can be

managed in the administrative console by clicking these links: Security > SSL certificate and key

management > Key stores and certificates.

 Click the radio button to enable the Name field. Select a keystore from the list.

 Data type: Radio button

Default value: Unselected

Chapter 5. Web services 905

External keystore:

Specifies a keystore using a keystore path, keystore type and keystore password. The keystore file format

is determined by the keystore type. The default trust anchor in the default binding uses an external

keystore.

 Select the radio button to enable an external keystore.

 Data type: Radio button

Default value: Selected

Full path

Specifies the full path to the location of the keystore.

 If the keystore is file-based, the location can reference any path in the file system of the node

where the trust anchor keystore is located. The trust anchor defined in the default bindings is:

${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

Note: Do not use the sample keystore files in a production environment. These samples are

provided for testing purposes only.

 Data type: String

Type Specifies the type of keystore when the external keystore is enabled.

 The type specifies the implementation for keystore management. Click a keystore type from the list

provided. The selection list is returned by java.security.Security.getAlgorithms(″KeyStore″).

The IBM Java Cryptography Extension (IBMJCE) supports the following file-based keystore types:

JKS, JCEKS,PKCS12, and CMSKS.

v Use the JKS option if you are not using Java Cryptography Extensions (JCE).

v Use the JCEKS option if you are using Java Cryptography Extensions.

v Use the PKCS12 option if your keystore uses the PKCS#12 file format.

– A key.p12 file or a trust.p12 file are examples of PKCS12 type keystores.

v Use the CMSKS option if your keystore uses the Certificate Management Services (CMS)

format.

Password

Specifies the password that is needed to access the keystore file.

 Use the password to protect the keystore. The password is used to access the named keystore

and the password is also the default password that is used to store keys within the keystore.

The default trust anchor in default binding uses an external keystore. The password for the

external keystore is: server. It is recommended that you change the default password as soon as

possible.

 Data type: String

Default value: WebAS or cell name

Confirm password

Confirms the password entered in the Password field.

 Enter the password that is used to open the keystore file or device again. By entering the same

password that was entered in the Password field again, you confirm the password.

 Data type: String

906 Administering WebSphere applications

WS-Security authentication and protection

Use the links on this page to configure authentication, signature, and encryption information that the policy

requires.

You can configure authentication, signature, and encryption information for tokens and message parts

when you are editing a default cell or server binding. You can also configure application specific bindings

for tokens and message parts that are required by the policy set.

To view this administrative console page when you are editing a general provider policy set binding or

general client policy set binding, complete the following actions:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set

bindings.

2. Click Provider sample or Client sample.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the Main Message Security Policy Bindings section.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings link in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned an application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

WS-Security authentication and protection for general bindings:

Use the links on this page to configure authentication, signature, and encryption information that the policy

requires when using general bindings.

 You can configure authentication, signature, and encryption information for tokens and message parts

when you are editing a general binding.

To view this administrative console page when you are editing a general binding at the cell level, complete

the following actions:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set

bindings.

2. Click on the name of the bindings you want to edit.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the Main message security policy bindings section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Chapter 5. Web services 907

Disable implicit protection for Signature Confirmation:

Specifies whether implicit protection of the SignatureConfirmation element is enabled or disabled.

 The explicitlyProtectSignatureConfirmation attribute in the Web services security binding is provided to

disable implicit signature and encryption of the SignatureConfirmation element on the response message.

If this checkbox is selected, the attribute is added and implicit protection is disabled. This provides

interoperability with earlier versions of WebSphere Application Server.

 Default: Not selected (implicit protection is enabled)

Protection tokens – Protection token name:

Specifies a list of protection tokens that can be configured in the Protection tokens table.

 The following actions are available for general bindings:

 Button Resulting Action

New Token Creates a new protection token type.

Delete Removes the selected protection token type.

Protection tokens – Usage:

Specifies the policy assertion usage names that you can customize in the Protection tokens table.

 For the usage field, the following options are available for the general bindings:

v Asymmetric encryption generator

v Asymmetric encryption consumer

v Asymmetric signature generator

v Asymmetric signature consumer

v Symmetric encryption generator

v Symmetric encryption consumer

v Symmetric signature generator

v Symmetric signature consumer

Authentication tokens – Authentication token name:

Specifies a list of authentication tokens that you can customize in the Authentication tokens table when

using general bindings.

 If you are working with a Username token or LTPA token that is using general bindings, the user names

and passwords might have been provided as examples. When you click a Username token or LTPA token

link, you need to update the values for these token types using the Callback handler link found on the

Authentication token settings page.

The following actions are available for general bindings:

 Button Resulting Action

New Token Creates a new authentication token type.

Delete Removes the selected authentication token type.

Authentication tokens – Usage:

908 Administering WebSphere applications

Specifies the usage names from the Authentication tokens table for general bindings.

 The following options are available for general bindings:

v Inbound

v Outbound

Request message signature and encryption protection – Name:

Specifies a unique name to identify the request message part from the Request message signature and

encryption protection table that is protected.

 The following actions are available for general bindings. The Move up and Move down actions are

available only when using service client policy sets and bindings.

 Button Resulting Action

New Signature Creates a new signature.

New Encryption Creates a new encryption protection.

Delete Removes the selected request message part.

Move up Moves the selected request message part up in the order.

Move down Moves the selected request message part down in the

order.

Request message signature and encryption protection – Protection:

Specifies the type of protection from the Request message signature and encryption protection table. This

field displays the type of protection enabled for the general binding.

Response message signature and encryption protection – Name:

Specifies a unique name to identify the response message part from the Response message signature

and encryption protection table that is protected.

 The following actions are available for general bindings. The Move up and Move down actions are

available only when using service provider policy sets and bindings.

 Button Resulting Action

New Signature Creates a new response message signature.

New Encryption Creates a new encryption.

Delete Removes the selected response message part.

Move up Moves the selected response message part up in the

order.

Move down Moves the selected response message part down in the

order.

Response message signature and encryption protection – Protection:

Specifies the type of protection enabled from the Response message signature and encryption protection

table. This field displays the type of protection enabled for the response message part.

Response message signature and encryption protection – Order:

Specifies the order in which the signatures and encryptions occur. Use the Move up and Move down

actions to order the list of protection types in this table.

WS-Security authentication and protection for application specific bindings:

Chapter 5. Web services 909

Use the links on this page to configure authentication, signature, and encryption information that the policy

requires when using application specific bindings.

 You can configure application specific bindings for tokens and message parts that are required by the

policy set.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Disable implicit protection for Signature Confirmation:

Specifies whether implicit protection of the SignatureConfirmation element is enabled or disabled.

 The explicitlyProtectSignatureConfirmation attribute in the Web services security binding is provided to

disable implicit signature and encryption of the SignatureConfirmation element on the response message.

If this checkbox is selected, the attribute is added and implicit protection is disabled. This provides

interoperability with earlier versions of WebSphere Application Server.

 Default: Not selected (implicit protection is enabled)

Protection tokens – Protection token name:

Specifies a list of protection tokens that can be configured in the Protection tokens table for application

specific bindings.

 The following actions are available for application specific bindings:

 Button Resulting Action

Unconfigure Removes the selected protection token from the binding.

Protection tokens – Protection token type:

Specifies the protection token type for application specific bindings.

Protection tokens – Usage:

Specifies the policy assertion usage names that you can customize in the Protection tokens table.

 For the usage field, the following options are available for the application specific bindings:

v Asymmetric encryption generator

v Asymmetric encryption consumer

v Asymmetric signature generator

910 Administering WebSphere applications

v Asymmetric signature consumer

v Symmetric encryption generator

v Symmetric encryption consumer

v Symmetric signature generator

v Symmetric signature consumer

Protection tokens – Status:

Specifies the status of the protection token when using application specific bindings. The valid values are

configured, not configured, or incompatible.

Authentication tokens – Security token reference:

Specifies a list of authentication tokens that you can customize in the Authentication tokens table when

using application specific bindings.

 The following actions are available for application specific bindings:

 Button Resulting Action

Unconfigure Removes the selected authentication token from the

binding.

Authentication tokens – Authentication token type:

Specifies the authentication token type for the security token reference when using application specific

bindings.

Authentication tokens – Usage:

Specifies the usage names from the Authentication tokens table for application specific bindings.

 The following options are available for application specific bindings:

v Inbound request

v Outbound request

v Inbound response

v Outbound response

Authentication tokens – Status:

Specifies the status of the authentication token form the Authentication tokens table for application specific

bindings. The valid values are configured, not configured, or incompatible.

Request message signature and encryption protection – Request message part reference:

Specifies the name of the request message part in the policy from the Request message signature and

encryption protection table that is protected.

 The following actions are available for application specific bindings. The Move up and Move down actions

are available only when using Service client policy sets and bindings.

 Button Resulting Action

Unconfigure Removes the selected request message part from the

binding.

Move up Moves the selected request message part up in the order.

Chapter 5. Web services 911

Button Resulting Action

Move down Moves the selected request message part down in the

order.

Request message signature and encryption protection – Protection:

Specifies the type of protection from the Request message signature and encryption protection table. This

field displays the type of protection enabled for the application specific binding.

Request message signature and encryption protection – Order:

Specifies the order in which signatures and encryptions occur when using service client policy sets and

bindings. Use the Move up and Move down actions to order the list of protection types in this table.

Request message signature and encryption protection – Status:

Specifies the status of the request message signature and encryption protection token when using

application specific bindings. The valid values are configured, not configured, or incompatible.

Response message signature and encryption protection – Response message part reference:

Specifies the name of the response message part in the policy from the Response message signature and

encryption protection table that is protected.

 The following actions are available for application specific bindings. The Move up and Move down actions

are available only when using Service provider policy sets and bindings.

 Button Resulting Action

Unconfigure Removes the selected response message part from the

binding.

Move up Moves the selected response message part up in the

order.

Move down Moves the selected response message part down in the

order.

Response message signature and encryption protection – Protection:

Specifies the type of protection enabled from the Response message signature and encryption protection

table. This field displays the type of protection enabled for the response message part.

Response message signature and encryption protection – Order:

Specifies the order in which signatures and encryptions occur when using service provider policy sets and

bindings. Use the Move up and Move down actions to order the list of protection types in this table.

Response message signature and encryption protection – Status:

Specifies the status of the response message signature and encryption protection token when using

application specific bindings. The valid values are configured, not configured, or incompatible.

Protection token settings (generator or consumer):

Use this page to configure protection tokens. Protection tokens sign messages to protect integrity or

encrypt messages to provide confidentiality.

912 Administering WebSphere applications

You can add protection token settings for message parts when you are editing general provider or client

policy set bindings. You can also configure application specific bindings for tokens and message parts that

are required by the policy set.

To view this administrative console page when you are editing a general provider binding, complete the

following actions:

1. Click Services → Policy sets → General provider policy set bindings.

2. Click on the name of the binding you want to edit.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the security policy bindings section.

5. Click New token to create a new token generator or consumer, or click an existing consumer or

generator token link from the Protection Tokens table.

6.

To view this administrative console page when you are editing a general client binding, complete the

following actions:

1. Click Services → Policy sets → General client policy set bindings.

2. Click on the name of the binding you want to edit.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the Main message security policy bindings section.

5. Click New token to create a new token generator or consumer or click an existing consumer or

generator token link from the Protection Tokens table.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Websphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the security policy bindings section.

7. Click a consumer or generator token link from the Protection Tokens table.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Name:

Specifies the token generator or consumer name. Enter a name in this field when you create a new token.

Token type:

Specifies the type of token. When using bindings, the token type is determined from the policy and cannot

be edited.

 Valid values are:

v LPTA Token V2.0

v Secure Conversation Token V1.3

v Secure Conversation Token V200502

v X509V3 Token V1.1

Chapter 5. Web services 913

v X509V3 Token V1.0

v X509PKCS7 Token V1.1

v X509PKCS7 Token V1.0

v X509PkiPathV1 Token V1.1

v X509PkiPathV1 Token V1.0

v X509V1 Token V1.1

v Custom Token

The Secure Conversation Token v200502 token type for the WS-Security policy represents the

requirement for a Security Context Token as defined in the February 2005 level of the

WS-SecureConversation specification.

Enforce token version:

When LTPA Token v2.0 is selected as the token type, both LTPA version 1 and LTPA version 2 tokens can

be consumed. Select this checkbox to restrict token consumption to the LTPA Token v2.0 token type.

Local name:

Specifies the local name of the custom token generator or consumer. The Local name field is populated

based on the token type displayed. Use this field to edit custom token types only.

 If the custom token type is used to generate a Kerberos token as defined in the OASIS Web Services

Security Specification for Kerberos Token Profile V1.1, use one of the values listed below for the local

name. The value you choose depends on the specification level of the Kerberos token generated by the

Key Distribution Center (KDC). The following table lists the values and the specification level associated

with each value. For purposes of interoperability, the Basic Security Profile V1.1 standard requires the use

of the local name http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ.

 Local Name Value for Kerberos Token Associated Specification Level

http://docs.oasis-open.org/wss/oasiswss-

kerberos-token-profile-1.1#Kerb erosv5_AP_REQ

Kerberos v5 AP-REQ as defined in the Kerberos

specification. Use this value when the Kerberos ticket is

an AP Request.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ

GSS-API Kerberos V5 mechanism token containing a

KRB_AP_REQ message as defined in RFC-1964 [1964],

Sec. 1.1 and its successor RFC-4121, Sec. 4.1. Use this

value when the Kerberos ticket is an AP Request (ST +

Authenticator).

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ1510

Kerberos v5 AP-REQ as defined in RFC1510. Use this

value when the Kerberos ticket is an AP Request per

RFC1510.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ1510

GSS-API Kerberos V5 mechanism token containing a

KRB_AP_REQ message as defined in RFC-1964, Sec.

1.1 and its successor RFC-4121, Sec. 4.1. Use this value

when the Kerberos ticket is an AP Request (ST +

Authenticator) per RFC1510.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ4120

Kerberos v5 AP-REQ as defined in RFC4120. Use this

value when the Kerberos ticket is an AP Request per

RFC4120.

914 Administering WebSphere applications

Local Name Value for Kerberos Token Associated Specification Level

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ4120

GSS-API Kerberos V5 mechanism token containing an

KRB_AP_REQ message as defined in RFC-1964, Sec.

1.1 and its successor, RFC-4121, Sec. 4.1. Use this value

when the Kerberos ticket is an AP Request (ST +

Authenticator) per RFC4120.

URI:

Specifies the uniform resource identifier (URI) of the custom token generator or consumer. The URI field is

populated based on the token type displayed. Use this field to edit custom token types only.

 Leave this field blank if the custom token type is used to generate a Kerberos token as defined in the

OASIS Web Services Security Specification for Kerberos Token Profile V1.1.

JAAS login:

Specifies the Java Authentication and Authorization Service (JAAS) application login information. Click

New to add a new JAAS application login or JAAS system login entry.

 If the server is in a security domain that includes specific system or application logins, these logins are

listed in the JAAS login menu, in addition to the global logins.

New Application Login:

Click to go to the effective JAAS login collection for the current security domain.

Custom properties – Name:

Specifies the name of the custom property. Custom properties are not initially displayed in this column until

they are added.

 Select one of the following actions for custom properties:

 Button Resulting Action

New Creates a new custom property entry. To add a custom

property, enter the name and value.

Edit Specifies that you can edit the selected custom property.

Select this action to provide input fields and create the

listing of cell values for editing. The Edit button is not

available until at least one custom property has been

added.

Delete Removes the selected property.

If the custom token type is used to generate a Kerberos token, specify the following custom properties:

 Custom property name Value

com.ibm.wsspi.wssecurity.krbtoken.targetServiceName Specifies the name of the target service.

com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost Specifies the host name that is associated with the target

service.

com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm Specifies the name of the realm that is associated with the

target service.

For the token generator, the combination of the target service name and target hostname forms a Service

Principal Name (SPN), which represents the target Kerberos service principal name. The Kerberos client

requests the initial Kerberos AP_REQ token for the SPN.

Chapter 5. Web services 915

Custom properties – Value:

Specifies the value of the custom property. Use the Value field to enter, edit, or delete the value for a

custom property.

Callback handler:

After all other configurations on the protection token page are applied or saved, this section is displayed

and links to the configuration settings for the callback handler. Click this link to specify callback handler

settings that determine how security tokens are acquired from message headers.

Tolerate secure conversation token V200502:

The secure conversation token V200502 token type for the WS-Security policy represents the requirement

for a secure conversation token as defined the in the February 2005 level of the WS-SecureConversation

specification. This option specifies whether the provider handles both secure conversation token V1.3 and

secure conversation token V200502. By default, the provider handles both versions. You can change this

behavior by clicking to remove the check box selection so that the provider handles only the V1.3 token.

 Note: This checkbox is displayed only in the service provider token consumer panel.

 Data type Check box

Range Selected or cleared

Default value Selected

Authentication generator or consumer token settings:

Authentication tokens are used to prove or assert an identity. Use the administrative console to add

authentication token settings for message parts when you are editing a general binding.

 To configure authentication tokens, complete the following steps:

1. To view and select the general bindings that are set as the global security default policy set bindings,

click Services > Policy sets > Default policy set bindings. The specified bindings are used unless

overridden at the attachment point, at the server, or at a security domain.

2. To access and configure the general bindings and to add authentication token settings for message

parts, click Services > Policy sets > General provider policy set bindings.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the Main message security policy bindings section.

5. Click New token to create a new token generator or consumer, or click an existing consumer or

generator token link from the Authentication Tokens table.

To view and configure application-specific bindings for tokens and message parts that are required by a

policy set, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings link in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned an application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

916 Administering WebSphere applications

7. Click a consumer or generator token link from the Protection Tokens table.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Name:

Specifies the name of the token being configured. When using application specific bindings, this field is not

displayed.

Token type:

Specifies the type of token being configured.

 When you are using application specific bindings, the token type is obtained from the policy file and it is

read-only. When you are using general bindings, select a token type from the list. The following token

types are available:

v X509V3 Token V1.1

v X509V3 Token V1.0

v Username Token V1.1

v Username Token V1.0

v X509PKCS7 Token V1.1

v X509PKCS7 Token V1.0

v X509PkiPathV1 Token V1.1

v X509PkiPathV1 Token V1.0

v LTPA Propagation Token

v X509V1 Token V1.1

v LTPA Token

v LTPA Token V2.0

v Custom Token

Note: The LTPA Token V2.0 token type is available only for bindings using the new namespace in IBM

WebSphere Application Server, Version 7.0 or later. When you select LTPA Token V2.0 as the token

type for the token consumer, both LTPA tokens and LTPA V2.0 tokens can be consumed. To restrict

the token consumer to LTPA V2.0 tokens only, select the Enforce token version check box.

If you select LTPA Token as the token type for the token generator, single sign-on interoperability

mode must be enabled. This is a setting in global security from Web and SIP security. If the

interoperability flag is not set to enabled (true), an error occurs when the application that is attached

to these bindings is started. If you want to use the LTPA token without checking the state of the

interoperability flag, you can set the custom property,

com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7, on the token generator.

Local name:

Specifies the local name for the authentication token generator or consumer. The Local name field is

populated based on the token type displayed. Use this field to edit custom token types only.

URI:

Specifies the uniform resource identifier (URI) of the authentication token generator or consumer. The URI

field is populated based on the token type displayed. Use this field to edit custom token types only.

Chapter 5. Web services 917

Leave this field blank if the custom token type is used to generate a Kerberos token as defined in the

OASIS Web Services Security Specification for Kerberos Token Profile v1.1.

Security token reference:

Specifies the security token reference. The security token reference field is displayed only for

authentication tokens in application-specific bindings. This field is not available for default bindings.

JAAS login:

Specifies a list of application and system Java Authentication and Authorization Service (JAAS) logins that

are effective for the domain to which the binding is scoped.

 If an application is scoped to the global security or if it is scoped to a domain that does not customize its

own JAAS logins, then the list of global logins are displayed in the menu list. Click New Application

Login to access the global JAAS application login collection. The JAAS login menu list and New

Application Login button behavior depend on whether the binding is being created in association with an

attachment. Use caution when changing security domains, since a previously-referenced security

configuration, such as JAAS logins, might not be accessible in a different security domain.

Custom properties – Name:

Specifies the name used for the custom property.

 Custom properties are not initially displayed in this column. Click one of the following buttons to enable the

actions described:

 Button Resulting Action

New Creates a new custom property entry. To add a custom property, enter the name and

value.

Edit Enables the selected custom property to be edited. Clicking this button provides input

fields and creates the listing of cell values to be edited. The Edit button is not available

until at least one custom property has been added.

Delete Removes the selected custom property.

Custom properties – Value:

Specifies the value of the custom property to be used. Use the Value field to enter, edit, or delete the

value for a custom property.

 If the custom token type is used to generate a Kerberos token, specify a custom property with the

com.ibm.wsspi.wssecurity.krbtoken.targetServiceName target service name, the

com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost host name that is associated with the target service,

and the com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm Kerberos realm that is associated with the

target service. The com.ibm.wsspi.wssecurity.krbtoken.targetServiceName and

com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost custom properties are required. The

com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm custom property is optional. For the token

generator, the combination of the target service name and target hostname forms a Service Principal

Name (SPN) which represents the target Kerberos service principal name. The Kerberos client requests

the initial Kerberos AP_REQ token for the SPN.

Callback handler:

Links to the Callback handler page where you can configure callback handlers. Callback handler settings

determine how security tokens are acquired from messages headers.

918 Administering WebSphere applications

If you are working with a Username token or LTPA token that is using default bindings, the user names

and passwords might have been provided as examples. You need to update the values for these token

types.

Callback handler settings:

Use this page to configure callback handler settings, which determine how security tokens are acquired

from messages headers.

 You can configure callback handler settings when you are editing a default cell or server binding. You can

also configure application specific bindings for tokens and message parts that are required by the policy

set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Authentication and protection link in the Main message security policy bindings section.

4. Click the name_of_token link in the Protection tokens section or the Authentication tokens section.

5. Click the Callback handler link.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned an application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

7. Click the name_of_token link in the Protection tokens section or the Authentication tokens section.

8. Click the Callback handler link.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

The Callback Handler displays fields differently for different tokens being configured. Depending on

whether you are configuring generator or consumer tokens for protection or you are configuring inbound or

outbound tokens for authentication, the sections and fields on this panel display some or all of the fields

explained in this topic, as noted in the description of each field.

Class name:

The fields in the Class name section are available for all types of token configuration.

 Select the class name to use for the callback handler. Select the Use built-in default option for normal

operation. Use the Use custom option only if you are using a custom token type.

For the Kerberos custom token type, use the class name,

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler, for token generator

configuration. Use com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler for

token consumer configuration.

Chapter 5. Web services 919

Use built-in default:

Specifies that the default value is used for the class name. Use the default value (shown in the field) for

the class name when you select this radio button. This name is based on the token type and whether the

callback handler is for a token generator or a token consumer. This option is mutually exclusive to the Use

custom option.

Use custom:

Specifies that a custom value is used for the class name. Select this radio button and enter the name in

the field to use a custom class name.

 No default value is available for this entry field. Use the information in the following table to determine this

value:

Token Type

Consumer or

Generator Callback Handler Class Name

UsernameToken consumer com.ibm.websphere.wssecurity.callbackhandler.UNTConsumeCallbackHandler

UsernameToken generator com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler

X509Token consumer com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler

X509Token generator com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler

LTPAToken/LTPAPropagationToken consumer com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler

LTPAToken/LTPAPropagationToken generator com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler

SecureConversationToken consumer com.ibm.ws.wssecurity.impl.auth.callback.SCTConsumeCallbackHandler

SecureConversationToken generator com.ibm.ws.wssecurity.impl.auth.callback.WSTrustCallbackHandler

This button is mutually exclusive to the Use built-in default option.

Certificates:

The fields in the Certificates section are available if you are configuring a protection token. For a consumer

token, you can use the Trust any certificate or the Certificate store options to configure the certificate. For

a generator token, you can click a certificate from the listing or click the New button to add one.

Certificates - Trust any certificate:

If the protection token has a certificate configured, this option specifies that the system will trust any

certificate, and not define the certificate store. Select this option to trust each certificate. This option is

mutually exclusive to the Certificate store option and is only applicable to the token consumer.

Certificates - Certificate store:

Specifies, if the protection token has a certificate configured, the certificate store to be trusted. Select this

option to trust each certificate store specified in the entry field. This option is mutually exclusive to the

Trust any certificate option. When you select this option, the New button is enabled so that you can

configure a new certificate store. You can also add a second certificate store to the Trusted anchor store

entry field when you click Certificate store. The Trusted anchor store field is only applicable to the token

consumer.

Basic authentication:

The fields in the Basic authentication section are available if you are configuring an authentication token

that is not an LTPA propagation token.

 For the Kerberos custom token type, you must complete the Basic Authentication section for the Kerberos

login.

920 Administering WebSphere applications

User name:

Specifies the user name that you want to authenticate.

Password:

Specifies the password to be authenticated. Enter a password to authenticate in this entry field.

Confirm password:

Specifies the password that you want to confirm.

Keystore:

The fields in the Keystore section are available if you are configuring a protection token.

 In the Keystore name list, you can click Custom to define a custom keystore, click one of the externally

defined keystore names, or click None if no keystore is required.

Keystore - Name:

Specifies the name of the centrally managed keystore file that you want to use.

 Click the name of a centrally managed keystore name from this menu or enter one of the following values:

NodeDefaultKeyStore
NodeDefaultTrustStore
NodeLTPAKeys
None Specifies to not use a centrally managed keystore file.

Custom

Specifies to use the centrally managed keystore file. Click the Custom keystore configuration

link to configure custom keystore and key settings.

Keystore - Custom keystore configuration:

Specifies a link to create a custom keystore. Click this link to open a panel where you can configure a

custom keystore.

Key:

The fields in the Key section are available if you are configuring a protection token.

Name:

Specifies the name of the key to use. Enter the name of the key to be used in this required field.

Alias:

Specifies the alias name of the key that you want to use. Enter the alias of the name of the key to use in

this required field.

Password:

Specifies the password for the key that you want to use.

 You cannot set a password for public keys for asymmetric encryption generator or asymmetric signature

consumer.

Chapter 5. Web services 921

Confirm password:

Specifies the confirmation of the password for the key that you want to use. Enter the password that you

entered in the Password field to confirm.

 Do not provide a key confirm password for public keys for asymmetric outbound encryption or inbound

signature.

Custom properties:

The fields in the Custom properties section are available for all types of token configuration.

 You can add custom properties needed by the callback handler here using name-value pairs.

To implement signer certificate encryption when using the JAX-WS programming model, add the custom

property com.ibm.wsspi.wssecurity.token.cert.useRequestorCert with the value true on the callback

handler of the encryption token consumer. This implementation uses the public key from the certificate of

the signer. This custom property is used by the response generator.

For a Kerberos custom token based on OASIS Web Services Security Specification for Kerberos Token

Profile V1.1, specify the following property for token generation:

com.ibm.wsspi.wssecurity.krbtoken.clientRealm. This allows the Kerberos client realm to initiate the

Kerberos login. If not specified, the default Kerberos realm name is used.

Name:

Specifies the name of the custom property to use.

 Custom properties are not initially displayed in this column. Click one of the following actions for custom

properties:

 Button Resulting Action

New Creates a new custom property entry. To add a custom

property, enter the name and value.

Delete Removes the selected custom property.

Value:

Specifies the value of the custom property to use. With the Value entry field, you can enter or delete the

value for a custom property.

Custom keystore settings:

Use this page to configure custom keystore files. Custom keystore files are alternatives to the key

management support built into the WebSphere Application Server. The callback handler uses the custom

version of the keystore configuration that includes keys.

 You can configure custom keystore files for message parts when you are editing a default cell or server

binding. You can also configure application specific bindings for tokens and message parts that are

required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

922 Administering WebSphere applications

3. Click the Authentication and protection link in the Main message security policy bindings section.

4. Click a protection_token link in the Protection tokens table.

5. Click the Callback handler link in the Additional bindings section.

6. Select Custom from the list in the Keystore section.

7. Click the Custom keystore configuration link.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

 1. Click Applications → Application Types → WebSphere enterprise applications.

 2. Select an application that contains Web services. The application must contain a service provider or a

service client.

 3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

 4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

 5. Click the WS-Security policy in the Policies table.

 6. Click the Authentication and protection link in the Main message security policy bindings section.

 7. Click a protection_token link in the Protection tokens table.

 8. Click the Callback handler link in the Additional bindings section.

 9. Select Custom from the list in the Keystore section.

10. Click the Custom keystore configuration link.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Keystore:

Use this section to specify information about the custom keystores.

Full path:

Specifies the full path to where the keystore file is located. Enter the path to the keystore file in this

required field. You can use system variables for portions of the path. For example you might enter

${USER_INSTALL_ROOT}/etc/ws-security/myKeyStore.jks. This field is required for the custom keystore

configuration.

Type:

Specifies the type of the keystore file to use.

Password:

Specifies the password to use.

Confirm password:

Specifies the password to be use and confirms the one entered in the Password field.

Key:

Use this section to specify information about the key.

Name:

Chapter 5. Web services 923

Specifies the name of the key to use. Enter the name of the key to be used in this required field.

Alias:

Specifies the alias name of the key that you want to use. Enter the alias of the name of the key to use in

this required field.

Password:

Specifies the password for the key that you want to use.

 You cannot set a password for public keys for asymmetric signature inbound and encryption outbound.

The Password and Confirm Password fields display only for the following:

 client asymmetric signature outbound AsymmetricBindingInitiatorSignatureToken0

client asymmetric encryption inbound AsymmetricBindingInitiatorEncryptionToken0

server asymmetric signature outbound AsymmetricBindingRecipientSignatureToken0

server asymmetric encryption inbound AsymmetricBindingRecipientEncryptionToken0

Confirm password:

Specifies the confirmation of the password for the key that you want to use. Enter the password that you

entered in the Password field to confirm.

 Similar to the Password field, you cannot confirm the password for public keys for asymmetric signature

inbound and encryption outbound.

Caller settings

Use this page to configure the caller settings. The caller specifies the token or message part that is used

for authentication.

You can configure the caller settings for message parts when you are editing a default cell or server

binding. You can also configure application specific bindings for tokens and message parts that are

required by the policy set.

To view this administrative console page when you are editing a general provider binding, complete the

following actions:

1. Click Services > Policy sets > General provider policy sets bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Authentication and protection link in the Main message security policy bindings section.

4. Click the Caller link in the Main message security policy bindings section.

5. Click New.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link in the Web Services Properties section. The

caller settings are available only for the service provider policy sets and bindings. The caller settings

are not available for service client policy sets and bindings.

924 Administering WebSphere applications

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Caller link in the Main message security policy bindings section.

7. Click New.

Note: When you create a new caller it will automatically be assigned the next available order. You can

change the order of preference, as described in the Order section below.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Name:

Specifies the name of the caller to use for authentication. Enter a caller name in this required field. This

arbitrary name identifies this caller setting.

Order:

Specifies the order of preference for the callers. The order determines which caller will be utilized when

multiple authentication tokens are received.

 You can change the order of preference by moving a caller up or down in the list. Click the checkbox next

to a caller name to select the caller, then click the Move up button to move the caller higher in the list, or

click the Move down button to move the caller to a lower position in the preference order.

 Button Resulting Action

Move up Moves the order of the selected caller up in the caller list.

Move down Moves the order of the selected caller down in the caller

list.

Note: The order column displays only for bindings using the new namespace. If a binding with multiple

callers was migrated to the new namespace, then the callers do not have an order. In that case, an

error message is displayed. When this occurs, select a caller in the table and then click either

Move up or Move down to assign an order to each caller. Callers must have orders assigned

before you save the bindings or use the bindings with an application.

Caller identity local part:

Specifies the local name of the caller to use for authentication. Enter a caller identity local name in this

required field.

 When specifying an LTPA caller, use LTPA as the local name for a caller that uses an older binding, prior

to IBM WebSphere Application Server, Version 7.0. Newer bindings for IBM WebSphere Application

Server, Version 7.0 and later should use LTPAv2 as the local name. Specifying LTPAv2 allows both LTPA

and LTPAv2 tokens to be consumed, unless the Enforce token version option is selected on the token

consumer.

Caller identity URI:

Specifies the uniform resource identifier (URI) of the caller to use for authentication. Enter a caller URI in

this field.

 When specifying an LTPA caller, use http://www.ibm.com/websphere/appserver/tokentype/5.0.2 as the URI

for a caller that uses an older binding, prior to IBM WebSphere Application Server, Version 7.0. Newer

Chapter 5. Web services 925

bindings for IBM WebSphere Application Server, Version 7.0 and later should use the

http://www.ibm.com/websphere/appserver/tokentype URI.

Use identity assertion:

Specifies whether identity assertion is used when authenticating. Select this check box if you want to use

identity assertion. Select this box to enable the Trusted identity local name and Trusted identity URI

fields.

Trusted identity local name:

Specifies the trusted identity local name when the identity assertion is used. Enter a trusted identity local

name in this entry field when the identity assertion is used.

Trusted identity URI:

Specifies the trusted identity uniform resource identifier (URI). Enter a URI in this entry field when the

identity assertion is used.

Signing part reference:

When the trusted identity is based on a signing token, select the signing part reference that represents the

message parts signed by that token.

Callback handler:

Specifies the class name of the callback handler. Enter the class name of the callback handler in this field.

JAAS login:

Specifies the Java Authentication and Authorization Service (JAAS) application login. You can enter a

JAAS login, select one from the menu, or click New to add a new one.

Custom properties – Name:

Specifies the name of the custom property.

 Custom properties are not initially displayed in this column. Select one of the following actions for custom

properties:

 Button Resulting Action

New Creates a new custom property entry. To add a custom

property, enter the name and value.

Edit Specifies that you can edit the custom property value. At

least one custom property must exist before this option is

displayed.

Delete Removes the selected custom property.

Custom properties – Value:

Specifies the value of the custom property that you want to use. Use the Value field to add, edit, or delete

the value for a custom property.

Caller collection

The caller specifies the token or message part that you want to use for authentication. Use this

administrative console page to access, view and configure the caller settings for message parts.

926 Administering WebSphere applications

To configure general bindings for tokens and message parts that are required by the policy set, complete

the following steps.

1. To access and configure the general bindings, click Services > Policy sets > General provider

policy set bindings. The caller settings are available only for the service provider policy sets and

bindings. The caller settings are not available for service client policy sets and bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Caller link in the Main message security policy bindings section.

To view and configure application specific bindings for tokens and message parts that are required by a

policy set, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider.

3. Click the Service provider policy sets and bindings link in the Web Services Properties section. The

caller settings are available only for the service provider policy sets and bindings. The caller settings

are not available for service client policy sets and bindings.

4. Select a binding. You must have previously attached a policy set and assigned an application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Caller link in the Main message security policy bindings section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Name:

Specifies the name of the caller to use for authentication. Select a caller name from this field.

 The following actions are available to work with callers.

 Button Resulting Action

New Opens the Caller settings page, which you use to add a

caller.

Delete Removes the selected caller.

Order:

This number specifies the order of preference for the configured callers. If multiple caller tokens are found

in an incoming message, the caller used for authentication will be the one with highest priority, based on

decreasing order of preference.

 You can change the order of preference using the Move Up and Move Down buttons.

 Button Resulting Action

Move Up Moves the selected caller up in the order of preference, switching positions with the

immediately preceding caller. The selected caller is now preferred over the caller that

you demoted in the list.

Move Down Moves the selected caller lower in the order of preference, switching positions with the

caller following it. The demoted caller is now lower in preference than the caller that

was previously below it.

Chapter 5. Web services 927

Caller Identity Local Part:

Specifies the local identity part of the caller to use for authentication.

Caller Identity URI:

Specifies the uniform resource identifier (URI) of the caller to use for authentication.

Message expiration settings

Use this page to define settings for message expiration, if and when messages expire. When you specify

message expiration, the message expires after the specified interval of time passes.

You can define message expiration settings for tokens and message parts when you are editing a default

cell or server binding. You can also configure application specific bindings for tokens and message parts

that are required by the policy set.

To view this administrative console page when you are editing a default cell binding, complete the

following actions:

1. Click Services > Policy sets > Default policy set bindings.

2. Click the WS-Security policy in the Policies table.

3. Click the Message expiration link in the Main message security policy bindings section.

To view this administrative console page when you are configuring application specific bindings for tokens

and message parts that are required by the policy set, complete the following actions:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. You must have previously attached a policy set and assigned a application specific

binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Message expiration link in the Main message security policy bindings section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Message expiration:

Specifies whether message expiration is enabled. To enable message expiration, select this check box.

Leave it unchecked to disable message expiration.

Message timeout interval:

Specifies the time, in minutes, for the message to time out if message expiration is enabled. This field is

enabled only when you select the Enable message expiration check box.

Actor roles settings

Use this page to define settings for SOAP actor roles. The SOAP actor, also known as the SOAP role,

defines the intermediary or ultimate recipient of a message.

To view this administrative console page use one of the following options:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a

service client.

928 Administering WebSphere applications

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings in the Web Services Properties section.

4. Select a binding. The binding must have previously attached a policy set and assigned a application

specific binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Actor roles link in the Main message security policy bindings section.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Inbound actor role URI:

Specifies the name of the uniform resource identifier (URI) for the inbound actor role.

Outbound actor role URI:

Specifies the name of the uniform resource identifier (URI) for the outbound actor role.

Web Services Addressing policy set binding

Use this page to modify the endpoint reference binding for Web Services Addressing (WS-Addressing).

The product enforces this binding on JAX-WS Web service applications that use WS-Addressing. This

panel applies only to the Network Deployment version of the product.

To view this administrative console page, click Services → Policy Sets → Default policy set bindings →

WS-Addressing.

Prevent workload management of referenced endpoints in clusters:

By default, when an application uses the WS-Addressing API createEndpointReference(service, port)

method to create an endpoint reference in a cluster environment, that endpoint reference is workload

managed. Select this option to prevent the workload management of such endpoint references.

 If you select this option, messages that are targeted at such an endpoint reference are always sent to the

node on which the endpoint reference was created. This behavior is useful when the endpoint contains

in-memory state that is held on a single node, for example, in Web Services Resource Framework

(WS-RF) applications.

Note: Although the endpoint reference always represents the same endpoint, the state that is held at that

endpoint is not reliable. If the node that is hosting the endpoint fails, the state could be lost. Note

also that if the node fails, the endpoint reference is no longer valid.

 Data type Check box

Default Cleared

Range

Cleared

Endpoint references that are created by the

application in a cluster environment are workload

managed.

Selected

Endpoint references that are created by the

application in a cluster environment are not

workload managed.

Chapter 5. Web services 929

Attaching a policy set to a service artifact

Attach a policy set to a service artifact, such as an application, service, or endpoint to define the quality of

services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,

WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and

Secure Sockets Layer (SSL) transport.

Before you begin

Before you can start this task, you must deploy an application containing Web services. Also, if none of

the default policy sets contain the necessary policy definitions, then you must create a custom policy set

with the necessary definitions.

About this task

Develop a Web service that contains each of the necessary artifacts, and deploy your Web services

application into your application server instance. Now you can attach policy sets to your service artifacts,

such as an application, service, or endpoint. To attach a policy set to a service artifact perform the

following steps:

1. Open the administrative console.

2. To attach a policy set to a service provider, click Applications > Enterprise applications >

application_name > Service provider policy sets and bindings.

To attach a policy set to a service client, click Applications > Enterprise applications >

application_name > Service client policy sets and bindings.

3. Select the check box for the service artifact.

4. Select Attach to display a list of available policy sets to attach. Select a policy set from the list.

5. Click Save, to save your changes to the master configuration.

6. [Optional] To see what attachments are defined for a given policy set, select Services > Policy sets >

Application policy sets > policy_set_name > Attached applications.

Results

When you finish these steps, a policy set is attached to the service artifact.

Example

If you have the application, app1 and you want to attach the policy set, WSSecurity default, then perform

the following steps:

1. Locate the app1 application in the Applications > Enterprise applications collection.

2. Click the app1 application.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and

bindings link.

4. Select the check box for the service artifact where the policy set is to be attached.

5. Click Attach. Select WSSecurity default policy set.

6. Click Save, to save your changes to the master configuration.

What to do next

You can create custom bindings for policy set attachments. Read about creating custom bindings for policy

set attachments.

You can configure the service client or service provider to share their policies. Read about using

WS-Policy to exchange policies in a standard format.

930 Administering WebSphere applications

Related tasks

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Reassigning bindings to policy sets” on page 885
After you create a custom attachment binding, you can reassign that binding to another service artifact if

necessary. You can reset a service artifact, such as an application, service, or endpoint to use the

inherited bindings or default bindings.

“Modifying default bindings at the server or cell level for policy sets” on page 884
You can define default bindings for HTTP transport, JMS transport, Secure Sockets Layer (SSL) transport,

WS-Addressing, WS-ReliableMessaging, and WS-Security policies.

“Using WS-Policy to exchange policies in a standard format” on page 743
WS-Policy is an interoperability standard that is used to describe and communicate the policies of a Web

service so that service providers can export policy requirements in a standard format. Clients can combine

the service provider requirements with their own capabilities to establish the policies required for a specific

interaction. WebSphere Application Server conforms to the WS-Policy specification, so that policy

information can be exchanged and received in accordance with the WS-Policy standard.

Managing policies in a policy set using the administrative console

When working with policy sets in the administrative console, you can customize the included policies to

ensure message security. You can enable, disable, customize, add, or delete policies from a policy set.

With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

Before you begin

You can customize the policies for custom policy sets. The provided default policy sets cannot be edited.

Make sure that you have created a copy of the default policy set or created a completely new policy set to

specify the policies for this policy set.

About this task

Customize policies associated with a policy set using the administrative console.

1. Click one of the following:

v Services > Policy sets > Application policy sets >policy_set_name

v Services > Policy sets > System policy sets >policy_set_name

You can also click Services > Policy sets > Application policy sets > New or Services > Policy

sets > System policy sets > New. Follow this path when you want to create a new policy set and the

associated policy or policies.

2. Add a policy to a custom policy set. To do this, see “Adding policies to policy sets using the

administrative console” on page 932.

3. Enable a policy for a custom policy set. To do this, see “Enabling policies for policy sets using the

administrative console” on page 979.

4. Optional: You can also disable a policy from a custom policy set. To do this, see “Disabling policies

from policy sets using the administrative console” on page 980.

5. Optional: You can also delete a policy from a custom policy set. To do this, see “Deleting policies from

policy sets using the administrative console” on page 933.

Chapter 5. Web services 931

Results

After you have customized your policies, the associated policy set can protect messages according to the

policy or policies defined.

What to do next

If the policy set you have modified is an attached policy set, restart all affected applications to pick up the

changes you made. If the policy set is unattached, then no further action is required.

Adding policies to policy sets using the administrative console

You can use the administrative console to add policies to policy sets. Adding and configuring policies to a

policy set further defines the rules governing the policy set.

Before you begin

Before adding a policy to a policy set, check that it is not listed as disabled in the Policies table. A

disabled policy can be listed for the policy set and only need to be enabled to be included in the policy set.

If this is the case, the policy does not need to be added and it is not available to be added.

About this task

All policies are initially set to their default values. These values can be edited and the attributes changed

using the administrative console.

1. Click Services > Policy sets > Application policy sets > policy_set_name or Services > Policy

sets > System policy sets > policy_set_name. This displays a listing of available policies in the

Policies table for the policy set selected. If you created a new policy set and did not copy and rename

an existing policy set, this table might contain no policies and you must add them.

2. Add a policy. To add a policy not listed in the Policies table of the Policy set settings page, click the

Add drop down button. This button displays a list of available policies that are not already listed in the

Policies table and therefore not included in the policy set.

3. Click the policy to be added. The selected policy is added to the Policies table. Each policy you add

has default settings that can be modified.

Results

After you have added a policy, it is then included in the policy set.

Example

If you were working on policy set ABC_ps (that you created and it therefore has no policies associated

with it) you would click the ABC_ps name in the Policy Sets collection and then click the Add button in

the Policies table on the Policy set settings window. The drop down list displays all available policies for

you to choose from. You might decide you want to include the WS-Addressing and WS-Security policies

for this policy set. You would select each of those from the list. Then, click the policy name in the table to

edit the properties of these policies.

What to do next

If the modified policy set is an attached policy set, restart all affected applications to apply the changes. If

the policy set is unattached, then no further action is required.

932 Administering WebSphere applications

Related tasks

“Deleting policies from policy sets using the administrative console”
You can use the administrative console to delete policies from policy sets. Deleting the policy removes the

policy that further defined the rules governing the policy set.

“Enabling policies for policy sets using the administrative console” on page 979
Policies can be listed in a policy set in the disabled state so that they are not currently included in the

policy set. You can enable a policy to be included in a policy set using the administrative console.

“Disabling policies from policy sets using the administrative console” on page 980
You can have policies listed in a policy set that are in the enabled state so that they are currently included

in the policy set. You can disable a policy from being included in a policy set without deleting it from the

policy set. You might want to do this if you want the policy included in the policy set in the future. You can

use the administrative console to change this setting.

“Web services policies” on page 981
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Deleting policies from policy sets using the administrative console

You can use the administrative console to delete policies from policy sets. Deleting the policy removes the

policy that further defined the rules governing the policy set.

Before you begin

Before deleting a policy from a policy set, be sure that you no longer want the policy to be available to the

policy set. Otherwise, consider disabling it so that it is still available to the policy set but not currently

associated with the policy set. You can disable the policy and leave it available for the policy set by

clicking the Select button by the policy to be disabled and then clicking the Disable button. That policy

(and any configuration changes you have made to it) is still available to the policy set but is not currently

included in the policy set.

About this task

To delete a policy from a policy set, use the administrative console.

1. Click Services > Policy sets > Application policy sets > policy_set_name or Services > Policy

sets > System policy sets > policy_set_name. The Policy set settings page displays a listing of

available policies in the Policies table of the Policy set settings page for the policy set selected. If you

created a new policy set and did not copy and rename an existing policy set, this table might contain

no policies to delete.

2. Delete the policy from the policy set.

a. Click the Select box beside the policy that you want to delete in the Policies table of the Policy set

settings page.

Chapter 5. Web services 933

b. Click the Delete button.

3. Verify that you want to delete the selected policy from the policy set.

Results

You have deleted the policy from the policy set.

Example

If you have a policy set containing a policy that you no longer want included in that policy set, you have

two options: disable it or delete it. In some cases, you might want to disable the policy if you have

configured attributes for it that you might want to enable at a later time. You can disable the policy and

leave it available for the policy set by clicking the Select button by the policy to be disabled and then

clicking the Disable button. But for this example, you have decided that the policy WS-Addressing is no

longer valid for your custom policy set ABC_ps and you and you want to delete it. To delete it, click the

Select button beside the WS-Addressing policy and then click Delete. Confirm that you want to delete the

policy.

What to do next

You can now add other policies to the policy set or enable or disable existing policies.

Related tasks

“Adding policies to policy sets using the administrative console” on page 932
You can use the administrative console to add policies to policy sets. Adding and configuring policies to a

policy set further defines the rules governing the policy set.

“Enabling policies for policy sets using the administrative console” on page 979
Policies can be listed in a policy set in the disabled state so that they are not currently included in the

policy set. You can enable a policy to be included in a policy set using the administrative console.

“Disabling policies from policy sets using the administrative console” on page 980
You can have policies listed in a policy set that are in the enabled state so that they are currently included

in the policy set. You can disable a policy from being included in a policy set without deleting it from the

policy set. You might want to do this if you want the policy included in the policy set in the future. You can

use the administrative console to change this setting.

“Web services policies” on page 981
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

“Removing policy set attachments using the wsadmin tool” on page 566
You can use the Jython or Jacl scripting language to remove and transfer policy sets from application

artifacts. You can also remove resources that apply to a policy set attachment without deleting the policy

set attachment.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Modifying policies using the administrative console

With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

934 Administering WebSphere applications

Before you begin

The provided default policy sets cannot be edited. You can create a copy of the default policy set or create

a completely new policy set in order to specify the policies for it.

About this task

Polices are associated with policy sets, so you can change an instance of a policy for a particular policy

set.

1. Select the policy set containing the policy you want to modify. To customize the policies associated

with a policy set, from the administrative console, click:

v Services > Policy sets > Application policy sets >policy_set_name. Click a policy name in the

Policies table.

v Or Services > Policy sets > System policy sets >policy_set_name. Click a policy name in the

Policies table.

2. Modify the settings. Depending on which Policy you choose, different settings can be modified.

3. [Optional] If the policy to be modified is not already in the Policies table, click Add and select a policy

from the list to modify.

4. Save the changes you have made. Once you change the settings on a policy, you need to save the

changes to return to the policy set.

Results

The policy set configuration is saved with the selected modifications.

Example

You have created a copy of the WSReliableMessaging persistent policy set and named it WSRM_p1. You

want to change the settings on the WSReliableMessaging policy that is included, by default, in the copy of

this policy set. So you click your WSRM_p1 policy set from the Application policy sets window and then click

the WSReliableMessaging policy from the Policies table. You can then alter the following settings:

Standard

The default setting is WSReliableMessaging 1.1.

Deliver messages in the order that they were sent

The default setting is false. Valid values are true or false.

Quality of service

The default is Unmanaged non-persistent

Enable ’MakeConnection’ for synchronous two-way message exchange

This setting is selected by default.

Save your changes and return to the Application policy sets window for the WSRM_p1 policy set.

What to do next

You can use the policy set as you have configured or you can change the bindings, attach or detach the

policy set from applications.

Note: Because this policy set specifies managed persistent quality of service, you need to define bindings

to the service integration bus and messaging engine that you want to use to manage the

WS-ReliableMessaging state. For more information, see “Attaching and binding a

WS-ReliableMessaging policy set to a Web service application using the administrative console” on

page 681 or using the wsadmin tool.

Chapter 5. Web services 935

Configuring the WS-ReliableMessaging policy:

When working with policy sets in the administrative console, you can customize some policies.

 Before you begin

This task assumes that you are working with a policy set to which the WS-ReliableMessaging policy has

been added.

Do not edit the policies associated with the provided default policy sets. If you need to modify the reliable

messaging policy settings, use a copy of a default policy set or create a new policy set.

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure the WS-ReliableMessaging policy for a given policy set, use the administrative console to

complete the following steps:

1. In the navigation pane, click Services → Policy sets → Application policy sets → policy_set_name →

WS-ReliableMessaging. The “WS-ReliableMessaging settings” on page 937 form is displayed.

2. Modify one or more of the following properties:

Standard

 Select the WS-ReliableMessaging specification to use for reliable transmission of your

messages. WS-ReliableMessaging Version 1.1 is the default value. Details of the supported

WS-ReliableMessaging specifications are available at the following Web addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Note: If you plan to invoke a .NET-based Web service, you must select

WS-ReliableMessaging Version 1.0.

Deliver messages in the order that they were sent

Select this option if the sender of a request has to receive a response before it sends the next

request, or if you want to enable transaction support for inbound (provider) message

exchanges as described in “Providing transactional recoverable messaging through

WS-ReliableMessaging” on page 676, or if you want to marginally increase reliability as

described in “A message is not recovered after a server becomes unavailable, even with the

managed persistent quality of service” on page 692.

Note: When you enable this option, WS-ReliableMessaging ensures that the messages are

made available to the requester application in the order that they were sent. That is, if

WS-ReliableMessaging cannot make a given message available, it will not make any

subsequent messages available. However, the requester application must also poll for

the messages in the order in which it wants to receive them. For example:

a. WS-ReliableMessaging makes message 1 available, then message 2, then

message 3.

b. The requester application uses asynchronous polling to deliberately poll for

message 2, then message 3, then message 1. All three messages are available, so

this polling out of order is successful.

Even though WS-ReliableMessaging is delivering the messages in the order that they

were sent, the requester application is choosing to receive them out of order.

936 Administering WebSphere applications

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702

Quality of service

Click a radio button to choose the required quality of service. The three choices are:

Unmanaged non-persistent

You can configure Web service applications to use WS-ReliableMessaging with a

default in-memory store. This quality of service requires minimal configuration.

However it is non-transactional and, although it allows for the resending of messages

that are lost in the network, if a server becomes unavailable you will lose messages.

This quality of service is for single server only and does not work in a cluster.

Managed non-persistent

This in-memory quality of service option uses a messaging engine to manage the

sequence state, and messages are written to disk if memory is low. This quality of

service allows for the re-sending of messages that are lost in the network, and can

also recover from server failure. However, state is discarded after a messaging engine

restart so in this case you will lose messages. This option supports clusters as well as

single servers.

Managed persistent

This quality of service for asynchronous Web service invocations is recoverable. This

option also uses a messaging engine and message store to manage the sequence

state. Messages are persisted at the Web service requester server and at the Web

service provider server, and are recoverable if the server becomes unavailable.

Messages that have not been successfully transmitted when a server becomes

unavailable can continue to be transmitted after the server restarts.

The default is unmanaged non-persistent.

Note: All three qualities of service are supported when applications are deployed to the application

server. Thin client and client container applications use the first option only.

3. Click OK.

4. Save your changes to the master configuration.

Results

After you have customized the reliable messaging policy, the associated policy set uses this policy to help

ensure reliable delivery of messages.

WS-ReliableMessaging settings:

For the WS-ReliableMessaging policy you can configure the version of the WS-ReliableMessaging

standard that you want to use, the order in which messages are delivered, and the required quality of

service (the reliability level) for message delivery. The product can enforce these policies on inbound

messages and applies them to outbound messages.

 To view this pane in the console, click the following path: Services → Policy sets → Application policy

sets → policy_set_name → WS-ReliableMessaging.

With WebSphere Application Server, you can use WS-ReliableMessaging with Java API for XML-Based

Web Services (JAX-WS) 2.1 Web services applications that use a SOAP over HTTP binding. To configure

a Web service application to use WS-ReliableMessaging, you attach a policy set that contains a

WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent.

Do not edit the policies associated with the provided default policy sets. If you need to modify the reliable

messaging policy settings, use a copy of a default policy set or create a new policy set.

Chapter 5. Web services 937

At any stage - that is, before or after you have built your reliable Web service application, or configured

your policy sets - you can set a property that configures endpoints to only support clients that use reliable

messaging. This setting is reflected by WS-Policy if engaged.

Standard: Select the WS-ReliableMessaging specification to use for reliable transmission of your

messages. WS-ReliableMessaging Version 1.1 is the default value. Details of the supported

WS-ReliableMessaging specifications are available at the following Web addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Note: If you plan to invoke a .NET-based Web service, you must select WS-ReliableMessaging Version

1.0.

Deliver messages in the order that they were sent:

Select this option if the sender of a request has to receive a response before it sends the next request.

 If you enable in-order delivery, you must also ensure that the requester application polls for the messages

in the order in which it wants to receive them. For more information, see “Configuring the

WS-ReliableMessaging policy” on page 936.

Specifying in-order delivery also marginally increases reliability if you are using the managed persistent

quality of service. For more information, see “A message is not recovered after a server becomes

unavailable, even with the managed persistent quality of service” on page 692.

Quality of Service: Select one of the following qualities of service:

Unmanaged non-persistent - Tolerates network and remote system failures

You can configure Web service applications to use WS-ReliableMessaging with a default

in-memory store. This quality of service requires minimal configuration. However it is

non-transactional and, although it allows for the resending of messages that are lost in the

network, if a server becomes unavailable you will lose messages. This quality of service is for

single server only and does not work in a cluster. The default is Unmanaged Non-Persistent.

Managed non-persistent - Tolerates system, network, and remote system failures, but state is

discarded after messaging engine restart

This in-memory quality of service option uses a messaging engine to manage the sequence state,

and messages are written to disk if memory is low. This quality of service allows for the re-sending

of messages that are lost in the network, and can also recover from server failure. However, state

is discarded after a messaging engine restart so in this case you will lose messages. This option

supports clusters as well as single servers.

Managed persistent - Tolerates system, network, and remote system failures

This quality of service for asynchronous Web service invocations is recoverable. This option also

uses a messaging engine and message store to manage the sequence state. Messages are

persisted at the Web service requester server and at the Web service provider server, and are

recoverable if the server becomes unavailable. Messages that have not been successfully

transmitted when a server becomes unavailable can continue to be transmitted after the server

restarts.

Note:

v All three qualities of service are supported when applications are deployed to the application

server. Thin client and client container applications use the first option only.

v For the unmanaged non-persistent quality of service, the messages are stored only in memory.

For both of the managed qualities of service, the messages are managed by a messaging

engine backed by a message store. You specify a binding to a bus and messaging engine on the

938 Administering WebSphere applications

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702

“WS-ReliableMessaging policy binding” form. If your chosen quality of service is Unmanaged

Non-Persistent, which does not use a binding to a messaging engine, then any binding that you

specify is ignored.

WS-ReliableMessaging policy binding:

To configure a Web service application to use WS-ReliableMessaging, you attach a policy set that contains

a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed

persistent, managed non-persistent, or unmanaged non-persistent. The managed qualities of service,

managed persistent and managed non-persistent, are supported by the service integration bus. Use this

page to select the bus and messaging engine to use for the reliable messaging protocol state.

 To view this pane in the console, click one of the following paths:

v Services → Policy sets → Default policy set bindings → Version 6.1 default policy set bindings →

WS-ReliableMessaging (This is the default binding for client and provider policy set attachments within

WebSphere Application Server Version 6.1 applications, and attachments to service applications that are

deployed to a Version 6.1 server.)

v Services → Policy sets → General provider policy set bindings →

provider_policy_set_binding_name → WS-ReliableMessaging (This binding is used for the specified

provider policy set.)

v Services → Policy sets → General client policy set bindings → client_policy_set_binding_name →

WS-ReliableMessaging (This binding is used for the specified client policy set.)

Note:

v You only need to specify a binding to a bus and messaging engine if you are using a managed

quality of service. If your chosen quality of service is Unmanaged Non-Persistent, any binding

that you specify is ignored. The quality of service is defined on the “WS-ReliableMessaging

settings” on page 937 form for your chosen policy set. For more information, see “Configuring the

WS-ReliableMessaging policy” on page 936.

v When many applications use the same messaging engine, it can impact performance. Factors to

consider include the number of applications that are already binding to the messaging engine,

the CPU utilization, and the message throughput. To improve performance for a single server

configuration, create a new messaging engine to bind to your application.

Bus name:

Specifies a list of available service integration buses in the cell. Use the list to select a bus, or click

Manage buses, bus members, and messaging engines to add a new bus. The bus that you add is

selected for this binding configuration when you return to this panel.

Messaging engine name:

Specifies a list of each bus member for the selected bus. Use the list to select a bus member, or click

Manage buses, bus members, and messaging engines to add a new bus member. The bus member

that you add is selected for this binding configuration when you return to this panel.

Configuring the WS-Addressing policy:

When working with policy sets in the administrative console, you can add and configure policies to enable

standard addressing of Web services.

Chapter 5. Web services 939

Before you begin

You can specify policies for custom policy sets. The provided default policy sets cannot be edited. You

must create a copy of the default policy set or create a completely new policy set in order to specify the

policies for it.

About this task

Adding a WS-Addressing policy enables the support for WS-Addressing. This support provides a standard

way to address Web services and include addressing information in messages. Adding a WS-Addressing

policy is equivalent to configuring the WSDL file for the Web service to specify that WS-Addressing should

be used.

To specify or configure the policies associated with a policy set, use the administrative console.

1. In the navigation pane of the administrative console, click Services Policy sets → Application policy

sets > policy_set_name → [Policies] WS-Addressing. The WS-Addressing settings pane is

displayed.

2. Select WS-Addressing is mandatory to specify that WS-Addressing information must be included in

SOAP message headers. For servers, this setting means that the server returns a fault if it receives a

message that does not contain a WS-Addressing header. For clients, this setting means that

WS-Addressing headers are always added to SOAP messages. If you have enabled WS-Policy, this

requirement is communicated between servers and clients that support WS-Policy.

3. In the Messaging style box, select the message exchange pattern to use:

v Synchronous and asynchronous. The targeting of response messages is not restricted.

v Synchronous only. Response messages must be targeted at the WS-Addressing anonymous URI.

v Asynchronous only. Response messages must not be targeted at the WS-Addressing anonymous

URI.

4. Click OK.

5. Save your changes to the master configuration.

Results

After you have included the WS-Addressing policy in a policy set, the associated policy set uses this policy

to address Web services.

WS-Addressing policy settings:

Use this panel to define the appropriate WS-Addressing policy assertions for this policy set.

 To view this administrative console page, click Services → Policy sets → Application policy sets →

policy_set_name → [Policy] WS-Addressing, when the policy set includes the WS-Addressing policy

type.

You can configure the WS-Addressing policy type for both client-side and provider-side policy sets. If you

enable WS-Policy, this configuration is communicated between servers and clients that support WS-Policy.

WS-Addressing is mandatory:

Specifies whether a WS-Addressing SOAP header is included on messages.

 Data type Check box

Default Cleared

940 Administering WebSphere applications

Range

Cleared

WS-Addressing is not mandatory. Servers will not

generate a fault if they receive a message that

does not contain a WS-Addressing header.

Clients might not include WS-Addressing headers

in SOAP messages, for example, if WS-Policy is

enabled and the server does not specify that

WS-Addressing is mandatory.

Selected

WS-Addressing is mandatory. Servers return a

fault if they receive a message that does not

contain a WS-Addressing header. Clients always

include WS-Addressing headers in SOAP

messages.

Messaging style:

Specifies the messaging style supported by this policy set.

 Use the radio buttons to configure the messaging style.

v Select Synchronous and asynchronous to specify that there is no restriction on the targeting of

response messages.

v Select Synchronous only to specify that response messages must be targeted at the WS-Addressing

anonymous URI. You might want to use this messaging style in the following situations:

– The SOAP headers are not signed, and WS-Security is not enabled. Specifying the synchronous

message exchange pattern prevents the server sending messages to a third party, thereby

preventing the server from potentially taking part in a Denial of Service attack.

– Clients with a NAT device between themselves and the endpoint. In this configuration,

non-anonymous URIs cannot be routed. Use this setting to prevent the client from sending a

message containing a ReplyTo endpoint reference with a non-anonymous URI.

v Select Asynchronous only to specify that response messages must not be targeted at the

WS-Addressing anonymous URI. This setting does not mean that all non-anonymous URIs are

supported, therefore a server can return a fault if it receives a response endpoint reference that it

cannot process. You might want to use this messaging style if the endpoint has a very long-running

invocation time, and you do not want to hold the connection open while waiting for a response.

The following table shows how the messaging style options correspond to WS-Policy assertions.

 Table 7.

Messaging style WS-Policy mapping

Synchronous and asynchronous wsam:AnonymousResponses or

wsam:NonAnonymousResponses

Synchronous only wsam:AnonymousResponses

Asynchronous only wsam:NonAnonymousResponses

 Required No

Data type Radio button

Configuring the HTTP transport policy:

Chapter 5. Web services 941

When working with policy sets in the administrative console, you can customize policies to ensure

message security. You can customize the Hypertext Transfer Protocol (HTTP) transport policy configuration

or use the policy as it is provided with the default settings.

 Before you begin

You can configure some settings for default policies for custom policy sets. The provided default policy

sets cannot be edited. To customize a policy set, you must create a copy of the default policy set or create

a new policy set and specify the policies for the custom policy set.

About this task

You can configure HTTP transport with the HTTP transport policy. HTTP is an application-level protocol for

distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol that can be

used for many tasks beyond its use for hypertext, such as name servers and distributed object

management systems, through extension of request methods, error codes and headers. A feature of HTTP

is the typing and negotiation of data representation, allowing systems to be built independently of the data

being transferred. HTTP features and HTTP connections properties are applied to outbound messages for

both the service client and service provider.

You can only configure a policy through a policy set. Therefore, before you can configure the HTTP

transport policy, a policy set must exist that contains the HTTP transport policy. The provided default

WSHTTPS policy set is read only and it cannot be edited. To customize a policy set that contains the

HTTP transport policy, you must first create a copy of the WSHTTPS default policy set or create a new

policy set and add the HTTP transport policy to the new policy set.

Note: The WSHTTPS default policy set contains the HTTP transport policy, the SSL transport policy and

WS-Addressing policy. If you do not require the SSL transport policy or the WS-Addressing policy,

you can customize your copy of the WSHTTPS default policy set to delete the policies that you do

not require.

After you have created a copy of the WSHTTPS default policy set or created a new policy set with the

HTTP transport policy added, you can customize the HTTP transport policy. Use the HTTP transport policy

settings panel to customize the values of the HTTP transport policy properties such as read or write

timeout values. Your customized values for the HTTP transport policy now apply for your policy set that

contains that custom HTTP transport policy. You can attach this policy set containing your customized

HTTP transport policy to your Java API for XML-Based Web Services (JAX-WS) application, its services,

endpoints, or operations. This change affects all JAX-WS applications to which that policy set is attached.

To learn more about attaching policy sets to applications, see the documentation for managing policy sets

for service providers and service clients at the application level.

For example, if you have multiple policy sets, mypolicyset1 and mypolicyset2, containing the HTTP

transport policy, you can customize the HTTP transport policy for each policy set to reflect different

properties, such as timeout values. Now, you can attach these customized policy sets to one or more

applications and these applications will use the HTTP property values associated with the HTTP transport

policy that is contained within the attached policy set.

1. Create a policy set that contains the HTTP transport policy.

a. Create a custom policy set.

From the administrative console, click Services > Policy Sets > Application policy sets . From

this panel you can create a new policy set, copy an existing default policy set such as WSHTTPS,

import a copy of a policy set from the default repository or you can import an existing policy set

from your specified location.

942 Administering WebSphere applications

b. Add the HTTP transport policy to the policy set. From the administrative console, click Services >

Policy Sets > Application policy sets > policy_set_name. In the policy collection, click HTTP

transport. The HTTP transport window displays options for configuring the HTTP settings for the

transport policy.

c. In the Protocol Version drop down list, click the HTTP version to use. HTTP 1.1 is the default

setting but HTTP 1.0 is also available. Selecting HTTP 1.1 enables more of the function on the rest

of the HTTP transport window as some of the options are not available for HTTP version 1.0.

d. Complete the HTTP Features section. The following check boxes determine which HTTP features

are enabled for this transport:

Session Enabled

Whether the HTTP session is enabled when a message is sent.

Enable chunked transfer encoding

Whether chunked transfer encoding is enabled when a message is sent. This option is only

available if HTTP 1.1 is selected in the Protocol version field (it is greyed out and

disabled if HTTP 1.0 is selected).

Send expect ″100-request″ header

Displays whether the expect ″100-request″ header is enabled when a message is sent.

This option is only available if HTTP 1.1 is selected in the Protocol version field (it is

greyed out and disabled if HTTP 1.0 is selected).

Accept URL redirection automatically

Displays whether the URL is automatically redirected when a message is sent.

Compress request content

Displays whether the request content is compressed when a message is sent.

Compress response content

Displays whether the response content is compressed when a message is sent.

e. Complete the HTTP Connections section. The following fields determine how HTTP connections

are configured for this transport:

Read timeout

Displays the length of time, in seconds, for the read to time out when a message is sent.

Write timeout

Displays the length of time, in seconds, for the write to time out when a message is sent.

Connection timeout

Displays the length of time, in seconds, for the connection to time out when a message is

sent.

Use persistent connection

Displays whether a persistent connection is to be used when a message is sent. This

option is only available if HTTP 1.1 is selected in the Protocol version field.

Resend enabled

Displays whether or not a message can be resent. Click this check box to enable a

message to be sent again.

2. Customize the HTTP transport provider bindings.

a. Navigate to the HTTP transport provider bindings. From the administrative console, click Services

> Policy Sets > General provider policy set bindings > provider_policy_set_binding_name >

HTTP transport.

The HTTP transport (bindings) window displays options for configuring the HTTP transport

bindings.

b. Specify the properties for the Proxy for outbound asynchronous service responses.

The following fields determine proxy specifications for outbound asynchronous service responses:

Chapter 5. Web services 943

Host Displays the host name for the outbound asynchronous service responses proxy.

Port Displays the port number for the outbound asynchronous service responses proxy. You can

enter or edit the port number.

User name

Displays the user name for the outbound asynchronous service responses proxy.

Password

Displays a placeholder for the password for the outbound asynchronous service responses

proxy. You can enter or edit the password. The actual password is masked.

Confirm password

Displays a placeholder for the password for the outbound asynchronous service responses

proxy that must match the one in the Password field. The actual password is masked.

c. Specify the properties for the Basic authentication for outbound asynchronous responses.

The following fields determine authentication specifications for outbound asynchronous responses:

User name

Displays the user name for basic authentication of outbound asynchronous responses.

Password

Displays a placeholder for the password for basic authentication of outbound asynchronous

responses. The actual password is masked.

Confirm password

Displays a placeholder for the password for basic authentication of outbound asynchronous

responses that must match the one in the Password field. The actual password is masked.

3. Customize the HTTP transport client bindings.

a. Navigate to the HTTP transport client bindings. From the administrative console, click Services >

Policy Sets > General client policy set bindings > provider_policy_set_binding_name >

HTTP transport.

The HTTP transport (bindings) window displays options for configuring the HTTP transport

bindings.

b. Specify the properties for the Proxy for outbound service requests. The following fields determine

proxy specifications for outbound service requests:

Host Displays the host name for the outbound service request proxy.

Port Displays the port number for the outbound service request proxy.

User name

Displays the user name for the outbound service request proxy.

Password

Displays a placeholder for the password for the outbound service request proxy. The actual

password is masked.

Confirm password

Displays a placeholder for the password for the outbound service request proxy that must

match the one in the Password field. The actual password is masked.

c. Specify the properties for Basic authentication for outbound service requests. The following fields

determine authentication specifications for outbound service requests:

User name

Displays the user name for basic authentication of outbound service requests.

Password

Displays a placeholder for the password for basic authentication of outbound service

requests. The actual password is masked.

944 Administering WebSphere applications

Confirm password

Displays a placeholder for the password for basic authentication of outbound service

requests that must match the one in the Password field. The actual password is masked.

a.

Results

After you have customized the HTTP transport policy, the associated policy set uses this policy to protect

message transmission.

Example

You can attach policy sets to an application, its services, endpoints, or operations. In this example

scenario, suppose you have two different JAX-WS service clients for your application, but you want to use

different HTTP transport property values for each service client. Specifically, you want to configure a

different read or write timeout value for each service client. To modify the HTTP timeout values, you can

edit the values of the HTTP transport policy that is contained within the policy set that is attached to your

application or in this case, your service client. This change affects all applications to which the policy set

containing the custom HTTP transport policy is attached.

This example describes the steps for configuring different read, write, and connection timeout values for

service clients deployed in the same application server. This example makes the following assumptions:

v There are two JAX-WS service clients, ServiceClient1 and ServiceClient2, that are deployed in the

application server.

v The HTTP transport policy has not been previously attached to these applications.

1. Create two new policy sets and add the HTTP transport policy to them. For example:

HTTPServiceClient1Policy and HTTPServiceClient2Policy

a. Click Services > Policy sets > Application policy sets > New .

b. Enter the name of the new application policy set, HTTPServiceClient1Policy.

c. From the Policies collection, click Add > HTTP transport.

d. Click Apply and Save to save your changes to the master configuration.

e. Repeat these steps to create the HTTPServiceClient2Policy.

2. Customize the HTTP transport policy settings for the newly created HTTPServiceClient1Policy and

HTTPServiceClient2Policy policy sets. For example, customize the read and write timeout values for

the HTTP transport policy contained in the HTTPServiceClient1Policy policy set and the connection

timeout value for the HTTP transport policy contained in the HTTPServiceClient2Policy policy set.

a. Click Services > Policy sets > Application policy sets >HTTPServiceClient1Policy .

b. From the Policies collection, click HTTP transport.

c. From the HTTP transport policy configuration panel, change the HTTP connection read and write

timeout values to 500 seconds.

d. Click Apply and Save to save your changes to the master configuration.

e. Click Services > Policy sets > Application policy sets >HTTPServiceClient2Policy .

f. From the Policies collection, click HTTP transport.

g. From the HTTP transport policy configuration panel, change the HTTP connection timeout value to

360 seconds.

h. Click Apply and Save to save your changes to the master configuration.

3. Attach the custom HTTP transport policy, HTTPServiceClient1Policy, to your application,

ServiceClient1. Similarly, attach the custom HTTP transport policy, HTTPServiceClient2Policy, to

ServiceClient2.

a. Click Services > Service clients > ServiceClient1.

b. From the Policy set attachments collection, select the service, ServiceClient1.

Chapter 5. Web services 945

c. Click Attach Client Policy Set and click on HTTPServiceClient1Policy.

d. Click Save to save your changes to the master configuration.

e. Click Services > Service clients > ServiceClient2.

f. From the Policy set attachments collection, select the service, ServiceClient1.

g. Click Attach Client Policy Set and click on HTTPServiceClient2Policy.

h. Click Save to save your changes to the master configuration.

As a result, the ServiceClient1 application now has the HTTPServiceClient1Policy attached and the HTTP

sessions will use a read and write timeout value of 500 seconds. The ServiceClient2 application has the

HTTPServiceClient2Policy attached and the HTTP sessions will use a connection timeout value of 360

seconds.

What to do next

You can customize policies to ensure message security by configuring the SSL transport policy.

HTTP transport policy settings:

Use this page to define HTTP transport policy configuration. HTTP features and HTTP connection policies

are applied to outbound messages. Any changes to the HTTP transport policy from this console page

affects all Java API for XML-Based Web Services (JAX-WS) applications to which this custom HTTP

transport policy is attached.

 To view this administrative console page, click Services > Policy sets > Application policy sets

>policy_set_name > HTTP transport, where policy_set_name, applies to any policy set that contains

HTTP transport policy.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

You can only configure a policy through a policy set. Therefore, before you can configure the HTTP

transport policy, a policy set must exist that contains the HTTP transport policy.

The WSHTTPS default policy set is provided with the application server and it contains the HTTP transport

policy, the SSL transport policy and the WS-Addressing policy. The provided default WSHTTPS policy set

is read only and it cannot be edited. To customize a policy set that contains the HTTP transport policy, you

must first create a copy of the WSHTTPS default policy set or create a new policy set and add the HTTP

transport policy to the new policy set.

After you customize values for the HTTP transport policy, these values now apply for your policy set that

contains that custom HTTP transport policy. You can attach this policy set that contains your customized

HTTP transport policy to your application, its services, endpoints, or operations. This change affects all

JAX-WS applications to which that policy set is attached. To learn more about attaching policy sets to

applications, see the documentation for managing policy sets for service providers and service clients at

the application level.

Protocol version:

Specifies the version of HTTP protocol to use. Use this list to specify the version of HTTP protocol. The

default value is HTTP 1.1. The HTTP 1.0 value is also a valid option.

 Some of the remaining options on the HTTP Transport panel only work with HTTP Version 1.1. The

following brief descriptions compare these options:

HTTP 1.0

Allows messages to be in MIME-like format, containing meta information about the data

946 Administering WebSphere applications

transferred and modifiers on the request, response, or both. However, HTTP 1.0 does not

sufficiently address the effects of hierarchical proxies, caching, the need for persistent

connections, or virtual hosts.

HTTP 1.1

Enables each of two communicating applications to determine the true capabilities or the other.

This protocol includes more stringent requirements than HTTP 1.0 to ensure reliable

implementation of features.

Session enabled:

Specifies whether the HTTP session is enabled when a message is sent. Select this check box to enable

an HTTP session.

 If this property is used within a policy set that is attached to a service client, then it indicates whether

HTTP session information is propagated to subsequent requests invoked by the same client application. If

the property is enabled, the HTTP session information is returned to the service client in a response

message is sent in subsequent requests invoked using the same RequestContext object.

If this property is used within a policy set that is attached to a service provider, then it indicates whether or

not a new HTTP session is created when a request is being processed. If the property is enabled, then as

a request is being processed, a new HTTP session is created if one does not already exist. This HTTP

session information is then returned to the service client in the response message.

Enable chunked transfer encoding:

Specifies whether chunked transfer encoding is enabled when a message is sent. Select this check box to

enable a chunked transfer encoding. This option is only available if you select HTTP 1.1 in the Protocol

version field. This option is disabled if you selected the HTTP 1.0 protocol.

 The default for this property is true.

Send expect ″100-request″ header:

Specifies whether the expect "100-request" header is enabled when a message is sent. Select this check

box to enable the expect "100-request" header. This option is only available if you selected HTTP 1.1 in

the Protocol version field. This option is disabled if you selected the HTTP 1.0 protocol.

 The purpose of the 100 status is to allow a client that is sending a request message with a request body

to determine if the origin server accepts the request, based on the request headers, before the client

sends the request body. In some cases, you might not want the client to send the body if the server

rejects the message without looking at the body.

The Expect request-header field is used to indicate that particular server behaviors are required by the

client. A server that cannot comply with any of the expectation values in the Expect field if a request

responds with an appropriate error status.

Accept URL redirection automatically:

Specifies whether the automatic URL redirection is accepted when a message is sent. Select this check

box to enable a URL that has been automatically redirected to be accepted.

Compress request content:

Specifies whether the request content is compressed when a message is sent. Content coding is used to

allow a document to be compressed without losing the identity of its underlying media type and without

loss of information. Select this check box to enable request content that you want to compress. Clicking

Chapter 5. Web services 947

the Compress request content button enables the Compression format option to select the compression

method. The default value for the compression format is gzip.

Compress response content:

Specifies whether the response content is compressed when a message is sent. Content coding is used to

allow a document to be compressed without losing the identity of its underlying media type and without

loss of information. Select this check box to enable response content that you want to compress. Clicking

the Compress response content button enables the Compression format option as he compression

method. The default value for the compression format is gzip.

Read timeout:

Specifies the length of time, in seconds, for the Web services client to completely read the SOAP

response. If the read process does not complete within the specified time, a SOAP fault error is generated

on the client machine.

Write timeout:

Specifies the length of time, in seconds, for the write action to time out when a message is sent. Specify

the time, in seconds, to enable the write to time out length of time.

Connection timeout:

Specifies the length of time, in seconds, for the connection to time out when a message is sent. Specify

the time, in seconds, to enable the connection to time out length of time.

Use persistent connection:

Specifies whether a persistent connection is used when a message is sent. Select this check box to

enable use of a persistent connection. This option is only available if you selected HTTP 1.1 in the

Protocol version field. This option is disabled if you selected the HTTP 1.0 protocol.

Resend enabled:

Specifies whether a message can be resent. Select this check box to resend a message.

HTTP transport bindings settings:

Use this page to define the HTTP transport bindings for the HTTP transport policy.

 To configure the HTTP transport bindings for the HTTP transport policy, perform the following:

1. Navigate to the general bindings collection panel using either the Services > Policy sets > General

client policy set bindings or Services > Policy sets > General provider policy set bindings path.

2. Click a general binding in the Name column.

3. Click the HTTP transport policy in the Policies table.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Note: You can also configure HTTP transport properties such as read or write timeout values for JAX-WS

applications that are deployed in the same application server. If you want to customize these HTTP

properties, you must edit the HTTP transport policy. To customize the HTTP transport policy

settings, click Services > Policy sets > Application policy sets >policy_set_name>HTTP

transport policy where policy_set_name applies to any policy set that contains the HTTP transport

policy. Your customized values for the HTTP transport policy now apply for your policy set that

contains that custom HTTP transport policy. You can attach this policy set that contains your

948 Administering WebSphere applications

customized HTTP transport policy to your application, its services, endpoints, or operations. This

change affects all JAX-WS applications to which that policy set is attached. To learn more about

attaching policy sets to applications, see the documentation for managing policy sets for service

providers and service clients at the application level.

Proxy for outbound service requests – Host:

Specifies the host name for the outbound service request proxy. In this field, you can change the name of

the host if you are editing an existing set of application specific bindings or you can enter the host name

for the outbound service request proxy.

Proxy for outbound service requests – Port:

Specifies the port number for the outbound service request proxy. You can edit an existing port number, or

enter a new port number for the outbound service request proxy in this field.

Proxy for outbound service requests – User name:

Specifies the user name for the outbound service request proxy. Enter a user name in this field.

Proxy for outbound service requests – Password:

Specifies a placeholder for the outbound service request proxy password. The actual password is masked.

Proxy for outbound service requests – Confirm password:

Specifies a placeholder for the outbound service request proxy password. Re-enter the password you

entered in the Password field. The actual password is masked.

Basic authentication for outbound service requests – User name:

Specifies the user name for basic authentication of outbound service requests. Enter or edit the user

name.

Basic authentication for outbound service requests – Password:

Specifies a placeholder for basic authentication of outbound service requests password. The actual

password is masked.

Basic authentication for outbound service requests – Confirm password:

Specifies a placeholder for basic authentication of outbound service requests password. Re-enter the

same password as in the Password field. The actual password is masked.

Proxy for outbound asynchronous service responses – Host:

Specifies the host name for the outbound asynchronous service responses proxy. You can enter or edit the

host name.

Proxy for outbound asynchronous service responses – Port:

Specifies the port number for the outbound asynchronous service responses proxy. You can enter or edit

the port number.

Proxy for outbound asynchronous service responses – User name:

Chapter 5. Web services 949

Specifies the user name for the outbound asynchronous service responses proxy. You can enter or edit

the user name.

Proxy for outbound asynchronous service responses – Password:

Specifies a placeholder for the outbound asynchronous service responses proxy password. You can enter

or edit the password. The actual password is masked.

Proxy for outbound asynchronous service responses – Confirm password:

Specifies a placeholder for the outbound asynchronous service responses proxy password. You can

re-enter or edit the password. The actual password is masked.

Basic authentication for outbound asynchronous service responses – User name:

Specifies the user name for basic authentication of outbound asynchronous responses. You can enter or

edit the user name.

Basic authentication for outbound asynchronous service responses – Password:

Specifies a placeholder for basic authentication of outbound asynchronous responses password. You can

enter or edit the password in this field. The actual password is masked.

Basic authentication for outbound asynchronous service responses – Confirm password:

Specifies a placeholder for basic authentication of outbound asynchronous responses password. Re-enter

the password in this field. The actual password is masked.

Custom Properties – Name:

Specifies the name of custom property. Custom properties are not initially displayed in this column until

you define them.

Custom Properties – Value:

Specifies the value of the custom property. With the Value entry field, you can enter, edit, or delete the

value for a custom property.

 Click one of the following buttons to enable the action described:

 Button Resulting Action

New Creates a new custom property entry. To add a custom

property, enter the name and value.

Delete Removes the selected custom property.

Edit You can edit a selected custom property. It is only

displayed when one or more properties exist.

Configuring the Java Message Service (JMS) transport policy:

You can define a Java Message Service (JMS) transport policy configuration if you are using SOAP over

JMS with your Java API for XML-Based Web Services (JAX-WS) applications.

950 Administering WebSphere applications

Before you begin

You can configure some settings for policies for custom policy sets. The provided default policy sets

cannot be edited. You must create a copy of the default policy set or create a new policy set in order to

specify the policies for it.

About this task

When using the SOAP over JMS transport with JAX-WS applications, you can customize the transport by

configuring the JMS transport policy. The SOAP over JMS transport provides an alternative to HTTPS for

transporting SOAP requests and response messages between clients and servers. See the documentation

on using SOAP over JMS to transport Web services to learn more about this transport protocol.

You can only configure a policy through a policy set. Therefore, before you can configure the JMS

transport policy, a policy set must exist that contains the JMS transport policy. To customize a policy set

that contains the JMS transport policy, you must first create a policy set and add the JMS transport policy

to the new policy set.

Use the JMS transport policy settings panel to customize the values of the JMS transport policy properties,

such as the request timeout value. Your customized values for the JMS transport policy now apply for your

policy set that contains that custom JMS transport policy. You can attach this policy set containing your

customized JMS transport policy to your JAX-WS application, its services, endpoints, or operations. This

change affects all JAX-WS applications to which that policy set is attached. To learn more about attaching

policy sets to applications, see the documentation for managing policy sets for service providers and

service clients at the application level.

1. Create a policy set that contains the JMS transport policy.

a. Create a custom policy set. From the administrative console, click Services > Policy Sets >

Application policy sets. From this panel you can create a new policy set, import a copy of a

policy set from the default repository, or you can import an existing policy set from your specified

location.

b. Add the JMS transport policy to the policy set. From the administrative console, click Services >

Policy Sets > Application policy sets > policy_set_name. In the policy collection, click JMS

transport. The JMS transport window displays options for configuring the JMS settings for the

transport policy.

c. Specify the JMS connection properties for the JMS transport requests. The following fields

configure the JMS features for this transport:

Request timeout

Specifies whether to enable a request timeout value. The request timeout value is the

amount of time that the client waits for a response after sending the request to the server.

The range is from 0 to 2147483647.

Allow transactional messaging for one-way and asynchronous operations

Specifies to enable a client to use transactions in one-way or asynchronous two-way

requests. Select this check box to enable transactional messaging.

 When this option is selected, the client runtime environment exchanges SOAP request and

response messages with the server over the JMS transport in a transactional manner if the

client is operating under a transaction. This process indicates that the clients transaction is

used to send the SOAP request message to the destination queue or topic, and the server

receives the request message only after the client commits the transaction. Similarly, the

server receives the request message under the control of a container-managed transaction

and sends the reply message, if applicable, back to the client using that same transaction.

The client then receives the reply message only after the server transaction has been

committed.

Chapter 5. Web services 951

If this option is not selected, then the client and server runtime environments perform

messaging operations in a non-transactional manner as transactions are temporarily

suspended for the JMS request. The transactions are enabled again after the request has

completed.

Note: Transactional messaging operations are not supported for two-way synchronous

operations as this leads to a deadlock condition.

2. Customize the JMS transport provider bindings.

a. Navigate to the JMS transport provider bindings. From the administrative console, click Services >

Policy Sets > General provider policy set bindings > provider_policy_set_binding_name >

JMS transport.

The JMS transport provider bindings window displays options for defining basic authentication for

asynchronous service responses and custom properties for the JMS service provider binding

configuration.

b. Specify the properties for basic authentication for asynchronous service responses.

You can use the JMS transport provider policy bindings to configure a service that uses the JMS

transport to send asynchronous response messages back to the client. The application server

runtime environment uses the user name and password that you configure when connecting to the

JMS messaging provider and this configuration enables the service to send an asynchronous

response message to the client in a secure manner.

The following fields determine the authentication requirements for responses from the server:

User name

Specifies the user name for the asynchronous service responses for the service provider.

Password

Specifies a placeholder for the password for the asynchronous service responses from the

service provider. You can enter or edit the password in this field. The actual password is

masked.

Confirm password

Specifies a placeholder for the password for the asynchronous service responses from the

service provider that must match the one in the Password field. The actual password is

masked.

a.

3. Customize the JMS transport client bindings.

a. Navigate to the JMS transport client bindings. From the administrative console, click Services >

Policy Sets > General client policy set bindings > client_policy_set_binding_name > JMS

transport.

The JMS transport provider bindings window displays options for defining basic authentication for

outbound service requests and custom properties for the JMS client binding configuration.

b. Specify the Basic Authentication for Outbound Service Requests properties.

You can use the JMS transport client policy bindings to configure a client that uses the JMS

transport to send a request message to the server. The client runtime environment uses the user

name and password that you configure when connecting to the JMS messaging provide. This

configuration enables the client to send the request message to the server in a secure manner.

The following fields determine the authentication requirements for requests sent to the server:

User name

Specifies the user name that is used by the client runtime when connecting to the JMS

messaging provider to send an outbound request to the destination queue or topic. Enter a

user name in this field.

Password

Specifies a placeholder for the password that is used by the client runtime when

952 Administering WebSphere applications

connecting to the JMS messaging provider to send an outbound request to the destination

queue or topic. You can enter or edit the password in this field. The actual password is

masked.

Confirm password

Specifies a placeholder for the password that is used by the client runtime when

connecting to the JMS messaging provider to send an outbound request to the destination

queue or topic. Re-enter the password in this field. This password must match the one in

the Password field. The actual password is masked.

Results

After you have customized the JMS transport policy, the associated policy set uses this policy to configure

the runtime behavior of the SOAP over JMS transport.

Example

You can attach policy sets to an application, its services, endpoints, or operations. In this example

scenario, suppose you have two different JAX-WS service clients for your application, but you want to use

different JMS transport request timeout values for each service client. To modify the JMS request timeout

values, you can edit the values of the JMS transport policy that is contained within the policy set that is

attached to your application or in this case, your service client. This change affects all applications to

which the policy set containing the custom JMS transport policy is attached.

This example describes the steps for configuring different request timeout values for service clients

deployed in the same application server. This example includes the following assumptions:

v Two JAX-WS service clients exist, ServiceClient1 and ServiceClient2, that are deployed in the

application server.

v The JMS transport policy has not been previously attached to these applications.

1. Create two new policy sets and add the JMS transport policy to them. For example:

JMSServiceClient1Policy and JMSServiceClient2Policy

a. Click Services > Policy sets > Application policy sets > New .

b. Enter the name of the new application policy set, JMSServiceClient1Policy.

c. From the Policies collection, click Add > JMS transport.

d. Click Apply and Save to save your changes to the master configuration.

e. Repeat these steps to create the JMSServiceClient2Policy.

2. Customize the JMS transport policy settings for the newly created JMSServiceClient1Policy and

JMSServiceClient2Policy policy sets. For example, set the request timeout value to 180 seconds for the

JMS transport policy contained in the JMSServiceClient1Policy. The JMS transport policy contained in

the JMSServiceClient2Policy specifies 300 seconds as the request timeout value.

a. Click Services > Policy sets > Application policy sets > JMSServiceClient1Policy .

b. From the Policies collection, click JMS transport.

c. From the JMS transport policy configuration panel, specify 180 seconds for the request timeout

value.

d. Click Apply and Save to save your changes to the master configuration.

e. Click Services > Policy sets > Application policy sets > JMSServiceClient2Policy .

f. From the Policies collection, click JMS transport.

g. From the JMS transport policy configuration panel, specify 300 seconds for the request timeout

value.

h. Click Apply and Save to save your changes to the master configuration.

3. Attach the custom JMS transport policy, JMSServiceClient1Policy, to your application, ServiceClient1.

Similarly, attach the custom JMS transport policy, JMSServiceClient2Policy, to ServiceClient2.

Chapter 5. Web services 953

a. Click Services > Service clients > ServiceClient1.

b. From the Policy set attachments collection, select the service, ServiceClient1.

c. Click Attach Client Policy Set, and click JMSServiceClient1Policy.

d. Click Save to save your changes to the master configuration.

e. Click Services > Service clients > ServiceClient2.

f. From the Policy set attachments collection, select the service, ServiceClient1.

g. Click Attach Client Policy Set, and click JMSServiceClient2Policy.

h. Click Save to save your changes to the master configuration.

As a result, the ServiceClient1 application now has the JMSServiceClient1Policy attached, and the JMS

sessions use a request timeout of 180 seconds. The ServiceClient2 application has the policy,

JMSServiceClient2Policy, attached and the JMS sessions use a request timeout of 300 seconds.

What to do next

You can customize other policies that you might need for your application.

JMS transport policy settings:

Use this page to configure settings for the Java Message Service (JMS) transport policy. You can

configure a client that is using the JMS transport policy to exchange request and response messages with

the server.

 To view this administrative console page:

1. Click Services > Policy Sets > Application policy sets

2. Click policy_set_name

3. In the policy collection, click JMS transport

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

You can only configure a policy through a policy set. Therefore, before you can configure the JMS

transport policy, a policy set must exist that contains the JMS transport policy.

To customize a policy set that contains the JMS transport policy, you must create a new policy set, import

a copy of a policy set from the default repository, or you can import an existing policy set from your

specified location. After you have an editable policy set, you can add the JMS transport policy to your

policy set.

After you customize values for the JMS transport policy, these values now apply for your policy set that

contains that customized JMS transport policy. You can attach this policy set that contains your customized

JMS transport policy to your application, its services, endpoints, or operations. This change affects all

JAX-WS applications to which that policy set is attached. To learn more about attaching policy sets to

applications, read about managing policy sets for service providers and service clients at the application

level.

Client JMS connection properties - Request timeout:

Specifies the request timeout value. The request timeout value is the amount of time that the client waits

for a response after sending the request to the server. The default value is 300 seconds.

Client JMS connection properties - Allow transactional messaging for one-way and asynchronous

operations:

954 Administering WebSphere applications

Specifies to enable a client to use transactions in one-way or asynchronous two-way requests. Select this

check box to enable transactional messaging.

 If this option is selected, the client runtime exchanges SOAP request and response messages with the

server over the JMS transport in a transactional manner if the client is operating under a transaction.

Therefore, the client transaction is used to send the SOAP request message to the destination queue or

topic, and the server receives the request message only after the client commits the transaction. Similarly,

the server receives the request message under the control of a container-managed transaction and sends

the reply message, if applicable, back to the client using that same transaction. The client then receives

the reply message only after the server transaction is committed.

If this option is not selected, the client and server runtimes perform messaging operations in a

non-transactional manner.

Note: Transactional messaging operations are not supported for two-way synchronous operations as this

leads to a deadlock condition.
.

JMS transport bindings:

Use this page to define the Java Message Service (JMS) transport provider or client bindings

configuration.

 If you are using JMS transport provider bindings, to view this administrative console page, complete the

following actions:

1. Click Services > Policy Sets > General provider policy set bindings.

2. Click provider_policy_set_binding_name.

3. In the policy collection, click JMS transport.

If the JMS transport policy has not been added to the selected general provider policy set, then use the

create general provider bindings panel to add the JMS transport policy to the selected general provider

policy set.

You can use the JMS transport provider policy bindings to configure a service that uses the JMS transport

to send asynchronous response messages back to the client. The application server run time uses the

user name and password that you configure when connecting to the JMS messaging provider and this

configuration enables the service to send an asynchronous response message to the client in a secure

manner.

If you are using JMS transport client bindings, to view this administrative console page, complete the

following actions:

1. Click Services > Policy Sets > General client policy set bindings.

2. Click client_policy_set_binding_name.

3. In the policy collection, click JMS transport.

If the JMS transport policy has not been added to the selected general client policy set, then use the

create general client bindings panel to add the JMS transport policy to the selected general client policy

set.

You can use the JMS transport client policy bindings to configure a client that uses the JMS transport to

send a request message to the server. The client run time uses the user name and password that you

specify when connecting to the JMS messaging provider, and this configuration enables the client to send

the request message to the server in a secure manner.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Chapter 5. Web services 955

Note: You can also configure JMS transport properties, such as request timeout values or whether to

enable transactional messaging for one-way asynchronous operations for JAX-WS applications that

are deployed in the same application server. If you want to customize these JMS properties, you

must edit the JMS transport policy. To customize the JMS transport policy settings, click Services >

Policy sets > Application policy sets > policy_set_name >JMS transport policy, where

policy_set_name applies to any policy set that contains the JMS transport policy. Your customized

values for the JMS transport policy now apply for your policy set that contains that custom JMS

transport policy. You can attach this policy set that contains your customized JMS transport policy to

your application, its services, endpoints, or operations. This change affects all JAX-WS applications

to which that policy set is attached. To learn more about attaching policy sets to applications, see

the documentation for managing policy sets for service providers and service clients at the

application level.

Related tasks

“Modifying policies using the administrative console” on page 934
With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,

WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer

(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Managing policy sets and bindings for service providers at the application level using the administrative

console” on page 772
Use this administrative console task to manage policy sets for an application or its services, endpoints,

and operations.

“Managing policy sets and bindings for service clients at the application level using the administrative

console” on page 789
Use this administrative console task to manage policy sets for service clients applications or its services,

endpoints, or operations.

Using SOAP over Java Message Service to transport Web services

You can use the SOAP over Java Message Service (JMS) transport protocol as an alternative to SOAP

over HTTP for communicating SOAP messages between clients and servers.

Related reference

“JMS transport policy settings” on page 954
Use this page to configure settings for the Java Message Service (JMS) transport policy. You can

configure a client that is using the JMS transport policy to exchange request and response messages with

the server.

Basic Authentication – User name:

For the service provider, this field specifies the user name for the asynchronous service responses. For

the client, this field specifies the user name that is used by the client runtime when connecting to the JMS

messaging provider to send an outbound request to the destination queue or topic. Enter a user name in

this field.

Basic Authentication – Password:

For the service provider, this field specifies a placeholder for the password of the asynchronous service

responses. For the client, this field specifies the password that is used by the client runtime when

connecting to the JMS messaging provider to send an outbound request to the destination queue or topic.

You can enter or edit the password in this field. The actual password is masked.

Basic Authentication – Confirm password:

956 Administering WebSphere applications

For the service provider, this field specifies a placeholder for the password for the asynchronous service

responses. For the client, this field specifies the password that is used by the client runtime when

connecting to the JMS messaging provider to send an outbound request to the destination queue or topic.

Re-enter the password in this field. The actual password is masked.

Custom Properties – Name:

Specifies the name of custom property. Custom properties are not initially displayed in this column until

you define them.

 Click one of the following buttons to enable the described action:

 Button Resulting Action

New Creates a new custom property entry. To add a custom

property, enter the name and value.

Delete Removes the selected custom property.

Edit Edit a selected custom property. This button is only

displayed when one or more properties exist.

Custom Properties – Value:

Specifies the value of the custom property. With the Value entry field, you can enter, edit, or delete the

value for a custom property.

Configuring the SSL transport policy:

When working with policy sets in the administrative console, you can customize policies to ensure

message security by configuring the SSL transport policy.

 Before you begin

The default policy sets provided with the product cannot be edited. To configure custom policy sets, you

must first copy the default policy set or create a completely new policy set in order to specify the policies

for it. See creating policy sets using the administrative console.

About this task

The SSL transport policy provides the SSL transport security for the Hypertext Transfer Protocol (HTTP)

protocol with Web services applications. To view the default SSL transport policy set with the SSL transport

policy, click Services > Policy sets > Application policy sets > WSHTTPS default > SSL transport.

1. To edit the SSL transport policy, click a policy set that you have created or customized from the

default. Select the SSL transport policy applicable check boxes to enable the SSL functions. The

following check boxes determine how SSL security is configured for this transport:

v Enable for outbound service requests

Displays whether the SSL security transport is enabled for outbound service requests.

v Enable for outbound asynchronous service responses

Displays whether the SSL security transport is enabled for outbound asynchronous service

responses.

v Enable for inbound service responses

Displays whether the SSL security transport is enabled for inbound service responses.

2. To configure the binding for the SSL transport policy, click Services > Policy sets > General client

policy set bindings > binding_name > SSL transport or Services > Policy sets > General provider

policy set bindings > binding_name > SSL transport. Select the setting to configure the SSL

bindings. The SSL transport window displays options for configuring the SSL security bindings.

Chapter 5. Web services 957

a. Select the setting to configure the SSL bindings for the Outbound service requests.

v SSL settings

Specifies the SSL security transport binding that is enabled for outbound service requests. The

default value for this field is CellDefaultSSLSettings.

v SSL properties file path

Specifies the path of the SSL properties file that is enabled for asynchronous service responses.

Enter the location of the SSL properties file to enable for asynchronous service responses.

b. Select the setting to configure the SSL bindings for the Inbound service responses.

v SSL settings

Specifies the SSL security transport binding that is enabled for inbound service responses. The

default value for this field is CellDefaultSSLSettings.

v SSL properties file path

Specifies the path of the SSL properties file that is enabled for inbound service responses. Enter

the location of the SSL properties file to enable for inbound service responses.

c. Select the setting to configure the SSL bindings for the Outbound asynchronous service

responses.

v SSL settings

Specifies the SSL security transport binding that is enabled for asynchronous service responses.

The default value for this field is CellDefaultSSLSettings.

v SSL properties file path

Specifies the file path of the SSL properties file that is enabled for outbound service requests.

Enter the location of the SSL properties file to enable for outbound service requests.

Custom properties

Click one of the following buttons to enable the action described:

 Button Resulting Action

New Creates a new custom property entry. To add a custom property, enter the name and

value.

Delete Removes the selected custom property.

Edit Enables you to edit a selected custom property. It is only displayed when one or more

properties exist.

Results

Once you have customized the SSL transport policy, the associated policy set uses this policy to protect

message transmission. Similarly, you can also configure HTTP transport with the HTTP transport policy.

Read about configuring the HTTP transport policy to learn how to configure the HTTP transport with the

HTTP transport policy.

What to do next

Depending on how you are using policies, you might want to configure the HTTP transport policy or the

SSL transport security bindings.

SSL transport security policy settings:

Use this page to define the secure sockets layer (SSL) transport policy configuration for policy sets.

 To configure the SSL transport security for a policy set, click Services > Policy sets > Application policy

sets > policy_set_name > SSL transport, where policy_set_name, applies to any policy set that contains

SSL transport security. An example of such SSL transport security is WSHTTPS default.

958 Administering WebSphere applications

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Enable for outbound service requests:

Specifies whether the SSL security transport is enabled for outbound service requests when the client

sends out requests.

Enable for outbound asynchronous service responses:

Specifies whether the SSL security transport is enabled for outbound asynchronous service responses

when the service or server sends back the response.

Enable for inbound service responses:

Specifies whether the SSL security transport is enabled for inbound service responses when the client

receives responses.

SSL transport security settings:

Use this page to define the secure sockets layer (SSL) transport policy binding configuration.

 1. Navigate to the general bindings collection page by clicking either Services > Policy sets > General

client policy set bindings or Services > Policy sets > General provider policy set bindings path.

2. Click a general binding in the Name column.

3. Click the SSL transport policy in the Policies table.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Outbound service requests – SSL settings:

Specifies the SSL security transport binding that is enabled for outbound service requests when the client

sends out requests. The default value for this field is CellDefaultSSLSettings.

Outbound service requests – SSL properties file path:

Specifies the file path of the SSL properties file that is enabled for outbound service requests. Enter the

location of the SSL properties file to enable for outbound service requests.

Inbound service responses – SSL settings:

Specifies the SSL security transport binding that is enabled for inbound service responses when the client

receives responses. The default value for this field is CellDefaultSSLSettings.

Inbound service responses – SSL properties file path:

Specifies the SSL security transport binding that is enabled for inbound service responses. Enter the

location of the SSL properties file to enable for inbound service responses.

Outbound asynchronous service responses – SSL settings:

Specifies the SSL security transport binding that is enabled for asynchronous service responses when the

service or server sends back the response. The default value for this field is CellDefaultSSLSettings.

Outbound asynchronous service responses – SSL properties file path:

Specifies the path of the SSL properties file that is enabled for asynchronous service responses. Enter the

location of the SSL properties file to enable for asynchronous service responses.

Chapter 5. Web services 959

Outbound asynchronous service responses – Custom properties:

Specifies the name and value pair that you define for the outbound asynchronous service responses. Click

New to add a new custom property, or click Delete to delete an existing SSL custom property.

Configuring the WS-Transaction policy:

When you work with policy sets in the administrative console, you can configure the WS-Transaction policy

type for the WS-AtomicTransaction (WS-AT) and the WS-BusinessActivity (WS-BA) protocols. You can

configure whether a client propagates, and a server receives, a WS-AT context, and whether a client

propagates, and a server receives, a WS-BA context.

 Before you begin

You must be working with a policy set that includes the WS-Transaction policy type.

Do not edit the policies associated with the provided default policy sets. If you need to modify the

WS-Transaction policy settings, use a copy of a default policy set or create a new policy set.

About this task

You can configure the policies for the WS-AtomicTransaction and WS-BusinessActivity protocols. The

WS-AT protocol supports coordination of activities so that either all the activities occur, or none of them

occur. The WS-BA protocol supports coordination of activities that are more loosely coupled than atomic

transactions and that therefore require a compensation process if a failure occurs in the business activity.

When you add a WS-Transaction policy, it is equivalent to setting the following deployment descriptors that

are associated with an EJB or Web module:

v Use Web Services Atomic Transaction

v Send Web Services Atomic Transaction on requests

v Execute using Web Services Atomic Transaction on incoming requests

A WS-BA context is sent if the client is running in a BusinessActivity scope (BAScope). A provider runs in

a BAScope if it receives a message that contains a WS-BA context, as long as the provider is set to run

Enterprise JavaBeans (EJB) methods in a Business Activity scope.

1. In the navigation pane of the administrative console, click Services → Policy sets → Application

policy sets → policy_set_name → [Policies] WS-Transaction. The WS-Transactions settings pane is

displayed.

2. In the WS-AtomicTransaction section, select the option you require:

v Mandatory. For a client, the client always propagates a WS-AT context on an outbound request.

For a server, any request that is received must include a WS-AT context, otherwise the request is

rejected.

v Supports. For a client, the client can propagate a WS-AT context on an outbound request when

that context is available. For a server, if a request includes a WS-AT context, the context is imported

and established on the thread before the request is processed.

v Never. For a client, the client never propagates a WS-AT context on an outbound request. For a

server, any request that is received must not include a WS-AT context, otherwise the request is

rejected.

3. In the WS-BusinessActivity section, select the option you require:

v Mandatory. For a client, the client always propagates a WS-BA context on an outbound request.

For a server, any request that is received must include a WS-BA context, otherwise the request is

rejected.

960 Administering WebSphere applications

v Supports. For a client, the client can propagate a WS-BA context on an outbound request when

that context is available. For a server, if a request includes a WS-BA context, the context is imported

and established on the thread before the request is processed.

v Never. For a client, the client never propagates a WS-BA context on an outbound request. For a

server, any request that is received must not include a WS-BA context, otherwise the request is

rejected.

4. Click OK.

5. Save your changes to the master configuration.

Results

After you configure the WS-Transaction policy, the associated policy set uses this policy to support

WS-AtomicTransaction and WS-BusinessActivity.

WS-Transaction policy settings:

Use this page to specify the policies for the WS-AtomicTransaction (WS-AT) and WS-BusinessActivity

(WS-BA) protocols. WS-AT supports coordination of activities so that either all the activities occur, or none

of them occur. WS-BA supports coordination of activities that are more loosely coupled than atomic

transactions, and that therefore, require a compensation process if an error occurs.

 To view this pane in the console, click the following path: Services → Policy sets → Application policy

sets → policy_set_name → [Policy] WS-Transaction, when the policy set includes the WS-Transaction

policy type.

You can configure the WS-Transaction policy type for both client and provider policy sets.

WS-AtomicTransaction: Specifies behavior with the WS-AT policy. The options are:

Mandatory

For a client, the client always propagates a WS-AT context on an outbound request. If there is no

transaction on the thread when the request is made, the attempt to make the request fails.

 For a server, any request that is received must include a WS-AT context, otherwise the request is

rejected. If any Web Services Description Language (WSDL) is generated for the Web service with

which the policy type is associated, a policy assertion is included that indicates that an operation

must be invoked with an atomic transaction context.

Supports

For a client, the client can propagate a WS-AT context on an outbound request when it is

available. For example, a transaction is associated with the thread that makes the request, and the

policy of the provider requires WS-AT context.

 For a server, if a request includes a WS-AT context, the context is imported and established on

the thread before the request is processed. If a request does not include a WS-AT context, the

request is processed as normal. If any WSDL is generated for the Web service with which the

policy type is associated, a policy assertion is included that indicates that an operation supports

invocation with an atomic transaction context when that context is available.

Never For a client, the client never propagates a WS-AT context on an outbound request.

 For a server, any request that is received must not include a WS-AT context, otherwise the

request is rejected with a MustUnderstand error. If any WSDL is generated for the Web service

with which the policy type is associated, that WSDL does not include a policy assertion for an

atomic transaction context.

WS-BuinessActivity: Specifies behavior with the WS-BA policy. The options are:

Chapter 5. Web services 961

Mandatory

For a client, the client always propagates a WS-BA context on an outbound request. If there is no

business activity scope on the thread when the request is made, the attempt to make the request

fails.

 For a server, any request that is received must include a WS-BA context, otherwise the request is

rejected. If any WSDL is generated for the Web service with which the policy type is associated, a

policy assertion is included that indicates that an operation must be invoked with a business

activity context.

Supports

For a client, the client can propagate a WS-BA context on an outbound request when it is

available. For example, a business activity scope is associated with the thread that makes the

request, and the policy of the provider requires a WS-BA context.

 For a server, if a request includes a WS-BA context, the context is imported and established on

the thread before the request is processed. If a request does not include a WS-BA context, the

request is processed as normal. If any WSDL is generated for the Web service with which the

policy type is associated, a policy assertion is included that indicates that an operation supports

invocation with a business activity context when that context is available.

Never For a client, the client never propagates a WS-BA context on an outbound request.

 For a server, any request that is received must not include a WS-BA context, otherwise the

request is rejected with a MustUnderstand error. If any WSDL is generated for the Web service

with which the policy type is associated, that WSDL does not include a policy assertion for a

business activity context.

Configuring the WS-Security policy:

When working with policy sets in the administrative console, you can customize policies to ensure

message security. The WS-Security policy can be configured to apply a message security (WS-Security)

profile to requests. Message security policies are applied to requests and enforced on responses to

support interoperability.

 Before you begin

You can configure some settings for default policies for custom policy sets. The provided default policy

sets cannot be edited. You must create a copy of the default policy set or create a completely new policy

set in order to specify the policies for it.

About this task

Message security policies are applied to requests and enforced on responses to support interoperability.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

1. Use the WS-Security policy panel to begin configuring the WS-Security policy. To access the

WS-Security policy panel, from the administrative console, click Services > Policy sets > Application

policy sets > policy_set_name > WS-Security policy.

2. Choose which type of message security to configure.

v Click the Main policy link to specify how message security policies are applied to requests and

enforced on responses to support interoperability.

v Click the Bootstrap policy link to configure how secure conversations are established. A bootstrap

policy might already be configured. If no bootstrap policy is currently configured, first ensure that you

have enabled message security with symmetric signature and encryption policies and secure

conversation tokens for both integrity and confidentiality protection.

962 Administering WebSphere applications

3. Use the Main policy settings panel or the Bootstrap policy settings panel to specify how message

security policies are applied to requests and enforced on responses. Assertions for WS-Security

versions are already generated based on assertions in the policy set. If the policy set includes a WS-S

1.1 assertion, then WS-S 1.1 itself is asserted. Configure the settings on this panel to configure main

or bootstrap policy settings:

a. Select whether Message level protection is required. Select this check box if any of the message

parts should be digitally signed or encrypted or if a timestamp should be inserted in the message.

It this box is unchecked, the Signature confirmation, Key symmetry, and Timestamp and Security

header layout options are disabled.

b. Specify whether signature confirmation is required. Click this check box to require signature

confirmation.

c. Configure the settings in the Key Symmetry® section. The following fields can be configured in the

Key symmetry section:

Use symmetric tokens

Click this radio button to use symmetric tokens. You can then configure symmetric tokens

with the Symmetric signature and encryption policies link. Click this link to access the

Symmetric Signature and Encryption Policies panel where you can create the trust context

in which to use symmetric tokens. Using the same token for signing and validating

messages and encrypting and decrypting messages provides better performance than can

be achieved with asymmetric tokens. Symmetric tokens should be used within a trust

context.

Use asymmetric tokens

Click this link to access the Asymmetric Signature and Encryption Policies panel where you

can create the trust context (message integrity and confidentiality) in which to use

asymmetric tokens. You can do this by specifying which token type to use for the initiator

and recipient signature as well as the initiator and recipient encryption.

Include timestamp in header

Click this check box to include a timestamp in the header. You can then specify if the

timestamp is positioned first or last in the header by using the Security header layout radio

button options:

v Strict: Declarations must precede use

v Layout (Lax): Order of contents can vary

v Lax but timestamp required first in header

v Lax but timestamp required last in header

d. Optional: Click the Algorithms link under the Policy Details section if you want to access the

Algorithms panel to view and select from available algorithms. The available algorithms include

cryptographic algorithms and their key lengths, as well as canonicalization algorithms for

reconciling XML differences. Click this link to view the cryptographic and cannonicalization

algorithms that are supported.

e. Optional: Configure the request settings. Click either of the following links to configure request

settings:

Request message part protection

Links to configuration for request message part protection. Click this link to define which

message parts are to be protected and how that protection is provided.

Request token policies

Links to configuration for request token policies. Click this link to define policies that specify

which types of security tokens are supported and the properties of those token types.

f. Optional: Configure the response settings. Click either of the following links to configure response

settings:

Chapter 5. Web services 963

Response message part protection

Links to configuration for response message part protection. Click this link to define which

message parts are to be protected and how that protection is provided.

Response token policies

Links to configuration for response token policies. Click this link to define policies that

specify which types of security tokens are supported and the properties of those token

types.

Results

Once you have customized the WS-Security policy, the associated policy set uses this policy to protect

messages.

WS-Security policy settings:

Use this page to configure the WS-Security policy and apply a message security WS-Security profile to

requests. WS-Security policies are applied to requests and enforced on responses to support

inter-operability.

 To view this administrative console page, click Services > Policy sets > Application policy sets >

policy_set_name > WS-Security policy.

Main policy:

Links to configuration settings for a main policy. Use the Main policy link if you want to configure how

WS-Security policies are applied to requests and enforced on responses to support interoperability.

Secure conversation bootstrap policy:

Links to configuration settings for a secure conversation bootstrap policy. Use the bootstrap policy link if

you want to configure how secure conversations are established. To configure a secure conversation

bootstrap policy, first ensure that you have enabled message security in the main policy with symmetric

signature and encryption policies and secure conversation tokens for both integrity and confidentiality

protection.

 Click Remove bootstrap policy to discontinue using secure conversation policy settings.

Configuring the request or response token policies:

You can configure the request and response token policies that are part of the WS-Security policy using

the administrative console. Message requests token policies are applied to requests and enforced on

responses to support both quality and interoperability.

 Before you begin

You can configure some settings for the policies within your policy sets. The default policy sets provided in

the product cannot be edited. You must create a copy of the default policy set or create a completely new

policy set in order to specify the policies for it.

About this task

Use this administrative console task to define policies that specifically support security tokens and

properties.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

964 Administering WebSphere applications

to learn more about the valid roles for the application server.

1. Click Services > Policy sets > Application policy sets > policy_set_name > WS-Security policy.

2. Click one of the following links:

v Main policy or

v Bootstrap policy

v Click the Main policy link to specify how message security policies are applied to requests and

enforced on responses to support interoperability.

v Click the Bootstrap policy link to configure how secure conversations are established. A bootstrap

policy might already be configured. If no bootstrap policy is currently configured, first ensure that you

have enabled message security with symmetric signature and encryption policies and secure

conversation tokens for both integrity and confidentiality protection. See Configuring the WS-Security

policy.

3. Click Request token policies under Request Policies or Response token policies under Response

Policies. Use this to panel to define policies that specify which types of security tokens are supported

for the properties of each token type.

Results

Once you have customized the WS-Security policy with the associated properties, including the request

and response token policies, you can then send and receive protect messages.

Request or Response token policies collection:

Use this page to define policies that specify supported security tokens and properties.

 To view this administrative console page, complete the following:

1. Click Services > Policy sets > Application policy sets >policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click Request token policies or Response token policies from the Policy Details section.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Add token type:

Specifies a list of token types that you can add to the selected token name. You can only add a token type

for a custom policy set.

 This option provides the following supported token types:

v Username

v X.509

v LTPA

v Custom

Delete:

Removes the selected token name. This action is only available for a custom policy set.

Token name:

Specifies the name of the token.

Chapter 5. Web services 965

Type:

Specifies the token type in the Supported token types table. This list displays a token type for each token

name in the list.

Version:

Specifies the version of the token in the Supported token types table. This list displays the version of each

token in the list.

Token type settings:

Use the administrative console to define the details about the token types. This panel is displayed

differently for each different token type. Policies can be defined that specify which types of security tokens

are supported as well as properties for the token type.

 To view token types for a policy set, complete the following steps:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click one of the following:

v Request token policies from the Policy detail section.

v Response token policies from the Policy detail section.

v Symmetric signature and encryption policies from the Key symmetry section.

v Asymmetric signature and encryption policies from the Key symmetry section.

5. For a Request token policy or a Response token policy, click a token from the Supported Token Types

table or click the Add Token Type button to select the type of token to add.

6. For a symmetric signature and encryption policy or an asymmetric signature and encryption policy,

click Edit Selected Type Policy.

This panel is displayed for each token type you are configuring or adding. It displays fields for some token

types and not for others. This help panel contains all of the fields for each of the token types and

describes which token is being configured for each field.

Custom token name:

For a custom token, specifies the name of the token being configured. Enter or edit the name for the

custom token in this entry field.

Local name:

For a custom token, specifies the local name.

 If the custom token type is used to generate a Kerberos token as defined in the OASIS Web Services

Security Specification for Kerberos Token Profile v1.1, use one of the values in the following table for the

local name. The value you choose depends on the specification level of the Kerberos token generated by

the Key Distribution Center (KDC). The table lists the values and the specification level associated with

each value. For purposes of interoperability, the Basic Security Profile V1.1 standard requires the use of

the local name, http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ.

966 Administering WebSphere applications

Local Name Value for Kerberos Token Associated Specification Level

http://docs.oasis-open.org/wss/oasiswss-

kerberos-token-profile-1.1#Kerb erosv5_AP_REQ

Kerberos V5 AP-REQ as defined in the Kerberos

specification. This value is used when the Kerberos ticket

is an AP Request.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ

GSS-API Kerberos V5 mechanism token containing a

KRB_AP_REQ message as defined in RFC-1964 [1964],

Sec. 1.1 and its successor RFC-4121, Sec. 4.1. This

value is used when the Kerberos ticket is an AP Request

(ST + Authenticator).

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ1510

Kerberos V5 AP-REQ as defined in RFC1510. This value

is used when the Kerberos ticket is an AP Request per

RFC1510.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ1510

GSS-API Kerberos V5 mechanism token containing a

KRB_AP_REQ message as defined in RFC-1964, Sec.

1.1 and its successor RFC-4121, Sec. 4.1. This value is

used when the Kerberos ticket is an AP Request (ST +

Authenticator) per RFC1510.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ4120

Kerberos V5 AP-REQ as defined in RFC4120. This value

is used when the Kerberos ticket is an AP Request per

RFC4120.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ4120

GSS-API Kerberos V5 mechanism token containing an

KRB_AP_REQ message as defined in RFC-1964, Sec.

1.1 and its successor RFC-4121, Sec. 4.1. This value is

used when the Kerberos ticket is an AP Request (ST +

Authenticator) per RFC4120.

URI:

For a custom token, specifies the uniform resource identifier (URI).

 Leave this field empty, if the custom token type is used to generate a Kerberos token as defined in the

OASIS Web Services Security Specification for Kerberos Token Profile v1.1.

LTPA token name:

For an LTPA token, specifies the name of the token being configured. Enter or edit the name for the LTPA

token in this entry field.

Propagate the JAAS subject:

For an LTPA token, specifies whether the associated Java Authentication and Authorization Service (JAAS)

subject is propagated. Select this check box to propagate the JAAS subject. The default value is not

selected. Therefore, the JAAS subject is not propagated by default.

Username token name:

For a Username token, specifies the name of the token being configured. Enter or edit the name for the

user name token in this entry field.

WS-Security version:

For a Username token, specifies the version of Web services security, the WS-Security specification, that

is used to secure the message transmission.

 The following versions are available:

Chapter 5. Web services 967

v WS-Security V1.0

v WS-Security V1.1

X.509 token name:

For a X.509 token, specifies the name of the token being configured. Enter or edit the name for the X.509

token in this entry field.

WS-Security version:

For a X.509 token, specifies the version of Web services security that is used to secure the message

transmission.

 The following versions are available:

v WS-Security V1.0

v WS-Security V1.1

X.509 type:

For a X.509 token, specifies the type of X.509 token being configured.

 The following types are available for the X.509 token:

v X.509 Version 1. This option is available with WS-Security Version 1.1 only.

v X.509, Version 3

v X.509 PKCX7

v PKI Path Version 1

Secure conversation token: The secure conversation token is available only when using symmetric

signature and encryption policies.

Key derivation requirements:

For a secure conversation token, specifies whether derived keys are required.

Require reference to secure context token issuer:

For a secure conversation token, select this option to specify a reference to the issuer of the security

context token.

 After selecting the Require reference to secure context token issuer option, specify the URI of the

security context token issuer.

Require an external URI reference:

For a secure conversation token, select this option to specify that an external URI reference is required

when referencing the security context token.

Transform algorithms settings:

Use this administrative console page to select the uniform resource locator (URL) for the transform

algorithms that are needed to protect the message part.

 To view this administrative console page, complete the following:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set

bindings.

968 Administering WebSphere applications

2. Click the name of the binding you want to edit.

3. Click WS-Security policy in the Policies table

4. Click the Authentication and Protection link in the Main message security policy bindings section.

5. Select a signature protection in the Request message and encryption protection section or the

Response message signature and encryption protection section.

6. Click the Additional bindings > Signed part reference default at the end of the panel.

7. Click a URL in the Transform algorithms table.

You can also get to this administrative console page by completing the following actions:

 1. Click Applications > Application Types > WebSphere enterprise applications.

 2. Select an application that contains Web services.

 3. Select Service provider policy sets and bindings or Service client policy sets and bindings.

 4. Select a binding.

Note: You must have previously attached a policy set and assigned an application specific binding

before you can do this step.

 5. Select WS-Security.

Note: You must have previously added WS-Security to the bindings.

 6. Click the Authentication and Protection link in the Main message security policy bindings section.

 7. Select a signature protection in the Request message and encryption protection section or the

Response message signature and encryption protection section.

 8. Click the Additional bindings > Signed part reference default at the bottom of the panel.

 9. Click New to add a transform.

10. [Optional] Click a URL in the Transform algorithms table. This step assumes that a transform

algorithm has previously been configured.

URL:

Specifies the URL for the transform algorithms that are used to protect the message part.

 The URLs of the supported transform algorithms are listed in the table. The recommended transform is

http://www.w3.org/2001/10/xml-exc-c14n# and it is the Exclusive XML Canonicalization, as well as the

default value provided in the URL field when a transform is added.

 List of URLs for the transform algorithms

http://www.w3.org/2001/10/xml-exc-c14n#

http://www.w3.org/TR/1999/REC-xpath-19991116

http://www.w3.org/2002/06/xmldsig-filter2

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

http://www.w3.org/2002/07/decrypt#XML

http://www.w3.org/2000/09/xmldsig#enveloped-signature

Custom properties:

Specifies the custom properties name and value pair for the transform algorithms. Click New to add a new

custom property. Click Delete to delete a custom property.

Name Specifies the name of a custom property that you choose to set to protect the message part.

Value Specifies the value of a custom property that you choose to set to protect the message part.

Chapter 5. Web services 969

Signed part reference default bindings settings:

Use this administrative console page to configure the signed part reference general bindings and the

uniform resource locator (URL) for the transform algorithms that are needed to protect the message part.

 You can view and configure bindings for WS-Security using this administrative console page:

 1. Click Applications > Application Types > WebSphere enterprise applications.

 2. Select an application that contains Web services

 3. Select Service provider policy sets and bindings or Service client policy sets and bindings

 4. Select a binding.

Note: You must have previously attached a policy set and assigned an application specific binding

before you can do this step.

 5. Select WS-Security.

Note: You must have previously added WS-Security to the bindings.

 6. Click the Authentication and Protection link in the Main message security policy bindings section.

 7. Select a signature protection in the Request message and encryption protection section or the

Response message signature and encryption protection section.

 8. Click the Additional bindings - Signed part reference default at the bottom of the panel. For the

custom, select an assigned message part and click Edit. In the custom version, there is also a

reference field, Specifies the name of the signature protection in the policy set. Use this field to

specify the name of the signature protection in the policy set.

 9. Check the Include timestamp check box to include the timestamp when the message part is signed.

10. Check the Include nonce check box to include the nonce when the message part is signed.

Part reference properties:

Specifies the name of the part reference properties that include the transform algorithms used to protect

the message part.

1. Check the Include timestamp check box to include the timestamp for the message part.

2. Check the Include nonce check box to include the nonce when the message part is signed.

Transform algorithms:

Specifies the uniform resource locator (URL) description for the transform algorithms. Click the URL to

view the transform algorithms.

Main policy and bootstrap policy settings:

Use this page to specify how message security policies are applied to requests and enforced on

responses, as defined by the main policy settings and the bootstrap policy settings. Assertions for Web

Services Security (WS-Security) versions are already generated based on assertions in the policy set. If

the policy set includes a Web Services Security Version 1.1 assertion, then Web Services Security Version

1.1, itself, is asserted.

 To view this administrative console page, use one of the following steps:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

Message level protection:

970 Administering WebSphere applications

Specifies whether message level protection, using digital signatures and encryption, is required.

 Require signature confirmation

Specifies whether the signature confirmation is required. Select this check box to require a signature

confirmation.

Message part protection:

Specifies whether message part protection, using digital signatures and encryption, is required.

Request message part protection

Click this link to define which request message parts you want protected and how that protection

is provided.

Response message part protection

Click this link to define policies that specify which response message parts you want protected and

how that protection is provided.

 When the Message level protection check box is cleared, the link to Request message part protection is

disabled, because the configuration information associated with message level security is removed when

message level protection is cleared.

Key symmetry – Use symmetric tokens:

Specifies whether to use symmetric tokens. Select this radio button to use symmetric tokens. You can then

configure symmetric tokens using the Symmetric signature and encryption policies link. Click this link

to access the Symmetric signature and encryption policies panel where you can create the trust context in

which to use symmetric tokens. Using the same token for signing and validating messages and encrypting

and decrypting messages provides higher performance than can be achieved with asymmetric tokens. Use

symmetric tokens within a trust context. If a custom Kerberos token type is used, you must select the Use

symmetric tokens option.

Key symmetry – Use asymmetric tokens:

Specifies whether to use asymmetric tokens. Select this button to use asymmetric tokens. You can then

configure asymmetric tokens using the Asymmetric signature and encryption policies link. Click this

link to access the Asymmetric signature and encryption policies panel where you can create the trust

context (message integrity and confidentiality) in which to use asymmetric tokens. Specify which token

type to use for the initiator and recipient signature as well as the initiator and recipient encryption.

Include time stamp in security header:

Specifies whether to use a time stamp in the header. Select this check box to include a time stamp in the

header. You can then specify where in the header to place the time stamp by using the Security header

layout radio buttons.

Security header layout:

Specifies the layout rules for the security header.

 You can use the following radio buttons for the security header layout:

Strict: declarations must precede use

The declarations in the header must precede the use.

Layout (Lax): order of contents can vary

The order of contents in the header can vary.

Chapter 5. Web services 971

Lax but timestamp required first in header

The timestamp must be first in the header, but the order of the remaining elements can vary.

Lax but timestamp required last in header

The timestamp must be last in the header, but the order of the remaining elements can vary.

Policy details:

Specifies links for accessing the request token policies, response token policies, and algorithms for

asymmetric tokens. Click these links to view token policies and cannonicalization algorithms that are

supported. Algorithms are used to reconcile XML differences.

Request token policies:

Click this link to define policies that specify which types of supporting authentication tokens are used in the

request and the properties of those token types.

Response token policies:

Click this link to define policies that specify which types of supporting authentication tokens are used in the

response and the properties of those token types.

Algorithms for symmetric or asymmetric tokens:

Links to a view of available algorithms. Click this link to view the cryptographic and cannonicalization

algorithms that are supported. Algorithms are used to reconcile XML differences.

Asymmetric signature and encryption policies settings:

Use this page to create the trust context, message integrity and confidentiality, to use asymmetric tokens.

You can create the trust context by specifying which token type to use for the initiator and recipient

signature as well as the initiator and recipient encryption.

 To view this administrative console page complete the following actions:

1. Click Services > Policy sets > Application policy sets > policy_set_name > WS-Security policy

type.

2. Click Main policy or Bootstrap policy.

3. Click the Asymmetric signature and encryption policies link.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Message integrity policies – Initiator signature token:

Specifies the token type of the initiator signature token. To add a token type or change the current token

type that is displayed in the Initiator signature token field, or to edit the displayed token type, click

Action.

Message integrity policies – Recipient signature token:

Specifies the token type of the recipient signature token. To add a token type or change the current token

type that is displayed in the Recipient signature token field, or to edit the displayed token type, click

Action.

Message confidentiality policies – Use the same token types that are used for integrity protection:

972 Administering WebSphere applications

Specifies whether the token type set for initiator signature token and recipient signature token are used for

the initiator encryption token and the recipient encryption token. When the box is checked the fields are

empty and are cleared of data when Ok or Apply is selected.

Message confidentiality policies – Initiator encryption token:

Specifies the initiator encryption token type. To add a token type or change the current token type that is

displayed in the Initiator encryption token field, or to edit the displayed token type, click Action.

Message confidentiality policies – Recipient encryption token:

Specifies recipient encryption token type. To add a token type or change the current token type that is

displayed in the Recipient encryption token field, or to edit the displayed token type, click Action.

Action:

Specifies an option for each of the signature and encryption token fields. Use the Action button to change,

delete, add, or edit the listed token type.

 The Action button lists supported token types and provides the following options:

Edit selected type policy

Opens a page to edit the token type shown in the signature or encryption token fields.

Delete selected type policy

Removes the token type from the signature or encryption token fields.

Change to custom type

Opens the Custom type page to specify the uniform resource identifier (URI) for a custom token

type.

Add custom type

Adds the custom type entry in the signature or encryption token fields.

Change to X.509

Changes the listed token type to X.509.

Add X.509

Adds the X.509 token type.

When you change the token type, any values you specified for the former token type are lost and the

default values for the newly assigned token type are used.

Symmetric signature and encryption policies settings:

Use this page to create the trust context to use symmetric tokens. Using the same token for signing and

validating messages and encrypting and decrypting messages increases performance. Use symmetric

tokens within a trust context.

 To view this administrative console page, complete the following options:

1. Click Services > Policy sets > Application policy sets.

2. Select a policy_set_name in the policy sets table that contains WS-Security content.

3. Click WS-Security in the policies table.

4. Click the Main policy link or the Bootstrap policy link.

5. Click the Symmetric signature and encryption policies link.

Message Integrity – Token type for signing and validating messages:

Chapter 5. Web services 973

Specifies the current token type used for signing and validating messages.

 To change the current token type that is displayed in the Token type for signing and validating

messages field or to edit the displayed token type, click Action.

Message Confidentiality – Use same token type for confidentiality that is used for integrity:

Specifies whether the token type set for signing and validating messages is also used for encrypting and

decrypting messages. For a Kerberos token, message confidentiality uses the same token that is used for

the message integrity.

 If you select this check box, then the Token type for encrypting and decrypting messages field is

blank. If you clear this check box, then a different token can be used for message confidentiality.

Message Confidentiality – Token type for encrypting and decrypting messages:

Specifies the current token type that is used for encrypting and decrypting messages.

 To change the current token type that is displayed in the Token type for encrypting and decrypting

messages field or to edit the displayed token type, verify that the Use the same token type for

confidentiality that is used for integrity protection check box is cleared, and click Action.

Action:

Enables the token type selected to be changed or edited.

 The Action button lists supported token types and provides the following options:

Edit selected type policy

Opens a page to edit the token type for signing or encrypting fields.

Change to Secure Conversation

Changes the token type to Secure Conversation.

Change to custom type

Opens the custom type page to specify the Uniform Resource Identifier (URI) for a custom token

type.

When you change the token type, any values that you specified for the former token type are lost, and the

default values for the newly assigned token type are used.

Algorithms settings:

Use this page to view the supported cryptographic and cannonicalization algorithms. Algorithms are used

to reconcile XML differences.

 To view this administrative console page:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click the Algorithms for symmetric tokens link or the Algorithms for asymmetric tokens link.

This administrative console panel applies only to Java API for XML Web Services (JAX-WS) applications.

Algorithm suite:

974 Administering WebSphere applications

Specifies the supported algorithms that are required for performing cryptographic operations with

symmetric or asymmetric key-based security tokens.

 All of the algorithm values in this field specify an algorithm suite. Algorithm suites and the values they each

represent are detailed in the Web Services Security Policy Language (WS-SecurityPolicy) July 2005

Version 1.1 specification. Select a supported algorithm from the following list:

v Basic256

v Basic192

v Basic128

v TripleDes

v Basic256Rsa15

v Basic192Rsa15

v Basic128Rsa15

v TripleDesRsa15

v Basic256Sha256

v Basic192Sha256

v Basic128Sha256

v TripleDesSha256

v Basic256Sha256Rsa15

v Basic192Sha256Rsa15

v Basic128Sha256Rsa15

v TripleDesSha256Rsa15

This table defines values for the components for each algorithm suite.

 Table 8. Algorithm suite components

Algorithm Suite Digest Encryption

Symmetric

Key Wrap

Asymmetric

Key Wrap

Encryption

key

Derivation

Signature

key

Derivation

Minimum

Symmetric

Key Length

Basic256 Sha1 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192 Sha1 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128 Sha1 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDes Sha1 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Rsa15 Sha1 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Rsa15 Sha1 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Rsa15 Sha1 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesRsa15 Sha1 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

Basic256Sha256 Sha256 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192Sha256 Sha256 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128Sha256 Sha256 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDesSha256 Sha256 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Sha256Rsa15 Sha256 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Sha256Rsa15 Sha256 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Sha256Rsa15 Sha256 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesSha256Rsa15 Sha256 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

Chapter 5. Web services 975

When using a Kerberos custom token based on the OASIS Web Services Security Specification for

Kerberos Token Profile V1.1, only Aes128, Aes256, and TripleDes encryption-based algorithm suites are

supported.

Cannonicalization algorithm:

Specifies whether to use inclusive or exclusive cannonicalization.

 The following supported cannonicalization algorithms are available in this list:

v Exclusive cannonicalization

v Inclusive cannonicalization

The default value is Exclusive cannonicalization.

XPath version:

Specifies the version of the XPath filter to use.

 The following supported XPath versions are available:

v XPath 1.0

v XPathfilter 2.0

The XPathfilter 2.0 version is the default value.

Use security token reference transformation:

Specifies whether the security token reference is transformed. Indicate whether the security token

reference transform is either True or False.

Message part protection settings:

Use this page to define the message parts that you want protected and how that protection is provided.

 To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets >policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click the Request message part protection link or the Response message part protection link from

the Message Part Protection section.

Integrity protection – Signed parts:

Specifies the signed parts that you have added for message integrity protection. You can select parts to

edit or delete, or add new signed parts.

 Button Resulting Action

Add Specifies each element of a new signed part and to add

those elements to the Signed parts listing.

Edit Loads the specific part you selected for editing.

Delete Removes the selected signed part from the list.

Confidentiality protection – Encrypted parts:

Specifies the encrypted parts that have been added for message confidentiality protection. You can select

parts to edit or delete, or add new encrypted parts.

976 Administering WebSphere applications

Button Resulting Action

Add Enables you to specify each of the elements of a new

encrypted part and to add those elements to the

Encrypted parts listing.

Edit Loads the specific part you selected for editing.

Delete Removes the selected encrypted part from the list.

Signed part settings:

Use this page to define the elements of a signed part. Signed parts are used to protect message integrity

and, in this case, the signed parts are being defined as part of the policy set process.

 To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click either the Main policy link or the Bootstrap policy link.

4. Click the Request message part protection link or the Response message part protection link in

the Message Part Protection section.

5. In the Integrity protection section, complete one of the following actions:

v Click Add to add a new signed part.

v Select an existing signed part and click Edit.

Name of part to be signed:

Specifies the name of this set of one of more message parts that you have selected to sign. The name

you choose is a label and must be unique within the Response message part protection or Request

message part protection collections for this WS-Security policy.

Elements in part:

Specifies a list of the message elements included in the signed part. The Elements in part field contains

a listing of message elements that are included in this signed part to provide message integrity.

 Click Add to add an element to the signed part of the message. To remove a message element from a

signed part of a message, first click the selection box next to the element to be removed, then click

Remove. Use the OK, Apply, Reset or Cancel buttons for the text entry fields. The QName or the Xpath

expression value is required and can be edited at any time, such as when adding a new element, or after

the element is added.

Protect message body:

Specifies if the message body is protected in this part. To protect the message body in this part, click

Protect message body.

XPath expression:

Specifies if the displayed XPath expression is used as the method for specifying that a specific element is

included in this part.

 Select XPath from the Add menu list and provide an expression in the new XPath entry that is displayed

in the table. Any Xpath expression row on the table that has no corresponding value is removed when you

click OK or Apply.

QName for SOAP header elements only:

Chapter 5. Web services 977

Specifies the Qname type for a namespace value for the SOAP header element that you want to encrypt.

To encrypt a SOAP header element, select Qname and provide the namespace and optionally the

localname of the SOAP header element in the Value field. When specifying the Qname, if using the

optional localname, a comma must be inserted between the namespace and the localname, for example

<namespace>,<localname>. If the localname is omitted, all SOAP header elements with the specified

namespace are encrypted. To use the Qname selection method, the SOAP header elements must be the

immediate children of the SOAP header. Any Qname row in the table that has no corresponding value is

removed when you click OK or Apply.

 Note:

You cannot select header elements that are sub-elements of other elements in the SOAP header using

Qname. In this case, you must use an Xpath expression to select these header elements.

Encrypted message part settings:

Use this page to define the elements of an encrypted part of a message. Encrypted parts are used to

protect message confidentiality, and in this case, the encrypted parts are being defined as part of the

policy set process. A message part is a named set of one or more message elements.

 To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click the Request message part protection link or the Response message part protection link in

the Message Part Protection section.

5. In the Confidentiality protection section, you can perform any of the following:

v Click Add to add a new encrypted part.

v Select an existing encrypted part, and click Edit.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Name of part to encrypt:

Specifies the name of the set of one or more message parts that you have selected to encrypt. The name

you choose is a label and must be unique within the Response message part protection or Request

message part protection collections for this WS-Security policy.

Elements in part:

Specifies a list of the message elements that are included in the encrypted part. The Elements in part

field contains a listing of message elements that are included in this encrypted part to provide message

confidentiality.

 Click Add to add an element to the encrypted part of the message. To remove a message element from

an encrypted part of a message, first click the selection box next to the element to be removed, then click

Remove. The value of the Qname namespace, or the Xpath expression, is required and can be edited at

any time, while adding a new element or after the element is added.

Body Specifies the body of the message part.

Qname for SOAP header elements only

Specifies the Qname type for a namespace value for the SOAP header element that you want to

encrypt. To encrypt a SOAP header element, select Qname and provide the namespace and

978 Administering WebSphere applications

optionally the localname of the SOAP header element in the Value field. When specifying the

Qname, if using the optional localname, a comma must be inserted between the namespace and

the localname, for example <namespace>,<localname>. If the localname is omitted, all SOAP

header elements with the specified namespace are encrypted. To use the Qname selection

method, the SOAP header elements must be the immediate children of the SOAP header. Any

Qname row in the table that has no corresponding value is removed when you click OK or Apply.

Note: You cannot select header elements that are sub-elements of other elements in the SOAP

header using Qname. In this case, you must use an Xpath expression to select these

header elements.

Xpath expression

Specifies if the displayed Xpath expression is used as the method for specifying that a specific

element is included in this part. Select XPath from the Add menu list, and provide an expression

in the new XPath entry that is displayed in the table. Any Xpath expression row on the table that

has no corresponding value is removed when you click OK or Apply.

Enabling policies for policy sets using the administrative console

Policies can be listed in a policy set in the disabled state so that they are not currently included in the

policy set. You can enable a policy to be included in a policy set using the administrative console.

Before you begin

To enable a policy for a policy set, be sure the policy is listed in the policy set and shown in the Disabled

state in the State column of the Policies table on the Policy set settings page.

About this task

To enable a policy in a policy set, use the administrative console.

1. Click Services > Policy sets > Application policy sets > policy_set_name or Services > Policy

sets > System policy sets > policy_set_name. The Policy Set Settings page displays a listing of

available policies in the Policies table for the policy set selected. If this table contains no policies to

enable, no policies exist for the policy set of interest. In this case, you must add the policies to the

policy set.

2. Click the Select box beside the disabled policy that you want to enable. You can select multiple

policies if you want to enable more than one.

3. Click the Enable button. The State column of the Policies table is updated to display the selected

policy as enabled.

Results

You have enabled a policy for the selected policy set.

What to do next

If the policy is not listed in the Policies table, it cannot be enabled and must be added. You can modify the

policy after it is enabled.

Chapter 5. Web services 979

Related concepts

“Web services policies” on page 981
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

Related tasks

“Adding policies to policy sets using the administrative console” on page 932
You can use the administrative console to add policies to policy sets. Adding and configuring policies to a

policy set further defines the rules governing the policy set.

“Deleting policies from policy sets using the administrative console” on page 933
You can use the administrative console to delete policies from policy sets. Deleting the policy removes the

policy that further defined the rules governing the policy set.

“Disabling policies from policy sets using the administrative console”
You can have policies listed in a policy set that are in the enabled state so that they are currently included

in the policy set. You can disable a policy from being included in a policy set without deleting it from the

policy set. You might want to do this if you want the policy included in the policy set in the future. You can

use the administrative console to change this setting.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Disabling policies from policy sets using the administrative console

You can have policies listed in a policy set that are in the enabled state so that they are currently included

in the policy set. You can disable a policy from being included in a policy set without deleting it from the

policy set. You might want to do this if you want the policy included in the policy set in the future. You can

use the administrative console to change this setting.

Before you begin

To disable a policy for a policy set, be sure the policy is listed in the policy set and shown in the Enabled

state in the State column of the Policies table on the Policy set settings page. If the policy is not listed, it

might have been deleted and you must add it again and then disable it.

About this task

You can disable a policy in a policy set, from the menu of the administrative console.

1. Click Services > Policy sets > Application policy sets >policy_set_name or Services > Policy

sets > System policy sets >policy_set_name. Clicking a policy set name from the listing in the

policy sets collection opens the Policy set settings panel for that policy set. This panel displays a listing

of available and enabled policies in the Policies table for the policy set you selected. If this table

contains no policies, there are no existing policies to disable.

2. Click theSelect box beside the enabled policy to be disabled. You can select multiple policies if you

want to disable more than one.

980 Administering WebSphere applications

3. Click Disable. The State column of the Policies table is updated to display the selected policy as

disabled. The policy was not deleted from the policy set and is still available to be enabled.

Results

You have disabled a policy for the selected policy set.

What to do next

You could now enable other policies or add or modify existing policies for this policy set.

Related tasks

“Adding policies to policy sets using the administrative console” on page 932
You can use the administrative console to add policies to policy sets. Adding and configuring policies to a

policy set further defines the rules governing the policy set.

“Deleting policies from policy sets using the administrative console” on page 933
You can use the administrative console to delete policies from policy sets. Deleting the policy removes the

policy that further defined the rules governing the policy set.

“Enabling policies for policy sets using the administrative console” on page 979
Policies can be listed in a policy set in the disabled state so that they are not currently included in the

policy set. You can enable a policy to be included in a policy set using the administrative console.

“Web services policies”
Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

“Managing policy set attachments using the wsadmin tool” on page 541
Use the wsadmin tool to manage your policy set attachment configurations. You can use the Jython or Jacl

scripting language to list all attachments and attachment properties, add or remove resources for an

existing attachment, and transfer attachments across policy sets.

Related reference

“Application policy sets collection” on page 983
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

“Application policy set settings” on page 984
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

Web services policies

Policies define the type of Web service policy based on the quality of service type. Policies are initially set

with default settings but the attributes can be edited and changed.

Provided policies include:

WS-Addressing

Based on the Worldwide Web Consortium (W3C) WS-Addressing specifications for Web services.

This family of specifications provide transport-neutral mechanisms to address Web services and to

facilitate end-to-end addressing. This specification provides asynchronous support.

WS-Security

Based on the WS-Secure Conversation (WS-SC) and WS-Security specifications along with the

associated token profiles. The WS-Security specification and its associated token profiles define a

way to send security tokens and provide message integrity and confidentiality. The WS-Secure

Conversation specification establishes a secure context, based on shared keys, for the client and

server to use for a series of messages. This standard provides a framework across organizations

Chapter 5. Web services 981

that defines how to secure the entire conversation. Use the WS-Security policy to define how the

SOAP messages are secured. It has options such as:

v which message parts are signed and encrypted

v the tokens types to be included

v whether to use symmetric or asymmetric cryptography

You can also use WS-Security policies to define the bootstrap policy that is used to acquire

security context tokens. Security context tokens are used by secure conversation.

WS-Reliable Messaging (WS-RM)

This specification enables the sender and receiver to assure the quality of services in a set of

messages. It helps the application developer deal with latency issues, maintenance interruption,

and other problems that prevent messages from being completed. This quality assurance is critical

for stateful applications.

WS-Transaction

This specification provides support for coordination of atomic transactions or business activities for

Web services applications. You can enable WS-Transaction on both the client (outbound) and

server (inbound) side by attaching a policy set that enables the WS-Transaction policy as part of

the policy set. This policy is based on the WS-AtomicTransaction specification and the

WS-BusinessActivity specification, together with the WS-Coordination specification.

HTTP Transport

The HTTP transport policy applies the HTTP features and HTTP connections polices to outbound

messages. The response listener policy is enforced on inbound messages.

SSL Transport

Provides SSL transport security for the HTTP protocol with Web services applications.

Related information

WS-Policy working group

OASIS WS-SX Technical Committee

Exporting policy sets using the administrative console

You can export policy sets between a client and a provider or between servers using the administrative

console.

Before you begin

Before you begin this task, select the policy set to be exported. Read about the application policy sets

collection and exporting policy sets to client or server environments using the wsadmin tool.

About this task

Static export is used in development environment to exchange a policy sets between a client and a

provider. You can also export between servers. The exported format is a .zip file.

1. From the administrative console navigation, click Services > Policy sets > Application policy sets or

Services > Policy sets > System policy sets. The Application policy sets collection page displays a

listing of the custom and default policy sets. Custom policy sets are displayed only if you have created

them. If you have not created a custom policy set, then only the default policy sets are displayed.

2. From the Application policy sets panel, select a policy set and click Export.

3. Locate the export archive file. From the Export policy set archive file settings panel, click the archive

file to export.

4. Choose a location to export the file. Do not export the file to a browser.

982 Administering WebSphere applications

http://www.w3.org/2002/ws/policy/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx

Results

When you finish this task, the policy set archive file has been exported to the location you specified.

Example

If you have a policy set, ABC_ps and you want to move it from ServerA to ClientA, you can use the export

function. The export policy set can be used by importing it into another application server. Read about the

command task for importing an exported policy set zip file.

What to do next

You can import the policy set to reuse it.

Related tasks

“Importing and exporting policy sets to client or server environments using scripting” on page 562
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to export and import

application or system policy sets for Web services. The exportPolicySet command creates an archive file

based on the policy set configuration, and the importPolicySet command imports a default policy set or

policy set from an archive file.

Related reference

“Application policy sets collection”
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

Application policy sets collection

Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also

view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify

your Web services configuration because policy sets group security and other Web services settings into

reusable units.

To view this administrative console page, click Services > Policy sets > Application policy sets.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Name

Specifies a list of available policy sets. Click a policy set name to access the details panel for that policy

set. Use the buttons on the page to create a new policy set or manage the existing policy sets. You can

also import a policy set to display in the list of available policy sets.

The following list of buttons are available to you for creating and managing policy sets:

 Button Resulting action

New Creates a new policy set. This option opens an empty policy set and allows you to

provide additional details, such as the name, description, and policy configuration

options.

Delete Removes the selected policy set.

Copy Creates a copy of the policy set that is selected from a list. After you create a copy,

you can provide a name and a description for the copy. You must also specify whether

to transfer attachments and binding information, where these options are available,

from the original to the copy.

Chapter 5. Web services 983

Button Resulting action

Import Imports a policy set. This is a menu item with the option of importing a policy set from

a default repository or a selected location. You can select and import the default policy

sets from the default repository. The default repository for the import function in the

administrative console is the directory that contains the default policy sets. Initially, up

to four default, pre-configured policy sets are exposed. However, there are other

default policy sets that are available to import when you select Import > From Default

Repository. The administrative console also displays the default policy sets in a list

that includes descriptions, that you can use to select the policy set that you want to

import.

Export Exports the selected policy set to an archive file.

Editable

This column shows whether the policy set is a user-defined, custom policy set that can be edited or

whether the policy set is a default policy set that is not editable.

Values displayed in this field are Editable or Not editable. Even though a policy set is identified as not

editable, it is deletable. For example, you cannot edit information for the default system policy set, but you

can delete the policy set. You can change the properties for a default, not editable policy set by copying it,

and then modifying the properties of the copy. For more information on modifying a default policy set, see

copy of default policy set and bindings settings document.

 Data type: String

Default: Not editable

Description

Provides a brief description of the application policy sets that currently exist. You cannot edit information

for the default application policy sets; however, you can delete the policy sets. The list of contained

policies for each policy set that it relates to are displayed in the Name column. The contained policies that

are displayed are only those that are enabled. From this panel, the field is not editable.

For custom policy sets that you create or modify, you can edit this description when you create or

customize policy sets on the details panel. The description is the same one that you entered in the

Description field when you created that policy set. For default policy sets, the included and enabled

policies appear at the top followed by a bulleted list of the key attributes of the policy set.

Application policy set settings

Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that

define services, to simplify your Web services configuration.

To view this administrative console page, click one of the following paths:

v Services > Policy sets > Application policy sets >policy_set_name

v Services > Policy sets > Application policy sets > New.

Depending on your assigned security role when security is enabled, you might not have access to text

entry fields or buttons to create or edit configuration data. Review the administrative roles documentation

to learn more about the valid roles for the application server.

Note: You can only edit the fields on this page if you open this page for a custom policy set. You cannot

edit default policies.

984 Administering WebSphere applications

Policy set name

Specifies the name of a selected policy set. This field is empty if you are creating a new policy set and

you can enter a policy set name. If you select an existing policy set from the Policy set page, then this

field displays the name of that policy set. This field is also not editable for existing custom policy sets and

default policy sets.

Description

Specifies a brief description of the policy set being viewed, modified or created. This field displays a brief

description of the policy set displayed in the Policy set name field or is empty if a new policy set is being

created. You can edit this field for custom policy sets only.

Policies

The Policies table displays a list of policies that are contained in the policy set. This table initially contains

no policies when you are creating a new custom policy set. If this is a default policy set, then you cannot

add, delete, enable or disable the policy. The configuration of a policy in a default policy set cannot be

altered but you can view a policy by clicking on the policy name link. If the policy is a custom policy, you

can modify the configuration of the policy by clicking the policy name link. You can alter the policies

contained in a custom policy set using the following buttons:

 Button Resulting Action

Add Provides a list of valid policies, instances of which are not already included in the

collection, that can be added to the policy set collection. The following policies are

available:

v WS-Addressing

v WS-Security

v WS-ReliableMessaging

v WS-Transaction

v HTTP transport

v JMS transport

v SSL transport

Delete Removes the selected policy from the policy set and from the listing in the Description

column of the table.

Enable The policy is enabled for the policy set and displayed as enabled in the State column.

Disable The policy is disabled for the policy set. The policy remains in the list but the State

field shows the policy as Disabled.

Policies - Policy

Specifies the name of a policy. This field is empty if you are creating a new policy set. If you select an

existing policy, then this field displays the name of that policy. If this policy is a default policy, then this field

is read only. If you are creating a new policy, then this field is empty and you can enter a policy name.

Policies - State

Specifies an Enabled or Disabled status for each policy in the policy set. You cannot change the state for

default policy sets. To change the state of the policy, select the policy and click Enable or Disable. The

state is refreshed in this column to reflect your change.

If you disable a policy, you are temporarily removing the policy from the policy set without losing the

configuration details for that policy. When a policy is disabled, you can easily enable the policy again by

selecting Enable. If the policy is deleted, the configuration for that policy no longer exists. After you delete

a policy, to enable that policy in a policy set, you must add the policy to the policy set and enter the

configuration details for that policy.

Chapter 5. Web services 985

Policies - Description

Specifies a brief description of each policy in the policies table. The product does not support custom

policies; therefore, this field is not editable. You cannot create a new policy.

Attachments – Attached applications

Click this link to search for applications to which this policy set is attached. You can also find applications

that contain service resources to which the policy set is attached.

Search attached applications collection

Use this page to search for applications and other resources that are attached to a specific policy set or to

search for applications and other resources that have attached service resources.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets >policy_set_name.

2. Click Attached applications link in the Additional Properties section.

Name

Specifies a list of applications that match the search text. The application names that are displayed in the

Name column are either attached explicitly to the specified policy set or have service resources attached

to this policy set.

To alter the policy set that is attached to an application, select an application, and click a button to enable

the following options:

 Button Resulting Action

Detach Policy Set Detaches the current policy set from the selected

application or applications. This action also detaches any

attached application service resources. This action does

not detach other policy sets from the application or

application service resources.

Replace Policy Set Displays a list of policy sets that can be attached to the

selected application or applications and any contained

attached service resources. The policy set is replaced with

the one selected. This action does not replace other policy

sets that are attached to resources in the application that

you select.

Click the application name to complete actions such as attaching policy sets to the application, its

services, or its endpoints.

Securing message parts using the administrative console

If you are working with policy sets, then you can secure message parts using the administrative console.

To secure message parts with WS-Security using policy sets, you must define the elements for the

message parts to be protected in the WS-Security policy within a policy set.

Before you begin

Before you can start this task, you must have a policy set defined for your application or service artifact.

Also, if none of the default policy sets contain the necessary policy definitions, then you must create a

custom policy set with the necessary definitions.

About this task

This task assumes that you are using policy sets and you want to secure message parts within that

context.

986 Administering WebSphere applications

1. Open the administrative console.

 2. Select the policy set containing the message parts that you want to secure.

v To secure message parts using application policy sets click Services > Policy sets > Application

policy sets.

v To secure message parts using system policy sets clickServices > Policy sets > System policy

sets.

 3. Select the policy set that you want to use.

 4. If the WS-Security policy is not listed, then click Add and select that policy from the list.

 5. Click the WS-Security link.

 6. Click Main policy or Bootstrap policy. The bootstrap policy is available when Secure Conversation

is used. If you want to use the bootstrap policy, then select the SecureConversation policy set in step

three.

 7. Make sure that Message level protection is selected, then click Request message part protection or

Response message part protection. When the Message level protection checkbox is unchecked,

the link to Response message part protection is not available, because the configuration information

associated with message level security is removed when Message level protection is deselected.

 8. Click Add for either Encrypted parts or Signed parts depending on the level of security that you want.

 9. Specify a part name and add the elements to be signed or encrypted, or both. The elements can be

the message body, XPath expression, or a QName which is for SOAP header elements only. Click

OK. Recommendation for when to use QName or XPath: If you are encrypting or signing SOAP

headers, you can use QName to select which SOAP headers to be signed or encrypted.

Note: The elements must be a direct child of the SOAP headers.

If you wanted to sign and encrypt other elements in the SOAP message, then you can use XPath

expression. Use this XPath example to select, MyElement in a namespace, http://xyz.acme.com with

MyHeader, http://acme.com.

/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’ and local-name()=’Envelope’]/*[namespace-uri()=

’http://www.w3.org/2003/05/soap-envelope’ and local-name()=’Header’]/*[namespace-uri()=’http://acme.com’ and local-name()=

’MyHeader’]/*[namespace-uri()=’http://xyz.acme.com’ and local-name()=’MyElement’]

10. Repeat steps 8 and 9 to sign or encrypt each message part.

11. To save your changes to the master configuration, click Save.

Results

When you finish this task, you have configured the policy set that contains the quality of service definitions

required for signing and encrypting message parts.

Example

If you have the policy set, myPolicy and you want to specify request message bodies that must be

signed, you can perform the following:

1. Locate the policy set in the Services > Policy sets > Application policy sets collection and click the

policy set name.

2. Click the WS-Security link. If the link does not exist, click Add and then select WS-Security from the

list.

3. Click Main policy > Request message part protection

4. Click Add under the Integrity protection and Signed parts section.

5. Specify the name, messageBody.

6. Select Protect message body, click Add Specified Elements, and click OK.

7. Click Save to save your changes to the master configuration.

Chapter 5. Web services 987

What to do next

You can proceed to signing and encrypting message parts using policy sets.

988 Administering WebSphere applications

Related concepts

“Web services policy set bindings” on page 858
A set of bindings is a named object that is associated with a specific policy set and service resource that is

attached to the policy set.

Encrypted SOAP headers
The encrypted header element provides a standard way of encrypting SOAP headers. As one of the

extensions to the OASIS SOAP message security specification, the encrypted header element indicates

that the responder has processed the request. Encrypting SOAP headers and parts help to provide more

secure message-level security.

Related tasks

“Signing and encrypting message parts using policy sets” on page 889
With Web services, you can sign message parts, encrypt message parts, or both, based on the quality of

service defined for a policy set. You can accomplish these actions by defining the binding information in a

custom attachment binding.

“Creating application specific bindings for policy set attachment” on page 867
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can

define application specific bindings for the attached policy set.

“Modifying default bindings at the server or cell level for policy sets” on page 884
You can define default bindings for HTTP transport, JMS transport, Secure Sockets Layer (SSL) transport,

WS-Addressing, WS-ReliableMessaging, and WS-Security policies.

“Reassigning bindings to policy sets” on page 885
After you create a custom attachment binding, you can reassign that binding to another service artifact if

necessary. You can reset a service artifact, such as an application, service, or endpoint to use the

inherited bindings or default bindings.

“Configuring the WS-Security policy” on page 962
When working with policy sets in the administrative console, you can customize policies to ensure

message security. The WS-Security policy can be configured to apply a message security (WS-Security)

profile to requests. Message security policies are applied to requests and enforced on responses to

support interoperability.

Related reference

“Service client policy set and bindings collection” on page 792
Use this page to attach and detach policy sets to an application, a service client, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use existing

bindings for an attached policy set. You can view or change whether the client uses the policy of the

service provider.

“Service provider policy sets and bindings collection” on page 775
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or

operations. You can select the default bindings, create new application-specific bindings, or use bindings

that you created for an attached policy set. You can view or change whether the service provider can

share its current policy configuration.

“Policy set bindings settings” on page 895
Use this page to view or define general or application specific bindings configuration information that is

specific to a system for policies that you can associate with the selected policy set. Use the links on this

page to work with bindings for each specific policy.

“Policy set bindings settings for WS-Security” on page 897
Use this page to view, define or configure general bindings and application specific properties for the

WS-Security policy. You can configure the main policy or the secure conversation bootstrap policy by

editing the general bindings.

“WS-Security authentication and protection” on page 907
Use the links on this page to configure authentication, signature, and encryption information that the policy

requires.

“Caller settings” on page 924

Chapter 5. Web services 989

Use this page to configure the caller settings. The caller specifies the token or message part that is used

for authentication.

“Message expiration settings” on page 928
Use this page to define settings for message expiration, if and when messages expire. When you specify

message expiration, the message expires after the specified interval of time passes.

“Actor roles settings” on page 928
Use this page to define settings for SOAP actor roles. The SOAP actor, also known as the SOAP role,

defines the intermediary or ultimate recipient of a message.

“Keys and certificates” on page 898
Use this page to link to key and certificate binding configuration panels. This panel defines key and

certificate bindings for JAX-WS Web services only. These keys and certificates can be centrally managed

by the product or in an external keystore.

Related information

“Web Services Addressing policy set binding” on page 929
Use this page to modify the endpoint reference binding for Web Services Addressing (WS-Addressing).

The product enforces this binding on JAX-WS Web service applications that use WS-Addressing. This

panel applies only to the Network Deployment version of the product.

Web services policy sets

Policy sets are assertions about how services are defined. They are used to simplify your quality of service

configuration for Web services.

Note: You can use policy sets only with Java API for XML-Based Web Services (JAX-WS) applications.

You cannot use policy sets with Java API for XML-based RPC (JAX-RPC) applications.

Policy sets combine configuration settings, including those for transport and message level configuration,

such as WS-Addressing, WS-ReliableMessaging, and WS-Security.

There are two main types of policy sets; application policy sets and system policy sets. Application policy

sets are used for business-related assertions. These assertions are related to the business operations that

are defined in the Web Services Description Language (WSDL) file. System policy sets, on the other hand,

are used for non-business-related system messages. These messages are not related to the business

operations that are defined in the WSDL, but instead refer to messages that are defined in other

specifications which apply qualities of service (QoS). Such QoS are the request security token (RST)

messages that are defined in WS-Trust, or create sequence messages that are defined in WS-Reliable

Messaging metadata exchange messages of the WS-MetadataExchange.

Policies are defined based on a quality of service. Policy definition is typically based on WS-Policy

standard language, for example, the WS-Security policy is based on the current WS-SecurityPolicy from

the Organization for the Advancement of Structured Information Standards (OASIS) standards.

An instance of a policy set consists of a collection of policies. For example, the WS-I RSP default policy

set consists of instances of the WS-Security, WS-Addressing, and WS-ReliableMessaging policy types. A

policy set is identified by a unique name that is unique across the cell. An empty policy set is a policy set

with no policies defined.

You can use a default policy set after it is imported. If you want to change the properties for a default, not

editable policy set, you need to copy the policy set to create an editable version to modify. See copy of

default policy set and bindings settings. You can perform the following actions on policy sets:

v create

v copy

v edit

v delete

990 Administering WebSphere applications

v attach to service resources like applications

v detach from service resources like applications

v export

v import

Note which functions you can configure using policy sets and the relationship of the security information

that is configured. A set of default policy sets are included that you can import; then copy and rename for

reuse. You can use a default policy set after it is imported, but if you want to change any of the settings,

you need to copy the policy set to create an editable version. The configuration can then be altered and

customized on the copy.

Note: You can only copy and customize policy sets using the administrative console or administrative

commands. Policy sets do not function correctly if they are copied manually.

On the application server, policy sets are stored at the cell level. Policy sets are centrally located so that

they are available to all applications on the server.

The following application policy sets are installed on the base or network deployment (ND) profile by

default: WS-I RSP or WS-I RSP (ND), Username WSSecurity default, and WSHTTPS default. The WS-I

RSP (ND) is installed in a network deployment environment.

The following policy sets are ready for you to use as is.

v LTPA WSSecurity Default

v Kerberos V5 HTTPS default

v SSL WSTransaction

v Username SecureConversation

v Username WSSecurity default

v WS-Addressing default

v WSHTTPS default

v WS-I RSP ND

v WS-ReliableMessaging persistent

The application server also provides other default policy sets that you can use or customize. To use the

additional policy sets, you must import them from the default repository. Read about importing policy sets

from the administrative console for more information.

The following default policy sets are provided:

WS-I RSP default

This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging

v Message integrity through digital signature that includes signing the body, time stamp,

WS-Addressing headers and WS-ReliableMessaging headers using the

WS-SecureConversation and WS-Security specifications

v Confidentiality through encryption that includes encrypting the body, signature elements, using

the WS-SecureConversation and WS-Security specifications

LTPA WS-I RSP default

This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging

v Message integrity through digital signature that includes signing the body, time stamp,

WS-Addressing headers and WS-ReliableMessaging headers using the

WS-SecureConversation and WS-Security specifications

Chapter 5. Web services 991

v Confidentiality through encryption that includes encrypting the body, signature elements, using

the WS-SecureConversation and WS-Security specifications

v A Lightweight Third Party Authentication (LTPA) token included in the request message to

authenticate the client to the service

Username WS-I RSP default

This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging

v Message integrity through digital signature that includes signing the body, time stamp,

WS-Addressing headers and WS-ReliableMessaging headers using the

WS-SecureConversation and WS-Security specifications

v Confidentiality through encryption that includes encrypting the body, signature elements, using

the WS-SecureConversation and WS-Security specifications

v A username token included in the request message to authenticate the client to the service. The

username token is encrypted in the request

SecureConversation

This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and

WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and

signature confirmation elements, using WS-SecureConversation and WS-Security specifications

LTPA SecureConversation

This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and

WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and

signature confirmation elements, using WS-SecureConversation and WS-Security specifications

v A Lightweight Third Party Authentication (LTPA) token included in the request message to

authenticate the client to the service

Username SecureConversation

This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and

WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and

signature confirmation elements, using WS-SecureConversation and WS-Security specifications

v A username token included in the request message to authenticate the client to the service. The

username token is encrypted in the request

WSAddressing default

Enables WS-Addressing support, which uses endpoint references and message addressing

properties to facilitate the addressing of Web services in a standard and interoperable way.

WSHTTPS default

Provides SSL transport security for the HTTP protocol with Web services applications.

Kerberos V5 HTTPS default

This policy set provides message authentication with a Kerberos Version 5 token. Message

integrity and confidentiality are provided by Secure Sockets Layer (SSL) transport security. This

policy set follows the OASIS Kerberos Token Profile V1.1 and WS-Security specifications.

 When you use this policy set, configure the basic authentication data and custom properties such

as the com.ibm.wsspi.wssecurity.krbtoken.targetServiceName and

992 Administering WebSphere applications

com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost custom properties in the client bindings. For

more information, see the Authentication generator or consumer token settings and Protection

token settings (generator or consumer) topics.

WSReliableMessaging default

This policy set enables both WS-ReliableMessaging Version 1.1 and WS-Addressing and uses the

minimum quality of service, unmanaged non-persistent. This quality of service requires minimal

configuration. However it is non-transactional and, although it allows for the resending of

messages that are lost in the network, if a server becomes unavailable you will lose messages.

This quality of service is for single server only and does not work in a cluster. In-order delivery is

set to “false”, so messages are not necessarily delivered in the order in which they were sent.

WSReliableMessaging persistent

This policy set enables both WS-ReliableMessaging and WS-Addressing and uses the maximum

quality of service, managed persistent. This quality of service supports asynchronous Web service

invocations and uses a service integration messaging engine and message store to manage the

sequence state. Messages are processed within transactions, are persisted at the Web service

requester server and at the Web service provider server, and are recoverable in the event of

server failure. In-order delivery is set to “false”, so messages are not necessarily delivered in the

order in which they were sent.

 Because this policy set specifies managed persistent quality of service, you need to define

bindings to the service integration bus and messaging engine that you want to use to manage the

WS-ReliableMessaging state. For more information, see “Attaching and binding a

WS-ReliableMessaging policy set to a Web service application using the administrative console”

on page 681 or using the wsadmin tool.

WSReliableMessaging 1_0

This policy set enables both WS-ReliableMessaging Version 1.0 and WS-Addressing and uses the

minimum quality of service, unmanaged non-persistent. This quality of service requires minimal

configuration. However it is non-transactional and, although it allows for the resending of

messages that are lost in the network, if a server becomes unavailable you will lose messages.

This quality of service is for single server only and does not work in a cluster. In-order delivery is

set to “false”, so messages are not necessarily delivered in the order in which they were sent.

 You can use this policy set with .NET-based Web services.

WSSecurity default

This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the

body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the

body, signature and signature elements using WS-Security specifications.

LTPA WSSecurity default

This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the

body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the

body, signature and signature elements using WS-Security specifications.

v A Lightweight Third Party Authentication (LTPA) token included in the request message to

authenticate the client to the service.

Username WSSecurity default

This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the

body, time stamp, and WS-Addressing headers using WS-Security specifications.

Chapter 5. Web services 993

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the

body, signature and signature elements using WS-Security specifications.

v A username token included in the request message to authenticate the client to the service. The

username token is encrypted in the request.

WSTransaction

This policy set enables WS-Transaction, which provides:

v The ability to coordinate distributed transactional work atomically and interoperably using the

WS-AtomicTransaction specification.

v The ability to coordinate loosely coupled business processes that are distributed across the

heterogenous Web service environment, with the ability to compensate actions if a failure

occurs in the business activity, using the WS-BusinessActivity specification.

SSL WSTransaction

This policy set enables WS-Transaction, which provides:

v The ability to coordinate distributed transactional work atomically, interoperably, and securely,

using the WS-AtomicTransaction specification and SSL Transport security.

v The ability to coordinate loosely coupled business processes, with the ability to compensate

actions if a failure occurs in the business activity, securely, using the WS-BusinessActivity

specification and SSL Transport security.

Policy sets do not include environment or platform-specific information, such as keys for signing, keystore

information, or persistent store information. This type of information is defined in the binding. A policy set

attachment defines how a policy set is attached to service resources and bindings. The attachment

definition is outside the policy set definition and is defined as meta-data associated with application data.

Bindings are made up of environment and platform-specific information. General bindings such as the

service client or provider bindings for the global security domain can be shared across applications.

To enable policy sets to work with applications, bindings are needed. Use the administrative console to

configure general bindings and application specific bindings. Read about defining binding information for

policy sets for more information about working with attachments and bindings.

994 Administering WebSphere applications

Related concepts

“WS-I RSP default policy sets” on page 838
The Reliable Asynchronous Message Profile (WS-I RSP) default policy sets are based on the Reliable

Asynchronous Message Profile specification. The WS-I RSP default policy sets include the WS-I RSP

default policy set, the Lightweight Third-Party Authentication (LTPA) WS-I RSP default policy set and the

Username WS-I RSP default policy set. You can use these policy sets to simplify your Web services

configuration.

“WS-ReliableMessaging default policy sets” on page 840
The WS-ReliableMessaging default policy sets are pre-configured to provide reliable message exchange

between Web services. Two of these policy sets (WS-I RSP and WS-I RSP ND) are immediately available,

and the rest are readily available for import from a default repository.

Web Services Addressing support
The Web Services Addressing (WS-Addressing) support in this product provides the environment for Web

services that use the Worldwide Web Consortium (W3C) WS-Addressing specifications. This family of

specifications provide transport-neutral mechanisms to address Web services and to facilitate end-to-end

addressing.

“WSSecurity default policy sets” on page 842
The WSSecurity default policy sets are based on the Web Services Security (WS-Security) 1.0 and Web

Services Addressing (WS-Addressing) specifications. The WSSecurity default policy sets include the

WSSecurity default policy set, the Lightweight Third-Party Authentication (LTPA) WSSecurity policy set,

and the Username WSSecurity policy set. Use the WSSecurity default policy sets to build secure Web

services.

“SecureConversation default policy sets” on page 839
The SecureConversation default policy sets are based on the Web Services Secure Conversation

Language (SecureConversation) standard that establishes a secure context, based on shared keys for the

client and server to use for a series of messages. This standard provides a framework to define how to

secure the message exchange across organizations. The SecureConversation default policy sets include

the SecureConversation policy set, the Lightweight Third-Party Authentication (LTPA) SecureConversation

policy set, and the Username SecureConversation policy set.

“WSHTTPS default policy set” on page 844
The WSHTTPS default policy set provides SSL transport security for the HTTP protocol with Web services

applications.

“WSTransaction default policy sets” on page 843
The WSTransaction default policy sets are based on the WS-Transaction specification and provide

transactional integrity for Web services. The WSTransaction default policy sets include the WSTransaction

policy set and the SSL WSTransaction policy set.

Related tasks

“Defining and managing policy set bindings” on page 853
Policy set bindings contain platform specific information, like keystore, authentication information or

persistent information, required by a policy set attachment. Use this task to create and manage bindings.

“Importing policy sets using the administrative console” on page 845
You can import predefined policy sets or import policy sets from a selected location using the

administrative console.

“Defining and managing service client or provider bindings” on page 860
Service client or provider bindings are general bindings. You can create, copy, and manage general

bindings such as the client or provider policy set bindings. These bindings provide system-specific

configuration and can be reused across policy set attachments.

“Creating policy set attachments using the wsadmin tool” on page 538
Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to define the policy set

configuration for your Web services applications. You can attach policy sets to an application, Web service,

endpoint, or specific operation.

Related reference

Chapter 5. Web services 995

“Copy of default policy set and bindings settings” on page 844
Use this page to copy a policy set that you select from a list of available policy sets.

“Authentication generator or consumer token settings” on page 916
Authentication tokens are used to prove or assert an identity. Use the administrative console to add

authentication token settings for message parts when you are editing a general binding.

“Protection token settings (generator or consumer)” on page 912
Use this page to configure protection tokens. Protection tokens sign messages to protect integrity or

encrypt messages to provide confidentiality.

Web services specifications and APIs

Related information

WS-Policy working group

OASIS WS-SX Technical Committee

Overview of migrating policy sets and bindings

Policy sets are migrated during the product migration from Version 6.1 Feature Pack for Web Services to

Version 7.0. This topic describes the different rules that apply to migrating policy sets and bindings.

For information about migrating the version of the product that you are running to Version 7.0, see

migrating and coexisting.

Migration rules for policy sets

For the following policy sets, the migration code first checks for any application attachment for a policy set.

If there is an application attachment, the migration code upgrades and renames the policy set to

oldPolicySet_wsfep; then updates the policy set attachments from oldPolicySet to oldPolicySet_wsfep in

Version 7.0. If there is no attachment for the policy set, then the policy set is not migrated or renamed to

Version 7.0.

v LTPA RAMP default

v LTPA SecureConversation

v LTPA WSSecurity default

v Username RAMP default

v Username SecureConversation

v Username WSSecurity default

Other policy sets are migrated to Version 7.0 only if there is no other policy set in Version 7.0 with the

same name.

Migration rules for bindings

In Version 7.0, custom bindings are called application specific bindings. Read Web services policy set

bindings.

The following migration rules apply to application specific bindings, cell level default bindings, server level

default bindings, and trust service bindings:

Application specific bindings

During migration, the Version 6.1 application specific bindings in the applications are not upgraded.

They are copied with the applications to the Version 7.0 system. After migration, you can upgrade

the Version 6.1 application specific bindings in an application using the administrative command,

upgradeBindings.

Cell level default bindings

996 Administering WebSphere applications

http://www.w3.org/2002/ws/policy/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx

During migration, the cell level default bindings from the Version 6.1 Feature Pack for Web

Services are copied to the Version 7.0 system, and they replace any existing Version 6.1 cell

default bindings in the Version 7.0 system. The Version 6.1 cell default bindings are migrated to

general bindings in Version 7.0.

Note:

There is a security fix for the Version 6.1 cell level default WSSecurity bindings. Run the script,

updateBindings.py that is located in WAS_HOME/bin to fix issues with the Version 6.1 cell level

default WSSecurity bindings.

You can install a WebSphere Application Server Version 6.1 Feature Pack for Web Services

application within the WebSphere Application Server Version 7.0 environment. If your application

contains Version 6.1 application specific bindings, the application is defined as a Version 6.1

application to the application server. Additionally, if your application is installed on a WebSphere

Application Server Version 6.1 Feature Pack for Web Services server within the WebSphere

Application Server Version 7.0 environment, the application specific binding is created as a Version

6.1 application specific binding.

When you create an application specific binding, the system checks to see if the application is

installed on a Version 6.1 server or if the application contains any Version 6.1 application specific

bindings. If either of these conditions is true, the system creates Version 6.1 application specific

bindings. In addition, you are not allowed to assign a general binding to a policy set attachment for

that application because general bindings are for Version 7.0 level of the product.

Server level default bindings

 During migration, the server default bindings in the Version 6.1 Feature Pack for Web Services are

copied over to the Version 7.0 server. The server default bindings are also migrated to general

bindings. You can decide whether or not to use these general bindings as the Version 7.0 server

default bindings. The Version 6.1 applications and other applications that are installed on a Version

6.1 server use the Version 6.1 default bindings.

Trust service bindings

 Trust service bindings are migrated during the product migration. The migrated trust service

bindings replace the trust service bindings in Version 7.0.

Installing and managing WSIF

An overview of where and how the Web Services Invocation Framework (WSIF) is installed as part of

WebSphere Application Server, and a set of links to specific information about other aspects of managing

your WSIF system.

About this task

WSIF is provided in a JAR file named com.ibm.ws.runtime.jar. The JAR file contains the core WSIF

classes, and the Java, EJB, SOAP over HTTP and SOAP over JMS providers. Additional providers are

packaged as separate JAR files.

When you install WebSphere Application Server, the com.ibm.ws.runtime.jar file is put on the WebSphere

or Java virtual machine (JVM) class path.

WSIF requires no further configuration. WSIF is a thin abstraction layer between application code and the

relevant invocation infrastructure.

For information about managing your WSIF system, see the following topics:

v wsif.properties file - Initial contents

v Enable security for WSIF

Chapter 5. Web services 997

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

v Trace and log WSIF

v Troubleshoot the Web Services Invocation Framework

v WSIF messages

v WSIF - Known restrictions

wsif.properties file - Initial contents

The Web Services Invocation Framework (WSIF) properties are stored in the com.ibm.ws.runtime.jar file,

in a properties file named wsif.properties. You might need to modify the contents of this file, for example

to change the default SOAP provider, so for reference here is a copy of the “as shipped” contents of the

wsif.properties file.

The com.ibm.ws.runtime.jar file is located in the app_server_root/plugins directory, where

app_server_root is the root directory for your installation of IBM WebSphere Application Server.

You must keep the wsif.properties file on the class path, so that WSIF can find it and the client

administrator can use it to configure WSIF. However if you make any changes to the file, you do not

replace the original copy in the com.ibm.ws.runtime.jar file. Instead, you save the modified version in the

app_server_root/lib/properties directory.

The following code is the initial contents of the wsif.properties file. All the possible properties are listed

and described.

Two properties are used to override which WSIFProvider is selected when there

exists multiple providers supporting the same namespace URI. These properties are:

wsif.provider.default.CLASSNAME=N

wsif.provider.uri.M.CLASSNAME=URI

CLASSNAME is the WSIFProvider class name

N is the number of following default wsif.provider.uri.M.CLASSNAME properties

M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME

property key.

For example the following two properties would override the default SOAP provider

to be the Apache SOAP provider:

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1

wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\

http://schemas.xmlsoap.org/wsdl/soap/

maximum number of milliseconds to wait for a response to a synchronous request.

Default value if not defined is to wait forever.

Timeout properties are only used by providers which support timeouts.

wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.

if not defined on invalid defaults to no timeout

Timeout properties are only used by providers which support timeouts.

wsif.asyncrequest.timeout=60

To enable your legacy Web services to continue to work with WSIF, you might need to change the default

WSIF SOAP provider back to the former Apache SOAP provider.

Enabling security for WSIF

The steps to be taken to enable the Web Services Invocation Framework (WSIF) to interact with a security

manager.

998 Administering WebSphere applications

About this task

WSIF interacts with a security manager in the following ways:

v WSIF runs in the Java Platform, Enterprise Edition (Java EE) security context without modification.

v When WSIF is run under a Java EE container, port implementations can use the security context to

pass on security tokens or credentials as necessary.

v WSIF implementations can automatically convert Java EE security context into appropriate context for

onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, complete the

following step:

To load the WSDL file, enable the FilePermission attribute in the was.policy file. This permission is

required when a WSDL file is referred to using the file:// protocol.

Web Services Invocation Framework troubleshooting tips

A set of specific tips to help you troubleshoot problems you experience with the Web Services Invocation

Framework (WSIF).

For information about resolving WebSphere-level problems, see Diagnosing and fixing problems.

To identify and resolve Web Services Invocation Framework (WSIF)-related problems, you can use the

standard WebSphere Application Server trace and logging facilities. If you encounter a problem that you

think might be related to WSIF, you can check for error messages in the WebSphere Application Server

administrative console, and in the application server stdout.log file. You can also enable the application

server debug trace to provide a detailed exception dump.

A list of the WSIF run-time system messages, with details of what each message means, is provided in

Message reference for WSIF.

A list of the main known restrictions that apply when using WSIF is provided in WSIF - Known restrictions.

Here is a checklist of major WSIF activities, with advice on common problems associated with each

activity:

Create service

 Handcrafted Web Services Description Language (WSDL) can cause numerous problems. To help

ensure that your WSDL is valid, use a tool such as WebSphere Development Studio for iSeries

(WDS) to create your Web service. For more details about creating services with WSDL in an

iSeries environment, read the WSIF and WSDL chapter of Developing and deploying applications

PDF book.

Define transport mechanism

For the Java Message Service (JMS), check that you have set up the Java Naming and Directory

Interface (JNDI) correctly, and created the necessary connection factories and queues.

 For SOAP, make sure that the deployment descriptor file dds.xml is correct - preferably by creating

it using WebSphere Development Studio for iSeries (WDS) or similar tooling.

Create client - Java code

 Follow the correct format for creating a WSIF service, port, operation and message. For examples

of correct code, refer to the Address Book Sample in the Developing and deploying applications

PDF book.

Compile code (client and service)

Check that the build path against code is correct, and that it contains the correct levels of JAR

files.

 Create a valid EAR file for your service in preparation for deployment to a Web server.

Chapter 5. Web services 999

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Deploy service

When you install and deploy the service EAR file, check carefully any messages given when the

service is deployed.

Server setup and start

 Make sure that the WebSphere Application Server server.policy file (in the /properties

directory) has the correct security settings. For more information about setting up security, see the

Enabling security for WSIF topic in the Securing applications and their environment PDF book.

WSIF setup

 Check that the wsif.properties file is correctly set up. For more information about this file, refer

to the Maintaining the WSIF properties file topic in the Administering applications and their

environment PDF book.

Run client

 Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launchClient tool.

Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launch client tool. For more information about this tool, refer to

the Running application clients chapter of the Developing and deploying applications PDF book.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “No class definition errors received when running client code.”

v “Cannot find WSDL error.”

v “Your Web service EAR file does not install correctly onto the application server.” on page 1001

v “There is a permissions problem or security error.” on page 1001

v “Using WSIF with multiple clients causes a SOAP parsing error.” on page 1001

v “JNDI lookup errors occur when using the same names for JMS messaging queues and queue

connection factories that run on application servers on different machines.” on page 1001

v “A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP over JMS to invoke

a Web service running on a Version 5 application server. No user ID or password is required on the

target MQ Series queue. After the application server is migrated to Version 6, and using Version 6

default messaging, client requests fail because basic authentication is now enabled.” on page 1002

v “The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not interoperate

fully with services that are running on the former (Apache SOAP) provider.” on page 1002

“No class definition” errors received when running client code.

This problem usually indicates an error in the class path setup. Check that the relevant JAR files are

included.

“Cannot find WSDL” error.

Some likely causes are:

v The application server is not running.

v The server location and port number in the WSDL are not correct.

v The WSDL is badly formed (check the error messages in the application server stdout.log file).

v The application server has not been restarted since the service was installed.

You might also try the following checks:

v Can you load the WSDL into your Web browser from the location specified in the error message?

v Can you load the corresponding WSDL binding files into your Web browser?

1000 Administering WebSphere applications

Your Web service EAR file does not install correctly onto the application server.

It is likely that the EAR file is badly formed. Verify the installation by completing the following steps:

v For an EJB binding, run the WebSphere Application Server tool \bin\dumpnamespace. This tool lists the

current contents of the JNDI directory.

v For a SOAP over HTTP binding, open the http://pathToServer/WebServiceName/admin/list.jsp page

(if you have the SOAP administration pages installed). This page lists all currently installed Web

services.

v For a SOAP over JMS binding, complete the following checks:

– Check that the queue manager is running.

– Check that the necessary queues are defined.

– Check the JNDI setup.

– Use the “display context” option in the jmsadmin tool to list the current JNDI definitions.

– Check that the Remote Procedure Call (RPC) router is running.

There is a permissions problem or security error.

Check that the WebSphere Application Server server.policy file (in the /properties directory) has the

correct security settings. For more information about setting up security, see the Enabling security for

WSIF topic in the Securing applications and their environment PDF book.

Using WSIF with multiple clients causes a SOAP parsing error.

Before you deploy a Web service to WebSphere Application Server, you must decide on the scope of the

Web service. The deployment descriptor file dds.xml for the Web service includes the following line:

 <isd:provider type="java" scope="Application"

You can set the Scope attribute to Application or Session. The default setting is Application, and this

value is correct if each request to the Web service does not require objects to be maintained for longer

than a single instance. If Scope is set to Application the objects are not available to another request

during the execution of the single instance, and they are released on completion. If your Web service

needs objects to be maintained for multiple requests, and to be unique within each request, you must set

the scope to Session. If Scope is set to Session, the objects are not available to another request during the

life of the session, and they are released on completion of the session. If scope is set to Application

instead of Session, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:

FWK005 parse may not be called while parsing.;

nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWK005 parse may not be called while parsing.;

 targetException=org.xml.sax.SAXException:

FWK005 parse may not be called while parsing.]

JNDI lookup errors occur when using the same names for JMS messaging queues

and queue connection factories that run on application servers on different

machines.

You should not use the same names for messaging queues and queue connection factories that run on

application servers on different machines, because WSIF always looks first for JMS destinations locally,

and only uses the full JNDI reference if it cannot find the destination locally. For example, if you run a Web

service on a remote machine, and have an application server running locally that uses the same names

for the messaging queues and queue connection factories, then WSIF will find and use the local queues

even if the remote JNDI destination is provided in full in the WSDL service definition.

Chapter 5. Web services 1001

A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP

over JMS to invoke a Web service running on a Version 5 application server. No

user ID or password is required on the target MQ Series queue. After the

application server is migrated to Version 6, and using Version 6 default

messaging, client requests fail because basic authentication is now enabled.

The problem appears as a log message:

SibMessage W [:] CWSIT0009W: A client request failed in the application server

with endpoint <endpoint_name> in bus <your_bus> with reason: CWSIT0016E:

The user ID null failed authentication in bus <your_bus>.

For the steps to take to resolve the problem, see the following service integration technologies

troubleshooting tip: “After you migrate an application server to WebSphere Application Server Version 6,

existing Web services clients can no longer use SOAP over JMS to access services hosted on the

migrated server”. This tip can be found in the Tips for troubleshooting service integration bus security

section.

The current WSIF default SOAP provider (the IBM Web Service SOAP provider)

does not interoperate fully with services that are running on the former (Apache

SOAP) provider.

This restriction is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully

with a JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. To enable

interoperation, modify either your Web service or the WSIF default SOAP provider. For information about

how to modify your provider, read the chapter “WSIF SOAP provider: working with legacy applications” in

the Developing and deploying applications PDF book.

WSIF (Web Services Invocation Framework) messages

This topic contains a list of the WSIF run-time system messages, with details of what each message

means.

WebSphere system messages are logged from a variety of sources, including application server

components and applications. Messages logged by application server components and associated IBM

products start with a unique message identifier that indicates the component or application that issued the

message.

For more information about the message identifier format, see the topic Message reference.

WSIF0001E: An extension registry was not found for the element type “{0}”

Explanation: Parameters: {0} element type. No extension registry was found for the element type

specified.

 Action: Add the appropriate extension registry to the port factory in your code.

WSIF0002E: A failure occurred in loading WSDL from “{0}”

Explanation: Parameters: {0} location of the WSDL file. The WSDL file could not be found at the

location specified or did not parse correctly

 Action: Check that the location of the WSDL file is correct. Check that any network connections

required are available. Check that the WSDL file contains valid WSDL.

WSIF0003W: An error occurred finding pluggable providers: {0}

Explanation: Parameters: {0} specific details about the error. There was a problem locating a

WSIF pluggable provider using the J2SE 1.3 JAR file extensions to support service providers

architecture. The WSIF trace file will contain the full exception details.

 Action: Verify that a META-INF/services/org.apache.wsif.spi.WSIFProvider file exists in a provider

jar, that each class referenced in the META-INF file exists in the class path, and that each class

implements org.apache.wsif.spi.WSIFProvider. The class in error will be ignored and WSIF will

continue locating other pluggable providers.

1002 Administering WebSphere applications

WSIF0004E: WSDL contains an operation type “{0}” which is not supported for “{1}”

Explanation: Parameters: {0} name of the operation type specified. {1} name of the portType for

the operation. An operation type which is not supported has been specified in the WSDL.

 Action: Remove any operations of the unsupported type from the WSDL. If the operation is

required then make sure all messages have been correctly specified for the operation.

WSIF0005E: An error occurred when invoking the method “{1}” . (“{0}”)

Explanation: Parameters: {0} name of communication type. For example EJB or Apache SOAP.

{1} name of the method that failed. An error was encountered when invoking a method on the Web

service using the communication shown in brackets.

 Action: Check that the method exists on the Web service and that the correct parts have been

added to the operation as described in the WSDL. Network problems might be a cause if the

method is remote and so check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI “{0}” . Found (“{1}”

) Explanation: Parameters: {0} the namespace URI. {1} a list of the WSIFProvider found.. There

are multiple org.apache.wsif.spi.WSIFProvider classes in the service provider path that support the

same namespace URI.

 Action: A following WSIF0007I message will be issued notifying which WSIPFProvider will be

used. Which WSIFProvider is chosen is based on settings in the wsif.properties file, or if not

defined in the properties, the last WSIFProvider found will be used. See the wsif.properties file for

more details on how to define which provider should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider “{0}” for namespaceURI “{1}”

Explanation: Parameters: {0} the classname of the WSIFProvider being used. {1} the

namespaceURI the provider will be used to support.. Either a previous WSIF0006W message has

been issued or the SetDynamicWSIFProvider method has been used to override the provider used

to support a namespaceURI.

 Action: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout. ID:“{0}”

Explanation: Parameters: {0} the ID of the correlator being removed from the correlation service.

A stored correlator is being removed from the correlation service due to its timeout expiring.

 Action: Determine why no response has been received for the asynchronous request within the

timeout period. The wsif.asyncrequest.timeout property of the wsif.properties file defines the length

of the timeout period.

WSIF0009I: Using correlation service - “{0}”

Explanation: Parameters: {0} the name of the correlation service being used. This identifies the

name of the correlation service that will be used to process asynchronous requests.

 Action: None. If a correlation service other than the default WSIF supplied one is required, ensure

that it is correctly registered in the JNDI java:comp/wsif/WSIFCorrelationService namespace.

WSIF0010E: Exception thrown while processing asynchronous response - “{0}”

Explanation: Parameters: {0} the error message string of the exception. While processing the

response from an executeRequestResponseAsync call an exception was thrown.

 Action: Use the exception error message string to determine the cause of the error. The WSIF

trace will have more details on the error including the exception stack trace.

WSIF0011I: Preferred port “{0}” was not available

Explanation: Parameters: {0} the user’s preferred port. The preferred port set by the user on

org.apache.wsif.WSIFService is not available

 Action: None unless this message appears for long periods of time in which case the user might

want to pick a different port as their preferred port.

WSIF - Known restrictions

This topic lists the main known restrictions that apply when using WSIF.

Threading

WSIF is not thread-safe.

Chapter 5. Web services 1003

External Standards

WSIF supports:

v SOAP Version 1.1 (not 1.2 or later).

v WSDL Version 1.1 (not 1.2 or later).

WSIF does not provide WS-I compliance, and it does not support the Java API for XML-based

Remote Procedure Calls (JAX-RPC) Version 1.1 (or later).

Full schema parsing

WSIF does not support full schema parsing. For example, WSDL references in complex types in

the schema are not handled, and attributes are not handled.

 XML Schema “redefine” elements are not handled and are ignored.

SOAP WSIF does not support:

v SOAP headers that are passed as <parts>.

v Unreferenced attachments in SOAP responses, or the scenarios detailed in SOAP attachments

- scenarios that are not supported.

v Document Encoded style SOAP messages.

Note: This is not primarily a WSIF restriction. Although you can specify Document Encoded

style in WSDL, it is not generally considered to be a valid option and is not supported by

the Web Services Interoperability Organization (WS-I).

SOAP provider interoperability

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. For

information on how to overcome this restriction, see WSIF SOAP provider: working with legacy

applications.

 WSIF’s support for SOAP faults is restricted to SOAP faults originating from a Web service that

runs using the IBM Web Service SOAP provider.

Note: This is not primarily a WSIF restriction. The current SOAP faults specification does not

prescribe how to encode a SOAP fault so that it maps to a Java exception. Consequently,

each Web service run-time environment currently decides on its own SOAP fault format.

The IBM Web Service SOAP provider can understand its own response SOAP faults, but

not the SOAP faults from another provider.

Type mappings

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) conforms to the

JAX-RPC type mapping rules that were finalized after the former (Apache SOAP) provider was

created. The majority of types are mapped the same way by both providers. The exceptions are:

xsd:date, xsd:dateTime, xsd:hexBinary and xsd:QName. Both client and service need to use the

same mapping rules if any of these four types are used. Below is a table detailing the mapping

rules for these four types:

 XML Data Type Apache SOAP Java Mapping JAX-RPC Java Mapping

xsd:date java.util.Date Not supported

xsd:dateTime Not supported java.util.Calendar

xsd:hexBinary Hexadecimal string byte []

xsd:QName org.apache.soap.util.xml.QName javax.xml.namespace.QName

Arrays and complex types

WSIF does not support general complex types, it only handles complex types that map to Java

1004 Administering WebSphere applications

http://www.ws-i.org/

Beans. To use schema complex types, you must write your own custom serializers. The specific

complex type and array support for WSIF outbound invocation of Web services is as follows:

v WSIF supports Java classes generated by WebSphere Studio Application Developer -

Integration Edition (WSAD-IE) message generators (the normal case when WSDL files are

downloaded from somewhere else). The WSAD-IE-based generation happens automatically

when you use the BPEL editor, or the generation actions available on the Enterprise Services

context menu, or the Business Integration toolbar.

v WSIF does not support Java beans generated by other tools, including the base WSAD tool.

v For WSAD-IE generated Java beans, attributes defined in the WSDL do not work. That is to say

that these attributes, although they appear in the Java beans generated to represent the

complex type, do not appear in the SOAP request created by WSIF.

v WSIF does not support arrays when they are a field of a Java bean. That is to say, WSIF only

supports an array that is passed in as a named <part>. If an array is wrappered inside a Java

bean, the array is not serialized in the same way.

Object Serialization

WSIF does not support serialization of objects across different releases.

Asynchronous invocation

WSIF supports synchronous invocation for all providers. For the JMS and the SOAP over JMS

providers, WSIF also supports asynchronous invocation. You should call the supportsAsync()

method before trying to execute an asynchronous operation.

The EJB provider

The target service of the WSIF EJB provider must be a remote-home interface, it cannot be an

EJB local-home interface. In addition, the EJB stub classes must be available on the client class

path.

Running outside WebSphere Application Server

WSIF is not supported for use outside WebSphere Application Server.

Trace and logging for WSIF

The Web Services Invocation Framework (WSIF) offers trace points at the opening and closing of ports,

the invocation of services, and the responses from services. WSIF also includes a SimpleLog utility that

can run trace when you are using WSIF outside of WebSphere Application Server.

About this task

If you want to enable trace for the WSIF API within WebSphere Application Server, and have trace, stdout

and stderr for the application server written to a well-known location, see Enabling tracing and logging.

To trace the WSIF API, you need to specify the following trace string:

wsif=all=enabled

To enable the WSIF SimpleLog utility, through which you can run trace when using WSIF outside of

WebSphere Application Server, complete the following steps:

1. Create a file named commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. Create a file named simplelog.properties with the following contents:

org.apache.commons.logging.simplelog.defaultlog=trace

org.apache.commons.logging.simplelog.showShortLogname=true

org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and the commons-logging.jar file, on the class path.

Chapter 5. Web services 1005

Results

The SimpleLog utility writes trace to the System.err file.

Getting started with the UDDI registry

This section covers the basic knowledge you need to get started, either as an administrator of a UDDI

registry, or as a user of a UDDI registry that is already set up.

v If you are an administrator of a UDDI registry, that is, you are need to install (set up and deploy),

customize, or manage a UDDI registry, use the following topics to get started.

– UDDI registry Terminology introduces some terms that you need to understand to administer a UDDI

registry

– Setting up and deploying a new UDDI registry explains how to install a UDDI registry node by

setting up the resources that it will use, and deploying the UDDI registry application.

– Migrating the UDDI registry explains how to use the scripts provided to migrate UDDI registries from

the previous version of WebSphere Application Server.

– Migrating to Version 3 of the UDDI registry explains how to migrate UDDI Version 2 registries to

UDDI Version 3, introduced in WebSphere Application Server Version 6.0, by creating a migration

datasource.

– Configuring UDDI registry security explains how to configure different levels of security for the UDDI

registry, and how other UDDI node settings can influence security.

– Managing the UDDI registry explains how to use the UDDI pages in the administrative console, or

the UDDI registry Administrative interface, to administer a UDDI registry node. It also covers how to

back up and restore your UDDI registry data.

– UDDI node settings explains how to view and set UDDI properties and policies, and how to manage

UDDI publishers, tiers, and user entitlements.

– UDDI registry Management Interfaces covers details of programmatic interfaces that you can use to

administer a UDDI registry node (UDDI registry Administrative (JMX) Interface), to add custom value

set data to a UDDI registry (User Defined Value Set Support), and to export and import UDDI version

2 entities (UDDI Utility Tools).

– “Removing and reinstalling the UDDI registry” on page 1007

v If you are a user of a UDDI registry, use the following topics to get started.

– UDDI registry Terminology introduces some terms that you might need to understand to use a UDDI

registry.

– Using the UDDI registry user interface explains how to access the UDDI User Console, which is a

user interface that allows you to find UDDI entities and carry out simple UDDI publish operations.

– UDDI registry SOAP Service End Points contains details for accessing the UDDI Version 3 inquiry,

publish, security, and custody transfer APIs, as well as the UDDI Version 1 and Version 2 APIs.

– UDDI registry Client Programming explains how to write UDDI client application programs. The

recommended client programming interface is the UDDI Version 3 Client for Java.

– JAXR Provider for the UDDI registry is for users who want to use the Java API for XML Registries

(JAXR) to access UDDI.

– User Defined Value Set Support in the UDDI registry explains how to add custom value set data to

a UDDI registry.

v For either role, UDDI registry troubleshooting might be useful if you encounter any problems or

unexpected behavior while using the UDDI registry, and Messages links to messages that you might

see.

1006 Administering WebSphere applications

Removing and reinstalling the UDDI registry

This task describes the points to consider when you remove a UDDI application, remove a UDDI registry

node, or reinstall a UDDI registry node, and describes how to achieve this.

About this task

A UDDI registry node consists of an enterprise application, a store of data (using a relational database

management system) referred to as the UDDI database, and a means to connect the application to the

data (a data source and related elements). All the data relating to UDDI is stored within the UDDI

database and therefore exists irrespective of the UDDI application.

With these facts in mind, consider the following options:

v To remove a UDDI registry node from a WebSphere Application Server, you do not need to delete the

database. You just need to delete the UDDI application and any associated resources, such as the data

source used (and J2EE Connector Architecture authentication data if used), because the data in the

UDDI database is separate from the UDDI application.

v To start a new UDDI registry node, you do not need to remove the UDDI application. Instead, you can

create a new replacement node by changing the data source that the UDDI application uses to access

the new UDDI database.

v To remove a UDDI application or to remove a UDDI registry node, see Removing a UDDI Node.

Remove the UDDI application if you no longer want a UDDI facility on a particular application server.

You can subsequently move the UDDI registry node to a different application server.

v To reinstall a UDDI registry node, see Reinstalling the UDDI application. Reinstall the UDDI application

if you wish to continue to provide the UDDI facility on a particular application server.

Removing a UDDI registry node

You can remove a UDDI registry node completely, or just remove the UDDI registry application, delete the

UDDI registry database, or move a UDDI registry to another server or profile.

About this task

To remove a UDDI registry node completely, you need to remove the UDDI registry application and delete

the UDDI registry database. However, there might be situations where you want to perform only one of

these tasks:

Removing the UDDI registry application from an application server.

You might want to do this to reinstall the application, either because it has become corrupted, or to

apply service. See also Reinstalling the UDDI registry application.

Deleting the UDDI registry database

You might want to do this to use a different database product as the persistence store for your

UDDI data, to delete all your UDDI registry data to publish fresh data (for example, if you have

completed a test cycle), or to re-initialize the UDDI registry node with new UDDI property settings

(for example, to move from a default UDDI node to a customized UDDI node). Note that if you

delete a UDDI registry database, all UDDI data for that UDDI registry is lost.

Moving a UDDI registry to another server or profile

You might want to do this after you create a new profile and you want to move the UDDI registry

to the new profile.

Completely removing a UDDI registry node from an application server

You might want to do this to remove a UDDI registry that was used for testing.

Depending on what you wish to achieve, complete one of the following steps:

1. Removing a UDDI registry application

Chapter 5. Web services 1007

Start a Qshell session. To do this, enter the STRQSH command from the i5/OS command line.

To remove the UDDI application from an application server, run the wsadmin script uddiRemove.jacl,

as shown, from the app_server_root/bin directory.

The syntax of the command is as follows:

Note: If running in a network deployment configuration, the command must be run using the

deployment manager profile.
wsadmin [-profileName profile_name] -f uddiRemove.jacl

 {node_name server_name | cluster_name}

 [default]

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application

is deployed. If you do not specify a profile, the default profile is used.

v node_name and server_name are the names of the WebSphere node and application server in

which the UDDI application is deployed (these are the names that you specified when you ran

uddiDeploy.jacl to install the UDDI application).

v cluster_name is the name of the WebSphere cluster in which the UDDI application is deployed. This

is the name that you specified when you ran uddiDeploy.jacl to install the UDDI application.

v ’default’ is optional and is applicable only for Apache Derby in a standalone application server

environment, and then only if the default option was used when the uddiDeploy.jacl script was run to

deploy the UDDI registry. Specifying default will remove the UDDI Apache Derby datasource but not

the UDDI Apache Derby database.

By default, output appears on screen. To direct the output to a log file, add ’> removeuddi.log’ (where

removeuddi.log can be any log name of your choice) to the end of the command.

For example, to remove the UDDI application from server ’server1’ running in node ’MyNode’ and send

any messages to the file removeuddi.log:

wsadmin -profileName myProfile -f uddiRemove.jacl MyNode server1 > removeuddi.log

To remove the UDDI application from cluster ’MyCluster’ and send any messages to the screen:

wsadmin -profileName myProfile -f uddiRemove.jacl MyCluster

Note: You can also remove the UDDI registry application using the administrative console in the usual

way, by selecting the application in the Enterprise Applications view and clicking Uninstall.

2. Deleting a UDDI registry database

This action destroys all UDDI data in that UDDI registry.

a. Stop the server that is hosting the UDDI registry application.

b. Delete the database:

v For DB2 for iSeries, use either iSeries Navigator or a 5250 Session to delete the schemas

IBMUDI30 and IBMUDS30.

v For Oracle, delete the schemas IBMUDDI, IBMUDI30 and IBMUDS30.

v For Apache Derby, delete the directory tree containing the UDDI database. By default, this

directory tree is located in profile_root/databases/com.ibm.uddi/UDDI30.

3. Moving a UDDI registry to another server or profile

a. Make sure that the UDDI database will still be accessible. For example, if you are using a remote

database, make sure that the new server can access it. If your database will not be accessible, or

it will be deleted after the move, copy it to a new, accessible location. For example, if you want to

move the UDDI registry to a new profile and then delete the old profile, any databases stored in

the profile (such as an Apache Derby database created as part of the creation of a default UDDI

node) will also be deleted.

b. Remove the UDDI registry application by running the uddiRemove.jacl script as described above.

c. If you ran the uddiRemove.jacl script using the default option, the datasource and related objects

have already been deleted. If the default option was not valid for your configuration, delete the

following objects:

1008 Administering WebSphere applications

v the UDDI datasource that references the UDDI registry database (this was created when you set

up the UDDI registry).

v any UDDI JDBC provider that was created (if you did not reuse an existing JDBC provider).

v any J2C Authentication Data Entry that was created.

d. In the new server create a J2C authentication data entry (if appropriate), JDBC provider and

datasource, to reference the existing database (for more information see the relevant steps in

Setting up a customized UDDI node).

e. Deploy the UDDI registry application as described in Deploying the UDDI registry application,

noting that you should not specify the default option even if you previously used this option to set

up a default UDDI node. If you use the default option, you might encounter an error during

deployment, or in some circumstances your existing UDDI data might be overwritten.

Note: The UDDI node name will remain the same as before. If the UDDI node name included the

node name and server name of the original server, there will be a mismatch between the

UDDI node name and the node name and server name of the new server. However this

name mismatch will not affect the functioning of the UDDI registry node.

f. Check that the UDDI data can be accessed. If you are using a copy of the original UDDI registry

database, you can now delete the original as described above.

4. Completely removing a UDDI registry node

To completely remove a UDDI registry node from an application server, you need to remove the UDDI

registry application and database, and also the resources that were used to reference the UDDI

registry database.

a. Remove the UDDI registry application by running the uddiRemove.jacl script as described above.

b. Delete the UDDI registry database, as described above.

c. If you ran the uddiRemove.jacl script using the default option, the datasource and related objects

have already been deleted so no further action is required. If the default option was not valid for

your configuration, delete the following objects:

v the UDDI datasource that references the UDDI registry database (this was created when you set

up the UDDI registry).

v any UDDI JDBC provider that was created (if you did not reuse an existing JDBC provider).

v any J2C Authentication Data Entry that was created.

Reinstalling the UDDI registry application

You can reinstall the UDDI registry application to remove the existing UDDI application and reinstall it with

the existing UDDI database.

About this task

Perform this task if you wish to change the UDDI application code, but you want to continue to provide

UDDI services with your existing UDDI database.

1. Make a note of any changes that you made to the installed UDDI application that you wish to keep, for

example changes to security role mappings, changes to the deployment descriptor (web.xml) in

v3soap.war, v3gui.war, v3soap.war, or soap.war, or customization of the UDDI user interface (GUI). All

such changes are lost during the reinstallation process; if there are changes that you wish to keep, you

must reapply them later.

2. Run the wsadmin script uddiDeploy.jacl from the app_server_root/bin directory, as shown. Note the

following points:

v Do not specify the default option, even if you used this option previously to set up a default UDDI

node. If you use the default option, you might encounter an error during deployment, or in some

circumstances your existing UDDI data might be overwritten.

Chapter 5. Web services 1009

v If you are deploying the UDDI registry into a network deployment scenario, ensure that the

deployment manager is the target.

At a command prompt, enter:

wsadmin [-conntype none] [-profileName profile_name] –f uddiDeploy.jacl

 {node_name server_name | cluster_name}

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application

is deployed. If you do not specify a profile, the default profile is used.

v ’-conntype none’ is optional, and is needed only if the application server or deployment manager is

not running.

v node_name and server_name are the names of the WebSphere node and application server in

which the UDDI application is deployed (these are the names that you specified when you ran

uddiDeploy.jacl to install the UDDI application).

v cluster_name is the name of the WebSphere cluster in which the UDDI application is deployed. This

is the name that you specified when you ran uddiDeploy.jacl to install the UDDI application.

Optionally, you can redirect the output from this command to a log file. To do this, add ’> log_name.log’

at the end of the command, where log_name.log is the name of the log file to create.

The command removes the existing UDDI application and reinstalls it.

Note: This procedure does not change your existing JDBC provider, datasource and any J2C authdata

entry. Your existing UDDI registry data, including UDDI entities as well as property and policy

settings, are also unaffected.

3. If you noted any changes in step 1, reapply them now.

4. For the reapplied changes to take effect, start or restart the application server.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

<DataBaseName>

The name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

<DB2UserID>

A DB2 userid with administrative privileges.

<DB2Password>

The password for the DB2 userid.

<BufferPoolName>

The name of a buffer pool to be used by the UDDI registry database. A suggested name is uddibp,

but any name can be used, because the buffer pool is created as part of this task.

<TableSpaceName>

The name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

The name of a temporary table space. A suggested value is udditstemp, but any name can be

used, because the temporary table space is created as part of this task.

1010 Administering WebSphere applications

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt.

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

Chapter 5. Web services 1011

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. [Optional] Enter the following command if you want the database to be used as a default UDDI node:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for iSeries database for the UDDI registry

Perform this task if you want to use DB2 for iSeries as the database store for your UDDI registry data.

Before you begin

IBMUDI30 and IBMUDS30 are the default names of the UDDI registry schema in the SQL scripts

mentioned below. These default names are the recommended values and are assumed throughout the

UDDI documentation. If you want to use different names, modify the SQL files listed below, then substitute

your own names whenever you see ’IBMUDI30’ or ’IBMUDS30’ in other sections of the documentation.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Use iSeries Navigator to run SQL scripts.

a. Open iSeries Navigator.

b. Expand My Connections → iSeriesName → Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the i5/OS DB2 SQL files.

a. Map a network drive to the root directory of your i5/OS server’s integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (such as Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit → Select All.

b. Click Edit → Copy.

c. In the Run SQL Scripts window, click Edit → Paste.

d. Click Run → All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts

window.

f. Repeat the above steps for all the SQL scripts listed in step 2.

1012 Administering WebSphere applications

Note: iSeries Navigator for i5/OS V5R2 will encounter an error on the last line of the SQL script when

running the uddi30crt_25_tables_db2udb_iSeries.sql script. This error can be ignored. i5/OS

V5R2 does support running UDDI in a clustered high availability environment. For more

information, see the WebSphere Application Server for i5/OS tech notes.

4. This step should only be run if you want your database to be used as a default UDDI node.

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in Step 2 above.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in Step 3

above.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Apache Derby database for the UDDI registry

Perform this task to use Apache Derby (embedded or network) as the database store (either local or

remote) for your UDDI registry.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for

these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, this is app_server_root/UDDIReg/
databasescripts

arg2 The path to the location where you want to install the Apache Derby database.

 For example, profile_root/databases/com.ibm.uddi

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI information. If you use another name, substitute that name when

UDDI30 is used in the information center.

arg4 An optional argument, which must either be the string ’DEFAULT’, or be omitted. Specify

DEFAULT if you want the database to be used as a default UDDI node. This argument is case

sensitive.

If you want to create a remote database, refer first to the database product documentation about the

relevant capabilities of the product.

About this task

You need to perform this task only once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

1. Start a Qshell session by entering the STRQSH command from the i5/OS command line.

2. Run the following Java -jar command from the app_server_root/UDDIReg/databaseScripts directory, to

create a UDDI Apache Derby database using UDDIDerbyCreate.jar.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to recreate it. If you choose to

recreate the database, your existing database is deleted and a new one is created in its place. If you

choose not to recreate the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the

uddiDeploy.jacl script cannot recreate the database. Use the uddiRemove.jacl script to remove

the database, as described in “Removing a UDDI registry node” on page 1007, restart the

server, and run the uddiDeploy.jacl script again.

Chapter 5. Web services 1013

3. If you are using a remote database (which requires network Apache Derby), or you want to use

network Apache Derby for other reasons, for example, if you want to use Apache Derby with a cluster,

configure the Apache Derby Network Server framework. For details, see the section about managing

the Derby Network Server in the Derby Server and Administration Guide.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry

Perform this task if you want to use Oracle as the database store for your UDDI registry data. You need

only do this once for each UDDI registry, as part of setting up and deploying a UDDI registry.

About this task

The supported versions of Oracle are Version 9i7 and Version 10g8

You can create a remote database using Oracle, but not a local database. Because the database is

remote, use the database product documentation to familiarize yourself with the relevant capabilities of the

product before proceeding with this task.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas with these names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used are:

<OracleUserID>

is the Oracle userid to be used to create the database.

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the following actions depending on your level of Oracle:

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

v For Version 10g and later:

7.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters; instanceParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

8.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters.

1014 Administering WebSphere applications

http://db.apache.org/derby/manuals/index.html#docs_10.3

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_constraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Applying an upgrade to the UDDI registry

Use this task to apply an iFix, Fix Pack or Refresh Pack to the UDDI registry.

About this task

Note: Some upgrades may require additional steps. Before you complete this task, refer to the readme

file for the upgrade.

1. Apply the WebSphere Application Server iFix, Fix Pack or Refresh Pack to your application server, or

servers, using the WebSphere Application Server Update Installer. You must repeat this process for

each server on which you want to incorporate the UDDI upgrade.

2. If you have not yet deployed a UDDI registry, no further action is required, because updates to the

UDDI registry takes effect when you first deploy UDDI into any of your application server profiles.

3. If you have already deployed a UDDI registry to one or more application server profiles, to apply the

upgrade, redeploy the UDDI application, as described in Reinstalling the UDDI registry application. The

existing UDDI application is removed and the updated application is deployed.

Configuring SOAP API and GUI services for the UDDI registry

For SOAP application programming interface (API) and graphical user interface (GUI) UDDI services, you

can configure whether or not the API is secure. For SOAP API services you can also configure the default

pool size.

Before you begin

You must have installed the UDDI registry application.

About this task

For the Version 1 and Version 2 SOAP interface, you can configure the following properties:

v defaultPoolSize. This is the number of SOAP parsers with which to initialize the parser pool for the

SOAP interface. You can set this independently for the Publish (uddipublish) and Inquiry (uddi) APIs.

For example, if you expect more inquiries than publish requests through the SOAP interface, you can

set a larger pool size for the Inquiry API. The default initial size for both APIs is 10.

v Whether the API is to be secure (accessed using HTTPS) or insecure (accessed using HTTP). The

default for Publish is to use HTTPS and Inquiry to use HTTP.

For the Version 3 SOAP interface, you can specify whether Publish, Custody Transfer, Security and Inquiry

APIs are to be secure (accessed using HTTPS) or insecure (accessed using HTTP).

Chapter 5. Web services 1015

For the Version 3 GUI interface, you can specify whether the Publish and Inquiry API services are to be

secure (accessed using HTTPS) or insecure (accessed using HTTP).

v Optional: Configure Version 1 and Version 2 SOAP API services by performing the following steps.

1. Edit the active deployment descriptor (web.xml) for the Version 1 and Version 2 SOAP module

(soap.war).

This file is located in the following directory:

 profile_root/config/cells/cell_name/applications/

 UDDIRegistry.node_name.server_name.ear/deployments/

 UDDIRegistry.node_name.server_name/soap.war/WEB-INF

2. To modify defaultPoolSize for Version 1 or Version 2 Publish, modify the ‘param-value’ element in

the servlet with ‘servlet-name’ = uddipublish

3. To modify defaultPoolSize for Version 1 or Version 2 Inquiry, modify the ‘param-value’ element in the

servlet with ‘servlet-name’ = uddi

4. To modify the user data constraint transport guarantee for Version 1 or Version 2 publish, which

determines whether the Publish service is to be confidential (accessed using HTTPS) or insecure

(using HTTP), find the ‘security-constraint’ with id = ‘UDDIPublishTransportConstraint’ and set its

‘user-data-constraint’ ‘transport-guarantee’ to CONFIDENTIAL or NONE.

5. Stop and restart the application server for the changes to take effect.

v Optional: For the Version 3 SOAP interface, specify whether the Publish, Custody Transfer, Security and

Inquiry API services are to be secure or insecure by performing the following steps. The defaults are for

Publish, Custody Transfer and Security APIs to use HTTPS, and for the Inquiry API to use HTTP.

1. Edit the active deployment descriptor (web.xml) for the Version 3 SOAP module (v3soap.war).

This file is located in the following directory:

 profile_root/config/cells/cell_name/applications/

 UDDIRegistry.node_name.server_name.ear/deployments/

 UDDIRegistry.node_name.server_name/v3soap.war/WEB-INF

2. Locate the <security-constraint> element for the service that you want to modify by searching the

deployment descriptor (web.xml) file for the relevant <display-name> value (see the table below).

When you have found the <security-constraint> element, set its <user-data-constraint>

<transport-guarantee> to either CONFIDENTIAL (the service can only be accessed using HTTPS)

or NONE (the service can be accessed using HTTP). The <security-constraint> element

represents a type of service, and contains the <display-name> element, <user-data-constraint>

<transport-guarantee> elements, and other elements.

 Type of UDDI service Value of <security-constraint> <display-name> element

Publish AxisServlet Publish Resource Collection

Custody transfer AxisServlet CustodyTransfer Resource Collection

Security AxisServlet Security Resource Collection

Inquiry AxisServlet Inquiry Resource Collection

3. Stop and restart the application server for the changes to take effect.

v Optional: For the Version 3 GUI interface, specify whether the Publish and Inquiry API services are to

be secure or insecure by performing the following steps. The defaults are for the Publish API to use

HTTPS, and the Inquiry API to use HTTP.

1. Edit the active deployment descriptor (web.xml) for the Version 3 GUI module (v3gui.war).

This file is located in the following directory:

 profile_root/config/cells/cell_name/applications/

 UDDIRegistry.node_name.server_name.ear/deployments/

 UDDIRegistry.node_name.server_name/v3gui.war/WEB-INF

2. Use the table below to find the id value for the <user-data-constraint> element that corresponds

with the service that you want to change. Search for this value in the deployment descriptor

(web.xml) file to find the <user-data-constraint> element, then set the <user-data-constraint>

1016 Administering WebSphere applications

<transport-guarantee> to either CONFIDENTIAL (the service can only be accessed using HTTPS)

or NONE (the service can be accessed using HTTP).

 Type of UDDI service Value of <user-data-constraint id>

Publish UDDIPublishTransportConstraint

Inquiry UDDIInquireTransportConstraint

3. Stop and restart the application server for the changes to take effect.

Managing the UDDI registry

You can use either the WebSphere Application Server administrative console or the Java Management

Extensions (JMX) management interface to manage UDDI Registries.

About this task

In previous versions of WebSphere Application Server and the UDDI registry, a properties file was used,

but from WebSphere Application Server Version 6, you manage all the policies and properties of the UDDI

registry through either the JMX management interface or the administrative console.

JMX can be used to monitor and configure UDDI registries programmatically, and is explained in Using

administrative programs (JMX). See UDDI registry Administrative (JMX) Interface for full details on using

the UDDI administrative interface. To manage UDDI registries using the WebSphere Application Server

administrative console, start from the UDDI link in the left navigation pane as described below.

Using the UDDI management functions available in the WebSphere Application Server administrative

console, you can perform the following operations:

v view and manage the status of all UDDI nodes in a cell

v initialize UDDI nodes with required settings

v configure general properties that affect UDDI runtime behavior

v manage UDDI policy settings

v create, view and update UDDI publishers

v create, view and update publisher tiers which limit how many UDDI entries may be published

v view and manage the status of value sets

If WebSphere Application Server security is enabled, you will need to log in to the WebSphere

Administrative Console, supplying a valid userid and password, in order to use the UDDI management

functions.

UDDI node collection

Use this page to manage the UDDI nodes in this cell. Each UDDI node represents an individual UDDI

registry application. A UDDI node will only appear in this list if its underlying UDDI application is started.

The status of the UDDI node indicates whether the node is activated (available to accept API requests),

deactivated (not allowing user requests), or not initialized. UDDI nodes that are not initialized require some

properties to be set before they can be initialized and activated.

To view this administrative console page, click UDDI → UDDI Nodes.

Each UDDI node is represented by a UDDI Node ID, Description, UDDI Application Location and Status.

To manage an individual UDDI node, click on its UDDI Node ID link. This takes you to the Configuration

page where you can manage its general properties, initialize it if the status is set to Initialization Pending,

and access pages for managing policies, UDDI publishers, tiers and value sets.

Chapter 5. Web services 1017

UDDI Node ID

Specifies the identifier for the UDDI node.

Description

Specifies the description of the UDDI node.

UDDI Application Location

Specifies the server in which the UDDI registry application is deployed and running.

For a cluster configuration, which will include several servers all running the UDDI registry application, you

will see a single location listed; this location could represent any of the active servers.

Status

Specifies the status of the UDDI node.

The Status of the UDDI node can be Not initialized, Initialization pending, Initialization in progress,

Migration in progress, Migration pending, Value set creation in progress, Value set creation pending,

Activated or Deactivated. If a node is in the Initialization pending state, you must initialize it before you can

activate it. If you attempt to initialize the node and it remains in a pending state, an error occurred during

migration or initialization.

To activate UDDI nodes that are Deactivated, select them by checking the corresponding check boxes in

the Select column and click Activate. Similarly to deactivate UDDI nodes, select them and click

Deactivate.

Note: Restarting the UDDI application, or the application server, will always result in the reactivation of the

UDDI node, even if the node was previously deactivated.

UDDI node settings

This topic contains details of the general properties that you can configure for a UDDI node.

To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id.

By clicking on a node in the UDDI node ID column the UDDI node detail page is displayed. The UDDI

node detail page displays a set of General Properties for the UDDI node, some of which may be editable

depending on the state of the node. There are also links to Additional Properties (Value sets, Tiers and

UDDI Publishers) and links to Policy Groups where you can view and change UDDI node policy.

Unless you installed the UDDI node as a default UDDI node (as defined in UDDI registry terminology),

there are some important general properties that you must set before you can initialize the UDDI node.

These properties are marked as being required (indicated by the presence of a ’*’ next to the input field).

You may set the values as many times as you wish before initialization. However, after you initialize the

UDDI node, these properties will become read only for the lifetime of that UDDI node. It is very important

to set these properties correctly. You can set other general properties of the UDDI node before, and after,

initialization.

After you set the general properties to appropriate values, click OK to save your changes and exit the

page, or Apply to save your changes and remain on the same page. At this point the changes are stored.

If the UDDI node is in the Not Initialized state, indicated on the UDDI node detail page by the presence of

an Initialize button (above the General Properties section), you can initialize UDDI node by clicking

Initialize. This operation can take a while to complete. It is important to save any changes you made to

the general properties by clicking Apply or OK, before you click Initialize.

UDDI Node ID:

1018 Administering WebSphere applications

Specifies the unique identifier that is given to a UDDI node in a UDDI registry. The node ID must be a

valid UDDI key. The value will also be the domain key for the UDDI node.

 The value for the node ID will also be the domain key for this UDDI node.

 Required Yes

Data type String

Default uddi:cell_name:node_name:server_name:node_id

UDDI node description:

Specifies the description of this UDDI node.

 Required Yes

Data type String

Default WebSphere UDDI registry default node

Root key generator:

Specifies the root key space of the registry. Registries intending to become affiliate registries might want to

specify a root key space in a partition below the root key generator of the parent root registry, for example,

uddi:thisregistry.com:keygenerator.

 Required Yes

Data type String

Default uddi:cell_name:node_name:server_name:keyspace_id:keygenerator

Prefix for generated discoveryURLs:

Specifies the URL prefix that is applied to generated discoveryURLs in businessEntity elements, so they

can be returned on HTTP GET requests. This property applies to UDDI version 2 API requests only. Set

this prefix to a valid URL for your configuration, and do not change it unless absolutely necessary.

 The format is http://hostname:port/uddisoap/, where uddisoap is the context root of the UDDI version 2

SOAP servlet.

Although this field is not required, you should set it so that the required and valid URL is generated in

response to version 2 GET requests. After you have set the prefix you should not alter it unless a

subsequent configuration change renders it invalid; if you change the prefix, discoveryURLs generated

using the earlier prefix will no longer work.

 Required No

Data type String

Default http://localhost:9080/uddisoap

Host name for UDDI node services:

Specifies the host name root used by the UDDI node to model API services in its own node business

entity. This value must be the fully qualified domain name, or IP address, of the network host.

 The UDDI node provides Web services that implement each of the UDDI API sets that it supports. The

host name is used to generate access point URLs in the bindingTemplate elements for each of the

services. The access point URL is generated by prefixing the host name value with a protocol, such as

http, and suffixing it with the corresponding host port number. The access point URL must resolve to a

Chapter 5. Web services 1019

valid URL.

 Data type String

Default localhost

Host HTTP port:

Specifies the port number used to access UDDI node services with HTTP. This port number must match

the WebSphere Application Server port for HTTP requests.

 Data type Integer

Default 9080

Host HTTPS port:

Specifies the port number used to access UDDI node services with HTTPS. This port number must match

the WebSphere Application Server port for HTTPS requests.

 Data type Integer

Default 9443

Maximum inquiry result set size:

Specifies the maximum size of result set which the registry will process for an inquiry API request.

 If the result set exceeds this value, an E_resultSetTooLarge error is returned to the user. If you set this

value too low, and users use imprecise search criteria, the likelihood of receiving an E_resultSetTooLarge

error is increased. Setting the value higher allows larger result sets but can cause increased response

times.

 Data type Integer

Default 500

Range 0 to 1024

Maximum inquiry response set size:

Specifies, for inquiry API requests, the maximum number of results returned in each response. Do not set

this value higher than the value for Maximum inquiry results.

 If the result set contains more results than this value, the response will include only a subset of those

results. The user can retrieve the remaining results using the listDescription feature as described in the

UDDI specification. If you set this value too low, the user has to make more requests to retrieve the

remainder of the result set.

 Data type Integer

Default 500

Range 0 to 1024

Maximum search names:

Specifies the maximum number of names that can be supplied in an inquiry API request. To avoid slowing

UDDI node response times, set this value no higher than 8.

1020 Administering WebSphere applications

Higher values allow more complex requests to be processed by the UDDI node, however complex

requests can significantly slow the response times of the UDDI node.

 Data type Integer

Default 5

Range 1 to 64

Maximum search keys:

Specifies the maximum number of keys that can be supplied in an inquiry API request. To avoid slowing

UDDI node response times, set this value no higher than 5.

 This value limits the number of references that can be specified in categoryBag, identifierBag, tModelBag

and discoveryURLs.

Higher values allow the UDDI node to process more complex requests, however complex requests can

significantly slow the response times of the UDDI node. In exceptional cases, the UDDI node may reject

complex requests with excessive numbers of keys even if the value of maxSearchKeys is not exceeded.

 Data type Integer

Default 5

Range 1 to 64

Key space requests require digital signature:

Specifies whether tModel:keyGenerator requests must be digitally signed.

 Data type Boolean (check box)

Default False (cleared)

Use tier limits:

Specifies whether an approval manager is used to check publication tier limits. If you set this value to

false, the number of UDDI entities that can be published is unlimited.

 Data type Boolean (check box)

Default True (selected)

Use authInfo credentials if provided:

Specifies whether authInfo contents in UDDI API requests are used to validate users when WebSphere

Application Server security is off. If you set this value to true, the UDDI node will use the authInfo element

in the request, otherwise the default user name is used.

 Data type Boolean (check box)

Default True (selected)

Authentication token expiry period:

Specifies the period, in minutes, after which an authentication token is invalidated and a new

authentication token is required.

Chapter 5. Web services 1021

Set this value high enough to allow the registry to operate successfully, but be aware that high values can

increase the risk of illegal use of authentication tokens.

 Data type Integer

Default 30

Range 1 to 10080 minutes (10080 minutes = 1 week)

Automatically register UDDI publishers:

Specifies whether UDDI publishers are automatically registered and assigned to the default tier.

Automatically registered UDDI publishers are given default entitlements.

 Data type Boolean (check box)

Default True (selected)

Default user name:

Specifies the user name used for publish operations when WebSphere Application Server security is

disabled and Use authInfo credentials if provided is set to false.

 Data type String

Default UNAUTHENTICATED

Default language code:

Specifies, for UDDI version 1 and version 2 requests, the default language code to be used for xml:lang,

when not otherwise specified.

 Data type String

Default en

Value set collection:

Use this page to view and configure the value sets that are installed in a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Value Sets.

Value sets in a UDDI node are either supported or not supported by policy. By default, new value sets are

not supported. After you publish a value set tModel and loaded value set data, you can control whether

other UDDI entities can reference this value set tModel by setting the Supported policy.

To enable support for one or more value sets, select the value sets by selecting the appropriate check

boxes in the Select column. Click Enable Support. The Supported field for all the selected value sets is

updated, with a value of true, to reflect the new status.

To disable support for a value set, which might be necessary before you remove it from the UDDI node,

select the value sets in the same manner as for enabling support. Click Disable Support. The Supported

field for all the selected value sets is updated, with a value of false, to reflect the new status.

Clicking on a value set name in the list takes you to the general properties page for that value set as

described in Value set settings.

Name:

1022 Administering WebSphere applications

Specifies the name of the tModel that represents this value set.

tModelkey:

Specifies the key for the tModel that represents this value set.

Supported:

Specifies whether this value set is supported by policy in this UDDI node.

Value set settings:

Use this page to view the attributes of a value set in a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Value Sets >

value_set_name.

This page shows the values of keyedReferences in the tModel that represents this value set. This page

also shows the Supported status of the value set. All properties are read-only. To change the Supported

status, use the Value sets collection page.

Unvalidatable:

Specifies whether this value set is unvalidatable. The value set tModel publisher sets this value, to indicate

whether the value set is available for use by publish requests.

Checked:

Specifies whether this value set is checked. If you set this value to true, UDDI entities that reference this

value set will be validated to ensure that their values are present in this value set.

Cached:

Specifies whether this value set is cached in this UDDI node.

Externally cacheable:

Specifies whether this value set is externally cacheable.

Externally validated:

Specifies whether this value set is externally validated.

Supported:

Specifies whether this value set is supported by policy in this UDDI node.

Last cached:

Specifies the date when this value set was last cached in the UDDI node.

Tier collection:

This page contains a list of the available tiers for the UDDI node. You can modify tiers, create new tiers

and delete tiers from this page.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Tiers.

Chapter 5. Web services 1023

This page shows the available tiers for the UDDI node. Clicking a tier name will show the General

Properties for the specific tier as detailed in Tier settings. To delete a Tier from the list, select the relevant

name and click Delete. Clicking New will take you to the General Properties page with the same properties

as described in Tier settings.

One of the tiers in the collection will be marked as the default tier, indicated by (default) appearing next to

the tier’s name. The default tier will be assigned to UDDI publishers that are registered automatically when

automatic user registration is turned on. To set the default tier, select the appropriate tier in the collection

and press the Set default button. Note that it is not possible to delete a tier if it is currently marked as the

default tier, or it is currently assigned to a UDDI publisher.

Name:

Specifies the name of the tier.

Description:

Specifies the descriptive text about the tier.

UDDI Tier settings:

This topic contains details of the general properties that you can configure for a UDDI publisher tier.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Tiers > tier_name.

Name:

Specifies the name of the tier.

 Required Yes

Data type String

Default No default

Range 1 to 255

Description:

Specifies a description of the purpose or usage of this tier.

 Data type String

Default No default

Range 0 to 255

Maximum properties:

 For each of the maximum fields described below, the data is:

 Required Yes

Data type Integer

Default No default

Range 0 to 2147483647

Maximum businesses:

Specifies the maximum number of businesses that UDDI publishers in this tier are allowed to publish.

1024 Administering WebSphere applications

Maximum services per business:

Specifies the maximum number of services that UDDI publishers in this tier are allowed to publish for each

business.

Maximum bindings per service:

Specifies the maximum number of bindings that UDDI publishers in this tier are allowed to publish for each

service.

Maximum tModels:

Specifies the maximum number of tModels that UDDI publishers in this tier are allowed to publish.

Maximum publisher assertions:

Specifies the maximum number of publisher assertions that UDDI publishers in this tier are allowed to add.

UDDI Publisher collection:

This page shows the users that are currently registered as UDDI publishers.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > [Additional

Properties] UDDI Publishers.

To create a UDDI publisher, click New. The “UDDI Publisher settings” on page 1027 page, where you can

enter details about the publisher, is displayed.

To register one or more existing WebSphere Application Server users as UDDI publishers, click Create

publishers. The “Create UDDI Publishers” page, where you can select users and modify their

entitlements, is displayed.

You can assign multiple publishers to a tier without editing each publisher individually, by completing the

following steps:

1. Select the appropriate publishers in the collection table.

2. From the tier list at the top of the collection table, select one of the tiers that is available on the UDDI

node.

3. Click Assign tier to update the selected publishers.

To delete publishers, select them in the collection table and then click Delete.

After you register the users as UDDI publishers, you can edit their entitlements as described in “UDDI

Publisher settings” on page 1027.

User name:

Specifies the name of the UDDI publisher.

Tier:

Specifies the tier to which the UDDI publisher is assigned.

Create UDDI Publishers:

Use this page to register one or more existing WebSphere Application Server users as UDDI publishers.

Chapter 5. Web services 1025

To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > [Additional

Properties] UDDI Publishers → Create publishers.

To register as UDDI publishers one or more users that are known to the application server, complete the

following steps:

1. Enter a string to search for the required users. To find all users, use the * character.

2. Optionally, enter a number in the limit field to restrict the number of returned results.

3. Click Search to display a list of users that match the string.

4. Select the users that you want to register from the Available list and use the arrows to move them into

the Selected list.

5. Use the entitlements listed under General Properties to give the UDDI publishers permission to

perform specific actions. Set the entitlements by selecting the check box next to each entitlement.

6. Select a tier for the users from the Tier list.

7. Click OK to register the users as UDDI publishers with the specified entitlements and tier.

Note: If you are using a Lightweight Directory Access Protocol (LDAP) user registry, the format of the

name that is given to each UDDI Publisher is defined by the User ID map value in the LDAP

advanced settings. To view the LDAP advanced settings, click Security → Global security, under

User account repository select Standalone LDAP registry and click Configure, then under

Additional Properties click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

After a user has been registered as a UDDI publisher, you can edit their entitlements by clicking the user

name.

Allowed to publish keyGenerator with derived key:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a derived key.

 The tModel:keyGenerator is a request for key space. An example of a legal derived key is

uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey ″uddi:tempuri.com:fish″. the

string ’buyingService’ is the key’s key specific string (KSS).

Allowed to publish keyGenerator with domain keys:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a domain key.

Allowed to publish keyGenerator:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator.

 If false, UDDI publishers cannot publish keyGenerators of any kind. In this situation all the entitlement

settings are disregarded, regardless of how they are set.

Allowed to publish with UUID key:

Specifies whether the UDDI publisher has permission to publish elements with a UUID key.

Allowed to publish keyGenerator with UUID keys:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a UUID key.

Tier:

Specifies the tier to which the UDDI publisher is assigned.

1026 Administering WebSphere applications

UDDI Publisher settings:

Use this page to view and edit the properties of a UDDI publisher, or to create a new UDDI publisher.

 You can view this administrative console page in two ways:

v If you want to view and edit the properties of an existing UDDI publisher click UDDI → UDDI Nodes >

UDDI_node_id > UDDI Publishers > user_name

v If you want to create a new UDDI publisher click UDDI → UDDI Nodes > UDDI_node_id > UDDI

Publishers → New

This page shows the entitlements and publication limits tier for a particular UDDI publisher.

User name:

Specifies the name of the UDDI publisher.

 If you are creating a new UDDI publisher, enter the name of a user known to the application server. If you

are viewing or editing the properties of an existing publisher, the user name cannot be changed.

Allowed to publish keyGenerator with derived key:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator with a derived key.

 The tModel:keyGenerator is a request for key space. An example of a legal derived key is

uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey ″uddi:tempuri.com:fish″. the

string ’buyingService’ is the key’s key specific string (KSS).

 Data type Boolean

Default True (selected)

Allowed to publish keyGenerator with domain keys:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator with a domain key.

 Data type Boolean

Default True (selected)

Allowed to publish keyGenerator:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator.

 If you set this value to false, the UDDI publisher cannot publish keyGenerators of any kind. In this situation

the following permissions will be disregarded irrespective of how they are set: Allowed to publish

keyGenerator with derived key, Allowed to publish keyGenerator with domain keys, Allowed to

publish with UUID key and Allowed to publish keyGenerator with UUID keys.

 Data type Boolean

Default True (selected)

Allowed to publish with UUID key:

Specifies whether the UDDI publisher has permission to publish elements with a UUID key.

 Data type Boolean

Chapter 5. Web services 1027

Default False (cleared)

Allowed to publish keyGenerator with UUID keys:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator with a UUID key.

 Data type Boolean

Default False (cleared)

Tier:

Specifies the tier to which the UDDI publisher is assigned.

Policy groups:

This topic contains links to the detailed settings information for every policy group that you can configure

for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id.

To the right of the page is a list of the Policy Groups that can be acted upon. Clicking on a specific group

will open the page for the group required.

UDDI keying policy settings:

This topic contains details of the UDDI keying settings that you can configure for a UDDI registry.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Keying policies.

Registry key generation:

Specifies whether publishers are allowed to publish key generator tModels. You can manage how

publishers are allowed to publish key generator tModels by configuring the entitlements in the UDDI

Publishers page.

 Data type Boolean

Default True (selected)

Registry support of UUID keys:

Specifies whether publisher supplied uuidKeys are allowed in publish requests. You can manage how

publishers are allowed to use uuidKeys by configuring the entitlements in the UDDI Publishers page.

 Data type Boolean

Default False (cleared)

UDDI node API policy settings:

This topic contains details of the API settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes → UDDI_node_id → API policies .

1028 Administering WebSphere applications

Note: This information applies only to UDDI Version 3. You cannot change the settings for Versions 1 and

2; authentication tokens are required for publish requests, but not for inquiry requests (there are no

custody transfer requests in Versions 1 or 2).

Authorization for inquiry:

Specifies whether authorization using the authInfo element is required for inquiry API requests. This setting

is relevant only if the V3SOAP_Inquiry_User_Role is set to Everyone and WebSphere Application Server

security is on.

 If WebSphere Application Server security is off, this setting is ignored. If WebSphere Application Server

security is on and the V3SOAP_Inquiry_User_role is not set to Everyone, this setting is ignored.

If this setting is true, an authorization token is required to complete the request. If this setting is false, an

authorization token is not required; if one is supplied, it is ignored and the request is processed as if it the

default user that is defined in the UDDI node settings made the request.

Typically, UDDI registries are configured to not require authorization for inquiry API requests.

 Data type Boolean

Default False (cleared)

Authorization for publish:

Specifies whether authorization using the authInfo element is required for publish API requests. This

setting is relevant only if the V3SOAP_Publish_User_Role is set to Everyone and WebSphere Application

Server security is on.

 If WebSphere Application Server security is off, this setting is ignored. If WebSphere Application Server

security is on and the V3SOAP_Publish_User_role is not set to Everyone, this setting is ignored.

If this setting is true, an authorization token is required to complete the request. If this setting is false, an

authorization token is not required; if one is supplied, it is ignored and the request is processed as if it the

default user that is defined in the UDDI node settings made the request.

Typically, UDDI registries are configured to require authorization for publish API requests.

 Data type Boolean

Default True (selected)

Authorization for custody transfer:

Specifies whether authorization using the authInfo element is required for custody transfer API requests.

This setting is relevant only if the V3SOAP_CustodyTransfer_User_Role is set to Everyone and

WebSphere Application Server security is on.

 If WebSphere Application Server security is off, this setting is ignored. If WebSphere Application Server

security is on and the V3SOAP_CustodyTransfer_User_role is not set to Everyone, this setting is ignored.

If this setting is true, an authorization token is required to complete the request. If this setting is false, an

authorization token is not required; if one is supplied, it is ignored and the request is processed as if it the

default user that is defined in the UDDI node settings made the request.

Chapter 5. Web services 1029

Typically, UDDI registries are configured to require authorization for custody transfer API requests.

 Data type Boolean

Default True (selected)

UDDI user policy settings:

This topic contains details of the user policy settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > User policies.

Allow transfer of ownership:

When true, data ownership can be transferred between owners within the UDDI node.

 Data type Boolean

Default True (selected)

UDDI data custody policy settings:

This topic contains details of the data custody settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Data custody

policies.

Transfer token expiration period:

Specifies the length of time from the issue of a transfer token, in minutes, after which that token expires.

 If you set this value too high, you might expose the UDDI registry to a risk of misuse.

 Data type Integer

Default 1440

Range 1 to 2147483647 (for all intents and purposes, unlimited)

UDDI value set policy:

This topic contains details of the value set policy settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Value set policies.

Enable checked value sets:

Specifies whether checked value sets are supported. If you set this value to false, publish requests of

value set tModels that contain a ’checked’ keyedReference will be rejected.

 Data type Boolean

Default True (selected)

UDDI node miscellaneous:

This topic contains details of the miscellaneous settings that you can configure for a UDDI node.

1030 Administering WebSphere applications

To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Miscellaneous

policies.

Node generates discoveryURLs:

Specifies whether a UDDI node can establish a policy on whether it generates discoveryURLs.

 Data type Boolean

Default False (cleared)

Node supports HTTP Get Service:

Specifies whether the UDDI node supports an HTTP GET service for access to the XML representations of

UDDI data structures.

 Data type Boolean

Default True (selected)

URL prefix for V3 GET servlet:

Specifies the prefix for the URL to the version 3 GET servlet that is used to retrieve the XML

representation of a published entity. This property applies to UDDI version 3 API requests only.

 The format of the prefix is http://hostname:port/uddiv3soap/, where uddisoap is the context root of the

UDDI version 3 SOAP servlet.

When a businessEntity is published, if you have set Node generates discovery URLs to true, the

discoveryURL value is generated based on this prefix value. Otherwise, the discoveryURL value will be

empty.

The UDDI Version 3 specification recommends that you do not enable generation of discoveryURLs

because they can affect the use of digital signatures. If you do enable generation of discoveryURLs, do

not change the URL prefix afterward, otherwise discoveryURLs that were generated using the earlier URL

prefix no longer work.

 Data type URL

Default http://localhost:9080/uddiv3soap/

Backing up and restoring the UDDI registry database

If you want to protect the data in your UDDI registry database, you can back up and restore the database

using the facilities of the database product that your UDDI node is on.

v To backup a Apache Derby UDDI registry database, first ensure that the UDDI application is stopped

(and hence, not accessing the Apache Derby database), and ensure that no other application is using

the Apache Derby UDDI30 database. Make a copy of the UDDI30 directory using the file system that

the directory resides upon. To restore the database, replace the UDDI30 file structure with the back up.

Note that any updates made since the back up was taken will be lost.

v To backup a non-Apache Derby UDDI registry database, use the appropriate backup and restore tools

for the database. To use these tools, refer to the documentation for the database product.

Chapter 5. Web services 1031

Enabling Web services through the service integration bus

Web services can use the service integration bus and the Web services gateway to provide a single point

of control, access, and validation of Web service requests and allow control of Web services that are

available to different groups of Web service users.

About this task

With bus-enabled Web services you can achieve the following goals:

v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and

make it available as a Web service.

v Create an outbound service: Take an externally-hosted Web service, and make it available internally at

a bus destination.

v Create a gateway service: Use the Web services gateway to map an existing service - either an

inbound or an outbound service - to a new Web service that appears to be provided by the gateway.

Bus-enabled Web services provide a choice of quality of service and message distribution options, along

with intelligence in the form of mediations that allow for the rerouting of messages. The Web services

gateway is used to map Web services for use within your organization and by external users, and to

manage the relationships between externally-provided Web services and those provided directly through a

service integration bus (that is, the relationships between inbound and outbound services).

To enable Web services through service integration technologies, complete the following steps:

 1. Optional: Learn about bus-enabled Web services. Explore the concepts that underly service

integration bus-enabled Web services.

 2. Plan your bus-enabled Web services installation. Determine the bus-enabled Web services roles that

each standalone server or cluster is to perform.

 3. Ensure that every standalone server or cluster that is to play a bus-enabled Web services role is a

member of a service integration bus. For more information, see “Configuring the members of a bus”

on page 1202.

 4. For every standalone server or cluster that is to play a bus-enabled Web services role, install and

configure a Service Data Objects (SDO) repository on the standalone server, or (for a server or

cluster that is part of a managed cell) on the network deployment cell.

Note: For WebSphere Application Server Version 6.0, you also had to manually install a selection of

the following applications:

v The service integration technologies resource adapter (used to invoke Web services at

outbound ports).

v The bus-enabled Web services application.

v One or more endpoint listener applications.

For later versions of WebSphere Application Server, these applications are installed

automatically as and when needed. For example, the endpoint listener application is installed

automatically when you configure an endpoint listener.

 5. Create a new endpoint listener configuration for each endpoint listener application that you plan to

use to receive inbound service requests.

 6. Optional: Create an inbound service. An inbound service is a Web interface to a service that is

provided internally (that is, a service provided by your own organization and hosted in a location that

is directly available through a service integration bus destination). To configure a locally-hosted

service as an inbound service, you associate it with a service destination, and with one or more

endpoint listeners through which service requests and responses are passed to the service. You can

also choose to have the local service made available through one or more UDDI registries.

1032 Administering WebSphere applications

7. Optional: Create an outbound service. An outbound service is a Web service that is hosted externally,

and is made available through a service integration bus. To make an externally-hosted service

available through a bus, you first associate it with a service destination, then you configure one or

more port destinations (one for each type of binding, for example SOAP over HTTP or SOAP over

JMS) through which service requests and responses are passed to the external service. You get the

port definitions from the WSDL, but you can choose which ones you want to create.

 8. Optional: Create a gateway instance. Within each service integration bus you can create multiple

gateway instances. You create Web services gateway instances to partition the total set of gateway

services into logical groups to allow simpler management. The gateway provides you with a single

point of control, access and validation of Web service requests, and allows you to control which Web

services are available to different groups of Web service users.

 9. Optional: Create a gateway service. A gateway service is the Web interface for an underlying service

(the target service) that is either provided internally (hosted so as to be directly available at a service

destination), or provided externally (as an external Web service). You use the Web services gateway

to map an existing service - either an inbound or an outbound service - to a new Web service that

appears to be provided by the gateway. The gateway service acts as a proxy: your gateway service

users need not know whether the underlying service is being provided internally or externally.

10. Optional: Apply additional security to your bus-enabled Web services. By default, the bus-enabled

Web services configuration works when WebSphere Application Server security is enabled and your

service integration buses are secured. However this level of security does not impose any security

restrictions on the users of your bus-enabled Web services configuration. To control how your

bus-enabled Web services configuration is used by each group of your colleagues or customers, use

the bus-enabled Web services additional security features to enable working with password-protected

components and servers, with WS-Security and with HTTPS.

What to do next

For further information on specific aspects of bus-enabled Web services, see the following topics:

v Learning about bus-enabled Web services

v “Installing and configuring the SDO repository”

v “Configuring Web services for a service integration bus” on page 1040

v “Administering the bus-enabled Web services core resources” on page 1069

v Securing bus-enabled Web services

v “Passing SOAP messages with attachments through the service integration bus” on page 1103

v SIBWebServices command group for the AdminTask object

v Bus-enabled Web services troubleshooting tips

v Tuning bus-enabled Web services

Installing and configuring the SDO repository

Service Data Objects (SDO) is an open standard for enabling applications to handle data from different

data sources in a uniform way, as DataGraphs. Service integration bus-enabled Web services use an SDO

repository for storing and serving WSDL definitions. Use this task to create and configure your preferred

database to store SDO data, and to install and configure an SDO repository on each server that you plan

to use for bus-enabled Web services.

Before you begin

Determine the servers or clusters on which to install and configure an SDO repository as described in

Planning your bus-enabled Web services installation, then add each server or cluster as a member of a

bus as described in “Configuring the members of a bus” on page 1202.

Chapter 5. Web services 1033

An SDO repository can work with most database products. For specific information about choosing and

configuring your preferred database, consult your database administrator or database product

documentation, as well as reading the notes on database usage given in this topic.

About this task

To install and configure an SDO repository, you complete the following broad steps:

v Install your preferred database product.

v Create a JDBC provider and a data source for your database.

v Run the installSdoRepository.jacl script one or more times, to install the SDO application on each

server and to set the database type that the SDO repository is to use.

For detailed information about how to do this, first read the following notes on database usage and on the

installSdoRepository.jacl script, then complete the steps for one of these configurations:

v “Configure the SDO repository for a single server, using the embedded Derby database” on page 1035.

v “Configure the SDO repository for a single server, using a database other than embedded Derby” on

page 1035.

v “Configure the SDO repository for a network deployment cell” on page 1036.

Note:

v For a single server configuration you can use either your preferred database or the embedded

Apache Derby database that is supplied with WebSphere Application Server.

v For a network deployment configuration you can use either your preferred database or the

supplied Derby database and associated Network Server application. However, be aware of the

limitations of Derby Network Server. For example, it does not support transactions.

v The SDO repository dictates the schema and table names it uses, so different repositories must

use different databases to ensure they do not access the same data. You use one SDO

repository for each cell, so if you have multiple cells you use multiple databases, one for each

cell.

v Create the database for your preferred database supplier using the Table.ddl file from the

relevant app_server_root/util/SdoRepository/database_type directory. The Table.ddl file

describes the database table that is needed by the SDO repository.

v The -editBackendId flag on the installSdoRepository.jacl script determines the database type

that the repository is to use. The back end ID determines what database-specific rules the

application follows when talking to the database. See the associated note on the

installSdoRepository.jacl script.

v Some databases require that a user ID be created and granted permissions to access the SDO

repository database. Create a user ID for user name SDOREP before you create the tables for

Oracle, Sybase, and SQL Server databases. Because of the way these databases handle user

names and table names, the user name must be SDOREP to enable the SDO repository to access

its table with the fully qualified name SDOREP.BYTESTORE. Make sure you grant permission for the

SDOREP user to read from, and write to, the database.

v If you use an Informix® database, do not disable logging.

v The SDO repository does not require XA support. In most cases you can use either an XA or a

non-XA data source; however if your database is Oracle 8 or 9 then you must use the Oracle

JDBC driver (non-XA) for the SDO repository data source.

v You might also choose to perform other steps such as creating an index of the primary key to

improve database performance. Do not change the schema, table and column names.

v If you are configuring this SDO repository for use with a cell that contains a mixture of

WebSphere Application Server Version 6.0, Version 6.1 and Version 7.0 application servers, then

you must use a database that is compatible with all these versions.

1034 Administering WebSphere applications

Note:

v Use the wsadmin scripting client to run the script.

v Run the script from within QShell.

v The script is provided in the app_server_root/bin directory, where app_server_root is the root

directory for the installation of WebSphere Application Server. If you choose to run the wsadmin

scripting client from another directory, specify the full path to the script on the command option.

For example to work with a profile other than the default profile, change to the

app_server_root/profiles/profile_name/bin directory then specify the following path to the

script:

wsadmin -f app_server_root/bin/installSdoRepository.jacl

v The -editBackendId flag on the installSdoRepository.jacl script determines the database type

that the repository is to use. The back end ID determines what database-specific rules the

application follows when talking to the database. To see the full list of available back end ID

values, use the -listBackendIds flag:

wsadmin -f installSdoRepository.jacl -listBackendIds

v If the data source already exists, or there has been a previous broken or partial installation of the

SDO repository application, the installSdoRepository.jacl script fails to complete and

configuration changes are not saved. In these cases, run the SDO repository uninstall script, fix

the problem, then rerun the installSdoRepository.jacl script.

Configure the SDO repository for a single server, using the embedded Derby

database

About this task

If you are creating a single server configuration and you want to use embedded Derby, you run the

installSdoRepository.jacl script with the -createDb switch. This action creates the Derby database and

installs the SDO repository.

To configure the SDO repository for a single server using the embedded Derby database, complete the

following steps:

1. Open a command prompt, then change to the app_server_root/bin directory.

2. Enter the following command:

wsadmin -f installSdoRepository.jacl -createDb

Note: The -createDb flag tells the command to create a default Derby database. If you omit this flag,

the command still installs an SDO repository that is configured to use Derby, but the command

does not also create the database.

Configure the SDO repository for a single server, using a database other than

embedded Derby

About this task

If you are creating a single server configuration that uses a database other than embedded Derby, you

install your preferred database product, then create a JDBC provider and a data source, then run the

installSdoRepository.jacl script twice:

1. One time to install the SDO application on the application server.

2. One time to set the database type that the SDO repository is to use.

To configure the SDO repository for a single server using a database other than embedded Derby,

complete the following steps:

1. Create the database for your preferred database supplier using the Table.ddl file from the relevant

app_server_root/util/SdoRepository/database_type directory.

Chapter 5. Web services 1035

friend.was/ae/txml_launchscript.html

For an illustration of the process for creating tables in DB2, see Recreating database tables from the

exported table data definition language. For more information, see Deploying data access applications.

2. Create a J2C authentication alias.

This is for use with the data source that you create in the next step. Check that the authentication alias

matches the login details for your database instance, otherwise a connection will not be made.

3. Create and configure a JDBC provider and data source.

Set the following data source properties:

v Set the authentication property to use the authentication alias you created in the previous step.

v Select the Use this Data Source in container managed persistence (CMP) check box.

v Set the Name property to a name of your own choosing. For example, SDO Repository DataSource.

v Set the JNDI name property to the following exact value: jdbc/com.ibm.ws.sdo.config/
SdoRepository.

v Set any other properties that are required settings for your chosen database.

4. Optional: Test the data source connection:

Note: This option does not work in all configurations. The availability of this option depends on the

scope at which the data source is defined, and the scope of any WebSphere Application Server

variables that are used in the JDBC provider and data source configurations. For more

information about testing connections to data sources, see Test connection service.

a. In the administrative console, navigate to Resources → JDBC → Data sources.

b. Select the SDO repository data source.

c. Click Test connection.

5. Configure the SDO repository:

a. Open a command prompt, then change to the app_server_root/bin directory.

b. Install the SDO repository application on the server:

wsadmin -f installSdoRepository.jacl

c. Set the database type that the SDO repository is to use:

wsadmin -f installSdoRepository.jacl -editBackendId database_type

for example:

wsadmin -f installSdoRepository.jacl -editBackendId DB2UDB_V82

Configure the SDO repository for a network deployment cell

About this task

If you are working in a network deployment environment, you install your preferred database product, then

create a JDBC provider and a data source, then run the installSdoRepository.jacl script several times

for each cell:

1. One time to install the SDO application on the deployment manager.

2. One time to set the database type that the SDO repository is to use.

3. Several times to install an instance of the SDO application on each server or cluster that you plan to

use for one or more of the bus-enabled Web services roles.

To configure the SDO repository for a network deployment cell, complete the following steps:

1. Create the database for your preferred database supplier using the Table.ddl file from the relevant

app_server_root/util/SdoRepository/database_type directory.

For an illustration of the process for creating tables in DB2, see Recreating database tables from the

exported table data definition language. For more information, see Deploying data access applications.

2. Create the following node-level WebSphere Application Server variables on all affected nodes,

including the deployment manager node.

1036 Administering WebSphere applications

friend.was/ae/tsec_j2cauthdata.html
friend.was/ae/tdat_tccrtprovds.html
friend.was/ae/cdat_testcon.html

Note: You could set these variables at either node or cell scope, depending upon your configuration.

However for multi-platform nodes you cannot usefully set WAS_INSTALL_ROOT at cell scope,

because the nodes have different installation directories.

a. In the administrative console, navigate to Environment → WebSphere variables then set the

scope to node level.

b. Check that the WAS_INSTALL_ROOT variable exists, with a value of the root directory for the

installation of WebSphere Application Server.

c. Create a new variable your_database_JDBC_DRIVER_PATH, with a value of the location under which

your database JAR files will be stored (in a later step) on each of the host machines within the cell.

3. Create a J2C authentication alias.

This is for use with the data source that you create in the next step. Check that the authentication alias

matches the login details for your database instance, otherwise a connection will not be made.

4. Create and configure a JDBC provider and data source.

Set the following data source properties:

v Set the authentication property to use the authentication alias you created in the previous step.

v Select the Use this Data Source in container managed persistence (CMP) check box.

v Set the Name property to a name of your own choosing. For example, SDO Repository DataSource.

v Set the JNDI name property to the following exact value: jdbc/com.ibm.ws.sdo.config/
SdoRepository.

v Set any other properties that are required settings for your chosen database.

5. Deploy the database client JAR files on each of the host machines within the cell.

The JAR files must be deployed to the location given by the your_database_JDBC_DRIVER_PATH variable

that you declared in a previous step, otherwise remote nodes will not be able to connect to the SDO

repository.

6. Configure the SDO repository:

a. Open a command prompt, then change to the app_server_root/bin directory.

b. Install the SDO repository application on the deployment manager for this cell:

wsadmin -f installSdoRepository.jacl deployment_manager_node_name deployment_manager_server_name

for example:

wsadmin -f installSdoRepository.jacl dmgrNode dmgr

c. Set the database type that the SDO repository is to use:

wsadmin -f installSdoRepository.jacl -editBackendId database_type

for example:

wsadmin -f installSdoRepository.jacl -editBackendId DB2UDB_V82

d. Install an instance of the SDO repository on each server or cluster that you plan to use for one or

more of the bus-enabled Web services roles:

v For each server that is not part of a cluster, repeat the following command:

wsadmin -f installSdoRepository.jacl node_name server_name

v For each cluster, repeat the following command:

wsadmin -f installSdoRepository.jacl -cluster cluster_name

The SDO repository uninstall script

Use this script to uninstall a Service Data Objects (SDO) repository that was previously installed, or failed

to install correctly.

You install the SDO repository application on every server or cluster that you plan to use for one or more

of the service integration bus-enabled Web services roles as described in “Installing and configuring the

SDO repository” on page 1033.

Chapter 5. Web services 1037

friend.was/ae/tsec_j2cauthdata.html
friend.was/ae/tdat_tccrtprovds.html

If the data source already exists, or there has been a previous broken or partial installation of the SDO

repository application, the installSdoRepository.jacl script fails to complete and configuration changes

are not saved. In these cases, you need to run the uninstallSdoRepository.jacl script. This script

continues when it finds unexpected results, so it can clean up a broken or partial installation.

Note: Run the script from within QShell.

The script is provided in the app_server_root/bin directory, where app_server_root is the root directory for

the installation of WebSphere Application Server. If you choose to run the wsadmin scripting client from

another directory, specify the full path to the script on the command option. For example to work with a

profile other than the default profile, change to the app_server_root/profiles/profile_name/bin directory

then specify the following path to the script:

wsadmin -f app_server_root/bin/uninstallSdoRepository.jacl

The SDO repository script install and uninstall pairs

The following are the install and uninstall command pairs, where each uninstall command undoes the

action of the related install command. If you attempt to uninstall with a different set of arguments to those

previously used with the installSdoRepository.jacl script, you might find that the uninstall does not

remove everything or that it displays warnings when it tries to remove non-existent settings.

For configuration of the SDO repository on a standalone server, the -createDb flag tells the install

command to create a default (Apache Derby) database and configure it for use with this application server.

The -removeDb flag tells the uninstall command to remove the database configuration from the application

server, but not to delete the Apache Derby database:

wsadmin -f installSdoRepository.jacl -createDb

wsadmin -f uninstallSdoRepository.jacl -removeDb

Note:

v If you did not use -createDb on the installer, because you had already configured an Apache

Derby database for some other purpose, then you should not use the -removeDb flag on the

uninstaller.

v To avoid deleting data that you might want to keep, the -removeDb flag does not delete the

Apache Derby database. If you are certain that you want to delete the database, you can do so

manually. An Apache Derby database is a directory on the file system. The one created by the

installer with the -createDb flag is in the profile_root/databases/SdoRepDb directory, where

profile_root is the directory in which profile-specific information is stored. If you do not delete the

database and you try to install again with the -createDb flag, the install fails stating that the

SdoRepDb directory already exists.

For installation or removal of the SDO repository application from a standalone server:

wsadmin -f installSdoRepository.jacl

wsadmin -f uninstallSdoRepository.jacl

For installation or removal of the SDO repository application in a WebSphere Application Server Network

Deployment environment, for a deployment manager or a server that is not part of a cluster:

wsadmin -f installSdoRepository.jacl node_name server_name

wsadmin -f uninstallSdoRepository.jacl node_name server_name

For installation or removal of the SDO repository application in a WebSphere Application Server Network

Deployment environment, for a cluster:

wsadmin -f installSdoRepository.jacl -cluster cluster_name

wsadmin -f uninstallSdoRepository.jacl -cluster cluster_name

1038 Administering WebSphere applications

Bus-enabled Web services installation files and locations

When you install WebSphere Application Server, the files that are required for running service integration

bus-enabled Web services are copied into your file system under app_server_root, where app_server_root

is the root directory for the installation of WebSphere Application Server.

The following table lists the main bus-enabled Web services files that you might need to access, and the

locations into which they are placed.

 File name Purpose Location

installSdoRepository.jacl The script used to configure the SDO

repository. Bus-enabled Web services

use an SDO repository for storing and

serving their WSDL definitions.

app_server_root/bin

uninstallSdoRepository.jacl The script used to uninstall the SDO

repository.

app_server_root/bin

SDO repository resources The resource files used to configure

the SDO repository to work with a

range of different databases.

app_server_root/util/SdoRepository

migratewsgw The command file used to migrate a

Web services gateway from

WebSphere Application Server

Version 5.1 to Version 7.0.

app_server_root/util

sibwsauthbean.ear The application for

Password-protecting a Web service

operation.

app_server_root/installableApps

sibwsAuthGen The command file used to generate

authorization beans for

password-protecting a Web service

operation.

app_server_root/util

soaphttpchannel1.ear The SOAP over HTTP endpoint

listener 1 application. This application

is installed automatically when you

create an associated endpoint listener

configuration.

app_server_root/installableApps

soaphttpchannel2.ear The SOAP over HTTP endpoint

listener 2 application. This application

is installed automatically when you

create an associated endpoint listener

configuration.

app_server_root/installableApps

soapjmschannel1.ear The synchronous SOAP over Java

Messaging Service (JMS) endpoint

listener 1 application. This application

is installed automatically when you

create an associated endpoint listener

configuration.

app_server_root/installableApps

soapjmschannel2.ear The synchronous SOAP over JMS

endpoint listener 2 application. This

application is installed automatically

when you create an associated

endpoint listener configuration.

app_server_root/installableApps

Chapter 5. Web services 1039

Configuring Web services for a service integration bus

Take an internally-hosted service that is available at a bus destination, and make it available as a Web

service; Take an externally-hosted Web service, and make it available internally at a bus destination; Use

the Web services gateway to map an existing service - either an inbound or an outbound service - to a

new Web service that appears to be provided by the gateway.

About this task

Through service integration bus-enabled Web services you can achieve the following goals:

v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and

make it available as a Web service.

v Create an outbound service: Take an externally-hosted Web service, and make it available internally at

a bus destination.

v Create a gateway service: Use the Web services gateway to map an existing service - either an

inbound or an outbound service - to a new Web service that appears to be provided by the gateway.

Making an internally-hosted service available as a Web service

Create an inbound service. An inbound service is a Web interface to a service that is provided internally

(that is, a service provided by your own organization and hosted in a location that is directly available

through a service integration bus destination). To configure a locally-hosted service as an inbound service,

you associate it with a service destination, and with one or more endpoint listeners through which service

requests and responses are passed to the service. You can also choose to have the local service made

available through one or more UDDI registries.

Before you begin

This topic assumes that:

client
requestors

client
requestors

target
service

inbound service

gateway service

outbound service

service destination

service destination

service destination

service integration technologies

inbound
port

inbound
port

port
destination

port
destination

port
destination

endpoint
listener

endpoint
listener

endpoint
listener

endpoint
listener

inbound
port

inbound
port

1040 Administering WebSphere applications

v You have created and installed a Service Data Objects (SDO) repository (used for storing and serving

WSDL definitions) on every standalone server or cluster that is to play a service integration bus-enabled

Web services role.

v You have created a new endpoint listener configuration for each endpoint listener that you plan to use

to receive inbound service requests.

v You already have an internally-hosted service that you want to configure as an inbound service, and

you have made the service available at a service integration bus destination.

v You have created references to any UDDI registries in which you want to register this service.

You must also create a template WSDL file that describes the service, and make the WSDL available at a

URL or through a UDDI registry. For information on how to create a WSDL file, see Developing a WSDL

file.

You can create an inbound service by using the administrative console as described in this task, or by

using the createSIBWSInboundService command.

Note: If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL

documents, then you cannot use the administrative console for this task and you must create your

new inbound service by using the wsadmin tool. For more information see the corresponding

troubleshooting tip.

About this task

Web service requests and responses to an inbound service can be sent across any binding (for example

SOAP over HTTP or SOAP over JMS) that is available to the bus. Each available binding type is

represented by an inbound port, and each inbound port is associated with a binding-specific endpoint

listener.

You can control and monitor access to your inbound services in the following ways:

v You can control which groups of users can access a particular inbound Web service by making the

service available only through specific endpoint listeners.

WS-Security

client
requestors

JAX-RPC
handlers

WSDL

inbound service

service destination

service integration technologies

SOAP over HTTP

SOAP over JMS

inbound
port

endpoint
listener

endpoint
listener

inbound
port

Chapter 5. Web services 1041

friend.was/ae/twbs_wsdl.html
friend.was/ae/twbs_wsdl.html

v You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the

port, and take appropriate action depending upon the sender and content of each message that passes

through the port.

v You can set the level of security to be applied to messages (the WS-Security configuration and

bindings). The security level can be set independently for request and response messages.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Inbound

Services. The inbound services collection form is displayed.

3. Click New. The New inbound service wizard is displayed.

4. Use the wizard to create the new inbound service configuration by completing the following steps. For

more information about the properties that you set with the wizard, see Inbound services settings.

a. Select the service destination and template WSDL location.

Note: The template WSDL is the service-specific WSDL file that you have created to describe this

inbound service.

b. Select the service from the template WSDL.

Note:

v This option is needed in case there is more than one service in the template WSDL. The

field is filled in for you by default. If there is only one service in the WSDL, accept the

default.

c. Specify the name of the inbound service and select the endpoint listeners.

Note:

v You need not supply a name for the inbound service. If you choose not to supply a name,

a default name is created. The default name is derived from the service destination name,

with characters that are not valid for names filtered out.

v An inbound port is automatically created for each endpoint listener that you select. Each

inbound port is created without a template port, JAX-RPC handler list or security settings

and is given a default name that relates to the endpoint listener selected. For an overview

of the relationship between endpoint listeners and inbound ports, see Endpoint listeners

and inbound ports: Entry points to the service integration bus.

d. Define any UDDI publication properties.

Note: The wizard allows you to specify the UDDI publication properties that are used to publish

this inbound service to an initial UDDI registry. After you create an inbound service through

the wizard, you can use the modify an existing inbound service configuration option to

publish the service to more UDDI registries. For information about the UDDI publication

properties, see UDDI Publication settings and UDDI registries: Web service directories that

can be referenced by bus-enabled Web services.

5. Click Finish.

Results

If the processing completes successfully, the list of inbound services for this service integration bus is

updated to include the new inbound service. Otherwise, an error message is displayed.

What to do next

If you want to secure your new inbound service, or apply any JAX-RPC handler lists to the ports for the

service, or publish the service to more UDDI registries, use the administrative console to modify your

inbound service configuration.

1042 Administering WebSphere applications

Modifying an existing inbound service configuration:

Modify the configuration details for an existing inbound service. For example: secure the service; apply

JAX-RPC handler lists to the ports for the service; publish the service to more than one UDDI registry.

 About this task

An inbound service is a Web interface to a service that is provided internally (that is, a service provided by

your own organization and hosted in a location that is directly available through a service integration bus

destination).

When you first create an inbound service, you connect the service to one or more endpoint listeners and

(optionally) specify the UDDI publication properties that are used to publish the inbound service to an initial

UDDI registry. An inbound port is automatically created for each endpoint listener that you select, but each

inbound port is created without a template port, JAX-RPC handler list or security settings. You need to

modify your inbound service configuration if you want to control and monitor access to your inbound

services in any of the following ways:

v Associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the port, and

take appropriate action depending upon the sender and content of each message that passes through

the port.

v Password-protect a Web service operation.

v Set the level of security to be applied to messages (the WS-Security configuration and bindings). The

security level can be set independently for request and response messages.

v Publish the service to more than one UDDI registry.

To list the existing inbound services, and to view and modify their configuration details, complete the

following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Inbound

Services. A list of all the inbound services is displayed in an inbound services collection form.

3. Click the name of an inbound service in the list. The current settings for this inbound service are

displayed.

4. Optional: Click Reload template WSDL to reload the template WSDL file for this inbound service.

Note:

v When you create a new inbound service, a copy of the template WSDL file for the service is

loaded into a locally-maintained repository. If you change the template WSDL file, you must

update the local copy.

v When you click Reload template WSDL, you launch the command that is described in

Refreshing the inbound service WSDL file by using the wsadmin tool. For the command to

complete successfully, the conditions must be met that are described in that topic.

v If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL

documents, then you cannot use the Reload template WSDL option and you must launch

the refresh WSDL command by using the wsadmin tool. For more information, see the

corresponding troubleshooting tip.

5. Modify the general properties. For information about each of these properties, see Inbound services

settings.

Note:

v When you change an inbound service name, the system looks up all objects that refer to it

and updates the name.

Chapter 5. Web services 1043

v The template WSDL is the service-specific WSDL file that you create to describe this inbound

service. For information on how to create a WSDL file, see Developing a WSDL file.

v Although logically the template WSDL name and namespace are only required if there is

more than one service in the WSDL, the fields that you use to set them are coded within the

administrative console as compulsory fields. They are filled in for you by default, so if they

are not logically required for your service you should leave the default values. If you remove

the value from either field, the administrative console treats the empty field as an error.

v If you select the option to Enable operation-level security then you must also complete, for

this inbound service, the steps described in Password-protecting a Web service operation.

6. Modify the additional properties.

a. Modify the inbound ports that are associated with this inbound service.

An inbound port describes the Web service enablement of a service destination on a specific

endpoint listener, with associated configuration. Each inbound port is associated with an endpoint

listener, and you can control which groups of users can access a particular inbound service by

making the service available only through specific endpoint listeners. For more information, see

Endpoint listeners and inbound ports: Entry points to the service integration bus.

You can use a JAX-RPC handler list to monitor activity at the port, and take appropriate action (for

example logging, or re-routing) depending upon the sender and content of each message that

passes through the port. For more information, see Bus-enabled Web services and JAX-RPC

handlers.

You can use WS-Security to set the levels of security to be applied to messages. The security level

can be set independently for request and response messages. For more information, see Service

integration technologies and WS-Security.

See also Inbound ports settings.

b. Modify the UDDI publication properties that are used to publish this inbound service to one or more

UDDI registries. For information about the UDDI publication properties, see UDDI Publication

settings and UDDI registries: Web service directories that can be referenced by bus-enabled Web

services.

c. Modify the custom properties, if any, that you have set for this inbound service. These custom

properties are name and value pairs that you can use to set internal system configuration

properties. In each pair, the name is a property key and the value is a string value.

d. Use the publish WSDL files property to export the template WSDL for this inbound service to a ZIP

file.

As a technology preview, the exported ZIP file includes a version of the WSDL file that has no

ports (bindings) defined. This non-bound WSDL is intended for use by your colleagues preparing to

deploy an inbound service. It gives you a convenient way of sharing information on the planned

deployment details for the service among your team. When you finally deploy the inbound service,

the associated WSDL must be complete (that is, it must include the binding information).

The non-bound WSDL file is always published in the exported ZIP file for the inbound service,

along with the bound WSDL file if the inbound service has any ports defined. The ZIP file, named

inbound_service_name.zip, therefore always contains the following files:

v bus_name.inbound_service_nameNonBound.wsdl (this file contains the non-bound service, port

and binding for the inbound service).

v bus_name.inbound_service_namePortTypes.wsdl (this file contains the port type definition for the

inbound service).

If the inbound service has one or more ports, then the ZIP file additionally contains the following

files:

v bus_name.inbound_service_nameService.wsdl (this file contains the service and port elements

for the inbound service).

v bus_name.inbound_service_nameBindings.wsdl (this file contains the binding elements that

correspond to the ports for the inbound service).

1044 Administering WebSphere applications

friend.was/ae/twbs_wsdl.html

If there is an error generating the WSDL then an error page is returned.

7. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of inbound services for this service integration bus is

redisplayed. Otherwise, an error message is displayed.

Deleting inbound services configurations:

Before you begin

Decide on which method you want to use to configure these resources. You can delete an inbound service

by using the administrative console as described in this task, or by using the deleteSIBWSInboundService

command.

About this task

To delete one or more inbound services by using the administrative console, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Inbound

Services. A list of all the inbound services is displayed in an inbound services collection form.

3. Select the check box for every inbound service that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of inbound services for this service integration bus is

updated. Otherwise, an error message is displayed.

Making an externally-hosted Web service available internally

Create an outbound service. An outbound service provides access, through one or more outbound ports,

to a Web service that is hosted externally. An outbound service can be used by any of your internal

systems that can access the service integration bus on which it is hosted. To make an externally-hosted

service available through a bus, you first associate it with a service destination, then you configure one or

more port destinations (one for each type of binding, for example SOAP over HTTP or SOAP over JMS)

through which service requests and responses are passed to the external service. You get the port

definitions from the WSDL, but you can choose which ones you want to create.

Before you begin

This topic assumes that you have created and installed a Service Data Objects (SDO) repository (used for

storing and serving WSDL definitions) on every standalone server or cluster that is to play a service

integration bus Web services role.

To create an outbound service, you need to know the location of the externally-published WSDL file that

describes the service. This WSDL file is either available at a Web address or through a UDDI registry.

If the WSDL file for your outbound service is stored in a UDDI registry, you associate the outbound service

with a UDDI reference to the registry. You choose the UDDI reference from a selection list, so you must

configure the UDDI reference before you configure a new outbound service that uses it.

Decide on which method you want to use to configure these resources. You can create an outbound

service by using the administrative console as described in this task, or by using the

createSIBWSOutboundService command.

Chapter 5. Web services 1045

Note: If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL

documents, then you cannot use the administrative console for this task and you must create your

new outbound service by using the wsadmin tool. For more information see the corresponding

troubleshooting tip.

About this task

Requests and responses to an outbound service are sent across any transport binding (for example SOAP

over HTTP, SOAP over JMS, EJB binding) that is available to both the target service and the service

integration bus. Each available binding type is represented by an outbound port configured at a port

destination. For more information, see Outbound ports and port destinations.

You can control and monitor access to the target service in the following ways:

v You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the

port, and take appropriate action depending upon the sender and content of each message that passes

through the port.

v You can set the level of security to be applied to messages (the WS-Security binding). The security

level can be set independently for request and response messages.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Outbound

Services. The outbound services collection form is displayed.

3. Click New. The New outbound service wizard is displayed.

4. Use the wizard to create the new outbound service configuration by completing the following steps. For

more information about the properties that you set with the wizard, see Outbound services settings and

Outbound ports settings.

a. Locate the target service WSDL.

b. Select the service from the WSDL.

WS-Security

JAX-RPC
handlers

WSDL
outbound service

service destination
target service

service integration technologies

SOAP over HTTP

SOAP over JMS

EJB

outbound
port

outbound
port

outbound
port

port
destination

port
destination

port
destination

1046 Administering WebSphere applications

Note:

v This option is needed in case there is more than one service in the WSDL. The field is

filled in for you by default. If there is only one service in the WSDL, accept the default.

v There needs to be at least one port defined in the service you select.

c. Select the ports that are to be enabled for this service.

Note: Select at least one port.

d. Name the outbound service, the service destination and all of the port destinations.

Note:

v Default names are generated, but you can rename them. The default names are unique

within the current service integration bus. Any replacement names that you choose must

be similarly unique. If you enter a name that is not unique, an error message is displayed.

v If you have created a port selection mediation and deployed it to the service integration

bus, then it is available for selection in the list of mediations. If you do not want to use a

port selection mediation with this outbound service, select none from the selection list.

This list contains all mediations, including port selection mediations, that are currently

deployed to this service integration bus.

v The list of available ports is a subset of the ports that are described in the WSDL file. You

chose this subset in the previous step. If you selected more than one port in the previous

step, you should also set the default port to be used unless otherwise specified by a port

selection mediation.

e. Assign each port destination and (optionally) the port selection mediation to a bus member.

Note:

v Bus members are application servers or clusters that are added to this bus.

v The option to assign a port selection mediation to a bus member is only displayed if you

selected a mediation in the previous step.

5. Click Finish.

Results

If the processing completes successfully, the list of outbound services for this service integration bus is

updated to include the new outbound service. Otherwise, an error message is displayed.

What to do next

Because the service is hosted externally, you might also need to enable proxy server authentication for

each port to get permission to access the Internet.

If you want to secure your new outbound service, or apply any JAX-RPC handler lists to the ports, or

enable proxy server authentication for any of the ports, use the administrative console to modify your

outbound service configuration.

Modifying an existing outbound service configuration:

Modify the configuration details for an outbound service. For example: secure the service; apply JAX-RPC

handler lists to the ports for the service; publish the service to more than one UDDI registry.

Chapter 5. Web services 1047

About this task

An outbound service provides access, through one or more outbound ports, to a Web service that is

hosted externally. An outbound service can be used by any of your internal systems that can access the

service integration bus on which it is hosted.

When you first create an outbound service you select the ports that are to be enabled for the service, but

you do not associate the ports with JAX-RPC handler lists or security settings. You need to modify your

outbound service configuration if you want to control and monitor access to the target service in any of the

following ways:

v Associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the port, and

take appropriate action depending upon the sender and content of each message that passes through

the port.

v Password-protect a Web service operation.

v Set the level of security to be applied to messages (the WS-Security binding). The security level can be

set independently for request and response messages.

v Enable proxy server authentication for any of the ports.

To list the existing outbound services, and to view and modify their configuration details, complete the

following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Outbound

Services. A list of outbound services is displayed in an outbound services collection form.

3. Click the name of an outbound service in the list. The current settings for this outbound service are

displayed.

4. Optional: Click Reload WSDL to reload the external WSDL file for this outbound service.

Note:

v When you create a new outbound service, a copy of the external WSDL file for the service is

loaded into a locally-maintained repository. If the external service provider changes the

WSDL file, you must update the local copy.

v When you click Reload WSDL, you launch the command that is described in Refreshing the

outbound service WSDL file by using the wsadmin tool. For the command to complete

successfully, the conditions must be met that are described in that topic.

v If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL

documents, then you cannot use the Reload WSDL option and you must launch the refresh

WSDL command by using the wsadmin tool. For more information see the corresponding

troubleshooting tip.

5. Modify the general properties. For information about each of these properties, see Outbound services

settings.

Note:

v When you change an outbound service name, the system looks up all objects that refer to it

and updates the name. Any replacement name that you choose must be unique within the

current service integration bus. If you enter a name that is not unique, an error message is

displayed.

v You cannot change the Service destination name. However, if you click View alongside the

name, you can view and modify the configuration information for the service destination.

v If you change the WSDL location information (that is the fields WSDL location type, WSDL

location and WSDL UDDI Registry), then click Apply, the outbound service WSDL file is

reloaded. Therefore you should click Apply after you make any changes to the WSDL

1048 Administering WebSphere applications

location information and before you change any of the WSDL-derived fields (for example

WSDL service name, and list of available ports).

v Although logically the WSDL service name and namespace are only required if there is more

than one service in the WSDL, the fields that you use to set them are coded within the

administrative console as compulsory fields. They are filled in for you by default, so if they

are not logically required for your service you should leave the default values. If you remove

the value from either field, the administrative console treats the empty field as an error.

v The list of available ports from which you choose the Default port name is a subset of the

ports that are described in the WSDL file. You chose this subset when you created or last

modified this outbound service. To add or remove available ports, use the additional

properties option Outbound Ports.

v If you have created a port selection mediation and deployed it to the service integration bus,

then it is available for selection in the list of mediations. If you do not want to use a port

selection mediation with this outbound service, select none from the selection list. This list

contains all mediations, including port selection mediations, that are currently deployed to this

service integration bus.

v Bus members are application servers or clusters that are added to this bus. The Bus

member property defines the bus member to which the port selection mediation is assigned.

If you change the Port selection mediation property value to (none), you should also

change the Bus member property value to (none). If you want to use a port selection

mediation, assign it to a bus member. If you do not do this, the administrative console

displays an error message.

v If you select the option to Enable operation-level security then you must also complete, for

this outbound service, the steps described in Password-protecting a Web service operation.

v

6. Modify the additional properties.

a. Modify the ports that are associated with this outbound service. For information about the

properties of outbound service ports, see Outbound ports settings.

Note:

v Requests and responses to an outbound service can be sent across any binding (for

example SOAP over HTTP or SOAP over JMS) that is available to both the service

integration bus and the external Web service. Each available binding is represented by a

port.

v You can use a JAX-RPC handler list to monitor activity at the port, and take appropriate

action (for example logging or re-routing) depending upon the sender and content of each

message that passes through the port. If the external Web service requires HTTP basic

authentication, you can use a JAX-RPC handler list to provide an HTTP basic

authentication header as described in Invoking a password-protected outbound service.

v You can use WS-Security to set the levels of security to be applied to messages. The

security level can be set independently for request and response messages. For more

information, see Service integration technologies and WS-Security.

v You can set the levels of security to be applied to messages. The security level can be

set independently for request and response messages.

v The service integration technologies require access to the Internet to invoke an outbound

service or to retrieve a target service WSDL file. If you use a proxy server in support of

Internet routing, and if your proxy server requires authentication before it grants access to

the Internet, then you must enable proxy server authentication.

b. Modify the custom properties, if any, that you have set for this outbound service. These custom

properties are name and value pairs that you can use to set internal system configuration

properties. In each pair, the name is a property key and the value is a string value.

7. Save your changes to the master configuration.

Chapter 5. Web services 1049

Results

If the processing completes successfully, the list of outbound services for this service integration bus is

redisplayed. Otherwise, an error message is displayed.

Deleting outbound service configurations:

Before you begin

Decide on which method you want to use to configure these resources. You can delete an outbound

service by using the administrative console as described in this task, or by using the

deleteSIBWSOutboundService command.

About this task

To delete one or more outbound services by using the administrative console, complete the following

steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Outbound

Services. A list of outbound services is displayed in an outbound services collection form.

3. Select the check box for every outbound service that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of outbound services for this service integration bus is

updated. Otherwise, an error message is displayed.

Working with the Web services gateway

Use the Web services gateway to map an existing service - either an inbound or an outbound service - to

a new Web service that appears to be provided by the gateway. The gateway acts as a proxy: your

gateway service users need not know whether the underlying service is being provided internally or

externally. The gateway provides you with a single point of control, access and validation of Web service

requests, and allows you to control which Web services are available to different groups of Web service

users.

Before you begin

If you have a Web services gateway running on a WebSphere Application Server Version 5.1 application

server that is part of a network deployment cell, and you want to migrate the cell from a Version 5.1 to a

Version 6.x deployment manager, first preserve the gateway configuration as described in “Preserving a

Version 5.1 gateway when migrating a cell” on page 1065.

For a high-level task view of how you configure the Web services gateway as part of an overall

bus-enabled Web services configuration, see “Enabling Web services through the service integration bus”

on page 1032.

Before you can work with the Web services gateway you must Plan your bus-enabled Web services

installation, ensure that every standalone server or cluster that is to play a bus-enabled Web services role

is a member of a service integration bus (refer to “Configuring the members of a bus” on page 1202) and

create a Service Data Objects (SDO) repository on every standalone server or cluster that is to play a

bus-enabled Web services role.

The gateway panels in the administrative console are only available in WebSphere Application Server

Network Deployment if you are working with a deployment manager profile. The panels are not available in

a WebSphere Application Server Network Deployment standalone server profile. The gateway

1050 Administering WebSphere applications

administrative commands are available in WebSphere Application Server Network Deployment under both

the standalone and deployment manager profiles. For more information see Web services gateway

troubleshooting tips.

In WebSphere Application Server Versions 4 and 5, the Web services gateway was a separable

component with its own user interface. In this version, the gateway is fully integrated with IBM service

integration technologies and - although providing similar functionality - has become primarily an

administrative entity. It no longer has its own user interface, and it uses IBM service integration

technologies for its configuration and run-time support. For more information, see What is new and

changed: Web services gateway.

About this task

Within each service integration bus you can create multiple gateway instances to partition the total set of

gateway and proxy services into logical groups to allow simpler management.

To create and configure gateway instances, you can use the WebSphere Application Server administrative

console. For core administrative tasks (for example creating a new gateway service configuration) you can

use a set of configuration wizards. These wizards can be accessed from within the administrative console,

or from the command line. Tooling is also provided to migrate an existing gateway configuration from

WebSphere Application Server Version 5.1.

Detailed instructions on how to enable Web services through the gateway are provided in the following

tasks:

v Learning about the Web services gateway.

v “Creating a new gateway instance.”

v “Creating a new gateway service configuration” on page 1054.

v “Creating a new proxy service configuration” on page 1061.

v WSGateway command group for the AdminTask object.

v “Preserving a Version 5.1 gateway when migrating a cell” on page 1065.

v “Migrating a Version 5.1 Web services gateway configuration” on page 1066.

v Web services gateway troubleshooting tips.

Creating a new gateway instance:

Within each service integration bus you can create multiple gateway instances. You create Web services

gateway instances to partition the total set of gateway and proxy services into logical groups to allow

simpler management. The gateway provides you with a single point of control, access and validation of

Web service requests, and allows you to control which Web services are available to different groups of

Web service users.

 Before you begin

For a high-level task view of how you configure the Web services gateway as part of an overall

bus-enabled Web services configuration, see “Enabling Web services through the service integration bus”

on page 1032.

Before you can work with the Web services gateway you must Plan your bus-enabled Web services

installation, ensure that every standalone server or cluster that is to play a bus-enabled Web services role

is a member of a service integration bus (refer to “Configuring the members of a bus” on page 1202) and

create a Service Data Objects (SDO) repository on every standalone server or cluster that is to play a

bus-enabled Web services role.

Chapter 5. Web services 1051

About this task

Bus destinations are already partitioned by the service integration bus, so each gateway instance is limited

to gateway and proxy services within the same bus. However, gateway services can then map to target

services that are available on other buses.

To create a new gateway instance, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances. The gateway instances collection form is displayed.

3. Click New. The gateway instances settings form is displayed.

4. Type the following general properties:

Name Type the name by which the gateway instance is known. This name must be unique, and it

must follow the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’
Description

Type the (optional) description of the gateway instance.

Gateway namespace

Type the namespace that you want to use for the gateway services in exported WSDL

documents. There is no fixed syntax for the gateway namespace, but whatever name you

choose is likely to be more effective if it observes the following guidelines:

v The name begins with urn:

See the guidance on Internet standards for the syntax of Uniform Resource Names (URNs)

at http://www.ietf.org/rfc/rfc2141.txt.

v The name is globally unique.

v The name reflects your company name.
Default proxy WSDL URL

 Either leave this field blank if the supplied generic template WSDL file is to be used, or type

the location (Web address) of your own equivalent template WSDL file.

A gateway service that runs in proxy mode has no actual target services and therefore no

WSDL document that the gateway can use to configure the service invocation. A generic

template WSDL file is used to configure the basic parameters for the invocation call. For more

information, see JAX-RPC handlers and proxy operation.

Note: You can also override the default proxy WSDL file and supply an alternative WSDL file

for an individual proxy service when you create a new proxy service configuration or

modify an existing proxy service configuration.

5. Click OK.

Results

If the processing completes successfully, the list of gateway instances is updated to include the new

gateway instance. Otherwise, an error message is displayed.

What to do next

You are now ready to create a gateway service or create a proxy service for this gateway instance.

Modifying an existing gateway instance:

Modify the configuration of an existing gateway instance.

1052 Administering WebSphere applications

http://www.ietf.org/rfc/rfc2141.txt

About this task

To list the gateway instances, and to view and modify their configuration details, complete the following

steps.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances. A list of all the gateway instances is displayed in a gateway instances collection

form.

3. Click the name of a gateway instance in the list. The current gateway instance settings for this

gateway instance are displayed. The Name and Gateway namespace settings are displayed, but are

not available for modification.

4. Modify the following general properties:

Description

Modify the (optional) description of the gateway instance.

Default proxy WSDL URL

 Either leave this field blank if the supplied generic template WSDL file is to be used, or type

the location (Web address) of your own equivalent template WSDL file.

A gateway service that runs in proxy mode has no actual target services and therefore no

WSDL document that the gateway can use to configure the service invocation. A generic

template WSDL file is used to configure the basic parameters for the invocation call. For more

information, see JAX-RPC handlers and proxy operation.

Note: You can also override the default proxy WSDL file and supply an alternative WSDL file

for an individual proxy service when you create a new proxy service configuration or

modify an existing proxy service configuration.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of gateway instances is redisplayed. Otherwise, an error

message is displayed.

Deleting gateway instances:

About this task

You can delete a gateway instance by using the administrative console as described in this task, or by

using the deleteWSGWInstance command. When you delete a gateway instance, the following associated

resources are also deleted:

v All gateway and proxy services deployed to the gateway instance are deleted.

v All target services deployed to any of the gateway services are deleted.

v All outbound services created when creating any of the gateway services by using the administrative

console “create a new gateway service” wizard are deleted.

Note: The WebSphere Application Server Version 5.1 gateway used filters for tasks such as logging

messages, transforming their contents or terminating an incoming request. When a Version 5.1

gateway that contained filters was migrated to Version 6.x, “StorageQueue” destinations were

created to support legacy Version 5.1 gateway filters in the Version 6.x environment. These

destinations are not used in Version 7.0, but they are not removed automatically when you delete

the associated gateway. For information about finding and removing these destinations manually,

see the corresponding troubleshooting tip.

To delete one or more gateway instances by using the administrative console, complete the following

steps:

Chapter 5. Web services 1053

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances. A list of gateway instances is displayed in a gateway instances collection form.

3. Select the check box for every gateway instance that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of gateway instances is updated. Otherwise, an error

message is displayed.

Creating a new gateway service configuration:

Use the Web services gateway to map an existing service - either an inbound or an outbound service - to

a new Web service that appears to be provided by the gateway. The gateway service acts as a proxy:

your gateway service users need not know whether the underlying service is being provided internally or

externally.

 Before you begin

For a high-level task view of how you configure the Web services gateway as part of an overall

bus-enabled Web services configuration, see “Enabling Web services through the service integration bus”

on page 1032.

You configure each gateway service for a specific gateway instance, so you must create a gateway

instance before you can configure any gateway services for it.

The gateway service WSDL is created from the WSDL for the first target service. If the target service is an

external Web service, it already has an associated WSDL. If it is an internal service:

v Create a template WSDL file that describes the service, and make the WSDL available at a URL or

through a UDDI registry. For information on how to create a WSDL file, see Developing a WSDL file.

v Make the service available at a service integration bus destination.

This topic also assumes that:

v You have created a new endpoint listener configuration for each endpoint listener that you plan to use

to receive inbound requests.

v You have created references to any UDDI registries in which you want to register this gateway service.

Decide on which method you want to use to configure these resources. You can create a new gateway

service by using the administrative console as described in this task, or by using the

createWSGWGatewayService command.

1054 Administering WebSphere applications

friend.was/ae/twbs_wsdl.html

About this task

A gateway service is the Web interface for an underlying service (the target service). The gateway service

is made available at a different location to the target service, so you can replace or relocate the target

service without changing the details for the associated gateway service. You can also have more than one

target service (that is, more than one implementation of the same logical service) for each gateway

service. For more information, see Target services and gateway services.

The target service can be either an externally-provided Web service, or a service that is available internally

to your organization, and it can be located at a destination that is on a different bus to the gateway

service. If the target service is an internal service, the new gateway service is always created based upon

the template WSDL for the service and the bus destination at which it is available. If it is an

externally-provided Web service, the new gateway service is usually created based upon the

externally-published WSDL for the service, and at a new bus destination. However if the target is an

externally-provided Web service that is already available at a bus destination (for example because it has

previously been configured as an outbound service) then you should provide the destination details as part

of the new gateway service creation process. Otherwise the same external Web service is made available

at two different destinations.

You can control and monitor access to your gateway services in the following ways:

v You can control which groups of users can access a particular gateway service by making the service

available only through a particular gateway instance.

v You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the

port, and take appropriate action depending upon the sender and content of each message that passes

through the port.

v You can set the level of security to be applied to messages (the WS-Security binding). The security

level can be set independently for request and response messages.

WSDL

gateway service

service destination

service integration technologies

SOAP over HTTP

SOAP over JMS

endpoint
listener

endpoint
listener

WS-Security

WS-Security mediationsJAX-RPC handlers

JAX-RPC handlers

outbound service

service destination

SOAP over HTTP

SOAP over JMS

EJB

outbound port

outbound port

outbound port

inbound port

inbound port

port destination

port destination

port destination

client
requestors

WSDL

target service

Chapter 5. Web services 1055

When you create a new gateway service, you configure a single target service as a new Web service that

seems to be provided by the gateway. After you create your new gateway service, you can add more

target services (that is, more implementations of the same logical service) by modifying the existing

gateway service configuration.

To create a new gateway service by using the administrative console, complete the following steps. For

more information about the new gateway service properties, see Gateway services settings.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances → instance_name → Gateway Services. The gateway services collection form is

displayed.

3. Click New. A panel is displayed through which you select the first target service for your new gateway

service.

4. Choose one of the two methods to create your gateway service (either through a WSDL-defined Web

service provider or a Service destination) then click Next.

Note: If the target service is an internal service, or an externally-provided Web service that is already

available at a destination, select Service destination. If the target service is an

externally-provided Web service that is not already available at a bus destination, select

WSDL-defined Web service provider and the target service is configured to a new destination.

The New gateway service wizard is displayed for the service creation method that you selected.

5. Optional: If you selected WSDL-defined Web service provider, complete the following steps:

a. Specify the gateway service name, gateway service destinations and mediations.

Note:

v Choose a gateway service name that is unique across all gateway and proxy services

within the current gateway instance. If you enter a name that is not unique, an error

message is displayed.

v You need not provide gateway destination names. If you leave either of these fields

blank, a default name is generated for you when the wizard completes its operation. The

default names are not displayed on the panel. They are constructed as follows:

– The request destination name is the same as the gateway service name. For example:

myGatewayService.

– The reply destination name is the same as the request destination name, followed by

“Reply”. For example: myGatewayServiceReply.

v The lists of available mediations contain all mediations that are currently deployed to this

service integration bus. If you have created a mediation and deployed it to the bus, then it

is available for selection in both these lists. If you do not want to use a mediation with this

gateway service, select none from either or both selection lists.

v Bus members are application servers or clusters that are added to this bus. The Request

mediation bus member and the Response mediation bus member properties define

the bus members to which the corresponding mediation is assigned. If you change the

Request mediation or the Response mediation property value to (none), you should

also change the corresponding bus member property value to (none). If you want to use

a mediation, assign it to a bus member. If you do not do this, the administrative console

displays an error message.

b. Locate the target service WSDL.

c. Select the service from the WSDL.

Note:

v This option is needed in case there is more than one service in the WSDL. The field is

filled in for you by default. If there is only one service in the WSDL, accept the default.

1056 Administering WebSphere applications

v There needs to be at least one port defined in the service you select.

d. Select the ports that are to be enabled for this service.

Note:

v The list of available ports is the set of ports that are described in the WSDL file.

v Select at least one port.

e. Name the outbound service, the service destination and all of the port destinations.

Note:

v Default names are generated, but you can rename them. The default names are unique

within the current service integration bus. Any replacement names that you choose must

be similarly unique. If you enter a name that is not unique, an error message is displayed.

v If you have created a port selection mediation and deployed it to the bus, then it is

available for selection in the list of mediations. If you do not want to use a port selection

mediation with this gateway service, select none from the selection list. This list contains

all mediations, including port selection mediations, that are currently deployed to this

service integration bus.

v The list of available ports is a subset of the ports that are described in the WSDL file. You

chose this subset in the previous step.

f. Assign each port destination and (optionally) the port selection mediation to a bus member.

Note:

v The option to assign a port selection mediation to a bus member is only displayed if you

selected a mediation in the previous step.

g. Select endpoint listeners for the inbound configuration of this gateway service.

Note: For more information, see Endpoint listeners and inbound ports: Entry points to the service

integration bus.

h. Define any UDDI publication properties.

Note: Specify the UDDI publication properties that are used to publish this gateway service to one

or more UDDI registries. For information about the UDDI publication properties, see UDDI

Publication settings and UDDI registries: Web service directories that can be referenced by

bus-enabled Web services.

6. Optional: If you selected Service destination, complete the following steps:

a. Specify the gateway service name, gateway and target service destinations and mediations.

Note:

v Choose a gateway service name that is unique across all gateway and proxy services

within the current gateway instance. If you enter a name that is not unique, an error

message is displayed.

v The target service need not be available on the same bus as the gateway service, so

specify the bus and associated service destination at which the target service is available.

v The Target bus name field lists all available buses. The Target destination name field

lists all available destinations. When you choose a bus and an associated destination,

choose a destination that is available on the bus that you select. If you do not do this, the

administrative console displays an error message.

v You need not provide gateway destination names. If you leave either of these fields

blank, a default name is generated for you when the wizard completes its operation. The

default names are not displayed on the panel. They are constructed as follows:

Chapter 5. Web services 1057

– The request destination name is the same as the gateway service name. For example:

myGatewayService.

– The reply destination name is the same as the request destination name, followed by

“Reply”. For example: myGatewayServiceReply.

v The lists of available mediations contain all mediations that are currently deployed to this

bus. If you have created a mediation and deployed it to the bus, then it is available for

selection in both these lists. If you do not want to use a mediation with this gateway

service, select none from either or both selection lists.

v The Request mediation bus member and the Response mediation bus member

properties define the bus members to which the corresponding mediation is assigned. If

you change the Request mediation or the Response mediation property value to

(none), you should also change the corresponding bus member property value to (none).

To use a mediation, assign it to a bus member. If you do not do this, the administrative

console displays an error message.

b. Select the WSDL location.

Note: For an internal service, the template WSDL is the service-specific WSDL file that describes

the service that is directly available at a service destination.

c. Select the service from the WSDL.

Note:

v This option is needed in case there is more than one service in the WSDL. The field is

filled in for you by default. If there is only one service in the WSDL, accept the default.

v There needs to be at least one port defined in the service you select.

d. Select endpoint listeners for the inbound configuration of this gateway service.

Note: For more information, see Endpoint listeners and inbound ports: Entry points to the service

integration bus.

e. Define any UDDI publication properties.

Note: Specify the UDDI publication properties that are used to publish this inbound service to one

or more UDDI registries. For information about the UDDI publication properties, see UDDI

Publication settings and UDDI registries: Web service directories that can be referenced by

bus-enabled Web services.

f. If the target service is an external Web service, the option Outbound Web service enablement is

available in the additional properties section. Click this option to modify the outbound service

configuration for this target service. For more information, see Modifying an existing outbound

service configuration.

7. Click Finish.

Results

If the processing completes successfully, the list of gateway services for this gateway instance is updated

to include the new gateway service. Otherwise, an error message is displayed.

What to do next

To modify your new gateway service, or to add additional target services (that is, additional

implementations of the same logical service) to your gateway service, see Modifying an existing gateway

service configuration. To set the level of security to be applied to messages (the WS-Security binding), see

Configuring secure transmission of SOAP messages using WS-Security.

Modifying an existing gateway service configuration:

1058 Administering WebSphere applications

Modify the configuration details for a gateway service.

 About this task

When you modify an existing gateway service, you cannot modify the service name, or the request and

reply destination names for the service. However you can change the mediations that act on the gateway

service, and the configuration of the inbound Web service enablement of the gateway service. You can

also add, modify or delete target services and ports for this gateway service. You can add or delete a

target service by using the administrative console as described in this task, or by using the

addWSGWTargetService command or the removeWSGWTargetService command.

Any new target service that you add can be either an external Web service, or a service that is available

internally to your organization. It must be another implementation of the same logical service, so it must

conform to the service description that already exists in the gateway service WSDL document. It must also

be made available at a service integration bus destination. If an additional target service is already

available at a destination (for example because it has already been configured as an inbound or outbound

service), you provide the destination details as part of the new target service creation process. If an

additional target service is not already available at a destination, or you choose not to provide the

destination details, the additional target service is automatically configured to a new destination. Any target

service can be located at a destination that is on a different bus to the gateway service.

To list the gateway services, and to view and modify their configuration details, complete the following

steps:

 1. Start the administrative console.

 2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances → instance_name → Gateway Services. A list of gateway services is displayed in

a gateway services collection form.

 3. Click the name of a gateway service in the list. The current settings for this gateway service are

displayed.

 4. Modify the general properties. For information about each of these properties, see Gateway services

settings.

Note:

v You cannot modify the service name, or the request and reply destination names.

v The lists of available mediations contain all mediations that are currently deployed to this

service integration bus. If you have created a target selection mediation and deployed it to

the bus, then it is available for selection in both these lists. If you do not want to use a

mediation with this gateway service, select none from either or both selection lists.

v Bus members are application servers or clusters that are added to this bus. The Request

mediation bus member and the Response mediation bus member properties define the

bus members to which the corresponding mediation is assigned. If you change the Request

mediation or the Response mediation property value to (none), you should also change

the corresponding bus member property value to (none). If you want to use a mediation you

must assign it to a bus member. If you do not do this, the administrative console displays an

error message.

v Because you can have more than one target service, you also specify a default target

service. If you want greater flexibility as to which target service is invoked in any given

situation, you should create a mediation that can select the required target service. For

more information, see Target services and gateway services and Choosing a target service

and port through a routing mediation.

 5. Under the additional properties section, click Inbound Web service enablement to modify the

configuration as a Web service of the inbound aspect of the gateway service. The gateway service

Chapter 5. Web services 1059

receives and sends Web service requests and responses by being configured as an inbound service.

For information about configuring an inbound service, see Modifying an existing inbound service

configuration.

 6. Under the additional properties section, click Target service to add, modify or delete a target service

for this gateway service. A list of target services for this gateway service is displayed in a target

services collection form.

 7. To add a new target service, complete the following steps:

a. Click New. The target services settings form is displayed.

b. Specify the target service name, bus name and destination name.

Note:

v Choose a target service name that is unique across all gateway and proxy services

within the current gateway instance. If you enter a name that is not unique, an error

message is displayed.

v The target service need not be available on the same bus as the gateway service, so

specify the bus and associated service destination at which the target service is

available.

v The Bus name field lists all available buses. The Destination name field lists all

available destinations. When you choose a bus and an associated destination, you must

choose a destination that is available on the bus that you select. If you do not do this,

the administrative console displays an error message.

c. If the new target service is an external Web service, in the additional properties section click

Outbound Web service enablement to create the new outbound service configuration for this

target service. For information about configuring an outbound service, see Making an

externally-hosted Web service available internally.

d. Click OK.

If the processing completes successfully, the list of target services for this gateway service is

updated. Otherwise, an error message is displayed.

 8. To modify an existing target service, complete the following steps:

a. Click the name of a target service in the list. The current target services settings for this target

service are displayed.

b. Modify the bus name and destination name.

Note:

v You cannot modify the target service name

v The target service need not be available on the same bus as the gateway service, so

specify the bus and associated service destination at which the target service is

available.

v The Bus name field lists all available buses. The Destination name field lists all

available destinations. When you choose a bus and an associated destination, choose a

destination that is available on the bus that you select. If you do not do this, the

administrative console displays an error message.

c. If the target service is an external Web service, the option Outbound Web service enablement

is available in the additional properties section. Click this option to modify the outbound service

configuration for this target service. For more information, see Modifying an existing outbound

service configuration.

d. Click OK.

If the processing completes successfully, the list of target services for this gateway service is

redisplayed. Otherwise, an error message is displayed.

 9. To delete one or more existing target services, complete the following steps:

1060 Administering WebSphere applications

a. Select the check box for every gateway service that you want to delete.

b. Click Delete.

If the processing completes successfully, the list of target services for this gateway service is

updated. Otherwise, an error message is displayed.

10. Click Apply. The current settings for this gateway service are redisplayed.

11. Click OK.

Results

If the processing completes successfully, the list of gateway services for this gateway instance is

redisplayed. Otherwise, an error message is displayed.

Deleting gateway service configurations:

Before you begin

Decide on which method you want to use to configure these resources. You can delete a gateway service

by using the administrative console as described in this task, or by using the deleteWSGWGatewayService

command.

About this task

To delete one or more gateway services by using the administrative console, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances → instance_name → Gateway Services. A list of gateway services is displayed in

a gateway services collection form.

3. Select the check box for every gateway service that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of gateway services for this gateway instance is updated.

Otherwise, an error message is displayed.

Creating a new proxy service configuration:

You can set the Web services gateway to act purely as a proxy for your service, then use JAX-RPC

handler lists to set the endpoints for incoming request messages for the service.

 Before you begin

For a high-level task view of how you configure the Web services gateway as part of an overall

bus-enabled Web services configuration, see “Enabling Web services through the service integration bus”

on page 1032.

You configure each proxy service for a specific gateway instance, so you must create the gateway

instance before you can configure any proxy services for it.

Decide on which method you want to use to configure these resources. You can create a new proxy

service by using the administrative console as described in this task, or by using the

createWSGWProxyService command.

Chapter 5. Web services 1061

About this task

When you create a new proxy service configuration, the gateway takes no action with regard to that

service other than to invoke it. When you configure a proxy service, you also configure a JAX-RPC

handler list that uses the javax.xml.rpc.service.endpoint.address to set the target endpoint for the

service. You then attach the handler list to the inbound port for the proxy service.

A proxy service configuration has no actual target services and therefore no WSDL that the gateway can

use to configure the service invocation. A generic proxy WSDL file is used to configure the basic

parameters for the invocation call (for example which binding to use), but you can override the default by

supplying your own equivalent generic proxy WSDL file. If the JAX-RPC handler list is not deployed, then

the gateway attempts to send all requests to the fake Web address specified in the <soap:target

address> tag in the proxy WSDL file.

For more detailed information, see JAX-RPC handlers and proxy operation.

To create a new proxy service configuration by using the administrative console, complete the following

steps:

1. Create a JAX-RPC handler that uses the javax.xml.rpc.service.endpoint.address to set the target

endpoint for the service. It is up to you to decide how you want to establish the target endpoint, and to

create and configure the javax.xml.rpc.service.endpoint.address JAX-RPC handler. For information

about creating JAX-RPC handlers, see the IBM developerWorks article A developer introduction to

JAX-RPC, Part 2: Mine the JAX-RPC specification to improve Web service interoperability.

2. Create a new JAX-RPC handler configuration for the handler that sets the target endpoint for this

service.

3. Create a new JAX-RPC handler list, select the handler that sets the target endpoint for this service and

add it to the handler list.

4. Start the administrative console.

5. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances → instance_name → Proxy Services. The proxy services collection form is

displayed.

6. Click New. The New proxy service wizard is displayed.

7. Use the wizard to create the new proxy service configuration by completing the following steps. For

more information about the properties that you set with the wizard, see Proxy services settings.

a. Specify the proxy service name, proxy port point, service destinations and mediations.

Note:

v Choose a proxy service name that is unique across all gateway and proxy services within

the current gateway instance. If you enter a name that is not unique, an error message is

displayed.

v The proxy port point is the point at which the proxy port destination is to be located.

v You need not provide proxy destination names. If you leave either of these fields blank, a

default name is generated for you when the wizard completes its operation. The default

names are not displayed on the panel. They are constructed as follows:

– The request destination name is the same as the proxy service name. For example:

myProxyService.

– The reply destination name is the same as the request destination name, followed by

“Reply”. For example: myProxyServiceReply.

v The lists of available mediations contain all mediations that are currently deployed to this

service integration bus. If you have created a mediation and deployed it to the bus, then it

is available for selection in both these lists. If you do not want to use a mediation with this

proxy service, select none from either or both selection lists.

1062 Administering WebSphere applications

http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc2/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc2/

v Bus members are application servers or clusters that are added to this bus. The Request

mediation bus member and the Response mediation bus member properties define

the bus members to which the corresponding mediation is assigned. If you select a

mediation, then you must assign it to a bus member; If you set the Request mediation

or the Response mediation property value to (none), you must also change the

corresponding bus member property value to (none).

If you do not do this, the administrative console displays an error message.

v A generic proxy WSDL file is used to configure the basic parameters for the invocation

call (for example which binding to use), but you can override the default by typing the

location of your replacement generic WSDL file in the Proxy WSDL override URL field.

b. Select endpoint listeners for the inbound configuration of this proxy service.

Note: For more information, see Endpoint listeners and inbound ports: Entry points to the service

integration bus.

8. Click Finish.

Results

If the processing completes successfully, the list of proxy services for this gateway instance is updated to

include the new proxy service. Otherwise, an error message is displayed.

What to do next

Ensure that all service requesters append an operationMode query string parameter to the address for the

proxy service. The value of this parameter is either oneway or requestResponse, and the default is

requestResponse. For example:

v For HTTP operation, if the Web address of the proxy service is

http://host_name:port_number/wsgwsoaphttp1/soaphttpengine

/your_bus/ProxyService/ProxyServiceInboundPort

then requesting clients indicate that they are sending a one-way request by using the following URL:

http://host_name:port_number/wsgwsoaphttp1/soaphttpengine

/your_bus/ProxyService/ProxyServiceInboundPort?operationMode=oneway

v For JMS operation, if the JMS address of the proxy service is

jms:/queue?destination=jndi_queue&connectionFactory=

jndi_factory&targetService=your_bus/ProxyService/ProxyServiceInboundPort

then requesting clients indicate that they are sending a one-way request by using the following URL:

jms:/queue?destination=jndi_queue&connectionFactory=

jndi_factory&targetService=

your_bus/ProxyService/ProxyServiceInboundPort&operationMode=oneway

Modifying an existing proxy service configuration:

Modify the configuration details for a proxy service.

 About this task

A proxy service has no actual target services and therefore no WSDL that the gateway can use to

configure the service invocation. A generic template WSDL file is used to configure the basic parameters

for the invocation call, but you can override the default for a given proxy service by supplying your own

equivalent template.

For an overview of proxy operation, see JAX-RPC handlers and proxy operation. To modify an existing

proxy service configuration, complete the following steps:

Chapter 5. Web services 1063

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances → instance_name → Proxy Services. A list of proxy services is displayed in a

proxy services collection form.

3. Click the name of a proxy service in the list. The current settings for this proxy service are displayed.

4. Modify the general properties. For information about each of these properties, see Proxy services

settings.

Note:

v You cannot modify the service name, or the request and reply destination names.

v The lists of available mediations contain all mediations that are currently deployed to this

service integration bus. If you have created a mediation and deployed it to the bus, then it is

available for selection in both these lists. If you do not want to use a mediation with this

proxy service, select none from either or both selection lists.

v Bus members are application servers or clusters that are added to this bus. The Request

mediation bus member and the Response mediation bus member properties define the

bus members to which the corresponding mediation is assigned. If you change the Request

mediation or the Response mediation property value to (none), you should also change the

corresponding bus member property value to (none). To use a mediation, assign it to a bus

member. If you do not do this, the administrative console displays an error message.

v A generic proxy WSDL file is used to configure the basic parameters for the invocation call

(for example which binding to use), but you can override the default by typing the location of

your replacement generic WSDL file in the Proxy WSDL override URL field.

5. Under the additional properties section, click Inbound Web service enablement to modify the

configuration as a Web service of the inbound aspect of the proxy service. The proxy service receives

and sends Web service requests and responses by being configured as an inbound service. For

information about configuring an inbound service, see Modifying an existing inbound service

configuration.

6. Under the additional properties section, click Outbound Web service enablement to modify the

configuration of the outbound aspect of the proxy service. For information about configuring an

outbound service, see Modifying an existing outbound service configuration but remember that, for a

proxy service, there is no actual outbound service and the outbound service configuration is as defined

in the proxy service template WSDL.

7. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of proxy services is redisplayed. Otherwise, an error

message is displayed.

What to do next

Ensure that all service requesters append an operationMode query string parameter to the address for the

proxy service. The value of this parameter is either oneway or requestResponse, and the default is

requestResponse. For example:

v For HTTP operation, if the Web address of the proxy service is

http://host_name:port_number/wsgwsoaphttp1/soaphttpengine

/your_bus/ProxyService/ProxyServiceInboundPort

then requesting clients indicate that they are sending a one-way request by using the following URL:

http://host_name:port_number/wsgwsoaphttp1/soaphttpengine

/your_bus/ProxyService/ProxyServiceInboundPort?operationMode=oneway

v For JMS operation, if the JMS address of the proxy service is

1064 Administering WebSphere applications

jms:/queue?destination=jndi_queue&connectionFactory=

jndi_factory&targetService=your_bus/ProxyService/ProxyServiceInboundPort

then requesting clients indicate that they are sending a one-way request by using the following URL:

jms:/queue?destination=jndi_queue&connectionFactory=

jndi_factory&targetService=

your_bus/ProxyService/ProxyServiceInboundPort&operationMode=oneway

Deleting proxy service configurations:

Before you begin

Decide on which method you want to use to configure these resources. You can delete a proxy service by

using the administrative console as described in this task, or by using the deleteWSGWProxyService

command.

About this task

To delete one or more proxy services by using the administrative console, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Services] Web service

gateway instances → instance_name → Proxy Services. A list of all the proxy services is displayed in

a proxy services collection form.

3. Select the check box for every proxy service that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of proxy services is updated. Otherwise, an error

message is displayed.

Preserving a Version 5.1 gateway when migrating a cell:

When you migrate a cell toWebSphere Application Server Network Deployment Version 7.0, any previously

configured gateway on any Version 5.1 application server in the cell is replaced with an empty gateway.

Therefore you must preserve your Version 5.1 gateway configurations before you migrate the cell.

 Before you begin

WebSphere Application ServerVersion 5.0 is no longer supported, so you should migrate any existing

gateways that are running in Version 5.0 application servers to run on Version 7.0 application servers.

Before you choose whether to preserve or migrate your Version 5.1 gateways, you should be aware of the

context and restrictions that are described in Coexistence: Preserve or migrate a Version 5.1 gateway.

To migrate a gateway, see “Migrating a Version 5.1 Web services gateway configuration” on page 1066.

About this task

Because a WebSphere Application Server Network Deployment Version 7.0 cell can contain Version 5.1,

Version 6.x and Version 7.0 application servers, you can continue to use Version 5.1 gateways that are

running on Version 5.1 application servers even if you migrate the cell from Version 5.1 or Version 6.x to

Version 7.0. However when you migrate a cell, any previously configured gateway on any Version 5.1

application server in the cell is replaced with an empty gateway. Therefore you must preserve your Version

5.1 gateway configurations before you migrate the cell.

Chapter 5. Web services 1065

To preserve Version 5.1 gateways and application servers when migrating a cell to Version 7.0, complete

the following steps. For information on how to save and restore the Version 5.1 gateway configurations,

see the WebSphere Application Server Version 5.1 topic: Backing up and restoring a gateway

configuration.

1. Save the Version 5.1 gateway configurations.

2. Migrate the cell to Version 7.0 without also migrating the application servers, by referring to the

documentation about migrating deployment managers.

3. Restore the Version 5.1 gateway configurations to the Version 5.1 application servers within the

Version 7.0 cell.

Migrating a Version 5.1 Web services gateway configuration:

In WebSphere Application Server Version 5.1, the Web services gateway was a separable component with

its own user interface. In Version 7.0, the gateway is integrated into service integration bus-enabled Web

services, and re-implemented as a mechanism for extending and linking inbound and outbound services.

You use a wsadmin command script to migrate an existing gateway configuration from a Version 5.1

application server to a Version 7.0 application server or cluster.

 Before you begin

Consider whether you need to migrate your existing gateways:

v WebSphere Application ServerVersion 5.0 is no longer supported, so you should migrate any existing

gateways that are running in Version 5.0 application servers to run on Version 7.0 application servers.

v Web services gateways running on WebSphere Application Server Version 5.1 can, subject to certain

restrictions, coexist with gateway instances running on Version 7.0 application servers.

v A Version 7.0 cell can contain Version 5.1, Version 6.x and Version 7.0 application servers.

For more information, see Coexistence: Preserve or migrate a Version 5.1 gateway.

You can migrate a Version 5.1 gateway that is in production use without stopping the gateway; requester

applications can then switch over to using the new gateway configuration while the existing Version 5.1

gateway continues to run.

About this task

The migration process takes a Version 5.1 gateway application whose configuration has been exported to

an XML file and uses the exported XML file to configure the same gateway functionality on a Version 7.0

single application server or cluster. To do this you export the Version 5.1 gateway configuration, then run a

script to migrate the exported configuration into a new gateway instance in an existing Version 7.0

application server or cluster.

The Version 5.1 configuration is migrated as follows:

v As part of the migration process, a gateway instance is created automatically.

v Gateway services, target services and UDDI references are migrated directly.

v The definitions within the gateway of JAX-RPC handlers and handler lists are also migrated. You must

ensure that the underlying handler classes are available at run time.

v Assignments of gateway services to specific channels are replaced by equivalent assignments to

specific inbound port and endpoint listener pairs (because in Version 7.0 the functionality of a channel is

shared between an endpoint listener and an inbound port). Any use of an Apache SOAP channel is

migrated to a SOAP over HTTP endpoint listener and inbound port.

v Existing filters are not migrated. The use of filters was deprecated in Version 5.1.1 and support for filters

was removed in Version 7.0. The role formerly played by filters is now undertaken by a combination of

JAX-RPC handlers and service integration bus mediations.

1066 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_save_restore.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_save_restore.html

v Web service clients that are generated from the WSDL for the target service, rather than the gateway

service, are flagged by default in Version 7.0 as an error. After migration, use the following

troubleshooting tip to enable this approach also to work in Version 7.0: You choose to generate a Web

service client from the WSDL for the target service, rather than the gateway service. When you try to

access the target service through the gateway, your client receives the following error message:

“CWSIF0304E: The message body did not match any of the definitions in the WSDL”.

v If you used the Version 5.1 gateway service WSDL to generate your Web service clients, and your

WSDL binding and encoding style is not document literal, then after migration to Version 7.0 you must

regenerate the client stubs using the new gateway service WSDL. For more information, see the

following troubleshooting tip: You migrate a gateway from WebSphere Application Server Version 5.1 to

Version 7.0. When you try to access a gateway service, your client receives one or more error

messages stating “No response body is available”, or “Null response message”, or “The message body

did not match any of the definitions in the WSDL”.

v WS-Security bindings are migrated as bindings that comply with the WS-Security Draft 13 specification.

However:

– The final version (1.0) of the WS-Security specification (implemented in WebSphere Application

Server Version 6.x) is not compatible with the Draft 13 version, and therefore use of WS-Security

Draft 13 was deprecated in WebSphere Application Server Version 6.x. You should only use Draft 13

bindings to enable inter-operation between applications running in WebSphere Application Server

Version 5.1 and Version 7.0, or to allow continued use of an existing Web services client application

that is written to the WS-Security Draft 13 specification.

– The WS-Security binding objects are only migrated if the migration process is run on the machine on

which the target server is running in the case of a standalone server, or on the machine on which the

deployment manager is running in a network deployment configuration.

– Only WS-Security binding objects that are used by a Gateway Service or Target Service WS-Security

configuration are migrated. Any binding objects that you create but do not use are not migrated. For

example: If you have a WS-Security configuration that references a Signing Information object, and

the Signing Information object references a Trust Anchor, then the Signing Information object and the

Trust Anchor object are both migrated along with the WS-Security configuration that references them.

Note:

v The migration assumes that the external Web addresses for the migrated services are

unchanged. This assumption is based on the expectation that these addresses are associated

with a Web server rather than with the machine on which the gateway is hosted, and that the

host name and port number for these addresses are therefore not affected. If in your

configuration the external Web addresses point to the gateway machine, modify the endpoint

listener configuration after the migration process has completed.

v WebSphere Application Server Network Deployment allows you to migrate to a single server

running under either configuration profile (standalone server or deployment manager). However,

it is recommended that you migrate to a single server running under a deployment manager

profile. If you migrate to a standalone server profile you cannot use the administrative console to

subsequently modify your gateway configuration. For more information, see the troubleshooting

tip The gateway panels in the administrative console are only available in WebSphere Application

Server Network Deployment if you are working with a deployment manager profile.

v Service integration bus-enabled Web services perform more validation on Web service messages

than is done in WebSphere Application Server Version 5.1. As a result, some client applications

that use poorly-formed requests or responses (where the message parts are misnamed) and that

work when using Version 5.1 are now identified as poorly-formed. For the steps to take to

resolve the problem, see Toleration of poorly-formed SOAP messages.

To migrate an existing gateway configuration from a Version 5.1 application server to the gateway

capability on a Version 7.0 application server or cluster, complete the following steps:

 1. Remove any filters from your Version 5.1 gateway.

Chapter 5. Web services 1067

You can migrate a gateway that contains filters. However filters do not work in Version 7.0, so you

might prefer to remove them from the configuration before migration by completing the following

steps:

a. Check whether your Version 5.1 gateway uses filters. For more information, see the WebSphere

Application Server Version 5.1 topic: Listing and managing gateway-deployed filters.

b. Remove any filters. For more information, see the WebSphere Application Server Version 5.1

topic: Removing filters from the Web services gateway.

After migration, you can recreate your filter functionality using a combination of JAX-RPC handlers

and service integration bus mediations. If you migrate a Web services gateway that includes a routing

filter, you can recreate the filter functionality as described in Choosing a target service and port

through a routing mediation.

 2. Choose a target server or cluster that is a Version 7.0 single server or cluster and is part of a network

deployment cell.

 3. Configure the target server or cluster as a member of a service integration bus. For more information,

see “Configuring the members of a bus” on page 1202.

 4. Configure a Service Data Objects (SDO) repository at cell scope for the target server or cluster.

 5. If you are migrating any EJB bindings, and you want them to continue to use an RPC-encoded

binding or any binding other than document literal, add a binding of the correct type to the EJB

binding WSDL. This step is necessary because the Version 5.1 gateway default binding is

RPC-encoded, whereas in Version 7.0 the default binding is document literal.

 6. Ensure that the source (Version 5.1) application server is running, then use the Version 5.1 gateway

user interface to back up the gateway configuration from the Version 5.1 application server as a

private configuration. For more information, see the WebSphere Application Server Version 5.1 topic:

Backing up a gateway configuration.

 7. Optional: Stop the Version 5.1 application server.

Note: If you are migrating a gateway that is in production use, keep the Version 5.1 gateway running

until the Version 7.0 gateway configuration is complete, then switch the requester applications

over to using the new gateway configuration while the existing Version 5.1 gateway continues

to run. However both versions of the gateway do not have to be running at the same time, and

you might need to stop the Version 5.1 server before you start the Version 7.0 server or cluster

(for example if you are installing the Version 7.0 server or cluster as a direct replacement for

the Version 5.1 server, on the same machine and using the same port numbers).

 8. Start the target (Version 7.0) application server or cluster and (for a single server or cluster within a

managed cell) the deployment manager for the target cell.

 9. Check that all the WSDL documents that were used to define the target services on the Version 5.1

application server are available at their given locations. If the WSDL location is a UDDI reference,

check that the referenced UDDI registry is available.

10. Optional: If the gateway being migrated uses JAX-RPC handlers and handler lists, ensure that the

underlying handler classes are available at run time.

11. To migrate the exported configuration into a new gateway instance in the Version 7.0 application

server or cluster, complete the following steps:

a. Open a command prompt, then change to the app_server_root/util directory.

b. Run the following command:

Note: The wsadmin scripting client is run from Qshell. For more information, see Configuring

Qshell to run WebSphere Application Server scripts.
migratewsgw -C=cell_name [-S=server_name -N=node_name]

 [-X=cluster_name] -B=bus_name

 -G=v5_gateway_configuration_file_name

 [-H=administration_hostname] [-A=administration_port]

 [-U=gateway_instance_name] [-P=object_prefix]

 [-username=WAS_user_ID –password=WAS_password]

1068 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_admin_listfl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_admin_listfl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_admin_undeplfl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_admin_undeplfl.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_save.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/twsg_save.html

where:

v Square brackets (“[]”) indicate that a parameter or set of parameters is optional in some

circumstances.

v Either server_name and node_name together (for a single server), or cluster_name (for a

cluster), defines the server or cluster to which the gateway configuration is migrated.

v cell_name, server_name and node_name (or cluster_name), administration_hostname and

administration_port together define the connection to the Version 7.0 application server (or

cluster). server_name or cluster_name specifies the name of the target application server or

cluster at which endpoint listeners and outbound port destinations are created. If you are

migrating to a server or cluster that is part of a managed cell, then administration_hostname

and administration_port define the host name and the SOAP administration port number of the

deployment manager. If you are migrating to a server that is not part of a managed cell, then

administration_hostname and administration_port define the host name and port number of the

standalone server, and are optional. If they are omitted, the command assumes that the

intended values are localhost:8880 (that is, the WebSphere Application Server default values

for a standalone server).

Note: administration_hostname is compulsory for the i5/OS platform.

v v5_gateway_configuration_file_name is the full path and file name for the exported Version 5.1

private gateway XML configuration file.

v bus_name and gateway_instance_name together define the gateway instance that you are

creating within this bus. The gateway_instance_name is only required if you want to create

more than one gateway instance within this bus. If you omit this optional parameter, then a

default name is assigned.

v object_prefix is a string used to prefix the names of the objects defined by the migration

process. If omitted, the namespace URI (default value urn:ibmwsgw) for the migrated services is

used instead.

v WAS_user_ID and WAS_password are required if the target application server or cluster is

password-protected.

12. Optional: If the external Web addresses for the migrated services are changed by the migration

process, modify the endpoint listener configuration to update these addresses. You must do this if the

external Web addresses point to the gateway machine rather than to a Web server, and you have

migrated the gateway to a different machine or to a different port on the same machine.

What to do next

Note:

v If your Version 5.1 gateway used filters, recreate your filter functionality using a combination of

JAX-RPC handlers and service integration bus mediations.

v If the gateway configuration includes any gateway services that have multiple target services, the

Version 5.1 configuration might have used a routing filter to choose a particular target service. If

this is the case, then you must further configure your migrated gateway to choose a target

service and port through a routing mediation.

v A Version 7.0 Web services gateway uses more memory to process a message, so if you pass a

large attachment through the migrated gateway you might get an out-of-memory error in the Java

virtual machine. To solve this problem, increase the JVM heap size as described in Tuning

bus-enabled Web services.

Administering the bus-enabled Web services core resources

Use the administrative console to configure the service integration bus-enabled Web services core

resources: endpoint listeners; JAX-RPC handler lists; WS-Security bindings and configurations; references

to UDDI registries.

Chapter 5. Web services 1069

About this task

When you configure a bus-enabled Web service you associate it with one or more of the following core

resources:

v The endpoint listeners on which you want the service to be available.

v Any JAX-RPC handler lists that apply to the service.

v Any WS-Security bindings and configurations that apply to the service.

v Any references to UDDI registries in which entries for the service are created.

You choose each of these resources from a list of resources that you have previously configured.

Use the administrative console to administer the bus-enabled Web services core resources as described in

the following topics:

1. “Creating a new endpoint listener configuration.”

2. “Working with JAX-RPC handlers and clients” on page 1079.

3. “Working with mediations” on page 1090.

4. “Creating a new UDDI reference” on page 1090.

Creating a new endpoint listener configuration

An endpoint listener is the point (address) at which messages for an inbound service are received. The

endpoint listeners that are supplied with WebSphere Application Server support SOAP over HTTP and

SOAP over JMS bindings.

Before you begin

For every server or cluster that is to host an endpoint listener, you must install and configure a Service

Data Objects (SDO) repository on the standalone server, or (for a server or cluster that is part of a

managed cell) on the network deployment cell.

Note: For WebSphere Application Server Version 6.0.x, you also had to manually install the endpoint

listener application before you configured an endpoint listener. For later versions of WebSphere

Application Server the endpoint listener application is installed automatically.

If you want to change the default HTTP endpoint listener security role, do so before you configure the

SOAP over HTTP endpoint listener.

Before you configure a SOAP over JMS endpoint listener, configure the associated JMS resources.

You can set up separate endpoint listeners for inbound and outbound requests. For more information, see

Endpoint listeners and inbound ports: Entry points to the service integration bus.

Decide on which method you want to use to configure these resources. You can create a new endpoint

listener configuration by using the administrative console as described in this task, or by using the

createSIBWSEndpointListener command.

Note: If you want to create an endpoint listener configuration for your own endpoint listener application,

rather than for one of the listeners that is supplied with WebSphere Application Server, you can only

do so by using the wsadmin tool.

About this task

A request arrives at an endpoint listener. It is passed to an inbound port (at which point security and

JAX-RPC handler lists can be applied) then sent on to the service destination. Responses follow the same

path in reverse.

To configure a new endpoint listener for use with an inbound service is a three-stage process:

1070 Administering WebSphere applications

1. Configure the listener for a specific application server or cluster (this task).

2. Connect the listener to one or more service integration buses (the final part of task “Modifying an

existing endpoint listener configuration” on page 1077).

3. Configure an inbound service on the same bus to use the listener (part of the task “Making an

internally-hosted service available as a Web service” on page 1040).

To use the administrative console to configure an endpoint listener, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click one of the following paths:

v Servers → Server Types → WebSphere application servers → server_name → Endpoint listeners

v Servers → Clusters → WebSphere application server clusters → cluster_name → Endpoint

listeners

The endpoint listeners collection form is displayed.

3. Click New. The New endpoint listener wizard is displayed.

4. Use the wizard to create the new endpoint listener configuration by completing the following steps. For

more information about the properties that you set with the wizard, see Endpoint listeners [Settings]. If

you want to configure an endpoint listener with values that match those used for an endpoint listener

supplied with WebSphere Application Server Version 6.0, see “Endpoint listener configuration details

for Version 6.0.x compatibility” on page 1072.

a. Select listener name and binding type.

Endpoint listener name

Type the name by which the endpoint listener is known.

Binding type

Select the type of binding that this endpoint listener supports. For example, for a SOAP

over HTTP endpoint listener select SOAP/HTTP.

b. Optional: Configure JMS settings.

This panel is only displayed if you selected a JMS binding in the previous panel.

By default, the wizard assumes that you are deploying your endpoint listener application to use a

JMS activation specification with the default messaging provider. However, you can choose to

deploy your endpoint listener application to use a listener port or another JMS provider (for

example WebSphere MQ).

Select from the drop-down lists the listener port, or the activation specification and queue

connection factory that you have previously configured as described in “Configuring JMS

resources for the synchronous SOAP over JMS endpoint listener” on page 1076.

c. Configure required URLs. Configure Web addresses for the application root and the WSDL serving

root. You can either select pre-configured addresses based on the known virtual hosts, or create

new values.

URL root

Select or type the address at which external clients access the endpoint listener endpoint.

The URL root is the context root of the endpoint listener application, and provides the root

of the Web address that is used to build the endpoint addresses within WSDL files to direct

requesters to this endpoint listener.

 If external clients access the endpoint listener through an HTTP server or server cluster,

using default port 80, then specify the HTTP server name and no port number. For

example (for SOAP over HTTP endpoint listener 1):
http://www.yourcompany.com/wsgwsoaphttp1
However, if you allow external clients to connect direct to your application server (for

example in a development or test environment) then specify the application server host

name and port number. For example (for SOAP over HTTP endpoint listener 1):
http://your.server.name:9080/wsgwsoaphttp1

Chapter 5. Web services 1071

WSDL serving HTTP URL root

Type the root of the Web address for the WSDL files of the inbound services that are

available at this endpoint listener. This address comprises the root of the HTTP address at

which external clients access your endpoint listener application, followed by /sibws.

 If external clients access the endpoint listener through an HTTP server or server cluster,

typically using default port 80, then this URL root includes the HTTP server name and no

port number. For example:

http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for

example in a development or test environment) then this URL root includes the application

server host name and port number. For example:

http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses,

you access the WSDL file through the endpoint listener endpoint for the inbound

service. To get the location details for a given inbound service WSDL file, publish

the WSDL file to a zip file as described in “Modifying an existing inbound service

configuration” on page 1043, then look up the location within the exported WSDL

file.

5. Click Finish.

Results

If the processing completes successfully, the list of endpoint listeners is updated to include the new

endpoint listener. Otherwise, an error message is displayed.

What to do next

You are now ready to connect one or more service integration buses to this endpoint listener as described

in “Modifying an existing endpoint listener configuration” on page 1077, then to select this endpoint listener

for use with an inbound service as described in “Making an internally-hosted service available as a Web

service” on page 1040.

Endpoint listener configuration details for Version 6.0.x compatibility:

In WebSphere Application Server Version 6.0.x, four endpoint listeners were supplied that are configured

as described in this topic. In the current version of the product you can configure any number of endpoint

listeners with values of your own choosing, including (if you wish) the values given in this topic.

 When you create an endpoint listener configuration for a listener that is supplied with WebSphere

Application Server Version 6.0.x, you provide the following configuration details:

Endpoint listener name

The name by which the endpoint listener is known. For example, for SOAP over HTTP endpoint

listener 1 the endpoint listener name is SOAPHTTPChannel1.

URL root

The address at which external clients access the endpoint listener endpoint. The URL root is the

context root of the endpoint listener application, and provides the root of the Web address that is

used to build the endpoint addresses within WSDL files to direct requesters to this endpoint

listener.

WSDL serving HTTP URL root

The root of the Web address for the WSDL files of the inbound services that are available at this

1072 Administering WebSphere applications

endpoint listener. This address comprises the root of the HTTP address at which external clients

access your endpoint listener application, followed by /sibws.

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you

access the WSDL file through the endpoint listener endpoint for the inbound service. To get

the location details for a given inbound service WSDL file, publish the WSDL file to a zip file

as described in “Modifying an existing inbound service configuration” on page 1043, then

look up the location within the exported WSDL file.

This topic specifies these configuration details (endpoint listener name, endpoint listener URL root and

WSDL serving URL root) for the following endpoint listeners:

v “SOAP over HTTP endpoint listener 1”

v “SOAP over HTTP endpoint listener 2”

v “Synchronous SOAP over Java Message Service (JMS) endpoint listener 1” on page 1074

v “Synchronous SOAP over JMS endpoint listener 2” on page 1075

SOAP over HTTP endpoint listener 1

Endpoint listener name

SOAPHTTPChannel1.

URL root

The address at which external clients access the endpoint listener endpoint. If external clients

access the endpoint listener through an HTTP server or server cluster, using default port 80, then

specify the HTTP server name and no port number. For example (for this endpoint listener):

 http://www.yourcompany.com/wsgwsoaphttp1However, if you allow external clients to connect direct

to your application server (for example in a development or test environment) then specify the

application server host name and port number. For example (for this endpoint listener):

 http://your.server.name:9080/wsgwsoaphttp1

WSDL serving HTTP URL root

 The root of the HTTP address at which external clients access your endpoint listener application,

followed by /sibws. For example:

http://www.yourcompany.com/sibws

or

http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you

access the WSDL file through the endpoint listener endpoint for the inbound service.

SOAP over HTTP endpoint listener 2

Endpoint listener name

SOAPHTTPChannel2.

URL root

The address at which external clients access the endpoint listener endpoint. If external clients

access the endpoint listener through an HTTP server or server cluster, using default port 80, then

specify the HTTP server name and no port number. For example (for this endpoint listener):

 http://www.yourcompany.com/wsgwsoaphttp2However, if you allow external clients to connect direct

to your application server (for example in a development or test environment) then specify the

application server host name and port number. For example (for this endpoint listener):

Chapter 5. Web services 1073

http://your.server.name:9080/wsgwsoaphttp2

WSDL serving HTTP URL root

 The root of the HTTP address at which external clients access your endpoint listener application,

followed by /sibws. For example:

http://www.yourcompany.com/sibws

or

http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you

access the WSDL file through the endpoint listener endpoint for the inbound service.

Synchronous SOAP over Java Message Service (JMS) endpoint listener 1

Endpoint listener name

SOAPJMSChannel1.

URL root

 You specify the properties of the synchronous SOAP over JMS endpoint listener 1 endpoint by

using the following syntax:

jms:/queue_or_topic_indicator?property_name=property_value and so on, separating each

property using the “&” character.

For example, if you use the default values for queue destination and queue connection factory

when you install the synchronous SOAP over JMS endpoint listeners, then the first part of the end

point address is:

jms:/queue?destination=jms/SOAPJMSQueue1&connectionFactory=jms/SOAPJMSFactory1

For each of the synchronous SOAP over JMS endpoint listeners, here is the full list of properties

that you can specify in the endpoint address:

 Property name Property description

Destination-related Properties (required)

connectionFactory The JNDI name of the queue or topic connection factory.

destination The JNDI name of the destination queue or topic.

JNDI-related Properties (optional)

initialContextFactory The name of the initial context factory to use (this is

mapped to the java.naming.factory.initial property).

jndiProviderURL The JNDI provider Web address (this is mapped to the

java.naming.provider.url property).

JMS-related Properties (optional)

deliveryMode An indication as to whether or not the request message is

persistent. The valid values are 1 (non persistent) and 2

(persistent). The default value is 1.

timeToLive The lifetime (in milliseconds) of the request message. A

value of 0 indicates an infinite lifetime.

priority The JMS priority associated with the request message.

Valid values are 0 - 9. The default value is 4.

userid The User ID that is used to gain access to the connection

factory.

1074 Administering WebSphere applications

Property name Property description

password The password that is used to gain access to the

connection factory.

WSDL serving HTTP URL root

The root of the HTTP address at which external clients access your endpoint listener application,

followed by /SIBWS.

 If external clients access the endpoint listener through an HTTP server or server cluster, typically

using default port 80, then this URL root includes the HTTP server name and no port number. For

example:

http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example in a

development or test environment) then this URL root includes the application server host name

and port number. For example:

http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you

access the WSDL file through the endpoint listener endpoint for the inbound service.

Synchronous SOAP over JMS endpoint listener 2

Endpoint listener name

SOAPJMSChannel2.

URL root

 You specify the properties of the synchronous SOAP over JMS endpoint listener 2 endpoint by

using the following syntax:

jms:/queue_or_topic_indicator?property_name=property_value and so on, separating each

property using the “&” character.

For example, if you use the default values for queue destination and queue connection factory

when you install the synchronous SOAP over JMS endpoint listeners, then the first part of the end

point address is:

jms:/queue?destination=jms/SOAPJMSQueue2&connectionFactory=jms/SOAPJMSFactory2

For the full list of properties that can be specified in the endpoint address for synchronous SOAP

over JMS endpoint listener 2, see the list of properties detailed above for Synchronous SOAP over

JMS endpoint listener 1.

WSDL serving HTTP URL root

The root of the HTTP address at which external clients access your endpoint listener application,

followed by /SIBWS.

 If external clients access the endpoint listener through an HTTP server or server cluster, typically

using default port 80, then this URL root includes the HTTP server name and no port number. For

example:

http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example in a

development or test environment) then this URL root includes the application server host name

and port number. For example:

http://your.server.name:9080/sibws

Chapter 5. Web services 1075

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you

access the WSDL file through the endpoint listener endpoint for the inbound service.

Configuring JMS resources for the synchronous SOAP over JMS endpoint listener:

Configure the synchronous SOAP over Java Message Service (JMS) endpoint listeners to use a JMS

provider - either the default messaging provider, or another provider such as WebSphere MQ - to pass

SOAP messages over JMS.

 About this task

To install and configure the JMS provider for the synchronous SOAP over JMS endpoint listener, complete

the following steps.

1. Optional: If you have not already done so, choose and configure a JMS messaging provider.

2. Use the administrative console to create and configure queue connection factories and queue

destinations as described, for the most common JMS providers, in topics available from within

Choosing a messaging provider. Create a connection factory and a queue for each endpoint listener

that you plan to configure. For example if you plan to configure both of the SOAP over JMS endpoint

listeners that are supplied with WebSphere Application Server, create two connection factories (one for

each endpoint listener) and two queues. The JMS resources and JNDI names that the supplied SOAP

over JMS endpoint listeners expect by default are provided in the following table. If you use different

resources and names in this step, then change the defaults when you subsequently configure the

endpoint listener.

JMS resource

default JNDI name

(endpoint listener 1)

default JNDI name

(endpoint listener 2)

queue name (endpoint

listener 1)

queue name (endpoint

listener 2)

JMS queue connection

factory

jms/SOAPJMSFactory1 jms/SOAPJMSFactory2 Not required Not required

JMS queue jms/SOAPJMSQueue1 jms/SOAPJMSQueue2 User defined (for

example:

SOAPJMSDestQueue1)

User defined (for

example:

SOAPJMSDestQueue2)

3. Configure the underlying destination for each JMS queue.

If you are using the default messaging provider, use the administrative console to add the two new

queue names specified in the previous table as destinations for your application server as described in

Creating a queue for point-to-point messaging. The identifier for the destination should match that

defined by the user as the queue name in the previous table.

Otherwise, configure these destinations as described in the documentation for your JMS provider.

4. Configure the deployment details for the application.

If you are using activation specifications with the default messaging provider, use the administrative

console to create and configure the activation specifications as described in “Configuring a JMS

activation specification for the default messaging provider” on page 1670. Create two activation

specifications, one for each endpoint listener. The default JMS resources and associated names that

the synchronous SOAP over JMS endpoint listeners expect are provided in the following table.

However, you can use any JNDI name for the activation specification, provided that the EAR file has

the same JNDI reference in the administrative console “Binding enterprise beans to listener port names

or activation specification JNDI names” panel. If you use different resources and names in this step,

change the defaults when you subsequently configure the endpoint listener. You must also stop then

restart the application server.

JMS resource

default JNDI name

(endpoint listener 1)

default JNDI name

(endpoint listener 2)

destination JNDI name

(endpoint listener 1)

destination JNDI name

(endpoint listener 2)

activation specification eis/SOAPJMSChannel1 eis/SOAPJMSChannel2 jms/SOAPJMSQueue1 jms/SOAPJMSQueue2

1076 Administering WebSphere applications

friend.was/ae/tm_ep.dita
friend.was/ae/tm_ep.html

If you are using listener ports with any supported JMS provider (including the default messaging

provider), use the administrative console to create and configure the listener ports in the message

listener service as described in Adding a new listener port. Create two listener ports (one for each

endpoint listener). The default JMS resources and associated names that the supplied SOAP over

JMS endpoint listeners expect are provided in the following table. If you use different resources and

names in this step, then change the defaults when you subsequently configure the endpoint listener.

JMS resource

default name (for use with SOAP over

JMS endpoint listener 1)

default name (for use with SOAP over

JMS endpoint listener 2)

listener port SOAPJMSPort1 SOAPJMSPort2

connection factory jms/SOAPJMSFactory1 jms/SOAPJMSFactory2

destination jms/SOAPJMSQueue1 jms/SOAPJMSQueue2

5. Save your changes to the master configuration.

6. Bind the JMS resources by stopping then restarting the application server.

What to do next

You are now ready to create a new SOAP over JMS endpoint listener configuration.

Modifying an existing endpoint listener configuration:

Modify the additional properties for an endpoint listener that has been configured for use with inbound

services.

 Before you begin

You cannot use this task to modify the general properties of an existing endpoint listener. The reason for

this is that, when you create a new endpoint listener, an associated endpoint listener application is

automatically installed that uses the same general property values. Therefore if you subsequently change

the general properties, you break the link between the configuration and the underlying application. If you

need to change the general properties, you should delete and recreate the endpoint listener configuration.

About this task

To list the endpoint listeners, and to view and modify their configuration details, complete the following

steps.

1. Start the administrative console.

2. In the navigation pane, click one of the following paths:

v Servers → Server Types → WebSphere application servers → server_name → Endpoint listeners

v Servers → Clusters → WebSphere application server clusters → cluster_name → Endpoint

listeners

A list of endpoint listeners is displayed in an endpoint listener collection form.

3. Click the name of an endpoint listener in the list. The current endpoint listener settings for this endpoint

listener are displayed.

4. View the following general properties. If you are configuring an endpoint listener that is supplied with

WebSphere Application Server, the required values are given in Endpoint listener configuration details.

Name View the name by which the endpoint listener is known. If this is your own endpoint listener,

rather than one that is supplied with WebSphere Application Server, then this name must

match the name given in the endpoint listener application that you have installed (that is, the

display name of the endpoint module within the endpoint application EAR file).

DescriptionDescription

View the (optional) description of the endpoint listener.

Chapter 5. Web services 1077

friend.was/ae/tmb_adm11.html

URL root

View the address at which external clients access the endpoint listener endpoint. The URL root

is the context root of the endpoint listener application, and provides the root of the Web

address that is used to build the endpoint addresses within WSDL files to direct requesters to

this endpoint listener.

 If external clients access the endpoint listener through an HTTP server or server cluster, using

default port 80, then specify the HTTP server name and no port number. For example (for

SOAP over HTTP endpoint listener 1):
http://www.yourcompany.com/wsgwsoaphttp1
However, if you allow external clients to connect direct to your application server (for example

in a development or test environment) then specify the application server host name and port

number. For example (for SOAP over HTTP endpoint listener 1):
http://your.server.name:9080/wsgwsoaphttp1

WSDL serving HTTP URL root

View the root of the Web address for the WSDL files of the inbound services that are available

at this endpoint listener. This address comprises the root of the HTTP address at which

external clients access your endpoint listener application, followed by /sibws.

 If external clients access the endpoint listener through an HTTP server or server cluster,

typically using default port 80, then this URL root includes the HTTP server name and no port

number. For example:

http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example

in a development or test environment) then this URL root includes the application server host

name and port number. For example:

http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of

WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you

access the WSDL file through the endpoint listener endpoint for the inbound service. To

get the location details for a given inbound service WSDL file, publish the WSDL file to

a zip file as described in “Modifying an existing inbound service configuration” on page

1043, then look up the location within the exported WSDL file.

5. Under the additional properties heading, click Connection properties. A list of all the service

integration buses that are currently connected to this endpoint listener is displayed in a service

integration bus connection properties collection form. Add, amend or delete buses in the list of

currently-connected buses. To add a new bus, complete the following steps:

a. Click New. The service integration bus connection properties settings form is displayed.

b. Under the general properties heading, choose an available service integration bus from the

selection list. The bus is selected and the additional properties for the bus are displayed.

Note: Under the connection properties for the bus there are Custom properties. These custom

properties are name and value pairs that you can use to set internal system configuration

properties. In each pair, the name is a property key and the value is a string value. You use

custom properties to define the manner in which the endpoint listener connects to this bus.

Included in this set is property name com.ibm.ws.sib.webservices.replyDestination, which

defines the reply destination name used by the endpoint listener. Do not modify or remove

this property, which is set automatically when the service integration bus is associated with

the endpoint listener.

6. Under the additional properties heading, click Associated application. Details for the application that

handles the requests for this endpoint listener are displayed in an enterprise application settings form.

7. Save your changes to the master configuration.

1078 Administering WebSphere applications

friend.was/ae/urun_rapp_inst.html

Results

If the processing completes successfully, the list of service integration buses that are connected to this

endpoint listener is updated, and the list of endpoint listeners is redisplayed. Otherwise, an error message

is displayed.

What to do next

You are now ready to select this endpoint listener for use with an inbound service as described in “Making

an internally-hosted service available as a Web service” on page 1040.

Deleting endpoint listener configurations:

Before you begin

You cannot delete an endpoint listener that has inbound ports associated with it. If you try to do this, an

error is generated. Before you can delete an endpoint listener, you must either delete each associated

inbound service or remove each associated port from the port list for the inbound service.

Decide on which method you want to use to configure these resources. You can delete an endpoint

listener configuration by using the administrative console as described in this task, or by using the

deleteSIBWSEndpointListener command.

About this task

To remove one or more endpoint listener configurations, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Servers → Server Types → WebSphere application servers →

server_name → Endpoint listeners. A list of endpoint listeners is displayed in an endpoint listener

collection form.

3. Select the check box for every endpoint listener configuration that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of endpoint listeners is updated. Otherwise, an error

message is displayed.

Working with JAX-RPC handlers and clients

The Java API for XML-based remote procedure calls (JAX-RPC) provides you with a standard way of

developing interoperable and portable Web services. You can use JAX-RPC handlers, handler lists and

client applications with your service integration bus-enabled Web services.

About this task

There are two main elements of JAX-RPC that you can use directly with the service integration bus:

v JAX-RPC handlers and handler lists.

v JAX-RPC client applications.

A JAX-RPC handler is a Java class that performs a range of handling tasks.For example: logging

messages, or transforming their contents, or terminating an incoming request. To create a JAX-RPC

handler, you can use a tool such as IBM Rational Application Developer. To enable handlers to perform

more complex operations, you chain them together into handler lists. You associate each handler list with

one or more ports, so that the handler list can monitor activity at the port, and take appropriate action

depending upon the sender and content of each message that passes through the port.

Chapter 5. Web services 1079

JAX-RPC client applications send and receive Web service request and response messages. JAX-RPC

client applications that use the IBM JAX-RPC run-time environment can do this in a number of different

ways, depending on the bindings in the WSDL document that they are developed against, and the

configuration data that is used at run time.

Detailed instructions on how to configure JAX-RPC handlers, handler lists and client applications for use

with the service integration bus are provided in the following topics:

v “Creating a new JAX-RPC handler configuration.”

v “Creating a new JAX-RPC handler list” on page 1084.

v “Sending Web service messages directly over the bus from a JAX-RPC client” on page 1086.

v “Implementing JAX-RPC handlers to access SDO messages” on page 1089.

Creating a new JAX-RPC handler configuration:

Create a JAX-RPC handler configuration for use, as part of a handler list, with service integration

bus-deployed Web services. Handlers monitor messages at ports, and take appropriate action depending

upon the sender and content of each message.

 Before you begin

This task assumes that you have already created your handler. You can do this using IBM Rational

Application Developer or a similar tool. For more information, see the IBM developerWorks article Support

for J2EE Web Services in WebSphere Studio Application Developer V5.1 -- Part 3: JAX-RPC Handlers.

You must also make the handler class available to the server or cluster that hosts the port for the service

that you want to monitor, as detailed in “Loading JAX-RPC handler classes” on page 1081.

About this task

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a

range of handling tasks. For example: logging messages, or transforming their contents, or terminating an

incoming request. To make WebSphere Application Server aware of your handler, and to make the handler

available for inclusion in one or more handler lists, you use the administrative console to create a new

handler configuration.

1. In the navigation pane, click Service integration → Web services → JAX-RPC Handlers. The

JAX-RPC handlers collection form is displayed.

2. Click New. The JAX-RPC handlers settings form is displayed.

3. Type the following general properties:

Name Type the name by which the handler is known.

 This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestHandler.

Description

Type the (optional) description of the handler.

Class name

Type the name of the class that is to be instantiated. For example

com.ibm.jaxrpc.handler.TestHandler.

Note: You can configure multiple instances of a handler by creating each instance with a

different handler name, and pointing to the same handler class.

1080 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html

4. Click OK. The general properties for this item are saved, and the additional properties options are

made available.

5. Type the following additional properties:

SOAP roles

Add SOAP actor definitions to the list of SOAP roles in which this handler acts. For more

information, see the SOAP specification.

JAX-RPC headers

Add JAX-RPC header definitions (Namespace URI and Local part) to the list of JAX-RPC

headers against which this handler operates. JAX-RPC headers are SOAP headers that are

processed by a JAX-RPC handler.

Custom properties

Add custom properties (name/value pairs, where the name is a property key and the value is a

string value that can be used to set internal system configuration properties).

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is updated to include the new handler.

Otherwise, an error message is displayed.

What to do next

To use this handler, add it to a handler list as described in Creating a new JAX-RPC handler list or

Modifying an existing JAX-RPC handler list.

Loading JAX-RPC handler classes:

A JAX-RPC handler interacts with messages as they pass into and out of the service integration bus,

therefore you make the handler class available to the server or cluster that hosts the inbound or outbound

port for the service that you want to monitor.

 Before you begin

This task assumes that you have already created your handler. You can do this using IBM Rational

Application Developer or a similar tool. For more information, see the IBM developerWorks article Support

for J2EE Web Services in WebSphere Studio Application Developer V5.1 -- Part 3: JAX-RPC Handlers.

About this task

Before you can configure your JAX-RPC handler for use with service integration bus-deployed Web

services, you must make the handler class available. If you want to monitor an inbound port, make the

handler class available to the server on which the endpoint listener for that port is located. If you want to

monitor an outbound port, make the handler class available to the server on which the outbound port

destination is localized.

To make the handler class available to the server or cluster that hosts the port that you want to monitor,

you create a shared library for the class then add the shared library to the class loader for the server.

1. Package the class file for your handler as a JAR file, then copy the JAR file into a convenient directory.

Make the handler class available to the application server in one of the following ways:

v Copy the individual class file into a directory structure under app_server_root/classes that matches

the package name of the class, where app_server_root is the root directory for the installation of

WebSphere Application Server. For example a handler class com.ibm.jaxrpc.handler.TestHandler

is copied into the app_server_root/classes/com/ibm/jaxrpc/handler directory.

v Package the class files for all your handlers as a JAR file, then copy it into the app_server_root/
lib/app directory.

Chapter 5. Web services 1081

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html

2. Start the administrative console.

3. Create a shared library for the JAR file.

a. Navigate to Environment → Shared libraries.

b. Set the scope at which you want the new library to be visible, then click New.

c. Give the new library a name.

d. Set the class path to the directory and file name for your handler JAR file.

e. Save your changes to the master configuration.

For more information, see Creating shared libraries.

4. Create a class loader for the server or cluster on which you want to make the JAR file available.

a. Navigate to Servers → Server Types → WebSphere application servers → server_name → [Server

Infrastructure] Java and Process Management → Class loader.

b. Click New.

c. Click OK.

d. Save your changes to the master configuration.

For more information, see Configuring class loaders of a server.

5. Add the shared library to the class loader for the server.

a. Navigate to Servers → Server Types → WebSphere application servers → server_name → [Server

Infrastructure] Java and Process Management → Class loader → class_loader_name →

[Additional Properties] Shared library references.

b. Click Add.

c. Click on the name of your new library, then click OK.

d. Save your changes to the master configuration.

For more information, see Associating shared libraries with servers.

What to do next

You are now ready to configure your handler for use (as part of a handler list) with service integration

bus-enabled Web services.

Modifying an existing JAX-RPC handler configuration:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a

range of handling tasks. For example: logging messages, or transforming their contents, or terminating an

incoming request. Handlers monitor messages at ports, and take appropriate action depending upon the

sender and content of each message. Modify the configuration details for a JAX-RPC handler that has

been configured for use, as part of a handler list, with service integration bus-deployed Web services.

 Before you begin

If you modify a handler class but do not change the class name, you do not need to modify the handler

configuration as described in this topic. You just need to stop then restart the servers or clusters that host

the ports that this handler monitors.

About this task

To list the handlers, and to view and modify their configuration details, complete the following steps.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → JAX-RPC Handlers. A list of

handlers is displayed in a JAX-RPC handlers collection form.

1082 Administering WebSphere applications

friend.was/ae/tcws_sharedlib_create.html
friend.was/ae/trun_classload_server.html
friend.was/ae/tcws_sharedlib_server.html

3. Click the name of a handler in the list. The current JAX-RPC handlers settings for this handler are

displayed.

4. Modify the following general properties:

Name Modify the name of the handler.

 This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Note: When you change a handler name, the system looks up all objects that refer to it and

updates the name.
Description

Modify the (optional) description of the handler.

Class name

Change the name of the class that is to be instantiated. If you change the class name, you

must also make the new class available to the servers or clusters that host the ports that this

handler monitors, as detailed in “Loading JAX-RPC handler classes” on page 1081.

5. Modify the following additional properties:

SOAP roles

Add, modify or remove SOAP actor definitions from the list of SOAP roles in which this handler

acts. For more information, see the SOAP specification.

JAX-RPC headers

Add, modify or remove JAX-RPC header definitions (Namespace URI and Local part) from the

list of JAX-RPC headers against which this handler operates. JAX-RPC headers are SOAP

headers that are processed by a JAX-RPC handler.

Custom properties

Add, modify or remove custom properties (name/value pairs, where the name is a property key

and the value is a string value that can be used to set internal system configuration

properties).

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is redisplayed. Otherwise, an error message

is displayed.

Deleting JAX-RPC handler configurations:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a

range of handling tasks. For example: logging messages, or transforming their contents, or terminating an

incoming request. Delete JAX-RPC handlers that are configured for use (as part of a handler list) with

service integration bus-deployed Web services.

 About this task

When you remove a handler that is currently used by one or more Web services on a service integration

bus, the system removes the handler from the handler lists for each associated Web service.

To remove one or more handlers that are currently configured for a service integration bus, use the

administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Web services → JAX-RPC Handlers. A list of

handlers is displayed in a JAX-RPC handlers collection form.

2. Select the check box for every handler that you want to remove.

3. Click Delete.

Chapter 5. Web services 1083

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Results

If the processing completes successfully, the list of handlers is updated. Otherwise, an error message is

displayed.

Creating a new JAX-RPC handler list:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a

range of handling tasks. For example: logging messages, or transforming their contents, or terminating an

incoming request. Create a JAX-RPC handler list for use with service integration bus-enabled Web

services.

 Before you begin

You can only add previously-configured handlers to a handler list. To configure a handler, see Creating a

new JAX-RPC handler configuration.

About this task

Handlers monitor messages at ports, and take appropriate action depending upon the sender and content

of each message. To enable handlers to perform more complex operations, you chain them together into

handler lists. The approach taken in WebSphere Application Server is to apply handler lists (rather than

individual handlers) at the ports, where each handler list contains one or more handlers.

To create a new JAX-RPC handler list, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Web services → JAX-RPC Handler Lists. The

JAX-RPC handler lists collection form is displayed.

2. Click New. The JAX-RPC handler lists settings form is displayed.

3. Type the following general properties:

Name Type the name by which the handler list is known.

 This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestList.

Description

Type the (optional) description of the handler list.

JAX-RPC handlers

In the JAX-RPC handlers pane, complete the following steps:

a. Select one or more handlers from the list of available JAX-RPC handlers, then click Add to

move the selected handlers into the list of handlers for this JAX-RPC handler list.

b. Select a handler in the list of handlers for this JAX-RPC handler list, then click Up or Down

to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form

was first loaded. The two lists of available and assigned handlers are not reset.

4. Click OK. The general properties for this item are saved.

5. Save your changes to the master configuration.

1084 Administering WebSphere applications

Results

If the processing completes successfully, the list of handler lists is updated to include the new handler list.

Otherwise, an error message is displayed.

What to do next

To use this handler list, select it for use with a Web service as described in “Modifying an existing inbound

service configuration” on page 1043 or “Modifying an existing outbound service configuration” on page

1047.

Modifying an existing JAX-RPC handler list:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a

range of handling tasks. For example: logging messages, or transforming their contents, or terminating an

incoming request. Modify the configuration details for a JAX-RPC handler list that has been configured for

use with service integration bus-deployed Web services.

 Before you begin

You can only add previously-configured handlers to a handler list. To configure a handler, see Creating a

new JAX-RPC handler configuration.

About this task

Handlers monitor messages at ports, and take appropriate action depending upon the sender and content

of each message. To enable handlers to perform more complex operations, you chain them together into

handler lists. The approach taken in WebSphere Application Server is to apply handler lists (rather than

individual handlers) at the ports, where each handler list contains one or more handlers.

To list the existing handler lists, and to view and modify their configuration details, use the administrative

console to complete the following steps:

1. In the navigation pane, click Service integration → Web services → JAX-RPC Handler Lists. A list of

all the handler lists is displayed in a JAX-RPC handler lists collection form.

2. Click the name of a handler list in the list. The current JAX-RPC handler lists settings for this handler

are displayed.

3. Modify the following general properties:

Name Modify the name of the handler list.

 This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and

updates the name.

Description

Modify the (optional) description of the handler list.

JAX-RPC handlers

In the JAX-RPC handlers pane, complete the following steps:

a. Select one or more previously-configured handlers from either the list of available

JAX-RPC handlers or the list of handlers for this JAX-RPC handler list, then click Add or

Remove to modify the list of handlers for this JAX-RPC handler list.

b. Select a handler in the list of handlers for this JAX-RPC handler list, then click Up or Down

to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Chapter 5. Web services 1085

Note: If you click Reset, only the Name and Description fields are reset to their state when the form

was first loaded. The two lists of available and assigned handlers are not reset.

4. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is redisplayed. Otherwise, an error

message is displayed.

What to do next

To use this handler list, select it for use with a Web service as described in “Modifying an existing inbound

service configuration” on page 1043 or “Modifying an existing outbound service configuration” on page

1047.

Deleting JAX-RPC handler lists:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a

range of handling tasks. For example: logging messages, or transforming their contents, or terminating an

incoming request. Delete JAX-RPC handler lists that are configured for use with service integration

bus-deployed Web services.

 About this task

When you remove a handler list that is currently used by one or more Web services on a service

integration bus, the system removes the handler list for each associated Web service.

To remove one or more handler lists, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Web services → JAX-RPC Handler Lists. A list of

handler lists is displayed in a JAX-RPC handler lists collection form.

2. Select the check box for every handler list that you want to remove.

3. Click Delete.

Results

If the processing completes successfully, the list of handler lists is updated. Otherwise, an error message

is displayed.

Sending Web service messages directly over the bus from a JAX-RPC client:

About this task

Java API for XML-based remote procedure calls (JAX-RPC) client applications send and receive Web

service request and response messages. JAX-RPC client applications using the IBM JAX-RPC run-time

environment can do this in a number of different ways, depending on the bindings in the WSDL document

that they are developed against, and the configuration data that is used at run time.

For an introduction to basic JAX-RPC programming concepts, including the JAX-RPC client and server

programming models, see Getting Started with JAX-RPC.

If you want to use a JAX-RPC client to send messages over the service integration bus, you have two

choices:

v Use a SOAP binding (SOAP over HTTP or SOAP over JMS), and pass messages indirectly through an

endpoint listener to an inbound service. You would do this if you had SOAP-specific JAX-RPC handlers

that must run in the client application context.

1086 Administering WebSphere applications

http://developer.java.sun.com/developer/technicalArticles/WebServices/getstartjaxrpc/

v Pass messages directly into the service integration bus at a destination by “retargeting” the JAX-RPC

client application as described in this topic.

Note: There are currently limitations regarding the Java types used by services that are retargeted

through a JAX-RPC client application.

Retargeting involves setting the following two values into the client application deployment descriptor, or

specifying them dynamically at run time from within the client application:

v The binding namespace is set to indicate that the client uses the messaging bus directly.

v The endpoint address is set to include the particular destination and (optionally) the format of messages

that the client uses.

The destination also needs to be configured so that it knows the port type of messages that the JAX-RPC

client is using. There are two ways to achieve this:

v Create an outbound service. An outbound service represents an externally-provided Web service. In this

case, requests from the JAX-RPC client pass through the service destination and are then sent on to

the service provider defined by the outbound service configuration.

v Create an inbound service. An inbound service represents a service provided somewhere within or

beyond the messaging bus. You can create an inbound service on any existing destination. The creation

of an inbound service associates a WSDL port type with the destination. When retargeting to a

destination with an inbound service, the client application needs to specify both the destination name

and inbound service name, because it is possible to configure more than one inbound service against a

single destination. In this case, requests from the JAX-RPC client pass through the destination and then

onwards through the service integration bus depending on routing that is done at the initial destination.

To have Web service messages sent directly to a destination using a JAX-RPC client, complete the

following steps:

1. Create the JAX-RPC client application.

2. Create the outbound service or inbound service with which you want the JAX-RPC client application to

exchange messages.

3. Use the administrative console to access the port information for your JAX-RPC client application, as

described in Configuring Web service client bindings and Web services client port information.

4. Override the default SOAP binding for your JAX-RPC client application. Change the binding

namespace to http://www.ibm.com/ns/2004/02/wsdl/mp/sib

5. Override the endpoint that your JAX-RPC client application uses to send Web service requests. The

new endpoint should use the sib: URL syntax and include either the outbound service destination

name, or both the inbound service name and its corresponding destination name.

What to do next

After you change the binding namespace, any JAX-RPC handler lists that were configured for the

retargeted port are ignored. For clients that are developed against WSDL with a SOAP binding, retargeting

directly to the bus causes the handlers to be ignored. However if the client is developed against the

non-bound WSDL for the service, retargeting to the bus is not considered to be changing the binding

namespace, and so the handler information is retained. In this case the JAX-RPC handlers are called with

the SDOMessageContext subclass.

Associated reference information:

v “sib: URL syntax”

sib: URL syntax:

The sib: URL has the following syntax:

Chapter 5. Web services 1087

friend.was/ae/twbs_devwbsjaxrpcclient.html
friend.was/ae/twbs_clientbindings.html
friend.was/ae/uwbs_portattribute.html

sib:/[destination|path]?property_1=value_1&property_2=value_2&...

where:

v Square brackets (“[]”) indicate that a parameter is optional.

v Transport type is sib:, followed by either /destination to specify destination type or /path to specify a

forward routing path, followed by a “query string” that contains one or more properties. The permitted

properties are described in the subsequent sections of this topic.

Required properties

The following properties are required. They are used to specify the destination for the request.

Note: All destination names must be fully-qualified. That is, they must include the name of the service

integration bus as well as the destination name itself. Use the syntax bus:destination. If a bus or

destination name contains a colon or comma, wrap the name in double quotation marks (“”). If it

contains a double quotation mark, repeat the quotation mark.

destinationName

The destination name.

path The forward routing path, in the form of a sequence of destination names separated by commas.

replyDestinationName

The name of the destination to be used for the reply.

inboundService

The name of the inbound service that identifies the specific attachment that the requester

application uses. You can omit this value if the destination is a service destination with an

associated outbound service configuration, because in that case the requester is attaching to the

outbound service through the service destination.

timeout

The time the requester waits for a response. The default value is 60 seconds. A zero value

indicates an unlimited wait.

Service integration technologies-related properties

The following properties are optional. If you do not specify a value for a property, then the default value is

used. For more information regarding the permitted values for these properties, see the generated API

information for the SIMessage interface.

reliability

The reliability of the request message.

timeToLive

The amount of time (in milliseconds) before the request times out. A zero value indicates that the

request never times out.

Note: The timeout property (see the required properties) is the time delay after which the

requester application blocks the application thread that is waiting for a response to a

request and response operation. The time to live and replyTimeToLive optional properties

indicate how long the request and reply messages should be processed by the messaging

engines. This does not include the processing time at the service implementation. You

would therefore usually set the timeout to be the sum of the request and response times to

live, plus some amount for the service processing time.

priority

The priority of the request message.

1088 Administering WebSphere applications

user
 The user ID required to access the request destination.

password
 The password required to access the request destination.

replyReliability

The reliability of the reply message.

replyTimeToLive

The amount of time (in milliseconds) before the reply times out. A zero value indicates that the

reply never times out.

replyPriority

The priority of the reply message.

Other properties

You can also include user-defined properties in the URL. These properties must be named with a user.

prefix. For example:

sib:/destination?destinationName=myBus:myDestination & reliability=assured & user.customData=XYZ

After the request is sent, the URL itself is available within the message properties, named inbound.url.

Implementing JAX-RPC handlers to access SDO messages:

JAX-RPC handlers are invoked during processing of request and response messages. For messages that

are exchanged using the SOAP protocol, each JAX-RPC handler is passed a SOAP-specific

MessageContext object. For other protocols, the IBM Web services runtime environment passes a

MessageContext object that provides a Service Data Objects view of the message. Service Data Objects

(SDO) is an open standard for enabling applications to handle data from different data sources in a

uniform way, as DataGraphs.

 If the JAX-RPC handler only deals with message context properties, then it does not need to be aware of

the particular subclass of MessageContext that it is given, because the context property methods are

defined by the MessageContext interface itself. If the handler needs to process information contained within

the message, then it must be coded to work with the required subclasses. It is recommended that your

JAX-RPC handlers test whether the MessageContext is an instance of the required subclass.

A JAX-RPC handler is given an SDO-specific MessageContext object (an instance of the

com.ibm.websphere.webservices.handler.sdo.SDOMessageContext class) rather than the SOAP-specific

MessageContext object in the following cases:

v A JAX-RPC client or outbound invocation from the service integration bus invokes a service using the

EJB binding.

v A JAX-RPC client is developed against a non-bound WSDL and is retargeted to a destination in the

service integration bus.

The SDOMessageContext class provides methods to get and set the com.ibm.websphere.sdo.SDOMessage

instance that represents the actual message being processed. The SDOMessage in turn has a method to

access the SDO DataGraph object that holds the message content as SDO DataObjects.

A JAX-RPC handler can modify the SDO DataGraph contents, but it cannot change the format or schema

of the message.

Here is an example of the code that is used to access the SDO DataGraph from the MessageContext

object in a JAX-RPC handler handleRequest method:

Chapter 5. Web services 1089

friend.was/ae/twbs_ejbtransport.html

public boolean handleRequest(MessageContext messageContext) {

 // Convert the MessageContext into an SDOMessageContext

 if(messageContext instanceof SDOMessageContext) {

 SDOMessageContext smc = (SDOMessageContext)messageContext;

 // Retrieve the message

 SDOMessage message = smc.getSDOMessage();

 // Get the root object in the SDO DataGraph

 DataGraph graph = message.getDataGraph();

 DataObject content = graph.getRootObject();

 // Now do something with the message content.....

 }

 return true;

 }

Working with mediations

Use a mediation to change the content of a message, or the way in which a message is handled.

Before you begin

For an introduction to using mediations with the service integration bus, see Learning about mediations.

About this task

A mediation is an application that contains a mediation handler. You associate a mediation with a service

integration bus destination, and the mediation acts on messages that pass through the destination. The

action taken by a mediation depends upon the specific instructions you give in the mediation handler. For

example, you can use a mediation to change the contents of a message, or to choose a particular forward

route for a message.

To write a mediation application that contains a mediation handler, install it into WebSphere Application

Server and associate it with a bus destination, complete the following steps:

1. Create the mediation application. For examples of how to do this, see:

v Writing a routing mediation

v Writing a mediation that maps between attachment encoding styles

2. Install the mediation application into WebSphere Application Server.

3. Create the associated mediation object in the bus.

Note: The handler list name is the name you gave to your handler when you defined the handler

class as a mediation handler.

4. Mediate the destination. Use the administrative console to access the destination that you want to

mediate, then select your mediation from the list of available mediations.

Creating a new UDDI reference

Create a reference (a pointer) to a UDDI registry for use with service integration bus-enabled Web

services.

Before you begin

This topic assumes that you have already created a J2C authentication alias for each Authorized Name

that you want to associate with this UDDI reference. For more information about Authorized Names, see

UDDI registries: Web service directories that can be referenced by bus-enabled Web services.

1090 Administering WebSphere applications

friend.was/ae/tsec_j2cauthdata.html

About this task

A UDDI reference is a pointer to a UDDI registry. This registry can be a private UDDI registry such as the

IBM WebSphere UDDI Registry, or a public UDDI registry. The service integration technologies interact

with UDDI registries in two ways:

v When you configure an inbound service, you can create entries for the Web service in one or more

UDDI registries.

v When you configure an outbound service, you specify the location of the target WSDL file that describes

the Web service. This WSDL file can be located at a URL or through a UDDI registry.

In the UDDI model, Web services are owned by businesses, and businesses are owned by Authorized

Names. Each UDDI reference gives access to the Web services that are owned by a single Authorized

Name in a single UDDI registry. For more information about how the service integration technologies work

with UDDI registries, see UDDI registries: Web service directories that can be referenced by bus-enabled

Web services and Publishing a Web service to a UDDI registry. For more general information about UDDI

and UDDI registries, see the UDDI community at uddi.org.

To create a new UDDI reference, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → UDDI References. The UDDI

references collection form is displayed.

3. Click New. The UDDI references settings form is displayed.

4. Type the following general properties:

Name Type the name by which the UDDI reference is known. This name must be unique, and it must

follow the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

You might need more than one UDDI reference for a given UDDI registry. For more

information, see UDDI registries: Web service directories that can be referenced by

bus-enabled Web services.

Description

Type the (optional) description of the UDDI reference.

Inquiry URL

Type the Web address that provides access to this registry for the SOAP inquiry API.

Publish URL

Type the Web address that provides access to this registry for the SOAP publish API.

Authentication alias

 Type the J2C authentication alias for the User ID and password of an “Authorized Name” that

has update access to this registry.

The alias you enter here must match the user ID of the owner of the corresponding business

in the UDDI registry. You can see the owning user ID in UDDI by looking at the business

details under the “Authorized Name” field. If the alias you enter here does not match the

“Authorized Name” value for the business that owns the service, then the service is not

published or found.

If the business has more than one “Authorized Name”, you might want to set up multiple UDDI

references (each with a different authentication alias) to the same UDDI registry.

5. Click OK.

Results

If the processing completes successfully, the list of UDDI references is updated to include the new UDDI

reference. Otherwise, an error message is displayed.

Chapter 5. Web services 1091

friend.was/ae/twsu_ep.html
http://uddi.org
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

What to do next

To use this UDDI reference, select it when “Making an internally-hosted service available as a Web

service” on page 1040 or “Making an externally-hosted Web service available internally” on page 1045.

Modifying an existing UDDI reference:

Modify the configuration details for a UDDI reference that has been configured for use with service

integration bus-enabled Web services.

 About this task

A UDDI reference is a pointer to a UDDI registry. This registry can be a private UDDI registry such as the

IBM WebSphere UDDI Registry, or a public UDDI registry. The service integration technologies interact

with UDDI registries in two ways:

v When you configure an inbound service, you can create entries for the Web service in one or more

UDDI registries.

v When you configure an outbound service, you specify the location of the target WSDL file that describes

the Web service. This WSDL file can be located at a URL or through a UDDI registry.

To list the UDDI references, and to view and modify their configuration details, complete the following

steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → UDDI References. A list of UDDI

references is displayed in a UDDI references collection form.

3. Click the name of a UDDI reference in the list. The current UDDI reference settings for this UDDI

reference are displayed.

4. Modify the following general properties:

Name Modify the name of the UDDI reference.

 This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Note: When you change a UDDI reference name, the system looks up all objects that refer to

it and updates the name.
Description

Modify the (optional) description of the UDDI reference.

Inquiry URL

Type the new Web address that provides access to this registry for the SOAP inquiry API.

Publish URL

Type the new Web address that provides access to this registry for the SOAP publish API.

Authentication alias

 Type the new J2C authentication alias for the User ID and password of an “Authorized Name”

that has update access to this registry.

The alias you enter here must match the user ID of the owner of the corresponding business

in the UDDI registry. You can see the owning user ID in UDDI by looking at the business

details under the “Authorized Name” field. If the alias you enter here does not match the

“Authorized Name” value for the business that owns the service, then the service is not

published or found.

If the business has more than one “Authorized Name”, you might want to set up multiple UDDI

references (each with a different authentication alias) to the same UDDI registry.

5. Save your changes to the master configuration.

1092 Administering WebSphere applications

friend.was/ae/twsu_ep.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
friend.was/ae/tsec_j2cauthdata.html

Results

If the processing completes successfully, the list of UDDI references is redisplayed. Otherwise, an error

message is displayed.

What to do next

To use this UDDI reference, select it when “Making an internally-hosted service available as a Web

service” on page 1040 or “Making an externally-hosted Web service available internally” on page 1045.

Deleting UDDI references:

delete UDDI references that are configured for use with service integration bus-deployed Web services.

 About this task

When you remove a UDDI reference that is currently used by one or more Web services on a service

integration bus, the system removes the UDDI reference for each associated Web service and makes any

necessary updates in the associated UDDI registry.

To remove UDDI references, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → UDDI References. A list of UDDI

references is displayed in a UDDI references collection form.

3. Select the check box for every UDDI reference that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of UDDI references is updated. Otherwise, an error

message is displayed.

Publishing a Web service to a UDDI registry:

When you configure an inbound or outbound service, you enable UDDI interaction by associating the

service with a UDDI reference, and (depending upon what you are trying to do) either or both of the

following pieces of information: The business key that identifies the UDDI business category under which

you want your service to appear in the UDDI registry, and the service-specific part of the service key that

the UDDI registry assigns to your service. To help you understand what UDDI business keys and service

keys are, and where you find them in a UDDI registry, here is a description of how to publish a Web

service to a UDDI registry.

 About this task

Service integration technologies interact with UDDI registries as described in UDDI registries: Web service

directories that can be referenced by bus-enabled Web services. When you publish a Web service to a

UDDI registry, you:

v Specify the type of business that your Web service supports. This usually means choosing an existing

business type from a list, but you can also create a new business type. For each type of business there

is an associated business key. Service integration bus-enabled Web services use this key, in

combination with the service key, to find the Web service in the registry.

v Add a Technical model. Technical models are generic categories. Using these models, a UDDI registry

user can search for a type of service, rather than needing to know the access details for a specific

service. Bus-enabled Web services interact with UDDI registries at the level of individual Web services,

and therefore do not use Technical models.

Chapter 5. Web services 1093

v Add the Web service. The UDDI registry assigns a service key to your service, and publishes the

service. Bus-enabled Web services use this key, in combination with the business key, to find the Web

service in the registry.

The following steps describe how you publish a Web service to the IBM WebSphere UDDI Registry. If you

are working with a different UDDI registry, then the specific navigation is different but the underlying

principles are the same.

1. Specify a business:

a. To get a list of valid business keys, look up businesses in the UDDI registry. Here is an example of

a UDDI business key:

08A536DC-3482-4E18-BFEC-2E2A23630526

.

b. If you do not find an appropriate existing business in the UDDI registry, then use the Add a

business option on the Advanced Publish section of the Publish pane to add a new one.

2. Add a technical model:

a. Select Add a technical model on the Advanced Publish section of the Publish pane.

b. Enter the name as specified for the target namespace of your binding (or interface) WSDL file, then

add a description (if required).

c. Add a category of Type unspsc and value wsdlSpec (the Key name field can be left blank).

d. Add an overview URL specifying the Web address for your binding WSDL file, then add a

description (if required).

Note: The binding and the service definition for your Web service might be held in separate WSDL

files, therefore be careful to type the Web address of the WSDL file that defines the binding.

e. Click Publish Technical Model.

3. Add a service:

a. Select Show owned entities on the Advanced Publish section of the Publish pane.

b. Select Add a Service for your business.

c. Enter the name as specified for the target service in your WSDL file, then add a description (if

required).

d. For the Access point verify that the correct Web address type is selected (for example http for an

HTTP access point), then enter the value of the soap:address location (or its equivalent) from your

service definition WSDL file (for example http://yourhost:80/SimpleTest/servlet/rpcrouter).

e. For the Technical model select Add, then find the required Technical model by entering a suitable

prefix and selecting Find technical models, then enable the check box for the required Technical

model and click Update.

f. Click Publish Service.

Results

The UDDI registry assigns a service key to your service, and publishes the service.

What to do next

After the service has been published you can get the service key from the target UDDI registry.

Here is an example of a full UDDI service key:

uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:

1094 Administering WebSphere applications

friend.was/ae/twsu_ep.html

6e3d106e-5394-44e3-be17-aca728ac1791

Creating a new WS-Security binding

Create a new WS-Security binding for use with service integration bus-enabled Web services. You use

WS-Security bindings to secure the SOAP messages that pass between service requesters (clients) and

inbound services, and between outbound services and target Web services.

Before you begin

Use this option to create WS-Security bindings that comply with either the Web Services Security

(WS-Security) 1.0 specification, or the previous WS-Security specification, WS-Security Draft 13 (also

known as the Web Services Security Core Specification).

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.x. You

should only use Draft 13 bindings to enable inter-operation between applications running in

WebSphere Application Server Version 5.1 and Version 7.0, or to allow continued use of an existing

Web services client application that is written to the WS-Security Draft 13 specification.

This topic assumes that you have got, from the owning parties, the WS-Security bindings for the client (in

the case of an inbound service) and the target Web service (in the case of an outbound service).

You can only use WS-Security with Web service applications that comply with the Web services for Java

Platform, Enterprise Edition (Java EE) or Java Specification Requirements (JSR) 109 specification. For

more information, see Web services security and Java Platform, Enterprise Edition security relationship.

For information about how to make your Web service applications JSR-109 compliant, see Developing and

deploying JAX-RPC Web services clients or Developing and deploying JAX-WS Web services clients .

About this task

WS-Security bindings provide the information that the run-time environment needs to implement the

WS-Security configuration (for example “To sign the body, use this key”), You receive this security binding

information direct from the service requester or target service provider, in the form of an

ibm-webservicesclient-bnd.xmi file for the client, and an ibm-webservices-bnd.xmi file for the target Web

service. You extract the information from these .xmi files, then manually enter it into the WS-Security

bindings forms.

Bindings are administered independently from any Web service that uses them, so you can create a

binding then apply it to many Web services.

WebSphere Application Server also includes a set of default WS-Security binding objects, as described in

Default bindings and runtime properties for Web services security. If you are administering a WebSphere

Application Server Network Deployment installation, then the default WS-Security bindings are configured

for the cell, and are available for use with bus-enabled Web services. However, if you are using either of

the single server products WebSphere Application Server or WebSphere Application Server Express, then

these default bindings are configured within the application server, and are not available for use with

bus-enabled Web services.

Unlike most other configuration objects, when you create a WS-Security binding you can only define its

basic aspects. To define the binding details you need to save the new binding, then reopen it for

modification as described in Modifying an existing WS-Security binding.

To create a new WS-Security binding, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → WS-Security bindings. The

WS-Security bindings collection form is displayed.

Chapter 5. Web services 1095

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
friend.was/ae/uwbs_websvcb.dita

3. Click New. The New WS-Security binding wizard is displayed.

4. Use the wizard to assign the following general properties:

a. Select the version of the WS-Security specification. Set this option to either Draft 13 (for a binding

that complies with the WS-Security Draft 13 specification) or 1.0 (for a binding that complies with

the Web Services Security (WS-Security) 1.0 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.x.

You should only use Draft 13 bindings to enable inter-operation between applications

running in WebSphere Application Server Version 5.1 and Version 7.0, or to allow continued

use of an existing Web services client application that is written to the WS-Security Draft 13

specification.

b. Specify the binding type.

Set this option to one of the following binding types:

For WS-Security Version 1.0:

v request consumer, for use when consuming requests from a client to an inbound service.

v request generator, for use when generating requests from an outbound service to a target Web

service.

v response consumer, for use when consuming responses from a target Web service to an

outbound service.

v response generator, for use when generating responses from an inbound service to a client.

For WS-Security Draft 13:

v request receiver, for use when receiving requests from a client to an inbound service.

v request sender, for use when sending requests from an outbound service to a target Web

service.

v response receiver, for use when receiving responses from a target Web service to an outbound

service.

v response sender, for use when sending responses from an inbound service to a client.

c. Specify the WS-Security binding.

Give a name to this binding. This name must be unique and it must follow the following syntax

rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

(WS-Security 1.0 bindings only. Optional.) Select the Use defaults check box to create a

convenient default binding for use in a development and test environment. If you select this option,

the binding uses the WebSphere Application Server default set of binding information rather than

any custom information that you might subsequently add. Note however that this default binding is

by definition insecure, and is not for production use. You can also select or clear this check box

when you modify an existing WS-Security binding.

Note: If you are creating a WS-Security 1.0 request generator binding, the Web address for the

WS-Security 1.0 namespace is displayed in a selection list. This is the namespace used by

WS-Security 1.0 to send a request, and you should not need to change this value. The other

values included in the selection list refer to namespaces used by earlier versions of the

WS-Security draft specification, and are included for backwards compatibility.

5. Click Finish. The general properties for this item are saved.

1096 Administering WebSphere applications

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Results

If the processing completes successfully, the list of WS-Security bindings is updated to include the new

binding. Otherwise, an error message is displayed.

What to do next

You are now ready to define the binding details as described in “Modifying an existing WS-Security

binding.”

Modifying an existing WS-Security binding

You can add or modify the configuration details for a WS-Security binding that is configured for use with

service integration bus-enabled Web services. You use WS-Security bindings to secure the SOAP

messages that pass between service requesters (clients) and inbound services, and between outbound

services and target Web services.

About this task

WS-Security bindings provide the information that the run-time environment needs to implement the

WS-Security configuration (for example “To sign the body, use this key”). You receive this security binding

information direct from the service requester or target service provider, in the form of an

ibm-webservicesclient-bnd.xmi file for the client, and an ibm-webservices-bnd.xmi file for the target Web

service. You extract the information from these .xmi files, then manually enter it into the WS-Security

bindings forms.

Bindings are administered independently from any Web service that uses them, so you can create a

binding then apply it to many Web services.

To list the WS-Security bindings, and to view and modify their configuration details, complete the following

steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → WS-Security bindings. A list of

WS-Security bindings is displayed in a WS-Security bindings collection form.

Each available binding is flagged as one of the following binding types:

For WS-Security Version 1.0:

v request consumer, for use when consuming requests from a client to an inbound service.

v request generator, for use when generating requests from an outbound service to a target Web

service.

v response consumer, for use when consuming responses from a target Web service to an outbound

service.

v response generator, for use when generating responses from an inbound service to a client.

For WS-Security Draft 13:

v request receiver, for use when receiving requests from a client to an inbound service.

v request sender, for use when sending requests from an outbound service to a target Web service.

v response receiver, for use when receiving responses from a target Web service to an outbound

service.

v response sender, for use when sending responses from an inbound service to a client.

Each available binding is also flagged as complying with either the Web Services Security

(WS-Security) 1.0 specification or the WS-Security Draft 13 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.x. You

should only use Draft 13 bindings to enable inter-operation between applications running in

Chapter 5. Web services 1097

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WebSphere Application Server Version 5.1 and Version 7.0, or to allow continued use of an

existing Web services client application that is written to the WS-Security Draft 13 specification.

3. Click the name of a WS-Security binding in the list. The current settings for this WS-Security binding

are displayed.

4. Modify the configuration details for this WS-Security binding. For detailed reference information about

each value that you can set, click on the associated link in the following tables:

 WS-Security 1.0 request consumer WS-Security 1.0 request generator

v Signing information

v Encryption information

v Token consumers

v Key information

v Key locators

v Collection certificate store

v Trust anchors

v Properties

v Signing information

v Encryption information

v Token generators

v Key information

v Key locators

v Collection certificate store

v Properties

 WS-Security 1.0 response generator WS-Security 1.0 response consumer

v Signing information

v Encryption information

v Token generators

v Key information

v Key locators

v Collection certificate store

v Properties

v Signing information

v Encryption information

v Token consumers

v Key information

v Key locators

v Collection certificate store

v Trust anchors

v Properties

 WS-Security Draft 13 request receiver WS-Security Draft 13 request sender

v Signing information

v Encryption information

v Trust anchors

v Collection certificate store

v Key locators

v Trusted ID evaluators

v Login mappings

v Signing information

v Encryption information

v Key locators

v Login binding

 WS-Security Draft 13 response sender WS-Security Draft 13 response receiver

v Signing information

v Encryption information

v Key locators

v Signing information

v Encryption information

v Trust anchors

v Collection certificate store

v Key locators

5. Save your changes to the master configuration.

1098 Administering WebSphere applications

friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_tokenconsumer.html
friend.was/ae/uwbs_keyinfo.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_colcertst.html
friend.was/ae/uwbs_trstanc.html
friend.was/ae/uwbs_propgen.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_tokengenerator.html
friend.was/ae/uwbs_keyinfo.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_colcertst.html
friend.was/ae/uwbs_propgen.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_tokengenerator.html
friend.was/ae/uwbs_keyinfo.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_colcertst.html
friend.was/ae/uwbs_propgen.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_tokenconsumer.html
friend.was/ae/uwbs_keyinfo.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_colcertst.html
friend.was/ae/uwbs_trstanc.html
friend.was/ae/uwbs_propgen.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_trstanc.html
friend.was/ae/uwbs_colcertst.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_trstide.html
friend.was/ae/uwbs_logmap.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_loginbnd.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_keyl.html
friend.was/ae/uwbs_signinfo.html
friend.was/ae/uwbs_encrypt.html
friend.was/ae/uwbs_trstanc.html
friend.was/ae/uwbs_colcertst.html
friend.was/ae/uwbs_keyl.html

Results

If the processing completes successfully, the list of WS-Security bindings is redisplayed. Otherwise, an

error message is displayed.

Deleting WS-Security bindings

Delete WS-Security bindings that are configured for use with service integration bus-deployed Web

services.

About this task

When you remove a WS-Security binding that is currently used by one or more Web services on a service

integration bus, the system removes the WS-Security binding for each associated Web service. To remove

WS-Security bindings, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → WS-Security bindings. A list of

WS-Security bindings is displayed in a WS-Security bindings collection form.

3. Select the check box for every WS-Security binding that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of WS-Security bindings is updated. Otherwise, an error

message is displayed.

Creating a new WS-Security configuration

Create a new WS-Security configuration for use with service integration bus-deployed Web services. You

use WS-Security configurations to secure the SOAP messages that pass between service requesters

(clients) and inbound services, and between outbound services and target Web services.

Before you begin

Use this option to work with WS-Security configurations that comply with either the Web Services Security

(WS-Security) 1.0 specification, or the previous WS-Security specification, WS-Security Draft 13 (also

known as the Web Services Security Core Specification).

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.x. You

should only use Draft 13 bindings to enable inter-operation between applications running in

WebSphere Application Server Version 5.1 and Version 7.0, or to allow continued use of an existing

Web services client application that is written to the WS-Security Draft 13 specification.

This topic assumes that you have got, from the owning parties, the WS-Security configurations for the

client (in the case of an inbound service) and the target Web service (in the case of an outbound service).

You can only use WS-Security with Web service applications that comply with the Web services for Java

Platform, Enterprise Edition (Java EE) or Java Specification Requirements (JSR) 109 specification. For

more information, see Web services security and Java Platform, Enterprise Edition security relationship.

For information about how to make your Web service applications JSR-109 compliant, see Developing and

deploying JAX-RPC Web services clients or Developing and deploying JAX-WS Web services clients .

About this task

WS-Security configurations specify the level of security that you require (for example “The body must be

signed”). This level of security is then implemented through the run-time information contained in a

WS-Security binding. You receive the security configuration information direct from the service requester or

Chapter 5. Web services 1099

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

target service provider, in the form of an ibm-webservicesclient-ext.xmi file for the client, and an

ibm-webservices-ext.xmi file for the target Web service, which contain the information on the levels of

security (integrity, confidentiality and identification) that are required. You extract the information from these

.xmi files, then manually enter it into the WS-Security configuration forms.

Configurations are administered independently from any Web service that uses them, so you can create a

configuration then apply it to many Web services. However, the security requirements for an inbound

service (which acts as a target Web service) are significantly different to those required for an outbound

service (which acts as a client). Consequently, configurations are further divided by service type (inbound

or outbound).

Unlike most other configuration objects, when you create a WS-Security configuration you can only define

its basic aspects. To define the details you save the new WS-Security configuration, then reopen it for

modification as described in “Modifying an existing WS-Security configuration” on page 1101.

To create a new WS-Security configuration, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → WS-Security configurations. The

WS-Security service configurations collection form is displayed.

3. Click New. The New WS-Security Service Configuration wizard is displayed.

4. Use the wizard to assign the following general properties:

a. Select the version of the WS-Security specification. Set this option to either Draft 13 (for a

configuration that complies with the WS-Security Draft 13 specification) or 1.0 (for a configuration

that complies with the Web Services Security (WS-Security) 1.0 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.x.

You should only use Draft 13 bindings to enable inter-operation between applications

running in WebSphere Application Server Version 5.1 and Version 7.0, or to allow continued

use of an existing Web services client application that is written to the WS-Security Draft 13

specification.

b. Specify the service type. If you are creating a configuration to secure the SOAP messages that

pass between a service requester (client) and an inbound service (which acts as a target Web

service), select Inbound Service. If you are creating a configuration to secure the SOAP messages

that pass between an outbound service (which acts as a client) and a target Web service, select

Outbound Service.

c. Specify the WS-Security configuration type.

Give a name to this configuration. This name must be unique across both WS-Security Version 1.0

and Draft 13 configurations, and it must follow the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

(Optionally) Specify an Actor URI for this configuration. WS-Security headers within the consumed

request message are only processed if they have the specified Actor URI.

5. Click Finish. The general properties for this item are saved.

Results

If the processing completes successfully, the list of WS-Security configurations is updated to include the

new configuration. Otherwise, an error message is displayed.

1100 Administering WebSphere applications

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

What to do next

You are now ready to define the configuration details as described in “Modifying an existing WS-Security

configuration.”

Modifying an existing WS-Security configuration

You can add or modify the configuration details for a WS-Security configuration that is configured for use

with service integration bus-enabled Web services. You use WS-Security configurations to secure the

SOAP messages that pass between service requesters (clients) and inbound services, and between

outbound services and target Web services.

About this task

WS-Security configurations specify the level of security that you require (for example “The body must be

signed”). This level of security is then implemented through the run-time information contained in a

WS-Security binding. You receive the security configuration information direct from the service requester or

target service provider, in the form of an ibm-webservicesclient-ext.xmi file for the client, and an

ibm-webservices-ext.xmi file for the target Web service, which contain the information on the levels of

security (integrity, confidentiality and identification) that are required. You extract the information from these

.xmi files, then manually enter it into the WS-Security configuration forms.

Configurations are administered independently from any Web service that uses them, so you can create a

configuration then apply it to many Web services. However, the security requirements for an inbound

service (which acts as a target Web service) are significantly different to those required for an outbound

service (which acts as a client). Consequently, configurations are further divided by service type (inbound

or outbound).

To list the WS-Security configurations, and to view and modify their configuration details, complete the

following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → WS-Security configurations. A

list of WS-Security configurations is displayed in a WS-Security service configurations collection form.

Each available configuration is flagged as either Inbound or Outbound. You use an inbound

configuration to secure the SOAP messages that pass between a service requester (client) and an

inbound service (which acts as a target Web service). You use an outbound configuration to secure the

SOAP messages that pass between an outbound service (which acts as a client) and a target Web

service.

Each available configuration is also flagged as complying with either the Web Services Security

(WS-Security) 1.0 specification or the WS-Security Draft 13 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.x. You

should only use Draft 13 bindings to enable inter-operation between applications running in

WebSphere Application Server Version 5.1 and Version 7.0, or to allow continued use of an

existing Web services client application that is written to the WS-Security Draft 13 specification.

3. Click the name of a WS-Security configuration in the list. The current settings for this WS-Security

configuration are displayed.

4. Modify the configuration details for this WS-Security configuration. For detailed reference information

about each value that you can set, click on the associated link in the following table:

Chapter 5. Web services 1101

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WS-Security 1.0 inbound configuration WS-Security 1.0 outbound configuration

Request consumer

v Required integrity

– Message parts

– Nonce

– Time stamp

v Required confidentiality

– Message parts

– Nonce

– Time stamp

v Required security token

v Caller

– Trust method

- Properties

– Properties

v Add time stamp

– Properties

v Properties

Response generator

v Actor

v Integrity

– Message parts

– Nonce

– Time stamp

v Confidentiality

– Message parts

– Nonce

– Time stamp

v Security Token

v Add time stamp

– Properties

v Properties

Request generator

v Actor

v Integrity

– Message parts

– Nonce

– Time stamp

v Confidentiality

– Message parts

– Nonce

– Time stamp

v Security Token

v Add time stamp

– Properties

v Properties

Response consumer

v Required integrity

– Message parts

– Nonce

– Time stamp

v Required confidentiality

– Message parts

– Nonce

– Time stamp

v Required security token

v Caller

– Trust method

- Properties

– Properties

v Add time stamp

– Properties

v Properties

1102 Administering WebSphere applications

WS-Security Draft 13 inbound configuration WS-Security Draft 13 outbound configuration

Request receiver

v Required integrity

v Required confidentiality

v Login configuration

– Custom authentication methods

v ID assertion

v Add received time stamp

v Properties

Response sender

v Actor

v Integrity

v Confidentiality

v Add created time stamp

v Properties

Request sender

v Actor

v Integrity

v Confidentiality

v Login configuration

v ID assertion

v Add created time stamp

v Properties

Response receiver

v Required integrity

v Required confidentiality

v Add received time stamp

v Properties

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of WS-Security configurations is redisplayed. Otherwise,

an error message is displayed.

Deleting WS-Security configurations

Delete WS-Security configurations that are configured for use with service integration bus-enabled Web

services.

About this task

When you remove a WS-Security configuration that is currently used by one or more Web services on a

service integration bus, the system removes the WS-Security configuration for each associated Web

service. To remove WS-Security configurations, complete the following steps:

1. Start the administrative console.

2. In the navigation pane, click Service integration → Web services → WS-Security configurations. A

list of WS-Security configurations is displayed in a WS-Security service configurations collection form.

3. Select the check box for every WS-Security configuration that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of WS-Security configurations is updated. Otherwise, an

error message is displayed.

Passing SOAP messages with attachments through the service

integration bus

The service integration technologies support Web services that use a SOAP binding to pass attachments

in a MIME message.

Before you begin

See the restrictions detailed in Limitations in the support for SOAP with attachments.

Chapter 5. Web services 1103

About this task

The service integration bus supports SOAP messages that contain either old-style attachments (as

described in the SOAP Messages with Attachments W3C Note) or attachments that use the Web

Services-Interoperability (WS-I) Attachments Profile Version 1.0 (subject to the Limitations in the support

for SOAP with attachments).

Attachments are carried through the service integration bus and passed to the inbound or outbound

service. The content MIME type of each attachment is preserved. When the external target service for an

outbound service is deployed to a Java API for XML-based Remote Procedure Call (JAX-RPC) compliant

server, you can access the attachments on the target service using the javax.activation.DataHandler

handler.

If the bus receives a message that contains attachments, and the bus subsequently rewrites the message,

then the generated message uses the same attachment style as the received message. If you need to

transform attachments from one style to another, you can use a mediation to modify the message.

For more information, see the following topics:

v “SOAP Messages with Attachments: WSDL examples” on page 1105

v “Supporting bound attachments: WSDL examples” on page 1105

v “Locating an attachment using swaref”

v Writing a mediation that maps between attachment encoding styles

Locating an attachment using swaref

About this task

When a Web Services-Interoperability (WS-I) Attachments Profile Version 1.0 message uses a SOAP with

attachments reference (swaref) to refer to an attachment, the swaref might refer to either bound or

non-bound attachments, and the swaref might refer to a single attachment several times. To enable you to

locate the correct attachment, service integration technologies stores the value of the URI that is encoded

in the message within the SDO data graph for the message body.

When storing the value of an element (or attribute) of type swaref in the data graph, service integration

technologies stores the complete URI from the message instance. Therefore when you retrieve the URI

you need to remove cid: from the beginning of the retrieved value to find the Content ID of the referenced

attachment.

Example

The following example shows how to use the value of a swaref element to locate the correct attachment.

This example uses the RPC/Literal WSDL and SOAP message from section 4.4 of Web

Services-Interoperability (WS-I) Attachments Profile Version 1.0:

DataObject infoNode = graph.getRootObject().getDataObject("info");

String contentId = infoNode.getString("body/ClaimDetail/ClaimForm");

// Cut off the "cid:" part of the string

contentId = contentId.substring(4);

// Locate the value of the attachment

DataObject attachmentEntry =

 infoNode.getDataObject("attachments[contentId=" + contentId + "]");

byte[] data = attachmentEntry.getBytes("data");

1104 Administering WebSphere applications

http://www.w3.org/TR/SOAP-attachments
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html

SOAP Messages with Attachments: WSDL examples

Example

The following example WSDL illustrates a simple operation that has one attachment called attch:

<binding name="MyBinding" type="tns:abc" >

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="MyOperation">

 <soap:operation soapAction=""/>

 <input>

 <mime:multipartRelated>

 <mime:part>

 <soap:body parts="part1 part2 ..." use="encoded" namespace="http://mynamespace"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

 </mime:part>

 <mime:part>

 <mime:content part="attch" type="text/html"/>

 </mime:part>

 </mime:multipartRelated>

 </input>

 </operation>

</binding>

In this type of WSDL extension:

v There must be a part attribute (in this example attch) on the input message for the operation (in this

example MyOperation). There can be other input parts to MyOperation that are not attachments.

v In the binding input there must either be a <soap:body> tag or a <mime:multipartRelated> tag, but not

both.

v For MIME messages, the <soap:body> tag is inside a <mime:part> tag. There must only be one

<mime:part> tag that contains a <soap:body> tag in the binding input and that must not contain a

<mime:content> tag as well, because a content type of text/xml is assumed for the <soap:body> tag.

v There can be multiple attachments in a MIME message, each described by a <mime:part> tag.

v Each <mime:part> tag that does not contain a <soap:body> tag contains a <mime:content> tag that

describes the attachment itself. The type attribute inside the <mime:content> tag is not checked or used

by the service integration bus. It is there to suggest to the application using the service integration bus

what the attachment contains. Multiple <mime:content> tags inside a single <mime:part> tag means that

the back end service expects a single attachment with a type specified by one of the <mime:content>

tags inside that <mime:part> tag.

v The parts="..." attribute inside the <soap:body> tag is assumed to contain the names of all the SOAP

parts in the message, but not the attachment parts. If there are only attachment parts, specify parts=""

(empty string). If you omit the parts attribute altogether, then the service integration bus assumes ALL

parts including the attachments - which causes the attachments to appear twice.

In your WSDL you might have defined a schema for the attachment (for instance as a binary[]). The

service integration technologies silently ignore this mapping and treat the attachment as a Data Handler.

You do not need to mention unreferenced attachments in the WSDL bindings.

Supporting bound attachments: WSDL examples

About this task

Web Services-Interoperability (WS-I) Attachments Profile Version 1.0 defines a convention for constructing

the Content ID for a bound attachment. This convention encodes the message part name. Consequently,

service integration technologies can recognize a bound attachment whether or not the SOAP body

contains elements representing that message part. The convention for constructing a Content ID is as

follows:

name=uuid@domain

Chapter 5. Web services 1105

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html

where name is the name of the message part that is being encoded, uuid is a globally unique identifier,

and domain is a domain identifier (for example my.example.com).

Note: This approach differs from the SOAP Messages with Attachments encoding scheme, which does

not define a conventions for the Content ID but does use elements within the SOAP body to

indicate that the message part is encoded as an attachment.

In order to distinguish between the cases, service integration technologies assumes that if a message

attachment follows the Version 1.0 convention for constructing the Content ID, then it is a Version 1.0

message.

Example

The following WSDL fragment is for a bound attachment, with message instances that follow both styles:

<wsdl:binding name="BoundSoapBinding" type="intf:BoundPortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="bound">

 <soap:operation soapAction=""/>

 <wsdl:input>

 <mime:multipartRelated>

 <mime:part>

 <soap:body parts="stringIn" namespace="http://bound"

 use="literal"/>

 </mime:part>

 <mime:part>

 <mime:content part="attachIn" type="text/xml"/>

 </mime:part>

 </mime:multipartRelated>

 </wsdl:input>

The following WSDL fragment is for a SOAP instance using Version 1.0 encoding. In this fragment, the

message body contains no mention of the attachIn part, and the Content ID of the attachment identifies

the part that is being encoded.

--myBoundary

Content-Type: text/xml

Content-Transfer-Encoding: 7bit

Content-Id: <myStartID>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <ns0:bound xmlns:ns0="http://bound">

 <stringIn>some string data</stringIn>

 </ns0:bound>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--myBoundary

Content-Type: text/xml

Content-Transfer-Encoding: 7bit

Content-Id: <attachIn=someUUID@some.domain.name>

<someOtherXMLElement/>

--myBoundary--

The following WSDL fragment is for a SOAP instance using SOAP Messages with Attachments encoding.

In this fragment, the message body does contain a reference to the bound attachment, and the Content ID

of the attachment is not constrained.

--myBoundary

Content-Type: text/xml

Content-Transfer-Encoding: 7bit

1106 Administering WebSphere applications

Content-Id: <myStartID>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <ns0:bound xmlns:ns0="http://bound">

 <stringIn>some string data</stringIn>

 <attachIn href="cid:notTheStart"/>

 </ns0:bound>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--myBoundary

Content-Type: text/xml

Content-Transfer-Encoding: 7bit

Content-Id: <notTheStart>

<someOtherXMLElement/>

--myBoundary--

In the previous two cases there is sufficient information in the message to identify the bound attachment,

and in both cases service integration technologies places a bound attachment entry in the attachments list,

and places the data from the attachment into the body section of the data graph.

Using WS-Notification for publish and subscribe messaging for Web

services

WS-Notification enables Web services to use the “publish and subscribe” messaging pattern.

About this task

You use publish and subscribe messaging to publish one message to many subscribers. In this pattern a

producing application inserts (publishes) a message (event notification) into the messaging system having

marked it with a topic that indicates the subject area of the message. Consuming applications that have

subscribed to the topic in question, and have appropriate authority, all receive an independent copy of the

message that was published by the producing application.

Through the implementation of WS-Notification in WebSphere Application Server, you can achieve the

following goals:

v Leverage existing service integration technologies and Web services components to deliver

WS-Notification functionality.

v Interoperate with other publish and subscribe messaging clients (for example Java Message Service

(JMS), WebSphere MQ) and with alternative message brokering products.

v Deploy a WS-Notification NotificationBroker in highly available and workload managed configurations.

For more information about using WS-Notification, see the following topics:

v “Learning about WS-Notification” on page 1110

v “Accomplishing common WS-Notification tasks” on page 1108

v “Configuring WS-Notification resources” on page 1134

v “Securing WS-Notification” on page 1120

v Developing applications that use WS-Notification

What to do next

Note:

Chapter 5. Web services 1107

v For development use on a single server only, you can use a script to configure the necessary

resources to get up and running quickly with WS-Notification.

v In WebSphere Application Server Version 6.1, support for WS-Notification is based on a pre-final

approval public review draft of the WS-Notification standards. In Version 7.0, this support is

extended to cover the final approved standards. The differences between the two versions of the

standards are small, and your existing WS-Notification services and client applications will

continue to work unchanged. However, you might choose to upgrade your existing applications

as described in Enabling WebSphere Application Server Version 6.1 client applications to handle

the additional error conditions introduced in the final Version 1.3 WS-Notification standards.

Accomplishing common WS-Notification tasks

The specific steps that you need to perform to implement the most common WS-Notification tasks. For

some tasks the steps are subdivided by role, and each sub-task gives the steps that are completed by

either the solution architect, the system administrator or the application developer.

About this task

In the following list the sub-tasks are grouped by role. For more information about the roles, see

“WS-Notification roles and goals” on page 1109.

v “Solution architect” on page 1109 sub-tasks:

– “Learning about WS-Notification” on page 1110.

– Selecting a hardware and software product combination for the enterprise that supports the

WS-Notification standards.

– Designing a server topology to host the applications, in accordance with particular WS-Notification

topologies.

– “Designing a QoS-partitioned server topology for WS-Notification” on page 1111.

– “Designing a server topology for Web service qualities of service for WS-Notification” on page 1111.

v “System administrator” on page 1110 sub-tasks:

– “Using a script to get up and running quickly with WS-Notification” on page 1112.

– “Configuring a WS-Notification service for use only by WS-Notification applications” on page 1116.

– “Providing access for WS-Notification applications to an existing bus topic space” on page 1117.

– “Balancing a WS-Notification workload across application servers” on page 1118.

– “Providing highly available (HA) topologies for WS-Notification” on page 1119.

– “Configuring a QoS-partitioned server topology for WS-Notification” on page 1120.

– “Securing WS-Notification” on page 1120.

– “Configuring JAX-WS handlers” on page 1122.

– “Applying a JAX-WS handler list to a WS-Notification service” on page 1123.

– “Configuring a Version 7.0 WS-Notification service with Web service QoS” on page 1124.

– “Configuring WS-Notification for reliable notification” on page 1126.

– “Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version

6.1 to Version 7.0” on page 1127.

– “Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification” on page

1128.

– “Interacting at run time with WS-Notification” on page 1132.

– “Publishing the WSDL files for a WS-Notification application to a ZIP file” on page 1133.

v “Application developer” on page 1110 sub-tasks:

– Developing applications that use WS-Notification

– Writing a WS-Notification application that exposes a Web service endpoint.

– Writing a WS-Notification application that does not expose a Web service endpoint.

1108 Administering WebSphere applications

– Filtering the message content of publications.

WS-Notification roles and goals

This topics lists a set of computing roles that members of your organization might perform, and explains

how you can use WS-Notification to help meet the goals of each role.

For a general description of each of the following roles, see WebSphere Application Server roles and

goals.

Enterprise architect

IT environments are currently evolving towards the following concepts:

v Service Oriented Architecture (SOA)

v Enterprise Service Bus (ESB)

The goal of the enterprise architect might be to guide their organization towards appropriate utilization of

these concepts to maximize the efficiency and responsiveness of the business as a whole.

WS-Notification enables publish and subscribe communication patterns (such as a stock ticker) to be

exposed using Web services in an SOA environment. This is done through open standards, enabling

straightforward replacement of the service implementation. It promotes easy exchange of data between

suppliers and customers through use of standard Web service operations and prevents vendor lock-in or

adoption of proprietary standards.

WebSphere Application Server also allows WS-Notification to be used as an on- or off-ramp to an ESB,

providing seamless interchange of data between different types of client connected to the bus.

Solution architect

The main goal of the solution architect is to design a solution that supports the specification set by the

enterprise architect. This might include providing an environment in which Web service applications can

participate in publish and subscribe messaging patterns. This participation might also include the

requirement to be able to exchange event notifications between Web service clients and other clients of

the enterprise service bus.

To create a design, the solution architect completes the following broad steps:

v Learn about the support provided for WS-Notification in WebSphere Application Server.

v Select a hardware and software product combination for the enterprise that supports the WS-Notification

standards.

v Design a server topology to host the applications, in accordance with the particular WS-Notification

topologies that are to be implemented.

Additional goals of the solution architect during the system design phase are as follows:

v To cater for the non-functional requirements of the system. For example workload balancing of clients

across servers for performance or reliability, and providing services in a highly available fashion. For

more information, see WS-Notification in a clustered environment.

v To create an infrastructure in which different qualities of service (QoS) can be offered depending upon

business agreements. For example providing a higher QoS to gold-level customers than that provided to

standard-level customers. For more information, see “Designing a QoS-partitioned server topology for

WS-Notification” on page 1111 and “Designing a server topology for Web service qualities of service for

WS-Notification” on page 1111.

Chapter 5. Web services 1109

friend.was/ae/rwas_swg_roles.html
friend.was/ae/rwas_swg_roles.html

System administrator

For the specific steps that the system administrator performs to help implement common WS-Notification

tasks, see the following topics:

v “Using a script to get up and running quickly with WS-Notification” on page 1112.

v “Configuring a WS-Notification service for use only by WS-Notification applications” on page 1116.

v “Providing access for WS-Notification applications to an existing bus topic space” on page 1117.

v “Balancing a WS-Notification workload across application servers” on page 1118.

v “Providing highly available (HA) topologies for WS-Notification” on page 1119.

v “Configuring a QoS-partitioned server topology for WS-Notification” on page 1120.

v “Securing WS-Notification” on page 1120.

v “Configuring JAX-WS handlers” on page 1122.

v “Applying a JAX-WS handler list to a WS-Notification service” on page 1123.

v “Configuring a Version 7.0 WS-Notification service with Web service QoS” on page 1124.

v “Configuring WS-Notification for reliable notification” on page 1126.

v “Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1

to Version 7.0” on page 1127.

v “Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification” on page 1128.

v “Interacting at run time with WS-Notification” on page 1132.

v “Publishing the WSDL files for a WS-Notification application to a ZIP file” on page 1133.

Application developer

If the solution architect specifies a requirement to insert event notifications into the system (that is publish

messages) or receive event notifications from the system as a result of creating a subscription containing

an interest profile, then the application developer can use WS-Notification to meet this requirement.

There are various patterns of producing and consuming application defined by WS-Notification that are

available for use by the application developer, depending upon the exact requirements of the application in

question. These options are explored in the following common WS-Notification tasks:

v Writing a WS-Notification application that exposes a Web service endpoint.

v Writing a WS-Notification application that does not expose a Web service endpoint.

See also Developing applications that use WS-Notification and Filtering the message content of

publications.

Learning about WS-Notification

WS-Notification enables Web services to use the “publish and subscribe” messaging pattern. Use these

topics to learn more about WS-Notification.

About this task

You use publish and subscribe messaging to publish one message to many subscribers. In this pattern a

producing application inserts (publishes) a message (event notification) into the messaging system having

marked it with a topic that indicates the subject area of the message. Consuming applications that have

subscribed to the topic in question, and have appropriate authority, all receive an independent copy of the

message that was published by the producing application.

To learn about the WS-Notification implementation in WebSphere Application Server, see the following

topics:

v WS-Notification: Overview

v WS-Notification: Benefits

1110 Administering WebSphere applications

v WS-Notification and end-to-end reliability

v WS-Notification terminology

v WS-Notification: How client applications interact at runtime

v WS-Notification: Supported bindings

v WS-Notification and policy set configuration

v Reasons to create multiple WS-Notification services in a bus

v Reasons to create multiple WS-Notification service points

v Options for associating a permanent topic namespace with a bus topic space

v WS-Notification topologies

Designing a QoS-partitioned server topology for WS-Notification

Design a server topology in which customers receive quality of service (QoS) that reflects their customer

status.

About this task

WS-Notification enables partitioned topologies in which some servers provide a different quality of service

that can be utilized by customers of varying status. This might include configuring a cluster of servers for

use by a particular customer in order to provide enhanced high availability or improved response times.

Note: In the specific cases where you need Web services qualities of service, such as reliability, see also

“Designing a server topology for Web service qualities of service for WS-Notification.”

1. Get a statement of the qualities of service required by each of the applications and customers that use

WS-Notification.

2. Identify, from the statements you collected in the previous step, the distinct groups of QoS

requirements.

3. Specify that higher QoS groups be isolated onto separate servers, and that a separate WS-Notification

service must be defined on these servers that can only be accessed by the required applications.

4. Design a configuration such that service integration bus topic spaces used by the different brokers do

not overlap in cases where applications with one QoS should be isolated from others.

Designing a server topology for Web service qualities of service for

WS-Notification

Design a server topology to support a Web services configuration in which WS-Notification customers

receive a range of Web service qualities of service (QoS), such as reliability.

About this task

“Designing a QoS-partitioned server topology for WS-Notification” describes how you can design a

partitioned topology in which different servers or server groups provide different qualities of service for

WS-Notification customers of varying status. This task describes the additional design steps where you

plan to use policy sets to apply a range of Web service qualities of service to JAX-WS based Web service

applications including Version 7.0 WS-Notification service and service point applications.

1. Get a statement of the qualities of service requirements for each Web service in the topology, for

example a statement describing whether each WS-Notification service point should support

composition with WS-ReliableMessaging.

2. Identify, from the statements you collected in the previous step, the distinct groups of QoS

requirements.

3. Ensure that each Web service in the topology is a JAX-WS based Web service, and can therefore be

configured using policy sets. For WS-Notification services, impose a constraint that each service is a

Version 7.0 WS-Notification service.

4. Define the policy sets needed to achieve the required qualities of service.

Chapter 5. Web services 1111

5. Identify existing policy sets that meet the requirements defined in the previous step. You might be able

to use existing policy sets within your organization, or default policy sets provided by WebSphere

Application Server. For more information about how to verify whether you can reuse an existing policy

set, and (if necessary) create a new one, see Managing policy sets using the administrative console.

Using a script to get up and running quickly with WS-Notification

Use a jython script to configure the necessary resources to get up and running quickly with

WS-Notification in WebSphere Application Server.

Before you begin

The example script provided in this topic is intended for development use on a single server only, and not

for use in production or network deployment environments.

About this task

You can use the example script to configure a default set of resources that enable you to connect

WS-Notification applications for development purposes. When executed, the script takes the following

actions:

1. It searches in the configuration for an existing service integration bus, and creates one if necessary.

2. It searches for an existing bus member, and if one is not found it adds the (standalone) server to the

bus, using the default data source.

3. It searches for an existing service integration bus topic space destination, and creates one if

necessary.

4. It creates a Version 6.1 or Version 7.0 WS-Notification service.

5. It creates a Version 6.1 or Version 7.0 WS-Notification service point on the local server for a SOAP

over HTTP binding.

6. It creates a WS-Notification permanent topic namespace to reference the service integration bus topic

space that was found or created in step 3.

7. It saves the configuration, and describes where to find the WSDL for the new notification broker Web

service that has been exposed.

To use the example script, complete the following steps:

1. Save the script to the file system using a name of your choice (for example wsnQuickStart.py).

2. Modify the hostRoot variable defined at the top of the script to point to the HTTP port of the local

server (usually 9080).

3. Install and configure the SDO repository.

4. Start the server, then execute the following command. If you saved the script with a name other than

wsnQuickStart.py, then use that name instead.

wsadmin -f wsnQuickStart.py

Example

Here is the example script:

WS-Notification QuickStart script #

This Jython script will quickly create the basic resources required in order to #

start using WS-Notification in WebSphere Application Server Version 6.1 or later #

Before executing it you must modify the variables defined below to match your #

configuration settings. #

Note:

1112 Administering WebSphere applications

friend.was/ae/cwbs_wsspsps.dita
friend.was/ae/cwbs_wsspsps.dita
friend.was/ae/twbs_wsspsps.dita

- This script is not intended for production use, and is intended for use on #

a standalone server (not network deployment) only. #

- The script will search the configuration for an existing bus, and if one is #

not found then a new bus will be created #

- It will then look for an existing Bus Member on the chosen bus. If one is not #

found then one will be created using the default File Store #

- It will then look for an existing service integration bus topic space. If one #

is not found then it will create one. #

Execute the script by typing; #

wsadmin -f wsnQuickStart.py #

Configuration variables #

Set the following variables to match your configuration #

The URL root of HTTP port on the local server

hostRoot = "http://xyz.ibm.com:9080"

The type of WS-Notification service you want to create (Version 6.1 or Version 7.0)

wsnServiceType = "V7.0"

Now create the configuration objects using the variables defined above #

These variables are arbitrary choices and need not be set unless desired.

wsnServiceName = "myWSNService"+wsnServiceType

wsnServicePointName = "myWSNServicePoint"+wsnServiceType

eplName = "myNewEPL"

tnsNamespaceURI = "http://example.org/topicNamespace/example1"

General environment variables

nodeName = AdminTask.listNodes().split("\n")[0].rstrip()

server = AdminTask.listServers().split("\n")[0].rstrip()

print "###"

print "# Check the pre-requisites before we begin #"

print "###"

Check for the existence of the bus

requiresRestart = "false"

myBuses = AdminTask.listSIBuses().split("\n")

myBus = myBuses[0].rstrip()

if (myBus == ""):

 print " *** Creating new bus "

 myBus = AdminTask.createSIBus("-bus MySampleBus -busSecurity false

 -scriptCompatibility 6.1")

 requiresRestart = "true"

#endIf

siBusName = AdminConfig.showAttribute(myBus, "name")

print " service integration bus name: "+siBusName+" "

Check for the existence of the bus member

busMembers = AdminTask.listSIBusMembers(" -bus "+siBusName).split("\n")

myBusMember = busMembers[0].rstrip()

if (myBusMember == ""):

 print ""

 print " *** Creating new Bus Member "

 busMemberName = AdminConfig.showAttribute(server, "name")

Chapter 5. Web services 1113

myBusMember = AdminTask.addSIBusMember(" -bus "+siBusName+"

 -node "+nodeName+" -server "+busMemberName)

 print ""

 requiresRestart = "true"

else:

 nodeName = AdminConfig.showAttribute(myBusMember, "node")

 busMemberName = AdminConfig.showAttribute(myBusMember, "server")

#endElse

print " service integration bus Member on node: "+nodeName+" "

print " on server: "+busMemberName+" "

Find a topic space to use

topicSpaces = AdminTask.listSIBDestinations(" -bus "+siBusName+"

 -type TopicSpace ").split("\n")

tSpace = topicSpaces[0].rstrip()

if (tSpace == ""):

 print " *** Creating a Topic Space "

 tSpace = AdminTask.createSIBDestination(" -bus "+siBusName+"

 -node "+nodeName+" -server "+myBusMember+"

 -name MyTopicSpace -type TopicSpace")

 print ""

#endIf

siBusTopicSpaceName = AdminConfig.showAttribute(tSpace, "identifier")

print " service integration bus topic space: "+siBusTopicSpaceName+" "

print ""

print "###"

print "# Create the WS-Notification service #"

print "###"

newService = AdminTask.listWSNServices(" -name "+wsnServiceName+"

 -bus "+siBusName).split("\n")[0].rstrip()

if (newService == ""):

 newService = AdminTask.createWSNService(" -name "+wsnServiceName+"

 -bus "+siBusName+" "+" -type "+wsnServiceType)

 print "WS-Notification service created: "+wsnServiceName+" "

 print " on bus: "+siBusName+" "

else:

 print "WS-Notification service ’"+wsnServiceName+"’ "

 print " already exists on bus ’"+siBusName+"’ "

#endElse

print ""

print "###"

print "# Create the WS-Notification service point #"

print "###"

eplURLRoot = hostRoot+"/wsn"

wsdlURLRoot = hostRoot+"/SIBWS/wsdl"

newServicePoint = AdminTask.listWSNServicePoints(newService, "

 -name "+wsnServicePointName+" ").split("\n")[0].rstrip()

if (newServicePoint == ""):

 if (wsnServiceType == "V7.0"):

 newServicePoint = AdminTask.createWSNServicePoint(newService, "

 -name "+wsnServicePointName+" -node "+nodeName+" -server "+busMemberName)

 else:

 newServicePoint = AdminTask.createWSNServicePoint(newService, "

 -name "+wsnServicePointName+"

 -node "+nodeName+" -server "+busMemberName+" -eplName "+eplName+"

 -eplURLRoot "+eplURLRoot+" -eplWSDLServingURLRoot "+wsdlURLRoot+" ")

1114 Administering WebSphere applications

print "WS-Notification service point created: "+wsnServicePointName+" "

 print " on bus member: "+busMemberName+" "

 print " on node: "+nodeName+" "

else:

 print "WS-Notification service point ’"+wsnServicePointName+"’ "

 print "already exists on WS-Notification service ’"+wsnServiceName+"’ "

#endElse

print ""

print "###"

print "# Create the WS-Notification permanent topic namespace #"

print "###"

newTopicNamespace = AdminTask.listWSNTopicNamespaces(newService, "

 -namespace "+tnsNamespaceURI+" ").split("\n")[0].rstrip()

if (newTopicNamespace == ""):

 newTopicNamespace = AdminTask.createWSNTopicNamespace(newService, "

 -namespace "+tnsNamespaceURI+" -busTopicSpace "+siBusTopicSpaceName+"

 -reliability RELIABLE_PERSISTENT")

 print "WS-Notification topic namespace created: "+tnsNamespaceURI+" "

 print " bus topic space: "+siBusTopicSpaceName+" "

else:

 print "WS-Notification permanent topic namespace already exists: "

 +tnsNamespaceURI+" "

#endElse

All the objects have been created - inform the user where to proceed next #

print ""

print "###"

print "# Summary #"

print "###"

Calculate where you would find the WSDL for the new service.

if (wsnServiceType == "V7.0"):

 print "IMPORTANT: Because you’ve created a Version 7.0 service"

 print "you need to start the newly installed application;"

 print " WSN_"+wsnServiceName+"_"+wsnServicePointName

 print ""

 wsdlLocation = hostRoot+"/"+wsnServiceName+wsnServicePointName

 +"NB/NotificationBroker?wsdl"

else:

 print "IMPORTANT: Because you’ve created a Version 6.1 service"

 print "you need to start 2 newly installed applications;"

 serverName = AdminConfig.showAttribute(server, "name")

 print " "+eplName+"."+nodeName+"."+serverName

 print " sibws."+nodeName+"."+serverName

 print ""

 wsdlLocation = hostRoot+"/wsn/soaphttpengine/"+siBusName+"/"

 +wsnServiceName+"NotificationBroker/"

 +wsnServicePointName+"NotificationBrokerPort?wsdl"

print " The WSDL for the new service can be viewed at the following location; "

print " "+wsdlLocation+" "

print ""

print " Your web service applications can publish and subscribe to any topics in the namespace; "

print " "+tnsNamespaceURI+" "

print ""

if (requiresRestart == "true"):

 print " You must now restart the server for the changes to take effect. "

 print ""

#endIf

Chapter 5. Web services 1115

print ""

print "###"

print "# Save the configuration and exit #"

print "###"

AdminConfig.save()

sys.exit()

Configuring a WS-Notification service for use only by WS-Notification applications

Define all the necessary objects to configure a WS-Notification service and associated service points.

Before you begin

This task assumes that you have already configured one or more application servers in a network

deployment cell, and that there are no other messaging resources configured in the cell..

For Version 6.1 WS-Notification services, you must also create an endpoint listener configuration on each

application server that you want to use to host a WS-Notification service.

About this task

You can configure one or more servers, each hosting a WS-Notification service to which Web services

applications can connect, as described in the Simple Web services topology.

1. Use the information given in “Creating a bus” on page 1197 to create a service integration bus and add

your existing server or servers as bus members. When you add a bus member, a messaging engine is

created in the server. You choose the database that hosts the persistent storage required by the

messaging engine. You can either use the default JDBC data source and Apache Derby JDBC

provider, or you can configure a data source for use with your preferred database product.

2. Using the administrative console, navigate to Service integration → Buses → bus_name → [Services]

WS-Notification services. The WS-Notification services [Collection] form for this bus is displayed.

3. Click New. The “New WS-Notification service” wizard is displayed.

4. Complete steps 1 to 4 of the wizard, as described in “Creating a new Version 6.1 WS-Notification

service” on page 1143 or “Creating a new Version 7.0 WS-Notification service” on page 1136. Pay

particular attention to the following settings:

v In wizard step 1: “Configure name, description, service integration bus and dynamic topic

namespace settings”, you select the service integration bus to use to host the messaging resources.

Choose the bus that you created at the beginning of this task.

v In wizard step 4: “Create WS-Notification service points”, you select the bus member that is to host

the new service. On a single server system there is only one option here. For Version 6.1

WS-Notification services, you also select the endpoint listener application to use to expose the

service. Choose the endpoint listener application that you configured before you began this task.

5. Optional: In wizard step 5: “Create permanent topic namespaces”, configure the WS-Notification topic

namespace to provide access to a service integration bus topic space:

v Enter the topic namespace URI that you want WS-Notification applications to use when referring to

the service integration bus topic space. This must be unique within the WS-Notification service, and

is conventionally a URI related to your organization. For example http://www.myorganization.com.

v Because there are no existing service integration bus topic spaces in your bus the “Use an existing

service integration bus topic space” radio button and associated selection list are unavailable. To

create a new bus topic space, enter your chosen name.

6. Complete wizard step 6: “Summary”.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If the

processing completes successfully, the list of WS-Notification services is updated to include the new

WS-Notification service. Otherwise, an error message is displayed.

1116 Administering WebSphere applications

7. Save your changes to the master configuration. You do not need to restart the server for these

changes to take effect. However, you do need to start the endpoint listener or enterprise application

associated with the service point that was created in step 4 of the wizard.

What to do next

For Version 7.0 WS-Notification services, you can view the URL to which WS-Notification applications

connect by looking in the NotificationBroker.WSDL file for the NotificationBroker application. To view this

file, see “Publishing the WSDL files for a WS-Notification application to a ZIP file” on page 1133.

For Version 6.1 WS-Notification services, you can view the URL to which WS-Notification applications

connect by navigating to Service integration → Buses → bus_name → [Services] WS-Notification

services → service_name → [Additional Properties] WS-Notification service points → point_name →

NotificationBroker inbound port settings.

To extend this configuration so that Web service applications can interact with non-Web service

applications, see “Providing access for WS-Notification applications to an existing bus topic space.”

Providing access for WS-Notification applications to an existing bus topic space

Configure a solution such that Web services clients can share event notifications with other clients of a

service integration bus.

Before you begin

This task assumes that you have an existing service integration bus, configured with at least one bus

member and a bus topic space. For more information, see “Creating a bus” on page 1197.

About this task

This task focuses on the “Create permanent topic namespaces” step that is part of the “New

WS-Notification service” wizard.

You can configure WS-Notification so that Web service applications receive event notifications generated

by other clients of the service integration bus such as JMS clients. Similarly, Web service applications can

generate notifications to be received by other client types. This configuration is described in the Topology

for WS-Notification as an entry or exit point to the service integration bus. You achieve this configuration

by creating a permanent topic namespace that allows messages to be shared between Web service and

non-Web service clients of the bus. Specifically, you create a permanent topic namespace that links the

service integration bus topic space used by messaging clients to a WS-Notification topic namespace URI.

For more information about programming the client applications, including example code for

cross-streaming from a JMS client, see Sharing event notification messages with other bus client

applications.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → Services or Service integration → Buses →

bus_name → [Services] WS-Notification services. The WS-Notification services [Collection] form is

displayed.

3. Click New. The “New WS-Notification service” wizard is displayed.

4. Complete steps 1 to 4 of the wizard, as described in “Creating a new Version 6.1 WS-Notification

service” on page 1143 or “Creating a new Version 7.0 WS-Notification service” on page 1136.

5. In wizard step 5:“ Create permanent topic namespaces”, configure the WS-Notification topic

namespace to provide access to the existing service integration bus topic space:

Chapter 5. Web services 1117

v Enter the topic namespace URI that you want WS-Notification applications to use when referring to

the service integration bus topic space. This must be unique within the WS-Notification service, and

is conventionally a URI related to your organization. For example http://www.myorganization.com.

v Enable the “Use an existing service integration bus topic space” radio button, then choose the name

of your chosen service integration bus topic space from the selection list.

6. Complete wizard step 6: “Summary”.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If the

processing completes successfully, the list of WS-Notification services is updated to include the new

WS-Notification service. Otherwise, an error message is displayed.

7. Save your changes to the master configuration. You do not need to restart the server for these

changes to take effect. However, you do need to start the endpoint listener or enterprise application

associated with the service point that was created in step 4 of the wizard.

Results

WS-Notification applications can now connect to the WS-Notification service point and insert or receive

event notifications from the service integration bus topic space.

What to do next

For Version 7.0 WS-Notification services, you can view the URL to which WS-Notification applications

connect by looking in the NotificationBroker.WSDL file for the NotificationBroker application. To view this

file, see “Publishing the WSDL files for a WS-Notification application to a ZIP file” on page 1133.

For Version 6.1 WS-Notification services, you can view the URL to which WS-Notification applications

connect by navigating to Service integration → Buses → bus_name → [Services] WS-Notification

services → service_name → [Additional Properties] WS-Notification service points → point_name →

NotificationBroker inbound port settings.

Balancing a WS-Notification workload across application servers

Configure a server topology such that the workload for Web service clients using the WS-Notification

standard is balanced across the available resources.

About this task

WS-Notification enables server topologies in which Web service clients connecting to the notification

broker service are distributed across a set of logically equivalent servers. This configuration is described in

the Network deployment of WS-Notification topology. You achieve this configuration by deploying a

WS-Notification service across multiple servers in a network deployment environment, then configuring a

WebSphere Application Server proxy server as the central point to which applications connect, and

providing it with the knowledge of which servers should receive client requests (that is, where the

WS-Notification service points are configured).

To configure a distributed connected servers WS-Notification solution, complete the following steps:

1. Use the task “Configuring a WS-Notification service for use only by WS-Notification applications” on

page 1116 to create a fully-configured WS-Notification service that contains two or more

WS-Notification service points on different servers.

2. Create a proxy server inside the cell on which the WS-Notification service is defined. After the proxy is

created you must configure it to route requests to the cluster, which might include configuring the

virtual host settings.

3. Ensure that the URL root of each endpoint accurately reflects the details of the proxy server, so that

applications requesting the WSDL for the service use the proxy server as the external entry point to

the service.

For information about how to do this, see one of the following topics:

1118 Administering WebSphere applications

friend.was/ae/tjpx_setupps.html
friend.was/ae/tcws_plugin_vhost.html
friend.was/ae/tcws_plugin_vhost.html

v For applications associated with Version 7.0 WS-Notification service points, see Using URL

resources within an application.

v For inbound services associated with Version 6.1 WS-Notification services, see “Modifying an

existing endpoint listener configuration” on page 1077.

Results

Requests for the notification broker service are automatically shared across the available servers. When

affinity with a particular server is established, for example by creating a subscription, information is stored

in the WS-Addressing endpoint reference given to the application client. Consequently, subsequent

requests that relate to that subscription are automatically returned to the same server.

Providing highly available (HA) topologies for WS-Notification

Configure a highly available (HA) server topology that supports clients connecting using the

WS-Notification standard.

About this task

WebSphere Application Server enables server topologies in which WS-Notification applications can

continue their operations with a different server in the event of a server failure. To achieve this topology

you configure a WebSphere Application Server proxy server as the central point to which applications

connect, providing it with knowledge of the clustered servers to which requests can be routed and how

they are affected by failover, in accordance with the High availability topology.

To configure a highly available (HA) server topology for WS-Notification, complete the following steps:

1. Create an application server cluster within a cell.

2. Create a service integration bus within the same cell.

3. Configure a WS-Notification service on the bus.

v For Version 7.0 WS-Notification services, see “Creating a new Version 7.0 WS-Notification service”

on page 1136.

v For Version 6.1 WS-Notification services, see “Creating a new Version 6.1 WS-Notification service”

on page 1143.

4. Add the cluster as a bus member.

5. Configure a “One of N” policy for the messaging engine in the cluster.

6. Add the server cluster as a WS-Notification service point by creating a new WS-Notification service

point and selecting the required bus member (that is, the server cluster) from the selection list.

v For Version 7.0 WS-Notification services, see “Creating a new Version 7.0 WS-Notification service

point” on page 1150.

v For Version 6.1 WS-Notification services, see “Creating a new Version 6.1 WS-Notification service

point” on page 1154.

7. Create a proxy server inside the cell on which the WS-Notification service is defined. After the proxy is

created you must configure it to route requests to the cluster, which might include configuring the

virtual host settings.

8. Ensure that the URL root of each endpoint accurately reflects the details of the proxy server, so that

applications requesting the WSDL for the service use the proxy server as the external entry point to

the service. This causes requests for the WS-Notification service point to follow the endpoint as it fails

across between servers in the cluster.

For information about how to do this, see one of the following topics:

v For applications associated with Version 7.0 WS-Notification service points, see Using URL

resources within an application.

v For inbound services associated with Version 6.1 WS-Notification services, see “Modifying an

existing endpoint listener configuration” on page 1077.

Chapter 5. Web services 1119

friend.was/ae/trun_wlm_cluster_v61.html
friend.was/ae/tjpx_setupps.html
friend.was/ae/tcws_plugin_vhost.html
friend.was/ae/tcws_plugin_vhost.html

Configuring a QoS-partitioned server topology for WS-Notification

Create multiple WS-Notification services and instantiate WS-Notification service points on different servers

in the cell depending upon the quality of service (QoS) that is required.

Before you begin

This task assumes that you, or your solution architect, have already designed a QoS-partitioned server

topology or designed a server topology for Web service qualities of service for WS-Notification, and you

therefore have a well-defined set of criteria for the different types of QoS that must be fulfilled by the

server topology, and a configuration design such that service integration bus topic spaces used by the

different brokers do not overlap in cases where applications with one QoS should be isolated from others.

About this task

WS-Notification enables partitioned topologies in which some servers provide a different quality of service

that can be utilized by customers of varying status. For example you might configure a cluster of servers

for use by a particular customer in order to provide enhanced HA facility or improved response times.

1. Configure a cell containing multiple servers that have the capability to support the QoS requirements.

2. Configure one or more service integration buses in the cell.

3. Learn about the options that exist for partitioning access to messaging resources and defining

non-overlapping WS-Notification services.

v You can define multiple WS-Notification services on a single service integration bus. By ensuring

that topic namespaces defined by the two (or more) services do not make use of the same service

integration bus topic spaces you can ensure that there is no possibility for communication between

the clients of respective WS-Notification services.

v You can also define multiple service integration buses and configure a single WS-Notification service

on each. The choice of which of these two options to utilize depends upon the existing messaging

infrastructure, and the enterprise’s policy towards creation of multiple service integration buses.

4. Allocate service integration bus members and WS-Notification service points to appropriate servers in

the cell in order to provide the required speed of response to requests. For example a faster response

time will require the elements to be deployed on faster (or less heavily loaded) hardware.

5. Configure appropriate advanced settings associated with the WS-Notification service point to provide

other QoS requirements such as security and reliability.

v For Version 7.0 WS-Notification service points, attach policy sets to the application associated with

the service point to provide these other QoS requirements. For example, the reliable secure profile

default policy sets (WS-I RSP and WS-I RSP ND) contain instances of the secure conversation and

reliable messaging policies that are configured to work together.

v For Version 6.1 WS-Notification service points, configure the inbound ports associated with the

service point to provide these other QoS requirements.

Securing WS-Notification

The WS-Notification security implementation requires that a user identity is flowed in requests for

WS-Notification services. This identity is used to authenticate the client application and check that the

client is authorized to invoke the requested operation, and to access the underlying service integration bus

topic spaces and topic resources.

About this task

WS-Notification uses the same mechanisms as other Web services to provide an authenticated identity.

For example WS-Security or HTTP Basic Authentication.

There are three parts to configuring secure access to WS-Notification:

v Securing the communication channel between the application and the server.

1120 Administering WebSphere applications

friend.was/ae/tagt_watch_cell.dita
friend.was/ae/twbs_wsspsmba.dita

v Authorizing the application to invoke the NotificationBroker.

v Authorizing the application to access the resources of the service integration bus.

If messaging security is enabled, and the WS-Security or HTTP Basic Authentication components are not

configured to flow a user identity in WS-Notification requests, then all such requests are treated as

unauthenticated and can only access messaging resources that are accessible by the WebSphere

Application Server “everyone” group.

1. Secure the communication between the application and the server:

a. Provide security for inbound requests and associated responses by configuring the WS-Notification

service point.

v For Version 7.0 WS-Notification service points, attach security-enabled policy sets to the

application associated with the service point. For Version 6.1 WS-Notification service points,

configure security for the inbound ports associated with the service point.

v If you are using SOAP over HTTP as the binding for your WS-Notification service point, modify it

to use SOAP over HTTPS as described in Configuring secure access to WS-Notification service

points using SOAP over HTTPS.

v If you are using SOAP over JMS as the binding (for Version 6.1 WS-Notification services),

configure the JMS connection factory used by the client application to use a secure

communication protocol to communicate with the JMS provider. Exactly how you do this

depends upon the JMS provider. If you are using the service integration bus as the JMS

provider, configure the client to use SSL to communicate with the server by setting the target

inbound transport chain to InboundSecureMessaging as described in How JMS applications

connect to a messaging engine on a bus and its related tasks.

b. Provide security for outbound requests (for example notifications from the server to subscribed

consumers) by configuring the WS-Notification service.

v For Version 7.0 WS-Notification services, the steps involved are similar to those for applying

security to JAX-WS Web service clients except that any binding or configuration created is

applied to the WS-Notification service. For more information, see Securing JAX-WS Web

services using message level security.

v For Version 6.1 WS-Notification services, the steps involved are similar to those for applying

security to service integration bus-enabled Web services outbound ports except that any binding

or configuration created is applied to the WS-Notification service. For more information, see

Securing bus-enabled Web services and its sub-topics, notably Invoking outbound services over

HTTPS.

c. You can also use WS-Security to sign or encrypt SOAP messages.

v For Version 7.0 WS-Notification services, see Signing and encrypting message parts using policy

sets.

v For Version 6.1 WS-Notification services, see Configuring secure transmission of SOAP

messages using WS-Security.

2. Authorize the application to invoke the NotificationBroker:

a. Configure the client application to provide an appropriate identity.

To authorize a Web service application to communicate with the server, the application must

identify itself as running as a particular authenticated identity. The mechanism for doing this

depends upon the type of Web service binding you are using:

v If you are using SOAP over HTTP Web service bindings, use either HTTP Basic Authentication

or WS-Security to provide the authenticated identity.

v If you are using SOAP over JMS Web service bindings (for Version 6.1 WS-Notification

services), use WS-Security to provide an authenticated identity.

b. Configure the server to authorize the client application identity to carry out the required operations.

Chapter 5. Web services 1121

friend.was/ae/twbs_wsspsmba.dita
friend.was/ae/twbs_wsspsmba.dita
friend.was/ae/twbs_securews.dita
friend.was/ae/twbs_securews.dita
friend.was/ae/twbs_wsspssemp.dita
friend.was/ae/twbs_wsspssemp.dita
friend.was/ae/twbs_auwschta.html
friend.was/ae/cwbs_highlvlarchwss.html
friend.was/ae/cwbs_highlvlarchwss.html

v For Version 7.0 WS-Notification services, you can use Web services policy sets such as the

“Username WS-I RSP default” or “Username WSSecurity default” policy sets to apply

authorization to the Web services that are deployed in the enterprise application associated with

a service point.

v For Version 6.1 WS-Notification services, you can apply authorization to the whole of an inbound

service (for example the NotificationBroker endpoint of a WS-Notification service point) as

described in Password-protecting inbound services, or configure authorization constraints

independently for each Web service operation as described in Password-protecting a Web

service operation.

3. Authorize the application to access the resources of the service integration bus.

Service integration bus security uses role-based authorization. When a user is assigned to a role, the

user is granted all of the permissions that the role contains. By administering authorization

permissions, you can control user access to a bus and to its resources when messaging security is

enabled.

a. Authorize the application identity to be able to connect to the service integration bus, as described

in “Administering the bus connector role” on page 1355.

b. When the application can connect to the bus, grant the application access to the appropriate

destinations on the bus.

You can determine which service integration bus topic spaces are required, by checking which

WS-Notification topic namespaces are used by the application then looking at the appropriate

WS-Notification permanent topic namespace to find the service integration bus topic space to

which it maps. You can then grant authorization (for example the Sender or Receiver roles) for the

authenticated identity to access that topic space as described in “Administering destination roles”

on page 1314.

c. After the client application has been authorized to access the appropriate topic space destination,

you might also need to authorize the client application to access the individual topics within the

topic space destination as described in “Administering topic roles” on page 1376.

For general information about configuring access to the service integration bus, see bus security.

Configuring JAX-WS handlers

A JAX-WS handler is a Java class that performs a range of handling tasks. For example: logging

messages, or transforming their contents, or terminating an incoming request. You can create JAX-WS

handlers, chain them together in the form of a handler list, then apply the handler list to a Version 7.0

WS-Notification service point (for inbound invocation handling) or WS-Notification service (for outbound

invocation handling).

About this task

The Java API for XML-based Web services (JAX-WS) provides you with a standard way of developing

interoperable and portable Web services. To create a JAX-WS handler, you can use a tool such as IBM

Rational Application Developer. To enable handlers to perform more complex operations, you chain them

together into handler lists. You associate each handler list with one or more Version 7.0 WS-Notification

services or service points, so that the handler list can monitor WS-Notification activity and take appropriate

action depending upon the sender and content of each inbound or outbound message.

Detailed instructions on how to configure JAX-WS handlers and handler lists for use with Version 7.0

WS-Notification services are provided in the following topics:

v Load JAX-WS handler classes.

v Create a new JAX-WS handler configuration.

v Modify an existing JAX-WS handler configuration.

v Delete JAX-WS handler configurations.

v Create a new JAX-WS handler list.

1122 Administering WebSphere applications

friend.was/ae/cwbs_wsspsps.dita

v Modify an existing JAX-WS handler list.

v Delete JAX-WS handler lists.

Applying a JAX-WS handler list to a WS-Notification service

To handle the messages that flow to and from an existing Version 7.0 WS-Notification service, you create

JAX-WS handlers, chain them together in the form of a handler list, then apply the handler list to a

NotificationBroker, PublisherRegistrationManager or SubscriptionManager endpoint at a Version 7.0

WS-Notification service point (for inbound invocation handling), or apply the handler list to a

WS-Notification service (for outbound invocation handling).

Before you begin

This task assumes that you have already created a Version 7.0 WS-Notification service.

About this task

To create a JAX-WS handler, you can use a tool such as IBM Rational Application Developer. To enable

handlers to perform more complex operations, you chain them together into handler lists. You associate

each handler list with one or more Version 7.0 WS-Notification services or service points, so that the

handler list can monitor WS-Notification activity and take appropriate action depending upon the sender

and content of each inbound or outbound message. For example:

v You can use a handler list on the NotificationBroker Web service to log all notification messages

received by this service point.

v You can use a handler list on a SubscriptionManager Web service to log all unsubscribe requests

received by this service point.

v You can use a handler list on a PublisherRegistrationManager Web service to log all publisher

deregistration requests received by this service point.

1. Create one or more JAX-WS handlers. You can do this using IBM Rational Application Developer or a

similar tool.

2. Load JAX-WS handler classes. A JAX-WS handler interacts with messages through a Version 7.0

WS-Notification service point (for inbound invocation handling) or WS-Notification service (for outbound

invocation handling), therefore you need to make the handler class available to the server or cluster

that hosts the WS-Notification service point or service that you want to monitor.

3. Create a new JAX-WS handler configuration by using the administrative console or by using the

createJAXWSHandler command. By creating a new handler configuration, you make WebSphere

Application Server aware of your handler, and you make the handler available for inclusion in one or

more handler lists.

4. Create a new JAX-WS handler list. The approach taken in WebSphere Application Server is to assign

handler lists (rather than individual handlers) to WS-Notification service points (for inbound invocation

handling) or WS-Notification services (for outbound invocation handling).

5. Optional: To apply a JAX-WS handler list to a service provider endpoint (NotificationBroker,

PublisherRegistrationManager or SubscriptionManager) associated with a service point, use the

administrative console to complete the following substeps:

a. Navigate to Service integration → WS-Notification → Services → service_name → [Additional

Properties] WS-Notification service points or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points. The WS-Notification service points [Collection] form is displayed. This form shows

all the service points configured for this Version 7.0 WS-Notification service.

b. In the content pane, click the name of a Version 7.0 WS-Notification service point in the list. The

current settings for this Version 7.0 WS-Notification service point are displayed in the

WS-Notification service points [Settings] form.

c. Apply the JAX-WS handler list by selecting it from the list box for one or more of the following

general properties:

Chapter 5. Web services 1123

NotificationBroker JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

PublisherRegistrationManager endpoint of the WS-Notification service point.

6. Optional: To apply a JAX-WS handler list to a WS-Notification service, use the administrative console

to complete the following substeps:

a. Navigate to Service integration → WS-Notification → Services or Service integration → Buses →

bus_name → [Services] WS-Notification services. The WS-Notification services [Collection] form

is displayed.

b. In the content pane, click the name of a Version 7.0 WS-Notification service in the list. The current

settings for this Version 7.0 WS-Notification service are displayed in the WS-Notification services

[Settings] panel.

c. Apply the JAX-WS handler list by selecting it from the list box for the following general property:

JAX-WS handler list

 The JAX-WS handler list that is applied to outbound requests from the WS-Notification

service.

Configuring a Version 7.0 WS-Notification service with Web service QoS

You use the administrative console to configure Web service qualities of service (QoS) such as reliability

or security by applying policy sets to a Version 7.0 WS-Notification service. The configuration of policy sets

for WS-Notification can be split into two types: service provider (for Version 7.0 WS-Notification service

points) and service client (for Version 7.0 WS-Notification service clients). Policy set configuration for these

two elements of a WS-Notification service is handled differently.

Before you begin

This task assumes that you have already designed a server topology for Web service qualities of service

for WS-Notification and created a Version 7.0 WS-Notification service. You must also have configured

policy sets that meet your quality of service requirements. You can reuse existing policy sets within your

organization, use the default policy sets provided by WebSphere Application Server, or create new policy

sets. For more information, see Managing policy sets using the administrative console.

About this task

Version 7.0 WS-Notification service points (NotificationBrokers, PublisherRegistrationManagers and

SubscriptionManagers) are implemented as JAX-WS applications that are deployed to servers or clusters,

and the management of the policy sets for these WS-Notification service points is configured using the

policy set administrative infrastructure for service providers (both panels and wsadmin commands). In the

Service provider [settings] panel for a WS-Notification service provider, there is a link to the associated

WS-Notification service point application. You can use the service provider settings panel to attach policy

sets to each NotificationBroker, PublisherRegistrationManager and SubscriptionManager.

Version 7.0 WS-Notification services are implemented as two configurable service clients

(OutboundNotificationService and OutboundRemotePublisherService) for each WS-Notification service.

Events that need outgoing Web service invocations occur at the service integration bus level rather than

the bus member level, even though notifications of the events occur within a particular bus member. The

two service clients that a WS-Notification service implements are therefore configured using the policy set

1124 Administering WebSphere applications

friend.was/ae/cwbs_wsspsps.dita
friend.was/ae/twbs_wsspsps.dita

administrative infrastructure for service clients. In the Service client policy sets and bindings [collection]

panel, the two service clients for a given WS-Notification service are listed in a tree structure, along with

their endpoints and operations. You can use this panel to attach policy sets to each service client, or to

both service clients for the WS-Notification service.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → Services or Service integration → Buses →

bus_name → [Services] WS-Notification services. The WS-Notification services [Collection] form is

displayed.

3. In the content pane, click the name of the Version 7.0 WS-Notification service to which to apply Web

service qualities of service. The current settings for this Version 7.0 WS-Notification service are

displayed in the WS-Notification services [Settings] panel.

4. Optional: To configure Web service QoS for inbound requests, apply policy sets to the service provider

applications (NotificationBroker, PublisherRegistrationManager and SubscriptionManager) associated

with a service point:

Click [Additional Properties] WS-Notification service points. The WS-Notification service points

[Collection] form is displayed. This form shows all the service points configured for this Version 7.0

WS-Notification service.

Repeat the following steps, as required, to configure the policy set and binding information for one or

more service provider applications for one or more service points:

a. In the content pane, click the name of a Version 7.0 WS-Notification service point in the list. The

current settings for this Version 7.0 WS-Notification service point are displayed in the

WS-Notification service points [Settings] form.

b. Click [Additional Properties] Policy set configuration. A link to each of the service provider

applications (NotificationBroker, PublisherRegistrationManager and SubscriptionManager) for this

service point is displayed in the Service provider [Collection] form.

c. Click the name of one of the applications. An indented list of endpoints and operations for this

service is displayed in the Service provider [settings] form.

d. Select one or more items in the list (service, endpoint or operations), then perform one of the three

available operations on the items you have selected:

v Attach policy set

v Detach policy set

v Assign binding

For more information, see Managing policy sets using the administrative console.

e. Restart the service provider application.

Note: When you modify an existing policy set that has already been associated with a

WS-Notification service point, there is no need to restart the service provider application;

this is done automatically by the policy set infrastructure.

5. Optional: To configure Web service QoS for outbound requests, apply policy sets to one or both of the

Web service clients associated with the WS-Notification service:

a. If necessary, navigate back to the WS-Notification services [Settings] panel for this Version 7.0

WS-Notification service.

b. Click [Additional Properties] Outbound request policy sets and bindings. The two service

clients for this WS-Notification service are listed in a tree structure, along with their endpoints and

operations, in the Service client policy set and bindings [collection] form.

c. Select one or both service clients, then perform one of the three available operations on the items

you have selected:

v Attach client policy set

v Detach client policy set

v Assign binding

Chapter 5. Web services 1125

friend.was/ae/uwbs_jaxwscell.dita
friend.was/ae/uwbs_jaxws.dita
friend.was/ae/twbs_wsspsps.dita
friend.was/ae/uwbs_clientpsbindings.dita

For WS-Notification service clients, policy set attachments are not supported at the endpoint (port)

or operation level. Therefore endpoints or operations are not selectable, and are shown as

inheriting any policy set or binding that is attached to the service client. For more information, see

Managing policy sets using the administrative console.

Note: Using the Service client policy set and bindings [collection] form, you can configure the

policy set and binding information for both service clients for the selected service.

Alternatively, you can configure the policy set and binding information for a single Version

7.0 WS-Notification service client by clicking Services → Service clients →

ws-notification_service_client_name and using the WS-Notification service client [settings]

panel. This panel also provides links to the associated service integration bus and

WS-Notification service.

d. Restart the application server.

Results

The WS-Notification service has been successfully enabled with the required Web service QoS.

Configuring WS-Notification for reliable notification

To ensure that WS-Notification Web service interactions are performed in a reliable way, you configure a

Version 7.0 WS-Notification service, JAX-WS client, and JAX-WS based WS-Notification consumer Web

service (through policy set functionality) to use WS-ReliableMessaging.

Before you begin

This task assumes that you have created a Version 7.0 WS-Notification service and service point, and that

you have created two JAX-WS applications:

v A JAX-WS client application, created from the WSDL of the new service point.

v A JAX-WS based WS-Notification consumer Web service.

For more information about how to create these applications, see “Using JAX-WS clients and Web

services with new Version 7.0 WS-Notification service points” on page 1130.

About this task

Reliable notification refers to the reliable transmission of messages to and from the IBM WS-Notification

implementation. You enable this reliability to mitigate the problems inherent in network transmission

protocols such as HTTP.

Note: This reliability does not include the behavior of the application server itself. For more information,

see WS-Notification and end-to-end reliability.

To enable reliable notification, you apply policy sets that include the WS-ReliableMessaging policy to the

service point, service client, and service consumer applications.

You can configure policy sets for JAX-WS clients for both application server and client environments,

including thin clients. For more information, see Managing policy sets using the administrative console.

1. Configure policy sets that meet your reliable messaging requirements.

You can reuse existing policy sets within your organization, use the WS-ReliableMessaging default

policy sets provided by WebSphere Application Server, or create new policy sets. For more

information, see Configuring a WS-ReliableMessaging policy set using the administrative console.

2. Configure the Version 7.0 WS-Notification service and service points for reliable notification.

Apply policy sets that include the WS-ReliableMessaging policy.

3. Configure the JAX-WS based WS-Notification client application so that it interacts reliably with its

target Web service using WS-ReliableMessaging.

1126 Administering WebSphere applications

friend.was/ae/twbs_wsspsps.dita
friend.was/ae/uwbs_clientpsbindings.dita
friend.was/ae/WSNClientWSAdminDetail_DetailForm.dita
friend.was/ae/twbs_wsspsps.dita
friend.was/ae/cwbs_wsspsrm.dita
friend.was/ae/cwbs_wsspsrm.dita
friend.was/ae/twbs_wsrm_policy_config.dita

Apply policy sets that include the WS-ReliableMessaging policy, as described in “Configuring a Version

7.0 WS-Notification service with Web service QoS” on page 1124 and Attaching and binding a

WS-ReliableMessaging policy set to a Web service application.

4. Configure the JAX-WS based WS-Notification consumer Web service application so that it interacts

reliably with clients that attempt to communicate with it.

Apply policy sets that include the WS-ReliableMessaging policy, as described in Attaching and binding

a WS-ReliableMessaging policy set to a Web service application.

5. Configure the WS-Notification client application (which has been configured to interact reliably) to

communicate with the WS-Notification service point (which has similarly been configured to receive

messages reliably).

6. Prompt the WS-Notification client application to subscribe on behalf on the (reliably configured)

WS-Notification consumer Web service.

Note: The WS-Notification consumer Web service might also act as a client to perform its own

subscription. This client would require additional policy set configuration if reliable interactions

were required.

7. Initiate notification message publications from the WS-Notification client application.

Results

The Version 7.0 WS-Notification service point receives the notification messages in a reliable way from the

WS-Notification client, and publishes the notification messages in a reliable way to the WS-Notification

consumer Web service.

Migrating a Version 6.1 WS-Notification configuration from WebSphere Application

Server Version 6.1 to Version 7.0

You can migrate an existing Version 6.1 WS-Notification configuration to run in a WebSphere Application

Server Version 7.0 environment.

Before you begin

This topic assumes that you have the following configuration:

v An existing server or cluster installation of WebSphere Application Server Version 6.1 that is ready for

migration, including at least one WS-Notification service, service point, and underlying service

integration bus.

v Existing subscriptions with associated messages pending notification.

v Existing operational WS-Notification client and Web service applications that are known to transmit and

receive notifications through the existing Version 6.1 WS-Notification service.

About this task

When you migrate your system from WebSphere Application Server Version 6.1 to Version 7.0, any

existing WS-Notification configuration (for example WS-Notification services, service points, administered

subscribers), and the associated service integration bus resources (for example inbound services and

endpoint listeners) are automatically migrated to valid configuration elements within the new installation.

The services and service points are migrated to Version 6.1 WS-Notification services and service points,

the endpoint URLs for the service points are unchanged, and the functionality supported is exactly the

same as in WebSphere Application Server Version 6.1. For example, reliable notification is not possible

with Version 6.1 WS-Notification services and service points.

Any messages pending notification are delivered following the update and server startup sequence.

Chapter 5. Web services 1127

friend.was/ae/twbs_wsrm_policy_attach_bind.dita
friend.was/ae/twbs_wsrm_policy_attach_bind.dita
friend.was/ae/twbs_wsrm_policy_attach_bind.dita
friend.was/ae/twbs_wsrm_policy_attach_bind.dita

Note: For network deployment scenarios where a deployment manager is upgraded to WebSphere

Application Server Version 7.0 before its federated servers, the federated servers are not available

as bus members for Version 7.0 WS-Notification service points.

1. Migrate your product configuration from WebSphere Application Server Version 6.1 to Version 7.0.

2. Check that notifications are being published and consumed correctly in your migrated system.

Initiate the program, process, or application that includes the WS-Notification client (or clients), and

that causes notifications to be requested and transmitted.

Results

The WS-Notification services and resources are migrated to Version 6.1 WS-Notification services and

resources that run under WebSphere Application Server Version 7.0. Any messages pending notification

are delivered.

What to do next

You are now ready (optionally) to prepare your migrated Version 6.1 WS-Notification configuration for

reliable notification.

Preparing a migrated Version 6.1 WS-Notification configuration for reliable

notification

You can gradually introduce JAX-WS based client and provider entities such that a migrated Version 6.1

WS-Notification configuration is ready to be configured for reliable notification.

Before you begin

This topic assumes that you have an existing server or cluster installation of WebSphere Application

Server Version 7.0, including at least one WS-Notification service, service point, and underlying service

integration bus that has been migrated to this version of the product as described in “Migrating a Version

6.1 WS-Notification configuration from WebSphere Application Server Version 6.1 to Version 7.0” on page

1127.

About this task

For reliable notification, you apply policy sets that include WS-ReliableMessaging to your WS-Notification

configuration. You can only use policy sets with Java API for XML-based Web services (JAX-WS)

applications, and with Version 7.0 WS-Notification services and service points.

The WS-Notification implementation in WebSphere Application Server Version 6.1 uses service integration

bus-enabled Web services to expose the WS-Notification service endpoint, so that it can be invoked by

applications and configured with specific attributes such as WS-Security or JAX-RPC handlers. However,

the Version 6.1 implementation is not compatible with JAX-WS handlers or applications, and it cannot

compose with WS-ReliableMessaging.

To prepare a migrated Version 6.1 WS-Notification configuration for reliable notification, you need to

recreate your Version 6.1 WS-Notification services and service points as Version 7.0 WS-Notification

services and service points, and recreate each JAX-RPC client application to which you want to apply a

policy set as a JAX-WS application. Note that you can continue to use JAX-RPC applications with Version

7.0 WS-Notification services and service points, and that you only need to recreate those applications that

need to work with policy sets.

For information about coding JAX-RPC and JAX-WS client applications to perform specific WS-Notification

tasks, see Developing applications that use WS-Notification. You might also find it useful to learn about

1128 Administering WebSphere applications

friend.was/ae/welc6topmigrating.html

JAX-WS and the JAX-WS client programming model. This should help you to determine the effort involved

in porting client code from JAX-RPC to JAX-WS, or to validate JAX-WS client to JAX-RPC Web service

interoperability.

To support a phased approach to preparing for reliable notification, and to describe the four main

configurations that you might want to achieve, this task is divided into four subtasks:

v “Using JAX-WS clients and Web services with migrated service points.”

v “Using JAX-RPC clients and Web services with new Version 7.0 WS-Notification service points.”

v “Using JAX-WS clients and Web services with new Version 7.0 WS-Notification service points” on page

1130.

v “Sharing notifications between Version 6.1 and Version 7.0 WS-Notification service points” on page

1131.

What to do next

When you have completed these subtasks, you have a collection of WS-Notification client and server

entities that are prepared for reliable notification, and you are ready to configure WS-Notification for

reliable notification.

Using JAX-WS clients and Web services with migrated service points:

1. Publish notification messages through a migrated Version 6.1 WS-Notification service point, from a

JAX-WS client application.

a. Create a JAX-WS WS-Notification client application using the WSDL of the migrated service point.

For more information, see Example: Publishing a WS-Notification message, Developing a JAX-WS

client from a WSDL file and “Publishing the WSDL files for a WS-Notification application to a ZIP

file” on page 1133.

b. Run the application.

c. Initiate one or more notification messages.

The system accepts and publishes the notification messages from the JAX-WS client.

2. Receive notification messages in a new JAX-WS based WS-Notification consumer application, from a

migrated Version 6.1 WS-Notification service point.

This validates that your Version 6.1 WS-Notification service point can deliver notifications to a JAX-WS

consumer Web service.

a. Create a new JAX-WS based WS-Notification consumer Web service from the standard

WS-Notification WSDL.

For more information, see Example: Subscribing a WS-Notification consumer, Developing Web

services applications from existing WSDL files with JAX-WS and “Publishing the WSDL files for a

WS-Notification application to a ZIP file” on page 1133.

b. Create a subscription for the new consumer service through the Version 6.1 WS-Notification

service point.

c. Prompt the WS-Notification service point to generate notifications (for example using a

WS-Notification client application).

The system transmits the notifications to the new JAX-WS consumer application correctly.

Using JAX-RPC clients and Web services with new Version 7.0 WS-Notification service points:

1. Create a new Version 7.0 WS-Notification service.

You can configure a Version 7.0 WS-Notification service and service points with policy sets to compose

with WS-ReliableMessaging for reliable notification. The system creates and configures a new Version

7.0 WS-Notification service. This includes the creation of a Version 7.0 WS-Notification service point

that exposes the service from a particular service integration bus member. Version 6.1 and Version 7.0

WS-Notification service points can coexist in WebSphere Application Server Version 7.0.

Chapter 5. Web services 1129

friend.was/ae/cwbs_jaxws.dita
friend.was/ae/cwbs_jaxwsclients.dita
friend.was/ae/twbs_jaxwsclientfromwsdl.dita
friend.was/ae/twbs_jaxwsclientfromwsdl.dita
friend.was/ae/twbs_devwbsjaxwswsdl.dita
friend.was/ae/twbs_devwbsjaxwswsdl.dita

2. Publish notification messages through the new Version 7.0 WS-Notification service point, from a

JAX-RPC client application.

This validates the behavior of the Version 7.0 WS-Notification service point.

a. Create the application using the WSDL of the new Version 7.0 WS-Notification service point.

For more information, see Example: Publishing a WS-Notification message, Developing client

bindings from a WSDL file for a JAX-RPC client and “Publishing the WSDL files for a

WS-Notification application to a ZIP file” on page 1133.

Note: Instead of creating a new JAX-RPC client application, you might choose to update an

existing JAX-RPC client application from the WSDL of the new service point. The WSDL for

a Version 7.0 WS-Notification service point contains a number of minor changes compared

to a Version 6.1 service point, so you need to modify your existing JAX-WS client

application to take account of these changes. Specifically, you need to regenerate the java

proxy classes from the WSDL, and update any use of class names and methods that have

changed. For example, there might be changes in the generated classes that include a port

type or service from the WSDL.

b. Run the application.

c. Initiate one or more notification messages.

The system accepts and publishes the notification messages from the JAX-RPC client.

3. Receive notification messages in a JAX-RPC based WS-Notification consumer application, from the

new Version 7.0 WS-Notification service point.

This validates that your Version 7.0 WS-Notification service point can deliver notifications to a

JAX-RPC consumer Web service.

a. Create a new JAX-RPC based WS-Notification consumer Web service from the standard

WS-Notification WSDL.

For more information, see Example: Subscribing a WS-Notification consumer, Developing Web

services applications from existing WSDL files with JAX-WS and “Publishing the WSDL files for a

WS-Notification application to a ZIP file” on page 1133.

Note: Instead of creating a new JAX-RPC consumer application, you can use an existing

JAX-RPC consumer application from (for example) a Version 6.1 WS-Notification

configuration.

b. Create a subscription for the new consumer service through the new Version 7.0 WS-Notification

service point.

c. Prompt the WS-Notification service point to generate notifications (for example using a

WS-Notification client application).

The system transmits the notifications to the new JAX-RPC consumer application correctly.

Using JAX-WS clients and Web services with new Version 7.0 WS-Notification service points:

Before you begin

Note that with this configuration you can compose with policy sets for reliable notification.

1. Publish notification messages through the new Version 7.0 WS-Notification service point, from a

JAX-WS client application.

a. Create a JAX-WS WS-Notification client application using the WSDL of the new Version 7.0

WS-Notification service point.

For more information, see Example: Publishing a WS-Notification message, Developing a JAX-WS

client from a WSDL file and “Publishing the WSDL files for a WS-Notification application to a ZIP

file” on page 1133.

Note: Instead of creating a new JAX-WS client application, you might choose to update the

JAX-WS client application that you created in the subtask “Using JAX-WS clients and Web

1130 Administering WebSphere applications

friend.was/ae/twbs_devclientbindings.dita
friend.was/ae/twbs_devclientbindings.dita
friend.was/ae/twbs_devwbsjaxwswsdl.dita
friend.was/ae/twbs_devwbsjaxwswsdl.dita
friend.was/ae/twbs_jaxwsclientfromwsdl.dita
friend.was/ae/twbs_jaxwsclientfromwsdl.dita

services with migrated service points” on page 1129. The WSDL for a Version 7.0

WS-Notification service point contains a number of minor changes compared to a Version

6.1 service point, so you need to modify your existing JAX-WS client application to take

account of these changes. Specifically, you need to regenerate the java proxy classes from

the WSDL, and update any use of class names and methods that have changed. For

example, there might be changes in the generated classes that include a port type or

service from the WSDL.

b. Run the application.

c. Initiate one or more notification messages.

The system accepts and publishes the notification messages from the JAX-WS client.

2. Receive notification messages in a new JAX-WS based WS-Notification consumer application, from a

new Version 7.0 WS-Notification service point.

This validates that your Version 7.0 WS-Notification service point can deliver notifications to a JAX-WS

consumer Web service.

a. Create a new JAX-WS based WS-Notification consumer Web service from the standard

WS-Notification WSDL.

For more information, see Example: Subscribing a WS-Notification consumer, Developing Web

services applications from existing WSDL files with JAX-WS and “Publishing the WSDL files for a

WS-Notification application to a ZIP file” on page 1133.

Note: Instead of creating a new JAX-WS consumer application, you might choose to update the

JAX-WS consumer application that you created in the subtask “Using JAX-WS clients and

Web services with migrated service points” on page 1129. The WSDL for a Version 7.0

WS-Notification service point contains a number of minor changes compared to a Version

6.1 service point, so you need to modify your existing JAX-WS client application to take

account of these changes. Specifically, you need to regenerate the java proxy classes from

the WSDL, and update any use of class names and methods that have changed. For

example, there might be changes in the generated classes that include a port type or

service from the WSDL.

b. Create a subscription for the new consumer service through the new Version 7.0 WS-Notification

service point.

c. Prompt the WS-Notification service point to generate notifications (for example using a

WS-Notification client application).

The system transmits the notifications to the new JAX-WS consumer application correctly.

Sharing notifications between Version 6.1 and Version 7.0 WS-Notification service points:

About this task

You can configure WS-Notification so that notifications received through migrated Version 6.1

WS-Notification service points are published through the new Version 7.0 service. You might want to do

this so that (for example) you can receive notifications through existing, unreliable connections then

publish them through new connections made reliable through WS-ReliableMessaging. To enable this

configuration, the new Version 7.0 WS-Notification service needs to use the same service integration bus

topic space as the migrated Version 6.1 WS-Notification service. You use a permanent topic namespace to

statically define the association between a WS-Notification topic namespace URI and a service integration

bus topic space destination. You configure a permanent topic namespace as a property of a

WS-Notification service.

1. Discover which bus topic spaces the migrated Version 6.1 WS-Notification service is using. If none,

create a new permanent topic namespace to connect to a bus topic space. For more information, see

“Modifying a Version 6.1 WS-Notification service” on page 1147.

2. Create a new permanent topic namespace for the new Version 7.0 WS-Notification service, that

connects to the same bus topic space. For more information, see “Modifying a Version 7.0

WS-Notification service” on page 1140.

Chapter 5. Web services 1131

friend.was/ae/twbs_devwbsjaxwswsdl.dita
friend.was/ae/twbs_devwbsjaxwswsdl.dita

Results

Notifications received by either the new or migrated service point are now published to subscriptions made

on either WS-Notification service.

Interacting at run time with WS-Notification

View (and in some cases delete) at run time the active items associated with WS-Notification service

points.

Before you begin

This task assumes that you have a fully configured and operational WS-Notification service point.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

members associated with the WS-Notification service point to connect to the WS-Notification service. The

existence of a WS-Notification service point on a bus member implies that a WS-Notification Web service

is exposed from that bus member, and causes Web service endpoints for the notification broker,

subscription manager and publisher registration manager for this WS-Notification service to be exposed on

the bus member with which the service point is associated. WS-Notification applications use these

endpoints to interact with the WS-Notification service.

You can use the administrative console to interact at run time with the following active items associated

with WS-Notification service points:

Publisher registrations

A runtime list of existing publisher registrations is provided. This includes, for each publisher

registration, the information that was used to create it and when it will terminate.

Pull points

A runtime list is provided of the pull points that have been created. This includes, for each pull

point, its current termination time and a link to the associated subscription.

Subscriptions

A runtime view is provided for subscriptions that have been created by applications. This includes,

for each subscription, the information that was used to create it and an indication of its current

state.

Administered subscribers

A runtime list is provided of the administered subscribers for a given WS-Notification service point.

This includes, for each administered subscriber, an indication of its current state; for example

whether the subscription was successfully initialized at start time.

For each WS-Notification service point, runtime information is available for subscriptions, registrations,

pull points and administered subscribers. For each WS-Notification service, runtime information is

available - aggregated for all service points for the service - for subscriptions, registrations and pull points.

There is no aggregated view for administered subscribers at the WS-Notification service level.

To access and use the runtime information for active items associated with WS-Notification service points,

use the administrative console to complete the following steps:

1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service

integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

1132 Administering WebSphere applications

service points → point_name, then click the Runtime tab. A panel is displayed that contains links

to runtime information about subscriptions, registrations, pull points and administered subscribers

for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate

to either Service integration → WS-Notification → Services → service_name or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name then

click the Runtime tab. A panel is displayed that contains links to runtime information about

subscriptions, registrations and pull points for this WS-Notification service.

2. Click Subscriptions , Publisher registrations, Pull points or (for a particular service point)

Administered subscribers.

v If you click Subscriptions, a panel is displayed that lists the durable subscriptions that have been

created by a WS-Notification service point in response to “Subscribe” requests from WS-Notification

applications. You can view the subscription name (ID), topic and other information associated with

the subscription, and you can view messages held on the durable subscription pending delivery. You

can also delete subscriptions.

Note: Both the WS-Notification subscription and publisher registration resources include the

concept of scheduled termination, in which the application indicates a period of time after

which the resource is destroyed. “Badly-behaved” in this case describes an application that

requests an infinite lifetime for a resource and then does not explicitly delete the resource

before it goes away (never to return).

v If you click Publisher registrations, a panel is displayed that lists the publisher registrations that

are currently in effect on this WS-Notification service or service point (that is, applications that have

registered as publishers). You can view the basic properties of the registration record. You can also

delete a publisher registration record.

v If you click Pull points, a panel is displayed that lists the pull points that are currently active on this

WS-Notification service or service point. You can view basic properties of the pull point such as the

subscription with which it is associated and the time at which it is currently set to expire, and you

can navigate to the associated subscriptions where appropriate. You can also delete pull points.

v For a particular service point, if you click Administered subscribers, a panel is displayed that lists

the administered subscribers that are currently in effect on this WS-Notification service point. You

can use this information to see whether a given subscriber has been successfully initialized.

What to do next

For more detailed information about working with individual runtime panels, see the following topics:

v “Listing or deleting active WS-Notification subscriptions” on page 1174.

v “Listing or deleting active WS-Notification publisher registrations” on page 1176.

v “Listing or deleting active WS-Notification pull points” on page 1177.

v “Listing active WS-Notification administered subscribers” on page 1178.

Publishing the WSDL files for a WS-Notification application to a ZIP file

Use the administrative console to download a zip file that contains a WS-Notification application’s

published WSDL files.

About this task

The ability to publish these WSDL files to a ZIP file is particularly useful in the following circumstances:

v Writing a WS-Notification application that invokes Web service operations against the NotificationBroker

application, as described in Writing a WS-Notification application that does not expose a Web service

endpoint.

Chapter 5. Web services 1133

v Viewing the endpoint URLs to which WS-Notification applications connect, by looking in the WSDL file

for the NotificationBroker application for Version 7.0 services, or the inbound service for Version 6.1

services.

1. Start the administrative console.

2. Navigate to the “Publish WSDL files to ZIP file [Settings]” form for the WS-Notification application.

For Version 7.0 WS-Notification services, click one of the following paths:

v Service integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name → [Additional Properties] Publish WSDL files to

zip

v Service integration → Buses → bus_name → [Services] WS-Notification services → service_name

→ [Additional Properties] WS-Notification service points → point_name → [Additional

Properties] Publish WSDL files to zip

For Version 6.1 WS-Notification services, click one of the following paths:

v Service integration → WS-Notification → Services → service_name → [Related Items] Notification

broker inbound service settings → [Additional Properties] Publish WSDL files to ZIP file

v Service integration → Buses → bus_name → [Services] WS-Notification services → service_name

→ [Related Items] Notification broker inbound service settings → [Additional Properties]

Publish WSDL files to ZIP file

3. Click on the file name to download a zip file that contains the application’s published WSDL files.

Configuring WS-Notification resources

You can configure individual WS-Notification resources by using the administrative console or by using the

wsadmin tool.

About this task

To complete the tasks described in “Accomplishing common WS-Notification tasks” on page 1108, you

configure the following types of WS-Notification resource:

v WS-Notification service

v WS-Notification service point

v WS-Notification administered subscriber

v Permanent WS-Notification topic namespace

v WS-Notification topic namespace document

You can configure individual WS-Notification resources by using the administrative console or by using the

wsadmin tool, as described in the following tasks:

v “Configuring WS-Notification resources by using the administrative console.”

v WSNotificationCommands command group for the AdminTask object.

v “Interacting at run time with WS-Notification” on page 1132.

Configuring WS-Notification resources by using the administrative console

Use the administrative console to configure individual WS-Notification services, service points,

administered subscribers, permanent topic namespaces, topic namespace documents and JAX-WS

handlers.

Before you begin

Decide on which method you want to use to configure these resources. You can configure WS-Notification

resources by using the administrative console as described in this task, or by using the commands in the

WSNotificationCommands command group for the AdminTask object.

1134 Administering WebSphere applications

About this task

WS-Notification enables Web services to use the “publish and subscribe” messaging pattern. For more

information, see WS-Notification: Overview and “Learning about WS-Notification” on page 1110.

For high-level configuration of WS-Notification, see “Accomplishing common WS-Notification tasks” on

page 1108. Use the steps for this task to configure individual instances of each type of WS-Notification

resource.

You access the WS-Notification panels through the Service integration section of the administrative

console navigation pane:

v To see a list of all the WS-Notification services within the cell, click Service integration →

WS-Notification → Services.

v To see a list of all the WS-Notification services for a particular service integration bus, click Service

integration → Buses → bus_name → [Services] WS-Notification services.

To support the Java API for XML-based Web services (JAX-WS) and composition with

WS-ReliableMessaging, you create your WS-Notification services as JAX-WS applications. The

implementation of WS-Notification in WebSphere Application Server Version 6.1 uses JAX-RPC

applications, so there are now two different implementations of the WS-Notification service and service

point:

v Version 7.0: You configure a Version 7.0 WS-Notification service and service points if you want to

compose a JAX-WS WS-Notification service with WS-ReliableMessaging, or if you want to apply

JAX-WS handlers to your WS-Notification service. This is the recommended type of service for new

deployments.

v Version 6.1: You configure a Version 6.1 WS-Notification service and service points if you want to

expose a JAX-RPC WS-Notification service using the same technology provided in WebSphere

Application Server Version 6.1, including the ability to apply JAX-RPC handlers to the service.

To configure specific WS-Notification resources, use the administrative console to complete any of the

following tasks:

v Configure a WS-Notification service.

Complete any of the following tasks:

– Create a new Version 7.0 WS-Notification service.

– Modify a Version 7.0 WS-Notification service.

– Create a new Version 6.1 WS-Notification service.

– Modify a Version 6.1 WS-Notification service.

– Delete WS-Notification services.

v Configure a WS-Notification service point.

Complete any of the following tasks:

– Create a new Version 7.0 WS-Notification service point.

– Modify a Version 7.0 WS-Notification service point.

– Create a new Version 6.1 WS-Notification service point.

– Modify a Version 6.1 WS-Notification service point.

– Delete WS-Notification service points.

v Configure a WS-Notification administered subscriber.

Complete any of the following tasks:

– Create a new WS-Notification administered subscriber.

– Modify a WS-Notification administered subscriber.

– Delete WS-Notification administered subscribers.

Chapter 5. Web services 1135

v Configure a permanent WS-Notification topic namespace.

Complete any of the following tasks:

– Create a new permanent WS-Notification topic namespace.

– Show the properties of a permanent WS-Notification topic namespace.

– Delete WS-Notification permanent topic namespaces.

v Configure a WS-Notification topic namespace document.

Complete any of the following tasks:

– Apply a WS-Notification topic namespace document.

– Show the contents of a WS-Notification topic namespace document.

– Delete WS-Notification topic namespace documents.

v Configure JAX-WS handlers and handler lists.

Complete any of the following tasks:

– Load JAX-WS handler classes.

– Create a new JAX-WS handler configuration.

– Modify an existing JAX-WS handler configuration.

– Delete JAX-WS handler configurations.

– Create a new JAX-WS handler list.

– Modify an existing JAX-WS handler list.

– Delete JAX-WS handler lists.

Creating a new Version 7.0 WS-Notification service:

Create a new WS-Notification service and the associated objects that form the infrastructure of the

WS-Notification configuration. You configure a Version 7.0 WS-Notification service and service points if you

want to compose a JAX-WS WS-Notification service with WS-ReliableMessaging, or if you want to apply

JAX-WS handlers to your WS-Notification service. This is the recommended type of service for new

deployments.

 Before you begin

Decide on which method you want to use to configure these resources. You can create a new Version 7.0

WS-Notification service by using the administrative console as described in this task, or by using the

createWSNService command.

This task assumes that you have an existing service integration bus, configured with at least one bus

member.

You usually configure one WS-Notification service for a service integration bus, but you can configure

more than one. For more information, see Reasons to create multiple WS-Notification services in a bus.

Defining a Version 7.0 WS-Notification service is not the same as exposing a NotificationBroker (WSDL)

port to which Web services applications can connect. To do this, create one or more Version 7.0

WS-Notification service points as described in this task.

About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on

a service integration bus for use by WS-Notification applications.

1136 Administering WebSphere applications

To support the Java API for XML-based Web services (JAX-WS) and composition with

WS-ReliableMessaging, you create your WS-Notification services as JAX-WS applications, then use this

task to create a Version 7.0 WS-Notification service, one or more service points, and (optionally) a

permanent topic namespace.

You can also apply JAX-WS handler lists to WS-Notification service points (for inbound invocation

handling) and WS-Notification services (for outbound invocation handling).

When you create a Version 7.0 WS-Notification service, the wizard creates and deploys a JAX-WS based

provider application. This application exposes the WS-Notification Web service interfaces for each of the

three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

 1. Start the administrative console.

 2. Navigate to Service integration → WS-Notification → Services or Service integration → Buses →

bus_name → [Services] WS-Notification services. The WS-Notification services [Collection] form is

displayed.

 3. In the content pane, click New. The “New WS-Notification service” wizard is displayed. For more

information about the properties that you set with the wizard, see WS-Notification services [Settings].

 4. Step 1: Configure name, description, service integration bus and dynamic topic namespace settings.

a. Enter your chosen name and an optional description.

The name forms part of the endpoint on which the service is exposed (that is, the URL used to

access the WS-Notification service points that are defined under the service). For Version 6.1

WS-Notification services, the service name is unique within a bus. For Version 7.0 WS-Notification

services, the service name is unique within the cell - which matches the administration model

used for policy sets, and therefore supports composition of Version 7.0 WS-Notification services

with WS-ReliableMessaging.

b. Select or deselect the option Enable dynamic topic namespaces?.

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.

That is, whether this service allows dynamic topic namespaces to be created at run time. For

more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a

particular WS-Notification service (for example for security or auditing requirements). If you

deselect this option, any applications that connect to the WS-Notification service and request

topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message

reliability setting of reliable persistent. If this value is not acceptable, create a permanent topic

namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed by

a service integration bus topic space that is created automatically when you create the

topic namespace. The syntax of topics used within this topic space is internal to the

WS-Notification service implementation.

c. Select or deselect the option Requires registration.

Indicates whether publisher applications are required to register with the broker before they can

publish notifications.

d. Select a service integration bus from the selection list.

e. Click Next.

 5. Step 2: Select WS-Notification service type.

Select Version 7.0 as the type of service that you want to create.

Chapter 5. Web services 1137

6. Step 3: Configure handler and web service policy settings.

These settings are applied to the event notifications exchanged with WS-Notification client

applications.

a. Optional: Choose a JAX-WS handler list.

The JAX-WS handler list that is applied to outbound requests from the WS-Notification service. A

handler list defines the handlers that are applied when making outbound Web service invocations,

for example monitoring outbound event notification (in response to a subscribe operation) and

controlling demand-based publishers (subscribe, pause and resume). For more information about

handler lists, see “Configuring JAX-WS handlers” on page 1122.

b. Enable or clear the Query WSDL option.

Indicates whether or not the Version 7.0 WS-Notification service queries the WSDL of other

WS-Notification Web services when interacting with them. By default, this option is enabled. By

clearing this option, you can improve performance by avoiding expensive WSDL queries.

However, please note the following considerations when WSDL querying is not enabled:

v WS-Notification attempts to discover binding information (which is normally discovered through

the WSDL) using other means. WS-Notification uses the SOAP version associated with the

WS-Notification service point where subscriptions were made (by other Web services), or

where administered subscriptions were created (by an administrator).

v There are some circumstances in which WS-Notification might be unable to determine binding

information. This can happen when cleaning up subscriptions where the associated service

point has been deleted and configuration information is no longer available. Under these

circumstances WS-Notification makes a “best guess” at binding information to use to clean up

the subscriptions.

v There is one scenario where incorrect binding information is used. That is, when a subscriber

subscribes using a particular SOAP binding, on behalf of a NotificationConsumer that expects

notifications using a different SOAP binding.

c. Enter a dynamic topic space name.

The name of the service integration bus topic space to be used as the dynamic topic space for

this WS-Notification service. That is, the name of the bus topic space that is used to host the

ad-hoc topic namespace, and to host dynamic topic namespaces if they are permitted. A default

name of WSN_dynamic_this_service_name is offered.

d. Click Next.

 7. Step 4: Create WS-Notification service points.

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

members associated with the WS-Notification service point to connect to the WS-Notification service.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification Web

service is exposed from that bus member, and causes Web service endpoints for the notification

broker, subscription manager and publisher registration manager for this WS-Notification service to be

exposed on the bus member with which the service point is associated. WS-Notification applications

use these endpoints to interact with the WS-Notification service. For more information, see

WS-Notification service point.

a. Select Yes to create a new WS-Notification service point, then click Next.

A WS-Notification service must have at least one service point.

b. Supply a name and (optional) description for the WS-Notification service point, and from the

selection list select the bus member on which the service point is to be configured, then click

Next.

The service point name forms part of the URL used to access the service point. On a single

server system there is only one bus member in the list.

c. Select the transport settings for the new service point.

1138 Administering WebSphere applications

Service point accessed via HTTP proxy

If the service point is accessed through a proxy, enable the check box, and type the root

of the externally visible endpoint address URL for Web services accessed using this

endpoint.

 The URL for the proxy is used to populate the WSDL endpoint address fields when

publishing WSDL files to a zip file.

SOAP Version

Select the version of SOAP that is supported by the service point. This affects the WSDL

definition that is exposed by the Web service.

d. Optional: Select the JAX-WS handler list settings for the new service point.

NotificationBroker JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

PublisherRegistrationManager endpoint of the WS-Notification service point.

e. Click Next. The new service point is added to the list of service points for this WS-Notification

service.

f. Optional: To create another service point, repeat the previous substeps.

g. When you have finished creating service points for this WS-Notification service, select No for the

option to create another service point, then click Next.

 8. Optional: Step 5: Create permanent topic namespaces.

For more information, see Permanent topic namespace. When you create a new WS-Notification

permanent topic namespace, you specify the namespace and associate it with one of the service

integration bus topic spaces configured on the bus on which the parent WS-Notification service is

defined. You cannot modify a permanent topic namespace after it has been created, other than to

apply or remove topic namespace documents.

a. Select Yes to create a new permanent topic namespace, then click Next.

b. Enter a name for the permanent topic namespace.

This is the URI by which WS-Notification applications refer to topics hosted by this namespace.

c. Associate this new permanent topic namespace with the service integration bus topic space that

you want to use to publish and receive messages.

From the service integration bus topic space selection list, complete one of the following actions:

v Choose the name of an existing bus topic space.

v Choose the option to Create a new topic space, then enter a name for the new topic space.

d. Select from the selection list the service integration bus reliability (quality of service) that is

assigned to messages published using this topic namespace.

You can choose one of five values, each representing one of the service integration bus message

reliability levels. The default value is reliable persistent, which is the value used by default for

JMS Persistent messages.

e. Click Next.

The new permanent topic namespace is added to a list of permanent topic namespaces for this

Version 7.0 WS-Notification service, and you are asked whether you want to create another

permanent topic namespace (default is Yes).

Chapter 5. Web services 1139

f. Optional: To create another permanent topic namespace, repeat the previous substeps.

g. When you have finished creating permanent topic namespaces for this Version 7.0

WS-Notification service, select No for the option to create another permanent topic namespace,

then click Next.

 9. Step 6: Summary.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If

the processing completes successfully, the list of Version 7.0 WS-Notification services is updated to

include the new Version 7.0 WS-Notification service. Otherwise, an error message is displayed.

10. Save your changes to the master configuration.

11. Optional: Restart the server if either of the following conditions apply:

v A new bus or new bus member has been created as part of this task.

v Configuration reload is not enabled for the bus.

What to do next

To perform advanced configuration tasks for this WS-Notification service (for example, adding additional

service points and applying topic namespace documents to permanent topic namespaces), see “Modifying

a Version 7.0 WS-Notification service.”

To perform advanced configuration tasks for the WS-Notification service point that you created as part of

this task (for example, adding administered subscribers, publishing WSDL files to zip, and configuring the

enterprise application associated with this service point), see “Modifying a Version 7.0 WS-Notification

service point” on page 1151.

To configure this WS-Notification service or service point with Web service qualities of service (QoS) such

as reliability or security, see “Configuring a Version 7.0 WS-Notification service with Web service QoS” on

page 1124.

Modifying a Version 7.0 WS-Notification service:

Modify the description, Enabled dynamic topic namespaces?, Requires registration, JAX-WS

handler list and Query WSDL properties of a Version 7.0 WS-Notification service, and follow links to

complete advanced configuration such as adding additional WS-Notification service points, applying topic

namespace documents to permanent topic namespaces, and applying policy sets to enable

WS-ReliableMessaging.

 About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on

a service integration bus for use by WS-Notification applications.

A handler list defines the handlers that are applied when making outbound Web service invocations, for

example monitoring outbound event notification (in response to a subscribe operation) and controlling

demand-based publishers (subscribe, pause and resume).

When you create a Version 7.0 WS-Notification service, the wizard creates and deploys a JAX-WS based

provider application. This application exposes the WS-Notification Web service interfaces for each of the

three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

1140 Administering WebSphere applications

You can also configure custom properties to specify a timeout time for outbound requests, and to

determine the strictness of the syntax checking of topics used under this Version 7.0 WS-Notification

service.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → Services or Service integration → Buses →

bus_name → [Services] WS-Notification services. The WS-Notification services [Collection] form is

displayed.

3. In the content pane, click the name of a Version 7.0 WS-Notification service in the list. The current

settings for this Version 7.0 WS-Notification service are displayed in the WS-Notification services

[Settings] panel.

4. Modify the following general properties:

Description

An optional description of the WS-Notification service.

Enable dynamic topic namespaces?

 Indicates whether dynamic topic namespaces can be used within the WS-Notification service.

That is, whether this service allows dynamic topic namespaces to be created at run time. For

more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a

particular WS-Notification service (for example for security or auditing requirements). If you

deselect this option, any applications that connect to the WS-Notification service and request

topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message

reliability setting of reliable persistent. If this value is not acceptable, create a permanent

topic namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed

by a service integration bus topic space that is created automatically when you create

the topic namespace. The syntax of topics used within this topic space is internal to the

WS-Notification service implementation.

Requires registration

Indicates whether publisher applications are required to register with the broker before they

can publish notifications.

JAX-WS handler list

 The JAX-WS handler list that is applied to outbound requests from the WS-Notification service.

A handler list defines the handlers that are applied when making outbound Web service

invocations, for example monitoring outbound event notification (in response to a subscribe

operation) and controlling demand-based publishers (subscribe, pause and resume). For more

information about handler lists, see “Configuring JAX-WS handlers” on page 1122.

Query WSDL

 Indicates whether or not the Version 7.0 WS-Notification service queries the WSDL of other

WS-Notification Web services when interacting with them. By default, this option is enabled. By

clearing this option, you can improve performance by avoiding expensive WSDL queries.

However, please note the following considerations when WSDL querying is not enabled:

v WS-Notification attempts to discover binding information (which is normally discovered

through the WSDL) using other means. WS-Notification uses the SOAP version associated

with the WS-Notification service point where subscriptions were made (by other Web

services), or where administered subscriptions were created (by an administrator).

v There are some circumstances in which WS-Notification might be unable to determine

binding information. This can happen when cleaning up subscriptions where the associated

Chapter 5. Web services 1141

service point has been deleted and configuration information is no longer available. Under

these circumstances WS-Notification makes a “best guess” at binding information to use to

clean up the subscriptions.

v There is one scenario where incorrect binding information is used. That is, when a

subscriber subscribes using a particular SOAP binding, on behalf of a NotificationConsumer

that expects notifications using a different SOAP binding.

5. Modify the additional properties:

WS-Notification service points

Select this link to configure the deployment of WS-Notification service points on one or more

servers. For more information, see “Creating a new Version 7.0 WS-Notification service point”

on page 1150 or “Modifying a Version 7.0 WS-Notification service point” on page 1151.

Permanent topic namespaces

Select this link to configure permanent topic namespaces for the WS-Notification service. For

more information, see Permanent topic namespace. When you create a new WS-Notification

permanent topic namespace, you specify the namespace and associate it with one of the

service integration bus topic spaces configured on the bus on which the parent WS-Notification

service is defined. You cannot modify a permanent topic namespace after it has been created,

other than to apply or remove topic namespace documents.

Custom properties

Select this link to configure additional custom properties for this WS-Notification service. These

custom properties are name and value pairs that you can use to set internal system

configuration properties. In each pair, the name is a property key and the value is a string

value.

 To specify a timeout time for outbound requests sent from this WS-Notification service, set the

following custom property:

outbound.timeout

The value of this property is the timeout time in milliseconds. If the property is not set, a

default timeout of 2 minutes is used.

To determine the strictness of the syntax checking of topics used under this WS-Notification

service, set the following custom property:

com.ibm.ws.sib.wsn.strictTopicChecking

Valid values for this property are TRUE and FALSE:

v If the property value is set to TRUE, the topic syntax rules defined in the WS-Topics

standard are strictly enforced. Note that there is a performance overhead compared to the

default setting, because each character of a topic is validated against a large list of

permitted Unicode characters.

v If the property is omitted or set to FALSE, syntax checking only ensures that the basic topic

structure is valid, and character checking is relaxed to allow any character exception “*” and

“.” as a topic name part.

Outbound request policy sets and bindings

The outbound request policy sets and bindings for the two WS-Notification service clients

associated with this WS-Notification service. For reliable Web service transmission of

notification messages, use this option to associate the WS-Notification service client with a

policy set that enables WS-ReliableMessaging.

 For more information, see “Configuring a Version 7.0 WS-Notification service with Web service

QoS” on page 1124.

6. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification

services is redisplayed. Otherwise, an error message is displayed.

1142 Administering WebSphere applications

friend.was/ae/uwbs_clientpsbindings.dita

7. Save your changes to the master configuration. You need not restart the server for the changes to fully

take effect if configuration reload is enabled for the service integration bus.

Deleting WS-Notification services:

Remove all configuration associated with one or more WS-Notification services. A WS-Notification service

provides access to service integration bus resources for Web services publish and subscribe clients.

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WS-Notification

service by using the administrative console as described in this task, or by using the deleteWSNService

command.

About this task

When you delete a Version 6.1 WS-Notification service, the associated inbound services and inbound

ports are also deleted. The associated endpoint listeners are deleted if they were created in the process of

creating a WS-Notification service point and are not used by any other configuration object. When you

delete a Version 7.0 WS-Notification service, the associated service point provider applications and service

points are also deleted. Do not delete these resources manually, because this might leave the associated

configuration information in an inconsistent state.

For both types of WS-Notification service, you choose whether or not the associated service integration

bus topic spaces are deleted.

1. Start the administrative console.

2. In the navigation pane, click Service integration → WS-Notification → Services or Service

integration → Buses → bus_name → [Services] WS-Notification services. A list of all the

WS-Notification services is displayed in a WS-Notification services [Collection] form.

3. Select the check box for every WS-Notification service that you want to remove.

4. Click Delete. A panel is displayed asking if the service integration bus topic spaces associated with the

WS-Notification service (including those associated with all the WS-Notification topic namespaces)

should also be deleted.

5. Optional: Select the check box if you want to delete the associated service integration bus topic

spaces.

Note: Deleting a service integration bus topic space causes exception messages to be generated for

WS-Notification applications that reference the topic space, as described in Failures as a result

of changes in topic space and topic namespace configurations.

6. Click Delete. If the processing completes successfully, the list of WS-Notification services is updated.

Otherwise, an error message is displayed.

7. Save your changes to the master configuration.

Creating a new Version 6.1 WS-Notification service:

Create a new WS-Notification service and the associated objects that form the infrastructure of the

WS-Notification configuration. You configure a Version 6.1 WS-Notification service and service points if you

want to expose a JAX-RPC WS-Notification service using the same technology provided in WebSphere

Application Server Version 6.1, including the ability to apply JAX-RPC handlers to the service.

Chapter 5. Web services 1143

Before you begin

Ensure that you have successfully configured an SDO repository, as described in “Installing and

configuring the SDO repository” on page 1033. The SDO repository is used to store WSDL documents

during the creation of the WS-Notification service. If you do not configure the repository, an error message

appears when you create the service.

Decide on which method you want to use to configure these resources. You can create a new Version 6.1

WS-Notification service by using the administrative console as described in this task, or by using the

createWSNService command.

This task assumes that you have an existing service integration bus, configured with at least one bus

member.

You usually configure one WS-Notification service for a service integration bus, but you can configure

more than one. For more information, see Reasons to create multiple WS-Notification services in a bus.

Defining a WS-Notification service on a bus is not the same as exposing a NotificationBroker (WSDL) port

to which Web services applications can connect. To do this, create one or more WS-Notification service

points as described in this task.

About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on

a service integration bus for use by WS-Notification applications.

A JAX-RPC handler list and WS-Security bindings define the parameters and security policy that are used

when making outbound Web service invocations, for example monitoring outbound event notification (in

response to a subscribe operation) and controlling demand-based publishers (subscribe, pause and

resume).

When you create a Version 6.1 WS-Notification service, the wizard configures three service integration bus

inbound services for the WS-Notification service, one for each of the three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

These inbound services are defined on the same service integration bus as the Version 6.1

WS-Notification service, and each of these inbound services refers to the same bus destination.

 1. Start the administrative console.

 2. Navigate to Service integration → WS-Notification → Services or Service integration → Buses →

bus_name → [Services] WS-Notification services. The WS-Notification services [Collection] form is

displayed.

 3. In the content pane, click New. The “New WS-Notification service” wizard is displayed. For more

information about the properties that you set with the wizard, see WS-Notification services [Settings].

 4. Step 1: Configure name, description, service integration bus and dynamic topic namespace settings.

a. Enter your chosen name and an optional description.

The name forms part of the endpoint on which the service is exposed (that is, the URL used to

access the WS-Notification service points that are defined under the service). For Version 6.1

WS-Notification services, the service name is unique within a bus. For Version 7.0 WS-Notification

services, the service name is unique within the cell - which matches the administration model

used for policy sets, and therefore supports composition of Version 7.0 WS-Notification services

with WS-ReliableMessaging.

b. Select or deselect the option Enable dynamic topic namespaces?.

1144 Administering WebSphere applications

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.

That is, whether this service allows dynamic topic namespaces to be created at run time. For

more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a

particular WS-Notification service (for example for security or auditing requirements). If you

deselect this option, any applications that connect to the WS-Notification service and request

topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message

reliability setting of reliable persistent. If this value is not acceptable, create a permanent topic

namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed by

a service integration bus topic space that is created automatically when you create the

topic namespace. The syntax of topics used within this topic space is internal to the

WS-Notification service implementation.

c. Select or deselect the option Requires registration.

Indicates whether publisher applications are required to register with the broker before they can

publish notifications.

d. Select a service integration bus from the selection list.

e. Click Next.

 5. Step 2: Select WS-Notification service type.

Select Version 6.1 as the type of service that you want to create.

 6. Step 3: Configure handler and web service policy settings.

These settings are applied to the event notifications exchanged with WS-Notification client

applications.

a. Optional: Choose a JAX-RPC handler list.

The JAX-RPC handler list that is applied to outbound requests from the WS-Notification service -

for example the broker delivering notifications to a consumer. For more information about handler

lists, see “Working with JAX-RPC handlers and clients” on page 1079.

b. Optional: Choose a WS-Security configuration and bindings:

Outbound security request binding

The security binding to be used with consumer notifications and remote publisher

requests sent by this WS-Notification service.

Outbound security response binding

The security binding to be used with remote publisher responses received by this

WS-Notification service.

Outbound security configuration

Specifies the details of how security is applied to requests and responses.

For more information about Web services security resources, see Configuring secure transmission

of SOAP messages using WS-Security.

c. Enter a dynamic topic space name.

The name of the service integration bus topic space to be used as the dynamic topic space for

this WS-Notification service. That is, the name of the bus topic space that is used to host the

ad-hoc topic namespace, and to host dynamic topic namespaces if they are permitted. A default

name of WSN_dynamic_this_service_name is offered.

d. Click Next.

 7. Step 4: Create WS-Notification service points.

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

Chapter 5. Web services 1145

members associated with the WS-Notification service point to connect to the WS-Notification service.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification Web

service is exposed from that bus member, and causes Web service endpoints for the notification

broker, subscription manager and publisher registration manager for this WS-Notification service to be

exposed on the bus member with which the service point is associated. WS-Notification applications

use these endpoints to interact with the WS-Notification service. For more information, see

WS-Notification service point.

a. Select Yes to create a new WS-Notification service point, then click Next.

A WS-Notification service must have at least one service point.

b. Supply a name and (optional) description for the WS-Notification service point, and from the

selection list select the bus member on which the service point is to be configured, then click

Next.

The service point name forms part of the URL used to access the service point (that is, the

address of the Web service that is exposed on the chosen server). On a single server system

there is only one bus member in the list.

c. Select a listener application to use to expose the service. Either select an existing endpoint

listener for this bus member, or Create a new endpoint listener.

For more information, see “Creating a new endpoint listener configuration” on page 1070.

d. Click Next. The new service point is added to the list of service points for this WS-Notification

service.

e. Optional: To create another service point, repeat the previous substeps.

f. When you have finished creating service points for this WS-Notification service, select No for the

option to create another service point, then click Next.

 8. Optional: Step 5: Create permanent topic namespaces.

When you create a new WS-Notification permanent topic namespace, you specify the namespace

and associate it with one of the service integration bus topic spaces configured on the bus on which

the parent WS-Notification service is defined. You cannot modify a permanent topic namespace after

it has been created, other than to apply or remove topic namespace documents. For more

information, see Permanent topic namespace.

a. Select Yes to create a new permanent topic namespace, then click Next.

b. Enter a name for the permanent topic namespace.

This is the URI by which WS-Notification applications refer to topics hosted by this namespace.

c. Associate this new permanent topic namespace with the service integration bus topic space that

you want to use to publish and receive messages.

From the service integration bus topic space selection list, complete one of the following actions:

v Choose the name of an existing bus topic space.

v Choose the option to Create a new topic space, then enter a name for the new topic space.

d. Select from the selection list the service integration bus reliability (quality of service) that is

assigned to messages published using this topic namespace.

You can choose one of five values, each representing one of the service integration bus message

reliability levels. The default value is reliable persistent, which is the value used by default for

JMS Persistent messages.

e. Click Next.

The new permanent topic namespace is added to a list of permanent topic namespaces for this

WS-Notification service, and you are asked whether you want to create another permanent topic

namespace (default is Yes).

f. Optional: To create another permanent topic namespace, repeat the previous substeps.

g. When you have finished creating permanent topic namespaces for this WS-Notification service,

select No for the option to create another permanent topic namespace, then click Next.

 9. Step 6: Summary.

1146 Administering WebSphere applications

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If

the processing completes successfully, the list of WS-Notification services is updated to include the

new Version 6.1 WS-Notification service. Otherwise, an error message is displayed.

10. Save your changes to the master configuration.

11. Optional: Restart the server if either of the following conditions apply:

v A new bus or new bus member has been created as part of this task.

v Configuration reload is not enabled for the bus.

What to do next

To perform advanced configuration tasks for this WS-Notification service (for example adding additional

WS-Notification service points, or applying topic namespace documents to permanent topic namespaces),

see “Modifying a Version 6.1 WS-Notification service.”

Modifying a Version 6.1 WS-Notification service:

Modify the description, Enabled dynamic topic namespaces? and Requires registration properties of

a WS-Notification service, and follow links to complete advanced configuration of the WS-Notification

service such as adding additional WS-Notification service points, or applying topic namespace documents

to permanent topic namespaces.

 About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on

a service integration bus for use by WS-Notification applications.

A JAX-RPC handler list and WS-Security bindings define the parameters and security policy that are used

when making outbound Web service invocations, for example monitoring outbound event notification (in

response to a subscribe operation) and controlling demand-based publishers (subscribe, pause and

resume).

When you create a Version 6.1 WS-Notification service, the wizard configures three service integration bus

inbound services for the WS-Notification service, one for each of the three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

These inbound services are defined on the same service integration bus as the Version 6.1

WS-Notification service, and each of these inbound services refers to the same bus destination.

You can make Web services-specific modifications to the WS-Notification service behavior by modifying

the three associated inbound services. You can also configure a custom property that determines the

strictness of the syntax checking of topics used under this WS-Notification service.

To modify a WS-Notification service use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services or Service

integration → Buses → bus_name → [Services] WS-Notification services. The WS-Notification

services [Collection] form is displayed.

2. In the content pane, click the name of a WS-Notification service in the list. The current settings for this

WS-Notification service are displayed in the WS-Notification services [Settings] panel.

3. Modify the following general properties:

Description

An optional description of the WS-Notification service.

Chapter 5. Web services 1147

Enable dynamic topic namespaces?

 Indicates whether dynamic topic namespaces can be used within the WS-Notification service.

That is, whether this service allows dynamic topic namespaces to be created at run time. For

more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a

particular WS-Notification service (for example for security or auditing requirements). If you

deselect this option, any applications that connect to the WS-Notification service and request

topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message

reliability setting of reliable persistent. If this value is not acceptable, create a permanent

topic namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed

by a service integration bus topic space that is created automatically when you create

the topic namespace. The syntax of topics used within this topic space is internal to the

WS-Notification service implementation.

Requires registration

Indicates whether publisher applications are required to register with the broker before they

can publish notifications.

4. Modify the JAX-RPC handler list and Web services security settings. These settings are applied to the

event notifications exchanged with WS-Notification client applications. For more information about

handler lists, see “Working with JAX-RPC handlers and clients” on page 1079. For more information

about Web services security resources, see Configuring secure transmission of SOAP messages using

WS-Security.

JAX-RPC handler list

The JAX-RPC handler list that is applied to outbound requests from the WS-Notification

service - for example the broker delivering notifications to a consumer.

Outbound security request binding

The security binding to be used with consumer notifications and remote publisher requests

sent by this WS-Notification service.

Outbound security response binding

The security binding to be used with remote publisher responses received by this

WS-Notification service.

Outbound security configuration

Specifies the details of how security is applied to requests and responses.

5. Modify the additional properties:

WS-Notification service points

Select this link to configure the deployment of WS-Notification service points on one or more

servers. For more information, see “Modifying a Version 6.1 WS-Notification service point” on

page 1155.

Permanent topic namespaces

Select this link to configure permanent topic namespaces for the WS-Notification service. For

more information, see Permanent topic namespace. When you create a new WS-Notification

permanent topic namespace, you specify the namespace and associate it with one of the

service integration bus topic spaces configured on the bus on which the parent WS-Notification

service is defined. You cannot modify a permanent topic namespace after it has been created,

other than to apply or remove topic namespace documents.

Custom properties

Select this link to configure additional custom properties for this WS-Notification service. These

1148 Administering WebSphere applications

custom properties are name and value pairs that you can use to set internal system

configuration properties. In each pair, the name is a property key and the value is a string

value.

 To specify a timeout time for outbound requests sent from this WS-Notification service, set the

following custom property:

outbound.timeout

The value of this property is the timeout time in milliseconds. If the property is not set, a

default timeout of 2 minutes is used.

To determine the strictness of the syntax checking of topics used under this WS-Notification

service, set the following custom property:

com.ibm.ws.sib.wsn.strictTopicChecking

Valid values for this property are TRUE and FALSE:

v If the property value is set to TRUE, the topic syntax rules defined in the WS-Topics

standard are strictly enforced. Note that there is a performance overhead compared to the

default setting, because each character of a topic is validated against a large list of

permitted Unicode characters.

v If the property is omitted or set to FALSE, syntax checking only ensures that the basic topic

structure is valid, and character checking is relaxed to allow any character exception “*” and

“.” as a topic name part.

6. Modify the inbound service settings for the notification broker, subscription manager or publisher

registration manager. For more information, see “Modifying an existing inbound service configuration”

on page 1043.

7. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification

services is redisplayed. Otherwise, an error message is displayed.

8. Save your changes to the master configuration. You need not restart the server for the changes to fully

take effect if configuration reload is enabled for the service integration bus.

Deleting WS-Notification services:

Remove all configuration associated with one or more WS-Notification services. A WS-Notification service

provides access to service integration bus resources for Web services publish and subscribe clients.

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WS-Notification

service by using the administrative console as described in this task, or by using the deleteWSNService

command.

About this task

When you delete a Version 6.1 WS-Notification service, the associated inbound services and inbound

ports are also deleted. The associated endpoint listeners are deleted if they were created in the process of

creating a WS-Notification service point and are not used by any other configuration object. When you

delete a Version 7.0 WS-Notification service, the associated service point provider applications and service

points are also deleted. Do not delete these resources manually, because this might leave the associated

configuration information in an inconsistent state.

For both types of WS-Notification service, you choose whether or not the associated service integration

bus topic spaces are deleted.

1. Start the administrative console.

Chapter 5. Web services 1149

2. In the navigation pane, click Service integration → WS-Notification → Services or Service

integration → Buses → bus_name → [Services] WS-Notification services. A list of all the

WS-Notification services is displayed in a WS-Notification services [Collection] form.

3. Select the check box for every WS-Notification service that you want to remove.

4. Click Delete. A panel is displayed asking if the service integration bus topic spaces associated with the

WS-Notification service (including those associated with all the WS-Notification topic namespaces)

should also be deleted.

5. Optional: Select the check box if you want to delete the associated service integration bus topic

spaces.

Note: Deleting a service integration bus topic space causes exception messages to be generated for

WS-Notification applications that reference the topic space, as described in Failures as a result

of changes in topic space and topic namespace configurations.

6. Click Delete. If the processing completes successfully, the list of WS-Notification services is updated.

Otherwise, an error message is displayed.

7. Save your changes to the master configuration.

Creating a new Version 7.0 WS-Notification service point:

You can add an additional Version 7.0 WS-Notification service point to an existing Version 7.0

WS-Notification service. A WS-Notification service point defines access to a WS-Notification service on a

given bus member through a specified Web service binding (for example SOAP over HTTP). Applications

use the bus members associated with the WS-Notification service point to connect to the WS-Notification

service. The existence of a WS-Notification service point on a bus member implies that a WS-Notification

Web service is exposed from that bus member, and causes Web service endpoints for the notification

broker, subscription manager and publisher registration manager for this WS-Notification service to be

exposed on the bus member with which the service point is associated. WS-Notification applications use

these endpoints to interact with the WS-Notification service.

 Before you begin

Decide on which method you want to use to configure these resources. You can create a new Version 7.0

WS-Notification service point by using the administrative console as described in this task, or by using the

createWSNServicePoint command.

About this task

You can define any number of WS-Notification service points for a given WS-Notification service. Each

service point defined for the same WS-Notification service represents an alternative entry point to the

service. Event notifications published to a particular WS-Notification service point are received by all

applications connected to any service point of the same WS-Notification service (subject to subscription on

the correct topic) regardless of the particular service point to which they are connected. For more

information, see Reasons to create multiple WS-Notification service points.

When you create a Version 7.0 WS-Notification service point you select a bus member on which the

WS-Notification service point is configured. You also choose the SOAP version that is supported by the

service point, and (optionally) apply JAX-WS handler lists to the NotificationBroker, SubscriptionManager

or PublisherRegistrationManager that are exposed through this service point.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → Services → service_name → [Additional

Properties] WS-Notification service points or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points. The WS-Notification service points [Collection] form is displayed. This form shows all

the Version 7.0 WS-Notification service points configured for this Version 7.0 WS-Notification service.

1150 Administering WebSphere applications

3. In the content pane, click New. The “New WS-Notification service point” wizard is displayed. For more

information about the properties that you set with the wizard, see WS-Notification service points

[Settings].

4. Step 1: Configure name, description and select a bus member.

a. Supply a name and (optional) description for the WS-Notification service point. The service point

name forms part of the URL used to access the service point.

b. From the selection list, select the bus member on which the service point is to be configured. On a

single server system there is only one bus member in the list.

c. Click Next.

5. Step 2: Define transport settings.

a. Select the transport settings for the new service point.

Service point accessed via HTTP proxy

If the service point is accessed through a proxy, enable the check box, and type the root of

the externally visible endpoint address URL for Web services accessed using this endpoint.

 The URL for the proxy is used to populate the WSDL endpoint address fields when

publishing WSDL files to a zip file.

SOAP Version

Select the version of SOAP that is supported by the service point. This affects the WSDL

definition that is exposed by the Web service.

b. Optional: Select the JAX-WS handler list settings for the new service point.

NotificationBroker JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

PublisherRegistrationManager endpoint of the WS-Notification service point.

6. Click Finish. If the processing completes successfully, the list of Version 7.0 WS-Notification service

points for this Version 7.0 WS-Notification service is updated to include the new service point.

Otherwise, an error message is displayed.

7. Save your changes to the master configuration.

What to do next

To perform advanced configuration tasks for this WS-Notification service point (for example, adding

administered subscribers, publishing WSDL files to zip, and configuring the enterprise application

associated with this service point), see “Modifying a Version 7.0 WS-Notification service point.”

To configure this WS-Notification service point with Web service qualities of service (QoS) such as

reliability or security, see “Configuring a Version 7.0 WS-Notification service with Web service QoS” on

page 1124.

You can also use the administrative console to work with runtime information for service points. For more

information, see “Interacting at run time with WS-Notification” on page 1132.

Modifying a Version 7.0 WS-Notification service point:

Chapter 5. Web services 1151

Modify the description, SOAP Version, and JAX-WS handler list properties of a Version 7.0

WS-Notification service point, and follow links to complete advanced configuration such as modifying the

administered subscribers, applying policy sets to enable WS-ReliableMessaging, publishing the WSDL files

to zip files, and configuring the enterprise application that is associated with this service point.

 About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

members associated with the WS-Notification service point to connect to the WS-Notification service. The

existence of a WS-Notification service point on a bus member implies that a WS-Notification Web service

is exposed from that bus member, and causes Web service endpoints for the notification broker,

subscription manager and publisher registration manager for this WS-Notification service to be exposed on

the bus member with which the service point is associated. WS-Notification applications use these

endpoints to interact with the WS-Notification service.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → Services → service_name → [Additional

Properties] WS-Notification service points or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points. The WS-Notification service points [Collection] form is displayed. This form shows all

the service points configured for this Version 7.0 WS-Notification service.

3. In the content pane, click the name of a Version 7.0 WS-Notification service point in the list. The

current settings for this Version 7.0 WS-Notification service point are displayed in the WS-Notification

service points [Settings] form.

4. Modify the following general properties:

Description

An optional description of the WS-Notification service point.

Associated bus member

The name of the bus member on which this WS-Notification service point is deployed.

SOAP Version

 Defines the version of SOAP supported by the service point. This affects the WSDL definition

that will be exposed by the web service. Permitted values are “1.1” for SOAP 1.1 (the default),

and “1.2” for SOAP 1.2.

NotificationBroker JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

 The JAX-WS handler list that is applied to inbound requests from an application to the

PublisherRegistrationManager endpoint of the WS-Notification service point.

5. Modify the additional properties:

Administered subscribers

An administered subscriber provides a mechanism for the WS-Notification service point to

subscribe to an external notification producer at server startup time. For more information, see

“Modifying a WS-Notification administered subscriber” on page 1158.

Custom properties

Select this link to configure additional custom properties for this WS-Notification service point.

1152 Administering WebSphere applications

Policy set configuration

The policy set configuration associated with this WS-Notification service point. You can

configure policy set and binding information for each port relating to this service point. For

more information, see “Configuring a Version 7.0 WS-Notification service with Web service

QoS” on page 1124.

Publish WSDL files to zip

Publish the WSDL files for this service point to a zip file. For more information, see “Publishing

the WSDL files for a WS-Notification application to a ZIP file” on page 1133.

Service point application

The application associated with this WS-Notification service point. For Version 7.0

WS-Notification services, enterprise applications are used to expose the Web services

associated with the WS-Notification service.

6. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification

service points for this Version 7.0 WS-Notification service is redisplayed. Otherwise, an error message

is displayed.

7. Save your changes to the master configuration.

What to do next

You can also use the administrative console to work with runtime information for service points. For more

information, see “Interacting at run time with WS-Notification” on page 1132.

Deleting WS-Notification service points:

Delete one or more WS-Notification service points and the associated resources (Version 7.0 service point

provider applications, or Version 6.1 inbound services and endpoint listeners).

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WS-Notification

service point by using the administrative console as described in this task, or by using the

deleteWSNServicePoint command.

Do not use this task to delete service points as part of the process of deleting a WS-Notification service.

When you delete a WS-Notification service, the associated service points and resources are automatically

deleted.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

members associated with the WS-Notification service point to connect to the WS-Notification service.

When you delete a WS-Notification service point, the associated resources (Version 7.0 service point

provider applications, or Version 6.1 inbound services and endpoint listeners) are automatically deleted. Do

not delete these resources manually, because this might leave the associated configuration information in

an inconsistent state.

1. Start the administrative console.

2. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

[Additional Properties] WS-Notification service points or Service integration → Buses →

bus_name → [Services] WS-Notification services → service_name → [Additional Properties]

WS-Notification service points. A list of all the WS-Notification service points is displayed in a

WS-Notification service points [Collection] form.

3. Select the check box for every WS-Notification service point that you want to remove.

Chapter 5. Web services 1153

4. Click Delete. If the processing completes successfully, the list of WS-Notification service points for this

WS-Notification service is updated. Otherwise, an error message is displayed.

5. Save your changes to the master configuration.

Creating a new Version 6.1 WS-Notification service point:

You can add an additional Version 6.1 WS-Notification service point to an existing Version 6.1

WS-Notification service. A WS-Notification service point defines access to a WS-Notification service on a

given bus member through a specified Web service binding (for example SOAP over HTTP). Applications

use the bus members associated with the WS-Notification service point to connect to the WS-Notification

service. The existence of a WS-Notification service point on a bus member implies that a WS-Notification

Web service is exposed from that bus member, and causes Web service endpoints for the notification

broker, subscription manager and publisher registration manager for this WS-Notification service to be

exposed on the bus member with which the service point is associated. WS-Notification applications use

these endpoints to interact with the WS-Notification service.

 Before you begin

Decide on which method you want to use to configure these resources. You can create a new Version 6.1

WS-Notification service point by using the administrative console as described in this task, or by using the

createWSNServicePoint command.

About this task

You can define any number of WS-Notification service points for a given WS-Notification service. Each

service point defined for the same WS-Notification service represents an alternative entry point to the

service. Event notifications published to a particular WS-Notification service point are received by all

applications connected to any service point of the same WS-Notification service (subject to subscription on

the correct topic) regardless of the particular service point to which they are connected. For more

information, see Reasons to create multiple WS-Notification service points.

When you create a Version 6.1 WS-Notification service point you select a bus member on which the

WS-Notification service point is configured. You allocate a service point to a given bus member by

specifying an endpoint listener that is configured for that bus member. You also choose the type of Web

service binding (SOAP over HTTP or SOAP over JMS) that is used for the WS-Notification service point.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification Web

service is exposed from that bus member, and causes Web service endpoints for the notification broker,

subscription manager and publisher registration manager for this WS-Notification service to be exposed on

the bus member with which the service point is associated. WS-Notification applications use these

endpoints to interact with the WS-Notification service.

1. Start the administrative console

2. Navigate to Service integration → WS-Notification → Services → service_name → [Additional

Properties] WS-Notification service points or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points. The WS-Notification service points [Collection] form is displayed. This form shows all

the Version 6.1 WS-Notification service points configured for this Version 6.1 WS-Notification service.

3. In the content pane, click New. The “New WS-Notification service point” wizard is displayed. For more

information about the properties that you set with the wizard, see WS-Notification service points

[Settings].

4. Use the wizard to create the new Version 6.1 WS-Notification service point configuration by completing

the following steps.

a. Supply a name and (optional) description for the WS-Notification service point, and from the

selection list select the bus member on which the service point is to be configured, then click Next.

1154 Administering WebSphere applications

The service point name forms part of the URL used to access the service point (that is, the

address of the Web service that is exposed on the chosen server). On a single server system there

is only one bus member in the list.

b. Select a listener application to use to expose the service. Either select an existing endpoint listener

for this bus member, or Create a new endpoint listener. For more information, see “Creating a

new endpoint listener configuration” on page 1070.

5. Click Finish. If the processing completes successfully, the list of Version 6.1 WS-Notification service

points for this Version 6.1 WS-Notification service is updated to include the new service point.

Otherwise, an error message is displayed.

6. Save your changes to the master configuration.

What to do next

You can also use the administrative console to work with runtime information for service points. For more

information, see “Interacting at run time with WS-Notification” on page 1132.

Modifying a Version 6.1 WS-Notification service point:

Modify an existing WS-Notification service point. A WS-Notification service point defines access to a

WS-Notification service on a given bus member through a specified Web service binding (for example

SOAP over HTTP). Applications use the bus members associated with the WS-Notification service point to

connect to the WS-Notification service.

 About this task

You can define any number of WS-Notification service points for a given WS-Notification service. Each

service point defined for the same WS-Notification service represents an alternative entry point to the

service. Event notifications published to a particular WS-Notification service point are received by all

applications connected to any service point of the same WS-Notification service (subject to subscription on

the correct topic) regardless of the particular service point to which they are connected. For more

information, see Reasons to create multiple WS-Notification service points.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification Web

service is exposed from that bus member, and causes Web service endpoints for the notification broker,

subscription manager and publisher registration manager for this WS-Notification service to be exposed on

the bus member with which the service point is associated. WS-Notification applications use these

endpoints to interact with the WS-Notification service.

To modify a WS-Notification service point use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

[Additional Properties] WS-Notification service points or Service integration → Buses →

bus_name → [Services] WS-Notification services → service_name → [Additional Properties]

WS-Notification service points. The WS-Notification service points [Collection] form is displayed. This

form shows all the WS-Notification service points configured for this WS-Notification service.

2. In the content pane, click the name of a WS-Notification service point in the list. The current settings

for this WS-Notification service point are displayed in the WS-Notification service points [Settings] form.

3. Modify the general properties. The only general property that you can modify is the description

property.

4. Modify the additional properties:

a. Modify the administered subscribers that are associated with this WS-Notification service point. An

administered subscriber provides a mechanism for the WS-Notification service point to subscribe to

an external notification producer at server startup time. For more information, see “Modifying a

WS-Notification administered subscriber” on page 1158.

Chapter 5. Web services 1155

b. Modify the custom properties, if any, that you have set for this WS-Notification service point. These

custom properties are name and value pairs that you can use to set internal system configuration

properties. In each pair, the name is a property key and the value is a string value.

a. Modify the inbound ports that are associated with this WS-Notification service point.

An inbound port describes the Web service enablement of a service destination on a specific

endpoint listener, with associated configuration. Each inbound port is associated with an endpoint

listener, and you can control which groups of users can access a particular inbound service by

making the service available only through specific endpoint listeners. For more information, see

Endpoint listeners and inbound ports: Entry points to the service integration bus.

You can use a JAX-RPC handler list to monitor activity at the port, and take appropriate action (for

example logging, or re-routing) depending upon the sender and content of each message that

passes through the port. For more information, see Bus-enabled Web services and JAX-RPC

handlers.

You can use WS-Security to set the levels of security to be applied to messages. The security level

can be set independently for request and response messages. For more information, see Service

integration technologies and WS-Security.

See also Inbound ports settings.

5. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification

service points for this WS-Notification service is redisplayed. Otherwise, an error message is displayed.

6. Save your changes to the master configuration.

What to do next

You can also use the administrative console to work with runtime information for service points. For more

information, see “Interacting at run time with WS-Notification” on page 1132.

Deleting WS-Notification service points:

Delete one or more WS-Notification service points and the associated resources (Version 7.0 service point

provider applications, or Version 6.1 inbound services and endpoint listeners).

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WS-Notification

service point by using the administrative console as described in this task, or by using the

deleteWSNServicePoint command.

Do not use this task to delete service points as part of the process of deleting a WS-Notification service.

When you delete a WS-Notification service, the associated service points and resources are automatically

deleted.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

members associated with the WS-Notification service point to connect to the WS-Notification service.

When you delete a WS-Notification service point, the associated resources (Version 7.0 service point

provider applications, or Version 6.1 inbound services and endpoint listeners) are automatically deleted. Do

not delete these resources manually, because this might leave the associated configuration information in

an inconsistent state.

1. Start the administrative console.

2. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

[Additional Properties] WS-Notification service points or Service integration → Buses →

1156 Administering WebSphere applications

bus_name → [Services] WS-Notification services → service_name → [Additional Properties]

WS-Notification service points. A list of all the WS-Notification service points is displayed in a

WS-Notification service points [Collection] form.

3. Select the check box for every WS-Notification service point that you want to remove.

4. Click Delete. If the processing completes successfully, the list of WS-Notification service points for this

WS-Notification service is updated. Otherwise, an error message is displayed.

5. Save your changes to the master configuration.

Creating a new WS-Notification administered subscriber:

As part of the configuration of a WS-Notification service point you can configure any number of

administered subscribers for that service point. An administered subscriber provides a mechanism for the

WS-Notification service point to subscribe to an external notification producer at server startup time.

 Before you begin

Decide on which method you want to use to configure these resources. You can create a new

administered subscriber by using the administrative console as described in this task, or by using the

createWSNAdministeredSubscriber command.

You should not define an administered subscriber for any of the endpoints exposed by the WS-Notification

service on which it is being defined, because this would result in infinite looping of messages through the

notification broker.

About this task

An administered subscriber contains the name of a NotificationProducer application or a (different)

NotificationBroker endpoint and details of a subscription request (for example topic) that the

WS-Notification service point should register as part of the server startup procedure. This allows you to

pre-configure links between the NotificationBroker and a NotificationProducer, which can be a remote

NotificationBroker or a NotificationProducer application.

To create a new administered subscriber, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

[Additional Properties] WS-Notification service points → point_name → Administered subscribers

or Service integration → Buses → bus_name → [Services] WS-Notification services →

service_name → [Additional Properties] WS-Notification service points → point_name →

Administered subscribers. The Administered subscribers [Collection] form is displayed.

2. In the content pane, click New.

3. Specify the following properties for this administered subscriber.

External web service endpoint

The URL of the external Web service to which the service should subscribe. That is, the

endpoint reference (Web address) of a notification producer or notification broker application.

For example http://remoteproducer.com.

Dialect

The dialect in which the topic is expressed. The options are Simple, Concrete, or Full, as

defined by the WS-Topics standard.

Topic The topic on which the service should subscribe. This describes the class of notification

messages that are delivered to the WS-Notification service point. For example stock/IBM. This

property can include wildcards if they are supported by the topic dialect that you select.

Topic namespace

The URI that describes the topic namespace in which the specified topic is defined.

Chapter 5. Web services 1157

Remote subscription timeout

The length of time in hours after which the remote subscription will expire if not renewed by

the server. This timeout minimizes the potential for orphaned subscriptions in the remote Web

service if the local server is uninstalled. Note that this field does not indicate the actual time at

which the remote subscription is due to expire. Set the timeout length to something larger than

the maximum length of time that the server is expected to remain offline, otherwise the stream

of messages from the remote Web service might be interrupted. While the server is running it

occasionally renews the remote subscription termination time (with the specified timeout) to

prevent it from expiring during normal operation. If not specified, this timeout defaults to 24

(hours).

4. Click OK. If the processing completes successfully, the list of administered subscribers associated with

the WS-Notification service point is updated to include the new administered subscriber. Otherwise, an

error message is displayed.

5. Save your changes to the master configuration.

What to do next

You can also use the administrative console to list runtime information for administered subscribers. For

more information, see “Listing active WS-Notification administered subscribers” on page 1178.

Modifying a WS-Notification administered subscriber:

As part of the configuration of a WS-Notification service point you can configure any number of

administered subscribers for that service point. An administered subscriber provides a mechanism for the

WS-Notification service point to subscribe to an external notification producer at server startup time.

 About this task

An administered subscriber contains the name of a NotificationProducer application or a (different)

NotificationBroker endpoint and details of a subscription request (for example topic) that the

WS-Notification service point should register as part of the server startup procedure. This allows you to

pre-configure links between the NotificationBroker and a NotificationProducer, which can be a remote

NotificationBroker or a NotificationProducer application.

To modify an administered subscriber, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

[Additional Properties] WS-Notification service points → point_name → Administered subscribers

or Service integration → Buses → bus_name → [Services] WS-Notification services →

service_name → [Additional Properties] WS-Notification service points → point_name →

Administered subscribers. The Administered subscribers [Collection] form is displayed. This form

shows all the administered subscribers configured for this WS-Notification service point.

2. In the content pane, click the name of an administered subscriber in the list. The current settings for

this administered subscriber are displayed in the Configuration panel.

3. Modify the properties for this administered subscriber.

External web service endpoint

The URL of the external Web service to which the service should subscribe. That is, the

endpoint reference (Web address) of a notification producer or notification broker application.

For example http://remoteproducer.com.

Dialect

The dialect in which the topic is expressed. The options are Simple, Concrete, or Full, as

defined by the WS-Topics standard.

Topic The topic on which the service should subscribe. This describes the class of notification

1158 Administering WebSphere applications

messages that are delivered to the WS-Notification service point. For example stock/IBM. This

property can include wildcards if they are supported by the topic dialect that you select.

Topic namespace

The URI that describes the topic namespace in which the specified topic is defined.

Remote subscription timeout

The length of time in hours after which the remote subscription will expire if not renewed by

the server. This timeout minimizes the potential for orphaned subscriptions in the remote Web

service if the local server is uninstalled. Note that this field does not indicate the actual time at

which the remote subscription is due to expire. Set the timeout length to something larger than

the maximum length of time that the server is expected to remain offline, otherwise the stream

of messages from the remote Web service might be interrupted. While the server is running it

occasionally renews the remote subscription termination time (with the specified timeout) to

prevent it from expiring during normal operation. If not specified, this timeout defaults to 24

(hours).

4. Apply any changes, then click OK. If the processing completes successfully, the list of administered

subscribers associated with the WS-Notification service point is redisplayed. Otherwise, an error

message is displayed.

5. Save your changes to the master configuration.

What to do next

You can also use the administrative console to list runtime information for administered subscribers. For

more information, see “Listing active WS-Notification administered subscribers” on page 1178.

Deleting WS-Notification administered subscribers:

Delete one or more WS-Notification administered subscribers. An administered subscriber provides a

mechanism for the WS-Notification service point to subscribe to an external notification producer at server

startup time.

 Before you begin

Decide on which method you want to use to configure these resources. You can delete an administered

subscriber by using the administrative console as described in this task, or by using the

deleteWSNAdministeredSubscriber command.

About this task

To delete one or more administered subscribers, use the administrative console to complete the following

steps :

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

[Additional Properties] WS-Notification service points → point_name → Administered subscribers

or Service integration → Buses → bus_name → [Services] WS-Notification services →

service_name → [Additional Properties] WS-Notification service points → point_name →

Administered subscribers. A list of all the administered subscribers is displayed in an Administered

subscribers [Collection] form.

2. Select the check box for every administered subscriber that you want to remove.

3. Click Delete. If the processing completes successfully, the list of administered subscribers for this

WS-Notification service is updated. Otherwise, an error message is displayed.

4. Save your changes to the master configuration.

Creating a new WS-Notification permanent topic namespace:

Chapter 5. Web services 1159

Create a new permanent topic namespace. A topic namespace is a grouping of topics that allows

information to be shared between applications. You use a permanent topic namespace to statically define

the association between a WS-Notification topic namespace URI and a service integration bus topic space

destination.

 Before you begin

Decide on which method you want to use to configure these resources. You can create a new

WS-Notification permanent topic namespace by using the administrative console as described in this task,

or by using the createWSNTopicNamespace command.

You can create many to many relationships between the set of permanent topic namespaces defined in a

cell (that is for all WS-Notification services defined in that cell) and the service integration bus topic spaces

with which they are associated. These relationships can become quite complex depending upon the

topologies required by the applications that connect to the WS-Notification service. For guidance on when

certain configurations might or might not be appropriate, see Options for associating a permanent topic

namespace with a bus topic space.

About this task

A permanent topic namespace has the following characteristics:

v It enables you to expose an existing service integration bus topic space for use by WS-Notification

clients, thus permitting interoperation between the WS-Notification applications and existing publish and

subscribe applications connected to the bus such as JMS.

v It allows you to restrict the structure and content of the topic namespace by applying one or more topic

namespace documents that describe the required structure.

v It allows the topic namespace to be used as part of a topic space mapping configured on a service

integration bus link (between two service integration buses) or a topic mapping as part of a publish and

subscribe bridge between a service integration bus and a WebSphere MQ network.

When you create a new WS-Notification permanent topic namespace, you specify the namespace and

associate it with one of the service integration bus topic spaces configured on the bus on which the parent

WS-Notification service is defined. You cannot modify a permanent topic namespace after it has been

created, other than to apply or remove topic namespace documents.

You can also set a configuration attribute of a permanent topic namespace to control the reliability

(persistence or non persistence) setting that is applied to any messages inserted using a given topic

namespace.

To create a new WS-Notification permanent topic namespace, use the administrative console to complete

the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

Permanent topic namespaces or Service integration → Buses → bus_name → [Services]

WS-Notification services → service_name → Permanent topic namespaces. The Permanent topic

namespaces [Collection] form is displayed.

2. In the content pane, click New.

3. Specify the following properties for this permanent WS-Notification topic namespace:

a. Enter a name for the permanent topic namespace. The URI string by which this topic namespace

is known. That is, the namespace URI by which WS-Notification applications refer to topics hosted

by this namespace. For example http://widgetproducer.com/prices.

b. Associate this new permanent topic namespace with the service integration bus topic space that

you want to use to publish and receive messages. From the service integration bus topic space

selection list, complete one of the following actions:

v Choose the name of an existing bus topic space.

1160 Administering WebSphere applications

v Choose the offered default name of this_service_nameTopicSpace for a new bus topic space.

v Choose the option to Create a new topic space, then enter a name for the new topic space.

c. Select from the selection list the service integration bus reliability (quality of service) that is

assigned to messages published using this topic namespace. You can choose one of five values.

Each value represents one of the service integration bus message reliability levels. The default

value is reliable persistent, which is the value used by default for JMS Persistent messages.

4. Click OK. If the processing completes successfully, the list of permanent WS-Notification topic

namespaces is updated to include the new topic namespace. Otherwise, an error message is

displayed.

5. Save your changes to the master configuration.

What to do next

To view the configuration of the associated service integration bus topic space, see “Showing the

properties of a permanent WS-Notification topic namespace.” To apply a topic namespace document, see

“Applying a WS-Notification topic namespace document” on page 1162

Showing the properties of a permanent WS-Notification topic namespace:

A topic namespace is a grouping of topics that allows information to be shared between applications.You

use a permanent topic namespace to statically define the association between a WS-Notification topic

namespace URI and a service integration bus topic space destination.

 Before you begin

Decide on which method you want to use to configure these resources. You can show the properties of a

permanent WS-Notification topic namespace by using the administrative console as described in this task,

or by using the showWSNTopicNamespace command.

About this task

A permanent topic namespace has the following characteristics:

v It enables you to expose an existing service integration bus topic space for use by WS-Notification

clients, thus permitting interoperation between the WS-Notification applications and existing publish and

subscribe applications connected to the bus such as JMS.

v It allows you to restrict the structure and content of the topic namespace by applying one or more topic

namespace documents that describe the required structure.

v It allows the topic namespace to be used as part of a topic space mapping configured on a service

integration bus link (between two service integration buses) or a topic mapping as part of a publish and

subscribe bridge between a service integration bus and a WebSphere MQ network.

When you create a new WS-Notification permanent topic namespace, you specify the namespace and

associate it with one of the service integration bus topic spaces configured on the bus on which the parent

WS-Notification service is defined. You cannot modify a permanent topic namespace after it has been

created, other than to apply or remove topic namespace documents.

To show the properties of a permanent WS-Notification topic namespace, use the administrative console to

complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

Permanent topic namespaces or Service integration → Buses → bus_name → [Services]

WS-Notification services → service_name → Permanent topic namespaces. The Permanent topic

namespaces [Collection] form is displayed. This form shows all the permanent topic namespaces

configured for this WS-Notification service.

Chapter 5. Web services 1161

2. Optional: To view the configuration of the service integration bus topic space that is associated with a

given permanent topic namespace, click the link in the Service integration bus topic space column.

For more information, see Topic space [Settings]

3. Optional: To view the configuration of the namespace documents that are associated with a given

permanent topic namespace, click the link in the Namespace documents column.

Note: This link also shows the number of namespace documents (0 or more) that are currently

applied.

The Topic namespace document [Collection] form is displayed. Use this form to apply, show or delete

topic namespace documents.

Deleting WS-Notification permanent topic namespaces:

Delete topic namespace definitions from a WS-Notification service. A topic namespace is a grouping of

topics that allows information to be shared between applications.You use a permanent topic namespace to

statically define the association between a WS-Notification topic namespace URI and a service integration

bus topic space destination.

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WS-Notification

permanent topic namespace using the administrative console as described in this task, or you can delete a

WS-Notification permanent topic namespace using the wsadmin tool.

About this task

Deleting the topic namespace mapping that was used to establish a (currently active) subscription has the

same effect as deleting the underlying service integration bus topic space, and subscriptions that were

created using this namespace mapping are deleted. For more information about the effect that deleting a

topic namespace has upon new and existing WS-Notification applications, see Failures as a result of

changes in topic space and topic namespace configurations.

To delete one or more permanent topic namespaces, use the administrative console to complete the

following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

Permanent topic namespaces or Service integration → Buses → bus_name → [Services]

WS-Notification services → service_name → Permanent topic namespaces. A list of all the

permanent topic namespaces for this WS-Notification service is displayed in a Permanent topic

namespaces [Collection] form.

2. Select the check box for every permanent topic namespace that you want to remove.

3. Click Delete.

For each selected namespace, if the associated service integration bus topic space was created

explicitly by the permanent topic namespace then you are asked whether or not to automatically delete

the bus topic space. If the bus topic space was not created by the permanent topic namespace then

you are not asked this question and the topic space is not deleted.

Note: Deleting a service integration bus topic space causes exception messages to be generated for

WS-Notification applications that reference the topic space, as described in Failures as a result

of changes in topic space and topic namespace configurations.

If the processing completes successfully, the list of permanent topic namespaces for this

WS-Notification service is updated. Otherwise, an error message is displayed.

4. Save your changes to the master configuration.

Applying a WS-Notification topic namespace document:

1162 Administering WebSphere applications

A topic namespace can optionally have topic namespace documents applied to it that define the structure

of the topics that are permitted within the namespace. Use the administrative console to apply a topic

namespace document to an existing topic namespace.

 Before you begin

This task assumes that you have already created the topic namespace document that you want to apply.

Decide on which method you want to use to configure these resources. You can apply a topic namespace

document by using the administrative console as described in this task, or by using the

createWSNTopicDocument command.

About this task

For more information about the relationship between a permanent topic namespace and a topic

namespace document, see Chapter 5 of the WS-Topics standard.

To apply a topic namespace document to an existing topic namespace, use the administrative console to

complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

Permanent topic namespaces → namespace_name → Topic namespace documents or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name →

Permanent topic namespaces → namespace_name → Topic namespace documents. The Topic

namespace document [Collection] form is displayed. This form shows all the topic namespace

documents configured for this permanent topic namespace.

2. In the content pane, click New. The Topic namespace document [Settings] form is displayed.

3. Specify the following properties for this topic namespace document:

a. URL of topic namespace document The URL of the topic namespace document that should be

loaded.

b. Optional: Description An optional description of the topic namespace document.

4. Click OK. If the processing completes successfully, the list of topic namespace documents for this

permanent topic namespace is updated to include the new document. Otherwise, an error message is

displayed.

5. Save your changes to the master configuration.

Showing the contents of a WS-Notification topic namespace document:

A topic namespace can optionally have topic namespace documents applied to it that define the structure

of the topics that are permitted within the namespace. Use the administrative console to show the contents

of a topic namespace document.

 Before you begin

Decide on which method you want to use to configure these resources. You can show the contents of a

topic namespace document by using the administrative console as described in this task, or by using the

showWSNTopicDocument command.

About this task

For more information about the relationship between a permanent topic namespace and a topic

namespace document, see Chapter 5 of the WS-Topics standard.

To show the contents of a WS-Notification topic namespace document, use the administrative console to

complete the following steps:

Chapter 5. Web services 1163

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

Permanent topic namespaces → namespace_name → Topic namespace documents or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name →

Permanent topic namespaces → namespace_name → Topic namespace documents. The Topic

namespace document [Collection] form is displayed. This form shows all the topic namespace

documents configured for this permanent topic namespace.

2. In the content pane, click the name of a topic namespace document in the list. The contents of this

topic namespace document are displayed.

Deleting WS-Notification topic namespace documents:

A topic namespace can optionally have topic namespace documents applied to it that define the structure

of the topics that are permitted within the namespace. Use the administrative console to delete one or

more WS-Notification topic namespace documents.

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WS-Notification

topic namespace document by using the administrative console as described in this task, or by using the

deleteWSNTopicDocument command.

About this task

To delete one or more WS-Notification topic namespace documents, use the administrative console to

complete the following steps:

1. In the navigation pane, click Service integration → WS-Notification → Services → service_name →

Permanent topic namespaces → namespace_name → Topic namespace documents or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name →

Permanent topic namespaces → namespace_name → Topic namespace documents. A list of all the

WS-Notification topic namespace documents is displayed in a Topic namespace document [Collection]

form.

2. Select the check box for every WS-Notification topic namespace document that you want to remove.

3. Click Delete. If the processing completes successfully, the list of WS-Notification topic namespace

documents for this WS-Notification topic namespace is updated. Otherwise, an error message is

displayed.

4. Save your changes to the master configuration.

Publishing the WSDL files for a WS-Notification application to a ZIP file:

Use the administrative console to download a zip file that contains a WS-Notification application’s

published WSDL files.

 About this task

The ability to publish these WSDL files to a ZIP file is particularly useful in the following circumstances:

v Writing a WS-Notification application that invokes Web service operations against the NotificationBroker

application, as described in Writing a WS-Notification application that does not expose a Web service

endpoint.

v Viewing the endpoint URLs to which WS-Notification applications connect, by looking in the WSDL file

for the NotificationBroker application for Version 7.0 services, or the inbound service for Version 6.1

services.

1. Start the administrative console.

2. Navigate to the “Publish WSDL files to ZIP file [Settings]” form for the WS-Notification application.

For Version 7.0 WS-Notification services, click one of the following paths:

1164 Administering WebSphere applications

v Service integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name → [Additional Properties] Publish WSDL files to

zip

v Service integration → Buses → bus_name → [Services] WS-Notification services → service_name

→ [Additional Properties] WS-Notification service points → point_name → [Additional

Properties] Publish WSDL files to zip

For Version 6.1 WS-Notification services, click one of the following paths:

v Service integration → WS-Notification → Services → service_name → [Related Items] Notification

broker inbound service settings → [Additional Properties] Publish WSDL files to ZIP file

v Service integration → Buses → bus_name → [Services] WS-Notification services → service_name

→ [Related Items] Notification broker inbound service settings → [Additional Properties]

Publish WSDL files to ZIP file

3. Click on the file name to download a zip file that contains the application’s published WSDL files.

Configuring JAX-WS handlers:

A JAX-WS handler is a Java class that performs a range of handling tasks. For example: logging

messages, or transforming their contents, or terminating an incoming request. You can create JAX-WS

handlers, chain them together in the form of a handler list, then apply the handler list to a Version 7.0

WS-Notification service point (for inbound invocation handling) or WS-Notification service (for outbound

invocation handling).

 About this task

The Java API for XML-based Web services (JAX-WS) provides you with a standard way of developing

interoperable and portable Web services. To create a JAX-WS handler, you can use a tool such as IBM

Rational Application Developer. To enable handlers to perform more complex operations, you chain them

together into handler lists. You associate each handler list with one or more Version 7.0 WS-Notification

services or service points, so that the handler list can monitor WS-Notification activity and take appropriate

action depending upon the sender and content of each inbound or outbound message.

Detailed instructions on how to configure JAX-WS handlers and handler lists for use with Version 7.0

WS-Notification services are provided in the following topics:

v Load JAX-WS handler classes.

v Create a new JAX-WS handler configuration.

v Modify an existing JAX-WS handler configuration.

v Delete JAX-WS handler configurations.

v Create a new JAX-WS handler list.

v Modify an existing JAX-WS handler list.

v Delete JAX-WS handler lists.

Loading JAX-WS handler classes:

A JAX-WS handler interacts with messages through a Version 7.0 WS-Notification service point (for

inbound invocation handling) or WS-Notification service (for outbound invocation handling), therefore you

need to make the handler class available to the server or cluster that hosts the WS-Notification service

point or service that you want to monitor.

 Before you begin

This task assumes that you have already created your handler. You can do this using IBM Rational

Application Developer or a similar tool.

Chapter 5. Web services 1165

About this task

Before you can configure a JAX-WS handler for use with WS-Notification, you must make the handler

class available to the server or cluster that hosts the WS-Notification service point or service that you want

to monitor. To do this, you create a shared library for the class then add the shared library to the class

loader for the server.

1. Package the class file for your handler as a JAR file, then copy the JAR file into a convenient directory.

Make the handler class available to the application server in one of the following ways:

v Copy the individual class file into a directory structure under app_server_root/classes that matches

the package name of the class, where app_server_root is the root directory for the installation of

WebSphere Application Server. For example a handler class com.ibm.jaxws.handler.TestHandler is

copied into the app_server_root/classes/com/ibm/jaxws/handler directory.

v Package the class files for all your handlers as a JAR file, then copy it into the app_server_root/
lib/app directory.

2. Start the administrative console.

3. Create a shared library for the JAR file.

a. Navigate to Environment → Shared libraries.

b. Set the scope at which you want the new library to be visible, then click New.

c. Give the new library a name.

d. Set the class path to the directory and file name for your handler JAR file.

e. Save your changes to the master configuration.

For more information, see Creating shared libraries.

4. Create a class loader for the server or cluster on which you want to make the JAR file available.

a. Navigate to Servers → Server Types → WebSphere application servers → server_name → [Server

Infrastructure] Java and Process Management → Class loader.

b. Click New.

c. Click OK.

d. Save your changes to the master configuration.

For more information, see Configuring class loaders of a server.

5. Add the shared library to the class loader for the server.

a. Navigate to Servers → Server Types → WebSphere application servers → server_name → [Server

Infrastructure] Java and Process Management → Class loader → class_loader_name →

[Additional Properties] Shared library references.

b. Click Add.

c. Click on the name of your new library, then click OK.

d. Save your changes to the master configuration.

For more information, see Associating shared libraries with servers.

What to do next

You are now ready to create a new JAX-WS handler configuration by using the administrative console or

by using the createJAXWSHandler command.

Creating a new JAX-WS handler configuration:

Create a Java API for XML-based Web services (JAX-WS) handler configuration for use, as part of a

handler list, with Version 7.0 WS-Notification services.

1166 Administering WebSphere applications

friend.was/ae/tcws_sharedlib_create.html
friend.was/ae/trun_classload_server.html
friend.was/ae/tcws_sharedlib_server.html

Before you begin

You can create a new JAX-WS handler configuration by using the administrative console as described in

this topic, or by using the createJAXWSHandler command.

This task assumes that you have already created your handler. You can do this using IBM Rational

Application Developer or a similar tool. You must also make the handler class available to the server or

cluster that hosts the WS-Notification service points (for inbound invocation handling) or WS-Notification

services (for outbound invocation handling) that you want to monitor, as detailed in “Loading JAX-WS

handler classes” on page 1165.

About this task

A Java API for XML-based Web services (JAX-WS) handler is a Java class that performs a range of

handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming

request. To make WebSphere Application Server aware of your handler, and to make the handler available

for inclusion in one or more handler lists, you use the administrative console to create a new handler

configuration.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → JAX-WS Handlers. The JAX-WS handlers

collection form is displayed.

3. Click New. The JAX-WS handlers settings form is displayed.

4. Type the following general properties:

Name Type the name by which the handler is known.

 This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestHandler.

Description

Type the (optional) description of the handler.

Class name

Type the name of the class that is to be instantiated. This name must be a fully qualified java

class name. For example com.ibm.jaxws.handler.TestHandler.

Note: You can configure multiple instances of a handler by creating each instance with a

different handler name, and pointing to the same handler class.

5. Click OK. The general properties for this item are saved, and the additional properties options are

made available.

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is updated to include the new handler.

Otherwise, an error message is displayed.

What to do next

To use this handler, add it to a handler list as described in Creating a new JAX-WS handler list or

Modifying an existing JAX-WS handler list.

Modifying an existing JAX-WS handler configuration:

Chapter 5. Web services 1167

Modify a Java API for XML-based Web services (JAX-WS) handler configuration for a handler that is used,

as part of a handler list, with Version 7.0 WS-Notification services.

 Before you begin

You can modify a JAX-WS handler configuration by using the administrative console as described in this

topic, or by using the modifyJAXWSHandler command.

If you modify a handler class but do not change the class name, you do not need to modify the handler

configuration as described in this topic. You just need to stop then restart the servers or clusters that host

the services or service points that this handler monitors.

About this task

A Java API for XML-based Web services (JAX-WS) handler is a Java class that performs a range of

handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming

request. You can use the administrative console to list existing handler configurations, and to view and

modify their configuration details.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → JAX-WS Handlers. A list of handlers is

displayed in a JAX-WS handlers collection form.

3. Click the name of a handler in the list. The current JAX-WS handlers settings for this handler are

displayed.

4. Modify the following general properties:

Name Modify the name of the handler.

 This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Note: When you change a handler name, the system looks up all objects that refer to it and

updates the name.
Description

Modify the (optional) description of the handler.

Class name

Change the name of the class that is to be instantiated.

 If you change the class name, you must also make the new handler class available to the

server or cluster that hosts the WS-Notification service points (for inbound invocation handling)

or WS-Notification services (for outbound invocation handling) that you want to monitor, as

detailed in “Loading JAX-WS handler classes” on page 1165.

Note: You can configure multiple instances of a handler by creating each instance with a

different handler name, and pointing to the same handler class.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is redisplayed. Otherwise, an error message

is displayed.

Deleting JAX-WS handler configurations:

Delete the configuration for one or more Java API for XML-based Web services (JAX-WS) handlers that

are configured for use, as part of a handler list, with Version 7.0 WS-Notification services.

1168 Administering WebSphere applications

Before you begin

You can delete a JAX-WS handler configuration by using the administrative console as described in this

topic, or by using the deleteJAXWSHandler command.

About this task

A Java API for XML-based Web services (JAX-WS) handler is a Java class that performs a range of

handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming

request.

When you remove a handler that is currently used by one or more Web services on a service integration

bus, the system removes the handler from the handler lists for each associated Web service.

You can use the administrative console to remove one or more handler configurations.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → JAX-WS Handlers. A list of handlers is

displayed in a JAX-WS handlers collection form.

3. Select the check box for every handler that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of handlers is updated. Otherwise, an error message is

displayed.

Creating a new JAX-WS handler list:

Create a Java API for XML-based Web services (JAX-WS) handler list for use with Version 7.0

WS-Notification services.

 Before you begin

You can create a new JAX-WS handler list by using the administrative console as described in this topic,

or by using the createJAXWSHandlerList command.

You can only add previously-configured handlers to a handler list. To configure a handler, see “Creating a

new JAX-WS handler configuration” on page 1166.

About this task

A Java API for XML-based Web services (JAX-WS) handler is a Java class that performs a range of

handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming

request. To enable handlers to perform more complex operations, you chain them together into handler

lists. The approach taken in WebSphere Application Server is to assign handler lists (rather than individual

handlers) to WS-Notification service points (for inbound invocation handling) or WS-Notification services

(for outbound invocation handling).

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → JAX-WS Handler Lists. The JAX-WS handler

lists collection form is displayed.

3. Click New. The JAX-WS handler lists settings form is displayed.

4. Type the following general properties:

Name Type the name by which the handler list is known.

 This name must be unique at cell scope, and it must obey the following syntax rules:

Chapter 5. Web services 1169

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestList.

Description

Type the (optional) description of the handler list.

JAX-WS handlers

In the JAX-WS handlers pane, complete the following steps:

a. Select one or more handlers from the list of available JAX-WS handlers, then click Add to

move the selected handlers into the list of handlers for this JAX-WS handler list.

b. Select a handler in the list of handlers for this JAX-WS handler list, then click Up or Down

to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form

was first loaded. The two lists of available and assigned handlers are not reset.

5. Click OK. The general properties for this item are saved.

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is updated to include the new handler list.

Otherwise, an error message is displayed.

What to do next

To apply this handler list to inbound notification requests received at a Version 7.0 WS-Notification point,

associate it with the service point as described in “Creating a new Version 7.0 WS-Notification service

point” on page 1150 or “Modifying a Version 7.0 WS-Notification service point” on page 1151. To apply this

handler list to outbound notification requests sent by your Version 7.0 WS-Notification service, associate

the handler list with the service as described in “Creating a new Version 7.0 WS-Notification service” on

page 1136 or “Modifying a Version 7.0 WS-Notification service” on page 1140.

For an overview of the end-to-end task of creating JAX-WS handlers, chaining them together in a handler

list, then applying the handler list to a Version 7.0 WS-Notification service point or service, see “Applying a

JAX-WS handler list to a WS-Notification service” on page 1123.

Modifying an existing JAX-WS handler list:

Modify the configuration details for a Java API for XML-based Web services (JAX-WS) handler list that is

configured for use with Version 7.0 WS-Notification services.

 Before you begin

You can modify a JAX-WS handler list by using the administrative console as described in this topic, or by

using the modifyJAXWSHandlerList command.

You can only add previously-configured handlers to a handler list. To configure a handler, see “Creating a

new JAX-WS handler configuration” on page 1166.

About this task

A Java API for XML-based Web services (JAX-WS) handler is a Java class that performs a range of

handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming

request. To enable handlers to perform more complex operations, you chain them together into handler

1170 Administering WebSphere applications

lists. The approach taken in WebSphere Application Server is to assign handler lists (rather than individual

handlers) to WS-Notification service points (for inbound invocation handling) or WS-Notification services

(for outbound invocation handling).

You can use the administrative console to list existing handler lists, and to view and modify their

configuration details.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → JAX-WS Handler Lists. A list of all the handler

lists is displayed in a JAX-WS handler lists collection form.

3. Click the name of a handler list in the list. The current JAX-WS handler lists settings for this handler

are displayed.

4. Modify the following general properties:

Name Modify the name of the handler list.

 This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and

updates the name.

Description

Modify the (optional) description of the handler list.

JAX-WS handlers

In the JAX-WS handlers pane, complete the following steps:

a. Select one or more previously-configured handlers from either the list of available JAX-WS

handlers or the list of handlers for this JAX-WS handler list, then click Add or Remove to

modify the list of handlers for this JAX-WS handler list.

b. Select a handler in the list of handlers for this JAX-WS handler list, then click Up or Down

to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form

was first loaded. The two lists of available and assigned handlers are not reset.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is redisplayed. Otherwise, an error

message is displayed.

What to do next

To apply this handler list to inbound notification requests received at a Version 7.0 WS-Notification point,

associate it with the service point as described in “Creating a new Version 7.0 WS-Notification service

point” on page 1150 or “Modifying a Version 7.0 WS-Notification service point” on page 1151. To apply this

handler list to outbound notification requests sent by your Version 7.0 WS-Notification service, associate

the handler list with the service as described in “Creating a new Version 7.0 WS-Notification service” on

page 1136 or “Modifying a Version 7.0 WS-Notification service” on page 1140.

For an overview of the end-to-end task of creating JAX-WS handlers, chaining them together in a handler

list, then applying the handler list to a Version 7.0 WS-Notification service point or service, see “Applying a

JAX-WS handler list to a WS-Notification service” on page 1123.

Deleting JAX-WS handler lists:

Chapter 5. Web services 1171

DeleteJava API for XML-based Web services (JAX-WS) handler lists that are configured for use with

Version 7.0 WS-Notification services.

 Before you begin

You can delete a JAX-WS handler list by using the administrative console as described in this topic, or by

using the deleteJAXWSHandlerList command.

About this task

A Java API for XML-based Web services (JAX-WS) handler is a Java class that performs a range of

handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming

request.

When you remove a handler list that is currently used by one or more Web services on a service

integration bus, the system removes the handler list for each associated Web service.

You can use the administrative console to remove one or more handler list configurations.

1. Start the administrative console.

2. Navigate to Service integration → WS-Notification → JAX-WS Handler Lists. A list of handler lists is

displayed in a JAX-WS handler lists collection form.

3. Select the check box for every handler list that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of handler lists is updated. Otherwise, an error message

is displayed.

Interacting at run time with WS-Notification

View (and in some cases delete) at run time the active items associated with WS-Notification service

points.

Before you begin

This task assumes that you have a fully configured and operational WS-Notification service point.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member

through a specified Web service binding (for example SOAP over HTTP). Applications use the bus

members associated with the WS-Notification service point to connect to the WS-Notification service. The

existence of a WS-Notification service point on a bus member implies that a WS-Notification Web service

is exposed from that bus member, and causes Web service endpoints for the notification broker,

subscription manager and publisher registration manager for this WS-Notification service to be exposed on

the bus member with which the service point is associated. WS-Notification applications use these

endpoints to interact with the WS-Notification service.

You can use the administrative console to interact at run time with the following active items associated

with WS-Notification service points:

Publisher registrations

A runtime list of existing publisher registrations is provided. This includes, for each publisher

registration, the information that was used to create it and when it will terminate.

1172 Administering WebSphere applications

Pull points

A runtime list is provided of the pull points that have been created. This includes, for each pull

point, its current termination time and a link to the associated subscription.

Subscriptions

A runtime view is provided for subscriptions that have been created by applications. This includes,

for each subscription, the information that was used to create it and an indication of its current

state.

Administered subscribers

A runtime list is provided of the administered subscribers for a given WS-Notification service point.

This includes, for each administered subscriber, an indication of its current state; for example

whether the subscription was successfully initialized at start time.

For each WS-Notification service point, runtime information is available for subscriptions, registrations,

pull points and administered subscribers. For each WS-Notification service, runtime information is

available - aggregated for all service points for the service - for subscriptions, registrations and pull points.

There is no aggregated view for administered subscribers at the WS-Notification service level.

To access and use the runtime information for active items associated with WS-Notification service points,

use the administrative console to complete the following steps:

1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service

integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points → point_name, then click the Runtime tab. A panel is displayed that contains links

to runtime information about subscriptions, registrations, pull points and administered subscribers

for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate

to either Service integration → WS-Notification → Services → service_name or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name then

click the Runtime tab. A panel is displayed that contains links to runtime information about

subscriptions, registrations and pull points for this WS-Notification service.

2. Click Subscriptions , Publisher registrations, Pull points or (for a particular service point)

Administered subscribers.

v If you click Subscriptions, a panel is displayed that lists the durable subscriptions that have been

created by a WS-Notification service point in response to “Subscribe” requests from WS-Notification

applications. You can view the subscription name (ID), topic and other information associated with

the subscription, and you can view messages held on the durable subscription pending delivery. You

can also delete subscriptions.

Note: Both the WS-Notification subscription and publisher registration resources include the

concept of scheduled termination, in which the application indicates a period of time after

which the resource is destroyed. “Badly-behaved” in this case describes an application that

requests an infinite lifetime for a resource and then does not explicitly delete the resource

before it goes away (never to return).

v If you click Publisher registrations, a panel is displayed that lists the publisher registrations that

are currently in effect on this WS-Notification service or service point (that is, applications that have

registered as publishers). You can view the basic properties of the registration record. You can also

delete a publisher registration record.

v If you click Pull points, a panel is displayed that lists the pull points that are currently active on this

WS-Notification service or service point. You can view basic properties of the pull point such as the

Chapter 5. Web services 1173

subscription with which it is associated and the time at which it is currently set to expire, and you

can navigate to the associated subscriptions where appropriate. You can also delete pull points.

v For a particular service point, if you click Administered subscribers, a panel is displayed that lists

the administered subscribers that are currently in effect on this WS-Notification service point. You

can use this information to see whether a given subscriber has been successfully initialized.

What to do next

For more detailed information about working with individual runtime panels, see the following topics:

v “Listing or deleting active WS-Notification subscriptions.”

v “Listing or deleting active WS-Notification publisher registrations” on page 1176.

v “Listing or deleting active WS-Notification pull points” on page 1177.

v “Listing active WS-Notification administered subscribers” on page 1178.

Listing or deleting active WS-Notification subscriptions:

List the subscriptions that exist at run time for a particular WS-Notification service point, or for all service

points for a particular WS-Notification service.

 About this task

The runtime panels for WS-Notification subscriptions list the durable subscriptions that have been created

by a WS-Notification service point in response to “Subscribe” requests from WS-Notification applications.

You can view the subscription name (ID), topic and other information associated with the subscription, and

you can view messages held on the durable subscription pending delivery. You can also delete

subscriptions. For example, to tidy up after a badly-behaved application.

Note: Both the WS-Notification subscription and publisher registration resources include the concept of

scheduled termination, in which the application indicates a period of time after which the resource is

destroyed. “Badly-behaved” in this case describes an application that requests an infinite lifetime for

a resource and then does not explicitly delete the resource before it goes away (never to return).

A subscription created by a WS-Notification application can contain more than one topic expression, and

each of these topic expressions can be in a different namespace, which can result in service integration

bus subscriptions being created in multiple topic spaces.

To display a list of WS-Notification subscriptions that exist at run time, use the administrative console to

complete the following steps:

1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service

integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points → point_name, then click the Runtime tab. A panel is displayed that contains links

to runtime information about subscriptions, registrations, pull points and administered subscribers

for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate

to either Service integration → WS-Notification → Services → service_name or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name, then

click the Runtime tab. A panel is displayed that contains links to runtime information about

subscriptions, registrations and pull points for this WS-Notification service.

1174 Administering WebSphere applications

2. Click Subscriptions The Subscriptions [Collection] form is displayed. This form shows all the currently

active subscriptions for this WS-Notification service point or service. This collection form contains the

following information about each list item:

Subscription id

The unique identifier of the subscription.

Topics

An array of topic names. Note that this will normally only contain one element.

Delivery state

The current runtime state of the subscription. In normal operation the subscription will show a

state of OK. Other states are PAUSED, indicating that the application has paused the

subscription as defined by the WS-Notification standards, or ERROR, indicating that the last

attempt to deliver an event notification to the notification consumer was not successful. In the

error case, further information on the cause of the failure can be found in the SystemOut log.

Consumer EPR

The endpoint reference to which event notifications matching the subscription are sent. That is,

the endpoint reference to which notification messages are delivered as specified on the

subscribe call.

Creation time

The time at which the subscription was created.

Termination time

The time at which the subscription will be deleted.

Pull type

Indicates whether the subscription is being used in pull mode. That is, whether this

subscription is being accessed by a pull point. If the asynchronous (push) subscription model

is being used, this field displays “No”. If a pull point is being used, this field displays “Yes”.

Service integration bus subscriptions

The service integration bus durable subscription or subscriptions that are associated with the

WS-Notification subscription. This is a link to the service integration bus durable subscription

detail panel for the subscriptions that contain data for this object.

3. Optional: To observe the runtime state of each of the service integration bus durable subscriptions that

have been created, click the link in the SIBus subscriptions field.

If only one durable subscription has been created, the bus durable subscription detail panel is

displayed. For more information, see “Administering durable subscriptions” on page 1324.

If multiple durable subscriptions have been created, for example if the WS-Notification subscription is

spanned across multiple service integration bus topic spaces, a runtime collection form is displayed

that shows the individual bus durable subscriptions. This form shows all the currently active publisher

registrations for this WS-Notification service point or service.

SIBus subscription

The service integration bus durable subscription ID. This links to the associated bus durable

subscription detail panel. For more information, see “Administering durable subscriptions” on

page 1324.

Topics

The list of topics that are contained within a single service integration bus topic space (and

thus durable subscription).

What to do next

To delete one or more WS-Notification subscriptions, and the associated service integration bus durable

subscriptions, enable the check box next to each subscription name then click Delete.

Chapter 5. Web services 1175

Listing or deleting active WS-Notification publisher registrations:

List the publisher registrations that exist at run time for a particular WS-Notification service point, or for all

service points for a particular WS-Notification service.

 About this task

A WS-Notification application can register itself as a publisher in order to check that it is permitted to

publish on the specified list of topics, or to initiate the demand based publisher pattern.

The runtime panels for WS-Notification publisher registrations list the publisher registrations that are

currently in effect on this WS-Notification service or service point (that is, applications that have registered

as publishers). You can view the basic properties of the registration record. You can also delete a

publisher registration record. For example, to tidy up after a badly-behaved application.

Note: Both the WS-Notification subscription and publisher registration resources include the concept of

scheduled termination, in which the application indicates a period of time after which the resource is

destroyed. “Badly-behaved” in this case describes an application that requests an infinite lifetime for

a resource and then does not explicitly delete the resource before it goes away (never to return).

To display a list of WS-Notification publisher registrations that exist at run time, use the administrative

console to complete the following steps:

1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service

integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points → point_name, then click the Runtime tab. A panel is displayed that contains links

to runtime information about subscriptions, registrations, pull points and administered subscribers

for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate

to either Service integration → WS-Notification → Services → service_name or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name, then

click the Runtime tab. A panel is displayed that contains links to runtime information about

subscriptions, registrations and pull points for this WS-Notification service.

2. Click Publisher registrations The Publisher registrations [Collection] form is displayed. This form

shows all the currently active publisher registrations for this WS-Notification service point or service.

This collection form contains the following information about each list item:

Publisher ID

The unique identifier of this publisher registration.

Topic The topic on which the publisher is registered to publish. That is, the list of topics that are

contained within a single service integration bus topic space (and thus durable subscription).

Creation time

The time at which the registration was created.

Termination time

The time at which the registration will be deleted.

Demand based

Indicates whether this is a demand based publisher. This displays “Yes” or “No”.

Producer EPR

Additional publisher related data. The endpoint reference of the producer that created this

registration.

1176 Administering WebSphere applications

What to do next

To delete one or more publisher registrations, enable the check box next to each registration ID then click

Delete.

Listing or deleting active WS-Notification pull points:

List the pull points that exist at run time for a particular WS-Notification service point, or for all service

points for a particular WS-Notification service.

 About this task

To use the synchronous delivery mechanism described by the WS-Notification standards, a

WS-Notification application creates a pull point against the notification broker.

The runtime panels for WS-Notification pull points list the pull points that are currently active on this

WS-Notification service or service point. You can view basic properties of the pull point such as the

subscription with which it is associated and the time at which it is currently set to expire, and you can

navigate to the associated subscriptions where appropriate. You can also delete pull points.

To display a list of WS-Notification pull points that exist at run time, use the administrative console to

complete the following steps:

1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service

integration → WS-Notification → Services → service_name → [Additional Properties]

WS-Notification service points → point_name or Service integration → Buses → bus_name →

[Services] WS-Notification services → service_name → [Additional Properties] WS-Notification

service points → point_name, then click the Runtime tab. A panel is displayed that contains links

to runtime information about subscriptions, registrations, pull points and administered subscribers

for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate

to either Service integration → WS-Notification → Services → service_name or Service

integration → Buses → bus_name → [Services] WS-Notification services → service_name, then

click the Runtime tab. A panel is displayed that contains links to runtime information about

subscriptions, registrations and pull points for this WS-Notification service.

2. Click pull points The Pull points [Collection] form is displayed. This form shows all the currently active

pull points for this WS-Notification service point or service. This collection form contains the following

information about each list item:

Pull point id

The unique identifier of the pull point.

Creation time

The time at which the pull point was created.

Termination time

The time at which the pull point will be deleted.

Subscription id

The unique identifier of the subscription associated with the pull point. If the pull point has not

yet been supplied to a subscription, the text “Not Associated” is displayed.

Chapter 5. Web services 1177

What to do next

To delete one or more pull points, enable the check box next to each pull point ID then click Delete.

Listing active WS-Notification administered subscribers:

List the administered subscribers that exist at run time for a particular WS-Notification service point. An

administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an

external notification producer at server startup time.

 About this task

The runtime panels for WS-Notification administered subscribers list the administered subscribers that are

currently in effect on this WS-Notification service point. You can use this information to see whether a

given subscriber has been successfully initialized.

Administered Subscribers are defined on individual WS-Notification service points. There is no aggregated

view for administered subscribers at the WS-Notification service level.

To display a list of WS-Notification administered subscribers that exist at run time, use the administrative

console to complete the following steps:

1. For runtime information for a particular service point, navigate to either Service integration →

WS-Notification → Services → service_name → [Additional Properties] WS-Notification service

points → point_name or Service integration → Buses → bus_name → [Services] WS-Notification

services → service_name → [Additional Properties] WS-Notification service points → point_name,

then click the Runtime tab. A panel is displayed that contains links to runtime information about

subscriptions, registrations, pull points and administered subscribers for this WS-Notification service

point.

2. Click Administered subscribers The Administered subscribers [Collection] form is displayed. This

form shows all the currently active administered subscribers for this WS-Notification service point. This

collection form contains the following information about each list item:

Producer EPR

The endpoint reference of the remote Web service application from which event notifications

are received. That is, the endpoint reference (Web address) of a notification producer or

notification broker application. For example http://remoteproducer.com. You provided this

reference when you created the administered subscriber.

Topic The topic for which event notifications have been requested.

Subscription reference

The string form of the endpoint reference that was returned by the remote service as a result

of the subscribe, if successfully created.

State The current runtime state of the administered subscriber. An icon indicator that displays either

green or red to indicate whether the administered subscriber is OK or has failed. Hover over

this icon to see a description of the current state. In the OK case, it describes the last

successful operation - initially the time at which the subscription was contacted (for server

startup) and subsequently the time the last message was received for this subscriber. In the

failed case, it describes the details of the last failure.

Subscription timeout

The length of time in hours after which the remote subscription will expire if not renewed by

the server. This timeout minimizes the potential for orphaned subscriptions in the remote Web

service if the local server is uninstalled. Note that this field does not indicate the actual time at

which the remote subscription is due to expire. Set the timeout length to something larger than

the maximum length of time that the server is expected to remain offline, otherwise the stream

of messages from the remote Web service might be interrupted. While the server is running it

1178 Administering WebSphere applications

occasionally renews the remote subscription termination time (with the specified timeout) to

prevent it from expiring during normal operation. If not specified, this timeout defaults to 24

(hours).

Chapter 5. Web services 1179

1180 Administering WebSphere applications

Chapter 6. Service integration

Service integration technologies

Service integration is a technology that provides asynchronous messaging services. This topic explains

about the core technologies on which WebSphere Application Server service integration applications are

developed and implemented.

About this task

WebSphere Application Server applications invoke asynchronous messaging services using the Java

Messaging Service (JMS) application programming interface (API) to interface to a messaging provider.

WebSphere Application Server supports a variety of messaging providers, including service integration

which is the built-in messaging provider.

Service integration buses

Application servers or clusters of application servers in a WebSphere Application Server cell can

cooperate to provide messaging services. A group of servers and/or clusters which cooperate in

this way is called a service integration bus. Each of the cooperating servers or clusters is called a

bus member. In the simplest case, a service integration bus consists of a single bus member

which is one application server.

 A WebSphere Application Server application does not need to be running on a service integration

bus member to use its messaging services. If necessary, WebSphere Application Server

automatically provides a connection to a suitable bus member.

Different service integration buses can, if required, be connected. This allows applications using

one bus (the local bus) to send messages to destinations in another bus (a foreign bus). Note,

though, that applications cannot receive messages from destinations in a foreign bus.

Messaging engines

Each service integration bus member contains a component called a messaging engine which

processes messaging send and receive requests and which can host destinations. To host

destinations, the messaging engine includes a message store where, if necessary, it can hold

messages until consuming applications are ready to receive them. Each messaging engine also

has a file store or a data store where it can hold messages so that they are not lost when the

messaging engine fails.

 A service integration bus member which is an application server cluster, can contain one or more

messaging engines. These can be configured in a variety of ways which provide flexible availability

and workload sharing options.

Why use a service integration bus?

v To connect any kind of application to any other kind of application. This is the traditional WebSphere

MQ scenario, where different applications written in different languages are running on different

operating systems and you want them all to be able to communicate with each other.

v To connect Java EE applications running in application servers. Service integration is a complete JMS

v1.1 provider implementation (not just an API but a working messaging system). The JMS provider is a

pure Java implementation that runs within the application server’s JVM process. (For persistent

messaging, WebSphere Application Server also requires a JDBC compliant database such as DB2.) As

a result, JMS messaging is built into WebSphere Application Server and is easily available to any Java

EE application deployed in WebSphere Application Server.

For the situation where many WebSphere Application Server applications are communicating, and you

also need to communicate with other non-WebSphere Application Server applications, you must still use

WebSphere MQ as the messaging system.

© Copyright IBM Corp. 2008 1181

Architectures you can use for interoperating WebSphere Application Server and WebSphere MQ are

WebSphere MQ as an external JMS messaging provider, WebSphere MQ links, and WebSphere MQ

servers.

What are the benefits of service integration bus?

v Secure externalizing of existing applications: You can use the bus to expose existing applications as

Web services, for use by any Web service-enabled tool, regardless of the implementation details. This

enables applications or Web services deployed on a server deep inside an enterprise to be made

available as Web services on the Internet to customers, suppliers, and business partners. Security

options mean that this access can be tightly controlled.

v Return on investment: Business partners can reuse an existing process that you make available as a

Web service using the bus. This gives great scope for the reuse of existing assets.

v Protocol transformation: The bus provides support for exposing an existing service implemented in one

protocol (for example, SOAP/jms), as something entirely different from clients (for example,

SOAP/HTTP). This function is invaluable for ensuring smooth interoperability between businesses that

may implement varying Web services protocols in their business applications.

v Messaging benefits: The fact that the bus is built on top of the Java Messaging Service (JMS) delivered

in WebSphere Application Server means that it is able to expose messaging artifacts, such as queues

and topics, as Web services. It also provides advanced options for asynchronous communication,

prioritized message delivery, and quality of service (message persistence).

For more information about what is provided by service integration within WebSphere Application Server,

see the following topics:

v “Service integration buses”

v “Messaging engines”

v “Managing data stores” on page 1183

v “Bus destinations” on page 1183

v “Mediations” on page 1183

v “Managing messaging with the default messaging provider” on page 1183

v “Using WebSphere MQ links to connect a bus to a WebSphere MQ network” on page 1693

v “Security” on page 1184

v “High availability and workload sharing for service integration technologies” on page 1187

v “Enabling Web services through the service integration bus” on page 1032

Service integration buses

Service integration buses manage the messaging resources that are associated with a server using

message-based and service-oriented architectures, including those using the Java Message Service (JMS)

interfaces. They are not, however, associated with a specific bus or messaging engine.

v Learning about service integration buses

v “Planning a bus topology” on page 1191

v “Configuring buses” on page 1196

v “Operating buses” on page 1261

Messaging engines

These topics provide information about messaging engines, which provide the processing function on a

service integration bus.

v Learning about messaging engines

v “Configuring messaging engines” on page 1216

v Operating messaging engines

v “Managing messaging engines with administrative commands” on page 1276

v SIBAdminCommands: Messaging engine administrative commands for the AdminTask object

1182 Administering WebSphere applications

v Messaging engine troubleshooting tips

Managing data stores

A data store is a message store that uses a relational database. A data store consists of a set of tables

that are in the same database schema. It is used by a messaging engine to store operating information in

the database, as well as to preserve essential objects that the messaging engine needs for recovery in the

event of a failure.

About this task

A data store consists of the set of tables that a messaging engine uses to store persistent data in a

database. Refer to “Data store tables” on page 1290 for a list of the tables that comprise a data store. All

the tables in a data store are held in the same database schema. You can create multiple data stores in

the same database only by using a different schema for each data store.

Bus destinations

This topic is the entry-point into a set of topics about bus destinations within a service integration bus, to

which applications can attach as producers, consumers, or both to exchange messages.

v Learning about bus destinations

v “Configuring bus destinations” on page 1228

v “Configuring message points” on page 1322

v “Managing messages on message points” on page 1262

v “Administering durable subscriptions” on page 1324

Mediations

These topics provide information about mediations, which are used to change how messages are handled

at destinations on a service integration bus.

v Learning about mediations

v Learning about programming mediations

v Programming mediations

v “Securing mediations” on page 1327

v “Configuring mediations” on page 1329

v “Configuring mediation points” on page 1339

v “Managing mediations with administrative commands” on page 1341

v “Operating mediations at mediation points” on page 1341

v “Administering messages on mediation points” on page 1343

v Message properties support for mediations

v Error handling in mediations

v Mediation thread pool properties

Managing messaging with the default messaging provider

This topic is the entry point into a set of topics about enabling WebSphere Application Server applications

to use messaging resources provided by the default messaging provider.

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,

you can use the default messaging provider as described in this topic. To integrate WebSphere Application

Server messaging into a predominantly WebSphere MQ network, you can use the WebSphere MQ

messaging provider. You can also use a third party messaging provider. To choose the provider that is best

Chapter 6. Service integration 1183

suited to your needs, see Choosing a messaging provider.

About this task

The default messaging provider is installed and runs as part of WebSphere Application Server, and is

based on service integration technologies.

The default messaging provider supports JMS 1.1 domain-independent interfaces (sometimes referred to

as “unified” or “common” interfaces). This enables applications to use common interfaces for both

point-to-point and publish/subscribe messaging. This also enables both point-to-point and

publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is recommended

for new applications. The domain-specific interfaces are supported for backwards compatibility for

applications developed to use domain-specific queue interfaces, as described in section 1.5 of the JMS 1.1

specification.

You can use the WebSphere Application Server administrative console to configure JMS resources for

applications, and can manage messages and subscriptions associated with JMS destinations.

WebSphere Application Server Version 5.1 Java EE applications can use messaging resources of the

default messaging provider in WebSphere Application Server Version 7.0. This JMS interoperation from

WebSphere Application Server Version 5.1 to later versions is enabled and managed by a WebSphere MQ

client link created on the WebSphere Application Server Version 7.0 node. This JMS interoperation is only

intended as an aid to the migration from the embedded messaging in WebSphere Application Server

Version 5.1 to the default messaging provider in WebSphere Application Server Version 7.0.

Note: Java EE applications running under WebSphere Application Server Version 7.0 can use messaging

resources of Version 5 embedded messaging without any need for a WebSphere MQ client link.

For more information about using the default messaging provider of WebSphere Application Server, see

the following topics:

v Learning about the default messaging provider

v “Configuring resources for the default messaging provider” on page 1662

v “Interoperating with a WebSphere MQ network” on page 1691

v Migrating from WebSphere Application Server Version 5 embedded messaging

v “Managing WebSphere Application Server Version 5.1 JMS use of messaging resources in later

versions of the product” on page 1725

v “Configuring the messaging engine selection process for JMS applications” on page 1735

v “Managing messages and subscriptions for JMS destinations” on page 1737

v “Using JMS from standalone clients to interoperate with service integration resources” on page 1738

v “Using JMS from a third party application server” on page 1745

Security

This topic is an overview of the tasks for administering messaging security for a service integration bus.

Before you begin

Review the security requirements for the bus. For guidance, see Planning your security requirements.

About this task

Messaging security protects the bus from unauthorized access. By default, messaging security is enabled

for the bus. Providing administrative security is also enabled, messaging security enforces a security policy

that prevents unauthorized client applications from connecting to the bus, and accessing bus resources.

1184 Administering WebSphere applications

friend.was/ae/tm_ep.dita

There may be circumstances when you do not require messaging security, for example on a development

system. In this case, you can disable messaging security.

You can customize the security configuration for the bus using the administrative console, or wsadmin

scripting commands. The security configuration controls the following aspects of bus security:

v Authorizing groups of users in the user registry to perform selected operations on bus destinations.

v The transport policies that maintain the integrity of messages in transit on the bus.

v The use of global, and multiple custom security domains.

v The integrity of links between messaging engines, foreign buses and databases.

Use the following tasks to administer messaging security:

v “Securing buses” on page 1345

v “Enabling client SSL authentication” on page 1352

v “Adding unique names to the bus authorization policy” on page 1354

v “Administering authorization permissions” on page 1355

v “Administering permitted transports for a bus” on page 1380

v “Securing messages between messaging buses” on page 1384

v “Securing access to a foreign bus” on page 1385

v “Securing links between messaging engines” on page 1386

v “Controlling which foreign buses can link to your bus” on page 1387

v “Securing database access” on page 1387

v “Securing mediations” on page 1327

Auditing the service integration security infrastructure

Security auditing is an important part of the security infrastructure. Security auditing provides a mechanism

for auditable events to be tracked and archived while ensuring the integrity of the records.

Before you begin

Before enabling the security auditing subsystem for service integration, you must enable global security in

your environment.

About this task

The primary responsibility of the security infrastructure is to prevent unauthorized usage of resources.

Security auditing has two primary goals:

v Confirming the effectiveness and integrity of the existing security configuration.

v Identifying areas where improvement to the security configuration might be needed.

Security auditing achieves these goals by providing the infrastructure that allows you to implement your

code to capture and store supported security auditable events. All code other than the Java enterprise

application code is considered to be trusted. Each time an enterprise application accesses a resource, any

internal application server process that has audit points that are added within their code can be recorded

as an auditable event. The security auditing subsystem captures the following types of auditable events:

v Authentication

v Authorization

v Principal and Credential Mapping

v Key management

v System management

v Security policy management

v Audit policy management

v Administrative configuration management

Chapter 6. Service integration 1185

v Administrative runtime management

v User registry and identity management

v Password changes

v Delegation

These types of events can be recorded into audit log files. The audit log flies can be signed and encrypted

to ensure data integrity. These audit log files can be analyzed to discover breaches over the existing

security mechanisms and to discover potential weaknesses in the current security infrastructure. Security

event audit records are also useful for providing evidence, accountability, and vulnerability analysis. The

security auditing configuration provides four default filters, a default audit service provider, and a default

event factory. This following steps describe how to customize your security auditing subsystem. Additional

information specific to messaging is included in the step description where appropriate.

1. Enabling the security auditing subsystem

Security auditing is not performed unless the audit security subsystem has been enabled. Global

security must be enabled for the security audit subsystem to function, as no security events occur if

global security is not also enabled.

To allow messaging security events to be audited, audit security must be enabled:

a. For each bus to be audited, click Service integration → Buses → security_value, and select the

Enable the auditing service for this bus check box.

b. For publish/subscribe messaging, also on each topic space on the bus being audited, click Service

integration → Buses → bus_name → [Destination resources] Destinations → topic_space_name,

and select the Enable the auditing service for this topic space check box.

2. Auditor role

A user with the auditor role is required to enable and configure the security auditing subsystem. It is

important to require strict access control for security policy management. The auditor role provides

granularity to support separation of the auditing role from the authority of the administrator.

3. Creating security auditing event type filters

You can configure event type filters to only record a specific subset of auditable event types in your

audit logs. Filtering the event types that are recorded makes for simpler analysis of your audit records

by ensuring the records to only display what you selected as important for your an environment.

The audit events that can be configured for messaging are:

SECURITY_AUTHN

This event is produced when the identity of a messaging client or messaging engine

connecting to a messaging bus is authenticated.

SECURITY_AUTHZ

This event is produced when the identity of a messaging client is checked for access authority

to a bus or a message queue when sending, directly or by publication, or receiving messages,

directly or by subscription.

SECURITY_AUTHN_TERMINATE

This event is produced when the connection between a messaging client or messaging engine

and a messaging bus is terminated.

SECURITY_MGMT_CONFIG

This event is produced when a messaging client changes the contents of a service data object

(SDO) repository in an import or remove operation.

You can create event filters for each permutation of an event and its possible outcomes such as

SUCCESS, DENIED, or error conditions of different levels of severity.

See messaging security events for more information on which messaging security audit events are

produced and when they are produced.

4. Configuring audit service providers for security auditing

1186 Administering WebSphere applications

friend.was/ae/tsec_sa_enable_secauditing.dita
friend.was/ae/rsec_adminroles.dita
friend.was/ae/tsec_sa_selecting_event_types.dita
friend.was/ae/tsec_sa_config_asp.dita

The audit service provider is used to format the audit data object that is passed to it before outputting

the data to a repository.

5. Configuring audit event factories for security auditing

The audit event factory gathers the data associated with the auditable events and creates an audit

data object. The audit data object is then sent to the audit service provider to be formatted and

recorded to the repository.

6. Protecting your security audit data It is important for the recorded audit data to be both secured and

with the data integrity ensured. To ensure that access to the data is restricted and secure, you can

encrypt and sign your audit data.

7. Configuring security audit subsystem failure notifications

You can enable notifications to generate alerts when the security auditing subsystem experiences a

failure. Notifications can be configured to record an alert in the audit logs or can be configured to send

an alert through e-mail to a specified list of recipients.

Results

After successfully completing this task, you audit data is recorded for the selected auditable events that

were specified in the configuration.

What to do next

After configuring security auditing, you can analyze your audit data for potential weaknesses in the current

security infrastructure and to discover security breaches that might have occurred over the existing

security mechanisms.

High availability and workload sharing for service integration

technologies

These topics provide information about high availability and workload sharing for service integration

technologies.

v Learning about high availability and workload sharing

v Configuring high availability and workload sharing of service integration

v Administering high availability for service integration

v Injecting failures into a high availability system

Enabling Web services through the service integration bus

Web services can use the service integration bus and the Web services gateway to provide a single point

of control, access, and validation of Web service requests and allow control of Web services that are

available to different groups of Web service users.

About this task

With bus-enabled Web services you can achieve the following goals:

v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and

make it available as a Web service.

v Create an outbound service: Take an externally-hosted Web service, and make it available internally at

a bus destination.

v Create a gateway service: Use the Web services gateway to map an existing service - either an

inbound or an outbound service - to a new Web service that appears to be provided by the gateway.

Bus-enabled Web services provide a choice of quality of service and message distribution options, along

with intelligence in the form of mediations that allow for the rerouting of messages. The Web services

gateway is used to map Web services for use within your organization and by external users, and to

Chapter 6. Service integration 1187

friend.was/ae/tsec_sa_config_aef.dita
friend.was/ae/tsec_sa_audit_data_protection.dita
friend.was/ae/tsec_sa_config_notification.dita

manage the relationships between externally-provided Web services and those provided directly through a

service integration bus (that is, the relationships between inbound and outbound services).

To enable Web services through service integration technologies, complete the following steps:

 1. Optional: Learn about bus-enabled Web services. Explore the concepts that underly service

integration bus-enabled Web services.

 2. Plan your bus-enabled Web services installation. Determine the bus-enabled Web services roles that

each standalone server or cluster is to perform.

 3. Ensure that every standalone server or cluster that is to play a bus-enabled Web services role is a

member of a service integration bus. For more information, see “Configuring the members of a bus”

on page 1202.

 4. For every standalone server or cluster that is to play a bus-enabled Web services role, install and

configure a Service Data Objects (SDO) repository on the standalone server, or (for a server or

cluster that is part of a managed cell) on the network deployment cell.

Note: For WebSphere Application Server Version 6.0, you also had to manually install a selection of

the following applications:

v The service integration technologies resource adapter (used to invoke Web services at

outbound ports).

v The bus-enabled Web services application.

v One or more endpoint listener applications.

For later versions of WebSphere Application Server, these applications are installed

automatically as and when needed. For example, the endpoint listener application is installed

automatically when you configure an endpoint listener.

 5. Create a new endpoint listener configuration for each endpoint listener application that you plan to

use to receive inbound service requests.

 6. Optional: Create an inbound service. An inbound service is a Web interface to a service that is

provided internally (that is, a service provided by your own organization and hosted in a location that

is directly available through a service integration bus destination). To configure a locally-hosted

service as an inbound service, you associate it with a service destination, and with one or more

endpoint listeners through which service requests and responses are passed to the service. You can

also choose to have the local service made available through one or more UDDI registries.

 7. Optional: Create an outbound service. An outbound service is a Web service that is hosted externally,

and is made available through a service integration bus. To make an externally-hosted service

available through a bus, you first associate it with a service destination, then you configure one or

more port destinations (one for each type of binding, for example SOAP over HTTP or SOAP over

JMS) through which service requests and responses are passed to the external service. You get the

port definitions from the WSDL, but you can choose which ones you want to create.

 8. Optional: Create a gateway instance. Within each service integration bus you can create multiple

gateway instances. You create Web services gateway instances to partition the total set of gateway

services into logical groups to allow simpler management. The gateway provides you with a single

point of control, access and validation of Web service requests, and allows you to control which Web

services are available to different groups of Web service users.

 9. Optional: Create a gateway service. A gateway service is the Web interface for an underlying service

(the target service) that is either provided internally (hosted so as to be directly available at a service

destination), or provided externally (as an external Web service). You use the Web services gateway

to map an existing service - either an inbound or an outbound service - to a new Web service that

appears to be provided by the gateway. The gateway service acts as a proxy: your gateway service

users need not know whether the underlying service is being provided internally or externally.

10. Optional: Apply additional security to your bus-enabled Web services. By default, the bus-enabled

Web services configuration works when WebSphere Application Server security is enabled and your

service integration buses are secured. However this level of security does not impose any security

1188 Administering WebSphere applications

restrictions on the users of your bus-enabled Web services configuration. To control how your

bus-enabled Web services configuration is used by each group of your colleagues or customers, use

the bus-enabled Web services additional security features to enable working with password-protected

components and servers, with WS-Security and with HTTPS.

What to do next

For further information on specific aspects of bus-enabled Web services, see the following topics:

v Learning about bus-enabled Web services

v “Installing and configuring the SDO repository” on page 1033

v “Configuring Web services for a service integration bus” on page 1040

v “Administering the bus-enabled Web services core resources” on page 1069

v Securing bus-enabled Web services

v “Passing SOAP messages with attachments through the service integration bus” on page 1103

v SIBWebServices command group for the AdminTask object

v Bus-enabled Web services troubleshooting tips

v Tuning bus-enabled Web services

Service integration topologies

This topic provides information about the service integration topologies that you can configure. A service

integration topology can range from a single host running two connected applications to a

globally-dispersed set of hundreds or thousands of communicating applications running over the bus.

A service integration topology is based on one or more service integration buses that provide a managed

communication fabric that supports service integration through synchronous and asynchronous messaging.

A service integration bus supports applications using message-based and service-oriented architectures. A

bus is a group of one or more interconnected servers or server clusters that have been added as

members of the bus. Applications connect to a bus at one of the messaging engines associated with its

bus members.

A service integration bus provides the following capabilities:

v Any application can exchange messages with any other application by using a destination to which one

application sends, and from which the other application receives.

v A message-producing application, that is, a producer, can produce messages for a destination

regardless of which messaging engine the producer uses to connect to the bus.

v A message-consuming application, that is, a consumer, can consume messages from a destination

(whenever that destination is available) regardless of which messaging engine the consumer uses to

connect to the bus.

The service integration bus is sometimes referred to as the messaging bus if it is used to provide the

messaging system for JMS applications using the default messaging provider.

Many scenarios require a simple bus topology, for example, a single server. If you add multiple servers to

a single bus, you increase the number of connection points for applications to use. If you add server

clusters as members of a bus, you increase scalability and achieve high availability. Servers, however, do

not have to be bus members to connect to a bus. In more complex bus topologies, multiple buses are

configured, and can be interconnected to form complex networks. An enterprise might deploy multiple

interconnected buses for organizational reasons. For example, an enterprise with several independent

departments might want separately administered buses in each location.

With bus-enabled Web services you can achieve the following goals:

Chapter 6. Service integration 1189

v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and

make it available as a Web service.

v Create an outbound service: Take an externally-hosted Web service, and make it available internally at

a bus destination.

v Create a gateway service: Use the Web services gateway to map an existing service - either an

inbound or an outbound service - to a new Web service that appears to be provided by the gateway.

You can change the service integration topology to suit your needs; for example:

v You can add application servers or server clusters as new bus members. Each new bus member is

automatically assigned a messaging engine, with default data source, and a default exception

destination. The messaging engines can communicate with, and use resources provided by, all other

messaging engines on the bus.

v You can change the configuration of the data source for a messaging engine, for example to use a

different JDBC provider.

v You can create new buses and add application servers or server clusters as members of those buses.

Each bus operates as a separate environment, unless connected by a gateway messaging engine.

v You can connect a message-driven bean to consume messages from a destination on a remote cell

Bus topologies

You can connect buses in different ways depending on your requirements. For example, you can link

messaging engines to distribute message workload, and to provide availability in the event of system

failure.

A topology that consists of a single messaging engine may be adequate for some applications. Deploying

more than one messaging engine, and linking them together, provides the following advantages:

v Distributes the messaging workload across multiple servers.

v Positions message processing close to the applications that are using it, and reduces network traffic.

For example, if both sending and receiving applications are running in the same server process, it is

inefficient to route all the messages that flow between the two applications through a messaging engine

running in a remote server.

v Improves availability in the event of system or link failure. For example, your bus topology can remove a

single point of failure, and allow store and forward between two servers.

v Provides improved scalability.

v Accommodates firewalls, or other network restrictions that limit the ability of network hosts to connect to

a single messaging engine.

Bus topologies that use multiple security domains have additional advantages provided by the presence of

bootstrap members. Only servers that are nominated bootstrap members can access the bus. You can

define a subset of servers and clusters that can access the bus, and use this information to isolate buses

and the applications that use them, and enhance how you manage your bus topologies.

A bus topology can contain links to WebSphere MQ networks. This allows messages to flow between

applications connected to a WebSphere MQ queue manager and applications attached to a service

integration bus.

The service integration environment backup

It is advisable to back up your service integration system on a regular basis so that you can restore it in

the event of an unrecoverable failure. Learn about the issues when taking backups and restoring from a

backup.

For service integration, these are the main sections of the system that you can back up:

1190 Administering WebSphere applications

The configuration files for the system.

The configuration of the system is stored as XML files. To back up or restore these configuration

files, use the relevant command as detailed in Backing up and restoring administrative

configurations. Any backup or restore of a service integration environment must include a backup

or restore of the configuration files.

The data stores that are accessed by the messaging engines.

Taking or restoring a backup of your data stores is optional. Messages are transient in nature, so

you might not want to back up or restore the data stores.

v If you do not take a backup of the data stores, and you have modified your current configuration

since it was last backed up, and you then restore the configuration backup, be aware that you

may lose messages. For example, if you back up the configuration and then create a bus

destination, when you restore the configuration backup the destination will no longer exist. Any

messages for this destination will be deleted when the server that hosted that messaging

engine is restarted.

v If you do take a backup of your data stores, you must also take a backup of the configuration

files. You must take the configuration backup at the same time, and restore it at the same time,

as the data store backups; taking the backup and restoring at the same time maintains the

consistency of the system and reduce the possibility of loss of messages, or duplication of

messages from the time of the backup.

To back up a data store, see “Backing up a data store” on page 1288.

The file stores that are accessed by the messaging engines.

Taking or restoring a backup of your file stores is optional. Messages are transient in nature, so

you might not want to back up or restore the files. To back up a file store, see “Backing up a file

store” on page 1280.

If your environment includes multiple servers, you should backup all the servers at the same time,

otherwise messages from the time of the backup might be lost or duplicated. You should also minimize the

amount of message traffic flowing through the system to reduce the possibility of lost or duplicate

messages.

When you restart a messaging engine after restoring a backup, you should take steps to minimize loss of

messages. See Restoring a data store and recovering its messaging engine .

Planning a bus topology

These topics contain information about planning a service integration bus topology. This information is

intended primarily for use by solution architects and designers who are in the early stages of planning a

bus topology.

About this task

To plan a bus topology, you must consider the following issues:

v How many buses will the topology comprise?

v How will messaging engines and bus destinations be distributed?

v What are the naming conventions for buses, messaging engines, and other service integration bus

resources?

Note: Each bus name in a cell must be unique. It is advisable to use unique names for all buses, even

when they are in different cells, because you cannot connect two buses with the same name.

You can find more in depth information about your chosen bus topology in the following topics.

Note: Your bus topology might be a combination of the topologies described in these topics. For example,

a multiple-bus topology might include clustering.

Chapter 6. Service integration 1191

friend.was/ae/tcfg_svr_conf_backup.html
friend.was/ae/tcfg_svr_conf_backup.html

Planning issues common to all bus topologies

Some planning issues apply to all types of service integration bus topology. This topic guides you through

the common decisions you must make about your bus topology.

About this task

Service integration bus configuration

You need to consider the following:

v The volume of messages that the bus will handle. Depending on the volume of messages

anticipated, you might need to adjust the High message threshold setting for a bus or

messaging engine.

v The transport chain to be used for communication between messaging engines. For more

information, see Selecting transport options

v Whether bus security is required. When bus security is enabled, access to the bus itself and to

all destinations on the bus must be authorized. If you enable bus security, you may also want to

define aliases for authenticating messaging engines and mediations accessing the bus. A single

version bus (that is, all bus members are at WebSphere Application Server Version 7.0) does

not require an authentication alias. If you create a mixed-version bus (that is, the bus contains a

bus member at WebSphere Application Server Version 6.x and another bus member at

WebSphere Application Server Version 7.0), you need to define an authentication alias for the

WebSphere Application Server Version 6.x bus member, to enable it to establish trust with the

other bus members.

v The bus name. It is advisable to choose bus names that are compatible with the WebSphere

MQ queue manager naming restrictions. You cannot change a bus name after a bus is created,

so if you need to interoperate with WebSphere MQ in the future, it will be much simpler if you

use compatible names. See the topic about WebSphere MQ naming restrictions in the related

links.

Bus member configuration

You need to decide which servers, or in the case of some topologies, which clusters to use for bus

members that host the messaging engines.

Messaging engine configuration

You might need to adjust the High message threshold setting for a messaging engine depending

on the volume of messages anticipated.

Message store configuration

Each messaging engine has a single message store, which can be either a file store or a data

store. See “Considerations when choosing between a file store and a data store” on page 1277.

 You need to consider the sizes of messages. Larger messages will increase the space that a

message store requires.

If you use a data store, the default database system for the data store is Apache Derby Version

10.3. However, you might need to use a different system, such as DB2.

You can select different data store topologies depending on your requirements; for more

information see “Planning the configuration of a messaging engine to use a data store” on page

1281.

Bus destinations and their configuration

You need to decide on the number and type of destination, mediations, destination routing path,

and quality of service for the destination.

 For point-to-point messaging, you define bus destinations as queues and for publish/subscribe

messaging, you define bus destinations as topic spaces. For point-to-point messaging only, you

must select one bus member as the assigned bus member that is to hold messages for the queue.

This action automatically defines a queue point for each messaging engine in the assigned bus

member.

1192 Administering WebSphere applications

You can also define alias destinations to provide a level of abstraction between applications and

the underlying target bus destinations. Applications interact with the alias destination, so you can

change the target bus destination without changing the application

The reliability quality of service for messages on a destination has implications for performance

and the amount of space required for a data store. Higher levels of reliability impact on

performance and increase the space a data store requires because fewer messages are

discarded.

You should decide how you want to use the bus destinations because you can configure a bus

destination to prevent producers sending messages to the destination, or consumers receiving

messages from the destination.

Application environment

An application attaches as a client to a messaging engine on the bus, either by an in-process call

or across a network using a remote client. A remote client can run in either the Java EE

application client environment or the Java EE application server environment. Various transport

chains can be used. You might decide to provide samples for use with an application.

Application connections

The way that a messaging engine is selected, and the mechanism that an application uses to

reach it is configured on a JMS connection factory. You need to decide which messaging engines

the applications should connect to and on the transport chain to be used. For more information on

connection factories, see “Configuring resources for the default messaging provider” on page 1662

and on transport options, see Selecting transport options.

WebSphere MQ client links

You might want to define WebSphere MQ client links to enable JMS clients developed for

WebSphere Application Server Version 5.1 to use messaging resources on the bus. A WebSphere

MQ client link is an optional component of a messaging engine that presents a messaging engine,

and thereby the bus, as a WebSphere MQ queue manager to which these JMS clients can attach.

Transaction logs

You need to plan where transaction logs will be placed. See the topic about transactional high

availability in the related links.

Planning a single-server bus topology

This topic outlines what you should consider when planning a basic bus topology that contains a single

server. A single-server bus contains one messaging engine to which all destinations, for example queues

and topic spaces, are assigned.

About this task

You need to decide if a single messaging engine is adequate for your needs. You should consider the

following factors:

v Number of client connections

v Message throughput rates

v Size of messages

You should also review the planning issues that are common to all topologies.

Planning a multiple-server bus without clustering

This topic outlines what you should consider when planning a bus that consists of multiple servers but no

cluster bus members. Having more than one server provides the advantages of scalability, the ability to

handle more client connections and greater message throughput.

Chapter 6. Service integration 1193

About this task

You can plan a bus that has multiple server bus members, none of which are members of a cluster.

When planning for a multiple-server bus, you should consider the following factors:

v The number of messaging engines in the bus and their properties.

v The distribution of destinations in the bus. For performance reasons, you may decide to place

destinations close to associated producers.

v For point-to-point messaging, which bus member should be assigned to holding messages for a

particular queue.

You should also review the planning issues that are common to all topologies.

Planning a multiple-server bus with clustering

This topic outlines what you should consider when planning a multiple-server bus with clustering.

About this task

You can plan a bus that has multiple servers, some or all of which are members of a cluster. When

planning for a multiple-server bus, you should consider the following issues:

v What server clusters and servers are required?

v How will messaging engines be distributed between bus members? You need to consider the number of

messaging engines in the bus and their properties, and how they are distributed amongst the server

clusters and servers.

v For point-to-point messaging, which bus member should be assigned to hold messages for a particular

queue?

v For messaging engines deployed to a cluster for high availability purposes, which server will run the

messaging engine?

v How will bus destinations be partitioned, and how will consumers be aligned with partitions?

v You should also review the planning issues that are common to all topologies.

Planning a multiple-bus topology

Use this task to plan a topology that contains multiple buses.

About this task

In addition to the planning that is common to all topologies, planning issues include:

v The naming of service integration buses; bus names must be unique.

v How buses are to be linked, that is, directly through a service integration bus link, or through an indirect

link. For an indirect link, there can be one or more intermediate buses. For more information, see Direct

and indirect routing between service integration buses. You also need to decide on the transport chain

required, unless you want to use the default basic transport chain.

v Which messaging engines should contain service integration bus links.

v The distribution of destinations on different messaging engines in each bus. You might want to define

alias destinations which make a destination available by a different name, on the same bus or a foreign

bus. You might also want to define foreign destinations, which enable applications on one bus to directly

access a destination on a foreign bus. If you do not define foreign destinations, you can configure

destination defaults to be used. You can combine alias and foreign destinations for further flexibility in

your topology. For example:

Use destination defaults in the following scenarios:

– you have a development environment and want things to work quickly.

1194 Administering WebSphere applications

– you have an application in which destination names are received at run time in message body or

headers.

Use foreign destinations in the following scenarios:

– you want an environment in which everything is statically defined.

– you need to override destination defaults for a particular (foreign) destination, for example quality of

service settings.

Use an alias destination in the following scenarios:

– you need to change the name of a destination, or move a destination to another bus, and want

existing applications to carry on working regardless.

– you need multiple names for the same destination.

v If necessary, the mapping between topic spaces on the local bus and topic spaces on foreign buses.

v The security configuration of the topology.

– If security is enabled, you need to consider whether you have a single version or a mixed version

bus. A mixed version bus has a bus member at WebSphere Application Server Version 6.x and

another bus member at WebSphere Application Server Version 7.0. In this case, the bus members

establish trust using an authentication alias. A single version bus (where bus members are at

WebSphere Application Server Version 7.0) does not require you to define an authentication alias to

ensure the secure operation of the bus.

– If buses in different organizations are connected, you must decide whether to secure connections to

a foreign bus with a user ID and password, and optionally with SSL authentication.

Planning a topology that includes WebSphere MQ

Use this task to plan a topology that includes WebSphere MQ.

About this task

In addition to the planning that is common to all topologies, planning issues include:

v The distribution of destinations on different messaging engines in each bus. You might want to define

alias destinations because applications can use an alias destination to route messages to a target

destination in the same bus or to a foreign bus (including across a WebSphere MQ link to a queue

provided by WebSphere MQ). You can also use alias destinations to manage situations where the

difference in the allowable name length of a bus destination in WebSphere Application Server and the

allowable name length of a WebSphere MQ queue could cause a problem.

v You might want to define foreign destinations so that you can specify properties for those destinations. If

you do not define either a foreign destination or an alias destination, the properties will have default

settings.

v Which messaging engines should contain a WebSphere MQ link. You can have more than one

messaging engine with a WebSphere MQ link in a service integration bus. Also, you can have more

than one WebSphere MQ link on a single messaging engine. For example, you may decide to have:

– One WebSphere MQ link engine with only a sender channel and another WebSphere MQ link

engine with only a receiver channel.

– One WebSphere MQ link to communicate with a WebSphere MQ queue manager or queue-sharing

group (known as a “gateway queue manager”) in the WebSphere MQ network.

Although you can have more than one WebSphere MQ link on a single messaging engine, each

WebSphere MQ link must connect to a different gateway queue manager.

v The broker profile and associated topic mapping settings.

v The security configuration of the topology.

Enabling or disabling service integration notification events

You can monitor your service integration environment using notification events.

Chapter 6. Service integration 1195

About this task

Service integration notification events allow you to monitor the activity of your service integration

configuration using your own system management application. For more details see Service integration

notification events.

You can enable or disable service integration notification events at either the bus or the messaging engine

level. The following table illustrates the effect of the two setting levels on the enablement of notifications:

 Bus-level notification setting ME-level notification setting Are notifications enabled

Not set Not set Disabled

Not set Enabled Enabled

Not set Disabled Disabled

Disabled Not set Disabled

Disabled Enabled Disabled

Disabled Disabled Disabled

Enabled Not set Enabled

Enabled Enabled Enabled

Enabled Disabled Disabled

1. By using the administrative console, open the Custom properties page for either the bus or the

messaging engine for which you want to set notification events:

v Click Service integration → Buses → bus_name → [Additional Properties] Custom properties to

display the custom properties for a bus.

v Click Service integration → Buses → bus_name → [Topology] Messaging engines →

engine_name → [Additional Properties] Custom properties to display the custom properties for a

messaging engine.

2. Click New to create a new custom property.

3. Enter sib.event.notification as the name of the custom property. Set the value of the custom property to

either “enabled” or “disabled” as required.

4. Optional: Enter a description for the custom property.

5. Click OK and save your changes to the master configuration.

Service integration buses

Service integration buses manage the messaging resources that are associated with a server using

message-based and service-oriented architectures, including those using the Java Message Service (JMS)

interfaces. They are not, however, associated with a specific bus or messaging engine.

v Learning about service integration buses

v “Planning a bus topology” on page 1191

v “Configuring buses”

v “Operating buses” on page 1261

Configuring buses

You can configure service integration buses in a variety of ways; for example you can create and apply

security to a bus and you can then add servers or server clusters to that bus.

1196 Administering WebSphere applications

Creating a bus

When you create a service integration bus, you add a new bus in the administrative console, and then add

one or more servers or server clusters as bus members. Thereafter, you administer the bus, and its

constituent bus members, as a single unit.

Before you begin

v Plan your bus topology. For more information, refer to “Planning a bus topology” on page 1191.

v Plan your security strategy. For more information, refer to Planning your security requirements.

About this task

You can create a bus by using the administrative console. Wizards are provided to help you add a secured

bus, and add a member to the bus. A messaging engine is created for most types of bus member, and you

are prompted to specify a data store. The exception is WebSphere MQ server: since a messaging engine

is not created, a message store is not required. Use the administrative console to take the following steps:

1. Add a secured bus or an unsecured bus. For the steps, refer to “Adding buses.”

2. Add a member to the bus. Choose one of the following approaches:

v “Adding a server as a new bus member” on page 1202. This creates a messaging engine with

default properties and that uses the default JDBC data source and Apache Derby Version 10.3

JDBC Provider for its data store.

v “Adding a cluster as a member of a bus” on page 1203. This creates a messaging engine for the

cluster, with default properties. You must configure a data store that is accessible from every server

that can potentially run the messaging engine.

3. Optional: Configure the messaging engine, if required. See “Configuring messaging engine properties”

on page 1216.

4. Optional: Configure the data store for the messaging engine, if required. Choose one of the following

approaches:

v For a messaging engine in an application server, you can change the data store configuration. You

could do this, for example, if you want to use DB2 rather than Apache Derby as the database

system. For more information about changing the data store configuration, see “Configuring a JDBC

data source for a messaging engine” on page 1285.

v For a messaging engine in a server cluster, configure the data store. For more information about

configuring the data store for a messaging engine in a cluster, see “Configuring a data source for a

messaging engine running in a cluster” on page 1288.

You can also change the file store configuration. Refer to “Modifying file store configuration” on page

1279.

5. Restart the server or, if the member you added was a cluster, restart the eligible servers in the cluster.

The messaging engine starts when the server starts.

Results

A new bus is created.

What to do next

You can now change the configuration of the bus; for example, by adding additional members, by creating

bus destinations, and by creating links to WebSphere MQ networks. You can create other buses and, if

required, connect them together.

Adding buses

You can add a new service integration bus by using the administrative console. If messaging security is

enabled, security settings are configured for the bus by default. You can add a unsecured bus if you

disable messaging security.

Chapter 6. Service integration 1197

Adding a secured bus:

This task uses an administrative console wizard to add a new service integration bus that uses a security

domain. A bus can use the global security settings, inherit the security settings that exist at cell level, or

use a set of customized settings that are unique to the bus, or shared with another resource.

 Before you begin

You must decide which type of security domain to use for the bus. For more information, refer to Planning

your security requirements and Messaging security and multiple security domains.

About this task

By default, administrative security for the cell is enabled. If the wizard detects that administrative security

is disabled, the wizard prompts you to enable it. You must specify the type of user repository, and the

administrative security username and password.

Security settings are held in a security domain. If the bus might contain a WebSphere Application Server

Version 6.x bus member, you must select the global domain. You can select any type of domain for a bus

that contains only WebSphere Application Server Version 7.0 bus members.

 1. Log into the administrative console.

 2. Click Service integration → Buses. A list of buses is displayed.

 3. In the content pane, click New.

 4. Type a name for the new bus. It is advisable to choose bus names that are compatible with the

WebSphere MQ queue manager naming restrictions. You cannot change a bus name after a bus is

created, so if you need to interoperate with WebSphere MQ in the future, it will be much simpler if

you use compatible names. See the topic about WebSphere MQ naming restrictions in the related

links.

 5. Ensure that the Bus security checkbox is checked.

 6. Click Next. The Bus Security Configuration wizard is launched.

 7. Read the Introduction panel, and click Next.

 8. If administrative security is disabled, follow the instructions in the wizard to select, and configure the

appropriate user repository.

 9. Click Next. A summary of the administrative security settings for the bus is displayed.

10. Review the summary, and click Finish. Administrative security for the cell is now enabled.

11. By default, clients are required to use SSL protected transports to ensure data confidentiality and

integrity. If you do not want clients to use SSL protected transports, clear the checkbox Require

clients use SSL protected transports .

12. Select a security domain for the bus. The domain you specify depends on the versions of the bus

members. If the bus may contain a Version 6.x bus member, you must select the global domain. If the

bus will only contain Version 7.0 bus members, you can select the cell-level or a custom domain. If

you select a custom security domain, you must also follow the instructions to specify a user realm.

13. Review the summary of your choices, and click Finish.

14. Save your changes to the master configuration.

Results

Administrative security is enabled, and a new bus is created with your chosen security settings.

1198 Administering WebSphere applications

What to do next

You can now add bus members to the bus.

Adding an unsecured bus:

This task adds a new unsecured service integration bus.

 About this task

By default, bus security is enabled and you add buses with security configured. Use this task if you want

to add a new service integration bus without any security settings. If you want to secure the bus at a later

date, you can do so by configuring the security settings for the bus.

To add a bus, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses. A list of buses is displayed.

2. In the content pane, click New.

3. Type a name for the new bus. It is advisable to choose bus names that are compatible with the

WebSphere MQ queue manager naming restrictions. You cannot change a bus name after a bus is

created, so if you need to interoperate with WebSphere MQ in the future, it will be much simpler if you

use compatible names. See the topic about WebSphere MQ naming restrictions in the related links.

4. Clear the Bus security checkbox to disable bus security.

5. Click Next.

6. Review the summary of the settings for the new bus, then click Finish.

7. Save your changes to the master configuration.

Results

Bus security is disabled, and you have added a new unsecured service integration bus.

What to do next

You can now add servers or server clusters to the bus.

Configuring bus properties

You can configure how many messages the bus can handle, when to discard messages, and which

messaging engines the bus can communicate with. You can also specify changes that can be made to the

bus that do not require a restart of the messaging engines.

About this task

You configure bus properties after you have created a bus. To configure the properties of a bus, use the

administrative console to complete the following steps:

1. Click Service integration → Buses → bus_name.

2. Specify the following properties for the bus:

Description

A service integration bus supports applications using message-based and service-oriented

architectures. A bus is a group of interconnected servers and clusters that have been added as

members of the bus. Applications connect to a bus at one of the messaging engines

associated with its bus members.

Inter-engine transport chain

The transport chain used for communication between messaging engines in this bus.

Chapter 6. Service integration 1199

The transport chain must correspond to one of the transport chains defined in the Messaging

engine inbound transports settings for the server. All servers automatically have a number of

transport chains defined to them, and it is also possible to create new transport chains.

When you specify the name of a transport chain, that chain must be defined to all servers

hosting messaging engines in the bus. Otherwise, some messaging engines might not be able

to communicate with their peers in the bus.

When the use of permitted chains is enforced and a protocol is not specified for intra-bus

communications then InboundSecureMessaging is assumed instead of

InboundBasicMessaging. This can be overridden by setting the protocol attribute in the bus

configuration. If InboundSecureMessaging is not a permitted chain then an error occurs.

Discard messages

Whether messages on a deleted message point should be retained at a system exception

destination or can be discarded. Select this option to indicate that after a queue has been

deleted, any messages left in the data store for that queue should be discarded.

Configuration reload enabled

Select this option to enable automatic update of configuration information on all the messaging

engines on the bus.

 Changes to bus destinations or mediations are applied when destinations or mediations are

added to or removed from the bus.

Changes to the modifiable configuration information for any foreign bus connections are also

updated automatically. The time when these changes take effect varies:

Foreign Bus Connection properties

Immediately

WebSphere MQ link properties

On channel restart, except Description (immediately), and Initial State (on messaging

engine restart)

MQ sender channel properties

On channel restart, except Initial State (on messaging engine restart or sender channel

creation)

MQ receiver channel properties

On channel restart, except Initial State (on messaging engine restart or receiver

channel creation)

Publish/subscribe broker profile (0 to n) properties

Immediately

Service integration bus link properties

On link restart, except Description (immediately), and Initial State (on messaging

engine restart or link creation)

To ensure that dynamic configuration updates are made on an application server, click Servers

→ Server Types → WebSphere application servers → server_name → [Server messaging]

SIB service then select Configuration reload enabled.

To ensure that dynamic configuration updates are made to each node, click System

administration → Console Preferences to display the Console Preferences window then

select Synchronize changes with nodes.

Default messaging engine high message threshold

A threshold above which the messaging system will take action to limit the addition of more

messages to a message point. When a messaging engine is created on the bus, the value of

this property is used to set the default high message threshold for the messaging engine.

1200 Administering WebSphere applications

3. Specify topology, destination resources, Web services and additional properties for the bus, as

required. To restrict the number of audit messages, add a custom property called

audit.bus.authentication with one of the following values:

v all (audit all attempts to authenticate to the bus)

v failure (audit only failure to authenticate to the bus)

v none (do not audit any attempts to authenticate to the bus)

4. Click OK.

5. Save your changes to the master configuration.

Listing the buses

You can view the list of the service integration buses that currently exist. You can decide which buses you

want to change, for example, to add a server or a server cluster to a bus.

About this task

After you list the service integration buses, you can add or delete a bus. Also, you can select a bus to

view its details and perform further actions, such as adding a member to a bus, creating a foreign bus

connection, or applying security to a bus. To list the buses, use the administrative console to complete the

following step.

In the navigation pane, click Service integration → Buses.

Results

A list of buses is displayed in the content pane.

What to do next

You can now add or delete buses, or click on a bus name to display or configure its properties.

Displaying the topology of a service integration bus

You can display a tree view of the members of a bus, and the messaging engines used by a selected bus,

in the administrative console. You can also view the runtime status for each messaging engine.

About this task

Use this task to display a local topology view of the bus members and messaging engines in a service

integration bus. You can use this view to add servers and server clusters as members of the bus, and to

add messaging engines to cluster bus members.

To display the local topology view of a service integration bus, use the administrative console to complete

the following steps:

1. In the navigation pane, click Service integration → Buses. A list of buses is displayed in the content

pane.

2. In the content pane, click the name of the bus. For example, SCA.SYSTEM.localhostCell01.Bus

3. Click the tab Local Topology

Results

The topology of the bus is displayed as an expandable tree.

What to do next

You can expand nodes of the tree to display the bus members and their messaging engines.

Chapter 6. Service integration 1201

You can add servers and server clusters as members of the bus, and add messaging engines to cluster

bus members.

Deleting a bus

You can delete a service integration bus, for example if it is no longer in use.

Before you begin

Note: When you delete a bus, each messaging engine on the bus is also deleted and any associated

messages are discarded. If you subsequently create a new bus with the same name as the deleted

bus, the new bus will not have the same universal unique identifier (UUID) as the deleted bus.

About this task

To delete a bus, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses. A list of buses is displayed in the content

pane.

2. In the content pane, select the bus that you want to delete.

3. Click Delete.

4. Click OK.

5. Save your changes to the master configuration.

What to do next

You must disable the SIB Service at server startup.

Configuring the members of a bus

Use the administrative console to add, remove, and list the members of a bus.

Adding a server as a new bus member:

The members of a service integration bus are the application servers and clusters within which messaging

engines for that bus can run. When you add a new bus member, you configure its message store, which is

either a file store or a data store.

 About this task

If you add a server as a member of a bus, WebSphere Application Server creates a messaging engine for

the server. By default, the messaging engine is configured to use a file store. If you choose a data store,

you have the choice of using the default JDBC data source and Derby JDBC Provider for its data store. If

you do not want to use the default data source configuration, you can choose to use a different data

source or you can configure the data store to use a different JDBC provider. If you subsequently delete a

bus member and then recreate it, you should make sure that you understand the life cycle of the file store

or a data store. Refer to Data store life cycle and Learning about file stores for details.

You can optionally tune the initial and maximum Java virtual machine (JVM) heap sizes. Tuning the heap

sizes helps to ensure that application servers hosting one or more messaging engines are provided with

an appropriate amount of memory for the message throughput you require.

If security is enabled, and the bus has mixed version bus members; (that is, a bus member at WebSphere

Application Server Version 6.x and another bus member at Version 7.0), the bus members establish trust

using an authentication alias. If you add a server as a bus member at WebSphere Application Server

Version 6.x, and it is the first bus member at this level, you need to select or create an authentication alias

during this task.

1202 Administering WebSphere applications

To add an application server as a member of a bus, use the administrative console to complete the

following steps:

 1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

A list of members in the bus is displayed.

 2. Click Add.

 3. Select scope of the new bus member: this is one of Server, Cluster or WebSphere MQ server.

Server is selected by default. Only select the Cluster scope in WebSphere Application Server

environments that support server clusters.

 4. Make your selection and click Next.

 5. Select the type of message store: it is either a file store or a data store. For more information, see

File stores and Data stores. File store is selected by default.

 6. Click Next.

Note: If you use a file store and want to change the default values, you can change them here. For

more information refer to “Modifying file store configuration” on page 1279.

Note: If you use a data store and want the messaging engine in the bus member to use a

non-default data source, select Create new data source and fill in Data source JNDI name

field.

 7. Click Next.

Note: You can view the current settings of the initial and maximum Java Virtual Machine (JVM) heap

sizes. If you want to tune performance by changing the current settings, select the Change

heap sizes check box and enter the required changes in the Proposed heap sizes fields.

 8. Click Next.

 9. If security is enabled, and adding this server creates a mixed version bus, the wizard prompts for an

authentication alias. Do one of the following:

v Select an existing authentication alias.

v Create a new authentication alias. You need to specify a unique alias name and password.

10. Click Finish to confirm the creation of the bus member.

11. Save your changes to the master configuration. You must restart the server for the changes to take

effect.

Results

The member is added to the bus and a messaging engine is created for that member.

What to do next

Next, you can configure the messaging engine. For more information about configuring messaging engines

and their message stores, see the related tasks.

Adding a cluster as a member of a bus:

You can add a server cluster as a member of a service integration bus so that it can use the bus to

communicate. When a cluster is added to the bus, all servers in the cluster are added to it, and at least

one messaging engine is created. The members of a service integration bus are the application servers

and clusters within which messaging engines for that bus can run.

 Before you begin

To add a cluster to a bus, the following resources must be defined:

v A service integration bus.

Chapter 6. Service integration 1203

v A cluster. For a high availability configuration, the cluster should contain at least two nodes, each with a

server on, that is, at least two physical machines.

v A location for the message store for the messaging engine. Each messaging engine uses a message

store to preserve operating and recovery information.

– To use a file store, you need a file location.

– To use a data store, you need a suitable data source, such as a relational database, that is

accessed through a JDBC data source.

You can use the default JDBC data source and Derby JDBC Provider for its data store. If you do not

want to use the default data source configuration, you can use a different data source or you can

configure the data store to use a different JDBC provider.

If you want any of the messaging engines in the cluster to fail over to another server, all servers that

could host each messaging engine need access to the message store for that messaging engine.

About this task

When you add a server cluster as a member of a bus, consider the following points:

v If you use messaging engine policy assistance, one or more messaging engines are created and

configured, according to the messaging engine policy type you select. You can choose one of the

predefined messaging engine policy types, which are designed to support frequently-used

configurations, or choose a custom messaging engine policy type, where some configuration settings

are created automatically but you can customize them.

v If you do not use messaging engine policy assistance, one messaging engine is created. This

messaging engine has default properties and uses the default core group policy for messaging engines,

Default SIBus Policy. After adding the bus member, you can create more messaging engines and can

configure a new core group policy to customize the way that the messaging engines are managed. It is

advisable to create a new, separate, core group policy for each new messaging engine, including the

first one. It is not advisable to alter the default SIBus core group policy. Use this procedure if you are

already familiar with it. Otherwise, use messaging engine policy assistance.

v If security is enabled, and the bus has mixed version bus members; (that is, a bus member at

WebSphere Application Server Version 6.x and another bus member at Version 7.0), the bus members

establish trust using an authentication alias. If you add a server cluster as a bus member at WebSphere

Application Server Version 6.x, and it is the first bus member at this level, you need to select or create

an authentication alias during this task.

v If you subsequently delete a bus member and then re-create it, you must manually delete the old data

source to ensure that the messaging engines will restart after the bus member has been created. Refer

to Data store life cycle and Learning about file stores for details.

Adding a cluster to a bus for high availability or scalability:

You can add a cluster as a member of a bus using messaging engine policy assistance and a predefined

messaging engine policy that provides high availability, scalability, or scalability with high availability.

Messaging engine policy assistance helps you to create and configure the messaging engines in a cluster

to provide the required messaging engine behavior.

 Before you begin

Ensure that you have defined the resources listed in “Adding a cluster as a member of a bus” on page

1203.

About this task

The following predefined messaging engine policies are available:

1204 Administering WebSphere applications

v High availability. Use the high availability policy when you want to ensure that there is always a

messaging engine running in that cluster, so that messages are always transmitted.

The high availability messaging engine policy creates a single messaging engine for the cluster. The

messaging engine is configured to fail over to any of the other servers in the cluster. The order in which

the servers are used for failover depends on their order in the preferred servers list. The earlier the

server in the preferred servers list, the stronger the preference for that server. The messaging engine

does not fail back, that is, if a more preferred server becomes available again, the messaging engine

does not move back to that server.

v Scalability. Use the scalability policy for a system where you want to add more servers to a cluster and

maintain the performance.

The scalability messaging engine policy creates a single messaging engine for each server in the

cluster. Each messaging engine can run only on the server that it is assigned to, and it cannot fail over

to another server. If a server fails, the messaging engine that is running on it also fails, and is not

available until the server recovers. You can add new servers to the cluster without affecting existing

messaging engines in the cluster.

v Scalability with high availability. Use the scalability with high availability policy for a system where you

want to add more servers to a cluster and maintain the performance, but you also want to ensure that

messaging is always available.

The scalability with high availability messaging engine policy creates a single messaging engine for

each server in the cluster. Each messaging engine can fail over to one other specified server in the

cluster. Each server can host up to two messaging engines, such that there is an ordered circular

relationship between the servers. Each messaging engine can fail back, that is, if a messaging engine

fails over to another server, and then the original server becomes available again, the messaging

engine automatically moves back to that server.

You can optionally tune the initial and maximum Java virtual machine (JVM) heap sizes. Tuning the heap

sizes helps to ensure that application servers hosting one or more messaging engines are provided with

an appropriate amount of memory for the message throughput you require.

If security is enabled, and the bus has mixed version bus members; (that is, a bus member at WebSphere

Application Server Version 6.x and another bus member at Version 7.0), the bus members establish trust

using an authentication alias. If you add a server cluster as a bus member at WebSphere Application

Server Version 6.x, and it is the first bus member at this level, you need to select or create an

authentication alias during this task.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. Click Add to start the Add a new bus member wizard.

3. In the first pane, select Cluster, and, from the drop-down list, choose the cluster that you want to

make a member of the bus.

4. In the Messaging engine policy assistance settings pane, ensure that the Enable messaging engine

policy assistance check box is selected. Select one of the following options, depending on the

messaging engine policy that you require:

v High availability

v Scalability

v Scalability with high availability

If the value of the “Is further configuration required” column for the selected messaging engine policy is

No, continue with the procedure. Otherwise, examine the messages displayed and decide whether to

go back and change the cluster configuration, or to continue. A diagram of the selected cluster and the

eventual outcome of the selected messaging engine policy is displayed.

5. Select the type of message store that you have already defined.

6. In the Configure messaging engines pane, for each messaging engine listed, click the messaging

engine name and enter details for its message store.

Chapter 6. Service integration 1205

v If you use a file store, specify the directory paths for the log files, the permanent file store, and the

temporary file store. Do not use the default path, and ensure that you use a unique path for each

messaging engine.

v If you use a data store, specify the JNDI name of the data source that provides access to the

database that holds the data store.

7. Optional: In the Tune performance parameters pane, you can view the current settings of the initial and

maximum Java Virtual Machine (JVM) heap sizes. If you want to tune performance by changing the

current settings, select the Change heap sizes check box and enter the required changes in the

Proposed heap sizes fields.

8. If security is enabled, and adding this cluster bus member creates a mixed version bus, the wizard

prompts for an authentication alias. Do one of the following:

v Select an existing authentication alias.

v Create a new authentication alias. You need to specify a unique alias name and password.

9. When the Add a new bus member wizard is finished, save your changes to the master configuration.

Results

You have created a cluster bus member.

v For the high availability messaging engine policy, there is a single messaging engine, named

cluster_name.nnn-bus_name, which can fail over to any of the servers in the cluster.

v For the scalability messaging engine policy, there is one messaging engine for each server in the

cluster, named cluster_name.nnn-bus_name. Each messaging engine in the cluster is restricted to

running on one server.

v For the scalability with high availability messaging engine policy, there is one messaging engine for

each application server in the cluster, named cluster_name.nnn-bus_name. Each messaging engine in

the cluster can fail over to one other specified server in the cluster, and can fail back to its preferred

server if that server becomes available again.

For each messaging engine, there is a core group policy named messaging_engine_name-numberPolicy.

This core group policy is configured with the behavior you chose for the messaging engine policy, and is

associated with the messaging engine through its match criteria.

Adding a cluster to a bus with a custom configuration:

You can add a cluster as a member of a bus using messaging engine policy assistance and the custom

messaging engine policy. In this situation, messaging engine policy assistance helps you to create and

configure messaging engines in a cluster that is a member of a bus when the predefined messaging

engine policy types do not meet your needs. You can configure the messaging engine behavior, and the

appropriate messaging engine policies are created automatically.

 Before you begin

Ensure that you have defined the resources listed in “Adding a cluster as a member of a bus” on page

1203.

About this task

When you use the custom messaging engine policy, you can create any number of messaging engines for

the cluster. For each messaging engine, you must specify the behavior that you require, such as whether it

can fail over and whether it uses preferred servers. The core group policies and match criteria for each

messaging engine are automatically created. Use this option when the other options of High availability,

Scalability, or Scalability with high availability do not provide the messaging engine behavior you require,

and you are familiar with creating messaging engines and configuring messaging engine policy settings.

1206 Administering WebSphere applications

You can optionally tune the initial and maximum Java virtual machine (JVM) heap sizes. Tuning the heap

sizes helps to ensure that application servers hosting one or more messaging engines are provided with

an appropriate amount of memory for the message throughput you require.

If security is enabled, and the bus has mixed version bus members; (that is, a bus member at WebSphere

Application Server Version 6.x and another bus member at Version 7.0), the bus members establish trust

using an authentication alias. If you add a server cluster as a bus member at WebSphere Application

Server Version 6.x, and it is the first bus member at this level, you need to select or create an

authentication alias during this task.

 1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

 2. Click Add to start the Add a new bus member wizard.

 3. In the first pane, select Cluster, and, from the drop-down list, choose the cluster that you want to

make a member of the bus.

 4. In the Messaging engine policy assistance settings pane, ensure that the Enable messaging engine

policy assistance check box is selected, and select the Custom radio button.

 5. Select the type of message store that you have already defined.

 6. In the Configure messaging engines pane, click Add to add and configure at least one messaging

engine.

 7. In the Configure the messaging engine policy pane, use the options and the preferred servers list to

set the messaging engine behavior you require. The messaging engine name is automatically

generated, in the format cluster_name.nnn-bus_name.

 8. Enter details for the message store.

v If you use a file store, specify the directory paths for the log files, the permanent file store, and the

temporary file store. Do not use the default path, and ensure that you use a unique path for each

messaging engine.

v If you use a data store, specify the JNDI name of the data source that provides access to the

database that holds the data store.

 9. Optional: In the Tune performance parameters pane, you can view the current settings of the initial

and maximum Java Virtual Machine (JVM) heap sizes. If you want to tune performance by changing

the current settings, select the Change heap sizes check box and enter the required changes in the

Proposed heap sizes fields.

10. If security is enabled, and adding this cluster bus member creates a mixed version bus, the wizard

prompts for an authentication alias. Do one of the following:

v Select an existing authentication alias.

v Create a new authentication alias. You need to specify a unique alias name and password.

11. Optional: Repeat the steps to add and configure further messaging engines for the cluster.

12. When the Add a new bus member wizard is finished, save your changes to the master configuration.

Results

You have created a cluster bus member and at least one messaging engine, named cluster_name.nnn-
bus_name. For each messaging engine, there is a core group policy named messaging_engine_name-
numberPolicy. This core group policy is configured with the behavior you chose for the messaging engine

policy, and is associated with the messaging engine through its match criteria.

What to do next

To see a diagram of the cluster and the messaging engine configuration you have created, click the bus

member name in the Bus members collection pane.

Adding a cluster to a bus without using messaging engine policy assistance:

Chapter 6. Service integration 1207

You can add a cluster as a member of a service integration bus without using messaging engine policy

assistance. One messaging engine with default properties is created for the cluster. After you add the

cluster, you can create more messaging engines and you can create and configure new core group

policies to customize the way that the messaging engines are managed.

 Before you begin

Ensure that you have defined the resources listed in “Adding a cluster as a member of a bus” on page

1203.

About this task

When you add a server cluster as a member of a bus without using messaging engine policy assistance,

one messaging engine is created for the cluster. The messaging engine uses the default SIBus core group

policy with default properties, such that the messaging engine can fail over to any server in the cluster.

After you add the cluster, you can customize the configuration. You can create more messaging engines

and you can create and configure new core group policies to customize the way that the messaging

engines are managed. To do this, you must know how to create and configure a core group policy for

messaging engines, and know how to use match criteria to associate a messaging engine with a core

group policy.

Use the following procedure if you are already familiar with this procedure. Otherwise, use messaging

engine policy assistance.

You can optionally tune the initial and maximum Java virtual machine (JVM) heap sizes. Tuning the heap

sizes helps to ensure that application servers hosting one or more messaging engines are provided with

an appropriate amount of memory for the message throughput you require.

If security is enabled, and the bus has mixed version bus members; (that is, a bus member at WebSphere

Application Server Version 6.x and another bus member at Version 7.0), the bus members establish trust

using an authentication alias. If you add a server cluster as a bus member at WebSphere Application

Server Version 6.x, and it is the first bus member at this level, you need to select or create an

authentication alias during this task.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. Click Add to start the Add a new bus member wizard.

3. In the first pane, select Cluster and, from the drop-down list, choose the cluster that you want to make

a member of the bus.

4. In the Messaging engine policy assistance settings pane, ensure that the Enable messaging engine

policy assistance check box is not selected.

5. Select the type of message store that you have already defined.

v If you use a file store, specify the directory paths for the log files, the permanent file store, and the

temporary file store. Do not use the default path, and ensure that you use a unique path for each

messaging engine.

v If you use a data store, specify the JNDI name of the data source that provides access to the

database that holds the data store.

6. Optional: In the Tune performance parameters pane, you can view the current settings of the initial and

maximum Java Virtual Machine (JVM) heap sizes. If you want to tune performance by changing the

current settings, select the Change heap sizes check box and enter the required changes in the

Proposed heap sizes fields.

7. If security is enabled, and adding this cluster bus member creates a mixed version bus, the wizard

prompts for an authentication alias. Do one of the following:

v Select an existing authentication alias.

1208 Administering WebSphere applications

v Create a new authentication alias. You need to specify a unique alias name and password.

8. When the Add a new bus member wizard is finished, save your changes to the master configuration.

Results

The cluster is now a member of the bus and has a single messaging engine, named cluster_name.nnn-
bus_name. The messaging engine uses the default SIBus core group policy with default properties (One of

N with no preferred servers), such that the messaging engine can fail over to any server in the cluster.

This cluster configuration provides a highly available messaging engine.

What to do next

If you require high availability, you might want to do further configuration, for example to specify preferred

servers for the messaging engine, or enable the messaging engine to fail back. If you require scalability or

workload sharing, you need to add as many messaging engines as you require to the cluster. To

customize the messaging engine behavior, you must create and configure a new core group policy for the

messaging engines and use match criteria to associate the messaging engines with the core group policy.

It is advisable to create a new, separate, core group policy for each new messaging engine, including the

first one. It is not advisable to alter the default SIBus core group policy. For more information, see the

related tasks.

Modifying the messaging engine policy for a cluster bus member:

You can change the messaging engine policy for a cluster bus member that is already configured, and

change the number of messaging engines and their behavior so that they conform with the new

messaging engine policy.

 Before you begin

If you modify the messaging engine policy to provide a high availability configuration, the cluster should

contain at least two nodes, each with a server on, that is, at least two physical machines.

About this task

Use this procedure when you have already added a server cluster as a member of a bus and configured

its messaging engines, but you now wish to change the configuration. For example, if a cluster is

configured for high availability, there is one messaging engine for the cluster and it is set to fail over to any

other server in the cluster. To change the cluster to provide scalability, you need one messaging engine for

each server, set so that each messaging engine cannot fail over. Messaging engine policy assistance

guides you through this process by providing messages about the changes required to achieve the

required configuration.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members →

bus_member_name. If messaging engine policy assistance is enabled, the Bus member detail pane is

displayed. If messaging engine policy assistance is not enabled, the Messaging engine collection pane

is displayed.

2. If messaging engine policy assistance is not enabled, click Enable policy assistance and follow the

instructions on the wizard.

3. From the Bus member detail pane, select one of the following messaging engine policy types, then

click Apply:

v High availability

v Scalability

v Scalability with high availability

If these policy types do not satisfy your requirements, is possible to select Custom and create your

own configuration. If you do this, the system cannot generate any advice or warning messages.

Chapter 6. Service integration 1209

4. Examine the resulting diagram and the messages for the selected messaging engine policy type. Act

on the messages as follows:

v To add a server or a node, go back and change the cluster topology before you continue with the

current procedure.

v To add or remove messaging engines, under Additional Properties, click Messaging engines and

use the options on the resulting pane.

v To correct messaging engine policies, under Additional Properties, click Messaging engine policy

maintenance and use the options on the resulting pane.

At each stage, save your changes to the master configuration. If the Bus members collection pane is

displayed, click the cluster name to return to the Bus member detail pane.

When the “Is further configuration required” column for the selected messaging engine policy type

displays No, the configuration is complete.

5. If necessary, save your changes to the master configuration.

Results

The cluster has the number of messaging engines that are required to conform to your selected

messaging engine policy type. Any changes to the core group policies associated with the messaging

engines are made automatically.

Adding a WebSphere MQ server as a member of a bus:

A WebSphere MQ server provides a direct client connection between a service integration bus and queues

on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. A

WebSphere MQ server bus member is used as a bus member for assigning queue points and mediation

points to WebSphere MQ queues.

 Before you begin

Get details of the client connection from your WebSphere MQ administrator.

Ensure that the WebSphere MQ server has been configured, that the bus has been defined and that the

server is not already a member of the bus.

Decide on which method you want to use to configure these resources. You can add the WebSphere MQ

server as a bus member by using the administrative console as described in this task, or by using the

addSIBusMember command.

About this task

When you add a WebSphere MQ server to one or more buses, messaging engines on these buses can

access queues on the target WebSphere MQ installation. When you make the server a bus member, you

can override the server connection settings with settings that are specific to the new bus member. This

can be useful in a multiple bus topology.

 1. Start the administrative console.

 2. Navigate to the list of bus members for the bus to which you are adding the WebSphere MQ server.

Click Service integration → Buses → bus_name → [Topology] Bus members.

 3. Click Add. The “Add a new bus member” wizard is displayed.

 4. Select the WebSphere MQ server to add to the bus:

a. Select the WebSphere MQ server radio button.

b. From the drop-down list, select the server to add.

c. Click Next.

1210 Administering WebSphere applications

5. Specify the virtual queue manager name.

When sending messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the

bus as a remote queue manager. The virtual queue manager name is the name that is passed to

WebSphere MQ as the name of this remote queue manager. The default value is the name of the

bus. If this value is not a valid name for a WebSphere MQ queue manager, or if another WebSphere

MQ queue manager already exists that has the same name, then replace the default value with

another value that is a valid and unique name for a WebSphere MQ queue manager. To be valid, the

name must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the WebSphere MQ topic Rules

for naming WebSphere MQ objects).

 6. Optional: To override the server connection settings, select the Override WebSphere MQ server

connection properties check box.

When you select this option, the connection properties for the server are made available so that you

can change them to settings that are specific to this bus member. For more information about these

connection properties, see WebSphere MQ server bus member [Settings].

 7. Optional: If you have changed the server connection settings, you can click Test connection to test

the connection to the associated WebSphere MQ network.

 8. Click Next.

 9. Click Finish to confirm.

10. Save your changes to the master configuration.

What to do next

You are now ready to create a WebSphere MQ queue-type destination for the new bus member.

Listing the members of a bus:

You can display a list of servers, server clusters, and WebSphere MQ servers that have been added as

members of a bus.

 About this task

You can list the members of a bus, then you can add, remove, or edit the bus members. To list the

members of a bus, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses. A list of buses is displayed in the content

pane.

2. In the content pane, select the bus whose members you want to list.

3. In the content pane, under Topology, click Bus members. A list of members of the bus is displayed.

Removing a member from a bus:

You can remove an application server, or a server cluster, from a bus so that it is no longer used to

process messages.

 Before you begin

Note:

v When you remove a member from a bus, all messaging engines on that bus member are also

deleted and their associated messages are discarded. If you add the same bus member again,

first you must manually delete the old data source for the messaging engines to ensure that once

the new messaging engines are created, they can restart.

Chapter 6. Service integration 1211

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm

v If you remove a member from a bus, and it is the only member for that server, you must also

disable the SIB Service at server start up.

About this task

To remove a member from a bus, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses. A list of buses is displayed in the content

pane.

2. In the content pane, select the bus from which you want to remove the member.

3. In the content pane, under Topology, click Bus members. A list of members in the bus is displayed.

4. Select the bus member that you wish to remove.

5. Click Remove.

6. Save your changes to the master configuration.

Results

The member is removed from the bus. All the messaging engines on that bus member and the core group

policies that are associated with those messaging engines are deleted.

What to do next

If you have removed the only bus member for a server, you must now disable the SIB Service at server

start up.

Disabling the service integration service:

This task describes how to disable service integration bus functionality when the application server starts.

 About this task

The SIB Service, which provides messaging capability, is enabled automatically when you add a server to

a service integration bus. You can choose to disable the SIB service, for example if you have removed the

only bus member for a server. You can use the administrative console to disable the SIB Service, or

wsadmin scripting. The following example shows a Jython script for disabling the SIB Service:

server = AdminConfig.getid(’/Server:server1/’)

sibService = AdminConfig.list(’SIBService’, server)

AdminConfig.modify(sibService, [["enable", "false"]])

To use the administrative console, complete the following steps.

1. Click Servers → Server Types → WebSphere application servers → server_name → [Server

messaging] SIB service to display the SIB service settings pane.

2. Click the Configuration tab to display configuration properties for the service integration service.

3. Clear the Enable service at server startup check box.

4. Save your changes to the master configuration.

Results

You have disabled the SIB Service. Service integration bus functionality is not available when the

application server starts up.

Administering bootstrap members for a bus

A service integration bus can have bootstrap members. These are bus members, cell members for which

the Service Integration Bus Service is enabled, or nominated cell members that can service requests to

bootstrap into the bus, depending on the bootstrap policy configured for the bus.

1212 Administering WebSphere applications

Before you begin

The bus must exist in a WebSphere Application Server Version 7.0 cell, or a mixed version cell with a

Version 7.0 deployment manager.

About this task

You can configure the bootstrap member policy for a bus, nominate, list and delete bootstrap members for

a selected bus as follows:

Configuring a bootstrap member policy for a bus:

By configuring a bootstrap member policy for a selected service integration bus, you control which servers

and clusters respond to bootstrap requests from client applications.

 Before you begin

You must ensure that the bus is in a WebSphere Application Server Version 7.0 cell, or in a mixed version

cell with a Version 7.0 deployment manager.

About this task

A WebSphere Application Server Version 7.0 bus can use bootstrap members to service connection

requests from client applications. In this task, you define a bootstrap member policy for a selected bus that

defines which servers and clusters can bootstrap into the bus. The default bootstrap member policy is all

cell members that have the Service Integration Bus Service enabled. You can restrict bootstrap

membership to bus members only, or to bus members, and nominated bootstrap members. These are

servers and clusters that are not bus members, but have been nominated as bootstrap members.

1. Log onto the administrative console.

2. Click Service integration → Buses → bus_name. The configuration panel for the selected bus is

displayed.

3. Choose one of the following bootstrap members policies for the bus:

All members of the cell with the Service Integration Bus Service enabled

This is the default option. All the servers and clusters in the cell that have the Service

Integration Bus Service enabled are bootstrap members.

Bus members and nominated bootstrap members

Bootstrap membership is restricted to servers and clusters that are bus members, or have

been nominated as bootstrap members.

Bus members only

Bootstrap membership is restricted to servers and clusters that are bus members.

4. Click Apply.

5. Save your changes to the master configuration.

Results

Requests from client applications to connect to the bus are serviced by the servers and clusters in the cell

that meet the criteria set by the bootstrap member policy you have configured for the bus.

What to do next

Use the administrative console to list, nominate or delete bootstrap members for the selected bus.

Listing the bootstrap members for a bus:

Chapter 6. Service integration 1213

Use this task to find out which servers and clusters in the cell are available to service requests from clients

to connect to a particular service integration bus. The list of available servers and clusters is restricted by

the bootstrap member policy configured for the bus.

 Before you begin

You must ensure that the appropriate bootstrap member policy has been configured for the bus. For more

information, refer to “Configuring a bootstrap member policy for a bus” on page 1213.

About this task

In this task, you use the administrative console to list the bootstrap members for a selected bus. The list of

bootstrap members depends on which of the following bootstrap member policies is configured for the bus:

All members of the cell with the Service Integration Bus Service enabled

This is the default policy. The list includes all the WebSphere Application ServerVersion 7.0

servers and clusters in the cell that have the Service Integration Bus Service enabled.

Bus members and nominated bootstrap members

The list includes all the servers and clusters that are bus members, or have been nominated as

bootstrap members.

Bus members only

The list includes only servers and clusters that are members of the bus.

1. Log into the administrative console.

2. Click Service integration → Buses → bus_name → [Topology] Bootstrap members.

Results

A list of the bootstrap members for the selected bus is displayed.

What to do next

You can use the administrative console to nominate or remove bootstrap members, or configure a different

bootstrap member policy for the bus.

Nominating bootstrap members for a bus:

You can nominate one or more WebSphere Application Server Version 7.0 servers and clusters on Version

7.0 cell nodes as bootstrap members for a selected bus. When the Bus members and nominated

bootstrap members policy is configured for the bus, the nominated bootstrap members can service

requests from client applications to connect to the bus.

 Before you begin

You must ensure that the following requirements are met:

v The bus is in a WebSphere Application Server Version 7.0 cell, or a mixed version cell with a Version

7.0 deployment manager.

v The servers and clusters that you want to nominate as bootstrap members must be on Version 7.0 cell

nodes.

About this task

In this task, you use an administrative console wizard to configure the Bus members and nominated

bootstrap members policy, and nominate bootstrap members for a selected bus.

 1. Log onto the administrative console.

1214 Administering WebSphere applications

2. Click Service integration → Buses → bus_name → [Topology] Bootstrap members. The Bootstrap

members panel displays all the bus members, servers and clusters in the cell that have the Service

Integration Bus Service enabled.

 3. Select the policy Bus members and nominated bootstrap members.

 4. Click Apply. A list of current bus members, and nominated bootstrap members is displayed.

 5. Click New. The Nominate a bootstrap server wizard is launched.

 6. Type the name of the server or cluster that you want to add in the Name field. The first match in the

list of available servers and clusters is highlighted. Click Add to add the named server or cluster to

the list of servers and clusters to add.

 7. When you have listed all the servers and clusters that you want to add, click Next.

 8. Review the summary of the servers and clusters that you have chosen to add.

 9. If you want to change your selections:

a. Click Previous to return to the first step of the wizard.

b. Make the changes you require, and click Next.

10. Click Finish to add the new bootstrap members to the local configuration.

11. Save your changes to the master configuration. An updated list of bus members and nominated

bootstrap members is displayed.

Results

The nominated servers and clusters can service requests from client applications to bootstrap into the bus.

What to do next

You can use the administrative console to perform other bus configuration tasks.

Deleting nominated bootstrap members from a bus:

Deleting a nominated bootstrap member from a selected service integration bus prevents the server or

cluster from servicing requests from client applications to bootstrap into the bus.

 Before you begin

You must configure the Bus members and nominated bootstrap members policy for the selected bus.

For more information, refer to “Configuring a bootstrap member policy for a bus” on page 1213.

About this task

In this task, you use the administrative console to list all the bootstrap members for a selected bus, and

then delete the nominated bootstrap members that you no longer want to use to bootstrap into the bus.

Note that you can delete only nominated bootstrap members.

1. Log onto the administrative console.

2. Click Service integration → Buses → bus_name → [Topology] Bootstrap members. All the nominated

bootstrap members for the bus are listed.

3. Select the nominated bootstrap members that you no longer want to use to bootstrap into the bus, and

click Delete. The Bootstrap members panel displays an updated list of bootstrap members.

4. Save your changes to the master configuration.

Results

You cannot use the deleted nominated bootstrap members to bootstrap into the selected bus.

Chapter 6. Service integration 1215

What to do next

You can use the administrative console to perform other bus administrative tasks.

Configuring messaging engines

You can configure messaging engines in a variety of ways. For example, you can create and apply

security to a messaging engine, then use this engine to send and receive messages. When you add a

server cluster to a service integration bus, at least one messaging engine is created automatically. If you

also use messaging engine policy assistance, some configuration properties are set automatically.

Adding additional messaging engines to a cluster bus member:

You can add extra messaging engines to a cluster bus member, for example to provide high availability or

scalability in a cluster.

 About this task

When you add a server or cluster as a member of a bus, at least one messaging engine is created

automatically. Each server bus member has only one messaging engine. However, cluster bus members

can support additional messaging engines.

You can add multiple messaging engines at the time you create the cluster bus member, or you can add

extra messaging engines at a later time.

When you add an extra messaging engine to an existing cluster bus member, the flow of messages

through existing messaging engines is not disrupted. Also, if dynamic reloading is enabled (by selecting

the Configuration reload enabled property for the cluster bus member), the existing messaging engines

do not have to be restarted to become aware of the new messaging engine.

For more information about configuring bus properties, see “Configuring bus properties” on page 1199.

1. Add an extra messaging engine to an existing cluster bus member, by completing one of the following

substeps:

a. Optional: Add one or more messaging engines when you create a new cluster bus member.

Use messaging engine policy assistance, which guides you through the creation and configuration

of the messaging engines. See “Adding a cluster as a member of a bus” on page 1203.

b. Optional: Add an extra messaging engine to an existing cluster bus member.

Either use the administrative console as described in “Adding a messaging engine to a cluster” on

page 1218, or use the createSIBEngine command.

2. Optional: Enable dynamic reloading for the cluster bus member:

a. In the administrative console, navigate to Servers → Server Types → WebSphere application

servers → server_name → [Server messaging] SIB service.

b. Select Configuration reload enabled.

c. Click OK.

3. Save your changes to the master configuration.

Configuring messaging engine properties:

You can configure the properties of a messaging engine in the administrative console. For example you

can select whether the messaging engine is started automatically when its associated application server is

started, how many messages it can process, and target groups that the engine can join.

1216 Administering WebSphere applications

About this task

In most cases, you can configure the properties of a messaging engine without interrupting the processing

of messages by the messaging engine.

1. Start the administrative console.

2. Navigate to Service integration → Buses → bus_name → [Topology] Messaging engines →

engine_name.

3. Configure the messaging engine properties. For information about the properties that you can

configure, see the property descriptions in Messaging engines [Settings]

4. Click OK.

5. Save your changes to the master configuration.

Listing the messaging engines in a bus:

You can view the list of existing messaging engines in a bus by using the administrative console. You can

decide which messaging engines you want to change, for example which buses they are associated with.

 About this task

To list the messaging engines in a bus, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Topology, click Messaging engines. The list of messaging engines in the

bus is displayed.

Removing a messaging engine from a bus:

You can remove a messaging engine from a service integration bus if you no longer require it to send and

receive messages on the bus.

 Before you begin

You should be wary of deleting and re-creating messaging engines on bus members for which

WS-Notification-administered subscribers have been configured, because in some cases this can leave the

remote Web service subscription active (and passing notification messages to the local server) even

though there is no longer any record of it. For more information, see the WS-Notification troubleshooting

tip Deleting administered subscribers and messaging engines.

1. Stop the messaging engine. You can stop either in Immediate or Force mode, as described in

“Stopping a messaging engine” on page 1275.

2. Use the wsadmin command deleteSIBEngine to delete the messaging engine. All service integration

bus links, MQ links, and custom properties that are owned by the engine are deleted.

Note: When you remove a messaging engine, WebSphere Application Server does not delete the data

store tables automatically. You must remove them manually, or delete all the rows in all the

tables. If you do this, a new messaging engine might fail to start if it attempts to use an

orphaned data store. Refer to the documentation for your chosen relational database

management system for information about deleting tables.

Alternatively, for Apache Derby, you can delete the database’s directory, which is located in

profile_root/databases/com.ibm.ws.sib, where profile_root is the directory in which

profile-specific information is stored. However, do this only if the messaging engine is the sole

user of the database.

For more information, see Data store life cycle.

Chapter 6. Service integration 1217

Similarly, the file store files are not automatically deleted when you delete the messaging

engine. You might want to delete the file store files to reclaim disk space.

Listing the messaging engines defined for a server bus member:

You can display a list of messaging engines defined for a server bus member by using the administrative

console. You can decide which messaging engines you want to change, for example, which buses they

are associated with.

 About this task

To display the list of messaging engines, use the administrative console to complete the following steps:

1. In the navigation pane, click either Service integration → Buses → bus_name → [Topology]

Messaging engines or Servers → Server Types → WebSphere application servers → server_name →

[Server messaging] Messaging engines. A list of messaging engines is displayed in the content

pane.

2. Optional: Select one or more messaging engines to work with, for example to change the properties of

the messaging engine.

Listing the messaging engines for a cluster bus member:

You can display the messaging engines for a cluster bus member in the administrative console. You can

decide which messaging engines you want to change, for example, to change the properties of the

messaging engine.

 About this task

To display the list of messaging engines for a cluster bus member, use the administrative console to

complete the following steps:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. Click the name of the cluster bus member. The Bus member detail panel is displayed.

3. In the content pane, under Additional properties, click Messaging engines.

Results

A list of messaging engines is displayed in the content pane.

What to do next

You can now add a messaging engine to the cluster bus member. You can remove, start, or stop selected

messaging engines. You can click a messaging engine name and change the properties of the messaging

engine.

Adding a messaging engine to a cluster:

You can add a messaging engine to a cluster so that servers that are members of the cluster can send

and receive messages.

 Before you begin

Ensure that you have defined a location for the message store for the messaging engine. Each messaging

engine uses a message store to preserve operating and recovery information.

v If you want to use a file store, you need a file location.

1218 Administering WebSphere applications

v If you want to use a data store, you need a suitable data source, such as a relational database, that is

accessed through a JDBC data source.

About this task

Use this procedure when you want to add a messaging engine to an existing cluster bus member.

Alternatively, you can add one or messaging engines when you add a cluster as a member of a bus. You

can use messaging engine policy assistance, which guides you through the creation and configuration of

the messaging engines.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. In the content pane, click the name of the cluster to which you want to add a messaging engine. The

Bus member detail pane is displayed.

3. In the content pane, under Additional properties, click Messaging engines. A list of messaging

engines for the cluster is displayed.

4. In the content pane, click Add messaging engine.

5. Select the type of message store that you have already defined.

6. Enter details for the message store.

v If you use a file store, specify the directory paths for the log files, the permanent file store, and the

temporary file store. Do not use the default path, and ensure that you use a unique path for each

messaging engine.

v If you use a data store, specify the JNDI name of the data source that provides access to the

database that holds the data store.

7. When the wizard is finished, save your changes to the master configuration.

Results

A messaging engine is added to the cluster. You can now configure the messaging engine if required.

Removing a messaging engine from a cluster:

You can reduce the number of messaging engines configured for a cluster bus member by removing a

messaging engine.

 Before you begin

Before you remove a messaging engine from a cluster, drain it of messages and prevent further messages

being sent to it. Otherwise, when a messaging engine is removed, all messages currently stored on that

messaging engine are deleted. Any messages that are in transit to the removed messaging engine may

remain on the sending messaging engine on a remote queue point and require manual cleanup.

When you remove messaging engines from a cluster, remove them in numerical order from highest to

lowest so as to avoid a situation where, for example, there are messaging engines numbered 001 and 002

and not 000. This is to avoid problems if you use WS-Notification, which attaches special significance to

the first-created messaging engine in a cluster. For more information, see the WS-Notification

troubleshooting tip Deleting administered subscribers and messaging engines.

When you remove a messaging engine from a cluster, all message points and their messages are deleted,

so if the cluster has a queue destination configured, some of the messages stored for that queue might be

lost.

Chapter 6. Service integration 1219

About this task

To remove a messaging engine from a cluster:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. In the content pane, click the cluster from which you want to remove a messaging engine. The Bus

member detail panel is displayed.

3. In the content pane, under Additional properties, click Messaging engines. A list of messaging

engines for the cluster is displayed.

4. In the content pane, select the messaging engine that you want to remove.

5. Click Remove messaging engine.

6. Save your changes to the master configuration.

Results

The messaging engine is removed from the cluster.

You can also use the deleteSIBEngine command to remove a messaging engine from a cluster.

What to do next

Note: When you remove a messaging engine, WebSphere Application Server (base) does not delete the

data store tables or the file store files automatically.

v For a data store, if you want to recreate the same messaging engine, you must first delete the

previous set of tables. If you create a messaging engine and use existing tables, the tables must

be empty so that the messaging engine can function correctly. Refer to the documentation for

your chosen relational database management system (RDBMS) for information about how to

delete tables. However, if you created a data store with default settings, you do not need to

delete previous tables.

v For a file store, you might want to delete the file store files to reclaim disk space.

Correcting the messaging engine policy:

You can change the messaging engine policy for a messaging engine in a cluster so that it conforms to

one of the predefined messaging engine policy types that are available when you use messaging engine

policy assistance.

 About this task

Use this procedure when you are creating or maintaining a cluster bus member and messaging engine

policy assistance is enabled, but there are warning messages that the messaging engine policy should be

corrected. For example, you create and configure a cluster for scalability, where each messaging engine

cannot fail over. If you want to change the cluster to provide scalability and high availability, the messaging

engine policies must be corrected so that the messaging engines can fail over, and the preferred servers

list must be corrected so that there is a preferred server and a failover server for each messaging engine.

This procedure does not add or remove messaging engines. If there are warning messages to add or

remove messaging engines to conform to the selected messaging engine policy type, use the procedures

in the related tasks.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members →

bus_member_name. If messaging engine policy assistance is enabled, the Bus member detail panel

is displayed. If messaging engine policy assistance is not enabled, the messaging engine collection

panel is displayed.

2. If messaging engine policy assistance is not enabled, click Enable policy assistance and follow the

instructions on the wizard.

1220 Administering WebSphere applications

3. From the Bus member detail panel, in the content pane, under Additional properties, click

Messaging engine policy maintenance. A list of messaging engines for the cluster, and details of

their current messaging engine policy settings, is displayed. Messages in the details column indicate

whether the current settings conform to the selected messaging engine policy type.

4. Select the policies you want to correct, then click Correct messaging engine policy.

5. Save your changes to the master configuration.

Results

The selected messaging engine policies are corrected and the new policy settings are displayed in the

panel. The core group policies and match criteria for the messaging engines are automatically corrected.

Deleting a redundant core group policy:

If there is a core group policy that is associated with a cluster, but that is not associated with any

messaging engine in the cluster, and you are using messaging engine policy assistance, you can identify

and delete that policy.

 About this task

Use this procedure when you are creating or maintaining a cluster bus member and messaging engine

policy assistance is enabled, but there are warning messages that a core group policy is redundant. This

message indicates that the core group policy is associated with a cluster through its match criteria, but it is

not associated with any messaging engine that is currently in the cluster.

When you use messaging engine policy assistance, the required associations are created automatically

and you do not have to create or manage core group policies directly. A redundant core group policy might

occur if messaging engine policy assistance is disabled and you remove a messaging engine without

deleting its associated core group policy, or create a core group policy that is not associated with a

messaging engine.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members →

bus_member_name. If messaging engine policy assistance is enabled, the bus member detail panel

is displayed. If messaging engine policy assistance is not enabled, the messaging engine collection

panel is displayed.

2. If messaging engine policy assistance is not enabled, click Enable policy assistance and follow the

instructions on the wizard.

3. In the content pane, under Additional properties, click Redundant core group policies. A list of

redundant core group policies and details of the current core group policy settings is displayed.

4. Select the policies you want to delete, then click Delete.

Results

The selected core group policies are deleted.

Setting up the data store for a messaging engine:

To set up a data store for a messaging engine, the database administrator must first create the database.

You must then configure the data source and configure the messaging engine to use it.

 Before you begin

Before you use this task, review the information in “Planning the configuration of a messaging engine to

use a data store” on page 1281, and ensure that your database administrator has taken any appropriate

action.

Chapter 6. Service integration 1221

About this task

This task summarizes the steps that you must perform to set up the data store for a messaging engine.

You need to work with your database administrator to complete step 1 of this task.

1. Ask your database administrator to perform the following steps:

a. Create the database. Refer to “Creating the database” on page 1283

b. Create users and schemas. Refer to “Creating users and schemas in the database” on page 1283

c. Create the data store tables. Refer to “Creating the tables” on page 1284

d. Ensure that the user has sufficient privilege to allow the messaging engine to operate. For more

information about the privileges that required for the selected database, refer to “Database

privileges” on page 1291.

2. When the database administrator has completed step 1, perform the following steps:

a. Obtain a user ID from your database administrator.

b. Configure a data source. Refer to “Configuring a JDBC data source for a messaging engine” on

page 1285.

c. Configure the messaging engine to use the data source. Refer to “Configuring a messaging engine

data store to use a data source.”

Configuring a messaging engine data store to use a data source:

After configuring a data source, you can configure a messaging engine data store to use the data source.

 Before you begin

This topic assumes that you have chosen or created a bus and a messaging engine, and that the

messaging engine specifies “data store” as its message store type.

You must also have configured a data source, as described in “Setting up the data store for a messaging

engine” on page 1221.

About this task

A messaging engine uses an instance of a JDBC data source to interact with the database that contains

the data store for that messaging engine.

Use the WebSphere Application Server administrative console to set the data store configuration

parameters.

To configure the messaging engine to use a data source, use the administrative console to complete the

following steps:

Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional Properties] Message store

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name.

2. Check that the Message store type is Data store.

3. Click [Additional Properties] Message store. The data store configuration detail panel is displayed.

4. Specify the following data store configuration details:

Data source JMDI name

Type the JNDI name of the data source that provides access to database that holds the data

store.

1222 Administering WebSphere applications

Schema name

Type the name of the database schema that contains the tables used by the data store.

Note: The schema name is usually the same as the user ID that is declared in the

authentication alias. With some databases, for example DB2, you can provide an

alternative schema name. For more information about the relationship between users

and schema, refer to the documentation for your chosen RDBMS.

Note: When you configure your messaging engine to use an Informix database, you must

specify the schema name in lowercase letters.

When starting, a messaging engine that uses a data store checks to see if its data store

exists. If the user has selected the Create tables option in the configuration, whose tick-box is

ticked by default, the messaging engine creates the tables in its chosen schema.

The Schema name field is optional, and:

v The default schema name is IBMWSSIB.

v If you delete the text so that field is blank, the messaging engine takes the user id defined

in the authentication alias to be the schema name.

v If you define a schema name explicitly, that schema name is used by the messaging engine.

Authentication alias

Select the authentication alias that enables access to the data source.

Note: When you create a new Network Attached Apache Derby data store, by default you get

a blank authentication alias. If you use Apache Derby in Network Attached mode with

the DB2 Universal JDBC Driver (that is, you use the “JDBC provider for Derby Network

Server using the (DB2) Universal JDBC Driver”), you must specify an authentication

alias. This requirement is documented in Data source minimum required settings for

Apache Derby. See also the following troubleshooting tip: User ID not supported

exception when connecting to a Network Attached Apache Derby Version 10.3 database

Create tables

Select the check box if you want WebSphere Application Server to create the database tables

automatically. For more information, refer to “Creating the tables” on page 1284.

Note: The user ID that the data store uses to connect to the data source must have sufficient

authority to create the database tables and indexes.

Note: The option for WebSphere Application Server to create the tables is not available with

DB2 for z/OS. Refer to “Enabling your database administrator to create the data store

tables” on page 1285 if you use DB2 for z/OS.

Number of permanent tables

Permanent table contains persistent objects for the data store.

Note: You can only increase the number of permanent tables or temporary tables, not

decrease them.
See related links for more information.

Number of temporary tables

Temporary tables nonpersistent objects that have been saved to the data store to reduce the

messaging engine memory requirement.

Note: You can only increase the number of permanent tables or temporary tables, not

decrease them.
See related links for more information.

Chapter 6. Service integration 1223

Configuring service integration bus links:

You can configure service integration bus links on messaging engines in a variety of ways. For example,

you can start, stop, or remove links.

 About this task

When you create a foreign bus connection to connect two service integration buses, a service integration

bus link is created automatically. The foreign bus connection contains a routing definition, which is a virtual

link, and the service integration bus link is the corresponding physical link on the messaging engine.

Configuring foreign bus connections:

You can configure a bus to connect to, and exchange messages with, other messaging networks. To do

this, you must configure a foreign bus connection. A foreign bus connection encapsulates information

related to the remote messaging network, such as the type of the foreign bus and whether messaging

applications are allowed to send messages to the foreign bus.

 About this task

A foreign bus connection is associated with a service integration bus. The bus with which the foreign bus

connection is associated is known as the local bus. The foreign bus connection represents another service

integration bus, either in the same cell as the local bus or in a different cell, or it represents a WebSphere

MQ queue manager. From the local bus, every other bus is regarded as a foreign bus, even if it is a bus in

the same cell.

Messages route to a foreign bus either directly through a link between the local bus and the foreign bus,

or indirectly through one or more intermediate buses.

If, when you configure the local bus, you select Configuration reload enabled, future changes to the

configuration information for any foreign bus connections are updated automatically. The time when these

changes take effect varies:

Foreign Bus Connection properties

Immediately

WebSphere MQ link properties

On channel restart, except Description (immediately), and Initial State (on messaging engine

restart)

MQ sender channel properties

On channel restart, except Initial State (on messaging engine restart or sender channel creation)

MQ receiver channel properties

On channel restart, except Initial State (on messaging engine restart or receiver channel creation)

Publish/subscribe broker profile (0 to n) properties

Immediately

Service integration bus link properties

On link restart, except Description (immediately), and Initial State (on messaging engine restart or

link creation)

To ensure that dynamic configuration updates are made to each node, click System administration →

Console Preferences to display the Console Preferences window, then select Synchronize changes

with nodes.

Configuring the properties of a service integration bus link:

1224 Administering WebSphere applications

After establishing a service integration bus link you might want to configure the properties of a service

integration bus link such as the name of the service integration bus link, or authentication alias used by

foreign bus that the link connects to.

 About this task

To configure the properties of a service integration bus link, use the administrative console to complete the

following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to configure the service

integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you want to configure.

5. Specify the following properties for the service integration bus link:

Name The name of the service integration bus link. In order to work, the name must be the same as

the name of the corresponding service integration bus link configured on the target foreign bus.

Description

An optional description for the service integration bus link, for administrative purposes.

UUID The universal unique identifier assigned by the system to the service integration bus link for

administrative purposes.

Foreign messaging engine

The messaging engine on the foreign bus to which this link connects.

Note: This foreign bus name must not be altered after it has been configured. If you alter it,

any messaging engines that already hold state information about the link will not be

able to use the link unless the foreign bus name is reset to its original value.

Target inbound transport chain

The type of transport chain used for communication with the foreign bus. The transport chain

name must be the name of the transport chain as defined on the server on which the target

messaging engine is hosted.

Bootstrap endpoints

The comma-separated list of endpoints used to connect to a bootstrap server. This property is

set in the same way as the Provider endpoint property in the JMS connection factory

settings. For more information, see steps 1 and 2 of “Configuring a connection to a non-default

bootstrap server” on page 1677. Although this task primarily describes how to configure a JMS

connection factory, it is also applicable to setting several bootstrap endpoint values if the

remote messaging engine is in a cluster.

Note: Service integration bus links over BootstrapTunneledMessaging and

BootstrapTunneledSecureMessaging transport chains only work directly between

application server instances. Bus links over TunneledMessaging transport chains do not

work if an HTTP server is placed in front of either application server instance.

Authentication alias

The name of the authentication alias, used to authenticate access to the foreign bus. The alias

must be known to the foreign bus.

Initial state

Whether the link is started automatically when the messaging engine is started. Until started,

the gateway link is unavailable. If this property is set to Started the service integration bus link

is started when the messaging engine is started.

Chapter 6. Service integration 1225

6. Click OK.

7. Save your changes to the master configuration.

Listing the service integration bus links:

You can list all the service integration bus links that are linked to a messaging engine.

 About this task

To list the service integration bus links for a messaging engine, use the administrative console to complete

the following steps:

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Additional properties, click Messaging engines. The list of messaging

engines in the bus is displayed.

4. In the content pane, select the messaging engine for which you want to list the service integration bus

links.

5. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

Example

The following combinations of Status and Activity values are possible:

 Status Activity Meaning

started inactive The service integration bus link is started on the local

messaging engine but has no connection to the foreign bus.

The service integration bus link is attempting to activate a

connection to the foreign bus. The service integration bus link

on the foreign bus must also be started to successfully

activate of a connection between the buses.

started active The service integration bus link is started on the local

messaging engine and has an active connection to the foreign

bus.

stopped inactive The service integration bus link is stopped on the local

messaging engine and there is no connection to the foreign

bus.

unknown inactive An error might have occurred in setting up the link, such that

the object that is used to report the current state is not

available. The deployment manager cannot contact a remote

server to determine the status.

What to do next

You can now add or remove a service integration bus link or select a service integration bus link to start,

stop, or configure.

Starting a service integration bus link:

When a service integration bus link has been started, it can be used for communicating with its associated

messaging engines.

1226 Administering WebSphere applications

About this task

To start a service integration bus link, use the administrative console to complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to start the service integration

bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to start.

5. Click Start.

Stopping a service integration bus link:

When a service integration bus link has been stopped, it cannot be used for communication until it is

restarted.

 About this task

To stop a service integration bus link, use the administrative console to complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine to which the service integration bus link that you

wish to stop belongs.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to stop.

5. Click Stop.

Removing a service integration bus link:

When a service integration bus link to a messaging engine has been removed, it cannot be used for

communication until it is recreated.

 Before you begin

Before you remove the service integration bus link you must stop the link.

When you remove a service integration bus link, all traffic using the link needs to be dealt with in a similar

way to when you remove a destination. For further details, see “Deleting a non-topic space bus

destination” on page 1319. Note that express Quality of Service (QoS) messages are discarded.

About this task

To remove a service integration bus link from a messaging engine, use the administrative console to

complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select which the messaging engine has own association with the service

integration bus link that you wish to remove.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to remove.

5. Click Delete.

6. Save your changes to the master configuration.

Chapter 6. Service integration 1227

What to do next

When you remove a service integration bus link, all traffic using the link must be diverted by alternative

routes or held pending further administrative action. Express QoS messages are discarded.

Configuring bus destinations

Use the following tasks to configure permanent bus destinations on service integration buses.

About this task

The steps involved in configuring a bus destination depend on the intended usage of the destination.

For example, the following figure shows a basic scenario based on an application using a JMS queue for

point-to-point messaging.

To enable the JMS applications to use a queue destination, you configure the following administrative

destination objects:

1. A queue destination on a service integration bus. This configures the properties of the queue, such as

the name, and associates the queue with one bus member (an application server or server cluster).

This also automatically configures, on the bus member, a queue point where messages for the queue

are held and processed.

2. A JMS queue, which configures the name that applications can use to look up the queue in JNDI. The

JMS queue encapsulates the name of the queue destination, as defined in the queue destination

above, together with other properties to be used by applications.

After you have created a queue destination, you can optionally configure the queue point to override some

properties configured on the queue destination. You can also perform other configuration tasks on the

destination and its queue point, and can act on the runtime view.

Each messaging engine has a default exception destination, named

_SYSTEM.Exception.Destinaton.me_name. This exception destination can be used to handle messages that

cannot be delivered for all bus destination that are localized to the messaging engine. Each bus

destination can be configured with a non-default exception destination.

For more information about configuring bus destinations, see the following topics:

v Listing bus destinations

v Creating a bus destination

v Configuring qualities of service for a destination

v Deleting a non-topicspace bus destination

v Deleting a topicspace

Figure 14. Application use of destinations - basic case

1228 Administering WebSphere applications

Connecting buses

You can connect several service integration buses in a network directly, or indirectly, by creating and

configuring foreign bus connections. You can connect a service integration bus and a WebSphere MQ

queue manager or queue-sharing group in a similar way. You can enable point-to-point or

publish-subscribe messaging across multiple buses.

About this task

For a conceptual overview of connecting different service integration buses, including security issues, refer

to Multiple bus topology. You can configure a bus to connect to, and exchange messages with, other

messaging networks. To do this, you must configure a foreign bus connection. A foreign bus connection

encapsulates information related to the remote messaging network, such as the type of the foreign bus

and whether messaging applications are allowed to send messages to the foreign bus. Messages route to

a foreign bus either directly through a link between the local bus and the foreign bus, or indirectly through

one or more intermediate buses.

Configuring foreign bus connections:

You can configure a bus to connect to, and exchange messages with, other messaging networks. To do

this, you must configure a foreign bus connection. A foreign bus connection encapsulates information

related to the remote messaging network, such as the type of the foreign bus and whether messaging

applications are allowed to send messages to the foreign bus.

 About this task

A foreign bus connection is associated with a service integration bus. The bus with which the foreign bus

connection is associated is known as the local bus. The foreign bus connection represents another service

integration bus, either in the same cell as the local bus or in a different cell, or it represents a WebSphere

MQ queue manager. From the local bus, every other bus is regarded as a foreign bus, even if it is a bus in

the same cell.

Messages route to a foreign bus either directly through a link between the local bus and the foreign bus,

or indirectly through one or more intermediate buses.

If, when you configure the local bus, you select Configuration reload enabled, future changes to the

configuration information for any foreign bus connections are updated automatically. The time when these

changes take effect varies:

Foreign Bus Connection properties

Immediately

WebSphere MQ link properties

On channel restart, except Description (immediately), and Initial State (on messaging engine

restart)

MQ sender channel properties

On channel restart, except Initial State (on messaging engine restart or sender channel creation)

MQ receiver channel properties

On channel restart, except Initial State (on messaging engine restart or receiver channel creation)

Publish/subscribe broker profile (0 to n) properties

Immediately

Service integration bus link properties

On link restart, except Description (immediately), and Initial State (on messaging engine restart or

link creation)

Chapter 6. Service integration 1229

To ensure that dynamic configuration updates are made to each node, click System administration →

Console Preferences to display the Console Preferences window, then select Synchronize changes

with nodes.

Connecting a bus and a WebSphere MQ gateway queue manager to use point-to-point messaging:

You can connect a service integration bus to a WebSphere MQ queue manager or (for WebSphere MQ for

z/OS) queue sharing group to send or receive messages using point-to-point messaging. One way to do

this is to create a foreign bus connection, where the WebSphere MQ queue manager or queue-sharing

group is configured as a foreign bus.

 Before you begin

To connect a service integration bus and a WebSphere MQ queue manager or queue-sharing group to use

point-to-point messaging, the following resources must be defined in WebSphere Application Server:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at

least one bus member.

The following resources must be defined in WebSphere MQ:

v A queue manager or queue-sharing group, which acts as the gateway to the WebSphere MQ network.

v A listener that is configured and running.

v A sender channel (to receive messages on the local bus), a receiver channel (to send messages from

the local bus), or both.

About this task

In point-to-point messaging, the sending application specifies the target destination for the message. To

receive the message, the receiving application specifies the same destination when it communicates with

the messaging provider. Therefore, there is a one-to-one mapping between the sender and receiver of a

message.

This task describes one way to achieve point-to-point messaging between WebSphere MQ queue

manager or queue-sharing group. For further information about interoperation with a WebSphere MQ

network, see the related tasks.

 1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

 2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local

bus.

 3. In the configuration tab, under Topology, click Foreign bus connections.

 4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

 5. In the Bus connection type pane, ensure that Direct connection is selected.

 6. In the Foreign bus type pane, select WebSphere MQ.

 7. In the Local bus details pane, select the messaging engine that you want to use and enter the name

of the virtual queue manager, that is, the name by which the virtual queue manager of the service

integration bus is known to the WebSphere MQ network.

 8. In the WebSphere MQ details pane, enter a name for the foreign bus, that is, the bus that represents

the WebSphere MQ queue manager. Enter a name for the WebSphere MQ link that connects to the

foreign bus. Ensure that these two names are not the same.

 9. Ensure that the Configure publish-subscribe messaging for this connection check box is clear.

10. To send messages from the local bus to the WebSphere MQ queue manager, complete the following

details:

a. Ensure that Enable Service integration bus to WebSphere MQ message flow is selected.

1230 Administering WebSphere applications

b. Enter the WebSphere MQ receiver channel name, host name and communication port.

c. If the WebSphere MQ queue manager requires a secure connection, select the Is the

WebSphere MQ receiver channel secure? check box. When this option is selected, the

WebSphere MQ receiver channel accepts only connections that have secure sockets layer (SSL)

based encryption. The connection is successful only if a set of suitably compatible SSL credentials

are associated with the service integration bus outbound channel and the WebSphere MQ

receiver channel that it connects to.

11. To receive messages on the local bus from the WebSphere MQ queue manager, complete the

following details:

a. Ensure that Enable WebSphere MQ to Service integration bus message flow is selected.

b. Enter the WebSphere MQ sender channel name.

c. Optionally, enter the service integration bus inbound user ID. When the local bus is secure, the

inbound user ID replaces the user ID in messages from the foreign bus that arrive at the local bus

and is used to authorize whether those messages can access their destinations. Specify an

inbound user ID for the local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not

recognized in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is

secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message

from the foreign bus is only authorized to destinations that allow unauthenticated users access.

12. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection between a service integration bus and a WebSphere MQ queue manager

to use point-to-point messaging. You have created a direct foreign bus connection, which contains a

routing definition, or virtual link. The physical link, a WebSphere MQ link on the messaging engine for the

local bus, is created automatically.

What to do next

You can test the connection.

Connecting a bus and a WebSphere MQ network to use publish-subscribe messaging:

You can connect a service integration bus and a WebSphere MQ network to send and receive messages

using publish-subscribe messaging. To do this, you create a foreign bus connection, where the

WebSphere MQ network is viewed as a foreign bus.

 Before you begin

To connect a service integration bus and a WebSphere MQ network to use publish-subscribe messaging,

the following resources must be defined in WebSphere Application Server:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at

least one bus member.

The following resources must be defined in WebSphere MQ:

v A queue manager or (for WebSphere MQ for z/OS) queue-sharing group, which acts as the gateway to

the WebSphere MQ network.

v A listener that is configured and running.

v A topic and input queue for broker publish-subscribe flow configured in WebSphere MQ.

Chapter 6. Service integration 1231

v A sender channel (to receive messages on the local bus), a receiver channel (to send messages from

the local bus), or both.

About this task

In publish-subscribe messaging, the sending application publishes messages to an intermediate broker

destination. Multiple receiving applications can subscribe to this destination to receive a copy of any

messages that are published. When a message arrives at a destination, the messaging provider distributes

a copy of the message to all the receiving applications that subscribe to the destination. There can be a

one-to-many relationship between the sender and receiver of a message, depending on how many

receiving applications are subscribed to a destination when a message arrives.

 1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

 2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local

bus.

 3. In the configuration tab, under Topology, click Foreign bus connections.

 4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

 5. In the Bus connection type pane, ensure that Direct connection is selected.

 6. In the Foreign bus type pane, select WebSphere MQ.

 7. In the Local bus details pane, select the messaging engine that you want to use and enter the name

of the virtual queue manager, that is, the name by which the virtual queue manager of the service

integration bus is known to the WebSphere MQ network.

 8. In the WebSphere MQ details pane, complete the following details:

a. Enter a name for the foreign bus, that is, the bus that represents the WebSphere MQ network.

b. Enter a name for the WebSphere MQ link that connects to the foreign bus. Ensure that the

Foreign bus name and MQ link name are different.

c. Select the Configure publish-subscribe messaging for this connection check box.

 9. To send messages from the local bus to the WebSphere MQ network, complete the following details:

a. Ensure that Enable Service integration bus to WebSphere MQ message flow is selected.

b. Enter the WebSphere MQ receiver channel name, host name and communication port.

c. If the WebSphere MQ gateway queue manager or queue-sharing group requires a secure

connection, select the Is the WebSphere MQ receiver channel secure? check box. When this

option is selected, the WebSphere MQ receiver channel accepts only connections that have

secure sockets layer (SSL) based encryption. The connection is successful only if a set of suitably

compatible SSL credentials are associated with the service integration bus outbound channel and

the WebSphere MQ receiver channel that it connects to.

10. To receive messages on the local bus from the WebSphere MQ network, complete the following

details:

a. Ensure that Enable WebSphere MQ to Service integration bus message flow is selected.

b. Enter the WebSphere MQ sender channel name.

c. Optionally, enter the service integration bus inbound user ID. When the local bus is secure, the

inbound user ID replaces the user ID in messages from the foreign bus that arrive at the local bus

and is used to authorize whether those messages can access their destinations. Specify an

inbound user ID for the local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not

recognized in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is

secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message

from the foreign bus is only authorized to destinations that allow unauthenticated users access.

1232 Administering WebSphere applications

11. From the Publish-subscribe details pane, repeat the following steps for each topic mapping you want

to create:

a. Enter the name of the topic on the local bus.

b. Select the name of the topic space on the local bus that will map to the topic space on the foreign

bus.

c. Enter the name of the gateway queue manager or queue sharing group for the WebSphere MQ

broker configured for broker publish-subscribe flow.

d. To send messages from the local bus to the WebSphere MQ gateway queue manager or

queue-sharing group, enter the name of the queue for the WebSphere MQ broker destination.

e. To receive messages on the local bus from the WebSphere MQ gateway queue manager or

queue-sharing group, enter the name of the subscription point that will receive messages.

f. Select the direction of message flow for the publish-subscribe topic mapping. The options available

depend on whether you completed details on the WebSphere MQ details pane to send messages,

receive messages, or both, on the local bus.

g. Click Add.

12. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection between a service integration bus and a WebSphere MQ network to use

publish-subscribe messaging. You have created a direct foreign bus connection, which contains a routing

definition, or virtual link. The physical link, a WebSphere MQ link on the messaging engine for the local

bus, is created automatically.

What to do next

You can test the connection.

Connecting service integration buses to use point-to-point messaging:

You can connect a service integration bus to another service integration bus to send and receive

messages using point-to-point messaging. To do this, you create a foreign bus connection.

 Before you begin

To connect a service integration bus to another service integration bus to use point-to-point messaging, the

following resources must be defined:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at

least one bus member.

v A service integration bus that you want to connect to, known as the foreign bus. The bus must have at

least one bus member.

v Optionally, to configure a secure connection, an authentication alias.

The buses that you connect must have unique names, because the connection will fail if the buses have

the same name.

About this task

In point-to-point messaging, the sending application specifies the target destination for the message. To

receive the message, the receiving application specifies the same destination when it communicates with

the messaging provider. Therefore, there is a one-to-one mapping between the sender and receiver of a

message.

Chapter 6. Service integration 1233

1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

 2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local

bus.

 3. In the configuration tab, under Topology, click Foreign bus connections.

 4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

 5. In the Bus connection type pane, ensure that Direct connection is selected.

 6. In the Foreign bus type pane, ensure that Service integration bus is selected.

 7. In the Local bus details pane, select the messaging engine that you want to use from the drop-down

list.

 8. Optionally, enter a name for the inbound user ID. When the local bus is secure, the inbound user ID

replaces the user ID in messages from the foreign bus that arrive at the local bus and is used to

authorize whether those messages can access their destinations. Specify an inbound user ID for the

local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not recognized

in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is

secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message from

the foreign bus is only authorized to destinations that allow unauthenticated users access.

 9. In the Foreign bus details pane, complete the details as appropriate:

v If the service integration bus you want to connect to is in a different cell from the local bus,

complete the following details:

a. Ensure that Configure a foreign bus in a remote cell is selected.

b. Enter the name of the service integration bus to connect to, that is, the foreign bus. Enter the

exact name of the existing service integration bus.

c. Enter the name of the gateway messaging engine in the foreign bus, that is, the messaging

engine to connect to in the foreign bus.

d. Ensure that the Configure publish-subscribe messaging for this connection check box is

clear.

e. Enter the name of the service integration bus link.

f. Enter one or more bootstrap endpoints, that is, the host, port location, and transport chain for

the messaging engine on the foreign bus that the local service integration bus connects to. The

port is the SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is

enabled) of the messaging engine. Use the format hostName:portNumber:chainName,

separating each bootstrap endpoint by a comma. For more information, see steps 1 and 2 of

“Configuring a connection to a non-default bootstrap server” on page 1677. Although this task

primarily describes how to configure a JMS connection factory, it is also applicable to setting

several bootstrap endpoint values if the remote messaging engine is in a cluster.

v If the service integration bus you want to connect to is in the same cell as the local bus, complete

the following details:

a. Ensure that Configure a foreign bus in a local cell is selected.

b. Select the name of the service integration bus to connect to, that is, the foreign bus.

c. Select the name of the gateway messaging engine in the foreign bus, that is, the messaging

engine to connect to in the foreign bus.

d. Ensure that the Configure publish-subscribe messaging for this connection check box is

clear.

e. Enter the name of the service integration bus link.

10. Optionally, to secure the connection, in the Foreign bus details pane, complete the following details:

1234 Administering WebSphere applications

a. Select the Secure connection check box.

b. Select the type of transport chain to use to communicate with the messaging engine in the foreign

bus. Select one of the following:

v InboundBasicMessaging. InboundBasicMessaging is a predefined transport chain where

communication uses the TCP protocol.

v InboundSecureMessaging. InboundSecureMessaging is a predefined transport chain where

communication is secured by using the secure sockets layer (SSL) based encryption protocol

over a TCP network. For successful connection, a set of suitably compatible SSL credentials

must be associated with the local bus inbound channel and the foreign bus outbound channel.

v Other, please specify. Select this option to specify your own transport chain and enter the

details in the field that appears.

c. Select the name of the authentication alias to use to authenticate access to the foreign bus. The

alias must be known to the foreign bus.

11. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection from a local service integration bus to a foreign service integration bus to

use point-to-point messaging. You have created a direct foreign bus connection, which contains a routing

definition, or virtual link. The physical link, a service integration bus link on the messaging engine for the

local bus, is created automatically.

What to do next

You need to create a connection in the opposite direction between the two buses. To do this, repeat the

procedure, using the bus you have just connected to as the local bus, and the bus you have just

connected from as the foreign bus. Ensure that you use exactly the same name for the service integration

bus link. After you create a foreign bus connection for each service integration bus, you can test the

connection.

Connecting service integration buses to use publish-subscribe messaging:

You can connect a service integration bus to another service integration bus to send and receive

messages using publish-subscribe messaging. To do this, you create a foreign bus connection.

 Before you begin

To connect a service integration bus to another service integration bus to use publish-subscribe

messaging, the following resources must be defined:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at

least one bus member.

v A service integration bus that you want to connect to, known as the foreign bus. The bus must have at

least one bus member.

v A topic space on both service integration buses. If the foreign bus is in a remote cell, you need to know

the topic space name.

v Optionally, to configure a secure connection, an authentication alias.

The buses that you connect must have unique names, because the connection will fail if the buses have

the same name.

About this task

In publish-subscribe messaging, the sending application publishes messages to an intermediate broker

destination. Multiple receiving applications can subscribe to this destination to receive a copy of any

Chapter 6. Service integration 1235

messages that are published. When a message arrives at a destination, the messaging provider distributes

a copy of the message to all the receiving applications that subscribe to the destination. There can be a

one-to-many relationship between the sender and receiver of a message, depending on how many

receiving applications are subscribed to a destination when a message arrives.

 1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

 2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local

bus.

 3. In the configuration tab, under Topology, click Foreign bus connections.

 4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

 5. In the Bus connection type pane, ensure that Direct connection is selected.

 6. In the Foreign bus type pane, ensure that Service integration bus is selected.

 7. In the Local bus details pane, select the messaging engine that you want to use from the drop-down

list.

 8. Optionally, enter a name for the inbound user ID. When the local bus is secure, the inbound user ID

replaces the user ID in messages from the foreign bus that arrive at the local bus and is used to

authorize whether those messages can access their destinations. Specify an inbound user ID for the

local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not recognized

in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is

secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message from

the foreign bus is only authorized to destinations that allow unauthenticated users access.

 9. In the Foreign bus details pane, complete the details as appropriate:

v If the service integration bus you want to connect to is in a different cell from the local bus,

complete the following details:

a. Ensure that Configure a foreign bus in a remote cell is selected.

b. Enter the name of the service integration bus to connect to, that is, the foreign bus. Enter the

exact name of the existing service integration bus.

c. Enter the name of the gateway messaging engine in the foreign bus, that is, the messaging

engine to connect to in the foreign bus.

d. Select the Configure publish-subscribe messaging for this connection check box.

e. Enter the name of the service integration bus link.

f. Enter one or more bootstrap endpoints, that is, the host, port location, and transport chain for

the messaging engine on the foreign bus that the local service integration bus connects to. The

port is the SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is

enabled) of the messaging engine. Use the format hostName:portNumber:chainName,

separating each bootstrap endpoint by a comma. For more information, see steps 1 and 2 of

“Configuring a connection to a non-default bootstrap server” on page 1677. Although this task

primarily describes how to configure a JMS connection factory, it is also applicable to setting

several bootstrap endpoint values if the remote messaging engine is in a cluster.

v If the service integration bus you want to connect to is in the same cell as the local bus, complete

the following details:

a. Ensure that Configure a foreign bus in a local cell is selected.

b. Select the name of the service integration bus to connect to, that is, the foreign bus.

c. Select the name of the gateway messaging engine in the foreign bus, that is, the messaging

engine to connect to in the foreign bus.

d. Select the Configure publish-subscribe messaging for this connection check box.

1236 Administering WebSphere applications

e. Enter the name of the service integration bus link.

10. Optionally, to secure the connection, in the Foreign bus details pane, complete the following details:

a. Select the Secure connection check box.

b. Select the type of transport chain to use to communicate with the messaging engine in the foreign

bus. Select one of the following:

v InboundBasicMessaging. InboundBasicMessaging is a predefined transport chain where

communication uses the TCP protocol.

v InboundSecureMessaging. InboundSecureMessaging is a predefined transport chain where

communication is secured by using the secure sockets layer (SSL) based encryption protocol

over a TCP network. For successful connection, a set of suitably compatible SSL credentials

must be associated with the local bus inbound channel and the foreign bus outbound channel.

v Other, please specify. Select this option to specify your own transport chain and enter the

details in the field that appears.

c. Select the name of the authentication alias to use to authenticate access to the foreign bus. The

alias must be known to the foreign bus.

11. In the Publish-subscribe details pane, repeat the following steps for each topic mapping you want to

create:

a. Select the name of the topic space on the local bus that will map to the topic space on the foreign

bus.

b. Enter the name of the topic space on the foreign bus. If the foreign bus is in the same cell as the

local bus, you can select this name from a drop-down list.

c. Click Add.

12. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection from a local service integration bus to a foreign service integration bus to

use publish-subscribe messaging. You have created a direct foreign bus connection, which contains a

routing definition, or virtual link. The physical link, a service integration bus link on the messaging engine

for the local bus, is created automatically.

What to do next

You need to create a connection in the opposite direction between the two buses. To do this, repeat the

procedure, using the bus you have just connected to as the local bus, and the bus you have just

connected from as the foreign bus. Ensure that you use exactly the same name for the service integration

bus link. After you create a foreign bus connection for each service integration bus, you can test the

connection.

Connecting buses using an indirect connection:

You can connect a service integration bus to another service integration bus or a WebSphere MQ queue

manager or queue-sharing group (known as the “gateway queue manager”) through one or more

intermediate foreign buses. To do this, you create an indirect foreign bus connection.

 Before you begin

To create an indirect foreign bus connection, the following resources must be defined:

v A service integration bus that you want to connect from, known as the local bus.

v A direct foreign bus connection from the local bus to the bus you want to use as the intermediate bus.

v A service integration bus or a gateway queue manager that you want to connect to indirectly, known as

the target foreign bus.

Chapter 6. Service integration 1237

About this task

To connect two buses indirectly, you create a indirect foreign bus connection on the local bus that specifies

a suitable intermediate bus and the required target bus. There must be a connection, either direct or

indirect, between the intermediate bus and the target foreign bus, that is, the service integration bus or a

gateway queue manager that you want to connect to.

To connect one bus to another bus through an intermediate bus or a chain of buses, if the connection

between the intermediate bus or the chain of buses and the target bus already exists, you do not require

any new physical links. Instead, each foreign bus connection identifies a neighboring bus on the route to

the final target bus as the ″next hop″ in the chain. Each bus in the chain must know about the next hop in

the chain to reach the target bus. The local bus uses a foreign bus connection to identify the next bus in

the chain to the target bus, and uses its direct physical link to flow messages to that bus. Then, each

intermediate bus uses its locally defined foreign bus connection to identify the next bus in the chain until

the target bus is reached.

1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local

bus.

3. In the configuration tab, under Topology, click Foreign bus connections.

4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

5. In the Bus connection type pane, select Indirect, using another bus.

6. In the Indirect connection details pane, complete the following details:

a. Enter the name of the target foreign bus that you want to connect to indirectly.

b. Select the name of the existing, directly connected foreign bus that will be the intermediate bus to

the target bus.

7. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection from the local bus to the target bus via the intermediate bus. You have

created an indirect foreign bus connection, which contains a routing definition, or virtual link.

What to do next

Check whether there are connections between the intermediate bus you specified and the target bus. If

necessary, repeat the procedure to create the ″next hop″ in the chain.

Testing foreign bus connections:

After you define a direct foreign bus connection between a service integration bus and either another

service integration bus or a WebSphere MQ queue manager, you can test the connection to check that it

can be used to exchange messages.

 Before you begin

To test a foreign bus connection, the following resource must be defined:

v A service integration bus, known as the local bus, with a direct foreign bus connection to a service

integration bus or a WebSphere MQ queue manager.

About this task

You might want to test a foreign bus connection before you send messages that use that connection, or if

you have difficulty sending and receiving messages that use that connection. You can test only direct

1238 Administering WebSphere applications

foreign bus connections. You cannot test indirect foreign bus connections, because it might not be possible

to reach the target destination bus.

1. In the navigation pane, click Service integration → Buses.

2. In the Buses pane, click the bus that has the connection you want to test.

3. In the configuration tab, under Topology, click Foreign bus connections. A list of foreign bus

connections is displayed.

4. Select the check box for the connection you want to test.

5. Click Test Connection. A message is displayed at the top of the pane that shows the result of the test.

Results

You have tested a bus connection.

Listing the foreign bus connections:

You can list the foreign bus connections that are associated with a local bus to see which buses are

currently configured.

 Before you begin

To list foreign bus connections, the following resources must be defined:

v A service integration bus with one or more foreign bus connections between it and another service

integration bus or a WebSphere MQ queue manager.

About this task

You can list foreign bus connections by using the administrative console, as described in this topic, or by

using the wsadmin tool and the listSIBForeignBuses command.

To list the foreign bus connections that are associated with the local bus, complete the following steps.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses.

3. In the service integration buses pane, select the bus for which you want to list the connections.

4. In the configuration tab, under Topology, click Foreign bus connections. A list of buses that have a

foreign bus connection from the local bus is displayed.

Results

You have listed the foreign bus connections that are associated with the local bus.

Removing a foreign bus connection from a bus:

You can remove a foreign bus connection from a bus so that the connection can no longer be used for

sending and receiving messages.

 Before you begin

When a foreign bus connection is deleted from the configuration, the next time the hosting messaging

engine for a link transmitter is started, it moves the messages to the exception destination. To avoid this

situation, drain the messages from the link transmitter as far as is possible and then, before deleting the

link configuration, either move any remaining messages from the transmission queues to an exception

destination or delete them. For more details refer to the sub-topics below.

Chapter 6. Service integration 1239

About this task

Removing a foreign bus connection from a bus removes the resources associated with the connection.

The bus will no longer service the deleted link.

To remove a foreign bus connection:

1. In the navigation pane, click Service integration → Buses.

2. In the Buses pane, select the bus from which you want to remove the foreign connection.

3. In the configuration tab, under Topology, click Foreign bus connections. to display a list of

connections for this bus.

4. Select the check box that corresponds to the connection that you want to remove.

5. Click Delete.

6. Save your changes to the master configuration.

Results

You have now deleted the foreign bus connection from a bus. This connection can no longer be used for

communication.

Preparing to remove a foreign bus connection between two service integration buses:

Perform this task before you remove a foreign bus connection.

 Before you begin

Before you start you must know which foreign bus connection is being prepared for deletion.

About this task

When a foreign bus connection and its service integration bus link is deleted from the configuration, the

next time the hosting messaging engine for a link transmitter is started, it deletes all its messages or

moves them to the exception destination. To avoid messages being unintentionally deleted or moved to the

exception destination, drain the messages from the link transmitter as much as possible and then, before

deleting the link configuration, either move any remaining messages to an exception destination or delete

them.

 1. Start the administrative console.

 2. In the navigation pane, click Service integration → Buses to display a list of local buses.

 3. Select the bus from which you want to remove the foreign bus connection.

 4. In the Configuration tab, under Topology, click Foreign bus connections. A list of connections for

this bus is displayed.

 5. From the list of foreign buses, click the name of the foreign bus to display its details.

 6. Under General properties, clear the Send Allowed check box to prevent new messages from being

produced for this service integration bus link.

 7. Click Apply to save the configuration.

 8. To determine when there are no more messages queued on this link, under Related Items click

Service integration bus links to display the details of the service integration bus links.

 9. Click the Refresh icon of Status to refresh the view of the Current outbound messages.

10. When there are no Current outbound messages, select the check box next to the appropriate link

and then click Stop to stop the link to the foreign bus.

11. When the Status of the link turns to red, the link to the foreign bus has no remaining messages and

is stopped.

1240 Administering WebSphere applications

12. Repeat steps 2 to 11 on the foreign bus side because the foreign bus can continue to produce

messages after the local bus connection has been deleted.

13. Save your changes to the master configuration.

Results

You have drained the messages from the link transmitter as much as possible, and either moved any

remaining messages from the transmission queues to an exception destination or deleted them. You are

now ready to remove the foreign bus connection.

Preparing to remove a foreign bus connection between a service integration bus and a WebSphere MQ

network:

Perform this task before you remove a foreign bus connection.

 Before you begin

Before you start you must know which foreign bus connection is being prepared for deletion. You should

also inform the WebSphere MQ administrator that the foreign bus link is about to be deleted and therefore

no longer paired with its WebSphere MQ gateway queue manager or message broker in the WebSphere

MQ network.

About this task

When a foreign bus link is deleted from the configuration, the next time the hosting messaging engine for

a link transmitter is started it deletes all its messages or moves them to the exception destination. To avoid

messages being unintentionally deleted or moved to the exception destination, drain the messages from

the link transmitter as much as possible and then, before deleting the link configuration, either move any

remaining messages to an exception destination or delete them.

If there are publish/subscribe broker profiles defined, you should remove the subscriptions.

1. Start the administrative console.

2. Optional: If there are publish/subscribe broker profiles defined on any of the links for this foreign bus

connection, remove the subscriptions.

Complete the following substeps for each broker profile:

a. Navigate to Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name → [Related Items] WebSphere MQ links → link_name → [Additional

Properties] Publish/subscribe broker profiles → profile_name

b. Click the Runtime tab.

c. Click Subscriptions.

d. Click Unsubscribe to remove all the subscriptions listed.

When an unsubscribe command is sent to the message broker in the WebSphere MQ network, the

relevant topic mapping is put into an ″in doubt″ state until the unsubscribe is confirmed when the topic

mapping is deleted. After the unsubscribe is confirmed the topic mapping is no longer shown in the

runtime view. You might need to refresh the runtime view for all subscriptions to be shown as removed.

3. Prevent new messages from being produced for this foreign bus connection.

a. Navigate to Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name

b. Under General properties, clear the Send Allowed check box.

c. Click Apply to save the configuration.

4. Determine when there are no more messages queued, then stop the link to the foreign bus in a

controlled manner.

Chapter 6. Service integration 1241

a. Under Related Items, click WebSphere MQ links to display the list of links for this bus.

b. Click the Refresh icon of Status to refresh the view of the Current outbound messages.

c. When there are no Current outbound messages, select the check box next to the appropriate link

and then select a Stop mode of Quiesce.

d. Select a Target state of Stopped so that the link can only be started again by administrator action.

e. When the Status of the link turns to red, the link to the foreign bus has no remaining messages

and is stopped.

5. The foreign bus can continue to produce messages after the local bus connection has been deleted.

Because the foreign bus is a WebSphere MQ network, refer to the WebSphere MQ

Intercommunication guide for details about the safe deletion of channels at Managing WebSphere MQ

channels.

6. Save your changes to the master configuration.

Results

You have removed the subscriptions from any publish/subscribe brokers on the link. You have drained the

messages from the link transmitter as much as possible, and either moved any remaining messages from

the transmission queues to an exception destination or deleted them.

What to do next

You are now ready to remove the foreign bus connection.

Configuring destination defaults for a foreign bus connection:

You can use destination defaults to configure the destination for messages handled by a foreign bus

connection. A foreign bus connection can be either a service integration bus or a WebSphere MQ queue

manager or queue-sharing group (known as a “gateway queue manager”).

 Before you begin

To configure destination defaults for a foreign bus connection, the following resource must be defined:

v At least one foreign bus connection, configured

About this task

Destination defaults are used where an application is producing messages destined for a destination on a

foreign bus connection, but where that application has not explicitly set certain attributes on the message,

or where a foreign destination has not been explicitly defined.

1. In the navigation pane, click Service integration → Buses.

2. In the service integration buses pane, select the bus that you want to configure.

3. In the configuration tab, under Topology, click Foreign bus connections. A list of foreign bus

connections is displayed.

4. Select the foreign bus connection that you want to configure.

5. In the content pane, under Additional properties, click Destination defaults.

6. Specify the following properties for the destination defaults:

Default priority

The default priority assigned to messages sent to this destination when a priority has not been

set by the producer.

Default reliability

The reliability assigned to a message produced to this destination when an explicit reliability

has not been set by the producer.

1242 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic14550_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic14550_.htm

Maximum reliability

The maximum reliability of messages accepted by this destination.

Send allowed

Clear this option (setting it to false) to stop producers from being able to send messages to

destinations on this foreign bus.

Enable producers to override default reliability

Select this option to enable producers to override the default reliability that is set on the

destination.

7. Click OK.

8. Save your changes to the master configuration.

Results

You have now configured destination defaults for a foreign bus connection.

Managing messages on foreign buses:

This task describes how to manage messages on a foreign bus.

 Before you begin

The steps required depend on whether the foreign bus connection connects a service integration bus to:

v another service integration bus

v a WebSphere MQ network

About this task

If the foreign bus connection connects a service integration bus to another service integration bus, you can

manage messages on:

v link transmitters

v link receivers

If the foreign bus connection connects a service integration bus to a WebSphere MQ network, you can

manage messages on:

v link transmitters

v known link transmitters

v sender channel transmitter

There is one link transmitter for each message engine, one known link for each link transmitter, and one

sender channel transmitter on the WebSphere MQ link sending messages to a gateway queue manager

on the WebSphere MQ network acting as the foreign bus.

Perform this task when you want to view, delete, or move messages on a transmitter.

Refer to the list of sub-topics below and select the appropriate task.

Results

You have managed the messages on a foreign bus.

Configuring an exception destination for messages on a foreign bus connection:

Chapter 6. Service integration 1243

You can configure an exception destination for messages handled by a foreign bus connection. A foreign

bus connection can be either a connection between two service integration buses or a connection between

a service integration bus and a WebSphere MQ network.

 Before you begin

To configure an exception destination default for a foreign bus connection, you must know the name of the

foreign bus connection.

About this task

If specified, the link exception destination is used as the target for messages being exceptioned for that

link. The exception destination can be specific to that link, the system default local messaging engine

exception destination or, if the exception destination is specified as None, the messages are discarded.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses to display a list of local buses.

3. Select the bus from which you want to remove the foreign bus connection.

4. In the Configuration tab, under Topology, click Foreign bus connections to display a list of

connections for this bus.

5. From the list of foreign buses, click the name of the foreign bus to display its details.

6. Under Related Items click Service integration bus links (if the foreign bus is another service

integration bus) or WebSphere MQ links (if the foreign bus is WebSphere MQ network).

7. From the list of links, click the name of a link to display its details.

8. In the Configuration tab, under General properties, use the radio buttons to configure the Exception

destination to which error messages are sent for this link. Select None to discard error messages.

Select System to send error messages to the system default local messaging engine exception

destination. Select Specify and enter an exception destination to send error messages to the specified

exception destination.

9. Save your changes to the master configuration.

Results

You have now configured an exception destination for messages on a foreign bus connection.

Managing messages in a link transmission queue connection between two service integration buses:

This task describes how to manage messages in a link transmission queue connected to a foreign bus

connection between two service integration buses.

 Before you begin

You must know the link transmitter from which messages are to be removed.

About this task

There is one link transmitter for each message engine.

Perform this task when you want to view, delete or move messages on a link transmitter.

 1. Start the administrative console.

 2. In the navigation pane, click Service integration → Buses. A list of buses is displayed in the content

pane.

 3. Select the bus whose link transmission queue you want to manage.

1244 Administering WebSphere applications

4. In the Configuration tab, under Topology, click Foreign bus connections. A list of connections for

this bus is displayed.

 5. Select the Name of the foreign bus from the list of foreign buses. The details of the selected foreign

bus are displayed in the content pane.

 6. In the Configuration tab, under Related Items, click Service integration bus links, then select the

name of the link.

 7. In the Runtime tab, click Link transmitters to display the list of link transmitters for messaging

engines that are sending messages to the foreign bus.

 8. Optional: To manage all messages on the link transmitter, select the Link transmitter and perform

your required task:

v Click Delete all messages to delete all the available messages on the selected link transmitter.

v Click Move all messages to move all the available messages on the selected link transmitter to

the configured exception destination. If the exception destination is configured as None the

messages are discarded. If it is configured as System default the messages are sent to the

system default exception destination. If a Specified destination is configured, the messages are

sent to the exception destination specified for this link.

 9. Optional: To manage selected messages on the link transmitter, click the name of the Messaging

engine from the list of Link transmitters and then click View messages to view the messages on

an outbound stream from this link transmitter to the foreign bus.

10. Select one or more messages and :

v Click Delete to delete the selected messages.

v Click Move to move the selected messages to the local exception destination.

v Click Refresh to view the current messages on the selected link transmitter.

Note: Only messages up to the specified Maximum displayed messages are displayed.

Results

You have managed the messages on a specified link transmitter connected to a foreign bus.

Managing messages in a link receiver queue connected to a foreign bus:

This topic describes how to manage messages in a link receiver queue connection between two service

integration buses.

 Before you begin

There is one link receiver for each message producing foreign messaging engine on the service

integration bus link.

About this task

Perform this task when you want to view messages on a link receiver.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses to display a list of buses.

3. Click the bus whose link receiver queue you want to view.

4. In the Configuration tab, under Topology, click Foreign bus connections.

5. Click the name of the foreign bus connection to display its details.

6. Under Related links click Service integration bus links and click the name of the link.

7. In the Runtime tab, click Link receivers to display the list of link receivers for messaging engines that

are sending messages to this bus.

Chapter 6. Service integration 1245

8. To view the messages on the link receiver, click the name of the Messaging engine from the list of

link receivers and then click View messages to view the messages on an inbound stream from the

messaging engine on the foreign bus. Click Refresh to view the current messages on the selected link

receiver.

Results

You have viewed the messages on a specified link receiver connected to a foreign bus.

Managing messages in a link transmission queue connection between a bus and a WebSphere MQ

network:

This task describes how to manage messages in a link transmission queue connected to a foreign bus

connection between a service integration bus and a WebSphere MQ network.

 Before you begin

You must know the foreign bus whose messages are to be removed.

About this task

There is one link transmitter for each message engine producing messages on the foreign bus link.

Perform this task when you want to view, delete or move messages on a link transmitter.

 1. Start the administrative console.

 2. In the navigation pane, click Service integration → Buses. A list of buses is displayed in the content

pane.

 3. Select the bus whose link transmission queue you want to manage.

 4. In the Configuration tab, under Topology, click Foreign bus connections. A list of connections for

this bus is displayed.

 5. Select the Name of the foreign bus from the list of foreign buses. The details of the selected foreign

bus are displayed in the content pane.

 6. In the Configuration tab, under Related Items, click WebSphere MQ links, then select the Name of

the link.

 7. In the Runtime tab, click Sender channel to display the sender channels that are sending messages

to the foreign bus.

 8. Optional: To manage all messages on the link transmitter, select the Link transmitter and perform

your required task:

v Click Delete all messages to delete all the available messages on the selected link transmitter.

v Click Move all messages to move all the available messages on the selected link transmitter to

the configured exception destination. If the exception destination is configured as None the

messages are discarded. If it is configured as System default the messages are sent to the

system default exception destination. If a Specified destination is configured, the messages are

sent to the exception destination specified for this link.

 9. Optional: To manage selected messages on the link transmitter, click the name of the Messaging

engine from the list of Link transmitters and then click View messages to view the messages on

an outbound stream from this link transmitter to the foreign bus.

10. Select one or more messages and :

v Click Delete to delete the selected messages.

v Click Move to move the selected messages to the local exception destination.

v Click Refresh to view the current messages on the selected link transmitter.

1246 Administering WebSphere applications

Note: Only messages up to the specified Maximum displayed messages are displayed.

Results

You have managed the messages on a link transmitter connected to a foreign bus.

Managing messages in a known link transmission queue connected to a foreign bus:

How to manage messages in a known link transmission queue connection between a service integration

bus and a WebSphere MQ network.

 Before you begin

There is one known link transmitter for each message producing messaging engine on the foreign bus link.

About this task

Perform this task when you want to manage messages on a known link transmitter.

 1. Start the administrative console.

 2. In the navigation pane, click Service integration → Buses to display a list of buses.

 3. Click the bus whose known link transmission queue you want to view.

 4. In the Configuration tab, under Topology, click Foreign bus connections. to display a list of

connections for this bus.

 5. From the list of foreign buses, click the name of the foreign bus to display its details.

 6. Under Related Items click WebSphere MQ links and click the Name of the link.

 7. In the Configuration tab, under Additional Properties click Sender channel to display the sender

channels for all messaging engines that are sending messages to this bus. The sender channel

sends messages to the gateway queue manager.

 8. From the list of sender channels, select the check box of a Sender MQ channel name and click

View known link transmitters to display a list the remote messaging engines producing messages

for this WebSphere MQ link.

 9. Click Refresh to view the current messages on the message engines.

10. Select the check box of the known link transmitter and:

v Click Delete all messages to remove them from the known link transmission queue.

v Click Move all messages to move all the available messages on the known link transmitter to the

configured exception destination. If the exception destination is configured as None the messages

are discarded. If it is configured as System default the messages are sent to the system default

exception destination. If a Specified destination is configured, the messages are sent to the

exception destination specified for this link.

Results

You have managed the messages on known link transmitters producing messages to a sender channel

transmitter connected to a foreign bus.

Managing messages in a sender channel transmission queue connected to a foreign bus:

How to manage messages in a sender channel transmission queue connection between a service

integration bus and a WebSphere MQ network.

Chapter 6. Service integration 1247

Before you begin

There is one sender channel transmitter on the foreign bus link sending messages to a gateway queue

manager on the WebSphere MQ network acting as the foreign bus.

About this task

Perform this task when you want to manage messages on the sender channel transmitter.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses to display a list of buses.

3. Click the bus whose sender channel transmission queue you want to view.

4. In the Configuration tab, under Topology, click Foreign bus connections. to display a list of

connections for this bus.

5. From the list of foreign buses, click the name of the foreign bus to display its details.

6. In the Configuration tab, under Related Items click WebSphere MQ links and select the check box

for a link.

7. Click Sender channel transmitter under Current outbound messages or click Sender channel

transmitter under Messages sent to see the relevant message details for this sender channel

transmitter.

8. Select the check box of the sender channel transmitter and:

v Click Delete all messages to remove them from the sender channel transmission queue.

v Click Move all messages to move all the available messages on the sender channel transmitter to

the configured exception destination. If the exception destination is configured as None the

messages are discarded. If it is configured as System default the messages are sent to the system

default exception destination. If a Specified destination is configured, the messages are sent to the

exception destination specified for this link.

Results

You have managed the messages on a sender channel transmitter sending messages to a gateway queue

manager on the WebSphere MQ network acting as the foreign bus.

Managing pending acknowledgement messages on a deleted WebSphere MQ link:

This topic describes how to manage pending acknowledgement messages on a WebSphere MQ link that

has been deleted from a foreign bus connecting to a service integration bus.

 Before you begin

Before you start you need to know the name of the WebSphere MQ link that has been deleted.

About this task

If a foreign bus link to a WebSphere MQ network is deleted from the WebSphere Application Server

configuration before being drained of messages, a batch of messages pending acknowledgement remains

persisted in the WebSphere MQ link sender channel transmitter.

To resolve pending acknowledgement messages on a deleted WebSphere MQ link, use the administrative

console to complete the following steps.

 1. Start the administrative console.

 2. In the navigation pane, click Service integration → Buses. to display a list of buses.

 3. Click the bus whose link transmission queue you want to manage.

1248 Administering WebSphere applications

4. In the Configuration tab, under Topology, click Foreign Bus Connections to display a list of

connections for this bus.

 5. From the list of foreign buses, click the name of the foreign bus to display its details.

 6. Under Related Items click Service integration bus links to display the details of the service

integration bus links.

 7. Click the MQ network foreign bus that has a connection that is active, but a configuration status that

is Deleted. If clicking Link transmitters displays an empty list, no messaging engines are producing

messages to this link and all the link transmitters have been deleted because they were drained of

messages. The Sender channel transmitter link displays the Status of the sender channel as

stopped but Current outbound messages shows remaining messages on the sender channel

transmitter.

 8. Click a WebSphere MQ link sender channel link to display the messages that are queued on the

WebSphere MQ link sender channel transmitter for transmission to the WebSphere MQ network.

 9. If the Status of a batch of messages is Commit pending batch, the batch has arrived safely at the

MQ network. Select the batch and click Commit pending batch to remove the messages from the

transmission queue.

10. If the Status of a batch of messages is Pending batch acknowledgement, the batch did not arrive

at the MQ network. Select the batch and click Rollback pending acknowledge batch to rollback the

transaction and restore the messages to the channel in an available state. These messages are

either automatically deleted or moved to the exception destination. When the channel transmitter is

empty, the link is automatically deleted from the runtime environment.

Results

You have resolved any pending acknowledgement messages on a WebSphere MQ link that has been

deleted from a foreign bus connecting to a service integration bus.

Modifying a routing definition:

You can view or change the routing definition of an existing foreign bus connection between a local bus

and a foreign bus. The routing definition defines the virtual link between two buses that enables them to

exchange messages. The routing definition can define properties for a virtual service integration bus link, a

virtual WebSphere MQ link, or an indirect foreign bus connection.

 About this task

You create a routing definition when you create a foreign bus connection. For a direct foreign bus

connection, the routing definition, or virtual link, has a corresponding physical link on a messaging engine.

To change the properties of the routing definition, use the administrative console to complete the following

steps:

1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local

bus you require.

3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a

foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click the routing properties option. The routing

properties option depends on the type of routing definition and is one of the following:

v Service integration bus link routing properties

v WebSphere MQ link routing properties

v Indirect routing properties

Chapter 6. Service integration 1249

6. Specify the new routing properties:

v For a virtual service integration bus link or a virtual WebSphere MQ link, specify properties as

follows:

Inbound user ID

The user name used to authenticate inbound message flows from the foreign bus.

 When the local bus is secure, the inbound user ID replaces the user ID in messages from

the foreign bus that arrive at the local bus and is used to authorize whether those messages

can access their destinations. Specify an inbound user ID for the local service integration

bus under the following circumstances:

– The foreign bus is in a different security domain, so user IDs in the foreign bus are not

recognized in the local bus.

– You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local

bus is secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound

message from the foreign bus is only authorized to destinations that allow unauthenticated

users access.

Outbound user ID

The user name used to authenticate outbound message flows to the foreign bus.

 The outbound user ID replaces the user ID that identifies the message source in every

message sent to the foreign bus. Where it is defined, the outbound user ID replaces the

user ID in messages sent by the local bus to the foreign bus. If the local bus and the foreign

bus are both secure, and the foreign bus has not overridden the user ID with its own

inbound user ID, the foreign bus also uses the outbound user ID to authorize the message

to its destination.

v For an indirect foreign bus connection, select the name of the next foreign bus you require in the

chain of intermediate buses. For a bus to be available for selection, it must already have a direct

foreign bus connection from the local bus.

7. Click OK.

8. Save your changes to the master configuration.

Configuring service integration bus links:

You can configure service integration bus links on messaging engines in a variety of ways. For example,

you can start, stop, or remove links.

 About this task

When you create a foreign bus connection to connect two service integration buses, a service integration

bus link is created automatically. The foreign bus connection contains a routing definition, which is a virtual

link, and the service integration bus link is the corresponding physical link on the messaging engine.

Configuring the properties of a service integration bus link:

After establishing a service integration bus link you might want to configure the properties of a service

integration bus link such as the name of the service integration bus link, or authentication alias used by

foreign bus that the link connects to.

 About this task

To configure the properties of a service integration bus link, use the administrative console to complete the

following steps:

1. Display the list of messaging engines.

1250 Administering WebSphere applications

2. In the content pane, select the messaging engine for which you want to configure the service

integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you want to configure.

5. Specify the following properties for the service integration bus link:

Name The name of the service integration bus link. In order to work, the name must be the same as

the name of the corresponding service integration bus link configured on the target foreign bus.

Description

An optional description for the service integration bus link, for administrative purposes.

UUID The universal unique identifier assigned by the system to the service integration bus link for

administrative purposes.

Foreign messaging engine

The messaging engine on the foreign bus to which this link connects.

Note: This foreign bus name must not be altered after it has been configured. If you alter it,

any messaging engines that already hold state information about the link will not be

able to use the link unless the foreign bus name is reset to its original value.

Target inbound transport chain

The type of transport chain used for communication with the foreign bus. The transport chain

name must be the name of the transport chain as defined on the server on which the target

messaging engine is hosted.

Bootstrap endpoints

The comma-separated list of endpoints used to connect to a bootstrap server. This property is

set in the same way as the Provider endpoint property in the JMS connection factory

settings. For more information, see steps 1 and 2 of “Configuring a connection to a non-default

bootstrap server” on page 1677. Although this task primarily describes how to configure a JMS

connection factory, it is also applicable to setting several bootstrap endpoint values if the

remote messaging engine is in a cluster.

Note: Service integration bus links over BootstrapTunneledMessaging and

BootstrapTunneledSecureMessaging transport chains only work directly between

application server instances. Bus links over TunneledMessaging transport chains do not

work if an HTTP server is placed in front of either application server instance.

Authentication alias

The name of the authentication alias, used to authenticate access to the foreign bus. The alias

must be known to the foreign bus.

Initial state

Whether the link is started automatically when the messaging engine is started. Until started,

the gateway link is unavailable. If this property is set to Started the service integration bus link

is started when the messaging engine is started.

6. Click OK.

7. Save your changes to the master configuration.

Listing the service integration bus links:

You can list all the service integration bus links that are linked to a messaging engine.

Chapter 6. Service integration 1251

About this task

To list the service integration bus links for a messaging engine, use the administrative console to complete

the following steps:

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Additional properties, click Messaging engines. The list of messaging

engines in the bus is displayed.

4. In the content pane, select the messaging engine for which you want to list the service integration bus

links.

5. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

Example

The following combinations of Status and Activity values are possible:

 Status Activity Meaning

started inactive The service integration bus link is started on the local

messaging engine but has no connection to the foreign bus.

The service integration bus link is attempting to activate a

connection to the foreign bus. The service integration bus link

on the foreign bus must also be started to successfully

activate of a connection between the buses.

started active The service integration bus link is started on the local

messaging engine and has an active connection to the foreign

bus.

stopped inactive The service integration bus link is stopped on the local

messaging engine and there is no connection to the foreign

bus.

unknown inactive An error might have occurred in setting up the link, such that

the object that is used to report the current state is not

available. The deployment manager cannot contact a remote

server to determine the status.

What to do next

You can now add or remove a service integration bus link or select a service integration bus link to start,

stop, or configure.

Starting a service integration bus link:

When a service integration bus link has been started, it can be used for communicating with its associated

messaging engines.

 About this task

To start a service integration bus link, use the administrative console to complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to start the service integration

bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to start.

1252 Administering WebSphere applications

5. Click Start.

Stopping a service integration bus link:

When a service integration bus link has been stopped, it cannot be used for communication until it is

restarted.

 About this task

To stop a service integration bus link, use the administrative console to complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine to which the service integration bus link that you

wish to stop belongs.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to stop.

5. Click Stop.

Removing a service integration bus link:

When a service integration bus link to a messaging engine has been removed, it cannot be used for

communication until it is recreated.

 Before you begin

Before you remove the service integration bus link you must stop the link.

When you remove a service integration bus link, all traffic using the link needs to be dealt with in a similar

way to when you remove a destination. For further details, see “Deleting a non-topic space bus

destination” on page 1319. Note that express Quality of Service (QoS) messages are discarded.

About this task

To remove a service integration bus link from a messaging engine, use the administrative console to

complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select which the messaging engine has own association with the service

integration bus link that you wish to remove.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to remove.

5. Click Delete.

6. Save your changes to the master configuration.

What to do next

When you remove a service integration bus link, all traffic using the link must be diverted by alternative

routes or held pending further administrative action. Express QoS messages are discarded.

Configuring topic space mappings between service integration buses:

Chapter 6. Service integration 1253

A topic space mapping allows subscribers on the local topic space to receive messages published in the

foreign topic space. You can configure topic space mappings between a local service integration bus and a

foreign service integration bus.

 About this task

A topic space mapping allows subscribers on the local topic space to receive messages published in the

foreign topic space. For publications to flow from the local topic space into the foreign bus, an equivalent

topic space mapping is required by the foreign bus.

If you want to publish messages from a local bus to a foreign bus that is linked indirectly through a third

bus, you must configure topic space mappings between the local bus and the intermediate bus, and

between the intermediate bus and the foreign bus. The messages can be for publication to the foreign bus

only, or to all three buses. If you want to publish messages only to the local and foreign buses, these two

buses must be connected directly.

If you want to publish messages from a local service integration bus to a foreign bus that represents a

WebSphere MQ network, you must define topic mappings on the broker profile associated with the

WebSphere MQ link.

For more details about the foreign bus and publish/subscribe messaging between buses, see Foreign

buses.

Creating topic space mappings:

A topic space mapping allows subscribers on the local topic space to receive messages published in the

foreign topic space. You can create topic space mappings between two service integration buses.

 About this task

You can create topic space mappings as part of the procedure to create a foreign bus connection, or you

can create them separately, as described in this topic.

Note that for publishing and subscribing between a service integration bus and a foreign bus that

represents a WebSphere MQ network, you must define topic mappings on the broker profile associated

with the WebSphere MQ link.

To map a topic space on a local service integration bus to a topic space on a foreign service integration

bus, use the administrative console to complete the following steps.

 1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

 2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local

bus you require.

 3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a

foreign bus connection from the local bus is displayed.

 4. Select the required foreign bus.

 5. In the content pane, under Additional properties, click Service integration bus link routing

properties.

 6. In the content pane, under Additional properties, click Topic space map entries.

 7. Click New.

 8. Specify the mappings as follows:

Local topic space

The name of the topic space on this (local) bus that is mapped to the remote topic space on

the foreign bus.

1254 Administering WebSphere applications

Remote topic space

The name of the topic space on the foreign bus that is mapped to the local topic space.

Note: The names of the local and foreign topic space do not have to match, but the names of the

topics must match in both local and foreign buses.

 9. Click OK.

10. Save your changes to the master configuration.

Results

The remote topic space is mapped to the local topic space.

Deleting topic space mappings:

You can delete topic space mappings so that subscribers on the local topic space cannot receive

messages that are published in the foreign topic space.

 About this task

To delete topic space mappings, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local

bus you require.

3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a

foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click Service integration bus link routing

properties.

6. In the content pane, under Additional properties, click Topic space map entries. A list of topic space

map entries is displayed.

7. Select the topic space map entry that you wish to remove.

8. Click Delete.

9. Save your changes to the master configuration.

Listing topic space map entries:

A topic space mapping allows subscribers on the local topic space to receive messages published in the

foreign topic space. You can list topic space map entries to view existing map entries.

 Before you begin

There must be a service integration bus link between a local service integration bus and a foreign service

integration bus.

About this task

To list the topic space map entries, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses. A list of service integration buses is

displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local

bus you require.

Chapter 6. Service integration 1255

3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a

foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click Service integration bus link routing

properties.

6. In the content pane, under Additional properties, click Topic space map entries. The list of

mappings between topic spaces in the local bus and topic spaces in the foreign bus is shown.

Topic names and use of wildcard characters in topic expressions:

This topic describes the use of wildcard characters in topic expressions to retrieve topics provided by the

default messaging provider and service integration technologies.

 Each subscribe request includes a topic expression that identifies one or more topics that the subscription

is to be associated with, and which the request uses to match against incoming messages.

Subscription topic expressions for the default messaging provider and service integration technologies are

based on a subset of the XPath location path syntax.

Identifying individual topics

Every topic in a topic space has a topic name consisting of one or more name parts, separated by /

(forward slash) characters:

Topic name = name_part | (name_part ’/’ topic_name)

Using wildcards to identify multiple topics

To select one or more topics in a topic space, you can use a topic path, a location path that contains

wildcard characters. Topic spaces are evaluated using a subset of the XPath location path syntax with the

<topicspace> element as the initial context node, so that non-wildcarded topic paths look exactly like topic

names.

The syntax for topic paths can be summarized as follows:

v A topic path that contains no * (asterisk), // (double forward slash), or . (dot) symbols is asking for an

exact match with the topic name specified.

v A * (asterisk) can be used as a wild card and matches one level (regardless of the value of the name

part at that level)

A * can be used anywhere in a topic path expression, but if it isn’t at the start it must be preceded by a

/, and if it is isn’t at the end it must be followed by a /

v // can be used as a wild card and matches 0 or more levels

A // can be used anywhere in the expression except at the end. To match 0 or more levels at the end of

the expression you end the expression with the syntax //. (double-slash dot). To match one or more

levels at the end use //* (double-slash asterisk)

A topic path must not contain more than two consecutive / symbols.

The following table lists some example topic paths using the XPath syntax and the equivalent WBI

Message Broker selectors:

 Topic path Topics selected WBI Message Broker

equivalent

A/B Selects the B child of A A/B

A/* Selects all children of A A/+

A//* Selects all descendents of A A/#/+

1256 Administering WebSphere applications

A//. Selects A and all descendents of A A/#

//* Selects everything # (or #/+)

A/./B Equivalent to A/B A/B

A/*/B Selects all B grandchildren of A A/+/B

A//B Selects all B descendents of A A/#/B

//A Selects all A elements at any level #/A

* Selects all first level elements +

Interoperation with Version 5.1 clients

Existing WebSphere Application Server Version 5.1 client applications using Version 5.1 connection factory

and destination definitions use the WBI Message Broker wildcard convention. Such applications can

connect to the default messaging provider and service integration bus, and automatically have their

wildcard syntax mapped to the XPath convention when subscriptions are created. Any display of these

subscriptions through an administrative interface to the bus shows the XPath syntax.

Defining outbound chains for bootstrapping

You can define new outbound chains using the wsadmin utility. These chains can be used for

bootstrapping connections to messaging engines.

About this task

To create outbound chains for bootstrapping, there are involves several main steps:

1. Locate the appropriate TransportChannelService configuration object. This object is the parent object

of all the objects created.

2. Create the individual channels that comprise the transport channel service. Some of these channels

might require references to other configuration objects.

3. Assemble the channels that you have created into an outbound channel chain.

The channels used to build an outbound bootstrap chain determine the protocol with which the outbound

chain can be used to bootstrap. The following table shows all valid bootstrap chains with their bootstrap

protocols.

 Bootstrap protocol TCP channel SSL channel HTTP channel HTTP tunneling

channel

JFAP channel

TCP X X

SSL X X X

HTTP X X X X

HTTPS X X X X X

For example, a chain for bootstrapping using the SSL protocol would consist of a TCP channel, SSL

channel, and JFAP channel. When you create chains, the order of channels in the chain is important. You

must specify channels in the order (left to right) in which they appear in the preceding table.

The example in this topic describes how to create a bootstrap chain that is capable of bootstrapping using

the HTTPS protocol. This requires a chain containing all the channel types described. Thus, it is easy to

see how to create chains for other protocols by omitting channels during the chain creation step.

Note: You open a wsadmin command session from within Qshell. For more information, see the topic

“Configure Qshell to run WebSphere Application Server scripts”.

Chapter 6. Service integration 1257

1. Locate the TransportChannelService object for the server in which you wish to create the new chain.

For example, in a WebSphere Application Server Network Deployment configuration, you can list the

available TransportChannelService objects and select the appropriate service as follows.

Using Jython:

wsadmin>AdminConfig.list("TransportChannelService")

(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml

#TransportChannelService_1)

(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml

#TransportChannelService_1095

711814579)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml

#TransportChannelService_109571

2023139)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml

#TransportChannelService_109571

2039302)

wsadmin>tcs = AdminConfig.list("TransportChannelService").split("\r\n")[2]

Using Jacl:

wsadmin> $AdminConfig list TransportChannelService

(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml

#TransportChannelService_1)

(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml

#TransportChannelService_1095

711814579)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml

#TransportChannelService_109571

2023139)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml

#TransportChannelService_109571

2039302)

wsadmin> set tcs [lindex [$AdminConfig list TransportChannelService] 2]

(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

TransportChannelService_1095712023139)

2. Define an outbound TCP channel called testTCPChannel.

Using Jython:

wsadmin>tcpChannel = AdminConfig.create("TCPOutboundChannel", tcs,

[["name", "testTCPChannel"]])

Using Jacl:

wsadmin>set tcpChannel [$AdminConfig create TCPOutboundChannel $tcs

"{name testTCPChannel}"]

testTCPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/

server1|server.xml#TCPOutboundChannel_1095969213949)

3. Define an outbound SSL channel called testSSLChannel. There are two steps required to define such

a channel.

a. Identify the SSL alias to be used by the channel.

Using Jython:

wsadmin>for obj in AdminConfig.list("SSLConfig").split("\r\n"):

print obj+AdminConfig.show(obj, "alias")

(cells/BadgerCell01|security.xml#SSLConfig_1)

[alias BadgerCellManager01/DefaultSSLSettings]

(cells/BadgerCell01|security.xml#SSLConfig_1095711819776)

[alias BadgerNode01/DefaultSSLSettings]

Using Jacl:

wsadmin>foreach obj [$AdminConfig list SSLConfig] { puts "$obj

[$AdminConfig show $obj alias]]" }

(cells/BadgerCell01|security.xml#SSLConfig_1) {alias BadgerCellManager01/

DefaultSSLSettings}]

(cells/BadgerCell01|security.xml#SSLConfig_1095711819776) {alias BadgerNode01/

DefaultSSLSettings}]

b. Create an SSL channel as in the following example, in which the BadgerNode01/
DefaultSSLSettings alias is used.

Using Jython:

wsadmin>sslChannel =

AdminConfig.create("SSLOutboundChannel", tcs, [["name", "testSSLChannel"],

["sslConfigAlias", "BadgerNode01/DefaultSSLSettings"]])

1258 Administering WebSphere applications

Using Jacl:

wsadmin>set sslChannel [$AdminConfig create SSLOutboundChannel $tcs

"{name testSSLChannel}

{sslConfigAlias BadgerNode01/DefaultSSLSettings}"]

testSSLChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

SSLOutboundChannel_1095971760671)

4. Define an outbound HTTP channel called testHTTPChannel.

Using Jython:

wsadmin>httpChannel = AdminConfig.create("HTTPOutboundChannel", tcs,

[["name", "testHTTPChannel"]])

Using Jacl:

wsadmin>set httpChannel [$AdminConfig create HTTPOutboundChannel $tcs

"{name testHTTPChannel}"]

testHTTPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

HTTPOutboundChannel_1095971896556)

5. Define an outbound HTTP tunneling channel called testHTCChannel.

Using Jython:

wsadmin>htcChannel = AdminConfig.create("HTTPTunnelOutboundChannel", tcs,

[["name", "testHTCChannel"]])

Using Jacl:

wsadmin>set htcChannel [$AdminConfig create HTTPTunnelOutboundChannel $tcs

"{name testHTCChannel}"]

testHTCChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

HTTPTunnelOutboundChannel_1095972164201)

6. Define an outbound JFAP channel called testJFAPChannel.

Using Jython:

wsadmin>jfapChannel = AdminConfig.create("JFAPOutboundChannel", tcs,

[["name", "testJFAPChannel"]])

Using Jacl:

wsadmin>set jfapChannel [$AdminConfig create JFAPOutboundChannel $tcs

"{name testJFAPChannel}"]

testJFAPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

JFAPOutboundChannel_1095972226631)

7. Finally, create the channel chain by combining the channels defined so far. For example, to create a

chain called testChain:

Using Jython:

wsadmin>AdminConfig.create("Chain", tcs, [["name", "testChain"], ["enable", "true"],

["transportChannels", [tcpChannel, httpChannel, htcChannel, jfapChannel]]])

testChain(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

Chain_1095972662147)

Using Jacl:

wsadmin>$AdminConfig create Chain $tcs "{name testChain} {enable true}

{transportChannels {$tcpChannel $httpChannel $htcChannel $jfapChannel}}"

testChain(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

Chain_1095972662147)

Defining outbound chains for WebSphere MQ interoperation

You can define new outbound chains using the wsadmin utility. These chains can be used for

interoperating with WebSphere MQ.

About this task

The channels used to build an outbound chain determine with which configurations of the WebSphere MQ

queue manager sender channel a network connection can be successfully established. The following table

shows all the valid chain configurations and describes the configuration of WebSphere MQ queue

manager sender channel with which they can be used to establish a connection.

 WebSphere MQ channel TCP channel SSL channel MQFAP channel

Chapter 6. Service integration 1259

Unsecured WebSphere MQ

channel

X X

WebSphere MQ channel

secured using SSL

X X X

For example, an SSL-based chain would consist of a TCP channel, SSL channel and MQFAP channel.

When creating chains, the order of channels in the chain is important. You must specify channels in the

order (left to right) in which they appear in the above table.

The example in this topic describes how to create an outbound chain capable of being used to contact

WebSphere MQ queue manager receiver channels using SSL-based encryption.

Note: You open a wsadmin command session from within Qshell. For more information, see the topic

“Configure Qshell to run WebSphere Application Server scripts”.

1. Locate the TransportChannelService object for the server in which you wish to create the new chain.

For example, in a WebSphere Application Server Network Deployment configuration, you can list the

available TransportChannelService objects and select the appropriate service.

Using Jython:

wsadmin>AdminConfig.list("TransportChannelService")

(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml

#TransportChannelService_1)

(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml

#TransportChannelService_1095

711814579)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml

#TransportChannelService_109571

2023139)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml

#TransportChannelService_109571

2039302)

wsadmin>tcs = AdminConfig.list("TransportChannelService").split("\r\n")[2]

Using Jacl:

wsadmin> $AdminConfig list TransportChannelService

(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml

#TransportChannelService_1)

(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml

#TransportChannelService_1095711

814579)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml

#TransportChannelService_109571202

3139)

(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml

#TransportChannelService_109571203

9302)

wsadmin> set tcs [lindex [$AdminConfig list TransportChannelService] 2]

(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml

#TransportChannelService_109571202

3139)

2. Define an outbound TCP channel called testTCPChannel.

Using Jython:

wsadmin>tcpChannel = AdminConfig.create("TCPOutboundChannel", tcs,

[["name", "testTCPChannel"]])

Using Jacl:

wsadmin>set tcpChannel [$AdminConfig create TCPOutboundChannel $tcs

"{name testTCPChannel}"]

testTCPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

TCPOutboundChannel_1095969213949)

3. Define an outbound SSL channel called testSSLChannel. There are two steps required to define such

a channel.

a. Identify the SSL alias to be used by the channel.

Using Jython:

1260 Administering WebSphere applications

wsadmin>for obj in AdminConfig.list("SSLConfig").split("\r\n"):

print obj+AdminConfig.show(obj, "alias")

Using Jacl:

wsadmin>foreach obj [$AdminConfig list SSLConfig] { puts "$obj

[$AdminConfig show $obj alias]]" }

(cells/BadgerCell01|security.xml#SSLConfig_1) {alias BadgerCellManager01/

DefaultSSLSettings}]

(cells/BadgerCell01|security.xml#SSLConfig_1095711819776) {alias BadgerNode01/

DefaultSSLSettings}]

b. Create an SSL channel as in the following example, in which the BadgerNode01/
DefaultSSLSettings alias is used.

Using Jython:

wsadmin>sslChannel = AdminConfig.create("SSLOutboundChannel", tcs, [["name",

"testSSLChannel"], ["sslConfigAlias","BadgerNode01/DefaultSSLSettings"]])

Using Jacl:

wsadmin>set sslChannel [$AdminConfig create SSLOutboundChannel $tcs

"{name testSSLChannel}

{sslConfigAlias BadgerNode01/DefaultSSLSettings}"]

testSSLChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

SSLOutboundChannel_1095971760671)

4. Define an outbound MQFAP channel called testMQFAPChannel.

Using Jython:

wsadmin>mqfapChannel = AdminConfig.create("MQFAPOutboundChannel", tcs,

[["name", "testMQFAPChannel"]])

Using Jacl:

wsadmin>set mqfapChannel [$AdminConfig create MQFAPOutboundChannel $tcs

"{name testMQFAPChannel}"]

testMQFAPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#

MQFAPOutboundChannel_1095977512682)

5. Finally, create the channel chain by combining the channels defined so far. For example, to create a

chain called testChain:

Using Jython:

wsadmin>AdminConfig.create("Chain", tcs, [["name", "testChain"], ["enable",

"true"], ["transportChannels", [tcpChannel, sslChannel, mqfapChannel]]])

Using Jacl:

wsadmin>$AdminConfig create Chain $tcs "{name testChain} {enable true}

{transportChannels {$tcpChannel $sslChannel $mqfapChannel}}"

testChain(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#Chain_109

5977640896)

Operating buses

Use these tasks to operate service integration buses.

About this task

The topics in this section describe how to display the runtime properties of messaging engines and their

associated service integration bus links. The properties are influenced by the following operations:

v Starting and stopping messaging engines.

v Starting and stopping service integration bus links.

Displaying the runtime properties of a messaging engine

Display the runtime properties of a messaging engine using the administrative console.

Before you begin

To be able to retrieve the status of messaging engines, you must be logged into the administrative console

with at least monitor authority. If you do not have this authority, the messaging engine status is displayed

as ″Unavailable″, even if the messaging engine has started. Also, if you are not logged in with the

Chapter 6. Service integration 1261

authority needed to retrieve the status of messaging engines, a SECJ0305I error message is logged in the

server’s systemOut log file.

About this task

To display the runtime properties of a messaging engine, use the administrative console to complete the

following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus to which your messaging engine belongs.

3. In the content pane, under Topology, click Messaging engines. A list of messaging engines is

displayed.

4. Click the messaging engine name.

5. Click the Runtime tab. The status of the messaging engine, that is, whether it is currently started or

stopped is displayed.

Displaying the runtime properties of a service integration bus link

Display the runtime properties of a service integration bus link using the administrative console.

About this task

To display the runtime properties of a service integration bus link, use the administrative console to

complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that contains the service integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link whose properties you want to display.

5. Click the Runtime tab. The following properties are displayed:

Status

The runtime status of the service integration bus link.

Activity

Whether the service integration bus link is currently inactive, active, or its activity is unknown.

Managing messages on message points

Use these tasks to list and act on runtime messages that exist on message points in a service integration

bus.

About this task

You can list the message points for bus destinations and messaging engines, and list the messages on a

selected message point. You can use the list of messages as part of a troubleshooting task to find

messages that need to be deleted.

v “Listing messages on a message point” on page 1323

v “Deleting messages on a message point” on page 1324

Managing service integration buses with administrative commands

You can use these commands to manage service integration buses.

About this task

These commands provide an alternative to using the administrative console or using the more complex

syntax of wsadmin and Jython.

1262 Administering WebSphere applications

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell to run

WebSphere Application Server scripts.

1. Open a wsadmin command session in local mode For example:

wsadmin -conntype none -lang jython

2. Type AdminTask.command, where command is the command format as indicated in the related reference

topics.

For example:

wsadmin>AdminTask.listSIBusMembers(’[-bus bus1]’)

[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092155259869]

[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092159844593]

[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092160253751]

wsadmin>AdminTask.listSIBEngines(’[-bus bus1]’)

’node01.server1-bus1(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#

SIBMessagingEngine_1212163145962)\r\n

node02.server2-bus2(cells/cell01/nodes/node02/servers/server2|sib-engines.xml#

SIBMessagingEngine_1212163146273)’

Messaging engines

These topics provide information about messaging engines, which provide the processing function on a

service integration bus.

v Learning about messaging engines

v “Configuring messaging engines” on page 1216

v Operating messaging engines

v “Managing messaging engines with administrative commands” on page 1276

v SIBAdminCommands: Messaging engine administrative commands for the AdminTask object

v Messaging engine troubleshooting tips

Configuring messaging engines

You can configure messaging engines in a variety of ways. For example, you can create and apply

security to a messaging engine, then use this engine to send and receive messages. When you add a

server cluster to a service integration bus, at least one messaging engine is created automatically. If you

also use messaging engine policy assistance, some configuration properties are set automatically.

Adding additional messaging engines to a cluster bus member

You can add extra messaging engines to a cluster bus member, for example to provide high availability or

scalability in a cluster.

About this task

When you add a server or cluster as a member of a bus, at least one messaging engine is created

automatically. Each server bus member has only one messaging engine. However, cluster bus members

can support additional messaging engines.

You can add multiple messaging engines at the time you create the cluster bus member, or you can add

extra messaging engines at a later time.

When you add an extra messaging engine to an existing cluster bus member, the flow of messages

through existing messaging engines is not disrupted. Also, if dynamic reloading is enabled (by selecting

the Configuration reload enabled property for the cluster bus member), the existing messaging engines

do not have to be restarted to become aware of the new messaging engine.

For more information about configuring bus properties, see “Configuring bus properties” on page 1199.

Chapter 6. Service integration 1263

1. Add an extra messaging engine to an existing cluster bus member, by completing one of the following

substeps:

a. Optional: Add one or more messaging engines when you create a new cluster bus member.

Use messaging engine policy assistance, which guides you through the creation and configuration

of the messaging engines. See “Adding a cluster as a member of a bus” on page 1203.

b. Optional: Add an extra messaging engine to an existing cluster bus member.

Either use the administrative console as described in “Adding a messaging engine to a cluster” on

page 1218, or use the createSIBEngine command.

2. Optional: Enable dynamic reloading for the cluster bus member:

a. In the administrative console, navigate to Servers → Server Types → WebSphere application

servers → server_name → [Server messaging] SIB service.

b. Select Configuration reload enabled.

c. Click OK.

3. Save your changes to the master configuration.

Configuring messaging engine properties

You can configure the properties of a messaging engine in the administrative console. For example you

can select whether the messaging engine is started automatically when its associated application server is

started, how many messages it can process, and target groups that the engine can join.

About this task

In most cases, you can configure the properties of a messaging engine without interrupting the processing

of messages by the messaging engine.

1. Start the administrative console.

2. Navigate to Service integration → Buses → bus_name → [Topology] Messaging engines →

engine_name.

3. Configure the messaging engine properties. For information about the properties that you can

configure, see the property descriptions in Messaging engines [Settings]

4. Click OK.

5. Save your changes to the master configuration.

Listing the messaging engines in a bus

You can view the list of existing messaging engines in a bus by using the administrative console. You can

decide which messaging engines you want to change, for example which buses they are associated with.

About this task

To list the messaging engines in a bus, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Topology, click Messaging engines. The list of messaging engines in the

bus is displayed.

Removing a messaging engine from a bus

You can remove a messaging engine from a service integration bus if you no longer require it to send and

receive messages on the bus.

Before you begin

You should be wary of deleting and re-creating messaging engines on bus members for which

WS-Notification-administered subscribers have been configured, because in some cases this can leave the

1264 Administering WebSphere applications

remote Web service subscription active (and passing notification messages to the local server) even

though there is no longer any record of it. For more information, see the WS-Notification troubleshooting

tip Deleting administered subscribers and messaging engines.

1. Stop the messaging engine. You can stop either in Immediate or Force mode, as described in

“Stopping a messaging engine” on page 1275.

2. Use the wsadmin command deleteSIBEngine to delete the messaging engine. All service integration

bus links, MQ links, and custom properties that are owned by the engine are deleted.

Note: When you remove a messaging engine, WebSphere Application Server does not delete the data

store tables automatically. You must remove them manually, or delete all the rows in all the

tables. If you do this, a new messaging engine might fail to start if it attempts to use an

orphaned data store. Refer to the documentation for your chosen relational database

management system for information about deleting tables.

Alternatively, for Apache Derby, you can delete the database’s directory, which is located in

profile_root/databases/com.ibm.ws.sib, where profile_root is the directory in which

profile-specific information is stored. However, do this only if the messaging engine is the sole

user of the database.

For more information, see Data store life cycle.

Similarly, the file store files are not automatically deleted when you delete the messaging

engine. You might want to delete the file store files to reclaim disk space.

Listing the messaging engines defined for a server bus member

You can display a list of messaging engines defined for a server bus member by using the administrative

console. You can decide which messaging engines you want to change, for example, which buses they

are associated with.

About this task

To display the list of messaging engines, use the administrative console to complete the following steps:

1. In the navigation pane, click either Service integration → Buses → bus_name → [Topology]

Messaging engines or Servers → Server Types → WebSphere application servers → server_name →

[Server messaging] Messaging engines. A list of messaging engines is displayed in the content

pane.

2. Optional: Select one or more messaging engines to work with, for example to change the properties of

the messaging engine.

Listing the messaging engines for a cluster bus member

You can display the messaging engines for a cluster bus member in the administrative console. You can

decide which messaging engines you want to change, for example, to change the properties of the

messaging engine.

About this task

To display the list of messaging engines for a cluster bus member, use the administrative console to

complete the following steps:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. Click the name of the cluster bus member. The Bus member detail panel is displayed.

3. In the content pane, under Additional properties, click Messaging engines.

Chapter 6. Service integration 1265

Results

A list of messaging engines is displayed in the content pane.

What to do next

You can now add a messaging engine to the cluster bus member. You can remove, start, or stop selected

messaging engines. You can click a messaging engine name and change the properties of the messaging

engine.

Adding a messaging engine to a cluster

You can add a messaging engine to a cluster so that servers that are members of the cluster can send

and receive messages.

Before you begin

Ensure that you have defined a location for the message store for the messaging engine. Each messaging

engine uses a message store to preserve operating and recovery information.

v If you want to use a file store, you need a file location.

v If you want to use a data store, you need a suitable data source, such as a relational database, that is

accessed through a JDBC data source.

About this task

Use this procedure when you want to add a messaging engine to an existing cluster bus member.

Alternatively, you can add one or messaging engines when you add a cluster as a member of a bus. You

can use messaging engine policy assistance, which guides you through the creation and configuration of

the messaging engines.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. In the content pane, click the name of the cluster to which you want to add a messaging engine. The

Bus member detail pane is displayed.

3. In the content pane, under Additional properties, click Messaging engines. A list of messaging

engines for the cluster is displayed.

4. In the content pane, click Add messaging engine.

5. Select the type of message store that you have already defined.

6. Enter details for the message store.

v If you use a file store, specify the directory paths for the log files, the permanent file store, and the

temporary file store. Do not use the default path, and ensure that you use a unique path for each

messaging engine.

v If you use a data store, specify the JNDI name of the data source that provides access to the

database that holds the data store.

7. When the wizard is finished, save your changes to the master configuration.

Results

A messaging engine is added to the cluster. You can now configure the messaging engine if required.

Removing a messaging engine from a cluster

You can reduce the number of messaging engines configured for a cluster bus member by removing a

messaging engine.

1266 Administering WebSphere applications

Before you begin

Before you remove a messaging engine from a cluster, drain it of messages and prevent further messages

being sent to it. Otherwise, when a messaging engine is removed, all messages currently stored on that

messaging engine are deleted. Any messages that are in transit to the removed messaging engine may

remain on the sending messaging engine on a remote queue point and require manual cleanup.

When you remove messaging engines from a cluster, remove them in numerical order from highest to

lowest so as to avoid a situation where, for example, there are messaging engines numbered 001 and 002

and not 000. This is to avoid problems if you use WS-Notification, which attaches special significance to

the first-created messaging engine in a cluster. For more information, see the WS-Notification

troubleshooting tip Deleting administered subscribers and messaging engines.

When you remove a messaging engine from a cluster, all message points and their messages are deleted,

so if the cluster has a queue destination configured, some of the messages stored for that queue might be

lost.

About this task

To remove a messaging engine from a cluster:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members.

2. In the content pane, click the cluster from which you want to remove a messaging engine. The Bus

member detail panel is displayed.

3. In the content pane, under Additional properties, click Messaging engines. A list of messaging

engines for the cluster is displayed.

4. In the content pane, select the messaging engine that you want to remove.

5. Click Remove messaging engine.

6. Save your changes to the master configuration.

Results

The messaging engine is removed from the cluster.

You can also use the deleteSIBEngine command to remove a messaging engine from a cluster.

What to do next

Note: When you remove a messaging engine, WebSphere Application Server (base) does not delete the

data store tables or the file store files automatically.

v For a data store, if you want to recreate the same messaging engine, you must first delete the

previous set of tables. If you create a messaging engine and use existing tables, the tables must

be empty so that the messaging engine can function correctly. Refer to the documentation for

your chosen relational database management system (RDBMS) for information about how to

delete tables. However, if you created a data store with default settings, you do not need to

delete previous tables.

v For a file store, you might want to delete the file store files to reclaim disk space.

Correcting the messaging engine policy

You can change the messaging engine policy for a messaging engine in a cluster so that it conforms to

one of the predefined messaging engine policy types that are available when you use messaging engine

policy assistance.

Chapter 6. Service integration 1267

About this task

Use this procedure when you are creating or maintaining a cluster bus member and messaging engine

policy assistance is enabled, but there are warning messages that the messaging engine policy should be

corrected. For example, you create and configure a cluster for scalability, where each messaging engine

cannot fail over. If you want to change the cluster to provide scalability and high availability, the messaging

engine policies must be corrected so that the messaging engines can fail over, and the preferred servers

list must be corrected so that there is a preferred server and a failover server for each messaging engine.

This procedure does not add or remove messaging engines. If there are warning messages to add or

remove messaging engines to conform to the selected messaging engine policy type, use the procedures

in the related tasks.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members →

bus_member_name. If messaging engine policy assistance is enabled, the Bus member detail panel

is displayed. If messaging engine policy assistance is not enabled, the messaging engine collection

panel is displayed.

2. If messaging engine policy assistance is not enabled, click Enable policy assistance and follow the

instructions on the wizard.

3. From the Bus member detail panel, in the content pane, under Additional properties, click

Messaging engine policy maintenance. A list of messaging engines for the cluster, and details of

their current messaging engine policy settings, is displayed. Messages in the details column indicate

whether the current settings conform to the selected messaging engine policy type.

4. Select the policies you want to correct, then click Correct messaging engine policy.

5. Save your changes to the master configuration.

Results

The selected messaging engine policies are corrected and the new policy settings are displayed in the

panel. The core group policies and match criteria for the messaging engines are automatically corrected.

Deleting a redundant core group policy

If there is a core group policy that is associated with a cluster, but that is not associated with any

messaging engine in the cluster, and you are using messaging engine policy assistance, you can identify

and delete that policy.

About this task

Use this procedure when you are creating or maintaining a cluster bus member and messaging engine

policy assistance is enabled, but there are warning messages that a core group policy is redundant. This

message indicates that the core group policy is associated with a cluster through its match criteria, but it is

not associated with any messaging engine that is currently in the cluster.

When you use messaging engine policy assistance, the required associations are created automatically

and you do not have to create or manage core group policies directly. A redundant core group policy might

occur if messaging engine policy assistance is disabled and you remove a messaging engine without

deleting its associated core group policy, or create a core group policy that is not associated with a

messaging engine.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Bus members →

bus_member_name. If messaging engine policy assistance is enabled, the bus member detail panel

is displayed. If messaging engine policy assistance is not enabled, the messaging engine collection

panel is displayed.

2. If messaging engine policy assistance is not enabled, click Enable policy assistance and follow the

instructions on the wizard.

1268 Administering WebSphere applications

3. In the content pane, under Additional properties, click Redundant core group policies. A list of

redundant core group policies and details of the current core group policy settings is displayed.

4. Select the policies you want to delete, then click Delete.

Results

The selected core group policies are deleted.

Setting up the data store for a messaging engine

To set up a data store for a messaging engine, the database administrator must first create the database.

You must then configure the data source and configure the messaging engine to use it.

Before you begin

Before you use this task, review the information in “Planning the configuration of a messaging engine to

use a data store” on page 1281, and ensure that your database administrator has taken any appropriate

action.

About this task

This task summarizes the steps that you must perform to set up the data store for a messaging engine.

You need to work with your database administrator to complete step 1 of this task.

1. Ask your database administrator to perform the following steps:

a. Create the database. Refer to “Creating the database” on page 1283

b. Create users and schemas. Refer to “Creating users and schemas in the database” on page 1283

c. Create the data store tables. Refer to “Creating the tables” on page 1284

d. Ensure that the user has sufficient privilege to allow the messaging engine to operate. For more

information about the privileges that required for the selected database, refer to “Database

privileges” on page 1291.

2. When the database administrator has completed step 1, perform the following steps:

a. Obtain a user ID from your database administrator.

b. Configure a data source. Refer to “Configuring a JDBC data source for a messaging engine” on

page 1285.

c. Configure the messaging engine to use the data source. Refer to “Configuring a messaging engine

data store to use a data source” on page 1222.

Configuring a messaging engine data store to use a data source:

After configuring a data source, you can configure a messaging engine data store to use the data source.

 Before you begin

This topic assumes that you have chosen or created a bus and a messaging engine, and that the

messaging engine specifies “data store” as its message store type.

You must also have configured a data source, as described in “Setting up the data store for a messaging

engine” on page 1221.

About this task

A messaging engine uses an instance of a JDBC data source to interact with the database that contains

the data store for that messaging engine.

Chapter 6. Service integration 1269

Use the WebSphere Application Server administrative console to set the data store configuration

parameters.

To configure the messaging engine to use a data source, use the administrative console to complete the

following steps:

Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional Properties] Message store

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name.

2. Check that the Message store type is Data store.

3. Click [Additional Properties] Message store. The data store configuration detail panel is displayed.

4. Specify the following data store configuration details:

Data source JMDI name

Type the JNDI name of the data source that provides access to database that holds the data

store.

Schema name

Type the name of the database schema that contains the tables used by the data store.

Note: The schema name is usually the same as the user ID that is declared in the

authentication alias. With some databases, for example DB2, you can provide an

alternative schema name. For more information about the relationship between users

and schema, refer to the documentation for your chosen RDBMS.

Note: When you configure your messaging engine to use an Informix database, you must

specify the schema name in lowercase letters.

When starting, a messaging engine that uses a data store checks to see if its data store

exists. If the user has selected the Create tables option in the configuration, whose tick-box is

ticked by default, the messaging engine creates the tables in its chosen schema.

The Schema name field is optional, and:

v The default schema name is IBMWSSIB.

v If you delete the text so that field is blank, the messaging engine takes the user id defined

in the authentication alias to be the schema name.

v If you define a schema name explicitly, that schema name is used by the messaging engine.

Authentication alias

Select the authentication alias that enables access to the data source.

Note: When you create a new Network Attached Apache Derby data store, by default you get

a blank authentication alias. If you use Apache Derby in Network Attached mode with

the DB2 Universal JDBC Driver (that is, you use the “JDBC provider for Derby Network

Server using the (DB2) Universal JDBC Driver”), you must specify an authentication

alias. This requirement is documented in Data source minimum required settings for

Apache Derby. See also the following troubleshooting tip: User ID not supported

exception when connecting to a Network Attached Apache Derby Version 10.3 database

Create tables

Select the check box if you want WebSphere Application Server to create the database tables

automatically. For more information, refer to “Creating the tables” on page 1284.

Note: The user ID that the data store uses to connect to the data source must have sufficient

authority to create the database tables and indexes.

1270 Administering WebSphere applications

Note: The option for WebSphere Application Server to create the tables is not available with

DB2 for z/OS. Refer to “Enabling your database administrator to create the data store

tables” on page 1285 if you use DB2 for z/OS.

Number of permanent tables

Permanent table contains persistent objects for the data store.

Note: You can only increase the number of permanent tables or temporary tables, not

decrease them.
See related links for more information.

Number of temporary tables

Temporary tables nonpersistent objects that have been saved to the data store to reduce the

messaging engine memory requirement.

Note: You can only increase the number of permanent tables or temporary tables, not

decrease them.
See related links for more information.

Configuring service integration bus links

You can configure service integration bus links on messaging engines in a variety of ways. For example,

you can start, stop, or remove links.

About this task

When you create a foreign bus connection to connect two service integration buses, a service integration

bus link is created automatically. The foreign bus connection contains a routing definition, which is a virtual

link, and the service integration bus link is the corresponding physical link on the messaging engine.

Configuring the properties of a service integration bus link:

After establishing a service integration bus link you might want to configure the properties of a service

integration bus link such as the name of the service integration bus link, or authentication alias used by

foreign bus that the link connects to.

 About this task

To configure the properties of a service integration bus link, use the administrative console to complete the

following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to configure the service

integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you want to configure.

5. Specify the following properties for the service integration bus link:

Name The name of the service integration bus link. In order to work, the name must be the same as

the name of the corresponding service integration bus link configured on the target foreign bus.

Description

An optional description for the service integration bus link, for administrative purposes.

UUID The universal unique identifier assigned by the system to the service integration bus link for

administrative purposes.

Foreign messaging engine

The messaging engine on the foreign bus to which this link connects.

Chapter 6. Service integration 1271

Note: This foreign bus name must not be altered after it has been configured. If you alter it,

any messaging engines that already hold state information about the link will not be

able to use the link unless the foreign bus name is reset to its original value.

Target inbound transport chain

The type of transport chain used for communication with the foreign bus. The transport chain

name must be the name of the transport chain as defined on the server on which the target

messaging engine is hosted.

Bootstrap endpoints

The comma-separated list of endpoints used to connect to a bootstrap server. This property is

set in the same way as the Provider endpoint property in the JMS connection factory

settings. For more information, see steps 1 and 2 of “Configuring a connection to a non-default

bootstrap server” on page 1677. Although this task primarily describes how to configure a JMS

connection factory, it is also applicable to setting several bootstrap endpoint values if the

remote messaging engine is in a cluster.

Note: Service integration bus links over BootstrapTunneledMessaging and

BootstrapTunneledSecureMessaging transport chains only work directly between

application server instances. Bus links over TunneledMessaging transport chains do not

work if an HTTP server is placed in front of either application server instance.

Authentication alias

The name of the authentication alias, used to authenticate access to the foreign bus. The alias

must be known to the foreign bus.

Initial state

Whether the link is started automatically when the messaging engine is started. Until started,

the gateway link is unavailable. If this property is set to Started the service integration bus link

is started when the messaging engine is started.

6. Click OK.

7. Save your changes to the master configuration.

Listing the service integration bus links:

You can list all the service integration bus links that are linked to a messaging engine.

 About this task

To list the service integration bus links for a messaging engine, use the administrative console to complete

the following steps:

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Additional properties, click Messaging engines. The list of messaging

engines in the bus is displayed.

4. In the content pane, select the messaging engine for which you want to list the service integration bus

links.

5. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

Example

The following combinations of Status and Activity values are possible:

1272 Administering WebSphere applications

Status Activity Meaning

started inactive The service integration bus link is started on the local

messaging engine but has no connection to the foreign bus.

The service integration bus link is attempting to activate a

connection to the foreign bus. The service integration bus link

on the foreign bus must also be started to successfully

activate of a connection between the buses.

started active The service integration bus link is started on the local

messaging engine and has an active connection to the foreign

bus.

stopped inactive The service integration bus link is stopped on the local

messaging engine and there is no connection to the foreign

bus.

unknown inactive An error might have occurred in setting up the link, such that

the object that is used to report the current state is not

available. The deployment manager cannot contact a remote

server to determine the status.

What to do next

You can now add or remove a service integration bus link or select a service integration bus link to start,

stop, or configure.

Starting a service integration bus link:

When a service integration bus link has been started, it can be used for communicating with its associated

messaging engines.

 About this task

To start a service integration bus link, use the administrative console to complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to start the service integration

bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to start.

5. Click Start.

Stopping a service integration bus link:

When a service integration bus link has been stopped, it cannot be used for communication until it is

restarted.

 About this task

To stop a service integration bus link, use the administrative console to complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine to which the service integration bus link that you

wish to stop belongs.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to stop.

5. Click Stop.

Chapter 6. Service integration 1273

Removing a service integration bus link:

When a service integration bus link to a messaging engine has been removed, it cannot be used for

communication until it is recreated.

 Before you begin

Before you remove the service integration bus link you must stop the link.

When you remove a service integration bus link, all traffic using the link needs to be dealt with in a similar

way to when you remove a destination. For further details, see “Deleting a non-topic space bus

destination” on page 1319. Note that express Quality of Service (QoS) messages are discarded.

About this task

To remove a service integration bus link from a messaging engine, use the administrative console to

complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select which the messaging engine has own association with the service

integration bus link that you wish to remove.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link that you wish to remove.

5. Click Delete.

6. Save your changes to the master configuration.

What to do next

When you remove a service integration bus link, all traffic using the link must be diverted by alternative

routes or held pending further administrative action. Express QoS messages are discarded.

Starting a messaging engine

You can either start a messaging engine directly by using the administrative console or by starting the

server that hosts the messaging engine.

About this task

To start a messaging engine, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. Do one of the following to display a list of messaging engines:

v For a list of messaging engines in the bus, in the content pane, under Topology, click Messaging

engines.

v For a list of messaging engines for a server, in the content pane, under Topology, click Bus

Members. Click the name of the required server.

v For a list of messaging engines for a cluster, in the content pane, under Topology, click Bus

Members. Click the name of the required cluster.

4. Select the messaging engine that you wish to start.

5. Click Start.

1274 Administering WebSphere applications

Stopping a messaging engine

You can either stop a messaging engine directly or stop it by stopping the server that hosts the messaging

engine.

About this task

A messaging engine can stop in two ways:

Immediate

The messaging engine is stopped on completion of all messaging operations that are being carried

out at the time of the stop request.

Force The messaging engine is stopped without allowing messaging operations to complete and

applications are forcefully disconnected.

To stop a messaging engine, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that the messaging engine belongs to.

3. Do one of the following to display a list of messaging engines:

v For a list of messaging engines in the bus, in the content pane, under Topology, click Messaging

engines.

v For a list of messaging engines for a server, in the content pane, under Topology, click Bus

Members. Click the name of the required server.

v For a list of messaging engines for a cluster, in the content pane, under Topology, click Bus

Members. Click the name of the required cluster.

4. Select the messaging engine that you wish to stop.

5. Select Immediate or Force from the Stop mode drop-down list.

6. Click Stop.

What to do next

Note: If an immediate stop is taking too long, you can escalate it to a force stop by selecting the Force

option. This overrides your previous selection of the Immediate option.

Displaying the runtime properties of a messaging engine

Display the runtime properties of a messaging engine using the administrative console.

Before you begin

To be able to retrieve the status of messaging engines, you must be logged into the administrative console

with at least monitor authority. If you do not have this authority, the messaging engine status is displayed

as ″Unavailable″, even if the messaging engine has started. Also, if you are not logged in with the

authority needed to retrieve the status of messaging engines, a SECJ0305I error message is logged in the

server’s systemOut log file.

About this task

To display the runtime properties of a messaging engine, use the administrative console to complete the

following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus to which your messaging engine belongs.

3. In the content pane, under Topology, click Messaging engines. A list of messaging engines is

displayed.

Chapter 6. Service integration 1275

4. Click the messaging engine name.

5. Click the Runtime tab. The status of the messaging engine, that is, whether it is currently started or

stopped is displayed.

Displaying the runtime properties of a service integration bus link

Display the runtime properties of a service integration bus link using the administrative console.

About this task

To display the runtime properties of a service integration bus link, use the administrative console to

complete the following steps:

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that contains the service integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of

service integration bus links is displayed.

4. Select the service integration bus link whose properties you want to display.

5. Click the Runtime tab. The following properties are displayed:

Status

The runtime status of the service integration bus link.

Activity

Whether the service integration bus link is currently inactive, active, or its activity is unknown.

Managing messaging engines with administrative commands

You can use these commands to manage messaging engines.

About this task

These commands provide an alternative to using the administrative console or using the more complex

syntax of wsadmin and Jython.

1. Open a wsadmin command session in local mode. For example:

wsadmin -conntype none -lang jython

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell to run

WebSphere Application Server scripts.

2. Type AdminTask.command, where command is the command format as indicated in the related reference

topics.

For example:

wsadmin>AdminTask.listSIBusMembers(’[-bus bus1]’)

[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092155259869]

[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092159844593]

[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092160253751]

wsadmin>AdminTask.listSIBEngines(’[-bus bus1]’)

’node01.server1-bus1(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#

SIBMessagingEngine_1212163145962)\r\n

node02.server2-bus2(cells/cell01/nodes/node02/servers/server2|sib-engines.xml#

SIBMessagingEngine_1212163146273)’

Message stores

Message stores play an essential part in the operation of messaging engines. Each messaging engine has

one and only one message store. This can either be a file store or a data store.

1276 Administering WebSphere applications

About this task

A message store enables a messaging engine to preserve operating information and to retain those

objects that messaging engines need for recovery in the event of a failure.

A messaging engine preserves both volatile and durable data in its message store. Volatile data is lost

when a messaging engine stops, in either a controlled or an uncontrolled manner. Durable data is

available after the server restarts. For more information, refer to Message reliability levels. A messaging

engine stores various types of data, including messages, transaction states, and communication channel

states.

When started, a messaging engine obtains configuration information from the WCCM (WebSphere

Application Server Common Configuration Model) repository. A messaging engine retrieves all other data

from its own file store or data store.

Note: There are currently no facilities available for migrating from a data store to a file store.

Considerations when choosing between a file store and a data store

Choosing to use a file store for your messaging engine can have several advantages over using a data

store.

1. Better performance

To achieve best performance using a data store, you often need to use a separate remote database

server. File store can exceed the performance of a data store using a remote database server without

needing a separate server.

2. Low administration requirements

The file store combines high throughput with little or no administration. This makes it suitable for those

who do not want to worry about where the messaging engine is storing its recoverable data. File store

improves on the throughput, scalability, and resilience of Apache Derby.

3. Lower deployment costs

Use of data store might require database administration to configure and manage your messaging

engines. File store can be used in environments without a database server.

As a managerial decision, some organizations prefer to use data store because it utilizes their existing

resources more effectively. For example, this might be the case for a company with a strong team of

database specialists, or a stable database infrastructure.

One technical advantage of using data store is that some Java EE applications can share JDBC

connections to benefit from one-phase commit optimization. For more information refer to Sharing

connections to benefit from one-phase commit optimization. File store does not support this optimization.

Data stored in both data store and file store benefit from security features provided by WebSphere

Application Server when accessed using the WebSphere Application Server APIs, that is JMS messaging.

Further security features can be taken advantage of depending on the type of message store you use. For

more details see File stores and Data stores.

v Data store: access to your chosen database will be through a userid/password that will be administered

using the supplied tools for your specified DBMS. Logical and physical separation of your database

server can also be used to improve the overall security of your data.

v File store: additional security can be provided when using a file store by careful consideration of your

file store files. For example making use of a secure network attached drive to store your file store files

will improve the physical security of your data. Another example would be using an operating system

encrypted file system to store your files on.

Chapter 6. Service integration 1277

Both file store and data store offer high availability capabilities, for more details refer to “Message store

high availability considerations.”

Message store high availability considerations

High availability refers to the capability of failing over messaging engines between servers. Both file stores

and data stores can be deployed to be used in a highly available environment.

 For more information see related links.

Managing file stores

A file store is a message store which directly uses files in the file system via the operating system. Each

messaging engine has one and only one file store.

Configuring a messaging engine to use a file store

When a messaging engine is created, it uses a file store by default. You can configure the file store

attributes to suit system needs.

About this task

You set up a messaging engine to use a file store by accepting the default choice of message store when

you are creating a bus and adding a new bus member. You can choose either to accept the default

settings that the administrative console displays or to make changes to these settings. After the file store

has been created, you can, if required, subsequently make changes to the current file store settings.

Server 1 Server 2

Message store

Messaging
engine

Messaging
engine

file store accessed via
network file system
OR
data store accessed via
remote database server

Figure 15. Failover of a messaging engine between servers.

1278 Administering WebSphere applications

Modifying file store configuration:

After a file store has been created, you can, if required, modify file store attributes to suit your system

needs.

 About this task

When you add a new bus member that uses a file store, you can choose either to accept the default

settings for the file store or make changes to these settings, depending on your requirements.

After the file store has been created, you can, if required, subsequently modify the log size, permanent

store size or temporary store size settings directly through the administrative console. The new values take

effect the next time that the messaging engine is started.

The directory paths for the file store are fixed when the file store is created, and cannot subsequently be

modified. You can create a new file store in a new location. To do this you remove the server or cluster as

a bus member and then add it again choosing a new location for the file store. Any messages remaining in

the original file store would be lost during this process.

Note: The default configuration for a file store is intended to be sufficient when used in typical messaging

workloads. To improve the performance or resilience of the log file, the permanent store file or the

temporary store file, you can modify the file store attributes to control where these files are placed.

For example, you can achieve better performance if you place these three file store files in a faster

disk. Similarly, you can control the sizes of the log file, the permanent store file and the temporary

store file to handle workloads with a large number of active transactions, large messages or a large

volume of message data resident in the messaging engine.

v To make changes to the log size, permanent store size or temporary store size, complete the following

steps:

1. Open the Administrative console.

2. Click Service integration → Buses → bus_name → [Topology] Messaging engines →

engine_name → [Additional Properties] Message store.

3. Make the changes that you require to the existing log size, permanent store size or temporary store

settings, then click OK. For more information about configuring the properties, see File store

[Settings]

4. Save your changes to the master configuration.

v To choose a new location for a file store, complete the following steps:

1. To avoid losing messages on destinations that are localized on the file store, first ensure that no

messages are left on the queues.

2. Remove the server or cluster as a member of the bus.

3. Add the server and cluster as a bus member again, choosing a new location for the file store.

Deleting files following removal of a messaging engine:

Removing a messaging engine from the configuration does not automatically delete the file store’s files.

You need to also find and delete the log file, the permanent store file and the temporary store file from the

disk in order to reclaim disk space.

 About this task

Note: Files comprising a file store still remain when the messaging engine is deleted. If you are using the

default values for the file store directory names, it is possible to delete and then recreate a

messaging engine with the same name without manually removing the files. This is due to the

presence of the messaging engine’s Universal Unique IDentifier (UUID) in the default log and store

directory names of a file store.

Chapter 6. Service integration 1279

Example: If the deleted messaging engine is called messagingengine0, and the new one

messagingengine1 then the log files in the old and new file stores are

C:\{USER_INSTALL_ROOT}\filestores\..\messagingengine0\..\logfile

and

C:\{USER_INSTALL_ROOT}\filestores\..\messagingengine1\..\logfile

The two log files coexist in the same file stores directory. You do not have to delete the old files if you

choose.

1. Locate the directory in which your old file store log files and store files are stored.

2. Delete the redundant files using the facilities of the operating systems.

Results

After deleting the files left by the redundant file store, free disk space becomes available to your file

system.

Administering messaging engine file stores

A file store is a type of message store that directly uses files in a file system through the operating system.

Therefore, administration of the file store depends on the type of operating system.

About this task

v “Backing up a file store”

v “Restoring a file store”

Backing up a file store:

Backing up the files in a file store should be done according to your operating system or by using a

backup tool.

 About this task

A file store is a type of message store that directly uses files in a file system through the operating system.

Use the facilities of your operating system or a backup tool to take a backup copy of the log file, the

permanent store file and the temporary store file, which comprise a file store. For more information about

these files, see File store configuration attributes.

Note: You must not start backing up files while the messaging engine is still running or data might be

corrupted.

Note: You must treat the log file, the temporary store file and the permanent store file as one unit, that is,

any operations must be performed on all three files.

Restoring a file store:

Restoring the files in a file store should be done according to your operating system or by using a backup

tool to restore the backup copies of your files.

 Before you begin

Before you start this task, make sure that the messaging engine is not running.

Note: You must not restore a file store while the messaging engine is still running or data might be

corrupted.

1280 Administering WebSphere applications

About this task

When performing this task, you must treat the log file, the temporary store file and the permanent store file

which comprise a file store as one unit, that is, any operations must be performed on all three files. For

more information about these files, see File store configuration attributes.

Use the facilities of your operating system or a backup tool to restore the backup copy of the log file, the

permanent store file and the temporary store file.

Managing data stores

A data store is a message store that uses a relational database. A data store consists of a set of tables

that are in the same database schema. It is used by a messaging engine to store operating information in

the database, as well as to preserve essential objects that the messaging engine needs for recovery in the

event of a failure.

About this task

A data store consists of the set of tables that a messaging engine uses to store persistent data in a

database. Refer to “Data store tables” on page 1290 for a list of the tables that comprise a data store. All

the tables in a data store are held in the same database schema. You can create multiple data stores in

the same database only by using a different schema for each data store.

Configuring a messaging engine to use a data store

Although the default message store for a typical messaging engine is file store you can also configure a

messaging engine to use a data store.

About this task

Each messaging engine has its own file store or data store. If the data store is chosen the messaging

engine uses an instance of a JDBC data source to interact with the database that contains the data store

for that messaging engine.

When a new messaging engine that uses a data store is created on a single server, it is configured to use

an Apache Derby data source by default. This enables the messaging engine to run without needing any

additional configuration.

If you want to configure a new messaging engine to use your chosen data source when you create that

messaging engine on a single server, refer to “Adding a server as a new bus member” on page 1202.

When a messaging engine is created as a member of a cluster, you must explicitly configure both the data

store and the JDBC data source that the messaging engine uses to interact with the data store. You must

also set the Purge policy to EntirePool. For more information, refer to Tuning the JDBC data source of a

messaging engine.

If you do not want to use the default data source configuration, you can use the WebSphere Application

Server administrative console to change the configuration parameters. For example, you can change the

data source or you can configure the data store to use a different JDBC provider.

If you configure a new messaging engine to use your chosen data source when you create that messaging

engine as a member of a cluster, refer to “Adding a server as a new bus member” on page 1202.

Planning the configuration of a messaging engine to use a data store:

There are a number of choices that you need to consider before you configure a messaging engine to use

a data store.

Chapter 6. Service integration 1281

1. Choose the relational database management system (RDBMS) for the data store. You might want to

choose the RDBMS that you use for other applications, particularly if you are already familiar with the

tools you use for managing that RDBMS. You might also want to consider the following criteria:

v Performance

v Scalability

v Availability, especially if you are running messaging engines in a high availability environment

When a new messaging engine that uses a data store is created on a single server, it is configured to

use an Apache Derby data source by default. This enables the messaging engine to run without

needing any additional configuration. The default embedded Derby data source is sufficient for many

purposes. Other relational database management systems offer more comprehensive tooling and

improved performance, particularly scalability on larger machines with more than two processors.

2. Choose your database topology. In some cases, running the data store on a remote node can improve

performance. In other cases, a local database provides performance equivalent to a remote database.

You might want to conduct your own performance analysis, because the performance characteristics

can be very sensitive to the hardware specification.

3. Consider whether you want WebSphere Application Server to create the data store tables automatically

or whether you want your database administrator to create the tables beforehand. For more

information, refer to “Creating the tables” on page 1284.

4. Message data is stored in a database table column of datatype BLOB. Before you create a datastore,

you must consider the size of your expected workload to ensure that your database administrator

creates a sufficiently large enough BLOB space to hold your message data.

Selecting the data store topology:

You have several options to consider when selecting the relative location of a data store and its

messaging engine.

 v Decide whether the data store will run on the same node as its messaging engine or on a remote node.

v Decide whether the data store will have a dedicated database or share a database with other data

stores.

v Consider the implications for high availability of your choice of topology. For more information about

high availability considerations, refer to Data store high availability considerations.

Setting up the data store for a messaging engine:

To set up a data store for a messaging engine, the database administrator must first create the database.

You must then configure the data source and configure the messaging engine to use it.

 Before you begin

Before you use this task, review the information in “Planning the configuration of a messaging engine to

use a data store” on page 1281, and ensure that your database administrator has taken any appropriate

action.

About this task

This task summarizes the steps that you must perform to set up the data store for a messaging engine.

You need to work with your database administrator to complete step 1 of this task.

1. Ask your database administrator to perform the following steps:

a. Create the database. Refer to “Creating the database” on page 1283

b. Create users and schemas. Refer to “Creating users and schemas in the database” on page 1283

c. Create the data store tables. Refer to “Creating the tables” on page 1284

1282 Administering WebSphere applications

d. Ensure that the user has sufficient privilege to allow the messaging engine to operate. For more

information about the privileges that required for the selected database, refer to “Database

privileges” on page 1291.

2. When the database administrator has completed step 1, perform the following steps:

a. Obtain a user ID from your database administrator.

b. Configure a data source. Refer to “Configuring a JDBC data source for a messaging engine” on

page 1285.

c. Configure the messaging engine to use the data source. Refer to “Configuring a messaging engine

data store to use a data source” on page 1222.

Creating the database:

When creating the database for your messaging engine using a data store you must do it according to

your Relational Database Management System (RDBMS).

 Before you begin

Choose which Relational Database Management System (RDBMS) you want to use for the data store.

Unless you are using the embedded Apache Derby provider, create the database before you create a

messaging engine. Make a note of the database parameters that you need for configuring the data source.

Refer to “Configuring a JDBC data source for a messaging engine” on page 1285 for more information.

Refer to the documentation for your chosen RDBMS for information about how to create a database.

The default database for a data store is an embedded Apache Derby database. If you have chosen to

configure the bus member to use a data store with default settings, it can only be a server. Unless the

data store database exists already, the messaging engine creates the database automatically when the

messaging engine makes its initial connection.

Note:

v Ensure that you create the database server with a page size of at least 4k.

v Ensure that you set the lock scheme property on your server to the value datarows. This avoids

the possibility of a deadlock on the data store tables.

v Ensure that you set the enable housekeeper GC property on your server to the value 5. This

improves the ability of the server to reclaim redundant space within your database when it is

under heavy load.

v Ensure that you select the allow nulls by default option for your database instance. This is

required for the correct operation of the messaging engine.

Note: The one-to-one relationship between a messaging engine and a data store means that every

messaging engine must have its own database tables. If you are using the Informix RDBMS,

configure a separate database instance for each messaging engine. Problems have been observed

in this environment when the data stores for multiple messaging engines were configured to use

separate schemas in the same database.

Creating users and schemas in the database:

After you have created a database, you need to create the schema in which all tables in the data store are

held.

 Before you begin

Before you begin this task, create the database for your messaging engine.

Chapter 6. Service integration 1283

About this task

All the tables in the data store must be stored in the same schema. If the schema names are different, a

database can hold more than one data store. Although every messaging engine uses the same table

names, its relationship with the schema gives each messaging engine exclusive use of its own tables.

To connect to WebSphere Application Server, the database administrator must create at least one user.

The number of user IDs you need depends on the database you use:

v If you are using Derby, DB2 or Oracle, then the messaging engine can be configured to create any

additional schemas that may be required for other data stores. That is, if you only create one user, it

can have one to many relationships with the schemas in the database. Refer to “Configuring a

messaging engine data store to use a data source” on page 1222 for details.

v For all other types of databases, the schema must be created prior to starting the messaging engines

that depend on them.

If the user ID can be configured to use multiple schemas, then only that user ID is needed for all

messaging engines. Otherwise the user is restricted to using tables in its own schema. In this case there

can only be one user ID per schema.

1. Refer to the documentation for your chosen relational database management system (RDBMS) for

more information about how to create users and schema. With DB2 databases, you create users and

schema in separate steps. With the other databases, there is a one-to-one relationship between a

schema and a user.

2. Refer to “Database privileges” on page 1291 for information about the authorities that you require to

access the data store.

Creating the tables:

When creating the data store tables, you have two options. You can either choose that the database

administrator does it manually, or that WebSphere Application Server does it automatically.

 Before you begin

Decide whether you want your database administrator to create the tables, or WebSphere Application

Server to create the tables automatically.

v If you want your database administrator to create the database tables, refer to “Enabling your database

administrator to create the data store tables” on page 1285.

v If you want WebSphere Application Server to create the tables, refer to “Enabling WebSphere

Application Server to create the data store tables”

Enabling WebSphere Application Server to create the data store tables:

WebSphere Application Server can create the tables for the messaging engine data store automatically.

 Before you begin

Before you use this task, decide whether you want WebSphere Application Server to create the tables.

Note: The option for WebSphere Application Server to create the tables is not available with DB2 for

z/OS. Refer to “Enabling your database administrator to create the data store tables” on page 1285

if you use DB2 for z/OS.

1. Ensure that WebSphere Application Server has sufficient authority to create tables and indexes. For

more information about the privileges that you require for your chosen database, refer to “Database

privileges” on page 1291.

1284 Administering WebSphere applications

2. When you configure your messaging engine data store, ensure that Create tables is selected. For

more information, refer to “Configuring a messaging engine data store to use a data source” on page

1222.

Note: Do not select Create tables, otherwise an exception will be thrown when WebSphere

Application Server attempts to create the tables.

Enabling your database administrator to create the data store tables:

 Before you begin

Before you use this task, review the information in “Planning the configuration of a messaging engine to

use a data store” on page 1281, and ensure that your database administrator has taken any appropriate

action.

About this task

Use the sibDDLGenerator command to generate the DDL statements that the database administrator will

need to create the tables for the messaging engine data store:

1. At a command prompt, issue the sibDDLGenerator command and redirect the output to a file. Refer to

sibDDLGenerator command for a description of the sibDDLGenerator command.

Note: If you want to process the DDL statements with a command line processor that requires the

statements to conform to a specific format, use the optional parameters that control the format

of the DDL statements. For example, if each statement must be terminated with a semicolon,

use -statementend ;

To access the i5/OS command line, or run an i5/OS command line program, use the STRQSH

command to launch a Qshell session. For more information, see Configuring Qshell to run WebSphere

Application Server scripts .

2. Send the output file to your database administrator to process the DDL statements that are generated.

The DDL statements can be ported across operating systems, for example you can generate the DDL

statements on a machine running the Windows operating system and then run them on a machine

running the z/OS operating system.

Note:

v Your database administrator can modify the DDL statements, but must not modify the table

names or the column names in any way. Doing so might cause the messaging engine to fail

to start.

v If the DDL statements are to be run on the z/OS operating system, your database

administrator must change the VCAT name in the first line of the DDL statements (the create

storage group statement) to a valid high level qualifier for their system.

Configuring a JDBC data source for a messaging engine:

Learn about how to use the WebSphere Application Server administrative console to configure a data

source for a messaging engine.

 Before you begin

Note:

When configuring a service integration bus member to use a data store, be aware that using a type

2 JDBC driver for the data store is not supported for configurations where WebSphere MQ server

definitions are also used. If your configuration includes WebSphere MQ server definitions and you

are using a data store you must use type 4 JDBC drivers.

Chapter 6. Service integration 1285

Note: When you create a new Network Attached Apache Derby data store, by default you get a blank

authentication alias. If you use Apache Derby in Network Attached mode with the DB2 Universal

JDBC Driver (that is, you use the “JDBC provider for Derby Network Server using the (DB2)

Universal JDBC Driver”), you must specify an authentication alias. This requirement is documented

in Data source minimum required settings for Apache Derby. See also the following troubleshooting

tip: User ID not supported exception when connecting to a Network Attached Apache Derby Version

10.3 database

Note: Use the Oracle 10g thin driver for the service integration data store. This driver is compatible with

earlier versions of Oracle.

About this task

Each messaging engine has its own file store or data store. If the data store is chosen the messaging

engine uses an instance of a JDBC data source to interact with the database that contains the data store

for that messaging engine.

Use the WebSphere Application Server administrative console to set the data source configuration

parameters. Note that your choice of relational database management system (RDBMS) determines the

parameters you set.

Perform the following steps to configure the data source:

1. Create a JDBC provider. Refer to Creating and configuring a JDBC provider using the administrative

console. Under General Properties, in the Select the implementation type field, ensure that you

select Connection pool data source.

For information about the settings for your chosen RDBMS, refer to Vendor-specific data sources

minimum required settings.

2. Create a data source for the JDBC provider. Refer to Creating and configuring a data source by using

the administrative console.

a. Under Additional Properties, ensure that you select Data sources.

b. Configure the connection pool for the JDBC data source. Set the Maximum connections to the

number of connections you require, for example, at least 50. The default number of connections is

10. For more information, refer to Tuning the JDBC data source of a messaging engine.

3. Test the connection. Refer to Test connection.

Configuring a messaging engine data store to use a data source:

After configuring a data source, you can configure a messaging engine data store to use the data source.

 Before you begin

This topic assumes that you have chosen or created a bus and a messaging engine, and that the

messaging engine specifies “data store” as its message store type.

You must also have configured a data source, as described in “Setting up the data store for a messaging

engine” on page 1221.

About this task

A messaging engine uses an instance of a JDBC data source to interact with the database that contains

the data store for that messaging engine.

Use the WebSphere Application Server administrative console to set the data store configuration

parameters.

1286 Administering WebSphere applications

friend.was/ae/tdat_ccrtprov.html
friend.was/ae/tdat_ccrtprov.html
friend.was/ae/rdat_minreq.html
friend.was/ae/rdat_minreq.html
friend.was/ae/tdat_ccrtpds.html
friend.was/ae/tdat_ccrtpds.html
friend.was/ae/cdat_testcon.html

To configure the messaging engine to use a data source, use the administrative console to complete the

following steps:

Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional Properties] Message store

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name.

2. Check that the Message store type is Data store.

3. Click [Additional Properties] Message store. The data store configuration detail panel is displayed.

4. Specify the following data store configuration details:

Data source JMDI name

Type the JNDI name of the data source that provides access to database that holds the data

store.

Schema name

Type the name of the database schema that contains the tables used by the data store.

Note: The schema name is usually the same as the user ID that is declared in the

authentication alias. With some databases, for example DB2, you can provide an

alternative schema name. For more information about the relationship between users

and schema, refer to the documentation for your chosen RDBMS.

Note: When you configure your messaging engine to use an Informix database, you must

specify the schema name in lowercase letters.

When starting, a messaging engine that uses a data store checks to see if its data store

exists. If the user has selected the Create tables option in the configuration, whose tick-box is

ticked by default, the messaging engine creates the tables in its chosen schema.

The Schema name field is optional, and:

v The default schema name is IBMWSSIB.

v If you delete the text so that field is blank, the messaging engine takes the user id defined

in the authentication alias to be the schema name.

v If you define a schema name explicitly, that schema name is used by the messaging engine.

Authentication alias

Select the authentication alias that enables access to the data source.

Note: When you create a new Network Attached Apache Derby data store, by default you get

a blank authentication alias. If you use Apache Derby in Network Attached mode with

the DB2 Universal JDBC Driver (that is, you use the “JDBC provider for Derby Network

Server using the (DB2) Universal JDBC Driver”), you must specify an authentication

alias. This requirement is documented in Data source minimum required settings for

Apache Derby. See also the following troubleshooting tip: User ID not supported

exception when connecting to a Network Attached Apache Derby Version 10.3 database

Create tables

Select the check box if you want WebSphere Application Server to create the database tables

automatically. For more information, refer to “Creating the tables” on page 1284.

Note: The user ID that the data store uses to connect to the data source must have sufficient

authority to create the database tables and indexes.

Note: The option for WebSphere Application Server to create the tables is not available with

DB2 for z/OS. Refer to “Enabling your database administrator to create the data store

tables” on page 1285 if you use DB2 for z/OS.

Chapter 6. Service integration 1287

Number of permanent tables

Permanent table contains persistent objects for the data store.

Note: You can only increase the number of permanent tables or temporary tables, not

decrease them.
See related links for more information.

Number of temporary tables

Temporary tables nonpersistent objects that have been saved to the data store to reduce the

messaging engine memory requirement.

Note: You can only increase the number of permanent tables or temporary tables, not

decrease them.
See related links for more information.

Configuring a data source for a messaging engine running in a cluster:

Methods to configure a data source for a messaging engine depends on the cluster you intend to run it in.

 About this task

Although you must configure a data source for all active messaging engines, the configuration process for

a messaging engine running in a cluster is the same as for any single messaging engine. For more

information, refer to “Setting up the data store for a messaging engine” on page 1221 and Vendor-specific

data sources minimum required settings.

The data store configuration depends on the purpose of your cluster:

v For a workload managed (WLM) cluster, every messaging engine in the cluster must have its own

unique data store schema.

v For a failover (HA) cluster, you must have only one data store schema that will be used by the active

messaging engine wherever it starts.

For more information about clusters, refer to Service integration high availability and workload sharing

configurations.

When a messaging engine is created as a member of a cluster, you must explicitly configure both the data

store and the JDBC data source that the messaging engine uses to interact with the data store.

v If each messaging engine has its own JDBC data source, you can create the data sources at node

scope.

v If several messaging engines share the same JDBC data source, you must create the data source at

cluster scope, not node scope.

You must also ensure that you install the JDBC driver jars at every node. For more information, refer to

Creating and configuring a data source using the administrative console.

Administering messaging engine data store

Administering the data store for a messaging engine involves restoration and back up of the data store.

About this task

For more information about administering messaging engine data store, see the following topics:

v “Backing up a data store”

v “Restoring a data store” on page 1289

Backing up a data store:

1288 Administering WebSphere applications

friend.was/ae/rdat_minreq.html
friend.was/ae/rdat_minreq.html
friend.was/ae/tdat_ccrtpds.html

Learn to back up a data store

 About this task

A data store consists of the set of tables that a messaging engine uses to store persistent data in a

database. Refer to “Data store tables” on page 1290 for a list of the tables that comprise a data store. All

the tables in a data store are held in the same database schema. You can create multiple data stores in

the same database only by using a different schema for each data store.

To back up this data, refer to the documentation for your chosen database.

Backup can make use of the suspended I/O feature of DB2 if that RDBMS is used as the persistent store.

With other databases that do not possess this capability, the backup could present a longer interruption to

service, or require that the messaging engine is stopped while the backup is made. If you attempt to back

up the data store for a messaging engine that is still running, you might lose or corrupt important data.

Include the tables that the topic “Data store tables” on page 1290 describes.

Restoring a data store:

Learn to restore a data store

 About this task

A data store consists of the set of tables that a messaging engine uses to store persistent data in a

database. Refer to “Data store tables” on page 1290 for a list of the tables that comprise a data store. All

the tables in a data store are held in the same database schema. You can create multiple data stores in

the same database only by using a different schema for each data store.

To restore this data, refer to the documentation for your chosen database.

Note: You must stop the messaging engine before restoring the data store. If you attempt to restore the

data store for a messaging engine that is still running, you might lose or corrupt important data.

Include the tables that the topic “Data store tables” on page 1290 describes.

Increasing the number of item tables for a messaging engine when tables are not

automatically created

If a concurrency bottleneck had occurred on the item tables, increasing the number of them will in turn

increase the throughput of the messaging engine.

Before you begin

Before performing this task you must ensure that the messaging engine is using a data store, and its

Create tables automatically option is set to False. The purpose of this task is to relieve concurrency

bottleneck, which is documented in Increasing the number of data store tables to relieve concurrency

bottleneck. For more information on the creation of tables consult “Creating the tables” on page 1284.

1. Relevant performance monitoring tools show that the throughput of a messaging engine is inefficient.

2. Use your database performance monitoring tools to examine lock statistics for the item tables for

evidence of a bottleneck. Consult database documentation on how to interpret the locking statistics.

3. Create tables and increase data store attributes.

v Create tables for the data store’s schema. For more information see “Creating the tables” on page

1284

v Increase the data store’s number of permanent tables or temporary tables, or both. For more

information see “Configuring a messaging engine data store to use a data source” on page 1222

Chapter 6. Service integration 1289

You can only increase the number of permanent tables or temporary tables, not decrease them.

4. Stop and restart the WebSphere Application Server so that configuration changes take effect. The

extra tables are used when the messaging engine restarts.

5. Observe the effect on throughput and lock statistics by checking performance monitoring tools.

Consider whether any improvement is sufficient and modifying the data store attributes further would

be beneficial

Increasing the number of item tables for a messaging engine when tables are

automatically created

If a concurrency bottleneck had occurred on the item tables, increasing the number of them will in turn

increase the throughput of the messaging engine.

Before you begin

This task only applies if the messaging engine is using a data store, and its Create tables automatically

option is set to True. The purpose of this task is to relieve concurrency bottleneck, which is documented in

Increasing the number of data store tables to relieve concurrency bottleneck. For more information on the

creation of tables consult “Creating the tables” on page 1284.

1. Relevant performance monitoring tools show that the throughput of a messaging engine is insufficient.

2. Use your database performance monitoring tools to examine lock statistics for the item tables for

evidence of a bottleneck. Consult your database documentation on how to interpret the locking

statistics.

3. Increase the attributes for the messaging engine’s data store: the number of permanent tables or

temporary tables, or both. For more information see “Configuring a messaging engine data store to use

a data source” on page 1222. You can only increase the number of permanent tables or temporary

tables, not decrease them.

4. Stop and restart the messaging engine so that configuration changes take effect. The extra tables are

created when the messaging engine starts again.

5. Observe the effect on throughput and lock statistics by checking performance monitoring tools.

Consider whether any improvement is sufficient and modifying the data store attributes further would

be beneficial

Data store tables

A data store consists of the set of tables that a messaging engine uses to store data persisted in a

database. These data are important when backing up or restoring a data store. Users can spread the data

store across multiple tables.

 Table name Purpose

SIBOWNER Ensures exclusive access to the data store by an active messaging engine

SIBOWNERO Used for locking the data store

This table stores no data in its one EMPTY_COLUMN column

SIBCLASSMAP Catalogs the different object types in the data store

SIBLISTING Catalogs the SIBnnn tables

SIBXACTS Maintains the status of active two-phase commit transactions

SIBKEYS Assigns unique identifiers to objects in the messaging engine

SIBnnn, where nnn is

a number

Contains persisted objects such as messages and subscription information

These tables hold both persistent and nonpersistent objects, using separate tables for the

different types of data.

1290 Administering WebSphere applications

Note: The SIBOWNERO table is new for WebSphere Application Server Version 7.0 and must be created

when you are migrating from an earlier version of WebSphere Application Server. See Migrating a

messaging engine based on a data store for things to consider when you are migrating a

messaging engine based on a data store.

Database privileges

In order for a messaging engine to use its data store, the database user ID that the messaging engine

uses must have sufficient privilege to access the data store tables.

The following table describes the database privileges that the messaging engine user requires to access

the data store.

 Database

management

system

Minimum privilege required for the

messaging engine to use the data store

tables

Additional privilege required for the

messaging engine to create the data store

tables

DB2 The messaging engine user ID needs SELECT,

INSERT, UPDATE, and DELETE privileges on

the tables

The messaging engine user ID needs

CREATETAB authority on the database and

USE privilege on the table space as well as

CREATEIN privilege on the schema.

Oracle The messaging engine user ID needs at least

SESSION privilege to connect to the database. If

the same user ID owns both the data store

schema and the messaging engine that is

connecting to the database, the messaging

engine has sufficient privilege to manipulate the

tables. Otherwise, the messaging engine needs

SELECT, INSERT, UPDATE and DELETE

object privileges on the tables that comprise the

data store, and DROP ANY TABLE system

privilege to enable use of the TRUNCATE

TABLE statement.

The messaging engine user ID requires sufficient

privilege to create relational tables and indexes

in the data store schema. The messaging engine

also requires a space quota in the default

tablespace of the owner of that schema.

SQL Server Configure the SQL Server for SQL Server and

Windows authentication. This allows

authentication to be based on an SQL server

login ID and password.

The messaging engine user ID can be the owner

of the tables, or be a member of a group that

has sufficient authority to issue TRUNCATE

TABLE statements.

The messaging engine user ID needs CREATE

TABLE statement privilege.

Sybase The messaging engine user ID can be the owner

of the tables, or be a member of a group that

has sufficient authority to issue TRUNCATE

TABLE statements.

The messaging engine user ID needs CREATE

TABLE permission.

Informix The messaging engine user ID must have

CONNECT privilege on the database. It must

also have SELECT, INSERT, UPDATE and

DELETE authority on the tables.

The messaging engine user ID must have

RESOURCE privilege on the database.

Derby If user authentication is enabled, you must

authorize the messaging engine user ID to

access the database.

Note: The default database that is generated by

the messaging engine has no security

mechanisms enabled.

You need no additional privileges.

Chapter 6. Service integration 1291

Avoiding message store errors when creating a messaging engine

Using different combinations of parameters can create a file store or a data store according your

requirements. The outcome varies in server and cluster scopes.

Server scope

When you add a server as a new bus member take note of the following:

v If you do not specify the type of message store, then a file store is created by default. If you set Create

default data source to True or supply a Data source JNDI name, then a data store is created.

v If you choose to use a file store, then only file store attributes are presented to be specified. For

example the log file directory.

v If you choose to use a data store:

– Only data store attributes are presented to be specified. For example the Data source JNDI name.

– If you set Create default data source to False then you must specify a Data source JNDI name.

For more information about file store and data store refer to “Message stores” on page 1276.

Cluster scope

When you add a cluster as a new bus member take note of the following:

v If you choose to use a file store:

– You must not use the default log file, permanent store file and temporary store file directories

because they are not suitable for cluster engines.

– You must specify the Log directory, Permanent store directory and Temporary store directory to

be at locations that all members of the cluster can access on your file system.

v If you choose to use a data store:

– You must not use the default data source because it is not suitable for cluster engines.

– You must specify the Data source JNDI name of an existing data source.

For more information about file store and data store refer to “Message stores” on page 1276.

Avoiding errors when creating a messaging engine with a file store or

a data store by using the wsadmin tool

Using different combinations of parameters can create a file store or a data store according your

requirements. The outcome varies in server and cluster scopes.

For a detailed list of wsadmin command script attributes and examples for file store or data store of a

messaging engine please refer to createSIBEngine command.

Server scope

When you add a server as a new bus member using administrative commands (by specifying

createSIBEngine -server) take note of the following:

v If you do not specify the type of message store, then a file store is created by default. If you specify

-createDefaultDatasource or -dataSourceJndiName, then a data store is created.

v If you choose to use a file store (by specifying -filestore), then only file store attributes can be

specified.

v If you choose to use a data store (by specifying -datastore):

– Only data store attributes can be specified.

– If you set -createDefaultDatasource to False then you must specify -dataSourceJndiName.

1292 Administering WebSphere applications

Cluster scope

When you add a cluster as a new bus member using administrative commands (by specifying

createSIBEngine -cluster) take note of the following:

v If you choose to use a file store (by specifying -filestore):

– You must not use the default log file, permanent store file and temporary store file directories

because they are not suitable for cluster engines.

– You must specify -logDirectory, -permanentStoreDirectory and -temporaryStoreDirectory to be at

locations that all members of the cluster can access on your file system.

v If you choose to use a data store (by specifying -datastore):

– You must not specify -createDefaultDatasource because the default data source is not suitable for

cluster engines.

– You must specify -dataSourceJndiName, giving the name of an existing data source.

Bus destinations

This topic is the entry-point into a set of topics about bus destinations within a service integration bus, to

which applications can attach as producers, consumers, or both to exchange messages.

v Learning about bus destinations

v “Configuring bus destinations” on page 1228

v “Configuring message points” on page 1322

v “Managing messages on message points” on page 1262

v “Administering durable subscriptions” on page 1324

Configuring bus destinations

Use the following tasks to configure permanent bus destinations on service integration buses.

About this task

The steps involved in configuring a bus destination depend on the intended usage of the destination.

For example, the following figure shows a basic scenario based on an application using a JMS queue for

point-to-point messaging.

To enable the JMS applications to use a queue destination, you configure the following administrative

destination objects:

Figure 16. Application use of destinations - basic case

Chapter 6. Service integration 1293

1. A queue destination on a service integration bus. This configures the properties of the queue, such as

the name, and associates the queue with one bus member (an application server or server cluster).

This also automatically configures, on the bus member, a queue point where messages for the queue

are held and processed.

2. A JMS queue, which configures the name that applications can use to look up the queue in JNDI. The

JMS queue encapsulates the name of the queue destination, as defined in the queue destination

above, together with other properties to be used by applications.

After you have created a queue destination, you can optionally configure the queue point to override some

properties configured on the queue destination. You can also perform other configuration tasks on the

destination and its queue point, and can act on the runtime view.

Each messaging engine has a default exception destination, named

_SYSTEM.Exception.Destinaton.me_name. This exception destination can be used to handle messages that

cannot be delivered for all bus destination that are localized to the messaging engine. Each bus

destination can be configured with a non-default exception destination.

For more information about configuring bus destinations, see the following topics:

v Listing bus destinations

v Creating a bus destination

v Configuring qualities of service for a destination

v Deleting a non-topicspace bus destination

v Deleting a topicspace

Listing bus destinations

Use this task to display administrative lists of bus destinations for a service integration bus.

About this task

From the panel that lists bus destinations you can use the buttons provided to create, delete, or change

the mediation of destinations, or can select a destination to browse details and options for that destination.

To list bus destinations on a bus, use the administrative console to complete the following steps.

Click Service integration → Buses → bus_name → [Destination resources] Destinations. This displays a

list of the bus destinations on the bus.

Any temporary destination in the list is identified by the prefix _Q for temporary queues or _T for temporary

topics.

What to do next

To browse or change the properties of a destination, click its name in the list displayed.

To act on one or more of the destination listed, select the check boxes next to the names of the

destinations that you want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

Creating a bus destination

Use the following tasks to create a new bus destination on a service integration bus.

About this task

The steps involved in defining a new destination depend on the intended usage of the destination.

1294 Administering WebSphere applications

These are permanent destinations, with their properties defined by administrative resources, and are in

addition to any temporary destinations created at runtime by the bus for applications.

v Defining a bus destination for JMS queues.

v Defining a bus destination for JMS topics.

v Defining an alias bus destination.

v Defining a new exception bus destination

Creating a queue for point-to-point messaging:

Use this task to create a new queue, which is a bus destination configured for point-to-point messaging.

 Before you begin

During this task you must specify the name of a bus member to which the bus destination is assigned.

That bus member is to host the queue point for the new bus destination, and must already have been

configured.

About this task

To define a new queue for point-to-point messaging use the administrative console to complete the

following steps. To define a queue, you need to specify only a minimum set of properties; you can change

these and other properties after you have completed this task.

 1. In the navigation pane, click Service integration → Buses.

 2. In the content pane, click the name of the bus that is to provide the message point for the queue.

 3. In the content pane, under Destination resources, click Destinations. This displays a list of any

existing destinations in the content pane.

 4. To create a new destination, click New in the content pane.

a. On the Create New Destination page, leave the type of destination as Queue.

b. Click Next.

c. In the Identifier field, type the name that you want to give the queue destination for administrative

purposes. Restrict the name to 48 characters or less, and restrict its character set to: numerics

(0–9), period (.), forward slash (/), underscore (_), percent sign (%), uppercase A–Z, lowercase

a–z (but there are restrictions on the use of lowercase letters for z/OS console support). On

systems using EBCDIC Katakana you cannot use lowercase characters.

 5. Optional: Specify the following properties for the destination:

Description

An optional description of the destination, for administrative purposes.

Maximum reliability

The maximum reliability of messages accepted by this destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may

also be discarded if a connection used to send them becomes unavailable and as a

result of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was

deleted from the message store when it was passed to the listener. If you require

higher message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Chapter 6. Service integration 1295

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may

also be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

 6. Click Next.

 7. On the Select Assigned Bus Member page, select the bus member that is to provide the queue point

for the destination. The queue point is where the messages for the queue are held.

If the bus member is a server cluster, you are choosing to create a queue that is partitioned across

the servers in the cluster. In this case, a queue point is created for each server in the cluster.

If the bus member is a WebSphere MQ server, perform the next step, otherwise omit it.

 8. If the bus member is a WebSphere MQ server, set the WebSphere MQ queue point attributes:

a. Specify a value in the WebSphere MQ queue name filter field, then click Go.

The wizard automatically discovers available WebSphere MQ queues. However, some

WebSphere MQ topologies have many thousands of queues defined to a queue manager. Use

this filter to limit the number of queues that are listed.

The default filter value is an asterisk (*). If this value (or no value) is set then all queues, or all

queues of a specific type (based on any queue type custom property that is set), are listed. Any

other value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the WebSphere MQ topic

Rules for naming WebSphere MQ objects).

You can also use the wildcard character (*) in conjunction with other text. For example, if you

enter a value of PAYROLL*, then all available queues with names that start with PAYROLL are

displayed.

b. Specify a WebSphere MQ queue name.

Select a queue name from the filtered list. If the list does not include the queue that you want,

select the last entry in the list labeled “other, please specify”. A text entry box is displayed next to

the list box. Type the queue name into the text entry box.

If the queue is found on the remote WebSphere MQ system, the properties of the queue as

defined within WebSphere MQ are displayed as read-only fields. This should help you to confirm

that you have found the queue that you want, and that it is configured as you intend. If the queue

is not found, these read-only fields are removed from view.

c. Specify the reliability levels that you require when inbound nonpersistent and inbound persistent

WebSphere MQ messages are converted to service integration format messages. Applications

receive messages direct from the specified WebSphere MQ queue, so in general the reliability

level for a message is of no interest to the receiver because the message has already been

delivered successfully. However, the message is converted to a service integration format

message (and typically to a JMS format service integration message) as it is received, and this

option specifies the reliability level for the service integration format message. For information

about the available reliability levels, see WebSphere MQ queue points [Settings].

d. Specify whether you want WebSphere MQ to include an MQRFH2 message header when

sending messages to the queue.

The MQRFH2 header stores service integration messaging information that does not have a

corresponding WebSphere MQ message header field. When a message is sent to the destination,

1296 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm

service integration instructs WebSphere MQ to write the message to the queue. This option

specifies whether or not service integration instructs WebSphere MQ to write the message with an

MQRFH2 header.

If the consumer of the message is a JMS application running in WebSphere MQ or service

integration, or a WebSphere MQ XMS application, or a WebSphere MQ MQI application that

expects an MQRFH2 header, select this option. If the consumer is a WebSphere MQ MQI

application that does not expect an MQRFH2 header, do not select this option.

 9. Click Next.

10. On the Confirm Queue Creation page, review the summary of actions.

v To create the queue, click Finish.

v If you want to change any of the properties that you have specified, click Previous, then change

the properties on the preceding pages.

11. Save your changes to the master configuration.

What to do next

If you want to change properties of the queue, see “Configuring bus destination properties” on page 1303.

By default, messages that cannot be delivered to the queue are sent to the default exception destination

for the messaging engine that hosts the queue point. If you want to use a non-default exception

destination for messages that cannot be delivered to this queue destination, you must have already

defined that exception destination. For more information about configuring exception destinations, see

Configuring an exception bus destination.

If the queue is to be used for JMS point-to-point messaging, specify the queue identifier on a JMS queue

as described in “Configuring a JMS queue for the default messaging provider” on page 1668.

Creating a topic space for publish/subscribe messaging:

Use this task to create a new topic space for publish/subscribe messaging.

 About this task

You need to create topic space when deploying JMS applications that use publish/subscribe messaging.

To create a topic space, you need to specify only a minimum set of required properties; you can change

these and other properties after you have completed this task.

To create a topic space, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus that is to provide the publication points for the topic

space.

3. In the content pane, under Destination resources, click Destinations. This displays any existing

destinations in the content pane.

4. To create a topic space, click New in the content pane.

a. On the Create New Destination page, select the Topic space option.

b. Click Next.

c. In the Identifier field, type the name that you want to give the topic space for administrative

purposes.

5. Optional: Specify the following properties for the topic space:

Description

An optional description of the topic space, for administrative purposes.

Chapter 6. Service integration 1297

Maximum reliability

The maximum reliability of messages accepted by this destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

from the message store when it was passed to the listener. If you require higher

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

6. Click Next.

7. On the Confirm Topic space creation page, review the summary of actions.

v To create the topic space, click Finish.

v If you want to change any of the properties that you have specified, click Previous, then change the

properties on the preceding pages.

8. Save your changes to the master configuration.

What to do next

If you want to change properties of the topic space, see “Configuring bus destination properties” on page

1303.

By default, messages that cannot be delivered to the topic space are sent the default exception destination

for the messaging engine that is publishing the message. If you want to use a non-default exception

destination for messages that cannot be delivered to this topic space, you must have already defined that

exception destination. For more information about configuring exception destinations, see Configuring an

exception bus destination.

If the topic space is to be used for JMS publish/subscribe messaging, specify the topic space identifier on

a JMS topic as described in “Configuring a JMS topic for the default messaging provider” on page 1669.

Creating an alias bus destination:

Use this task to create a new alias destination on a service integration bus. The alias destination can be

used to route messages to a target destination in the same bus, or another (foreign) bus (including across

a WebSphere MQ link to a WebSphere MQ queue). You can set its own destination properties which will

override the destination defaults.

1298 Administering WebSphere applications

About this task

To define a new alias destination, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus on which the alias destination is to be created.

3. In the content pane, under Destination resources, click Destinations. This displays any existing

destinations in the content pane.

4. To create a new destination, click New in the content pane.

a. On the Create New Destination page, select Alias Destination.

b. Click Next.

c. In the Identifier field, type the name that you want to give the alias destination for administrative

purposes.

5. Specify the following properties for the destination:

Bus The name of the bus used by applications when referring to the alias destination. If you leave

this field empty, the alias destination is created on the local bus.

Target identifier

The identifier of the target destination that this alias destination should route messages to.

 If the alias destination is targeting a queue provided by WebSphere MQ, type the value as a

concatenation of the queue name and the queue manager name,

queue_name@qmanager_name; for example: Queue1@Qmgr2.

Target bus

The name of the service integration bus (or foreign bus) that hosts the target destination. This

can be the name of a foreign bus that represents a WebSphere MQ network. The default is

the name specified for the Bus property.

6. Optional: Specify the following properties for the destination. These will override the destination

defaults.

Description

An optional description of the destination, for administrative purposes.

Enable producers to override default reliability

Controls the quality of service for message flows between producers and the destination.

Select this option to use the quality of service specified by producers instead of the quality

defined for the destination.

Default reliability

The reliability assigned to a message produced to this destination when an explicit reliability

has not been set by the producer.

INHERIT

Use the reliability configured on the target destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

from the message store when it was passed to the listener. If you require higher

Chapter 6. Service integration 1299

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Default reliability property of the

bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

Maximum reliability

The maximum reliability of messages accepted by this destination.

 Producers cannot send messages to this destination with a reliability higher than the value

specified for this property.

INHERIT

Use the reliability configured on the target destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

from the message store when it was passed to the listener. If you require higher

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

Send allowed

Clear this option (setting it to false) to stop producers from being able to send messages to

this destination..

INHERIT

Use the value configured on the target destination.

TRUE Producers can send messages to this destination.

1300 Administering WebSphere applications

FALSE

Producers cannot send messages to this destination.

Receive allowed

Clear this option (setting it to false) to prevent consumers from being able to receive messages

from this destination.

INHERIT

Use the value configured on the target destination.

TRUE Consumers can receive messages from this destination.

FALSE

Consumers cannot receive messages from this destination.

Default priority

The default priority for messages sent to the target destination, in the range 0 (lowest) through

9 (highest), or -1. The value -1 indicates that messages should use the default priority defined

on the target destination. The default priority is used only if a message does not specify its

own priority.

7. Click Next.

8. On the Confirm Destination Creation page, review the summary of actions.

v To create the alias destination , click Finish.

v If you want to change any of the destination properties, click Previous, then change the properties

on the preceding pages.

9. Save your changes to the master configuration.

What to do next

If you want to change properties of the alias destination, see “Configuring bus destination properties” on

page 1303. Further advanced configuration to the alias can be made using the “Configuring alias bus

destination properties” on page 1307 panel, if required.

Creating a foreign bus destination:

Use this task to create a new foreign destination on a service integration bus. A foreign destination

provides a mapping to a destination of the same name on a different bus, and enables applications on one

bus to access directly the destination on another bus. You can set its own destination properties which will

override the destination defaults.

 About this task

Chapter 6. Service integration 1301

The foreign destination encapsulates the name of the target destination that exists in the foreign bus

(Identifier property) and the name of that foreign bus (Bus property). An application that wants to use the

foreign destination to exchange messages with the target destination must specify the Identifier and Bus

properties.

For example, an administrator wants JMS applications to connect to one bus, BusA, and send messages

to a JMS queue backed by a queue, targetQueue, on another bus, BusB. The administrator connects the

buses, creates a foreign destination on BusA and sets the following properties on the foreign destination

and JMS queue:

 JMS queue Foreign destination (on BusA) Queue (on BusB)

Queue name targetQueue

Bus name BusB

Identifier targetQueue

Bus BusB

Identifier targetQueue

To define a new foreign destination, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus on which the foreign destination is to be created.

3. In the content pane, under Destination resources, click Destinations. This displays any existing

destinations in the content pane.

4. To create a new destination, click New in the content pane.

a. On the Create New Destination page, select Foreign Destination.

b. Click Next.

c. In the Identifier field, type the name of the target destination that exists in the foreign bus. The

Identifier must match the name of the target destination that exists in the foreign bus.

d. In the Bus field, type the name of the foreign bus that hosts the target destination. This must be

the name of a foreign bus administrative object that is already defined on the bus on which the

foreign destination is to be created.

5. Optional: Specify the following properties for the destination. These will override the destination

defaults.

Description

An optional description of the destination, for administrative purposes.

Default reliability

The reliability assigned to a message produced to this destination when an explicit reliability

has not been set by the producer.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

from the message store when it was passed to the listener. If you require higher

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

1302 Administering WebSphere applications

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

Maximum reliability

The maximum reliability of messages accepted by this destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

from the message store when it was passed to the listener. If you require higher

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

Default priority

The default priority for messages sent to the target destination, in the range 0 (lowest) through

9 (highest), or -1. The value -1 indicates that messages should use the default priority defined

on the target destination. The default priority is used only if a message does not specify its

own priority.

6. Click Next.

7. On the Confirm Destination Creation page, review the summary of actions.

v To create the foreign destination , click Finish.

v If you want to change any of the destination properties, click Previous, then change the properties

on the preceding pages.

8. Save your changes to the master configuration.

What to do next

Ensure that you have defined a foreign bus (to identify the target bus) and the target destination on that

bus.

Configuring bus destination properties

Use this task to browse or change the configuration properties of a bus destination.

Chapter 6. Service integration 1303

About this task

To browse or change the properties of a destination, use the administrative console to complete the

following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

2. Change the destination properties to suit your needs. See Learning about bus destinations for detailed

description of bus destinations.

3. Click OK.

4. Save your changes to the master configuration.

Specifying an exception bus destination:

Specify an exception destination if you want to prevent messages that cannot be delivered to their original

intended destination from being lost.

 About this task

Complete this task if you want a bus destination to use a non-default exception destination for

undeliverable messages. The bus destination for which you are specifying an exception destination is

referred to as the “intended bus destination”.

Note:

v It is not possible to configure an exception destination for the entire bus; you must configure an

exception destination for each destination on the bus.

v You should not modify or delete the default system destination.

v Configuring an exception destination prevents guaranteed ordering throughout the bus. For more

information on ensuring ordering, see Message ordering.

For more information on exception destinations see Related links.

To specify a new exception destination for a bus destination, use the administrative console to complete

the following steps:

1. Create the exception destination, as a queue. For information about creating a queue, see “Creating a

queue for point-to-point messaging” on page 1295.

2. Type the name of the exception destination in the Exception destination field of the intended bus

destination.

a. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

b. Under Exception destination, select the Specify radio button.

c. Type the name of the exception destination in the Exception destination field.

3. Save your changes to the master configuration.

Controlling whether applications can send or receive messages for a bus destination:

Use this task to change the configuration properties of a bus destination to control whether applications

can send messages to, or receive messages from, the destination.

 About this task

For example, some destinations only exist in order to be associated with mediations; applications should

not be able to put to or get from such a destination.

1304 Administering WebSphere applications

The changes made in this task affect the configuration of a bus destinations and when saved, are

automatically applied to all message points for that destination. You can make the same changes to an

individual destination localization point to control access to only that one point.

When you save changes that affect the access to a bus destination, this affects producers or consumers

attached to message points for that destination. For more information about the effect on producers or

consumers, see The effect on producers or consumers of changing access to a bus destination.

To prevent applications from either sending messages to, or receiving messages from, a destination, use

the administrative console to complete the following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

2. Optional: Change one or more of the following properties:

Receive allowed

Clear this check box (setting to the option to false) to prevent messages from being received

from message points for this destination. The effect depends on the type of destination:

v Queue point. Any open consumers change state and an exception is thrown when the

consumer requests a message.

v Publication point. Any messages that have been published to the messaging engine for a

publication point are stopped from proceeding either to local consumers or onwards to other

messaging engines. Local consumers get the same exception as for a queue point.

v Mediation point of a mediated destination. The bus stops the mediation instance that is

running locally to the mediation point; other instances of the mediation running on other

messaging engines continue as normal.

In all cases, messages can continue to be sent, and accumulate on the destination localization

point.

Send allowed

Clear this check box (setting the option to false) to prevent messages from being accepted

onto the message points for this destination.

v For a queue point of a non-mediated destination, or a mediation point of a mediated

destination, new messages (from attached producers or forwarded from another destination)

are redirected to any available message point. If no message points are available, then

messages that have already been accepted onto the bus, and new messages from attached

producers, are preserved by the bus until a message point becomes available. The only

exception to this is the case of a destination with only one message point (queue point or

mediation point depending on whether the destination is mediated or non-mediated), where

the producer is attached to the same messaging engine. In this case, an exception is thrown

on each send call. The exception message indicates that the reason for the exception is that

the only extant localization has been disabled for send. The producer remains open as

normal, and any more send calls succeed if the Send allowed property of the localization is

reselected (reset to true).

v For a queue point of a mediated destination, clearing this Send allowed property alters the

behavior of the mediation instances that are sending to the destination in the same way as

setting it to false on a non-mediated destination affects producing applications: Messages

are sent instead to any alternative message point. If no localizations are available, are

preserved by the bus until a message point becomes available. For any mediation instance

(that is, on any server that has a mediation point), if the same server hosts a queue point,

and that queue point is the only queue point for the destination, then the mediation changes

to the “stopped on error” state.

v For a publication point, clearing this Send allowed property stops applications attached

locally to the topic space from publishing messages. The send calls receive an exception,

and the producer remains open.

Chapter 6. Service integration 1305

Receive exclusive

If you select this check box (setting to the option to true), then only one consumer can be

attached to any message point. This property is particularly intended for use with queues, but

can be used with any type of destination.

v For a queue, the bus chooses a queue point for each request to create a consumer. If the

selected queue point already has an attached consumer, then the call fails with an exception

(containing an exception message and linked exception that indicate the precise nature of

the failure). There is no guarantee that all available queue points are used before the

exception is thrown.

v For a topic space, only one consumer can attach to any given messaging engine.

If you change the Receive exclusive property from false to true, some consumers are

selected to be the exclusive receivers in accordance with the rules above. All other consumers

are detached from the destination, in the same way as is described above for a transition of

the Receive allowed property from true to false.

3. Click OK.

4. Save your changes to the master configuration.

Specifying whether strict message order is preserved for a bus destination:

Use this task to change the configuration properties of a bus destination to control whether strict message

order is preserved.

 Before you begin

The changes made in this task affect the configuration of a bus destination. Before you begin this task,

make sure that you fully understand the restrictions that apply to ordered destinations. For further details

see Strict message ordering for bus destinations.

About this task

Although messages produced by a single producer to a single destination are seen by a consumer to that

destination in the same order as they are produced, there are certain topologies and events, such as

system failures, that can change the order of messages (see Message ordering). If strict message order is

essential, you can configure a destination to preserve the order of the messages in a much more rigorous

manner. Configuring a destination in this way, when used in conjunction with restricted topologies,

maintains message order in all circumstances (for further information, see Strict message ordering for bus

destinations).

To preserve the order of the messages that are delivered to a destination, use the administrative console

to complete the following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

2. Select the Maintain strict message order check box (setting the option to true).

3. Click OK.

4. Save your changes to the master configuration.

Results

An ordered destination has priority over several other configuration properties, such as the number of

consumers that are allowed to attach to the destination. The system overrides these configuration

properties at run time, and generates a system log warning. For more information about the configuration

properties that the system overrides at run time, and the impact of including an ordered destination in your

system, see Strict message ordering for bus destinations.

1306 Administering WebSphere applications

Specifying whether messages are forwarded to WebSphere MQ as JMS messages:

Use this task to create a destination context property that determines whether an MQRFH2 header is

added to WebSphere MQ JMS messages produced by foreign or alias destinations.

 Before you begin

This task assumes that you have created an alias bus destination or a foreign bus destination. For more

information, see “Creating an alias bus destination” on page 1298 or “Creating a foreign bus destination”

on page 1301.

About this task

You only need to carry out this task if you want JMS messages produced by foreign bus destinations or

alias bus destinations forwarded to WebSphere MQ. In this task, you define a destination context property

called _MQRFH2Allowed that adds an MQRFH2 header to JMS messages. If you do not configure

_MQRFH2Allowed, the default value is NO, and an MQRFH2 header is not added to the message.

WebSphere Application Server Version 5.1 users may be aware of a WebSphere MQ flag called

TARGCLIENT that was used to add RFH2 headers to JMS messages. For more information about the use

of the MQRFH2 header in interoperating with WebSphere MQ, see How service integration converts the

message body to and from WebSphere MQ format and Point-to-point messaging with a WebSphere MQ

network.

To create and configure a context property called _MQRFH2Allowed on a foreign or alias destination, use

the administrative console to complete the following steps:

1. Display the context properties for a selected foreign or alias destination:

a. Click Service integration → Buses → bus_name → [Destination resources] Destinations.

b. Select the foreign or alias destination for which you want to create the context property.

c. Under Additional Properties, click Context properties.

2. Click New to create a new context property.

3. Specify the following context information:

Name Type the name _MQRFH2Allowed.

Context type

Select the information type Boolean in the selection list.

Context value

Type the value true .

4. Click OK.

5. Save your changes to the master configuration.

Results

An MQRFH2 header is added to all messages produced by the foreign or alias destination. This means

that JMS messages will be forwarded to WebSphere MQ as JMS messages.

Configuring alias bus destination properties:

Use this task to browse or change the configuration properties of an alias bus destination. The alias

destination can be used to route messages to a target destination in the same bus, or another (foreign)

bus (including across a WebSphere MQ link to a WebSphere MQ queue). Any alias bus destination

properties that you set will override the properties of the target destination, otherwise the target

destination’s properties will apply.

Chapter 6. Service integration 1307

About this task

To browse or change the properties of an alias destination, use the administrative console to complete the

following steps.

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the bus on which the alias destination was created.

3. In the content pane, under Destination resources, click Destinations. This displays any existing

destinations in the content pane.

4. Select the alias destination that you want to configure.

5. You can change the following alias destination properties to suit your needs. These values will override

the destination defaults.

Description

An optional description for the bus destination, for administrative purposes.

Target identifier

The name of the destination for which this is an alias.

Target bus

The name of the bus on which the destination for which this is an alias exists.

Use all target queue points

This property box is displayed only if the destination identified by the Target identifier and

Target bus properties has multiple queue points configured (that is, deployed to a cluster bus

member with multiple messaging engines) and the Target bus is the local bus.Whether to use

all target queue points indicates whether all the queue points of the target queue can be used,

including any queue points created after the alias is configured. When selected, the Target

queue points menu is disabled.

Unselected queue points

A list of the queue points that are not addressable by the alias definition. The list is generated

from the complete list of queue points for this queue. This list is enabled only when Use all

target queue points is unchecked.

Selected queue points

A list of the queue points that are addressable by the alias definition. This list is enabled only

when Use all target queue points is unchecked

Enable producers to override default reliability

Controls the quality of service for message flows between producers and the destination.

Select this option to use the quality of service specified by producers instead of the quality

defined for the destination.

Default reliability

The reliability assigned to a message produced to this destination when an explicit reliability

has not been set by the producer.

INHERIT

Use the reliability configured on the target destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

1308 Administering WebSphere applications

from the message store when it was passed to the listener. If you require higher

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

Maximum reliability

The maximum reliability of messages accepted by this destination.

 Producers cannot send messages to this destination with a reliability higher than the value

specified for this property.

INHERIT

Use the reliability configured on the target destination.

Best effort nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable and as a result

of constrained system resources.

 For non-transactional JMS message-driven beans and MessageListeners that use a

JMS destination configured on the default messaging provider, best-effort

nonpersistent messages are not recoverable. In this case, if a message is unlocked

because the message-driven bean or MessageListener threw an exception, then the

message is not redelivered or sent to the exception destination because it was deleted

from the message store when it was passed to the listener. If you require higher

message reliability for non-transactional JMS message-driven beans and

MessageListeners, configure a different option for the Maximum reliability property of

the bus destination.

Express nonpersistent

Messages are discarded when a messaging engine stops or fails. Messages may also

be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent

Messages are discarded when a messaging engine stops or fails.

Reliable persistent

Messages may be discarded when a messaging engine fails.

Assured persistent

Messages are not discarded.

Default priority

The default priority for messages sent to the target destination, in the range 0 (lowest) through

9 (highest), or -1. The value -1 indicates that messages should use the default priority defined

on the target destination. The default priority is used only if a message does not specify its

own priority.

Chapter 6. Service integration 1309

Send allowed

Clear this option (setting it to false) to stop producers from being able to send messages to

this destination..

INHERIT

Use the value configured on the target destination.

TRUE Producers can send messages to this destination.

FALSE

Producers cannot send messages to this destination.

Receive allowed

Clear this option (setting it to false) to prevent consumers from being able to receive messages

from this destination.

INHERIT

Use the value configured on the target destination.

TRUE Consumers can receive messages from this destination.

FALSE

Consumers cannot receive messages from this destination.

Reply destination

The name of a destination to be appended to any non-empty reverse routing path of messages

sent to this destination.

Reply destination bus

The bus on which the reply destination exists.

Default forward routing path

The value to which a message’s forward routing path will be set if the message contains no

forward routing path. This identifies a sequential list of intermediary bus destinations that

messages must pass through to reach a target bus destination. The format of the field is a list

of line-delimited bus destinations specified as bus:name.

Delegate authorization check to target destination

Indicates whether the destination access role checked when a user accesses the alias

destination is that of the target destination (checked) or the alias destination (unchecked). ″

WebSphere MQ RFH2 allowed

WebSphere MQ RFH2 is allowed.

6. Click OK.

7. Save your changes to the master configuration.

What to do next

If you want to enable correct processing of messages, under Additional Properties click Context

properties. This information adds to the context information derived from processing the message header.

If you want an expandable tree view of all the applications and messaging resources that reference the

current destination, both directly and indirectly, under Related Items click Application resources

topology. As many of the references as possible are resolved to links to the associated configuration

panel for the referenced object.

Configuring mediations

Use this task to configure one or more mediations for a selected bus destination in a service integration

bus.

1310 Administering WebSphere applications

About this task

You can configure a destination with one or more mediations that refine how messages are handled by the

destination, and can configure destination properties that affect how the mediations are used; for example,

that they should run within a global transaction.

For more information about configuring mediations, see “Mediating a destination” on page 1337.

Configuring a destination forward routing path

Use this task to configure a forward routing path for a selected bus destination. The forward routing path

identifies a sequence of bus destinations that a message should pass through after it has been delivered

to the bus destination to which the producer is attached.

About this task

If producing and consuming applications both attach directly to the destination that is to host and process

their messages, you do not need to use routing paths. You can still use mediations assigned to the

destination to manipulate messages. However, if you want a more flexible architecture, you can assign

mediations to several destinations then specify those destinations as the forward routing path for another

destination. For example in the above diagram, on the destination called Destination, on the bus called

myBus, you would set the Default forward routing path property to:

mybus:D1

mybus:D2

mybus:D3

mybus:D4

For each destination that should be visited by a reply message on its ways back to the producer

application, you can specify the name of a reply destination, which is the next destination in the reverse

routing path. If the same destinations are used for both the forward and return routing paths, you can

configure the return routing path when you configure the forward routing path, as described in this topic.

Otherwise, see “Configuring a destination reverse routing path” on page 1312.

To configure a forward routing path, you only need to change the properties of the destinations you want

to use. This topic contains optional steps to create destinations, in case you have not already done so.

To configure a forward routing path for a destination, use the administrative console to complete the

following steps:

1. Optional: If you have not already done so, create the destination to which the producer applications

attach. For this destination, you can create a queue or create a topic space.

2. Optional: If you have not already done so, create each destination in the path. Only the last destination

in the path can be a topic space; all other destinations in the path must be queues.

Chapter 6. Service integration 1311

If the destination is also to be part of the return routing path for reply messages, specify the name of

the next destination in the return routing path:

a. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

b. In the Reply destination bus field, type the name of the next destination in the return routing path.

c. Save your changes to the master configuration.

3. Optional: If you have not already done so, assign mediations to the destinations in the path. You can

include a destination without mediations in a routing path, to provide a future option to apply a

mediation assigned to that destination.

4. Edit the properties of the destination to which the producer applications attach, to configure the forward

routing path.

a. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

b. In the Default forward routing path field, type the names of the destinations in the path. Type a list

of bus destinations, each on a separate line, of the form bus_name:destination_name

Where

bus_name

Is the name of the service integration bus on which the destination is configured.

destination_name

is the name of the bus destination.

For example:

mybusA:queueA

anobusB:queueB

busC:queueC

c. Save your changes to the master configuration.

Configuring a destination reverse routing path

Use this task to configure a reverse routing path between two bus destinations. The reverse routing path

identifies the list of destinations that any reply message should sent to from the consumer back to the

producer.

About this task

If producing and consuming applications both attach directly to the destination that is to host and process

their messages, you do not need to use routing paths. You can still use mediations assigned to the

destination to manipulate messages. However, if you want a more flexible architecture, you can assign

mediations to several destinations then specify those destinations as the forward routing path for another

destination.

1312 Administering WebSphere applications

For each destination that is to be part of a reverse routing path back to the producer application, you can

specify the name of a reply destination, which is the next destination in the reverse routing path. For

example in the above diagram, if reply messages are to retrace the forward routing path back to the

producing application, you would set reverse routing path as follows:

 Destination Reply destination bus

D4 D3

D3 D2

D2 D1

D1 Destination

You can specify a different reverse routing path to the forward routing path, to enable more mediations to

be applied to reply messages, or to apply mediations in a different destination sequence.

If the same destinations are used for both the forward and reverse routing paths, you can configure the

reverse routing path when you configure the forward routing path, as described in “Configuring a

destination forward routing path” on page 1311. Otherwise, you can configure (or change) the reverse

routing path as described in this topic.

To configure a reverse routing path, you only need to change the properties of the destinations you want

to use. This topic contains optional steps to create destinations, in case you have not already done so.

To configure a reverse routing path for a destination, use the administrative console to complete the

following steps:

1. Optional: If you have not yet done so, create the destination to which the producer applications

attaches. For this destination, you can create a queue or create a topic space.

2. Optional: If you have not already done so, create each destination in the path.

3. Optional: If you have not already done so, assign mediations to the destinations in the path. You can

include a destination without mediations in a routing path, to provide a future option to apply a

mediation assigned to that destination.

4. On each destination in the reverse routing path, specify the name of the next destination in the path:

a. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

b. In the Reply destination field, type the name of the next destination in the reverse routing path.

c. In the Reply destination bus field, type the name of the next destination in the reverse routing path.

d. Save your changes to the master configuration.

Configuring context properties for a bus destination

Use this task to configure context properties for a bus destination.

About this task

The context properties contribute to the mediation context that is used in conjunction with the message

header information to ensure that messages are processed correctly by a mediation assigned to this bus

destination.

Note: Context properties on the destination take precedence over context properties on a mediation. For

example, if a property with the same name is configured for a destination and a mediation, the

property on the destination takes precedence.

To configure context information for a bus destination, use the administrative console to complete the

following steps:

Chapter 6. Service integration 1313

1. Display the context properties for a selected bus destination:

a. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

b. Under Additional Properties, click Context properties.

2. Choose whether to create a new context property, configure an existing property, or delete one or

more existing properties.

v To create a new context property, click New.

v To browse or change an existing context property, click the property name.

v To delete one or more existing context properties, select the check box for each property you want

to delete, then click Delete.

3. To create or change a context property, specify the following context information:

Name Type a name for the context property.

Context type

Select the information type for the context property in the selection list.

Context value

Type a value for the context property.

4. Click OK.

5. Save your changes to the master configuration.

Administering destination roles

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups must have authority to perform messaging operations, at a bus destination. By administering

destination roles, you can control which users and groups can perform operations at a bus destination,

and the type of operation that they can perform.

About this task

You use the administrative console to administer users and groups in access roles for a destination. The

access roles available for a destination depend on the type of destination. The table below lists the roles

that you can assign for each destination type:

 Destination type Access roles

queue sender, receiver, browser, creator

port sender, receiver, browser, creator

webService sender, receiver, browser, creator

topicSpace sender, receiver

foreignDestination sender

alias sender, receiver, browser

In addition to controlling which users and groups have access to a specific local or foreign destination, you

can also control the inheritance of access roles for a specific local destination. In this case, the default

access roles that apply to all the destinations in the local bus namespace are added to any access roles

that have been added for a specific destination.

Use the following tasks to administer destination roles.

v Listing users and groups in bus destination roles by using the wsadmin tool

v Adding users and groups to bus destination roles by using the wsadmin tool

v Removing users and groups from bus destination roles by using the wsadmin tool

v Defining destination defaults inheritance by using the wsadmin tool

v Determining destination defaults inheritance by using the wsadmin tool

1314 Administering WebSphere applications

Adding users and groups to destination roles:

Service integration bus security uses role-based authorization. By adding users and groups to the

destination roles for a secured bus, you can control which users and group members can perform

messaging operations at a bus destination.

 Before you begin

Ensure that the following conditions are met:

v Security is enabled for the bus. For more information, refer to “Securing buses” on page 1345.

v The users and groups that you want to add to destination roles must exist already in the user repository.

About this task

By adding users or groups to destination role, you grants the users or groups authority to perform the

operation defined by the role at a selected destination. The destination roles are sender, receiver, browser,

and creator, depending on the destination type.

In this task you use the administrative console Security wizard to retrieve selected users or groups from

the user repository, and add them to destination roles for selected bus destinations.

Note: To add a large number of users to destination roles, it is advisable to create a group in the user

repository, and add the group to the destination roles.

1. Start the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles. A list of the destinations defined for the selected bus is displayed in the Destinations

panel.

3. Select one or more destination to work with:

v Click a single destination name.

v Select the check boxes next to multiple destination names, and then click Manage Access Roles.

The Destination access roles panel is displayed. The information for each destination you have

selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles for this

destination. You can verify that the user or group you want to add does not already have a role at this

destination.

5. Click Add to launch the Security wizard. The wizard takes you through the following steps to add

selected users or groups to access roles for the expanded destination:

a. Search for the users or groups that you want to add to access roles for the expanded destination:

Users or Groups

Select either Users or Groups to specify whether you want to grant access roles to users

or groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user IDs or group

names in the user repository. Only user IDs or group names that match the search pattern

are retrieved, subject to the maximum number of search results. Wildcard characters are

allowed.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user IDs or group names you

want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the

information that you provided in the previous step.

Chapter 6. Service integration 1315

c. Select the check boxes next to the user IDs or group names that you want to add to access roles

for the currently expanded destination, and click Next. A list of user IDs or group names that you

can add to destination roles is displayed. Note that some users or groups may already be assigned

to access roles for this destination.

d. Select the appropriate access role icon for the user ID or group name that you want to add to the

role at this destination. For example, select the Receiver icon for a user ID or group name that you

want to add to the receiver role. The icon changes from

to

to show that you have added

the user or group to the access role for the resource.

e. Repeat the previous step to add more users or groups to access roles for the currently expanded

destination, and then click Next. A summary of your access role assignments is displayed.

f. Click Previous to review and change your assignments, if required.

g. Click Finish to confirm your assignments.

6. Repeat steps 4 and 5 for each destination you want to work with.

7. Save your changes to the master configuration.

Results

The selected users and groups are added to the access roles for the currently expanded destination. The

new access role assignments are displayed in the Destination access roles panel.

Example

A group called MyGroup receives messages from three queues, Queue 1, Queue 2, and Queue 3. If you

want the group MyGroup to produce and consume messages at an additional destination, Queue 4, you

add MyGroup to Queue 4, and then add MyGroup to the sender and receiver roles for Queue 4.

What to do next

Use the administrative console to perform other security administrative tasks.

Removing users and groups from destination roles:

Service integration bus security uses role-based authorization. By removing users and groups from the

destination roles for a secured bus, you can prevent those users and group members from performing

messaging operations on the bus.

 About this task

When selected users and groups no longer require access to a destination, you can remove them from all

the roles for that destination.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles A list of the destinations defined for the selected bus is displayed in the Destinations

panel.

3. Select one or more destinations to work with:

v Click a single destination name.

v Select the check boxes next to multiple destination names, and then click Manage Access Roles.

The Destination access roles panel is displayed. The information for each destination you have

selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles at this

destination, and verify that the user or group that you want to remove has a role at this destination.

1316 Administering WebSphere applications

5. Select the users and groups that you want to remove from all role types at this destination, and click

Remove.

6. Save your changes to the master configuration.

Results

The selected users and groups are removed from all role types at the selected destination. The Manage

access roles for users and groups panel displays the updated role type assignments.

Example

The members of three groups, Group A, Group B, and Group C, belong to the sender role and the

receiver role for two queue destination, Queue 1 and Queue 2. If Group B is no longer required to send

and receive messages on Queue 2, you can use this task to remove Group B from all the role types on

Queue 2.

What to do next

You can perform other security administration tasks by using the administrative console.

Listing users and groups in destination roles:

Service integration bus security uses role-based authorization. By listing the users and groups in the

destination roles for a selected secured bus, you can find out which users and groups are authorized to

access the bus, and its resources.

 About this task

In this task you use the administrative console to list all the users and groups in destination roles for

selected destinations. The list includes users and groups that have references in the service integration

role-based configuration; it does not include all the users and groups that exist in the user repository. The

permitted destination roles are sender, receiver, browser and creator, depending on the destination type.

Icons are used in the administrative console to represent the roles to which users and groups have been

assigned. For example, if the role type set icon (

) is displayed in the sender role for a group called

Group 1, it means that Group 1 has been assigned to the sender role for a selected destination. For a

complete description of all the icons used to represent role assignments in the administrative console,

refer to Access role assignments for bus security resources.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles. The Destinations panel lists all the destinations defined for the selected bus.

3. Select one or more destinations to work with:

v Click the name of a single destination.

v Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is

displayed in a collapsed section.

4. Expand a destination header.

Results

The Destination access roles panel lists the users and groups in access roles for the expanded

destination.

Chapter 6. Service integration 1317

What to do next

You can now administer the users and groups in destination roles at this destination.

Restoring default inheritance for a destination:

Service integration bus security uses role-based authorization. By default, all local destinations inherit

access roles from the default resource. If default inheritance has been previously overridden, you can

restore it for a selected destination.

 Before you begin

Default inheritance has been overridden for a selected secured destination. For more information, refer to

Overriding inheritance from the default resource for a destination.

About this task

If default inheritance has been overridden for a particular destination, you can override it. In this task, you

use the administrative console to restore the role type assignments from the default resource to a selected

destination. A destination can only inherit access roles that are allowed for that particular type of

destination. For example, a topic space can inherit the sender and receiver roles, but it cannot inherit the

browser role. Inherited access roles are added to any existing access roles for the destination.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles. The Destinations panel lists all the destinations defined for the selected bus.

3. Select one or more destinations to work with:

v Click the name of a single destination.

v Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is

displayed in a collapsed section.

4. Expand a destination to list the users and groups that have been assigned to roles for this destination.

5. Select the Inherit from default check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The role type assignments for the default resource are inherited by the selected destination. The

Destination access roles panel displays the newly inherited default access roles for the destination, and

any existing access roles.

What to do next

You can perform other security administration tasks by using the administrative console.

Disabling inheritance from the default resource:

This task enables you to disable the inheritance of security access roles from the default resource for

selected resources.

1318 Administering WebSphere applications

Before you begin

About this task

In this task, you use the administrative console to disable the inheritance of access roles from the default

resource for selected resources. Disabling inheritance from the default access roles means that users or

groups that have roles in the default access role no longer have access to this destination.

Use the administrative console to disable the inheritance of access roles from selected resources as

follows:

1. Use the administrative console to navigate to a list of the resources you want to work with for a

specific bus. For example, to list all the known destinations for a selected bus, click Service

integration → Buses → security_value → [Authorization Policy] Manage destination access roles.

The Destination panel lists all the destinations defined on the selected bus.

2. Do one of the following to select one or more resources:

v Click the name of a single resource.

v Select the check boxes next to multiple resources, and click Manage Access Roles.

The Access Roles panel displays access role information for each selected resource within a collapsed

section.

3. Expand a resource header to list the users and groups that have been assigned to roles for this

resource.

4. Clear the Inherit from default checkbox.

5. Click OK to save your changes. The role types for the default resource are removed from the selected

resource, and the Access Roles panel is updated.

6. Save your changes to the master configuration.

Deleting a bus destination

Use these tasks to delete a bus destination from a service integration bus.

About this task

The steps required depend on the type of destination.

Deleting a non-topic space bus destination:

Use this task to delete, from a service integration bus, a bus destination that is not for a topic space.

 Before you begin

You cannot delete bus destinations that are required by the system; for example, the default exception

destination for a messaging engine: _SYSTEM.Exception.Destination.me_name.

Before you can completely delete a bus destination, you must ensure that the destination message point is

empty of all messages. A delete action is rejected if there are any messages on the message point, either

committed, uncommitted, indoubt or locked.

Any reliable or durable messages sent after the delete action, but before the close of producers, are sent

to one of the following destinations:

v Another message point of the destination, if possible.

v The exception destination for the deleted destination.

Note: Any attached producers or consumers are closed asynchronously, and do not prevent the delete

action. Any messages sent after the delete action, but before close of producers might not be

Chapter 6. Service integration 1319

discarded. Depending on the options set, the messages may be moved to the exception

destination. For more information see “Specifying an exception bus destination” on page 1304 and

Exception destination.

About this task

To delete a destination, use the administrative console to complete the following steps.

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations.

2. Click the check box next to the destination name.

3. Check for and resolve any locked messages. Messages that are locked, as part of in-flight transactions

or as in-doubt messages, are not deleted.

4. To clear all messages from the destination, click Clear. This action deletes all of the messages that it

can access. Messages that are locked, part of in-flight transactions or in-doubt are not deleted. If there

are messages that cannot be deleted, they are skipped and the operation indicates that it was partially

successful.

5. To delete the empty destination, click Delete.

6. To confirm that you want to delete the destination click OK.

Results

The bus destination is deleted.

What to do next

Monitor the exception queue for the messaging engine to which the destination was assigned, to see if

there are any in-transit messages that were not handled by clearing the destination before it was deleted.

Deleting a topic space:

Use this task to delete, from a service integration bus, a topic space.

 Before you begin

Before you can delete a topic space, you must ensure that the publication points are empty. A delete

action is rejected if there are any indoubt or uncommitted publications for a publication point.

Note: Any attached producers are closed asynchronously, and do not prevent the delete action. However,

any messages sent after the delete action, but before close of producers are discarded.

The service integration bus topic space is the primary messaging object upon which WS-Notification

depends at run time. For information about the effect that deleting a topic space has upon new and

existing WS-Notification applications, see Failures as a result of changes in topic space and topic

namespace configurations.

About this task

To delete a topic space, use the administrative console to complete the following steps.

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations.

2. Click the check box next to the destination name.

3. Check for and resolve any undelivered publications (indoubt or uncommitted) for the topic space.

Messages that are locked, as part of in-flight transactions or as in-doubt messages, are not deleted.

4. To delete the empty topic space, click Delete.

5. To confirm that you want to delete the topic space, click OK.

1320 Administering WebSphere applications

6. Save your changes to the master configuration.

Results

The topic space is deleted.

Resetting a destination

Use this task to reset a bus destination.

About this task

You may want to reset a destination if, for example, it has become corrupt. To do this, you use a wsadmin

AdminControl command.

1. Use a wsadmin AdminControl command of the following form to find the name of the messaging

engine.

v Using Jython:

me = AdminControl.queryNames("type=SIBMessagingEngine,name=messaging_engine_name,*")

v Using Jacl:

set me [$AdminControl queryNames type=SIBMessagingEngine,name=messaging_engine_name,*]

Where messaging_engine_name is the name of the messaging engine.

2. Use the wsadmin AdminControl command of the following form to reset the destination.

v Using Jython:

AdminControl.invoke(me, "resetDestination", ["destination"])

v Using Jacl:

$AdminControl invoke $me resetDestination {"destination"}

Where destination is the name of the destination.

Results

The bus destination is reset ready for use.

Managing bus destinations with administrative commands

You can use these commands to manage bus destinations.

About this task

These commands provide an alternative to using the administrative console or using the more complex

syntax of wsadmin and JACL.

1. Open a wsadmin command session in local mode For example:

wsadmin -conntype none -lang jython

Note: The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell to

run WebSphere Application Server scripts.

2. Type AdminTask.command

Where command is the command format as indicated in the related reference topics; for example:

wsadmin>AdminTask.listSIBDestinations(["-bus", "abus"])

’(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)

(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098181503600)

(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098184221748)’

wsadmin>AdminTask.listSIBDestinations(["-bus", "abus", "-type", "TopicSpace"])

’(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)’

Chapter 6. Service integration 1321

Configuring message points

Use the following tasks to configure message points on service integration buses.

About this task

A message point is the location (for example, queue point or publication point) at which messages for a

bus destination are held in a messaging engine. The runtime state of the message point represents a

runtime instance of the destination.

When you define a new bus destination, its message point is created. You can then configure some

properties of the message point to override the general properties defined for the destination.

You can also administer the messages on the runtime view of the message point.

v “Configuring a message point”

v “Listing message points for a bus destination”

v “Listing message points for a messaging engine”

Listing message points for a messaging engine

Use this task to list the message points for bus destinations on a selected messaging engine.

About this task

To display a list of message points for a messaging engine, use the administrative console to complete the

following steps.

1. Click Service integration → Buses → bus_name → [Topology] Messaging engines. This displays a

list of messaging engines on the bus.

2. Click the name of the messaging engine.

3. Under Message Points, click the link for the type of point you want to list.

Results

A list of message points for the selected messaging engine is displayed in the content pane.

Listing message points for a bus destination

Use this task to list the message points for a selected bus destination.

About this task

To display a list of message points for a bus destination, use the administrative console to complete the

following steps.

1. Display the bus destination.

2. In the content pane, under Message Points, click the link for the type of point you want to list.

Results

A list of message points for the selected bus destination is displayed in the content pane.

Configuring a message point

Use this task to browse or change the configuration properties of a message point for a bus destination.

About this task

You can configure some properties of the message point to override the general properties defined for the

destination.

1322 Administering WebSphere applications

To browse or change the properties of a message point, use the administrative console to complete the

following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

2. Under Message Points, click the link for the type of message point:

v Queue points, for a queue

v Publication points, for a topic space

v Mediation points, for a mediated queue or topic space

3. In the content pane, click the name of the message point.

4. Optional: Change the message point settings.

5. Click OK.

6. Save your changes to the master configuration.

Managing messages on message points

Use these tasks to list and act on runtime messages that exist on message points in a service integration

bus.

About this task

You can list the message points for bus destinations and messaging engines, and list the messages on a

selected message point. You can use the list of messages as part of a troubleshooting task to find

messages that need to be deleted.

v “Listing messages on a message point”

v “Deleting messages on a message point” on page 1324

Listing messages on a message point

Use this task to list the messages that exist on a message point for a selected bus destination or

messaging engine.

About this task

To display a list of messages on a message point, use the administrative console to complete the following

steps:

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the service integration bus.

3. Optional: To list the message points for a bus destination, complete the following steps:

a. In the content pane, under Destination resources, click Destinations.

b. Click the destination name.

4. Optional: To list the message points for a messaging engine, complete the following steps:

a. In the content pane, under Topology, click Messaging engines

b. Click the messaging engine name.

5. Under Additional Properties, click Message points This displays a list of message points in the content

pane.

6. Click the message point name. This displays the properties of the destination localization in the content

pane.

7. Click the Runtime tab.

8. Under Additional Properties, click Messages

Chapter 6. Service integration 1323

Results

A list of messages on the selected message point is displayed in the content pane.

What to do next

You can select one or more messages to act on; for example, to display the message content, delete

messages.

Deleting messages on a message point

Use this task to delete one or messages that exist on a message point for a selected bus destination or

messaging engine.

About this task

You should not normally need to delete messages on a message point. This task is intended as part of a

troubleshooting procedure.

To delete one or messages on a message point, use the administrative console to complete the following

steps:

1. List the messages on the message point.

2. In the content pane, click the check box next to each message you want to delete. Alternatively, you

can select all messages in the list by clicking the Select all items button

3. Click Delete

Results

The selected messages are removed from the list.

Administering durable subscriptions

Use the following tasks to display the durable subscriptions that exist, to enable a subscription to be

changed, or to delete a subscription.

About this task

The default messaging provider supports the use of durable subscriptions to topics. This enables a

subscriber to receive a copy of all messages published to a topic, even messages published during

periods of time when the subscriber is not connected to the server.

If an application creates a durable subscription, it is added to the list that administrators can display and

act upon by using the administrative console. Each durable subscription is created with a unique

subscription identifier, clientID##subName where:

clientID

The client identifier used to associate a connection and its objects with the messages maintained

for applications (as clients of the JMS provider). You should use a naming convention that helps

you identify the applications, in case you need to relate durable subscriptions to the associated

applications for runtime administration. For more information about client identifiers, see section

4.3.2 of the JMS 1.1 specification.

subName

The JMS durable subscription name used to uniquely identify a durable subscription within a given

client identifier. For more information about JMS durable subscription names, see section 6.11.1 of

the JMS 1.1 specification.

1324 Administering WebSphere applications

For durable subscriptions created by message-driven beans, the subscription name value is set on the

JMS activation specification. For other durable subscriptions, the value is set by the administrator on the

JMS connection factory and by the JMS application on the createDurableSubscriber operation.

v Listing durable subscriptions

v Stopping active subscribers for durable subscriptions

v Enabling providers to stream messages to cloned durable subscriptions

v Deleting durable subscriptions

Listing subscriptions

Use this task to list the subscriptions that exist at runtime for a topic space.

About this task

The runtime state of a subscription is linked to the publication point for the messaging engine that is used

to store messages delivered to the subscription. You can list subscriptions by first displaying the

publication point, either from the messaging engine panel or the list of all publication points for a service

integration bus.

To display a list of subscriptions for a publication point, use the administrative console to complete the

following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations. This

displays any existing destinations in the content pane.

2. Click the name of the topic space.

3. Under Message Points, click Publication points. This displays the publication points for the topic

space.

4. Click the name of the publication point.

5. Click the Runtime tab.

6. Under Additional Properties, click Subscriptions

Results

The list of subscriptions for the selected topic space is displayed in the content pane. For more information

about the list of subscriptions, see Subscriptions [Collection].

Each subscription has a unique subscription identifier that has the form, clientID##subName where:

clientID

The client identifier used to associate a connection and its objects with the messages maintained

for applications (as clients of the JMS provider). You should use a naming convention that helps

you identify the applications, in case you need to relate subscriptions to the associated

applications for runtime administration. For more information about client identifiers, see section

4.3.2 of the JMS 1.1 specification.

subName

The JMS subscription name used to uniquely identify a durable subscription within a given client

identifier. For more information about JMS subscription names, see section 6.11.1 of the JMS 1.1

specification.

What to do next

To display details of a subscription, click the name of the subscription in the list. To delete one or more

subscriptions, click the check box next to the subscription names then click Delete.

Chapter 6. Service integration 1325

Stopping active subscribers for durable subscriptions

Use this task to enable applications to change a cloned durable subscription. This task enables

applications to connect to an existing cloned durable subscription, but specify parameters that differ from

those that were used to create the existing subscription.

About this task

When an application connects to an existing durable subscription, but specifies parameters that differ from

those that were used to create the existing subscription, the subscription is deleted then recreated with

the new parameters. A durable subscription can be changed in this way only when it has no active

consumers.

To stop active subscribers for one or more durable subscriptions, complete the following steps:

1. Use the administrative console to list the durable subscriptions

2. From the list, identify the client identifier of the durable subscription. The name column lists the unique

subscription name for each durable subscription, in the form clientID##subName where:

clientID

The client identifier used to associate a connection and its objects with the messages

maintained for the client by the JMS provider.

subName

The name used to uniquely identify a durable subscription within a given client identifier.

3. Use your client identifier naming convention to identify the application assigned to the client identifier.

4. List the applications that have active consumers for the durable subscription. In the navigation pane of

the administrative console, click Applications → Application Types → WebSphere enterprise

applications.

5. In the console pane, select the check box next to the name of each application that you want to stop.

6. Click Stop

Results

This stops the active consumers created by the applications, so applications can reconnect to the durable

subscriptions with different parameters from those that were used to create the previous subscriptions.

Deleting durable subscriptions

Use this task to delete a durable subscription.

About this task

To delete one or more durable subscriptions, complete the following steps:

1. Display the durable subscriptions

2. Select the check box for each subscription you want to delete.

3. Click Delete

Results

The selected durable subscriptions are deleted.

1326 Administering WebSphere applications

Mediations

These topics provide information about mediations, which are used to change how messages are handled

at destinations on a service integration bus.

v Learning about mediations

v Learning about programming mediations

v Programming mediations

v “Securing mediations”

v “Configuring mediations” on page 1329

v “Configuring mediation points” on page 1339

v “Managing mediations with administrative commands” on page 1341

v “Operating mediations at mediation points” on page 1341

v “Administering messages on mediation points” on page 1343

v Message properties support for mediations

v Error handling in mediations

v Mediation thread pool properties

Securing mediations

Use the following tasks to secure mediations at an operations level. For example, a mediation inherits its

identity from a the messaging engine, but you might want to specify an alternative identity for the

mediation to use.

Configuring an alternative mediation identity for a mediation handler

Use this task to configure an alternative mediation identity for a mediation handler

About this task

By default, a mediation inherits the identity used by the messaging engine. In some cases, you might want

to specify an alternative identity for a mediation handler to use. For example, for a single mediation that

sends messages to a destination. To do this, you specify a ″run-as″ identity for the mediation handler at

deployment, and map the mediation handler to an identity other than the default mediation identity using a

role name. Follow the steps below to specify an alternative mediation identity:

1. Package your mediation handler as an EAR file.

2. Edit the deployment descriptor file to define the roles. For more information, see Securing enterprise

bean applications using the assembly tools.

3. Assign users to the role. For more information, see Mapping users to RunAs roles using an assembly

tool and Assembling secured applications.

4. Deploy the mediation handler in WebSphere Application Server, and assign users to the RunAs role.

For more information, see Assigning users to RunAs roles. You can confirm the mappings of users to

roles, add new users and groups, and modify existing information during this step. For more

information, see Deploying secured applications.

Example

What to do next

Next, you are ready to authorize mediations to access destinations. For more information, see

“Administering authorization permissions” on page 1355.

Configuring the bus to access secured mediations

Use this task to ensure that the service integration bus is authorized to access secured mediations.

Chapter 6. Service integration 1327

friend.was/ae/tsec_j2clogin.html
friend.was/ae/tsec_j2clogin.html
friend.was/ae/tsec_runas_atk.html
friend.was/ae/tsec_runas_atk.html
friend.was/ae/tsec_assemble.html
friend.was/ae/tsec_taurunas.html
friend.was/ae/tsec_sdeplap.html

Before you begin

The mediation is secured using a Java Platform, Enterprise Edition (Java EE) Connector Architecture

authentication alias. For information about creating a Java EE authentication alias, refer to Managing J2EE

Connector Architecture authentication data entries.

About this task

To configure the bus to access a secured mediation, you must add the mediation authentication alias for

the secured mediation to the properties for the bus:

v If the bus has a Version 6.x bus member, you must provide the principal and its associated password.

v If the bus has WebSphere Application Server Version 7.0 bus members only, you need only provide the

principal.

1. Log into the navigation pane.

2. Click Service integration → Buses → security_value. The bus security configuration panel is

displayed.

3. In the Mediations authentication alias field, select the principal for the mediation, and its associated

password if required.

4. Click OK.

5. Save your changes to the master configuration.

Results

The selected bus is configured to access secured mediations.

What to do next

You can assign security roles to your mediation handlers to protect them from use by unauthorized users.

For more information, see Deploying secured applications.

Configuring a bus to run mediations in a multiple security domain environment

Use this task to configure a secured bus so that it can run mediations successfully on bus members in

different security domains.

Before you begin

The secured bus must be configured to use a non-global security domain. For more information about

securing buses using multiple security domains, refer to “Securing buses” on page 1345.

About this task

If your bus topology has bus members in different security domains, you can configure the bus to allow

mediations to run under the server identity. This means that a mediation can run on any server in any

domain. You do not have to add a dedicated user ID for each mediation to the user repository, or maintain

a mediation authentication alias.

Use the administrative console to configure a secured bus to run mediations successfully as follows:

1. In the navigation pane, click Service integration → Buses → security_value. The security settings for

the selected bus are displayed.

2. Check the option Use the Server ID when running mediations.

3. Click Apply.

4. Save your changes to the master configuration.

1328 Administering WebSphere applications

friend.was/ae/tsec_j2cauthdata.html
friend.was/ae/tsec_j2cauthdata.html
friend.was/ae/tsec_sdeplap.html

Results

You have configured the bus to run mediations successfully across servers in multiple security domains.

What to do next

You can use the administrative console to control access to the bus by administering users and groups in

the bus connector role.

Configuring mediations

Use the following tasks if you want to modify the behavior of a mediation, control which messages are

mediated, or influence how messages are processed.

Installing a mediation into WebSphere Application Server

This task describes how to make a mediation available to destinations on a service integration bus. The

mediation is an enterprise application that you can deploy on WebSphere Application Server.

Before you begin

v You have an enterprise application (EAR file) that you can deploy into WebSphere Application Server

(base). The EAR file contains a mediation handler enterprise bean. You can use the tooling provided

with IBM Rational Application Developer to assemble EAR files.

v For guidance on selecting the target application server for your mediation, see Considerations for

installing a mediation.

About this task

In this task, you use the administrative console to install a mediation application into WebSphere

Application Server (base). For additional information about installing enterprise applications, see Installing

application files with the console. For information about installing a secure mediation handler, see

Deploying secured applications.

1. Log into the administrative console.

2. Click Applications → New Application → New Enterprise Application.

3. Prepare to install the mediation handler application:

a. Specify the file path for the mediation handler application.

b. Select Detailed - Show all installation options and parameters.

c. Expand Choose to generate default bindings and mappings.

d. Select Generate default bindings and mappings.

e. Click Next.

4. Type the name of the mediation handler in the Application name field, if not already specified, and

click Next.

5. Select the target application server where you want to install the modules in the mediation handler

application, and click Next.

6. Optional: If the panel Deploy enterprise beans is displayed, clickApply, and then click Next.

7. Click Finish.

8. Save your changes to the master configuration.

Results

The mediation application is installed on the target WebSphere Application Server.

Chapter 6. Service integration 1329

friend.was/ae/trun_app_instwiz.html
friend.was/ae/trun_app_instwiz.html
friend.was/ae/tsec_sdeplap.html

What to do next

Create the mediation in the administrative console. For more information, see “Defining a mediation.”

Defining a mediation

Use this task to define a mediation in the administrative console.

Before you begin

This task assumes that you have installed your mediation handler module on the WebSphere Application

Server server where you intend to use your mediation. For more information, see “Installing a mediation

into WebSphere Application Server” on page 1329.

About this task

Defining a mediation in the administrative console makes it available for the administrator to use to

mediate destinations.

To define a mediation, use the administrative console to complete the following steps:

1. Display the Mediations page. Click Service integration → Buses → bus_name → [Destination

resources] Mediations

2. In the content pane, click New.

3. Specify the following properties for the mediation:

Mediation name

Type a name for the mediation that is unique to the service integration bus. This name is used

to identify the mediation for administrative purposes.

Description

Optionally, type a description of the behavior of the mediation, taking into account any

properties specified for the mediation.

Handler list name

Type the handler list name. This is the name used by the programmer who deployed the

mediation handler. Handler list names are unique within the WebSphere Application Server

administrative cell.

Global transaction

Optionally, select this option (setting it to true) if you want to start a global transaction for each

message mediated by the mediation. By default, Global transaction is set to false, and a global

transaction is not started when a message is mediated.

Allow concurrent mediation

Optionally, select this option (setting it to true) if you want to mediate multiple messages at the

mediated destination.

 By default, Allow concurrent mediation is set to false, and concurrent mediations are not

allowed.

Note: Do not allow concurrent mediation if message ordering is important.

Selector

Optionally, type a message selector to control which messages are mediated by the mediation.

The selector operates on the content of the message header. The syntax of the message

selector is defined by the JMS specification.

 If the message meets the conditions of the selector, the message is mediated. Otherwise, the

message is not mediated.

1330 Administering WebSphere applications

Discriminator

Optionally, type a message discriminator to control which messages are mediated by the

mediation. Message discriminators conform to the publish/subscribe topicspace syntax.

 If the message meets the conditions of the discriminator, the message is mediated. Otherwise,

the message is not mediated.

4. Click OK.

5. Save your changes to the master configuration.

Results

A named mediation is defined for the deployed handler list.

What to do next

Next, you can add the mediation to a destination, see “Mediating a destination” on page 1337.

Deleting a mediation

Use this task to delete a selected mediation in the administrative console.

Before you begin

Before deleting a mediation, you must ensure that it is not in use at a bus destination. You cannot delete a

mediation that is in use at a destination; you must first unmediate the destination. For more information,

see “Unmediating a destination” on page 1338.

About this task

Deleting a mediation removes it from the administrative console. To delete a mediation, use the

administrative console to complete the following steps

1. Click Service integration → Buses → bus_name → [Destination resources] Mediations.

2. Select the mediations that you want to delete.

3. Click Delete.

4. Save your changes to the master configuration.

Results

The mediations are deleted.

Configuring mediation properties

Use this task to configure the properties of a mediation in the administrative console.

Before you begin

This task assumes that you have defined a new mediation. For more information, see “Defining a

mediation” on page 1330.

About this task

Configuring the properties of a mediation controls how it behaves at run-time. To configure the properties

of a selected mediation, use the administrative console to complete the following steps.

1. Display a selected mediation. Click Service integration → Buses → bus_name → [Destination

resources] Mediations → mediation_name.

2. Specify the following properties for the mediation:

Chapter 6. Service integration 1331

Description

Optionally, type a description of the behavior of the mediation, taking into account any

properties specified for the mediation.

Handler list name

Type the name of the handler list that was defined when the mediation was deployed. Handler

list names start with an uppercase letter, and are unique within the service integration bus.

Global transaction

Optionally, select this option (setting it to true) if you want to start a global transaction for each

message mediated by the mediation.

 By default, Global transaction is set to false, and a global transaction is not started when a

message is mediated.

Allow concurrent mediation

Optionally, select this option (setting it to true) if you want to mediate multiple messages at the

mediated destination.

 By default, Allow concurrent mediation is set to false, and concurrent mediations are not

allowed.

Note: Do not allow concurrent mediation if message ordering is important.

Selector

Optionally, type a message selector to control which messages are mediated by the mediation.

The selector operates on the content of the message header. The syntax of the message

selector is defined by the JMS specification.

 If the message meets the conditions of the selector, the message is mediated. Otherwise, the

message is not mediated.

For information about the properties that can be used in selectors, see Message properties

support for mediations.

Discriminator

Optionally, type a message discriminator to control which messages are mediated by the

mediation. Message discriminators conform to the publish/subscribe topic space syntax.

 If the message meets the conditions of the discriminator, the message is mediated. Otherwise,

the message is not mediated.

3. Specify any additional properties.

4. Click OK.

5. Save your changes to the master configuration.

Results

The configuration properties for the mediation are created.

What to do next

If you want to configure the mediation context information, see “Configuring mediation context properties”

on page 1334. To use the configured mediation at a destination, see “Mediating a destination” on page

1337.

Adding mediation context information

Use this task to add a mediation context property for a selected mediation.

1332 Administering WebSphere applications

Before you begin

The mediation for which you want to add context information must exist in the administrative console. To

create a mediation, see “Defining a mediation” on page 1330.

About this task

Mediation context information is used, in addition to the message header information, to determine how a

message is processed at run time. New context information is defined by adding a mediation context

property. A destination can also have context properties. If you add a context property for a mediation that

has the same name as a destination context property, the property on the destination takes precedence.

You can add the following mediation context properties:

 Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that

is performed on messages after

they have been processed by the

mediation.

True or

false

This property is overridden by the

message delivery option assured

persistent. A well formed check is

always performed for messages

that have the delivery option

assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain

resources for which Last

Participant Support (LPS) is

enabled. This enables a one

phase commit resource to

participate in a global transaction

that has two phase commit

resources.

True or

false

To add new mediation context information for a selected mediation, use the administrative console to

complete the following steps:

1. Display the Context Properties panel for a selected mediation: click Service integration → Buses →

bus_name → [Destination resources] Mediations → mediation_name → [Additional Properties]

Context properties. Any mediation context properties that have already been defined for the selected

mediation are displayed.

2. Click New in the content pane.

3. Specify the following information for the mediation context property:

Name Type a name for the mediation context property. You must type the name exactly as it appears

in the table above.

Context type

Select the type Boolean for the mediation context property.

Context value

Type True to set the property. The value is not case sensitive.

4. Click OK.

5. Save your changes to the master configuration.

Results

You have added new mediation context information for the selected mediation.

What to do next

You can repeat this task to add another mediation context property.

Chapter 6. Service integration 1333

Listing mediation context properties

Use this task to list context properties for a selected mediation.

About this task

Mediation context information is used, in addition to the message header information, to determine how a

message is processed at run time. The context information is provided by one or more of the following

mediation context properties:

 Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that

is performed on messages after

they have been processed by the

mediation.

True or

false

This property is overridden by the

message delivery option assured

persistent. A well formed check is

always performed for messages

that have the delivery option

assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain

resources for which Last

Participant Support (LPS) is

enabled. This enables a one

phase commit resource to

participate in a global transaction

that has two phase commit

resources.

True or

false

In this task, you use the administrative console to list the mediation context properties for a selected

mediation, as follows:

1. Log in to the administrative console.

2. Click Service integration → Buses → bus_name → [Destination resources] Mediations →

mediation_name → [Additional Properties] Context properties.

Results

The mediation context properties for the selected mediation are displayed.

What to do next

You can configure or delete the context information, or add a new context property for the selected

mediation.

Configuring mediation context properties

Use this task to configure context properties for a selected mediation.

Before you begin

The mediation context property you want to configure must exist in the administrative console. To add a

new mediation context property, see “Defining a mediation” on page 1330.

About this task

Mediation context information is used, in addition to the message header information, to determine how a

message is processed at run time. By configuring the mediation context properties, you ensure that

messages are processed correctly. A destination can also have context properties. If a context property is

configured for both a destination and a mediation, with the same name for the property, the property on

the destination takes precedence.

You can configure the following mediation context properties:

1334 Administering WebSphere applications

Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that

is performed on messages after

they have been processed by the

mediation.

True or

false

This property is overridden by the

message delivery option assured

persistent. A well formed check is

always performed for messages

that have the delivery option

assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain

resources for which Last

Participant Support (LPS) is

enabled. This enables a one

phase commit resource to

participate in a global transaction

that has two phase commit

resources.

True or

false

To configure an existing mediation context property, use the administrative console to complete the

following steps:

1. Display the mediation context property for a selected mediation: click Service integration → Buses →

bus_name → [Destination resources] Mediations → mediation_name → [Additional Properties]

Context properties. The mediation context properties for the selected mediation are displayed.

2. Select the mediation context property you want to configure.

3. Specify the following information for the mediation context property:

Name Type a name for the mediation context property. You must type the name exactly as it appears

in the table above.

Context type

Select the type Boolean for the mediation context property.

Context value

Type a value for the mediation context property: either True to set the property, or False to

unset it. The value is not case sensitive.

4. Click OK.

5. Save your changes to the master configuration.

Results

The context property is configured for the selected mediation.

What to do next

You can repeat this task to configure additional mediation context properties.

Deleting mediation context information

Use this task to delete a mediation context property for a selected mediation.

About this task

In this task, you delete a mediation context property. The mediation context information provided by the

property is no longer used at runtime to process messages.

You can delete the following mediation context properties:

Chapter 6. Service integration 1335

Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that

is performed on messages after

they have been processed by the

mediation.

True or

false

This property is overridden by the

message delivery option assured

persistent. A well formed check is

always performed for messages

that have the delivery option

assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain

resources for which Last

Participant Support (LPS) is

enabled. This enables a one

phase commit resource to

participate in a global transaction

that has two phase commit

resources.

True or

false

To delete mediation context information for a selected mediation, use the administrative console to

complete the following steps:

1. Display the Context Properties panel for a selected mediation: click Service integration → Buses →

bus_name → [Destination resources] Mediations → mediation_name → [Additional Properties]

Context properties. The mediation context properties for the selected mediation are displayed.

2. Select the property you want to delete, and click Delete.

3. Click OK.

4. Save your changes to the master configuration.

Results

Your chosen mediation context property is deleted for the selected mediation.

What to do next

You can repeat this task to delete another mediation context property.

Configuring the mediation thread pool

Use this task to configure the mediation thread pool.

Before you begin

The wsadmin tool must be running. For more information, see Starting the wsadmin scripting client.

About this task

You need to configure the mediation thread pool if you want to change the number of threads used when

running mediations concurrently. The maximum size of the thread pool determines the maximum number

of messages that can be mediated concurrently for a messaging engine.

The mediations thread pool, attribute name mediationsThreadPool, is an attribute of the messaging

engine. By default, mediationsThreadPool does not exist, and a default thread pool is created and used at

run time. In this task, use the wsadmin tool to create a thread pool object, and then modify its properties

using JACL, as shown in the examples below:

Note: You use the wsadmin tool from within Qshell. For more information, see Configuring Qshell to run

WebSphere Application Server scripts.

1. Use this example to create a mediationThreadPool object:

1336 Administering WebSphere applications

friend.was/ae/txml_launchscript.html

AdminConfig.create("ThreadPool" , messagingEngine,

 [["name" , "stitch.server1-bus2-mediationThreadPool"]] ,

 "mediationThreadPool")

Note: In this case, the thread pool name is based on the name of the messaging engine. Although it

is not required to do this, it makes it easier to find the thread pool name when using

Performance Monitoring Infrastructure (PMI).

2. Use this example to modify a mediationThreadPool object:

AdminConfig.modify(AdminConfig.showAttribute(messagingEngine,

 "mediationThreadPool"), [["maximumSize" , "10"]])

maximumSize can contain any of the mediationsThreadPool properties. To add additional parameters,

insert [attribute_name attribute_value] within the outer brackets ([]).

Note: There is a space between attribute_name and attribute_value.

Setting tuning properties for a mediation

Use this task to tune a mediation for performance by using the administrative console.

Before you begin

Review the guidance on when it is appropriate to tune a mediation for performance in the topic Guidance

for tuning mediations for performance.

About this task

You can set the following tuning property in the administrative console to improve the performance of a

mediation:

sib:SkipWellFormedCheck

Whether you want to omit the well formed check that is performed on messages after they have been

processed by the mediation. Either true or false.

Note: This property is overridden for messages that have the delivery option assured persistent, and

a well formed check is always performed.

To set, or unset, one or more tuning properties for a mediation, use the administrative console to complete

the following steps:

1. Display the mediation context information:

a. Click Service integration → Buses → bus_name → [Destination resources] Mediations.

b. In the content pane, select the name of the mediation for which you want to configure tuning

information.

c. Click [Additional Properties] Context information.

2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean in the list box.

5. Type true in the Context Value field to set the property, or type false to unset the property.

6. Click OK.

7. Save your changes to the master configuration.

Mediating a destination

Use this task to mediate a selected bus destination.

Chapter 6. Service integration 1337

Before you begin

This task assumes that your mediation is installed and configured on the same bus member as the

destination you want to mediate. For more information, see “Defining a mediation” on page 1330.

About this task

mediations

Mediating a destination associates a mediation with a selected bus destination. At run time, the mediation

applies some message processing to the messages handled by the bus destination. Note that you can

only mediate a destination with a single mediation at a time. You can mediate more than one destination

with the same mediation. To mediate a destination, use the administrative console to complete the

following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations. This

displays a list of bus destinations.

2. In the content pane, select the bus destination you want to mediate, and click Mediate.

3. Select the mediation to associate with the destination, and click Next.

4. Select the bus member where the mediation is installed, and click Next.

5. Click Finish to mediate the destination, or Previous to make any changes to your selections.

6. Save your changes to the master configuration.

Results

The destination is mediated, and a mediation point is created for the destination on the bus member.

What to do next

Next, you can configure properties that affect how messages are processed at the mediated destination;

for example, whether it runs within a global transaction, or processes multiple messages concurrently. For

more information, see “Configuring mediation properties” on page 1331.

Unmediating a destination

Use this task to unmediate a selected bus destination.

Before you begin

Before you start this task, you should consider whether you want to preserve message ordering at the bus

destination you intend to unmediate.

About this task

Unmediating a selected bus destination breaks the association between the bus destination and the

mediation, and the mediation stops processing messages at the bus destination at run time. This task

unmediates a bus destination, and optionally preserves message ordering at the bus destination.

To unmediate a bus destination use the administrative console to complete the following steps:

Note: If you want to preserve message ordering, complete all the following steps. If message ordering is

not important, you can omit steps 2 and 4:

1. Display the bus destination you want to unmediate. Click Service integration → Buses → bus_name →

[Destination resources] Destinations → destination_name.

2. Optional: If you want to preserve message ordering at the destination, take the following steps:

1338 Administering WebSphere applications

a. Clear the Send Allowed check box (setting it to false) to stop sending messages to the message

points for this destination.

b. Wait until there are no messages listed for the mediation points.

c. Stop all the mediation points, and wait for all the mediation points to enter the stopped state.

d. Optional: If it is not already selected, select the bus destination you want to unmediate.

3. Click Unmediate to unmediate the destination.

4. Optional: Select the Send Allowed check box (setting it to true) to resume sending messages to the

mediation points for this destination.

5. Save your changes to the master configuration.

Results

The destination is unmediated, and the mediation point is deleted from the destination.

If you did not preserve message ordering, any messages that remain on the mediation point after you

have unmediated the destination are processed as for a non-mediated destination. Messages with an

empty forward routing path are placed on the next appropriate message point for the destination.

Messages with a non-empty forward routing path are sent to the destination specified in the forward

routing path.

The unmediated destination now operates as a non-mediated destination, and new messages are sent to

a message point on the destination.

Configuring mediation points

In service integration technologies, messages are held at specialized message points called mediation

points before they are processed by a mediation. Use the following tasks to set properties at mediation

points to route messages and start and stop mediations:

Configuring a mediation point

This task uses the administrative console to browse or change the configuration properties for a selected

mediation point for a selected bus destination.

Before you begin

You must first create a mediation point on a bus destination. For more information, see “Mediating a

destination” on page 1337.

About this task

A mediation point is a specialized message point on a bus location where messages are stored and

mediated. Configuring the properties of a mediation point enables you to control some aspects of how

messages are sent to and received from a bus destination. In this task you use the administrative console

to configure the properties for a selected mediation point for a selected bus destination.

Note: You should be aware that the mediation point properties Send allowed and Initial state override the

general properties defined for the bus destination.

To browse or change the properties for a selected mediation point, use the administrative console to

complete the following steps:

1. Start the administrative console, and click Service integration → Buses → bus_name → [Topology]

Messaging engines → engine_name → [Message points] Mediation points →

mediation_point_name. The properties for the selected mediation point are displayed.

2. Optional: Browse or change the following properties for the mediation point:

Chapter 6. Service integration 1339

Identifier

The identifier by which this message point is known for administrative purposes. This field is

for display purposes only.

UUID The universal unique identifier assigned to this mediation point for administrative purposes.

This field is for display purposes only.

High message threshold

The maximum total number of messages that can be placed on this mediation point. This field

is for display purposes only.

Send allowed

This property specifies whether or not messages are sent to this mediation point. By default,

True is selected, and messages are sent to this mediation point. Select False to prevent

messages from being sent to this mediation point.

Initial state

This property specifies the state of the mediation point when the host messaging engine is

started for the first time. Permitted values are Started or Stopped. The default state is Started.

The mediation does not start mediating messages until Initial state is Started.

Target UUID

The UUID of the bus destination where this mediation point is created. This field is for display

purposes only.

3. Click OK.

4. Save your changes to the master configuration.

Results

You have browsed or changed the configuation properties for the selected mediation point.

Listing mediation points for a bus destination

Use this task to list mediation points for a selected bus destination.

About this task

This task lists the mediation points for a selected bus destination. You might want to do this, for example,

to check that a destination is mediated.

To display a list of mediation points for a bus destination, use the administrative console to complete the

following steps:

1. Click Service integration → Buses → bus_name → [Destination resources] Destinations →

destination_name.

2. Click [Message Points] Mediation Points.

Results

All the mediation points for the selected bus destination are displayed.

Listing mediation points for a messaging engine

This task displays a list of mediation points for a selected messaging engine.

About this task

This task uses the administrative console to list all the known mediation points for a selected messaging

engine. You can then view the properties for a mediation point, administer messages for a mediation point,

or operate mediations at a mediation point.

1340 Administering WebSphere applications

To list the mediation points for a selected messaging engine, use the administrative console to complete

the following steps:

Start the administrative console, and click Service integration → Buses → bus_name → [Topology]

Messaging engines → engine_name → [Message points] Mediation points.

Results

The Mediation points panel displays a list of all the mediation points for the selected messaging engine.

What to do next

You can click the name of a mediation point in the list to work with its properties, administer its messages

or operate mediations.

Managing mediations with administrative commands

You can use wsadmin commands to administer service integration technologies mediations. For example

you can create, delete and view mediations, configure mediation properties and mediate destinations.

About this task

These commands provide an alternative to using the administrative console.

1. Open a wsadmin command session in local mode For example:

wsadmin -conntype none -lang jython

Note: The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell to

run WebSphere Application Server scripts.

2. Type AdminTask.command where command is the command format as indicated in the related reference

topics. For example:

wsadmin>AdminTask.listSIBMediations("-bus abus")

(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098217858584)

(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098220051588)

Operating mediations at mediation points

Use these tasks to start, stop and restart mediations at runtime at specialized message points called

mediation points.

Before you begin

These tasks assume that mediations are configured in the administrative console. For more information,

see “Configuring mediations” on page 1329.

Starting a mediation

Use this task to start a selected mediation at a mediation point.

Before you begin

Before you can start a mediation, it must be associated with a destination. For more information, see

“Mediating a destination” on page 1337.

About this task

You start a mediation when you want the mediation to start mediating messages. Starting a mediation, like

all runtime operations on mediations, is carried out at a specialized message point on the destination,

Chapter 6. Service integration 1341

called a mediation point. A mediations starts operating on messages after the server has started and no

new messages are mediated after server shutdown begins.

Note: If you want to ensure that the mediation starts processing a specific message, remove existing

messages from the mediation point before you start the mediation. For more information, see

“Deleting messages on a mediation point” on page 1344.

To start a mediation, use the administrative console to complete the following steps:

1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration → Buses → bus_name →

[Destination resources] Destinations → destination_name → [Message Points] Mediation

points.

v To list the mediation points for a messaging engine, click Service integration → Buses → bus_name

→ [Topology] Messaging engines → engine_name → [Message points] Mediation points.

2. Select the mediation name.

3. Click Start.

Results

The mediation starts processing messages mediation point that arrive at the mediation point.

Stopping a mediation

Use this task to stop a selected mediation at a mediation point.

Before you begin

Before you can operate a mediation, it must be associated with a destination. For more information, see

“Mediating a destination” on page 1337.

About this task

Stopping a mediation, like all runtime operations on mediations, is carried out at a specialized message

point on the destination, called a mediation point. By stopping a mediation, you stop any further messages

from being delivered to the mediation point. Messages sent to the destination are held at the pre-mediated

part of the destination. The messages are not mediated and are not made available to message

consumers until the mediation is restarted. Note that mediations starts operating on messages after the

server has started and no new messages are mediated after server shutdown begins.

To stop a selected mediation, use the administrative console to complete the following steps:

1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration → Buses → bus_name →

[Destination resources] Destinations → destination_name → [Message Points] Mediation

points.

v To list the mediation points for a messaging engine, click Service integration → Buses → bus_name

→ [Topology] Messaging engines → engine_name → [Message points] Mediation points.

2. Select the mediation name.

3. Click Stop.

Results

The mediation is stopped at the mediation point. Messages arriving at the mediation point are not

processed by the mediation. The messages are stored at the mediation point until the mediation is

restarted.

1342 Administering WebSphere applications

Restarting a mediation that has stopped on error

This topic describes how to restart a mediation that has stopped on error.

About this task

You need to restart a mediation that has stopped on error so that the mediation can continue processing

messages. When the mediation is restarted, the mediation resumes mediating messages on the

pre-mediated part of the destination.

Changes in the state of a mediation normally occur as the result of operations performed by the

administrator. If the state of a mediation moves from Started to Stopped on error, and you have not

stopped it intentionally, you should investigate the cause of the problem, and resolve it before attempting

to restart the mediation.

To restart a mediation that has stopped on error, use the administrative console to complete the following

steps:

1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration → Buses → bus_name →

[Destination resources] Destinations → destination_name → [Message Points] Mediation

points.

v To list the mediation points for a messaging engine, click Service integration → Buses → bus_name

→ [Topology] Messaging engines → engine_name → [Message points] Mediation points.

2. In the content pane, select the mediation name.

3. Click the Runtime tab.

4. Under General Properties, view the information in the Reason field.

5. Resolve the problem.

6. Restart the mediation so that it can continue processing messages.

Administering messages on mediation points

Use these tasks to list and delete runtime messages held at mediation points in a service integration bus.

Listing messages at a mediation point

Use this topic to list messages at a mediation point.

About this task

The mediation point is a specialized message point that defines the association between a mediation and

a destination. You can browse and delete messages on a mediation point for a selected bus destination or

messaging engine.

To display a list of messages on a selected mediation point, use the administrative console to complete

the following steps:

1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration → Buses → bus_name →

[Destination resources] Destinations → destination_name → [Message Points] Mediation

points.

v To list the mediation points for a messaging engine, click Service integration → Buses → bus_name

→ [Topology] Messaging engines → engine_name → [Message points] Mediation points.

2. Click the mediation point name. This displays the properties of the mediation point.

3. Click the Runtime tab.

4. Click [Additional Properties] Messages.

Chapter 6. Service integration 1343

Results

A list of messages on the selected mediation point is displayed in the content pane.

Deleting messages on a mediation point

Use this topic to delete messages that exist on a mediation point for a selected bus destination.

About this task

The mediation point is a specialized message point that defines the association between a mediation and

a destination. Like other message points, you can delete messages on a mediation point for a selected

bus destination or messaging engine. For example, if you want to preserve message ordering at a

destination before it is unmediated, you can delete all the messages at that destination.

1. List the messages at the mediation point. For more information, see “Listing messages at a mediation

point” on page 1343.

2. In the content pane, click the check box next to each message you want to delete. Alternatively, select

all the messages in the list by clicking Select All Items.

3. Click Delete.

Results

The selected messages are removed from the destination.

Example: Using mediations to trace, monitor and log messages

The most straightforward use of a mediation is for tracing, monitoring or logging messages that pass

through a destination or topics spaces. This type of mediation does not modify the message; it simply

extracts information from the message and saves or displays the information elsewhere.

For example, the following mediation handler displays the API message and correlation IDs for each

message it is sent:

public boolean(MessageContext context)

{

 SIMessageContext msgCtx = (SIMessageContext)context;

 SIMediationSession session = msgCtx.getSession();

 SIMessage msg = msgCtx.getMessage();

 String msgId = msg.getApiMessageId();

 String corrId = msg.getCorrelationId();

 String dest = session.getDestinationName();

 System.out.println(msgId+" (correlation id="+corrid) is passing through "+dest+".");

 return true;

}

Security

This topic is an overview of the tasks for administering messaging security for a service integration bus.

Before you begin

Review the security requirements for the bus. For guidance, see Planning your security requirements.

About this task

Messaging security protects the bus from unauthorized access. By default, messaging security is enabled

for the bus. Providing administrative security is also enabled, messaging security enforces a security policy

1344 Administering WebSphere applications

that prevents unauthorized client applications from connecting to the bus, and accessing bus resources.

There may be circumstances when you do not require messaging security, for example on a development

system. In this case, you can disable messaging security.

You can customize the security configuration for the bus using the administrative console, or wsadmin

scripting commands. The security configuration controls the following aspects of bus security:

v Authorizing groups of users in the user registry to perform selected operations on bus destinations.

v The transport policies that maintain the integrity of messages in transit on the bus.

v The use of global, and multiple custom security domains.

v The integrity of links between messaging engines, foreign buses and databases.

Use the following tasks to administer messaging security:

v “Securing buses”

v “Enabling client SSL authentication” on page 1352

v “Adding unique names to the bus authorization policy” on page 1354

v “Administering authorization permissions” on page 1355

v “Administering permitted transports for a bus” on page 1380

v “Securing messages between messaging buses” on page 1384

v “Securing access to a foreign bus” on page 1385

v “Securing links between messaging engines” on page 1386

v “Controlling which foreign buses can link to your bus” on page 1387

v “Securing database access” on page 1387

v “Securing mediations” on page 1327

Securing buses

Securing a service integration bus provides the bus with an authorization policy to prevent unauthorized

users from gaining access. If a bus is configured to use multiple security domains, the bus also has a

security domain and user realm to further enforce its authorization policy.

Before you begin

v If administrative security for the cell in which the bus resides is not already enabled, you must enable it.

The tasks below use an administrative console wizard that detects if administrative security is not

enabled, and takes you through the steps to enable it. You need to supply the type of user repository

used by the server, and the administrative security username and password.

v If the bus contains a bus member at WebSphere Application Server Version 6.x, you must provide an

authentication alias to establish trust between bus members, and to enable the bus to operate securely.

The administrative console wizard detects if an authentication alias is required, and prompts you to

supply one. If you want to specify a new authentication alias, you must provide a username and

password.

About this task

When you secure a bus, consider the following points:

v If you are securing a WebSphere Application Server Version 7.0 bus that contains only Version 7.0 bus

members, you can use a non-global security domain for the bus. If the bus has a WebSphere

Application Server Version 6.x bus member, or might have a Version 6.x bus member in the future, you

must assign the bus to the global security domain.

v If you want to assign the bus to a custom domain, you can select an existing security domain, or create

a new one.

v If you assign the bus to a custom domain, you must specify a user realm. You can select an existing

user realm, or use the global user realm.

Chapter 6. Service integration 1345

What to do next

v The bus is secured after you restart all the servers that are members of the bus, or in the case of a bus

that has bootstrap members, servers for which the SIB service is enabled.

v Use the administrative console to control access to the bus by administering users and groups in the

bus connector role.

Disabling bus security

If you do not want to protect the bus from unauthorized access, you can disable messaging security.

Before you begin

v Ensure that there are no indoubt transactions on the messaging engine because incomplete

transactions cannot be recovered after the bus security is disabled. For more information, refer to

Resolving indoubt transactions.

v Stop all servers on which the SIB Service enabled before you disable bus security. This ensures that

the bus security configuration is applied consistently when the servers are restarted. For more

information, refer to Stopping an application server.

About this task

Messaging security protects the bus from access by unauthorized client applications. Messaging security is

enabled by default, providing administrative security for the cell is enabled. However, there may be

circumstances when you do not require messaging security, for example on a development system. In this

case, you can use the administrative console to disable messaging security. If you want to re-enable bus

security, refer to “Securing buses” on page 1345.

1. In the navigation pane, click Service integration → Buses. A list of buses is displayed.

2. Find the bus for which you want to disable security, and click Enabled in the security column. The

security settings for the selected bus are displayed.

3. Clear the checkbox Enable bus security.

4. Click Apply.

5. Save your changes to the master configuration.

Results

You have disabled security for the selected bus.

What to do next

You must propagate the bus security configuration to all the affected nodes, and restart the servers. For

more information, refer to Synchronizing nodes with the wsadmin tool and Starting an application server.

Adding a secured bus

This task uses an administrative console wizard to add a new service integration bus that uses a security

domain. A bus can use the global security settings, inherit the security settings that exist at cell level, or

use a set of customized settings that are unique to the bus, or shared with another resource.

Before you begin

You must decide which type of security domain to use for the bus. For more information, refer to Planning

your security requirements and Messaging security and multiple security domains.

1346 Administering WebSphere applications

friend.was/ae/trun_svr_stop.dita
friend.was/ae/txml_sync.dita
friend.was/ae/trun_svr_start.dita

About this task

By default, administrative security for the cell is enabled. If the wizard detects that administrative security

is disabled, the wizard prompts you to enable it. You must specify the type of user repository, and the

administrative security username and password.

Security settings are held in a security domain. If the bus might contain a WebSphere Application Server

Version 6.x bus member, you must select the global domain. You can select any type of domain for a bus

that contains only WebSphere Application Server Version 7.0 bus members.

 1. Log into the administrative console.

 2. Click Service integration → Buses. A list of buses is displayed.

 3. In the content pane, click New.

 4. Type a name for the new bus. It is advisable to choose bus names that are compatible with the

WebSphere MQ queue manager naming restrictions. You cannot change a bus name after a bus is

created, so if you need to interoperate with WebSphere MQ in the future, it will be much simpler if

you use compatible names. See the topic about WebSphere MQ naming restrictions in the related

links.

 5. Ensure that the Bus security checkbox is checked.

 6. Click Next. The Bus Security Configuration wizard is launched.

 7. Read the Introduction panel, and click Next.

 8. If administrative security is disabled, follow the instructions in the wizard to select, and configure the

appropriate user repository.

 9. Click Next. A summary of the administrative security settings for the bus is displayed.

10. Review the summary, and click Finish. Administrative security for the cell is now enabled.

11. By default, clients are required to use SSL protected transports to ensure data confidentiality and

integrity. If you do not want clients to use SSL protected transports, clear the checkbox Require

clients use SSL protected transports .

12. Select a security domain for the bus. The domain you specify depends on the versions of the bus

members. If the bus may contain a Version 6.x bus member, you must select the global domain. If the

bus will only contain Version 7.0 bus members, you can select the cell-level or a custom domain. If

you select a custom security domain, you must also follow the instructions to specify a user realm.

13. Review the summary of your choices, and click Finish.

14. Save your changes to the master configuration.

Results

Administrative security is enabled, and a new bus is created with your chosen security settings.

What to do next

You can now add bus members to the bus.

Securing an existing bus using multiple security domains

You can configure an existing service integration bus so that it uses a security domain other than the

default global security domain. Using non-global security domains provides the scope to use multiple

security domains. The bus can inherit security settings from the cell, or have a unique security

configuration.

Before you begin

v For more information about using security domains, refer to Planning your security requirements and

Messaging security and multiple security domains.

Chapter 6. Service integration 1347

v The bus you want to secure must exist in the administrative console. If you want to create a new

secured bus, refer to “Adding a secured bus” on page 1198.

v All the bus members must be at WebSphere Application Server Version 7.0; use of multiple security

domains is not supported for earlier versions of WebSphere Application Server. If the bus you want to

secure has a WebSphere Application Server Version 6.x bus member, refer to “Securing an existing bus

using the global security domain” on page 1349.

About this task

This task uses the Bus Security Configuration wizard to secure a selected bus, and assign it to a security

domain. If administrative security for the cell is disabled, the wizard prompts you to enable it. You need to

know the type of user repository, and the administrative security username and password. If you specify a

custom domain, you must also specify a user realm.

 1. In the navigation pane, click Service integration → Buses → security_value. The general properties

for the selected bus are displayed.

 2. Click Configure Bus Security to launch the Bus Security Configuration wizard.

 3. Read the Introduction panel, and click Next.

 4. If administrative security is disabled, follow the instructions to configure the appropriate user

repository, and click Next.

 5. Review the summary of your choices:

a. If you want to make changes, click Previous to return to an earlier panel, and make the changes

you require.

b. Click Finish when you are ready to confirm your choices.

Administrative security for the cell is now enabled.

 6. If you do not want clients to use SSL protected transports, clear the checkbox Require clients use

SSL protected transports . By default, clients are required to use SSL protected transports to

ensure data confidentiality and integrity.

 7. Select the cell-level or custom security domain for the bus. You can only select a non-global security

domain if all the bus members are at Version 7.0.

 8. Optional: To create a new custom security domain:

a. Use the name suggested for the security domain, or type a new one.

b. Optional: Provide a description of the security domain.

c. Select a user realm for the domain. You can use the user realm configured in the global security

domain, or follow the steps to configure a new user realm.

 9. Click Next.

10. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the

changes you require.

b. Click Finish to confirm your choices.

11. Save your changes to the master configuration.

Results

You have specified that the selected bus uses a non-global security domain. The security settings

configured for the bus are displayed in the updated Bus Security Settings panel. The bus is secured after

you restart all the servers that are members of the bus, or in the case of a bus that has bootstrap

members, servers for which the SIB service is enabled.

1348 Administering WebSphere applications

What to do next

You can use the administrative console to control access to the bus by administering users and groups in

the bus connector role.

Securing an existing bus using the global security domain

Use this task to secure an existing service integration bus using the global security domain.

Before you begin

v The bus you want to secure must exist in the administrative console. If you want to create a new

secured bus, refer to “Adding a secured bus” on page 1198.

v If administrative security for the cell in which the bus resides is disabled, the wizard prompts you to

enable it. You need to know the type of user repository, and the administrative security username and

password.

v If the service bus contains a bus member at WebSphere Application Server Version 6.x, the wizard

prompts you to select an existing authentication alias, or specify a new one. If you want to specify a

new authentication alias, you must provide a username and password.

About this task

Use this task if you want to secure a bus that exists already in the administrative console, and you want to

use the global (default) security domain. For example, you are securing a Version 7.0 bus that has a bus

member at WebSphere Application Server Version 6.x; mixed version buses cannot use multiple security

domains.

This task uses an administrative console wizard to guide you through the steps to secure a bus. The

following steps are conditional, depending on the bus environment:

v If administrative security for the cell in which the bus resides is disabled, the wizard prompts you to

enable administrative security.

v If the bus has a bus member at WebSphere Application Server Version 6.x, the wizard prompts you for

an authentication alias to establish trust between bus members, and to enable the bus to operate

securely.

Use the administrative console to secure a selected bus using the global security domain as follows:

 1. In the navigation pane, click Service integration → Buses → security_value. The general properties

for the selected bus are displayed.

 2. Click Configure Bus Security to launch the Bus Security Configuration wizard.

 3. Read the Introduction panel, and click Next. The next step is conditional, depending on whether

administrative security is enabled or disabled:

v If administrative security is disabled, complete all the following steps.

v If administrative security is already enabled, continue from step 7.

 4. Select the appropriate user repository, and click Next.

 5. Depending on the type of user registry you selected, do one of the following:

v For a federated repository, specify a username and password for administrative security, and click

Next.

v For all other types of repository, follow the wizard prompts, and click Next.

 6. Review the summary of your choices:

a. If you want to make changes, click Previous to return to an earlier panel, and make the changes

you require.

b. Click Finish when you are ready to confirm your choices.

Administrative security for the cell is now enabled.

Chapter 6. Service integration 1349

7. If you do not want clients to use SSL protected transports, clear the checkbox Require clients use

SSL protected transports . By default, clients are required to use SSL protected transports to

ensure data confidentiality and integrity.

 8. Select the global security domain option, and click Next.

 9. If at least one bus member is at Version 6.x, you must specify an authentication alias. Specify either

an existing authentication alias, or create a new one:

v Select Specify existing authentication alias, and select the alias name from the list box.

v Select Create a new authentication alias, type a unique alias name and password.

10. Review the summary of your choices:

a. Optional: If you want to make changes, click Previous to return to an earlier panel, and make the

changes you require.

b. Click Finish to confirm your choices.

11. Save your changes to the master configuration.

Results

You have secured the bus using the global security domain. The new security settings for the bus are

displayed in the updated Bus Security Settings panel. The bus is secured after you restart all the servers

that are members of the bus, or in the case of a bus that has bootstrap members, servers for which the

SIB service is enabled.

What to do next

You can use the administrative console to control access to the bus by administering users and groups in

the bus connector role.

Configuring bus security using an administrative console panel

Use this task to enable or disable messaging security, and configure security properties for an existing

service integration bus.

Before you begin

The bus must exist in the administrative console. If you want to create a new bus, refer to “Adding buses”

on page 1197.

About this task

This task uses the Bus Security administrative console panel. You can launch the Bus security wizard from

the panel, or specify individual security properties directly in the panel. The bus security properties are

effective only when administrative security for the cell is enabled. If the wizard detects that administrative

security is disabled, it prompts you to enable it.

The security properties available to a particular bus depend on the versions of the bus members. If the

bus has a WebSphere Application Server Version 6.x bus member, you must specify the global security

domain. The bus cannot use cell level, or custom security domains. You must also specify an inter-engine

authentication alias to prevent unauthenticated messaging engines from establishing a connection with the

bus. If the bus contains Version 7.0 bus members only, you can specify any type of security domain, and

you do not need to specify an inter-engine or mediation authentication alias.

If you want to run mediations across multiple security domains, you can specify a single server identity for

the bus, rather than specify a mediation authentication alias for each domain. You can also use a server

identity to run mediations on the global domain.

1. Log into the administrative console.

1350 Administering WebSphere applications

2. Click Service integration → Buses → security_value. security_value is either Enabled or Disabled,

depending on the security status of the bus.

3. Click Launch Bus Security Wizard to launch the wizard, or specify the following properties directly:

Enable bus security

Bus security is enabled by default. Clear this check box if you do not want a secure bus. The

check box is read-only if administrative security is disabled.

Inter-engine authentication alias

The name of the authentication alias used to authorize communication between messaging

engines on the bus. Specify an inter-engine authentication alias if the bus has a Version 6.x

bus member, bus security is enabled, and you want to prevent unauthorized messaging

engines from establishing a connection with the bus.

Permitted transports

Specify one of the following transports for the bus:

v Any messaging transport chain defined to any bus member.

v Only messaging transport chains that are protected by an SSL chain.

v Only the transports specified in the list of permitted transports.

If you want to add and remove permitted transports, click Service integration → Buses →

security_value → [Additional Properties] Permitted Transports.

Use the Server ID when running mediations

Check this option if you want to run mediations using the server identity, instead of using a

mediation authentication alias.

 Mediations are deployed as applications, and run in the domain used by the application server,

not the bus domain. If you want to run a mediation on multiple servers in different domains,

you must ensure that the user identity in the mediation authentication alias exists in the

configuration for each domain. Alternatively, you can choose to use the server identity option.

You can use this option when multiple domains are not in use.

Bus security domain

Specify one of the following security domains for the bus:

Global domain

You must specify the global domain if the bus contains a Version 6.x bus member, or

you do not want the bus to use multiple domains.

Cell level domain

Specify the cell-level security domain if the bus has Version 7.0 bus members only,

and you want the bus to share security settings with the administrative cell.

Custom domain

Specify a custom security domain if the bus has Version 7.0 bus members only, and

you want the bus to use a security domain that is used by another resource, or you

want to create a new security configuration for this bus.

4. Save your changes to the master configuration.

Results

You have configured security properties for the selected bus.

What to do next

You can use the administrative console to control access to the bus.

Chapter 6. Service integration 1351

Configuring a bus to run mediations in a multiple security domain environment

Use this task to configure a secured bus so that it can run mediations successfully on bus members in

different security domains.

Before you begin

The secured bus must be configured to use a non-global security domain. For more information about

securing buses using multiple security domains, refer to “Securing buses” on page 1345.

About this task

If your bus topology has bus members in different security domains, you can configure the bus to allow

mediations to run under the server identity. This means that a mediation can run on any server in any

domain. You do not have to add a dedicated user ID for each mediation to the user repository, or maintain

a mediation authentication alias.

Use the administrative console to configure a secured bus to run mediations successfully as follows:

1. In the navigation pane, click Service integration → Buses → security_value. The security settings for

the selected bus are displayed.

2. Check the option Use the Server ID when running mediations.

3. Click Apply.

4. Save your changes to the master configuration.

Results

You have configured the bus to run mediations successfully across servers in multiple security domains.

What to do next

You can use the administrative console to control access to the bus by administering users and groups in

the bus connector role.

Enabling client SSL authentication

You can configure a service integration bus to allow connecting client JMS applications to authenticate

using Secure Sockets Layer (SSL) certificates.

About this task

This is the parent task for the steps required to establish client SSL authentication for connections

between messaging engines and JMS applications running in a client container. You need to configure the

bus to allow client SSL authentication, and configure the JMS client application to perform client SSL

authentication. See the following topics:

v “Configuring a bus to allow client SSL authentication.”

v “Configuring JMS client applications to perform client SSL authentication” on page 1353.

Configuring a bus to allow client SSL authentication

This task describes how to configure a service integration bus to enable connecting client JMS

applications to authenticate using Secure Sockets Layer (SSL) certificates.

Before you begin

You must ensure that the following tasks have been completed:

v Administrative security is enabled. For more information, see Enabling security.

1352 Administering WebSphere applications

friend.was/ae/tsec_csec2.html

v A standalone Lightweight Directory Access Protocol (LDAP) user registry has been configured for

storing user and group IDs. To access the user registry, you must know a valid user ID that has the

administrative role, and password, the server host and port of the registry server, and the base

distinguished name (DN). For more information, see Configuring Lightweight Directory Access Protocol

user registries.

v Bus security is enabled. For more information, see “Disabling bus security” on page 1346.

v JMS client applications have been configured to authenticate using client SSL certificates.

About this task

If you want to allow connecting JMS application clients to authenticate to the bus using client SSL

certificates you need to define an SSL configuration. There are two parts to this task. First you use the

administrative console to map SSL certificates to entries in the LDAP user registry. Secondly, you create a

unique SSL configuration for each endpoint address for which you want to use client SSL authentication.

Do not use the default SSL configuration for the bus.

1. Use the administrative console to define certificate filters to map an SSL certificate to an entry in the

LDAP server. For more information, see Creating a Secure Sockets Layer configuration. The client

SSL certificate is mapped to a user ID in the user registry.

2. Create a separate SSL configuration file for each endpoint address for server, bus member or cluster

on the bus, and select that client authentication is required. For more information, see Creating a

Secure Sockets Layer configuration

Results

The bus is configured to allow client SSL authentication.

What to do next

Connecting JMS client applications can now authenticate to the bus using client SSL certificates.

Configuring JMS client applications to perform client SSL authentication

This task describes how to configure JMS client applications to authenticate to the bus using client Secure

Sockets Layer (SSL) authentication.

Before you begin

v You have already obtained a Secure Sockets Layer (SSL) certificate for the JMS client application.

v The JMS client application is already configured to use SSL. For more information, see SSL client

properties file

About this task

This task has two objectives. First, you install the SSL certificate for the client application in the key store

for the application client. Secondly, you modify the sib.client.ssl.properties file to use client SSL

authentication. You use the Key Management (iKeyman) utility to work with SSL certificates. The iKeyman

user interface is Java-based and uses the Java support that is installed with IBM HTTP Server.

Take the following steps to configure a JMS client application to use client SSL authentication:

 1. Start the iKeyman user interface. Refer to the iKeyman User’s Guide available from IBM developer

kits for more information about using iKeyman.

 2. When prompted, select the key store for the JMS client application.

 3. When prompted for the type off certificate to work with, select the option Personal certificates. A list

of personal certificates is displayed.

 4. Select that you want to import a certificate to the selected key store.

Chapter 6. Service integration 1353

friend.was/ae/tsec_ldap.html
friend.was/ae/tsec_ldap.html
friend.was/ae/tsec_sslconfiguration.html
friend.was/ae/tsec_sslconfiguration.html
friend.was/ae/tsec_sslconfiguration.html
friend.was/ae/rsec_sslclientpropsfile.html
friend.was/ae/rsec_sslclientpropsfile.html
http://www.ibm.com/developerworks/java/jdk/docs.html
http://www.ibm.com/developerworks/java/jdk/docs.html

5. When prompted, type the location and name for the certificate. You can provide an alias for the

certificate. The certificate is installed into the keystore of the client application.

 6. Close the iKeyman user interface.

 7. Open a text editor to work with the sib.client.ssl.properties properties file. This file is located in the

profile_root/properties directory of the application server installation, where profile_root is the directory

in which profile-specific information is stored.

 8. Set the value for the property com.ibm.ssl.client.clientAuthentication to True.

 9. Set the value for the property com.ibm.ssl.client.keyStoreClientAlias to the alias name for the

certificate in the client key store.

10. Save the sib.client.ssl.properties properties file.

Results

You have now configured a JMS client application to use client SSL authentication.

Adding unique names to the bus authorization policy

How to update the authorization policy for the service integration bus with unique name entries.

About this task

You should carry out this task if you are migrating from WebSphere Application Server Version 6.x to

WebSphere Application Server Version 7.0. In this task, you manually run the populateUniqueNames

command to query the user repository for a selected bus for unique names, and add them to the

authorization policy. If you do not manually run this command, the messaging engine performs the query,

and adds the missing unique names to the authorizations policy, which adversely affects the start up time.

When you migrate from a Version 6.x node to a Version 7.0 node, the authorization policy only contains

the user and group security names; it does not contain the names in the user registry that uniquely define

each user and group. If an LDAP user registry is in use, the unique name is the distinguished name (DN).

By default, only missing unique names are added to the authorization policy. If you set the -force

parameter, all unique name entries added to the authorization policy

1. Launch a scripting command. For more information, refer to Starting the wsadmin scripting client.

2. At the wsadmin command prompt, type the populateUniquenames command. The following example

syntax queries the user repository for the unique names that match the security names for a bus called

Bus 1, and adds the missing unique names to the authorization policy .

AdminTask.populateUniquenames(’[-bus Bus1]’)

3. Save your changes to the master configuration repository. The following example presents the syntax:

AdminConfig.save()

Results

The authorization policy for the bus is updated with the missing unique names.

Example

The following example updates all the unique name entries in the authorization policy for a bus called Bus

1.

AdminTask.populateUniqueNames(AdminTask.populateUniquenames(’[-bus Bus1 -force TRUE]’)

What to do next

Use the administrative console to administer bus security authorizations.

1354 Administering WebSphere applications

friend.was/ae/txml_launchscript.html

Administering authorization permissions

Service integration messaging security uses role-based authorization. When a user is assigned to a role,

the user is granted all of the permissions that the role contains. By administering authorization

permissions, you can control user access to a bus and its resources when messaging security is enabled.

Before you begin

For guidance on security authorization for a service integration bus, refer to Planning your security

requirements.

About this task

When a bus is created, a set of default authorization roles is created. Default roles provide authenticated

users who have the bus connector role with full access to all local destinations on the bus. By default, only

members of the Server group have the bus connector role. If a specific user needs to connect to the bus,

you must explicitly add that user to the bus connector role.

You can make changes to authorization permissions when messaging security is enabled or disabled. Any

changes that you make when security is disabled do not have any effect until security is enabled, as

described in “Disabling bus security” on page 1346.

Note: When you specify the group authorization permissions, the group distinguished name (DN) must be

used. If you specify a common name (CN) for the group name, users in that group do not have the

specified authorities. For more details see Standalone Lightweight Directory Access Protocol

registries.

When security is enabled, by default users cannot connect to a foreign bus. If a specific user needs to

connect to a foreign bus, you must explicitly add that user to the foreign bus access list.

Use the following tasks to administer authorization permissions for a bus to meet your security

requirements.

v “Administering the bus connector role”

v “Administering default roles” on page 1358

v “Administering destination roles” on page 1314

v “Administering foreign bus roles” on page 1365

v “Administering topic space root roles” on page 1372

v “Administering topic roles” on page 1376

v Listing security roles for service integration by using the wsadmin tool

v Removing users and groups by using the wsadmin tool

v Removing authorization data by using the wsadmin tool

Administering the bus connector role

Service integration bus security uses role-based authorization. By administering groups of users in the bus

connector role, you can control access to the local service integration bus and its resources when

messaging security is enabled.

About this task

Adding a group of users to the bus connector role for a local bus grants the members of the group

permission to access local bus destinations. The users and groups you want to work with must exist in the

user repository.

Use the following tasks to list, add and remove groups of users in the bus connector roles using the

administrative console.

v “Listing users and groups in the bus connector role” on page 1356

v “Adding users and groups in the bus connector role” on page 1356

Chapter 6. Service integration 1355

friend.was/ae/csec_ldap.html
friend.was/ae/csec_ldap.html

v “Removing users and groups from the bus connector role” on page 1357

Listing users and groups in the bus connector role:

Service integration bus security uses role-based authorization. By listing the users and groups in the bus

connector role, you can find out which users and group members are authorized to connect to a selected

secured local bus, and its resources.

 Before you begin

Ensure that security is enabled for the bus. For more information, refer to “Securing buses” on page 1345.

About this task

In this task you use the administrative console to list the users and groups in the bus connector role for a

selected local bus. By default, the list is empty for a new bus.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Users and groups in

the bus connector role.

Results

A list of the users and groups in the bus connector role for the selected bus is displayed. The list is empty

for a new bus.

What to do next

You can add and delete users and groups in the bus connector role for the selected bus.

Adding users and groups in the bus connector role:

Service integration bus security uses role-based authorization. By adding users and groups to the bus

connector role for a secured bus, you can control which users and group members have access to the bus

and its resources.

 Before you begin

v Ensure that security is enabled for the bus. For more information, refer to “Securing buses” on page

1345.

v The users and groups that you want to add to the bus connector role must exist already in the user

repository.

About this task

Adding users and groups to the bus connector role enables them to connect to the bus to carry out

messaging operations. You can add a user directly to the bus connector role, or indirectly by adding a

group to which the user belongs. You can also add special groups of users. There are three special

groups:

Server

The server identity is a WebSphere Application Server . You cannot specify the Server group for a

JMS message-driven bean (MDB).

All Authenticated

This group comprises all user identities that authenticate successfully to the bus.

1356 Administering WebSphere applications

Everyone

The user identities in this group are anonymous, and connect to the bus without security

authentication.

Note:

v If the user registry is an LDAP registry, you must use the group distinguished name (DN) when

you specify a group name to add to a bus connector role. Using the common name (CN) causes

problems in security authorization. For more information, refer to Service integration bus security:

Troubleshooting tips and Standalone Lightweight Directory Access Protocol registries.

v If you attempt to add a user or a group that is already a member of the bus connector role, a

warning message is displayed.

In this task you use an administrative console wizard to add groups and users to the bus connector role

for a selected local bus.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Users and groups in

the bus connector role. A list of the users and groups already in the bus connector role for the

selected bus is displayed. By default, the list is empty for a new bus.

3. Click New to launch the Security Resource Wizard.

4. Choose whether you want to add groups or users:

v If you want to add a special group, select The built-in special groups option.

v If you want to add other groups or users in the user repository, select the appropriate option, and

complete the following mandatory fields:

Search pattern

Specify a string to match against user IDs or group names in the user repository. Only user

IDs or group names that match the search pattern are retrieved, subject to the maximum

number of search results. You can specify wildcard characters.

Maximum number of search results to display

Specify the maximum number of user IDs or group names to display.

5. Click Next to display a list of groups or users.

6. Select the names of the groups or users you want to add to the bus connector role, and click Next.

7. Click Finish to confirm you choices.

8. Save your changes to the master configuration.

Results

The selected users and groups are added to the bus connector role for the selected bus.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing users and groups from the bus connector role:

Service integration bus security uses role-based authorization. By removing selected users and groups

from the bus connector role for a selected secured bus you prevent those users and group members from

connecting to the bus.

 About this task

The users and groups that you remove from the bus connector role for a bus can no longer perform

messaging operations on the bus. Note that removing a user from the bus connector role does not prevent

Chapter 6. Service integration 1357

friend.was/ae/csec_ldap.html

that user from connecting to the bus if they are also a member of a group that is in the bus connector role.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Users and groups in

the bus connector role. A list of the users and groups in the bus connector role for the selected bus

is displayed.

3. Select the check box next to the name of the user or group that you want to remove, and click Delete.

4. Save your changes to the master configuration.

Results

The selected users and groups are removed from the bus connector role.

What to do next

You can perform other security administration tasks by using the administrative console.

Administering default roles

Service integration bus security uses role-based authorization. By adding a user or a group to the default

roles for a secured bus, you can control which users and group members have access to the bus and its

resources in the default roles when messaging security is enabled.

About this task

The default roles are sender, receiver, browser, and creator. These roles apply to bus destinations that do

not have a destination role, or have been configured to inherit the default roles. By default, all destinations

inherit the default roles. Access in the default roles exists in addition to any specific access roles that have

been configured for a destination.

Use the following tasks to list, add, and remove groups of users in default roles using the administrative

console.

v “Adding users and groups to default roles” on page 1359

v “Removing users and groups from default roles” on page 1360

v “Listing users and groups in default roles”

Listing users and groups in default roles:

Service integration bus security uses role-based authorization. By listing the users and groups in the

default roles for a selected secured bus, you can find out which users and group members are authorized

to perform messaging operations on a local bus destinations that is allowed to inherit default roles.

 About this task

In this task you use the administrative console to list users and groups in the default access roles for a

selected secured bus. The default role types are sender, receiver, browser and creator.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage default

access roles. The Default access roles panel is displayed. The information for the default access is

displayed in a collapsed section.

3. Expand the Default access header.

Results

A list of users and groups in default roles for the selected bus is displayed.

1358 Administering WebSphere applications

What to do next

You can also add and remove users and groups in default roles.

Adding users and groups to default roles:

Service integration bus security uses role-based authorization. By adding selected users and groups to the

default roles for all the local bus destinations on a secured bus, you provide those users and group

members with access to the local bus destinations that are allowed to inherit default roles.

 Before you begin

If a bus destination is not allowed to inherit the default roles, you must first add the user or group to the

role that grants authorization permission for the specific local destination. For more information, see

“Adding users and groups to destination roles” on page 1315.

About this task

The default roles are sender, receiver, creator and browser. In this task you use an administrative console

wizard, the Security wizard, to add selected users or groups to the default roles. The Security wizard

requests information to enable it to retrieve selected users or groups from the potentially very large

number of users and groups in the user repository.

1. Log onto the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage default

access roles. The Default access roles panel is displayed.

3. Expand the Default access header to list the users and groups that have been assigned to default

access roles.

4. Click Add to launch the Security wizard. The wizard takes you through the following steps to add

selected users or groups to default access roles:

a. Search for the users or groups that you want to add to default access roles:

Users or Groups

Select either Users or Groups to specify whether you want to grant access roles to users

or groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user IDs or group

names in the user repository. Only user IDs or group names that match the search pattern

are retrieved, subject to the maximum number of search results. Wildcard characters are

allowed.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user IDs or group names you

want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the

information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to add to the default

access roles, and click Next. A list of user IDs or group names that you can add to the default

access roles is displayed. Note that some users or groups may already be assigned to default

access roles.

d. Select the role types that you want to assign to a user or group. For example, to assign a group to

the sender role, click the sender icon for the appropriate group name. The icon changes from

to

to show that you have added the user or group to the access role for the resource.

Chapter 6. Service integration 1359

e. Complete the previous step for each user or group that you want to add to access roles, and then

click Next. A summary of your role type assignments is displayed.

f. Click Previous to review and change your assignments, if required.

g. Click Finish to confirm your assignments. The Default access roles panel is redisplayed and shows

the new role type assignments.

5. Save your changes to the master configuration.

Results

The selected users and groups are added to selected default roles for the selected bus.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing users and groups from default roles:

Service integration bus security uses role-based authorization. By removing selected users and groups

from the default roles for a selected secured bus, you prevent those users and group members from

accessing the bus using the default roles.

 About this task

When you remove users and groups from the default roles for a bus, they can no longer access local bus

destinations that inherit default access permissions. Note that removing a user from the default roles does

not prevent that user from accessing the bus if they are also a member of a group that has been assigned

to the default roles for that bus.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage default

access roles. The Default access roles panel is displayed.

3. Expand the Default access header to list the users and groups that have been assigned to default

access roles for the selected bus.

4. Select the users and groups that you want to remove from the default access roles for this bus, and

click Remove.

5. Save your changes to the master configuration.

Results

The selected users and groups are removed from the default roles for the selected bus. The Default

access roles panel displays the changes to the default access role assignments.

What to do next

You can perform other security administration tasks by using the administrative console.

Administering destination roles

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups must have authority to perform messaging operations, at a bus destination. By administering

destination roles, you can control which users and groups can perform operations at a bus destination,

and the type of operation that they can perform.

1360 Administering WebSphere applications

About this task

You use the administrative console to administer users and groups in access roles for a destination. The

access roles available for a destination depend on the type of destination. The table below lists the roles

that you can assign for each destination type:

 Destination type Access roles

queue sender, receiver, browser, creator

port sender, receiver, browser, creator

webService sender, receiver, browser, creator

topicSpace sender, receiver

foreignDestination sender

alias sender, receiver, browser

In addition to controlling which users and groups have access to a specific local or foreign destination, you

can also control the inheritance of access roles for a specific local destination. In this case, the default

access roles that apply to all the destinations in the local bus namespace are added to any access roles

that have been added for a specific destination.

Use the following tasks to administer destination roles.

v Listing users and groups in bus destination roles by using the wsadmin tool

v Adding users and groups to bus destination roles by using the wsadmin tool

v Removing users and groups from bus destination roles by using the wsadmin tool

v Defining destination defaults inheritance by using the wsadmin tool

v Determining destination defaults inheritance by using the wsadmin tool

Listing users and groups in destination roles:

Service integration bus security uses role-based authorization. By listing the users and groups in the

destination roles for a selected secured bus, you can find out which users and groups are authorized to

access the bus, and its resources.

 About this task

In this task you use the administrative console to list all the users and groups in destination roles for

selected destinations. The list includes users and groups that have references in the service integration

role-based configuration; it does not include all the users and groups that exist in the user repository. The

permitted destination roles are sender, receiver, browser and creator, depending on the destination type.

Icons are used in the administrative console to represent the roles to which users and groups have been

assigned. For example, if the role type set icon (

) is displayed in the sender role for a group called

Group 1, it means that Group 1 has been assigned to the sender role for a selected destination. For a

complete description of all the icons used to represent role assignments in the administrative console,

refer to Access role assignments for bus security resources.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles. The Destinations panel lists all the destinations defined for the selected bus.

3. Select one or more destinations to work with:

v Click the name of a single destination.

v Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is

displayed in a collapsed section.

4. Expand a destination header.

Chapter 6. Service integration 1361

Results

The Destination access roles panel lists the users and groups in access roles for the expanded

destination.

What to do next

You can now administer the users and groups in destination roles at this destination.

Adding users and groups to destination roles:

Service integration bus security uses role-based authorization. By adding users and groups to the

destination roles for a secured bus, you can control which users and group members can perform

messaging operations at a bus destination.

 Before you begin

Ensure that the following conditions are met:

v Security is enabled for the bus. For more information, refer to “Securing buses” on page 1345.

v The users and groups that you want to add to destination roles must exist already in the user repository.

About this task

By adding users or groups to destination role, you grants the users or groups authority to perform the

operation defined by the role at a selected destination. The destination roles are sender, receiver, browser,

and creator, depending on the destination type.

In this task you use the administrative console Security wizard to retrieve selected users or groups from

the user repository, and add them to destination roles for selected bus destinations.

Note: To add a large number of users to destination roles, it is advisable to create a group in the user

repository, and add the group to the destination roles.

1. Start the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles. A list of the destinations defined for the selected bus is displayed in the Destinations

panel.

3. Select one or more destination to work with:

v Click a single destination name.

v Select the check boxes next to multiple destination names, and then click Manage Access Roles.

The Destination access roles panel is displayed. The information for each destination you have

selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles for this

destination. You can verify that the user or group you want to add does not already have a role at this

destination.

5. Click Add to launch the Security wizard. The wizard takes you through the following steps to add

selected users or groups to access roles for the expanded destination:

a. Search for the users or groups that you want to add to access roles for the expanded destination:

Users or Groups

Select either Users or Groups to specify whether you want to grant access roles to users

or groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user IDs or group

1362 Administering WebSphere applications

names in the user repository. Only user IDs or group names that match the search pattern

are retrieved, subject to the maximum number of search results. Wildcard characters are

allowed.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user IDs or group names you

want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the

information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to add to access roles

for the currently expanded destination, and click Next. A list of user IDs or group names that you

can add to destination roles is displayed. Note that some users or groups may already be assigned

to access roles for this destination.

d. Select the appropriate access role icon for the user ID or group name that you want to add to the

role at this destination. For example, select the Receiver icon for a user ID or group name that you

want to add to the receiver role. The icon changes from

to

to show that you have added

the user or group to the access role for the resource.

e. Repeat the previous step to add more users or groups to access roles for the currently expanded

destination, and then click Next. A summary of your access role assignments is displayed.

f. Click Previous to review and change your assignments, if required.

g. Click Finish to confirm your assignments.

6. Repeat steps 4 and 5 for each destination you want to work with.

7. Save your changes to the master configuration.

Results

The selected users and groups are added to the access roles for the currently expanded destination. The

new access role assignments are displayed in the Destination access roles panel.

Example

A group called MyGroup receives messages from three queues, Queue 1, Queue 2, and Queue 3. If you

want the group MyGroup to produce and consume messages at an additional destination, Queue 4, you

add MyGroup to Queue 4, and then add MyGroup to the sender and receiver roles for Queue 4.

What to do next

Use the administrative console to perform other security administrative tasks.

Removing users and groups from destination roles:

Service integration bus security uses role-based authorization. By removing users and groups from the

destination roles for a secured bus, you can prevent those users and group members from performing

messaging operations on the bus.

 About this task

When selected users and groups no longer require access to a destination, you can remove them from all

the roles for that destination.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage destination

access roles A list of the destinations defined for the selected bus is displayed in the Destinations

panel.

Chapter 6. Service integration 1363

3. Select one or more destinations to work with:

v Click a single destination name.

v Select the check boxes next to multiple destination names, and then click Manage Access Roles.

The Destination access roles panel is displayed. The information for each destination you have

selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles at this

destination, and verify that the user or group that you want to remove has a role at this destination.

5. Select the users and groups that you want to remove from all role types at this destination, and click

Remove.

6. Save your changes to the master configuration.

Results

The selected users and groups are removed from all role types at the selected destination. The Manage

access roles for users and groups panel displays the updated role type assignments.

Example

The members of three groups, Group A, Group B, and Group C, belong to the sender role and the

receiver role for two queue destination, Queue 1 and Queue 2. If Group B is no longer required to send

and receive messages on Queue 2, you can use this task to remove Group B from all the role types on

Queue 2.

What to do next

You can perform other security administration tasks by using the administrative console.

Enabling topic role inheritance:

Service integration bus security uses role-based authorization. When messaging security, and topic level

security are enabled, and users and groups require access in the sender and receiver roles to access a

topic in a publish/subscribe topic hierarchy. By default, topics inherit these roles from the parent topic. If

topic role inheritance has been disabled for a particular topic, you can restore it by using the administrative

console.

 Before you begin

You must ensure that the following conditions are met:

v Messaging security is enabled. For more information, refer to “Disabling bus security” on page 1346.

v Topic level security is enabled for the topic space. Check the setting Topic Access Check Required?

in the topic space destination configuration. For more information, refer to “Configuring bus destination

properties” on page 1303.

About this task

In this task you use the administrative console to restore topic role inheritance for selected topics. A topic

can only inherit the sender and receiver roles from the parent topic in the topic hierarchy.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topic access roles panel lists users and groups that

have been assigned role types for the selected topic.

3. Expand the topic name header to display details of the users and groups that have one or more

access roles for this topic.

1364 Administering WebSphere applications

4. Select the Inherit sender role from parent topic check box.

5. Select the Inherit receiver role from parent topic check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The select topic inherits access roles from the parent topic. The Topic access roles panel displays the

inherited access roles for the topic.

What to do next

You can perform other security administration tasks by using the administrative console.

Disabling topic role inheritance:

Service integration bus security uses role-based authorization. When messaging security, and topic level

security are enabled, users and groups require access in the sender and receiver roles to access a topic

in a publish/subscribe topic hierarchy. By default, topics inherit these roles from the parent topic. If you do

not want topics to inherit topic roles from the parent topic in the topic hierarchy, you can override topic role

inheritance by using the administrative console.

 Before you begin

About this task

In this task you use the administrative console to prevent a selected topic from inheriting authorization

roles from its parent topic.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topic access roles panel lists users and groups that

have been assigned role types for the selected topic.

3. Expand the topic name header to display details of the users and groups that have access one or

more access roles for the selected topic.

4. Clear the Inherit sender role from parent topic check box.

5. Clear the Inherit receiver role from parent topic check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The selected topic cannot inherit access roles from its parent topic. The Topic access roles panel displays

the changed access roles for the selected topic.

What to do next

You can perform other security administration tasks by using the administrative console.

Administering foreign bus roles

Service integration bus security uses role-based authorization. When messaging security is enabled,

groups of users require authority to send messages from a local bus destination to a foreign bus. By

listing, adding and removing users and groups in foreign bus roles, you can control who can send

messages to foreign buses.

Chapter 6. Service integration 1365

Before you begin

These tasks assumes that one or more foreign bus connections have been configured. For more

information, refer to “Configuring foreign bus connections” on page 1224.

About this task

The foreign bus connection represents another service integration bus. The bus is either in the same cell

as the local bus, or in a different cell, or it represents a WebSphere® MQ queue manager. From the local

bus, every other bus is regarded as a foreign bus, even if it is a bus in the same cell. Messages route to a

foreign bus either directly through a link between the local bus and the foreign bus, or indirectly through

one or more intermediate buses. A member of a group that belongs to the sender role on the local bus

and the foreign bus can send messages directly to the foreign bus. The sender role is the only foreign bus

role.

For more information about how to list, add and remove groups of users in foreign bus roles using the

administrative console, refer to the following tasks.

v “Adding users and groups to foreign bus roles”

v “Removing users and groups from foreign bus roles” on page 1368

v “Listing users and groups in foreign bus roles”

Listing users and groups in foreign bus roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to send messages from a secured local bus destination to a secured foreign

bus. By listing all the users and groups in foreign bus roles for a selected foreign bus, you can find out

who has authority to send messages from the local bus to the selected foreign bus.

 About this task

In this task you use the administrative console to list users and groups in the sender role for selected

foreign buses. The list includes users and groups that have references in the service integration

role-based configuration. It does not include all the users and groups that exist in the external user

repository.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage foreign bus

access roles. A list of all the foreign buses defined for the selected bus is displayed.

3. Select one or more foreign buses:

v Click the name of a single foreign bus.

v Select the check boxes next to multiple foreign buses and click Manage Access Roles.

The Foreign bus access roles panel is displayed. The access roles information for each foreign bus is

displayed in a collapsible section.

4. Expand the section header for a foreign bus.

Results

A list of all the users and groups that have been assigned to the sender role for the currently expanded

foreign bus is displayed.

What to do next

You can add and remove users and groups in the sender role for the selected foreign bus.

Adding users and groups to foreign bus roles:

1366 Administering WebSphere applications

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to send messages from a secured local bus destination to a secured foreign

bus. By adding selected users and groups to the sender role for a selected foreign bus, you can control

who has authority to send messages to the selected foreign bus.

 Before you begin

This task assumes that the following conditions have been met:

v One or more foreign bus connections have been configured for the local bus. For more information,

refer to “Configuring foreign bus connections” on page 1224.

v The users and groups that you want to add to foreign bus roles must exist in the user repository.

About this task

By default, when security is enabled, users and groups cannot send messages to a foreign bus. You need

to add them to the sender role for the foreign bus. In this task you uses an administrative console wizard

to select one or more foreign buses, retrieve selected users or groups from the potentially very large

number of users and groups in the user repository, and add them to the sender role for the selected

foreign buses.

1. Start the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage foreign bus

access roles. A list of the foreign buses defined for the selected bus is displayed in the Foreign buses

panel.

3. Select one or more foreign buses to work with:

v Click a single foreign bus name.

v Select the check boxes next to multiple foreign bus names, and then click Manage Access Roles.

The Foreign bus access roles panel is displayed. The access roles information for each foreign bus

you have selected is displayed in a collapsed section.

4. Expand a foreign bus header to list the users and groups that have been assigned to roles for this

foreign bus. You can verify that the user or group you want to add does not already have a role for this

foreign bus.

5. Click Add to launch the Security wizard. The wizard takes you through the following steps to add

selected users or groups to the sender role for the selected foreign bus:

a. Search for the users or groups that you want to add to the sender role for the expanded foreign

bus:

Users or Groups

Select either Users or Groups to specify whether you want to grant access roles to users

or groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user IDs or group

names in the user repository. Only user IDs or group names that match the search pattern

are retrieved, subject to the maximum number of search results. Wildcard characters are

allowed.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user IDs or group names you

want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the

information that you provided in the previous step.

Chapter 6. Service integration 1367

c. Select the check boxes next to the user IDs or group names that you want to add to the sender

role for the currently expanded foreign bus, and click Next. A list of users IDs or group names that

you can add to the sender role is displayed. Note that some users or groups may already be

assigned to the sender role for this foreign bus.

d. Select the Sender icon for a user ID or group name that you want to add to the sender role. The

icon changes from

to

to show that you have added the user or group to the access role for

the resource.

e. Repeat the previous step for each user or group you want to add to the sender role, and then click

Next. A summary of your role assignments is displayed.

f. Click Previous to review and change your assignments, if required.

g. Click Finish to confirm your assignments.

6. Save your changes to the master configuration.

Results

The selected users and groups are added to the sender role for the selected foreign bus. The new access

roles are displayed in the Foreign bus access roles panel.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing users and groups from foreign bus roles:

Service integration bus security uses role-based authorization. By removing users and groups from the

foreign bus roles for a selected secured local bus, you prevent those users and groups from sending

messages to the foreign bus.

 About this task

In this task you use the administrative console to remove selected users or groups from the sender role for

a selected foreign bus.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage foreign bus

access roles. A list of all the foreign buses defined for the selected bus is displayed.

3. Select one or more foreign buses to work with:

v Click a single foreign bus name.

v Select the check boxes next to multiple foreign bus names, and then click Manage Access Roles.

The Foreign bus access roles panel is displayed. The access roles information for each selected

foreign bus is displayed in a collapsed section.

4. Expand the section header for a foreign bus to display details for all the users and groups that have

the sender role for this foreign bus.

5. Select the users and groups that you want to remove from the sender role, and click Remove. The

selected users and groups are removed from the sender role for this foreign bus.

6. Save your changes to the master configuration.

Results

The selected users and groups are removed from the sender role for the selected foreign bus. The

Foreign bus access roles panel displays the changed access role assignments.

1368 Administering WebSphere applications

What to do next

You can perform other security administration tasks by using the administrative console.

Administering temporary destination prefix roles

Service integration bus security uses role-based authorization. A temporary destination prefix can have two

role types: creator and sender. The messaging engine uses the temporary destination prefix at runtime to

determine which users and groups have authority to create a temporary destination, and send messages

to temporary destinations. By administering temporary destination prefix roles for a bus, you control which

users and groups can create and send messages to temporary destinations for a selected bus.

Before you begin

Ensure that security is enabled for the bus. For more information, refer to “Securing buses” on page 1345.

About this task

By default, a bus does not contain any temporary destination prefixes. You use the administrative console

to add a new temporary destination prefix to the bus, and then assign selected users and groups to the

sender role for the new temporary destination prefix. The creator role is assigned by default. All

authenticated users can create temporary destinations by default. You can remove selected users and

groups from the sender role for a selected temporary destination prefix, and you can remove a selected

temporary destination prefix.

Use the following tasks to administer temporary destination prefix roles.

v “Adding users and groups to temporary destination prefix roles” on page 1370

v “Removing users and groups from temporary destination prefix roles” on page 1371

v “Listing users and groups in temporary destination prefix roles”

v “Removing a temporary destination prefix” on page 1372

Listing users and groups in temporary destination prefix roles:

Service integration bus security uses role-based authorization. Temporary destination prefix roles are used

to authorize access to the temporary destinations for a bus. By listing the users and groups in the

temporary destination prefix roles for a selected bus, you can find out which users and groups can create

temporary destinations, and send messages to temporary destinations for a selected bus.

 About this task

In this task you use the administrative console to list users and groups in temporary destination prefix

roles for the selected bus. The list includes users and groups that have references in the role-based

security configuration for service integration. It does not include all the users and groups that exist in the

external user repository.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage temporary

destination prefix access roles. The Temporary destination prefixes panel lists all the temporary

destination prefixes defined on the bus.

3. Select one or more temporary destination prefixes to work with:

v Click the name of a single temporary destination prefix.

v Select the check boxes next to multiple temporary destination prefixes, and click Manage Access

Roles.

The Temporary destination prefix access roles panel is displayed. The access roles information for

each temporary destination prefix is displayed in a collapsed section.

4. Expand the header for a selected temporary destination prefix to show its access roles.

Chapter 6. Service integration 1369

Results

The expanded section lists the users, groups and group members that are assigned to access roles for the

selected temporary destination prefix.

What to do next

You can now administer the users and groups in the sender role for a selected temporary destination

prefix.

Adding users and groups to temporary destination prefix roles:

Service integration bus security uses role-based authorization. The messaging engine uses the temporary

destination prefix at runtime to determine whether a client application is authorize to create, or send

messages to a particular temporary destination. By adding users and groups to temporary destination

prefix roles for a selected bus, you can control which users and groups can create temporary destinations,

and send messages to them.

 Before you begin

The users and groups that you want to add to temporary destination prefix roles must already exist in the

user repository.

About this task

By default, the bus security configuration does not contain any temporary destination prefixes. In this task,

you use the administrative console Security wizard to first add a new temporary destination prefix, and

then add users and groups to the sender role for the new temporary destination prefix. Note that the

creator role is assigned by default to the creator of the temporary destination; you cannot use the

administrative console to add users and groups to the creator role. By default, members of the All

Authenticated group have authority in the creator role for temporary destination prefixes.

1. Log into the administrative console. The Temporary destination prefixes panel lists all the temporary

destination prefixes defined for the selected bus. By default, this list is empty.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage temporary

destination prefix access roles

3. Click Add to launch the Security wizard:

a. Define the name of the temporary destination prefix, and identify the users or groups that you want

to add to the sender role for the temporary destination prefix:

Resource

This field is mandatory. Specify a name for the new temporary destination prefix.

Users or Groups

Select either Users or Groups to specify whether you want to grant access roles to users

or groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user identities or

group names in the user repository. Only user identities or group names that match the

search pattern are retrieved, subject to the maximum number of search results. Wild card

characters are allowed.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user identities or group names

you want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the

information that you provided in the previous step.

1370 Administering WebSphere applications

c. Select the check boxes for the user identities or group names that you want to assign to the sender

role for the temporary destination prefix, and click Next. Note that you cannot assign users and

groups to the creator role; it is assigned by default.

d. Select the Sender icon for each user identity or group name that you want to add to the sender

role. The icon changes from

to

to show that you have added the user or group to the

access role for the resource.

e. Click Next. A summary of your role type assignments is displayed.

f. Click Previous to review and change your role type assignments. Make your changes on the Select

role types page, and then click Next. Note that you cannot change the name of the temporary

destination prefix.

g. Click Finish to confirm your assignments. The role type assignments are saved to the master

configuration, and the new assignments are displayed in the Temporary destination prefixes panel.

4. Save your changes to the master configuration.

Results

The selected users, groups, and group members are added to the sender role for the selected temporary

destination prefix roles. The Manage access roles panel displays the new access roles.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing users and groups from temporary destination prefix roles:

Service integration bus security uses role-based authorization. When security is enabled, a temporary

destination prefix role is used to authorize access to temporary destinations. The temporary destination

prefix is used at runtime to create temporary destinations on the bus. By removing users and groups from

temporary destination prefix roles for a selected bus, you can prevent selected users and groups from

sending messages to temporary destinations on the bus.

 About this task

In this task you use the administrative console to remove users, groups, and group members from the

sender role for selected temporary destination prefixes. Note that you cannot use this task to remove

users and groups from the creator role. If you want to remove the creator role from a user or group, refer

to “Removing a temporary destination prefix” on page 1372.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage temporary

destination prefix access roles The Temporary destination prefixes panel lists all the temporary

destination prefixes defined for the selected bus.

3. Select one or more temporary destination prefixes to work with:

v Click the name of a single temporary destination prefixes.

v Select the check boxes next to multiple temporary destination prefixes, and click Manage Access

Roles.

The Temporary destination prefix access roles panel is displayed. The access roles information for

each temporary destination prefix is displayed in a collapsed section.

4. Expand the header for a selected resource to show its role type assignments.

5. Select the users and groups that you want to remove from the sender role for the currently selected

temporary destination prefix, and click Remove.

6. Save your changes to the master configuration.

Chapter 6. Service integration 1371

Results

The selected users, groups, and group members are removed from the sender role for the selected

temporary destination prefix. The Temporary destination prefix access roles panel is updated to show the

changes to the access role assignments.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing a temporary destination prefix:

A temporary destination prefix is used by the service integration bus security model to determine what

operations the creator of the temporary destination can perform. By removing a temporary destination

prefix, you remove the creator role from the identity of the user that created the temporary destination.

 About this task

A temporary destination prefix can have two authorization role types: creator and sender. In this task you

use the administrative console to remove a selected temporary destination prefix from a selected bus,

which removes the creator role from the user identity that created the temporary destination.

If you want to remove users and groups from the sender role for a temporary destination prefix, refer to

“Removing users and groups from temporary destination prefix roles” on page 1371.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage temporary

destination prefix access roles The Temporary destination prefixes panel lists all the temporary

destination prefixes defined for the selected bus.

3. Select the temporary destination prefix you want to remove.

4. Click Remove.

5. Save your changes to the master configuration.

Results

The selected temporary destination prefix is removed, and the creator role is removed from the user

identity that created the temporary destination.

What to do next

You can perform other security administration tasks by using the administrative console.

Administering topic space root roles

Service integration bus security uses role-based authorization. When messaging security is enabled,

groups of users require authority to send and receive messages from the topic space root in a

publish/subscribe topic hierarchy. By adding and removing users and groups in topic space root roles, you

can control access to the topic space root.

About this task

Topic space root (/) is also called the virtual root, and it is the highest level topic in a publish/subscribe

topic hierarchy. The hierarchy itself is called the topic space, and it is a type of destination. Note that these

tasks apply only to the topic space root; they do not apply to topics or a topic space. For information about

administering topic access roles, refer to “Administering topic roles” on page 1376, and for information

about administering topic space access roles, refer to “Administering destination roles” on page 1314.

1372 Administering WebSphere applications

You can add and remove users and groups in the sender and receiver roles for the topic space root. The

topic space root can also inherit access in the sender and receiver roles from the topic space, providing

the topic space is configured to inherit the default destination roles. For more information about topic

inheritance, refer to Topic security.

For the topic space root roles to have an effect, the Topic Access Check Required checkbox must be set

in the topic space configuration. For more information, refer to “Configuring bus destination properties” on

page 1303.

Use the following tasks to list, add and remove users and groups in the topic space root roles using the

administrative console.

v “Listing users and groups in topic space root roles”

v “Adding users and groups to topic space root roles”

v “Removing users and groups from topic space root roles” on page 1375

Listing users and groups in topic space root roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to send and receive messages from the topic space root in a

publish/subscribe topic hierarchy. By listing the users and groups in topic space root roles, you can find

out who has access to the topic space root for a selected topic space.

 About this task

Topic space root (/) is the highest level topic in a publish/subscribe topic hierarchy. The hierarchy itself is

called the topic space. In this task you use the administrative console wizard to list users and groups in

topic space root roles for a selected root topic.

This task applies to the topic space root only; it does not apply to the topics within the topic space, or to

the topic space. If you want to list users and groups in topic roles, refer to “Listing users and groups in

topic roles” on page 1376. If you want to list users and groups in a topic space (which is a type of

destination), refer to “Listing users and groups in destination roles” on page 1317.

The users and groups listed in this task have references in the service integration bus security

configuration. The list does not include all users and groups that exist in the external user repository.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles

Results

The Topic space root panel lists all the users and groups in topic space root roles for the selected bus.

What to do next

You can administer the role type assignments for the users and groups displayed.

Adding users and groups to topic space root roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to send and receive messages from the topic space root in a

publish/subscribe topic hierarchy. By adding users and groups to topic space root roles, you control access

to the root topic in a selected topic space.

Chapter 6. Service integration 1373

Before you begin

v The users and groups you want to add to topic space root roles must exist in the user repository.

v Topic space root roles are effective only when the Topic Access Check Required setting is enabled in

the configuration for a topic space. For more information, refer to “Configuring bus destination

properties” on page 1303.

About this task

Topic space root (/) is the highest level topic in a publish/subscribe topic hierarchy. The hierarchy itself is

called the topic space. Note that this task applies only to the topic space root; it does not apply to adding

users and groups to topics or a topic space. For information about adding users and groups to topic

access roles, refer to “Adding users and groups to topic roles” on page 1376, and for adding users and

groups to topic space access roles, refer to “Adding users and groups to destination roles” on page 1315.

You can add users and groups to the sender and receiver roles for the topic space root. The topic space

root can also inherit access in the sender and receiver roles from the topic space, providing the topic

space is configured to inherit the default destination roles. For more information about topic inheritance,

refer to Topic security.

By default, a topic space does not contain a root topic. In this task you use an administrative console

wizard to add a root topic to an existing topic space, retrieve the users and groups from the user

repository that you want to assign to roles on the new root topic, and add them to the root topic.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles. The Topic spaces panel lists the topic spaces defined on the selected bus.

3. Select the name of the topic space where you want to add a new root topic. The Topics panel displays

the selected topic space in a collapsible section.

4. Click Add to launch the Security wizard:

a. Identify the users or groups that you want to add to the sender and receiver roles for the new root

topic:

Users or Groups

Select either Users or Groups to specify whether you want to grant roles to users or

groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user IDs or group

names in the user repository. Only user IDs or group names that match the search pattern

are retrieved, subject to the maximum number of search results. You can use wildcard

characters in the search string.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user IDs or group names that you

want the administrative console to display.

b. Click Next. The wizard displays the new root topic, and lists the users IDs or group names in the

user repository that match the information that you provided in the previous step.

c. Select the check boxes next to the user IDs or group names that you want to assign to roles on the

new root topic.

d. Click Next. The wizard displays the topic role types that you can assign for the users or groups

you selected in the previous step. Role types might already have been assigned for a specific user

or group.

e. Select the role types for the selected users or groups. For example, to assign a user to the sender

role, select the Sender icon for the appropriate user ID. The icon changes from

to

to show

that you have added the user or group to the access role for the resource.

1374 Administering WebSphere applications

f. Click Next. A summary of your role type assignments for the root topic is displayed.

g. If you want to change your assignments, click Previous to return to the Select role types page,

change your assignments, and then click Next.

h. Click Finish to confirm your assignments. The role type assignments are saved to the master

configuration, and the new assignments are displayed in the Topics panel.

5. Save your changes to the master configuration.

Results

The selected users and groups are added to topic space root roles for the new root topic. The Manage

access roles panel displays the new access role assignments.

What to do next

You can perform additional security administration using the administrative console.

Removing users and groups from topic space root roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to send and receive messages from the topic space root in a

publish/subscribe topic hierarchy. By removing users and groups from topic space root roles, you prevent

them from accessing the root topic in a selected topic space.

 About this task

Topic space root (/) is the highest level topic in a publish/subscribe topic hierarchy. The hierarchy itself is

called the topic space. Note that this task applies only to the topic space root; it does not apply to

removing users and groups from topics or a topic space. For information about removing users and groups

from topic access roles, refer to “Removing users and groups from topic roles” on page 1378, and for

removing users and groups from topic space roles, refer to “Removing users and groups from destination

roles” on page 1316.

In this task you use the administrative console to remove selected users and groups from the sender and

receiver roles for the selected root topic.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles. The Topic spaces panel lists the topic spaces defined on the bus.

3. Select the topic space you want to work with. The selected topic space is displayed in the Topics

panel. The root topic (/) is displayed by default.

4. Select the topic space root. The Topic access roles panel lists the role type assignments for the topic

space root.

5. Select the names of the users, groups and group members that you want to remove from all role types

for the selected root topic, and click Remove.

6. Save your changes to the master configuration.

Results

The selected users and groups are removed from all roles for the selected root topic. The Topic access

roles panel is updated to show the changes to the access roles assignments.

What to do next

You can perform other security administration commands using the administrative console.

Chapter 6. Service integration 1375

Administering topic roles

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to access a topic in a publish/subscribe topic hierarchy. By adding and

removing users and groups in topic roles, you can control access to the topic.

About this task

You use the administrative console to list, add and remove users and groups in the sender and receiver

roles, and to define topic role inheritance. By default, a child topic inherits its topic roles from its parent

topic. You can change the default roles for a particular topic by adding or removing topic roles at the topic

level. You can also allow or block inheritance of topic roles at topic level.

You can add access roles for a topic before it exists. Topics are created at runtime only, and exist only for

as long as they are active.

For information about how to list, add, and remove users and groups in topic roles using the administrative

console, refer to the following tasks.

v “Listing users and groups in topic roles”

v “Adding users and groups to topic roles”

v “Removing users and groups from topic roles” on page 1378

v “Enabling topic role inheritance” on page 1364

v “Disabling topic role inheritance” on page 1365

Listing users and groups in topic roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, users

and groups require authority to access topics in a publish/subscribe topic hierarchy. By listing the users

and groups that are members of topic roles for a selected topic, you can find out who has authority to

send messages to and from the topic.

 About this task

In this task you use the administrative console to list users and groups that have access roles for a

selected topic in a selected topic space. The list includes users, groups and group members that have

references in the role-based security configuration for service integration. It does not list all the users and

groups that exist in the external user repository.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topics panel displays the information for the topic in a

collapsed section.

3. Expand the section header to display the users and groups that are assigned to role types for the

selected topic.

What to do next

You can add and remove users and groups in the topic roles for the selected topic.

Adding users and groups to topic roles:

Service integration bus security uses role-based authorization. When messaging security, and topic level

authorization is enabled, users and groups must be authorized to access topics in a publish/subscribe

topic hierarchy. By adding users and groups to topic roles, you control access to a topic in a selected topic

space.

1376 Administering WebSphere applications

Before you begin

v The users and groups you want to add to topic space root roles must exist in the user repository.

v Topic roles are effective only when the Topic Access Check Required setting is enabled in the

configuration for a topic space. For more information, refer to “Configuring bus destination properties” on

page 1303.

About this task

Topics are organized into one or more hierarchies within a topic space. If the Topic Access Check

Required setting is enabled for the topic space, a user must have authorization to access the topic itself.

You can add access roles to a topic before it is created at runtime. A topic inherits access roles from its

parent unless you explicitly block the inheritance. For more information, refer to “Enabling topic role

inheritance” on page 1364.

In this task you use an administrative console wizard to add users or groups to the sender and receiver

roles for a selected topic.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topic space root panel lists the users and groups that

are assigned to role types for the selected topic.

3. Click Add to launch the Security wizard:

a. Provide the following information to enable the wizard to identify the users or groups that you want

to add to role types for the selected topic:

Resource

Specify the name of the topic.

Users or Groups

Select either Users or Groups to specify whether you want to grant access roles to users

or groups.

Search pattern

This field is mandatory. Specify a search string that is matched against user IDs or group

names in the user repository. Only user IDs or group names that match the search pattern

are retrieved, subject to the maximum number of search results. Wild card characters are

allowed.

Maximum number of search results to display

This field is mandatory. Specify the maximum number of user IDs or group names you

want the administrative console to display.

b. Click Next. The wizard lists the users IDs or group names that match the information that you

provided in the previous step.

c. Select the check boxes for the user IDs or group names that you want to assign to roles for the

selected topic.

d. Click Next. The wizard lists the topic role types that you can assign for the users or groups you

selected in the previous step. Role types may already have been assigned for a specific user or

group.

e. Select the role types for each of the selected users or groups. For example, to assign a user ID to

the sender role, select the Sender icon for that user ID. The icon changes from

to

to show

that you have added the user or group to the access role for the resource.

f. Click Next. A summary of your role type assignments for the selected topic is displayed.

g. If you want to change your assignments, click Previous to return to the Select role types step.

Make changes to your assignments, and click Next to return to the Confirm step.

h. Click Finish to confirm your assignments and save your changes to the master configuration.

Chapter 6. Service integration 1377

Results

The updated role type assignments for the selected users or groups are displayed in the Topic access

roles panel.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing users and groups from topic roles:

Service integration bus security uses role-based authorization. When messaging security is enabled, and

the Topic access check required setting is enabled for the topic space, users and groups require

authority to access a topic in the topic space. By removing users and groups from all topic roles for a

selected topic, you prevent them from accessing the topic.

 Before you begin

Topic roles are effective only when the Topic Access Check Required setting is enabled in the

configuration for a topic space. For more information, refer to “Configuring bus destination properties” on

page 1303.

About this task

This task uses the administrative console to remove users and groups from both the sender and receiver

roles for a selected topic in a selected topic space.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topic access roles panel is displayed. The information

for the topic is displayed in a collapsed section.

3. Expand the section header to display the users and groups that are assigned to role types for the

selected topic.

4. Select the users and groups that you want to remove from the sender and receiver roles for the

selected topic, and click Remove.

5. Save your changes to the master configuration.

Results

The selected users and groups are removed from the sender and receiver roles for the selected topic. The

Topic access roles panel is updated to show that the selected users and groups have no topic role type

assignments.

Enabling topic role inheritance:

Service integration bus security uses role-based authorization. When messaging security, and topic level

security are enabled, and users and groups require access in the sender and receiver roles to access a

topic in a publish/subscribe topic hierarchy. By default, topics inherit these roles from the parent topic. If

topic role inheritance has been disabled for a particular topic, you can restore it by using the administrative

console.

 Before you begin

You must ensure that the following conditions are met:

v Messaging security is enabled. For more information, refer to “Disabling bus security” on page 1346.

1378 Administering WebSphere applications

v Topic level security is enabled for the topic space. Check the setting Topic Access Check Required?

in the topic space destination configuration. For more information, refer to “Configuring bus destination

properties” on page 1303.

About this task

In this task you use the administrative console to restore topic role inheritance for selected topics. A topic

can only inherit the sender and receiver roles from the parent topic in the topic hierarchy.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topic access roles panel lists users and groups that

have been assigned role types for the selected topic.

3. Expand the topic name header to display details of the users and groups that have one or more

access roles for this topic.

4. Select the Inherit sender role from parent topic check box.

5. Select the Inherit receiver role from parent topic check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The select topic inherits access roles from the parent topic. The Topic access roles panel displays the

inherited access roles for the topic.

What to do next

You can perform other security administration tasks by using the administrative console.

Disabling topic role inheritance:

Service integration bus security uses role-based authorization. When messaging security, and topic level

security are enabled, users and groups require access in the sender and receiver roles to access a topic

in a publish/subscribe topic hierarchy. By default, topics inherit these roles from the parent topic. If you do

not want topics to inherit topic roles from the parent topic in the topic hierarchy, you can override topic role

inheritance by using the administrative console.

 Before you begin

About this task

In this task you use the administrative console to prevent a selected topic from inheriting authorization

roles from its parent topic.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value → [Authorization Policy] Manage topic access

roles → topic_space_name → topic_name. The Topic access roles panel lists users and groups that

have been assigned role types for the selected topic.

3. Expand the topic name header to display details of the users and groups that have access one or

more access roles for the selected topic.

4. Clear the Inherit sender role from parent topic check box.

5. Clear the Inherit receiver role from parent topic check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Chapter 6. Service integration 1379

Results

The selected topic cannot inherit access roles from its parent topic. The Topic access roles panel displays

the changed access roles for the selected topic.

What to do next

You can perform other security administration tasks by using the administrative console.

Removing access roles from unknown users and groups

Service integration bus security uses role-based authorization. Users and groups are assigned to access

roles for specific bus resources. If a user or a group that has access roles is removed from the user

repository, it becomes an unknown user. You can identify the unknown users and groups for a selected

bus, and removes their access roles.

About this task

In this task, you use the administrative console to remove access roles from users and groups for

unknown users and groups.

1. Click Service integration → Buses → security_value → [Authorization Policy] Manage users and

groups not known to the user repository The Unknown users and groups panel lists all the users

and groups that have access roles assigned to them, but they are not known in the user registry.

2. Select the check boxes next to multiple user and group names.

3. Click Remove all roles. The access role assignments for the selected users and groups are removed.

4. Save your changes to the master configuration.

Results

The access role assignments are removed from the selected users and groups. The Unknown users and

groups panel is updated to show the changes to the role type assignments.

Administering permitted transports for a bus

Use these tasks to configure a transport policy for a service integration bus, and to administer the

transports chains that remote applications clients can use to connect to a service integration bus.

About this task

v “Administering permitted transports for a bus”

v “Listing permitted transports for a bus” on page 1381

v “Adding a permitted transport to a bus” on page 1382

v “Removing a permitted transport from a bus” on page 1382

Configuring a transport policy for a bus

By configuring a transport policy for the bus you can affect the security of messages in transit.

Before you begin

There are no prerequisites for this task.

About this task

The transport policy for a bus controls which transport mechanism remote application clients can use to

connect to the bus.

1. Log onto the administrative console.

1380 Administering WebSphere applications

2. Click Service integration → Buses → security_value. The configuration panel for the selected bus is

displayed

3. Choose one of the following transport policies for the bus:

Allow the use of all defined transport channel chains

Select this option to allow the bus to use unsecured ports.

Restrict the use of defined transport channel chains to those protected by SSL

Select this option to prevent the use of the InboundBasicMessaging port.

Restrict the use of defined transport channel chains to the list of permitted transports

Select this option if you want connecting client applications to use named transport channel

chains. This provides the highest level of control over the use of transport channel chains.

4. Click Apply.

5. Save your changes to the master configuration.

Results

The transport policy you have configured for the selected bus controls how application clients connect to

the bus.

What to do next

You can use the administrative console to add and remove transport chains in the list of permitted

transports for the bus.

Listing permitted transports for a bus

Use this task to display a list of the transport chains that are available for a remote client application to

use to connect to a selected service integration bus.

Before you begin

The transport policy for the bus must be set to the option Restrict the use of defined transport channel

chains to the list of permitted transports for this task to have an effect. For more information about how

to configure the transport policy for the bus, refer to “Configuring a transport policy for a bus” on page

1380.

About this task

A permitted transport is a transport chain that a remote client application can use to connect to the bus. In

this task, you use the administrative console to list all the permitted transports for a selected bus.

1. Log onto the administrative console.

2. Click Service integration → Buses → security_value → [Additional Properties] Permitted

Transports.

Results

The Permitted transports panel displays the list of permitted transports for the selected bus.

What to do next

You can use the administrative console to add and remove transport chains in the list of permitted

transports to control which transport chains a remote client application can use to connect to the bus.

Chapter 6. Service integration 1381

Adding a permitted transport to a bus

Use this task to make a new transport chain available to a remote client application to use to connect to a

service integration bus.

Before you begin

The transport policy for the bus must be set to the option Restrict the use of defined transport channel

chains to the list of permitted transports for this task to have an effect. For more information about how

to configure the transport policy for the bus, refer to “Configuring a transport policy for a bus” on page

1380.

About this task

A permitted transport is a transport chain that a remote client application can use to connect to the bus. If

you want to allow remote client applications to connect to the bus using a new transport chain, you must

add the new transport chain to the list of permitted transports for the bus. In this task, you use the

administrative console to add a new transport chain to the list of permitted transports for a selected bus.

1. Log onto the administrative console.

2. Click Service integration → Buses → security_value → [Additional Properties] Permitted

Transports. The Permitted transports panel displays the list of permitted transports for the selected

bus.

3. Click New.

4. Select the name of the transport chain you want to add in the list box.

5. Click OK.

6. Save your changes to the master configuration.

Results

The new transport name is displayed in the list of permitted transports, and its is available for use by a

remote client application to connect to the bus.

What to do next

You can use the administrative console to remove transport chains from a bus.

Removing a permitted transport from a bus

Use this task to remove a selected transport chain from the list of permitted transport chains for a selected

service integration bus.

Before you begin

The transport policy for the bus must be set to the option Restrict the use of defined transport channel

chains to the list of permitted transports for this task to have an effect. For more information about how

to configure the transport policy for the bus, refer to “Configuring a transport policy for a bus” on page

1380.

About this task

A permitted transport is a transport chain that a remote client application can use to connect to the bus. If

you want to prevent a remote client application from using a particular transport chain to connect to the

bus, you can remove the transport chain from the list of permitted transports for the bus. In this task, you

use the administrative console to remove a transport chain from the list of permitted transports for a

selected bus.

1. Log onto the administrative console.

1382 Administering WebSphere applications

2. Click Service integration → Buses → security_value → [Additional Properties] Permitted

Transports. The Permitted transports panel displays the list of permitted transports for the selected

bus.

3. Select the name of the transport chain you want to remove.

4. Click Delete. The Permitted transports panel displays an updated list of permitted transports for the

selected bus.

5. Save your changes to the master configuration.

Results

The selected transport chain is removed from the list of permitted transports for the selected bus, and a

remote client can no longer use it to connect to the bus.

What to do next

You can use the administrative console to manage the transport policy for the bus.

Configuring bus security using an administrative console panel

Use this task to enable or disable messaging security, and configure security properties for an existing

service integration bus.

Before you begin

The bus must exist in the administrative console. If you want to create a new bus, refer to “Adding buses”

on page 1197.

About this task

This task uses the Bus Security administrative console panel. You can launch the Bus security wizard from

the panel, or specify individual security properties directly in the panel. The bus security properties are

effective only when administrative security for the cell is enabled. If the wizard detects that administrative

security is disabled, it prompts you to enable it.

The security properties available to a particular bus depend on the versions of the bus members. If the

bus has a WebSphere Application Server Version 6.x bus member, you must specify the global security

domain. The bus cannot use cell level, or custom security domains. You must also specify an inter-engine

authentication alias to prevent unauthenticated messaging engines from establishing a connection with the

bus. If the bus contains Version 7.0 bus members only, you can specify any type of security domain, and

you do not need to specify an inter-engine or mediation authentication alias.

If you want to run mediations across multiple security domains, you can specify a single server identity for

the bus, rather than specify a mediation authentication alias for each domain. You can also use a server

identity to run mediations on the global domain.

1. Log into the administrative console.

2. Click Service integration → Buses → security_value. security_value is either Enabled or Disabled,

depending on the security status of the bus.

3. Click Launch Bus Security Wizard to launch the wizard, or specify the following properties directly:

Enable bus security

Bus security is enabled by default. Clear this check box if you do not want a secure bus. The

check box is read-only if administrative security is disabled.

Inter-engine authentication alias

The name of the authentication alias used to authorize communication between messaging

engines on the bus. Specify an inter-engine authentication alias if the bus has a Version 6.x

Chapter 6. Service integration 1383

bus member, bus security is enabled, and you want to prevent unauthorized messaging

engines from establishing a connection with the bus.

Permitted transports

Specify one of the following transports for the bus:

v Any messaging transport chain defined to any bus member.

v Only messaging transport chains that are protected by an SSL chain.

v Only the transports specified in the list of permitted transports.

If you want to add and remove permitted transports, click Service integration → Buses →

security_value → [Additional Properties] Permitted Transports.

Use the Server ID when running mediations

Check this option if you want to run mediations using the server identity, instead of using a

mediation authentication alias.

 Mediations are deployed as applications, and run in the domain used by the application server,

not the bus domain. If you want to run a mediation on multiple servers in different domains,

you must ensure that the user identity in the mediation authentication alias exists in the

configuration for each domain. Alternatively, you can choose to use the server identity option.

You can use this option when multiple domains are not in use.

Bus security domain

Specify one of the following security domains for the bus:

Global domain

You must specify the global domain if the bus contains a Version 6.x bus member, or

you do not want the bus to use multiple domains.

Cell level domain

Specify the cell-level security domain if the bus has Version 7.0 bus members only,

and you want the bus to share security settings with the administrative cell.

Custom domain

Specify a custom security domain if the bus has Version 7.0 bus members only, and

you want the bus to use a security domain that is used by another resource, or you

want to create a new security configuration for this bus.

4. Save your changes to the master configuration.

Results

You have configured security properties for the selected bus.

What to do next

You can use the administrative console to control access to the bus.

Securing messages between messaging buses

Use these tasks to administer the access control security associated with sending messages between

buses.

About this task

v “Protecting messages transmitted between buses”

v “Administering access to foreign destinations” on page 1385

Protecting messages transmitted between buses

Use this task to protect the integrity of the data that is transmitted between secured linked service

integration buses.

1384 Administering WebSphere applications

Before you begin

v Review the information in the topics Secure transport considerations and Configuring transport chains.

v Configure a transport policy for the bus, as described in the topic “Configuring a transport policy for a

bus” on page 1380.

About this task

In this task, you configure transport chains for the remote bus to ensure that only secured inbound

transport chains can contact the messaging engines on the server. The remote bus may be a foreign bus,

or an WebSphere MQ link.

1. Ensure that the linked buses are secured. For further information, see “Securing buses” on page 1345.

2. Configure the Target inbound transport chain property for the foreign bus, or WebSphere MQ link, as

appropriate:

v For connections to a foreign bus, refer to “Connecting service integration buses to use point-to-point

messaging” on page 1233 or “Connecting service integration buses to use publish-subscribe

messaging” on page 1235

v For connections to WebSphere MQ, refer to “Creating a new WebSphere MQ link” on page 1694.

Results

You have configured the Target inbound transport chains for the remote service integration bus.

What to do next

Administering access to foreign destinations

Use these tasks to administer the access control security associated with sending messages to foreign

bus destinations.

About this task

To define the authentication information used in the access control checks that are performed when a

message is sent to a destination in a foreign bus, complete the following steps:

v Define the required authorization permissions to allow a sender to access a destination on a foreign

bus. These can be defined using either a foreign bus definition, as described in “Administering foreign

bus roles” on page 1365, or a foreign bus destination definition, as described in “Administering

destination roles” on page 1314. These permissions are used when the message is sent, to check that

the sender is allowed to access the foreign bus.

v The administrator of the foreign bus must define the required authorization permissions to allow the

messages to access the destination on the foreign bus. These permissions are used when the message

enters the foreign bus.

v Define the authorization permissions to allow any messages entering your bus from the foreign bus to

access the required destinations.

Securing access to a foreign bus

You can secure the link between a local bus and a foreign bus.

Before you begin

Before you can secure the link between a local bus and a foreign bus, there must be foreign bus

connection on the local bus, and therefore a link between the buses.

Chapter 6. Service integration 1385

friend.was/ae/trun_chain_transport.html

About this task

This task summarizes the significant tasks to secure the link between a local bus and a foreign bus. For

more general information about service integration bus security, see “Security” on page 1184.

When you create a foreign bus connection, there are some options to secure the connection during that

procedure.

1. Enable security on the service integration bus and the foreign bus. See “Disabling bus security” on

page 1346.

2. Secure the link between the buses. See “Securing messages between messaging buses” on page

1384.

3. Grant access to the local bus for users who will be sending messages to the foreign bus. See

“Administering the bus connector role” on page 1355.

4. Grant access to the foreign bus for users who will be sending messages to it. See “Administering

foreign bus roles” on page 1365.

5. Optional: Give users access to foreign or alias destinations that will forward messages to a foreign

bus. See “Administering destination roles” on page 1314.

Securing links between messaging engines

When security is enabled, messaging engines in a mixed version bus establish trust using an

authentication alias.

Before you begin

You must ensure that the user ID that you intend to use for the authentication alias meets the following

conditions:

v It exists in the user registry

v It is used only for the purpose of messaging engine to messaging engine authentication.

v It has not been added to the bus connector access role.

About this task

If you have a secure, mixed version bus, you must define an Inter-engine authentication alias for use in

preventing unauthorized messaging engines from establishing a connection. The Inter-engine

authentication alias is used by messaging engines to establish trust in the following scenarios:

v A WebSphere Application Server Version 6.x messaging engine initiates a link with a Version 7.0

messaging engine.

v A Version 7.0 messaging engine initiates a link with a Version 6.x messaging engine.

Trust between Version 7.0 messaging engines is established using a Lightweight Third Party

Authentication (LTPA) token.

1. In the navigation pane, click Service integration → Buses → security_value. The bus security

configuration panel is displayed.

2. In the Inter-engine authentication alias field, select an authentication alias.

3. Click OK.

4. Save your changes to the master configuration.

Results

You have selected an Inter engine authentication alias for the bus to use in establishing trust between

mixed version messaging engines.

1386 Administering WebSphere applications

What to do next

If you require additional security, you can configure the SSL certificate stores to restrict objects that can

make an SSL connection, and thereby connect to the bus. For more information see Configuring secure

sockets layer.

Controlling which foreign buses can link to your bus

Use this task to control which foreign buses are allowed to link to your bus.

About this task

When messaging security is enabled, it is important that only authorized foreign buses are allowed to link

to your bus.

To control which foreign buses can create a link to your bus, complete the following steps:

1. Set the authentication alias property on the foreign bus connection to be used for authentication of the

foreign bus joining your bus, as described in “Connecting service integration buses to use

point-to-point messaging” on page 1233 or “Connecting service integration buses to use

publish-subscribe messaging” on page 1235.

2. If you require extra security, configure the SSL certificate stores to restrict who can make an SSL

connection, and hence link to the bus. For more information, see Configuring secure sockets layer.

Securing database access

How to protect the data store from access by unauthorized users.

About this task

To secure access to the data store, you must configure a user name and password on the data store for

the messaging engine. If you want to apply additional levels of security such as encrypting the contents of

the database, use the specific security features provided by your database.

Securing mediations

Use the following tasks to secure mediations at an operations level. For example, a mediation inherits its

identity from a the messaging engine, but you might want to specify an alternative identity for the

mediation to use.

Chapter 6. Service integration 1387

friend.was/ae/tsec_sslconfiguration.html
friend.was/ae/tsec_sslconfiguration.html
friend.was/ae/tsec_sslconfiguration.html

1388 Administering WebSphere applications

Chapter 7. Data access resources

Task overview: Accessing data from applications

Various enterprise information systems (EIS) use different methods for storing data. These backend data

stores might be relational databases, procedural transaction programs, or object-oriented databases.

About this task

IBM WebSphere Application Server provides several options for accessing an information system’s

backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional

package API.

v Programming to the procedural backend transaction through various Jave EE Connector Architecture

(JCA) 1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the

backend store through either the JDBC API or JCA compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and

function that hide much of the complexity associated with accessing relational databases.

For all of these options, except for using the JCA 1.0 or 1.5 compliant connectors, the prerequisite Web

site details which databases and drivers are currently supported.

1. Develop data access applications. Develop your application to access data using the various ways

available through the application server. You can access data through APIs, container-managed

persistence beans, bean-managed persistence beans, session beans, or Web components.

2. Assemble data access applications using the assembly tool. Assemble your application by creating and

mapping resource references.

3. Prepare for deployment: Ensure that the appropriate database objects are available. Create or

configure any databases or tables required, set necessary configuration parameters to handle

expected load, and configure any necessary JDBC providers and data source objects for servlets,

enterprise beans, and client applications to use.

4. Install the application on your application server.

Resource adapters

A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS). A resource adapter plugs into an application server and provides

connectivity between the EIS, the application server, and the enterprise application.

WebSphere Application Server supports JCA versions 1.0 and 1.5 including additional, configurable

features for JCA 1.5 resource adapters with activation specifications that handle inbound requests.

Data access for container-managed persistence (CMP) beans is indirectly managed by the WebSphere

Persistence Manager. The JCA specification supports persistence manager delegation of the data access

to the JCA resource adapter without knowing the specific backend store. For the relational database

access, the persistence manager uses the relational resource adapter to access the data from the

database.

You can find the supported database platforms for the JDBC API at the WebSphere Application Server

prerequisite Web site.

© Copyright IBM Corp. 2008 1389

Java EE Connector Architecture resource adapters

An application server vendor extends its system once to support the Java Platform, Enteprise Edition

Connector Architecture (JCA) and is then assured of seamless connectivity to multiple EISs. Likewise, an

EIS vendor provides one standard resource adapter with the capability to plug into any application server

that supports the connector architecture.

The product supports any resource adapter that implements version 1.0 or 1.5 of this specification. IBM

supplies resource adapters for many enterprise systems separately from the WebSphere Application

Server package, including (but not limited to): the Customer Information Control System (CICS®), Host

On-Demand (HOD), Information Management System (IMS™), and Systems, Applications, and Products

(SAP) R/3 .

The general approach to writing an application that uses a JCA resource adapter is to develop EJB

session beans or services with tools such as Rational Application Developer. The session bean uses the

javax.resource.cci interfaces to communicate with an enterprise information system through the resource

adapter.

WebSphere Relational Resource Adapter

WebSphere Application Server provides the WebSphere Relational Resource Adapter implementation. This

resource adapter provides data access through JDBC calls to access the database dynamically. The

connection management is based on the JCA connection management architecture and provides

connection pooling, transaction, and security support. The WebSphere RRA is installed and runs as part of

WebSphere Application Server, and needs no further administration.

The RRA supports both the configuration and use of JDBC data sources and Java EE Connection

Architecture (JCA) connection factories. The RRA supports the configuration and use of data sources

implemented as either JDBC data sources or Java EE Connector Architecture connection factories. Data

sources can be used directly by applications, or they can be configured for use by container-managed

persistence (CMP) entity beans.

For more information about the WebSphere Relational Resource Adapter, see the following topics:

v For information about resource adapters and data access, see “Data access portability features” on

page 1391

v For RRA settings, see “WebSphere relational resource adapter settings”

v For information about enterprise beans, see EJB applications

WebSphere relational resource adapter settings

Use this page to view the settings of the WebSphere relational resource adapter. This adapter is

preinstalled in the product to provide access to relational databases.

Note: Although the default relational resource adapter settings are viewable, you cannot make changes to

them.

To view this administrative console page, click Resources > Resource adapters > Resource adapters.

Expand the Preferences section at the top of the page. Select Show built-in resources. The table of

configured resource adapters now displays the WebSphere Relational Resource Adapter.

Name:

Specifies the name of the resource provider.

 Data type String

1390 Administering WebSphere applications

Description:

Specifies a description of the relational resource adapter.

 Data type String

Archive path:

Specifies the path to the Resource Adapter Archive (RAR) file containing the module for this resource

adapter.

 Data type String

Class path:

Specifies a list of paths or Java Archive (JAR) file names, which together form the location for the resource

provider classes.

 Data type String

Native path:

Specifies a list of paths that forms the location for the resource provider native libraries.

 Data type String

Data access portability features

These interfaces work with the relational resource adapter (RRA) to make database-specific functions

operable on connections between the application server and that database.

In other words, your applications can access data from different databases, and use functions that are

specific to the database, without any code changes. Additionally, WebSphere Application Server enables

you to plug in a data source that is not supported by WebSphere persistence. However, the data source

must be implemented as either the XADataSource type or the ConnectionPoolDataSource type, and it

must be in compliance with the JDBC 2.x specification.

You can achieve application portability through the following:

DataStoreHelper interface

With this interface, each data store platform can plug in its own private datastore specific functions

that the relational resource adapter runtime uses. WebSphere Application Server provides an

implementation for each supported JDBC provider.

 The interface also provides a GenericDataStoreHelper class for unsupported data sources to use.

You can subclass the GenericDataStoreHelper class or other WebSphere provided helpers to

support any new data source.

Note: If you are configuring data access through a user-defined JDBC provider, do not implement

the DataStoreHelper interface directly. Either subclass the GenericDataStoreHelper class or

subclass one of the DataStoreHelper implementation classes provided by IBM (if your

database behavior or SQL syntax is similar to one of these provided classes).

For more information, see the API documentation DataStoreHelper topic (as listed in the API

documentation index).

Chapter 7. Data access resources 1391

The following code segment shows how a new data store helper is created to add new error

mappings for an unsupported data source.

public class NewDSHelper extends GenericDataStoreHelper

{

 public NewDSHelper(java.util.Properties dataStoreHelperProperties)

 {

 super(dataStoreHelperProperties);

 java.util.Hashtable myErrorMap = null;

 myErrorMap = new java.util.Hashtable();

 myErrorMap.put(new Integer(-803), myDuplicateKeyException.class);

 myErrorMap.put(new Integer(-1015), myStaleConnectionException.class);

 myErrorMap.put("S1000", MyTableNotFoundException.class);

 setUserDefinedMap(myErrorMap);

 ...

 }

}

WSCallHelper class

This class provides two methods that enable you to use vendor-specific methods and classes that

do not conform to the standard JDBC APIs (and are not part of WebSphere Application Server

extension packages).

v jdbcCall() method

By using the static jdbcCall() method, you can invoke vendor-specific, nonstandard JDBC

methods on your JDBC objects. (For more information, see the API documentation

WSCallHelper topic.) The following code segment illustrates using this method with a DB2 data

source:

Connection conn = ds.getConnection();

// get connection attribute

String connectionAttribute =(String) WSCallHelper.jdbcCall(DataSource.class, ds,

 "getConnectionAttribute", null, null);

// setAutoClose to false

WSCallHelper.jdbcCall(java.sql.Connection.class,

conn, "setAutoClose",

new Object[] { new Boolean(false)},

new Class[] { boolean.class });

// get data store helper

DataStoreHelper dshelper = WSCallHelper.getDataStoreHelper(ds);

v jdbcPass() method

Use this method to exploit the nonstandard JDBC classes that some database vendors provide.

These classes contain methods that require vendors’ proprietary JDBC objects to be passed as

parameters.

In particular, implementations of Oracle can involve use of nonstandard classes furnished by the

vendor. Methods contained within these classes include:

oracle.sql.ArrayDescriptor ArrayDescriptor.createDescriptor(java.lang.String, java.sql.Connection)

oracle.sql.ARRAY new ARRAY(oracle.sql.ArrayDescriptor, java.sql.Connection, java.lang.Object)

oracle.xml.sql.query.OracleXMLQuery(java.sql.Connection, java.lang.String)

oracle.sql.BLOB.createTemporary(java.sql.Connection, boolean, int)

oracle.sql.CLOB.createTemporary(java.sql.Connection, boolean, int)

oracle.xdb.XMLType.createXML(java.sql.Connection, java.lang.String)

The following code sample demonstrates how to use jdbcPass to call the Oracle method

XMLType.createXML on a connection. This Oracle function creates an XML type object out of the

XML data that the database passes to your application.

XMLType poXML = (XMLType)(WSCallHelper.jdbcPass(XMLType.class,

"createXML", new Object[]{conn,poString},

 new Class[]{java.sql.Connection.class, java.lang.String.class},

 new int[]{WSCallHelper.CONNECTION,WSCallHelper.IGNORE}));

For more examples of using jdbcPass and a complete list of method parameters, see the API

documentation for the WSCallHelper class. In this information center, access the API

documentation with the following steps:

1392 Administering WebSphere applications

1. Click Reference > Developer API documentation > Application programming interfaces

2. Click com.ibm.websphere.rsadapter

3. Under the Class Summary heading, click WSCallHelper

The first section on jdbcPass discusses using the method to call database static methods. The

second section on jdbcPass addresses database non-static methods.

Note: Use of the jdbcPass() method causes the JDBC object to be used outside of the

protective mechanisms of WebSphere Application Server. Performing certain operations

(such as setting autoCommit, or transaction isolation settings, etc.) outside of these

protective mechanisms will cause problems with the future use of these pooled

connections. IBM does not guarantee stability of the object after invocation of this

method; it is the user’s responsibility to ensure that invocation of this method does not

perform operations that harm the object. Use at your own risk.

Because of these potential problems, WebSphere Application Server strictly controls

which methods are allowed to be invoked using the jdbcPass() method support. If you

require support for a method that is not listed previously in this document, contact

WebSphere Application Server Support with information on the method you require.

JDBC providers

Installed applications use JDBC providers to interact with relational databases.

The JDBC provider object supplies the specific JDBC driver implementation class for access to a specific

vendor database. To create a pool of connections to that database, you associate a data source with the

JDBC provider. Together, the JDBC provider and the data source objects are functionally equivalent to the

Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection factory, which

provides connectivity with a non-relational database.

For a current list of supported providers, see the WebSphere Application Server prerequisite Web site. For

detailed descriptions of the providers, including the supported data source classes and their required

properties, refer to the topics on data source required minimum required settings, by vendor.

Data sources

Installed applications use a data source to obtain connections to a relational database. A data source is

analogous to the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection

factory, which provides connectivity to other types of enterprise information systems (EIS).

A data source is associated with a JDBC provider, which supplies the driver implementation classes that

are required for JDBC connectivity with your specific vendor database. Application components transact

directly with the data source to obtain connection instances to your database. The connection pool that

corresponds to each data source provides connection management.

You can create multiple data sources with different settings, and associate them with the same JDBC

provider. For example, you might use multiple data sources to access different databases within the same

vendor database application. WebSphere Application Server requires JDBC providers to implement one or

both of the following data source interfaces, which are defined by Sun Microsystems. These interfaces

enable the application to run in a single-phase or two-phase transaction protocol.

v ConnectionPoolDataSource - a data source that supports application participation in local and global

transactions, excepting two-phase commit transactions. When a connection pool data source is involved

in a global transaction, transaction recovery is not provided by the transaction manager. The application

is responsible for providing the backup recovery process if multiple resource managers are involved.

Note: A connection pool data source does support two-phase commit transactions in these cases:

Chapter 7. Data access resources 1393

– the data source is making use of Last participant support. Last participant support enables a

single one-phase commit resource to participate in a global transaction with one or more

two-phase commit resources.

For more information, consult the article Using one-phase and two-phase commit resources in

the same transaction.

v XADataSource - a data source that supports application participation in any single-phase or two-phase

transaction environment. When this data source is involved in a global transaction, the product

transaction manager provides transaction recovery.

Prior to version 5.0 of the application server, the function of data access was provided by a single

connection manager (CM) architecture. This connection manager architecture remains available to support

Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications, but another connection manager architecture

is provided, based on the JCA architecture supporting the J2EE 1.3 application style, J2EE 1.4 and Java

EE applications.

These architectures are represented by two types of data sources. To choose the right data source,

administrators must understand the nature of their applications, EJB modules, and enterprise beans.

v Data source (WebSphere Application Server V4) - This data source runs under the original CM

architecture. Applications using this data source behave as if they were running in Version 4.0.

v Data source - This data source uses the JCA standard architecture to provide support for J2EE version

1.3 and 1.4, as well as Java EE applications. It runs under the JCA connection manager and the

relational resource adapter.

Choice of data source

v J2EE 1.2 application - all EJB 1.1 enterprise beans, JDBC applications, or Servlet 2.2 components must

use the 4.0 data source.

v J2EE 1.3 (and subsequent releases) application -

– EJB 1.1 module - all EJB 1.x beans must use the 4.0 data source.

– EJB 2.0 (and subsequent releases) module - enterprise beans that include container-managed

persistence (CMP) Version 1.x, 2.0, and beyond must use the new data source.

– JDBC applications and Servlet 2.3+ components - must use the new data source.

Data access beans

Data access beans provide a rich set of features and function, while hiding much of the complexity

associated with accessing relational databases.

They are Java classes written to the Enterprise JavaBeans specification.

You can use the data access beans in JavaBeans-compliant tools, such as the IBM Rational Application

Developer. Because the data access beans are also Java classes, you can use them like ordinary classes.

The data access beans (in the package com.ibm.db) offer the following capabilities:

Feature

Details

Caching query results

You can retrieve SQL query results all at once and place them in a cache. Programs using the

result set can move forward and backward through the cache or jump directly to any result row in

the cache.

 For large result sets, the data access beans provide ways to retrieve and manage packets,

subsets of the complete result set.

Updating through result cache

Programs can use standard Java statements (rather than SQL statements) to change, add, or

delete rows in the result cache. You can propagate changes to the cache in the underlying

relational table.

1394 Administering WebSphere applications

Querying parameter support

The base SQL query is defined as a Java String, with parameters replacing some of the actual

values. When the query runs, the data access beans provide a way to replace the parameters with

values made available at run time. Default mappings for common data types are provided, but you

can specify whatever your Java program and database require.

Supporting metadata

A StatementMetaData object contains the base SQL query. Information about the query (metadata)

enables the object to pass parameters into the query as Java data types.

 Metadata in the object maps Java data types to SQL data types (as well as the reverse). When

the query runs, the Java-datatyped parameters are automatically converted to SQL data types as

specified in the metadata mapping.

When results return, the metadata object automatically converts SQL data types back into the

Java data types specified in the metadata mapping.

Connection management architecture

The connection management architecture for both relational and procedural access to enterprise

information systems (EIS) is based on the Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) specification. The Connection Manager (CM), which pools and manages connections

within an application server, is capable of managing connections obtained through both resource adapters

(RAs) defined by the JCA specification, and data sources defined by the Java Database Connectivity

(JDBC) 2.0 (and later) Extensions specification.

To make data source connections manageable by the CM, the WebSphere Application Server provides a

resource adapter (the WebSphere Relational Resource Adapter) that enables JDBC data sources to be

managed by the same CM that manages JCA connections. From the CM point of view, JDBC data

sources and JCA connection factories look the same. Users of data sources do not experience any

programmatic or behavioral differences in their applications because of the underlying JCA architecture.

JDBC users still configure and use data sources according to the JDBC programming model.

Applications migrating from previous versions of WebSphere Application Server might experience some

behavioral differences because of the specification changes from various Java EE requirements levels.

These differences are not related to the adoption of the JCA architecture.

If you have Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications using the JDBC API that you wish

to run in WebSphere Application Server 6.0 and later, the JDBC CM from Application Server version 4.0 is

still provided as a configuration option. Using this configuration option enables J2EE 1.2 applications to run

unaltered. If you migrate a Version 4.0 application to Version 6.0 or later, using the latest migration tools,

the application automatically uses the Version 4.0 connection manager after migration. However, EJB 2.x

modules in J2EE 1.3, J2EE 1.4 and Java Platform, Enterprise Edition (Java EE) applications cannot use

the JDBC CM from WebSphere Application Server Version 4.0.

Connection pooling

Using connection pools helps to both alleviate connection management overhead and decrease

development tasks for data access.

Each time an application attempts to access a backend store (such as a database), it requires resources

to create, maintain, and release a connection to that datastore. To mitigate the strain this process can

place on overall application resources, the Application Server enables administrators to establish a pool of

backend connections that applications can share on an application server. Connection pooling spreads the

connection overhead across several user requests, thereby conserving application resources for future

requests.

Chapter 7. Data access resources 1395

The application server supports JDBC 4.0 APIs for connection pooling and connection reuse. The

connection pool is used to direct JDBC calls within the application, as well as for enterprise beans using

the database.

Benefits of connection pooling

Connection pooling can improve the response time of any application that requires connections, especially

Web-based applications. When a user makes a request over the Web to a resource, the resource

accesses a data source. Because users connect and disconnect frequently with applications on the

Internet, the application requests for data access can surge to considerable volume. Consequently, the

total datastore overhead quickly becomes high for Web-based applications, and performance deteriorates.

When connection pooling capabilities are used, however, Web applications can realize performance

improvements of up to 20 times the normal results.

With connection pooling, most user requests do not incur the overhead of creating a new connection

because the data source can locate and use an existing connection from the pool of connections. When

the request is satisfied and the response is returned to the user, the resource returns the connection to the

connection pool for reuse. The overhead of a disconnection is avoided. Each user request incurs a fraction

of the cost for connecting or disconnecting. After the initial resources are used to produce the connections

in the pool, additional overhead is insignificant because the existing connections are reused.

When to use connection pooling

Use connection pooling in an application that meets any of the following criteria:

v It cannot tolerate the overhead of obtaining and releasing connections whenever a connection is used.

v It requires Java Transaction API (JTA) transactions within the Application Server.

v It needs to share connections among multiple users within the same transaction.

v It needs to take advantage of product features for managing local transactions within the application

server.

v It does not manage the pooling of its own connections.

v It does not manage the specifics of creating a connection, such as the database name, user name, or

password

Note: Connection pooling is not supported in an application client. The application client calls the

database directly and does not go through a data source. If you want to use the getConnection()

request from the application client, configure the JDBC provider in the application client deployment

descriptors, using Rational Application Developer or an assembly tool. The connection is

established between application client and the database. Application clients do not have a

connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

How connections are pooled together

When you configure a unique data source or connection factory, you must give it a unique Java Naming

and Directory Interface (JNDI) name. This JNDI name, along with its configuration information, is used to

create the connection pool. A separate connection pool exists for each configured data source or

connection factory.

Furthermore, the application server creates a separate instance of the connection pool in each application

server that uses the data source or connection factory. For example:

v If you run a three server cluster in which all of the servers use myDataSource, and myDataSource has

a Maximum Connections setting of 10, then you can generate up to 30 connections (three servers times

10 connections).

Consider how this behavior potentially impacts the number of connections that your backend resource can

support. See “Connection pool settings” on page 1475 for more information.

1396 Administering WebSphere applications

Other considerations for determining the maximum connections setting:

v Each entity bean transaction requires an additional database connection, dedicated to handling the

transaction.

v If clones are used, one data pool exists for each clone.

It is also important to note that when using connection sharing, it is only possible to share connections

obtained from the same connection pool.

Connection and connection pool statistics:

WebSphere Application Server supports use of PMI APIs to monitor the performance of data access

applications.

 Performance Monitoring Infrastructure (PMI) method calls that are supported in the two existing

Connection Managers (JDBC and J2C) are supported in this version of WebSphere Application Server.

The calls include:

v ManagedConnectionsCreated

v ManagedConnectionsAllocated

v ManagedConnectionFreed

v ManagedConnectionDestroyed

v BeginWaitForConnection

v EndWaitForConnection

v ConnectionFaults

v Average number of ManagedConnections in the pool

v Percentage of the time that the connection pool is using the maximum number of ManagedConnections

v Average number of threads waiting for a ManagedConnection

v Average percent of the pool that is in use

v Average time spent waiting on a request

v Number of ManagedConnections that are in use

v Number of Connection Handles

v FreePoolSize

v UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans

(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for

this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is:

PmiFactory.createJ2CPerf(

 String pmiName, // a unique Identifier for JCA /JDBC. This is the

 // ConnectionFactory name.

 ObjectName providerName,// the ObjectName of the J2CResourceAdapter

 // or JDBCProvider Mbean

 ObjectName factoryName // the ObjectName of the J2CConnectionFactory

 // or DataSourceMbean.

)

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be

reported:

Chapter 7. Data access resources 1397

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

+ getConnections ()

+ getConnectionFactory ()

+ getCloseCount ()

+ getWaitTime ()

+ getFreePoolSize ()

+ getUseTime ()

+ getPoolSize ()

+ getWaitingThreadCount ()

+ getConnections ()

+ getConnectionPools ()

+ getManageConnectionFactory ()

+ getCreateCount ()

+ getConnectionPools ()

JCAStats

JCAConnectionStats

JCAConnectionPoolStats

JDBCStats

JDBCDataSource

<<JavaInterface>>

<<JavaInterface>>

+ getJdbcDataSource ()

+ getCreateCount ()

+ getWaitTime ()

+ getCloseCount ()

+ getUseTime ()

+ getPoolSize ()

+ Operation1 ()

+ getFreePoolSize ()

+ getWaitingThreadCount ()

JDBCConnectionStats

JDBCConnectionPoolStats

1

JCAConnectionPoolStats and JDBCConnectionPoolStats objects do not have a direct implementing

Mbean; the statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each

contain a list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used

by PMI to find the appropriate connection pool in the list of PMI modules.

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates

that the resource adapter requests that the connection not be pooled. In that case, statistics for that

connection are provided separately from the statistics for the connection pool.

Connection life cycle

A ManagedConnection object is always in one of three states: DoesNotExist, InFreePool, or InUse.

Before a connection is created, it must be in the DoesNotExist state. After a connection is created, it can

be in either the InUse or the InFreePool state, depending on whether it is allocated to an application.

Between these three states are transitions. These transitions are controlled by guarding conditions. A

guarding condition is one in which true indicates when you can take the transition into another legal state.

For example, you can make the transition from the InFreePool state to InUse state only if:

v the application has called the data source or connection factory getConnection() method (the

getConnection condition)

v a free connection is available in the pool with matching properties (the freeConnectionAvailable

condition)

v and one of the two following conditions are true:

– the getConnection() request is on behalf of a resource reference that is marked unsharable

– the getConnection() request is on behalf of a resource reference that is marked shareable but no

shareable connection in use has the same properties.

This transition description follows:

1398 Administering WebSphere applications

InFreePool > InUse:

getConnection AND

freeConnectionAvailable AND

NOT(shareableConnectionAvailable)

Here is a list of guarding conditions and descriptions.

 Condition Description

ageTimeoutExpired Connection is older then its ageTimeout value.

close Application calls close method on the Connection object.

fatalErrorNotification A connection has just experienced a fatal error.

freeConnectionAvailable A connection with matching properties is available in the

free pool.

getConnection Application calls getConnection method on a data source

or connection factory object.

markedStale Connection is marked as stale, typically in response to a

fatal error notification.

noOtherReferences There is only one connection handle to the managed

connection, and the Transaction Service is not holding a

reference to the managed connection.

noTx No transaction is in force.

poolSizeGTMin Connection pool size is greater than the minimum pool

size (minimum number of connections)

poolSizeLTMax Pool size is less than the maximum pool size (maximum

number of connections)

shareableConnectionAvailable The getConnection() request is for a shareable

connection, and one with matching properties is in use

and available to share.

TxEnds The transaction has ended.

unshareableConnectionRequest The getConnection() request is for an unshareable

connection.

unusedTimeoutExpired Connection is in the free pool and not in use past its

unused timeout value.

Getting connections

The first set of transitions covered are those in which the application requests a connection from either a

data source or a connection factory. In some of these scenarios, a new connection to the database results.

In others, the connection might be retrieved from the connection pool or shared with another request for a

connection.

DoesNotExist

Every connection begins its life cycle in the DoesNotExist state. When an application server starts, the

connection pool does not exist. Therefore, there are no connections. The first connection is not created

until an application requests its first connection. Additional connections are created as needed, according

to the guarding condition.

getConnection AND

NOT(freeConnectionAvailable) AND

poolSizeLTMax AND

(NOT(shareableConnectionAvailable) OR

unshareableConnectionRequest)

Chapter 7. Data access resources 1399

This transition specifies that a connection object is not created unless the following conditions occur:

v The application calls the getConnection() method on the data source or connection factory

v No connections are available in the free pool (NOT(freeConnectionAvailable))

v The pool size is less than the maximum pool size (poolSizeLTMax)

v If the request is for a sharable connection and there is no sharable connection already in use with the

same sharing properties (NOT(shareableConnectionAvailable)) OR the request is for an unsharable

connection (unshareableConnectionRequest)

All connections begin in the DoesNotExist state and are only created when the application requests a

connection. The pool grows from 0 to the maximum number of connections as applications request new

connections. The pool is not created with the minimum number of connections when the server starts.

If the request is for a sharable connection and a connection with the same sharing properties is already in

use by the application, the connection is shared by two or more requests for a connection. In this case, a

new connection is not created. For users of the JDBC API these sharing properties are most often

userid/password and transaction context; for users of the Resource Adapter Common Client Interface

(CCI) they are typically ConnectionSpec, Subject, and transaction context.

InFreePool

The transition from the InFreePool state to the InUse state is the most common transition when the

application requests a connection from the pool.

InFreePool>InUse:

getConnection AND

freeConnectionAvailable AND

(unshareableConnectionRequest OR

NOT(shareableConnectionAvailable))

This transition states that a connection is placed in use from the free pool if:

v the application has issued a getConnection() call

v a connection is available for use in the connection pool (freeConnectionAvailable),

v and one of the following is true:

– the request is for an unsharable connection (unsharableConnectionRequest)

– no connection with the same sharing properties is already in use in the transaction.

(NOT(sharableConnectionAvailable)).

Any connection request that a connection from the free pool can fulfill does not result in a new connection

to the database. Therefore, if there is never more than one connection used at a time from the pool by any

number of applications, the pool never grows beyond a size of one. This number can be less than the

minimum number of connections specified for the pool. One way that a pool grows to the minimum

number of connections is if the application has multiple concurrent requests for connections that must

result in a newly created connection.

InUse

The idea of connection sharing is seen in the transition on the InUse state.

InUse>InUse:

getConnection AND

ShareableConnectionAvailable

This transition indicates that if an application requests a shareable connection (getConnection) with the

same sharing properties as a connection that is already in use (ShareableConnectionAvailable), the

existing connection is shared.

The same user (user name and password, or subject, depending on authentication choice) can share

connections but only within the same transaction and only when all of the sharing properties match. For

JDBC connections, these properties include the isolation level, which is configurable on the

1400 Administering WebSphere applications

resource-reference (IBM WebSphere extension) to data source default. For a resource adapter factory

connection, these properties include those specified on the ConnectionSpec object. Because a transaction

is normally associated with a single thread, you should never share connections across threads.

Note: It is possible to see the same connection on multiple threads at the same time, but this situation is

an error state usually caused by an application programming error.

Returning connections

All of the transitions discussed previously involve getting a connection for application use. With that goal,

the transitions result in a connection closing, and either returning to the free pool or being destroyed.

Applications should explicitly close connections (note: the connection that the user gets back is really a

connection handle) by calling close() on the connection object. In most cases, this action results in the

following transition:

InUse>InFreePool:

(close AND

noOtherReferences AND

NoTx AND

UnshareableConnection)

OR

(ShareableConnection AND

TxEnds)

Conditions that cause the transition from the InUse state are:

v If the application or the container calls close() (producing the close condition) and there are no

references (the noOtherReferences condition) either by the application (in the application sharing

condition) or by the transaction manager (in the NoTx condition, meaning that the transaction manager

holds a reference when the connection is enlisted in a transaction), the connection object returns to the

free pool.

v If the connection was enlisted in a transaction but the transaction manager ends the transaction (the

txEnds condition), and the connection was a shareable connection (the ShareableConnection condition),

the connection closes and returns to the pool.

When the application calls close() on a connection, it is returning the connection to the pool of free

connections; it is not closing the connection to the data store. When the application calls close() on a

currently shared connection, the connection is not returned to the free pool. Only after the application

drops the last reference to the connection, and the transaction is over, is the connection returned to the

pool. Applications using unsharable connections must take care to close connections in a timely manner.

Failure to do so can starve out the connection pool, making it impossible for any application running on the

server to get a connection.

When the application calls close() on a connection enlisted in a transaction, the connection is not returned

to the free pool. Because the transaction manager must also hold a reference to the connection object, the

connection cannot return to the free pool until the transaction ends. Once a connection is enlisted in a

transaction, you cannot use it in any other transaction by any other application until after the transaction is

complete.

There is a case where an application calling close() can result in the connection to the data store closing

and bypassing the connection return to the pool. This situation happens if one of the connections in the

pool is considered stale. A connection is considered stale if you can no longer use it to contact the data

store. For example, a connection is marked stale if the data store server is shut down. When a connection

is marked as stale, the entire pool is cleaned out by default because it is very likely that all of the

connections are stale for the same reason (or you can set your configuration to clean just the failing

connection). This cleansing includes marking all of the currently InUse connections as stale so they are

destroyed upon closing. The following transition states the behavior on a call to close() when the

connection is marked as stale:

Chapter 7. Data access resources 1401

InUse>DoesNotExist:

close AND

markedStale AND

NoTx AND

noOtherReferences

This transition states that if the application calls close() on the connection and the connection is marked as

stale during the pool cleansing step (markedStale), the connection object closes to the data store and is

not returned to the pool.

Finally, you can close connections to the data store and remove them from the pool.

This transition states that there are three cases in which a connection is removed from the free pool and

destroyed.

1. If a fatal error notification is received from the resource adapter (or data source). A fatal error

notification (FatalErrorNotification) is received from the resource adaptor when something happens to

the connection to make it unusable. All connections currently in the free pool are destroyed.

2. If the connection is in the free pool for longer than the unused timeout period (UnusedTimeoutExpired)

and the pool size is greater than the minimum number of connections (poolSizeGTMin), the connection

is removed from the free pool and destroyed. This mechanism enables the pool to shrink back to its

minimum size when the demand for connections decreases.

3. If an age timeout is configured and a given connection is older than the timeout. This mechanism

provides a way to recycle connections based on age.

Unshareable and shareable connections

The application server supports both unshareable and shareable connections. An unshareable connection

is not shared with other components in the application. The component using this connection has full

control of this connection.

Access to a resource marked as unshareable means that there is a one-to-one relationship between the

connection handle a component is using and the physical connection with which the handle is associated.

This access implies that every call to the getConnection method returns a connection handle solely for the

requesting user. Typically, you must choose unshareable if you might do things to the connection that

could result in unexpected behavior occurring in another application that is sharing the connection (for

example, unexpectedly changing the isolation level).

Marking a resource as shareable allows for greater scalability. Instead of creating new physical

connections on every getConnection() invocation, the physical connection (that is, managed connection) is

shared through multiple connection handles, as long as each getConnection request has the same

connection properties. However, sharing a connection means that each user must not do anything to the

connection that could change its behavior and disrupt a sharing partner (for example, changing the

isolation level). The user also cannot code an application that assumes sharing to take place because it is

up to the run time to decide whether or not to share a particular connection.

Connection property requirements

To permit sharing of connections used within the same transaction, the following data source properties

must be the same:

v Java Naming and Directory Interface (JNDI) name. While not actually a connection property, this

requirement simply means that you can only share connections from the same data source in the same

server.

v Resource authentication

v In relational databases:

– Isolation level (corresponds to access intent policies applied to CMP beans)

– Readonly

– Catalog

– TypeMap

1402 Administering WebSphere applications

For more information on sharing a connection with a CMP bean, see “Sharing a connection with a CMP

bean.”

To permit sharing of connections within the same transaction, the following properties must be the same

for the connection factories:

v JNDI name. While not actually a connection property, this requirement simply means that you can only

share connections from the same connection factory in the same server.

v Resource authentication

In addition, the ConnectionSpec object that is used to get the connection must also be the same.

Note: Java Message Service (JMS) connections cannot be shared with non-JMS connections.

Sharing a connection with a CMP bean

The application server allows you to share a physical connection among a CMP bean, a BMP bean, and a

JDBC application to reduce the resource allocation or deadlock scenarios. There are several ways to

ensure that all of these entity beans and the JDBC applications are sharing the same physical connection.

v Sharing a connection between CMP beans or methods

When all CMP bean methods use the same access intent, they all share the same physical connection.

A different access intent policy triggers the allocation of a different physical connection. For example, a

CMP bean has two methods; method 1 is associated with wsPessimisticUpdate intent, whereas method

2 has wsOptimisticUpdate access intent. Method 1 and method 2 cannot share the same physical

connection within a transaction. In other words, an XA data source is required to run in a global

transaction.

You can experience some deadlocks from a database if both methods try to access the same table.

Therefore, sharing a connection is determined by the access intents that are defined in the CMP

methods.

v Sharing a connection between CMP and BMP beans

Remember to first verify that the getConnection methods of both the BMP bean and the CMP bean set

the same connection properties. To match the authentication type of the CMP bean resource, set the

authentication type of the BMP bean resource to container-managed, which is designated in the

deployment descriptor as res-auth = Container.

Additionally, use one of the following options to ensure connection-sharing between the bean types:

– Define the same access intent on both CMP and BMP bean methods. Because both use the same

access intent, they share the same physical connection. The advantage to using this option is that

the backend is transparent to a BMP bean. However, this option also makes the BMP non-portable

because it uses the WebSphere extended API to handle the isolation level. For more information,

refer to the code example in Example: Accessing data using IBM extended APIs to share

connections between container-managed and bean-managed persistence beans.

– Determine the isolation level that the access intent uses on a CMP bean method, then use the

corresponding isolation level that is specified on the resource reference to look up a data source and

a connection. This option is more of a manual process, and the isolation level might be different from

database to database. For more information refer to the isolation level and access intent mapping

table: Access intent isolation levels and update locks and the Isolation level and resource reference

section.

v Sharing a connection between CMP and a JDBC application that is used by a servlet or a

session bean

Determine the isolation level that the access intent uses on a CMP bean method, then use the

corresponding isolation level specified on the resource reference to look up a data source and a

connection. For more information refer to Access intent isolation levels and update locks and Isolation

level and resource reference.

Chapter 7. Data access resources 1403

Factors that determine sharing

The listing here is not an exhaustive one. The product might or might not share connections under

different circumstances.

v Only connections acquired with the same resource reference (resource-ref) that specifies the

res-sharing-scope as shareable are candidates for sharing. The resource reference properties of

res-sharing-scope and res-auth and the IBM extension isolationLevel help determine if it is possible to

share a connection. IBM extension isolationLevel is stored in IBM deployment descriptor extension file;

for example: ibm-ejb-jar-ext.xmi.

v You can only share connections that are requested with the same properties.

v Connection sharing only occurs between different component instances if they are within a transaction

(container- or user-initiated transaction).

v Connection sharing only occurs within a sharing boundary. Current® sharing boundaries include

Transactions and LocalTransactionContainment (LTC) boundaries.

v Connection sharing rules within an LTC Scope:

– For shareable connections, only Connection Reuse is allowed within a single component instance.

Connection reuse occurs when the following actions are taken with a connection: get, use,

commit/rollback, close; get, use, commit/rollback, close. Note that if you use the LTC

resolution-control of ContainerAtBoundary then no start/commit is needed because that action is

handled by the container.

The connection returned on the second get is the same connection as that returned on the first get

(if the same properties are used). Because the connection use is serial, only one connection handle

to the underlying physical connection is used at a time, so true connection sharing does not take

place. The term ″reuse″ is more accurate.

More importantly, the LocalTransactionContainment boundary enclosing both get actions is not

complete; no cleanUp() method is invoked on the ManagedConnection object. Therefore the second

get action inherits all of the connection properties set during the first getConnection() call.
v Shareable connections between transactions (either container-managed transactions (CMT),

bean-managed transactions (BMT), or LTC transactions) follow these caching rules:

– In general, setting properties on shareable connections is not allowed because a user of one

connection handle might not anticipate a change made by another connection handle. This limitation

is part of the Java Platform, Enterprise Edition (Java EE) standard.

– General users of resource adapters can set the connection properties on the connection factory

getConnection() call by passing them in a ConnectionSpec.

However, the properties set on the connection during one transaction are not guaranteed to be the

same when used in the next transaction. Because it is not valid to share connections outside of a

sharing scope, connection handles are moved off of the physical connection with which they are

currently associated when a transaction ends. That physical connection is returned to the free

connection pool. Connections are cleaned before going in the free pool. The next time the handle is

used, it is automatically associated with an appropriate connection. The appropriateness is based on

the security login information, connection properties, and (for the JDBC API) the isolation level

specified in the extended resource reference, passed in on the original request that returned the

current handle. Any properties set on the connection after it was retrieved are lost.

– For JDBC users, the application server provides an extension to enable passing the connection

properties through the ConnectionSpec.

Use caution when setting properties and sharing connections in a local transaction scope. Ensure

that other components with which the connection is shared are expecting the behavior resulting from

your settings.
v You cannot set the isolation level on a shareable connection for the JDBC API using a relational

resource adapter in a global transaction. The product provides an extension to the resource reference to

enable you to specify the isolation level. If your application requires the use of multiple isolation levels,

create multiple resource references and map them to the same data source or connection factory.

1404 Administering WebSphere applications

Maximal connection sharing

To maximize connection sharing opportunities for an application, ensure that each component has the local

transaction containment (LTC) Resolver attribute set to ContainerAtBoundary. This setting specifies that

the component container, rather than the application code, resolves all resource manager local

transactions (RMLTs) within the LTC scope. The container begins an RMLT when a connection is first used

within the LTC scope, and completes it automatically at the end of the LTC scope.

Consult the topic Configuring transactional deployment attributes for instructions on setting the transaction

resolution control and other attributes.

Connection sharing violations

There is a new exception, the sharing violation exception, that the resource adapter can issue whenever

an operation violates sharing requirements. Possible violations include changing connection attributes,

security settings, or isolation levels, among others. When such a mutable operation is performed against a

managed connection, the sharing violation exception can occur when both of the following conditions are

true:

v The number of connection handles associated with the managed connection is more than one.

v The managed connection is associated with a transaction, either local or XA.

Both the component and the J2C run time might need to detect this sharing violation exception, depending

on when and how the managed connection becomes unshareable. If the managed connection becomes

unshareable because of an operation through the connection handle (for example, you change the

isolation level), then the component needs to process the exception. If the managed connection becomes

unshareable without being recognized by the application server (due to some component interaction with

the connection handle), then the resource adapter can reject the creation of a connection handle by

issuing the sharing violation exception.

Connection handles

A connection handle is a representation of a physical connection. To use a backend resource (such as a

relational database) in WebSphere Application Server you must get a connection to that resource. When

you call the getConnection() method, you get a connection handle returned. The handle is not the physical

connection. The physical connection is managed by the connection manager.

There are two significant configurations that affect how connection handles are used and how they

behave. The first is the res-sharing-scope, which is defined by the resource-reference used to look up the

DataSource or Connection Factory. This property tells the connection manager whether or not you can

share this connection.

The second factor that affects connection handle behavior is the usage pattern. There are essentially two

usage patterns. The first is called the get/use/close pattern. It is used within a single method and without

calling another method that might get a connection from the same data source or connection factory. An

application using this pattern does the following:

1. gets a connection

2. does its work

3. commits (if appropriate)

4. closes the connection.

The second usage pattern is called the cached handle pattern. This is where an application:

1. gets a connection

2. begins a global transaction

3. does work on the connection

4. commits a global transaction

5. does work on the connection again

Chapter 7. Data access resources 1405

A cached handle is a connection handle that is held across transaction and method boundaries by an

application. Keep in mind the following considerations for using cached handles:

v Cached handle support requires some additional connection handle management across these

boundaries, which can impact performance. For example, in a JDBC application, Statements,

PreparedStatements, and ResultSets are closed implicitly after a transaction ends, but the connection

remains valid.

v You are encouraged not to cache the connection across the transaction boundary for shareable

connections; the get/use/close pattern is preferred.

v Caching of connection handles across servlet methods is limited to JDBC and Java Message Service

(JMS) resources. Other non-relational resources, such as Customer Information Control System (CICS)

or IMS objects, currently cannot have their connection handles cached in a servlet; you need to get,

use, and close the connection handle within each method invocation. (This limitation only applies to

single-threaded servlets because multithreaded servlets do not allow caching of connection handles.)

v You cannot pass a cached connection handle from one instance of a data access client to another

client instance. Transferring between client instances creates the problematic contingency of one

instance using a connection handle that is referenced by another. This relationship can only cause

problems because connection handle management code processes tasks for each client instance

separately. Hence, connection handle transfers result in run-time scenarios that trigger exceptions. For

example:

1. The application code of a client instance that receives a transferred handle closes the handle.

2. If the client instance that retains the original reference to the handle tries to reclaim it, the

application server issues an exception.

The following code segment shows the cached connection pattern.

Connection conn = ds.getConnection();

ut.begin();

conn.prepareStatement("....."); --> Connection runs in global transaction mode

...

ut.commit();

conn.prepareStatement("....."); ---> Connection still valid but runs in autoCommit(True);

...

Unshareable connections

Some characteristics of connection handles retrieved with a res-sharing-scope of unshareable are

described in the following sections.

v The possible benefits of unshared connections

– Your application always maintains a direct link with a physical connection (managed connection).

– The connection always has a one-to-one relationship between the connection handle and the

managed connection.

– In most cases, the connection does not close until the application closes it.

– You can use a cached unshared connection handle across multiple transactions.

– The connection can have a performance advantage in some cached handle situations. Because

unshared connections do not have the overhead of moving connection handles off managed

connections at the end of the transaction, there is less overhead in using a cached unshared

connection.

v The possible drawbacks of unshared connections

– Inefficient use of your connection resources. For example, if within a single transaction you get more

than one connection (with the same properties) using the same data source or connection factory

(same resource-ref) then you use multiple physical connections when you use unshareable

connections.

– Wasted connections. It is important not to keep the connection handle open (that is, your application

does not call the close() method) any longer then it is needed. As long as an unshareable connection

1406 Administering WebSphere applications

is open, the physical connection is unavailable to any other component, even if your application is

not currently using that connection. Unlike a shareable connection, an ushareable connection is not

closed at the end of a transaction or servlet call.

– Deadlock considerations. Depending on how your components interact with the database within a

transaction, using unshared connections can lead to deadlock in the database. For example, within a

transaction, component A gets a connection to data source X and updates table 1, and then calls

component B. Component B gets another connection to data source X, and updates/reads table 1

(or even worse the same row as component A). In some circumstances, depending on the particular

database, its locking scheme, and the transaction isolation level, a deadlock can occur.

In the same scenario, but with a shared connection, deadlock does not occur because all the work is

done on the same connection. It is worth noting that when writing code that uses shared

connections, you use a strategy that calls for multiple work items to be performed on the same

connection, possibly within the same transaction. If you decide to use an unshareable connection,

you must set the maximum connections property on the connection factory or data source correctly.

An exception might occur for waiting connection requests if you exceed the maximum connections

value, and unshareable connections are not being closed before the connection wait time-out is

exceeded.

Shareable connections

Some characteristics of connection handles that are retrieved with a res-sharing-scope of shareable are

described in the following sections.

v The possible benefits of shared connections

– Within an instance of connection sharing, application components can share a managed connection

with one or more connection handles, depending on how the handle is retrieved and which

connection properties are used.

– They can more efficiently use resources. Shareable connections are not valid outside of their sharing

boundary. For this reason, at the end of a sharing boundary (such as a transaction) the connection

handle is no longer associated with the managed connection it was using within the sharing

boundary (this applies only when using the cached handle pattern). The managed connection is

returned to the free connection pool for reuse. Connection resources are not held longer than the

end of the current sharing scope.

If the cached handle pattern is used, then the next time the handle is used within a new sharing

scope, the application server run time ensures that the handle is reassociated with a managed

connection that is appropriate for the current sharing scope, and has the same properties with which

the handle was originally retrieved. Remember that it is not appropriate to change properties on a

shareable connection. If properties are changed, other components that share the same connection

might experience unexpected behavior. Futhermore, when using cached handles, the value of the

changed property might not be remembered across sharing scopes.

v The possible drawbacks of shared connections

– Sharing within a single component (such as an enterprise bean and its related Java objects) is not

always supported. The current specification allows resource adapters the choice of only allowing one

active connection handle at a time.

If a resource adapter chooses to implement this option then the following scenario results in an

invalid handle exception: A component using shareable connections gets a connection and uses it.

Without closing the connection, the component calls a utility class (Java object) that gets a

connection handle to the same managed connection and uses it. Because the resource adapter only

supports one active handle, the first connection handle is no longer valid. If the utility object returns

without closing its handle, the first handle is not valid and triggers an exception at any attempt to use

it.

Note: This exception occurs only when calling a utility object (a Java object).

Not all resource adapters have this limitation; it occurs only in certain implementations. The

WebSphere Relational Resource Adapter (RRA) does not have this limitation. Any data source used

Chapter 7. Data access resources 1407

through the RRA does not have this limitation. If you encounter a resource adapter with this limitation

you can work around it by serializing your access to the managed connection. If you always close

your connection handle before getting another (or close your handle before calling code that gets

another handle), and before returning from a method, you can allow two pieces of code to share the

same managed connection. You simply cannot use the connection for both events at the same time.

– Trying to change the isolation level on a shareable JDBC-based connection in a global transaction

(that is supported by the RRA) causes an exception. The correct way to get connections with

different transaction isolation levels is by configuring the IBM extended resource-reference.

– Closing connection handles for shareable connections by an application is NOT supported and

causes errors. However, you can avoid this limitation by using the Relational Resource Adapter.

Lazy connection association optimization

The Java Platform, Enterprise Edition (Java EE) Connector (J2C) connection manager implemented smart

handle support. This technology enables allocation of a connection handle to an application while the

managed connection associated with that connection handle is used by other applications (assuming that

the connection is not being used by the original application). This concept is part of the Java EE

Connector Architecture (JCA) 1.5 specification. (You can find it in the JCA 1.5 specification document in

the section entitled ″Lazy Connection Association Optimization.″) Smart handle support introduces use a

method on the ConnectionManager object, the LazyAssociatableConnectionManager() method, and a new

marker interface, the DissociatableManagedConnection class. You must configure the provider of the

resource adapter to make this functionality available in your environment. (In the case of the RRA,

WebSphere Application Server itself is the provider.) The following code snippet shows how to include

smart handle support:

package javax.resource.spi;

import javax.resource.ResourceException;

interface LazyAssociatableConnectionManager { // application server

 void associateConnection(

 Object connection, ManagedConnectionFactory mcf,

 ConnectionRequestInfo info) throws ResourceException;

}

interface DissociatableManagedConnection { // resource adapter

 void dissociateConnections() throws ResourceException;

}

This DissociatableManagedConnection interface introduces another state to the Connection object:

inactive. A Connection can now be active, closed, and inactive. The connection object enters the inactive

state when a corresponding ManagedConnection object is cleaned up. The connection stays inactive until

an application component attempts to re-use it. Then the resource adapter calls back to the connection

manager to re-associate the connection with an active ManagedConnection object.

Transaction type and connection behavior

All connection usage occurs within the scope of either a global transaction or a local transaction

containment (LTC) boundary. Each transaction type places different requirements on connections and

impacts connection settings differently.

Connection sharing and reuse

You can share connections within a global transaction scope (assuming other sharing rules are met). You

can also share connections within a shareable LTC. You can serially reuse connections within an LTC

scope. A get/use/close connection pattern followed by another instance of get/use/close (to the same data

source or connection factory) enables you to reuse the same connection. See the “Unshareable and

shareable connections” on page 1402 topic for more details.

1408 Administering WebSphere applications

JDBC AutoCommit behavior

All JDBC connections, when first obtained through a getConnection() call, contain the setting AutoCommit

= TRUE by default. However, different transaction scope and settings can result in changing, or simply

overriding, the AutoCommit value.

v If you operate within an LTC and have its resolution-control set to Application, AutoCommit remains

TRUE unless changed by the application.

v If you operate within an LTC and have its resolution-control set to ContainerAtBoundary, the application

must not touch the AutoCommit setting. The WebSphere Application Server run time sets the

AutoCommit value to FALSE before work begins, then commits or rolls back the work, as appropriate, at

the end of the LTC scope.

v If you use a connection within a global transaction, the database ignores the AutoCommit setting so that

the transaction service that controls the commit and rollback processing can manage the transaction.

This action takes place upon first use of the connection to do work, regardless of the user changing the

AutoCommit setting. After the transaction completes, the AutoCommit value returns to the value it had

before the first use of the connection. So even if the AutoCommit value is set to TRUE before the

connection is used in a global transaction, you need not set the value to FALSE because the value is

ignored by the database. In this example, after the transaction completes, the AutoCommit value of the

connection returns to TRUE.

v If you use multiple distinct connections within a global transaction, all work is guaranteed to commit or

roll back together. This is not the case for a local transaction containment (LTC scope). Within an LTC,

work done on one connection commits or rolls back independently from work done on any other

connection within the LTC.

One-phase commit and two-phase commit connections

The type and number of resource managers, such as a database server, that must be accessed by an

application often determines the application transaction requirements. Consequently each type of resource

manager places different requirements on connection behavior.

v A two-phase commit resource manager can support two-phase coordination of a transaction. That

support is necessary for transactions that involve other resource managers; these transactions are

global transactions. See “Transaction support in WebSphere Application Server” on page 2229 for

further explanation.

v A one-phase commit resource manager supports only one-phase transactions, or LTC transactions, in

which that resource is the sole participating datastore. Again, see “Transaction support in WebSphere

Application Server” on page 2229 for further explanation.

One-phase commit resources are such that work being done on a one phase connection cannot mix with

other connections and ensure that the work done on all of the connections completes or fails atomically.

The product does not allow more than one one-phase commit connection in a global transaction.

Futhermore, it does not allow a one-phase commit connection in a global transaction with one or more

two-phase commit connections. You can coordinate only multiple two-phase commit connections within a

global transaction.

WebSphere Application Server provides last participant support, which enables a single one-phase commit

resource to participate in a global transaction with one or more two-phase commit resources.

Note that any time that you do multiple getConnection() calls using a resource reference that specifies

res-sharing-scope=Unshareable, you get multiple physical connections. This situation also occurs when

res-sharing-scope=Shareable, but the sharing rules are broken. In either case, if you run in a global

transaction, ensure the resources involved are enabled for two-phase commit (also sometimes referred to

as JTA Enabled). Failure to do so results in an XA exception that logs the following message:

WTRN0063E: An illegal attempt to enlist a one phase capable resource with existing two phase capable

resources has occurred.

Chapter 7. Data access resources 1409

Application scoped resources

Use this page to view brief descriptions of the resources that are bundled with your application. You can

view individual resource settings by clicking on the resource name.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Application scoped resources.

Each table row corresponds to a resource that is bundled with your application. Click a resource name or

the corresponding provider name to view an administrative console page where you can edit the object

configuration settings.

Name:

Specifies the administrative name that was assigned to this resource.

 Click this name to view a page where you can edit the configuration settings.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of the resource.

 Data type String

Resource type:

Specifies the type of resource, such as a data source or a J2C connection factory.

Provider:

Specifies the resource provider that supplies the class information for this resource object.

 Click the provider name to view a page where you can edit the configuration settings.

Description:

Specifies a text description of the resource.

Cache instances

An application uses a cache instance to store, retrieve, and share data objects within the dynamic cache.

Each cache instance can be configured independently for Java Naming and Directory Interface (JNDI)

name, cache size, priority, and disk offload. Objects that are stored in a particular cache instance are not

affected by other cache instances. This means that if you store an object named object_1 with a value of

object_data in cache_instance_x, you can also store an object with the same name, but different value in

cache_instance_y.

Objects that are stored in a particular cache instance are available to applications on other servers by

accessing a cache instance of the same name. The two servers must be within the same replication

domain to share data.

There are two types of cache instances, object cache instances and servlet cache instances.

An object cache instance is a location in addition to the default shared dynamic cache where Java 2

Platform, Enterprise Edition (J2EE) applications can store, distribute, and share objects. After configuring

1410 Administering WebSphere applications

object cache instances, you can use the DistributedMap or DistributedObjectCache interfaces in the

com.ibm.websphere.cache package to programmatically access your cache instances.

See the Additional Application Programming Interfaces (APIs) for more information about the

DistributedMap or DistributedObjectCache interfaces.

Servlet cache instances are locations in addition to the default dynamic cache where dynamic cache can

store, distribute, and share the output and the side effects of an invoked servlet. By configuring a servlet

cache instance, your applications have greater flexibility and better tuning of cache resources. The Java

Naming and Directory Interface (JNDI) name that is specified for the cache instance in the administrative

console maps to the <cache-instance> element in the cachespec.xml configuration file. Any <cache-entry>

elements that are specified within a <cache-instance> element are created in that specific cache instance.

Any <cache-entry> elements that are specified outside of a <cache-instance> element are stored in the

default dynamic cache instance.

See “Using servlet cache instances” on page 2398 for more information.

Data access: Resources for learning

Use the following links to find relevant supplemental information about data access. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to this product, but it can

be useful for understanding concepts or functions used by the application server. When possible, links are

provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information:

v “Technologies for data access”

v “Databases” on page 1412

v “Tools” on page 1412

Technologies for data access

v JDBC 3.0 API Documentation

v Java Persistence API:

– Java Persistence API FAQ

– Introduction to Spring 2 and JPA

v J2EE Connector Architecture Version 1.5 specification

v Enterprise JavaBeans Technology (Source for download of the Enterprise Javabeans 3.0 specification)

v Java 2 Platform, Enterprise Edition (J2EE)

v Container-managed relationships: Enterprise JavaBeans 2.0 Container-Managed Persistence

Example. Although this article addresses the EJB 2.0 specification, you might find parts of it pertinent to

your environment.

v Resource adapters: The J2EE Connector Architecture Resource AdapterDeveloper Technical Articles &

Tips -- Articles: Database Access (Sun Developer Network)

v Java Management Extensions (JMX)

v Miscellaneous articles from the Sun Developer Network and IBM developerWorks Web sites:

– Sharing connections in WebSphere Application Server V5 This article is still pertinent to WebSphere

Application Server Version 6.0 and later. However, be aware that the container-managed

authentication type is deprecated.

Chapter 7. Data access resources 1411

http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/javaee/overview/faq/persistence.jsp
http://www.ibm.com/developerworks/edu/j-dw-java-spring2-i.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://java.sun.com/developer/technicalArticles/J2EE/connectorclient/resourceadapter.html
http://java.sun.com/developer/technicalArticles/Database/
http://java.sun.com/developer/technicalArticles/Database/
http://java.sun.com/products/JavaManagement/
http://www.ibm.com/developerworks/websphere/library/techarticles/0404_tang/0404_tang.html

– Database authentication in WebSphere Application Server V5 This article is still pertinent to

WebSphere Application Server Version 6.0 and later. However, be aware that the container-managed

authentication type is now deprecated.

– Understanding WebSphere Application Server EJB access intents

v Supported hardware, software, and APIs

Databases

v Cloudscape:

– IBM Cloudscape product information

– IBM Cloudscape information center

v DB2 database software

v Informix

Tools

v Rational Application Developer for WebSphere Software

Configuring data access with scripting

Use these topics to learn about using scripting to configure data access.

About this task

This topic contains the following tasks:

v “Configuring a JDBC provider using scripting”

v “Configuring new data sources using scripting” on page 1414

v “Configuring new connection pools using scripting” on page 1415

v “Changing connection pool settings with the wsadmin tool” on page 1416

v “Configuring new data source custom properties using scripting” on page 1422

v “Configuring new Java 2 Connector authentication data entries using scripting” on page 1423

v “Configuring new WAS40 data sources using scripting” on page 1425

v “Configuring new WAS40 connection pools using scripting” on page 1425

v “Configuring new WAS40 custom properties using scripting” on page 1427

v “Configuring new J2C resource adapters using scripting” on page 1428

v “Configuring custom properties for J2C resource adapters using scripting” on page 1430

v “Configuring new J2C connection factories using scripting” on page 1431

v “Configuring new J2C administrative objects using scripting” on page 1434

v “Configuring new J2C activation specifications using scripting” on page 1432

v “Managing the message endpoint lifecycle using scripting” on page 1436

v “Testing data source connections using scripting” on page 1437

Configuring a JDBC provider using scripting

You can configure a JDBC provider using the wsadmin tool and scripting.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

1. There are two ways to perform this task. Perform one of the following:

v Using the AdminTask object:

1412 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0402_tang/0402_tang.html
http://www.ibm.com/developerworks/websphere/techjournal/0406_persson/0406_persson.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/software/data/cloudscape/
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/ad/studiointegration/

– Using Jacl:

$AdminTask createJDBCProvider {-interactive}

– Using Jython:

AdminTask.createJDBCProvider ([’-interactive’])

v Using the AdminConfig object:

a. Identify the parent ID and assign it to the node variable. The following example uses the node

configuration object as the parent. You can modify this example to use the cell, cluster, server, or

application configuration object as the parent.

– Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

– Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

b. Identify the required attributes:

Note: For supported JDBC drivers, you can also script JDBC providers according to the same

pre-configured templates that are used by the administrative console logic. Consult the

article Creating configuration objects using the wsadmin tool for details.

– Using Jacl:

$AdminConfig required JDBCProvider

– Using Jython:

print AdminConfig.required(’JDBCProvider’)

Example output:

Attribute Type

name String

implementationClassName String

c. Set up the required attributes and assign it to the jdbcAttrs variable. You can modify the following

example to setup non-required attributes for JDBC provider.

– Using Jacl:

set n1 [list name JDBC1]

set implCN [list implementationClassName myclass]

set jdbcAttrs [list $n1 $implCN]

Example output:

{name {JDBC1}} {implementationClassName {myclass}}

– Using Jython:

n1 = [’name’, ’JDBC1’]

implCN = [’implementationClassName’, ’myclass’]

jdbcAttrs = [n1, implCN]

print jdbcAttrs

Example output:

[[’name’, ’JDBC1’], [’implementationClassName’, ’myclass’]]

d. Create a new JDBC provider using node as the parent:

– Using Jacl:

$AdminConfig create JDBCProvider $node $jdbcAttrs

– Using Jython:

AdminConfig.create(’JDBCProvider’, node, jdbcAttrs)

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

Chapter 7. Data access resources 1413

2. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

3. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

What to do next

If you modify the class path or native library path of a JDBC provider: After saving your changes (and

synchronizing the node in a network deployment environment), you must restart every application server

within the scope of that JDBC provider for the new configuration to work. Otherwise, you receive a data

source failure message.

Configuring new data sources using scripting

You can configure new data sources using scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

In WebSphere Application Server, any JDBC driver properties that are required by your database vendor

must be set as data source properties. Consult the article Vendor-specific data sources minimum required

settings in the Troubleshooting and support PDF to see a list of these properties and setting options,

ordered by JDBC provider type. Consult your database vendor documentation to learn about available

optional data source properties. Script them as custom properties after you create the data source. In the

Related links section of this article, click the ″Configuring new data source custom properties using

scripting″ link for more information.

About this task

There are two ways to perform this task; use either of the following wsadmin scripting objects:

v AdminTask object

v AdminConfig object

AdminConfig gives you more configuration control than the AdminTask object. When you create a data

source using AdminTask, you supply universally required properties only, such as a JNDI name for the

data source. (Consult the article “JDBCProviderManagement command group for the AdminTask object” on

page 1438 for more information.) Other properties that are required by your JDBC driver are assigned

default values by Application Server. You cannot use AdminTask commands to set or edit these properties;

you must use AdminConfig commands.

v Using the AdminConfig object to configure a new data source:

1. Identify the parent ID, which is the name and location of the JDBC provider that supports your data

source.

– Using Jacl:

set newjdbc [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/]

– Using Jython:

newjdbc = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

2. Obtain the required attributes.

1414 Administering WebSphere applications

Note: For supported JDBC drivers, you can also script data sources according to the same

pre-configured templates that are used by the administrative console logic. Consult the article

Creating configuration objects using the wsadmin tool for details.

– Using Jacl:

$AdminConfig required DataSource

– Using Jython:

print AdminConfig.required(’DataSource’)

Example output:

Attribute Type

name String

Note: If the database vendor-required properties (which are referenced in the article “Data source

minimum required settings, by vendor” on page 1509) are not displayed in the resulting list of

required attributes, script these properties as data source custom properties after you create

the data source.

3. Set up the required attributes.

– Using Jacl:

set name [list name DS1]

set dsAttrs [list $name]

– Using Jython:

name = [’name’, ’DS1’]

dsAttrs = [name]

4. Create the data source.

– Using Jacl:

set newds [$AdminConfig create DataSource $newjdbc $dsAttrs]

– Using Jython:

newds = AdminConfig.create(’DataSource’, newjdbc, dsAttrs)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml#DataSource_1)

v Using the AdminTask object to configure a new data source:

– Using Jacl:

$AdminTask createDatasource {-interactive}

– Using Jython:

AdminTask.createDatasource ([’-interactive’])

v Save the configuration changes. See the Saving configuration changes with the wsadmin tool article for

more information.

v Synchronize the node. See the Synchronizing nodes with the wsadmin tool article for more information.

What to do next

To set additional properties that are supported by your JDBC driver, script them as data source custom

properties.

Configuring new connection pools using scripting

You can use scripting and the wsadmin tool to configure new connection pools.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Chapter 7. Data access resources 1415

About this task

Perform the following steps:

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Creating connection pool:

v Using Jacl:

$AdminConfig create ConnectionPool $newds {}

v Using Jython:

print AdminConfig.create(’ConnectionPool’, newds, [])

Example output:

(cells/mycell/nodes/mynode|resources.xml#ConnectionPool_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Changing connection pool settings with the wsadmin tool

You can use the wsadmin scripting tool to change connection pool settings.

About this task

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages. To learn more about the wsadmin tool see Starting the wsadmin scripting

client.

To use the wsadmin tool to change connection pool settings:

1. Launch a scripting command. There are several options for you to run scripting commands, ranging

from running them interactively to running them in a profile.

To change connection pool settings, you use the getAttribute and setAttribute commands, run against

the various settings objects.

For example, to change the connection timeout setting, the commands are:

$AdminControl getAttribute $objectname connectionTimeout

$AdminControl setAttribute $objectname connectionTimeout 200

where:

v $ is a Jacl operator for substituting a variable name with its value

v getAttribute and setAttribute are the commands

v connectionTimeout is the object whose value you are resetting

2. For Jacl code examples of each of the connection pool settings, see “Example: Changing connection

pool settings with the wsadmin tool”

Example: Changing connection pool settings with the wsadmin tool

Using the wsadmin AdminControl object, you can script changes to connection pool settings.

1416 Administering WebSphere applications

The WebSphere Application Server wsadmin tool provides the ability to run scripts in the Jacl and Jython

languages only. You must start the wsadmin scripting client to perform any scripting task. (See the article

″Starting the wsadmin scripting client.″)

For more information about the AdminControl scripting object, refer to the article ″Using the AdminControl

object for scripted administration.″ See the links section at the end of this article.

Connection Timeout

The Connection timeout can be changed at any time while the pool is active. All connection requests that

are waiting for a connection are changed to the new value minus the time already waited, and are

returned to the wait state if there are no available connections.

For example, if the connection timeout is changed to 300 seconds and a connection request has waited

100 seconds, the connection request waits for 200 more seconds if no connection becomes available.

$AdminControl getAttribute $objectname connectionTimeout

$AdminControl setAttribute $objectname connectionTimeout 200

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Maximum Connections

The maximum connections can be changed at any time except in the case where stuck connection

support is active.

If stuck connection support is active, an attempt to change the maximum connections is made. If the

attempt fails, an IllegalState exception occurs. See the Connection pool advanced settings topic in the

Administering applications and their environment PDF for more information.

If stuck connection support is not active, the maximum connections are changed to the new value. If the

new value is greater than the current value, the number of connections increases to the new value and

any requests waiting are notified. If the new value is less than the current value and Aged Timeout or

Reap Time is used, the number of connections decreases to the new value depending on pool activity. If

agedTimeout or Reap Time are not used, no automatic attempt will be made to reduce the total number of

connections. To manually reduce the number of connections to the new maximum connections, use the

Mbean function purgePoolContents.

$AdminControl getAttribute $objectname maxConnections

$AdminControl setAttribute $objectname maxConnections 200

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Minimum Connections

The minimum connections can be changed at any time

$AdminControl getAttribute $objectname minConnections

$AdminControl setAttribute $objectname minConnections 200

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Reap Time

The reap time can be changed at any time. The reap time interval is changed to the new value at the next

interval.

Chapter 7. Data access resources 1417

$AdminControl getAttribute $objectname reapTime

$AdminControl setAttribute $objectname reapTime 30

Unused Timeout

The unused timeout can be changed at any time.

$AdminControl getAttribute $objectname unusedTimeout

$AdminControl setAttribute $objectname unusedTimeout 900

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Aged Timeout

The Aged Timeout can be changed at any time.

$AdminControl getAttribute $objectname agedTimeout

$AdminControl setAttribute $objectname agedTimeout 900

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Purge Policy

The purge policy can be changed at any time.

$AdminControl getAttribute $objectname purgePolicy

$AdminControl setAttribute $objectname purgePolicy "Failing Connection Only"

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Surge Protection Support

Surge connection support starts if surgeThreshold is > -1 and surgeCreationInterval is > 0. The surge

protection properties can be changed at any time.

$AdminControl getAttribute $objectname surgeCreationInterval

$AdminControl setAttribute $objectname surgeCreationInterval 30

$AdminControl getAttribute $objectname surgeThreshold

$AdminControl setAttribute $objectname surgeThreshold 15

For more information about this setting, see the Connection pool advanced settings topic in the

Administering applications and their environment PDF.

Stuck connection Support

An attempt is made to change the stuckTime, stuckTimerTime or stuckThreshold properties. If the attempt

fails, an IllegalState exception occurs. The pool cannot have any active requests or active connections

during this request. For the stuck connection support to start, all three stuck property values must be

greater than 0, and the maximum connections value must be > 0.

If the connection pool is stuck, you cannot change the stuck or the maximum connection properties. If you

are stuck, there are active connections.

$AdminControl getAttribute $objectname stuckTime

$AdminControl setAttribute $objectname stuckTime 30

$AdminControl getAttribute $objectname stuckTimerTime

$AdminControl setAttribute $objectname stuckTimerTime 15

$AdminControl getAttribute $objectname stuckThreshold

$AdminControl setAttribute $objectname stuckThreshold 10

1418 Administering WebSphere applications

For more information about this setting, see the Connection pool advanced settings topic in the

Administering applications and their environment PDF.

Test Connection Support (This is only supported for a DataSource)

The test connection support starts when the testConnection property is set to true, and the interval is > 0.

The test connection properties can be changed at any time.

$AdminControl getAttribute $objectname testConnection

$AdminControl setAttribute $objectname testConnection 30

$AdminControl getAttribute $objectname testConnectionInterval

$AdminControl setAttribute $objectname testConnectionInterval 15

For more information about this setting, see the Test connection service topic in the Administering

applications and their environment PDF.

Connection Pool Partition Support

$AdminControl invoke $objectname freePoolDistributionTableSize

$AdminControl invoke $objectname numberOfFreePoolPartitions

$AdminControl invoke $objectname numberOfSharedPoolPartitions

$AdminControl invoke $objectname gatherPoolStatisticalData

$AdminControl invoke $objectname enablePoolStatisticalData

For more information about this setting, see the Connection pool advanced settings topic in the

Administering applications and their environment PDF.

Show Pool Information Support

The show pool operations can be changed at any time.

$AdminControl invoke $objectname showAllPoolContents

$AdminControl invoke $objectname showPoolContents

$AdminControl invoke $objectname showAllocationHandleList

Purge Connection Support

PurgePool can be changed at any time.

$AdminControl invoke $objectname purgePoolContents normal

$AdminControl invoke $objectname purgePoolContents immediate

Pool Control Support

Pause and resume can be changed at any time.

$AdminControl invoke $objectname pause

$AdminControl invoke $objectname resume

Example: Accessing MBean connection factory and data sources using wsadmin

Wsadmin commands are used to access connection factory and data source MBeans. MBeans can

retrieve or update properties for a connection factory or data source.

To get a list of J2C connection factory or data source Mbean object names, from the wsadmin command

line use one of the following administrative control commands:

$AdminControl queryNames *:type=J2CConnectionFactory,*

$AdminControl queryNames *:type=DataSource,*

Example output from DataSource query:

wsadmin>$AdminControl queryNames *:type=DataSource,*

"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=

system1Node01,JDBCProvider=Derby JDBC Provider,j2eeType=JDBCDataSource,J2EESe

Chapter 7. Data access resources 1419

rver=server1,Server=server1,version=6.0.0.0,type=DataSource,mbeanIdentifier=cell

s/system1Node01Cell/nodes/system1Node01/servers/server1/resources.xml#DataSource

_1094760149902,JDBCResource=Derby JDBC Provider,cell=system1Node01Cell"

By using the J2C connection factory or data source MBean object name, you can access the MBean. The

name follows the webSphere:name= expression. In the following example, for the first set, the default data

source name is set on variable name. For the second set, the object name is set on variable objectName.

Example using the Default Datasource

- wsadmin>set name [list Default Datasource]

Default Datasource

- wsadmin>set objectName [$AdminControl queryNames *:name=$name,*]

"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=

system1Node01,JDBCProvider=Derby JDBC Provider,j2eeType=JDBCDataSource,J2EESe

rver=server1,Server=server1,version=6.0.0.0,type=DataSource,mbeanIdentifier=cell

s/system1Node01Cell/nodes/system1Node01/servers/server1/resources.xml#DataSource

_1094760149902,JDBCResource=Derby JDBC Provider,cell=system1Node01Cell"

Now you can use the objectName for getting help on attributes and operations available for this mbean.

$Help attributes $objectName

$Help operations $objectName

To get or set an attribute or to use an operation, use one of the following commands:

$AdminControl getAttribute $objectName "attribute name"

$AdminControl setAttribute $objectName "attribute name" value

$AdminControl invoke $objectName "operation"

Attribute, operation examples:

Get and set a attribute maxConnections (Note, if you get no value, a null value, or

a java.lang.IllegalStateException, the connection factory or data source for this

MBean has not been created. The connection factory or data source is created at first

JNDI lookup. For this example, the Default Datasource needs to be used before get,

set and invoke will work.)

wsadmin>$AdminControl getAttribute $objectName maxConnections

10

wsadmin>$AdminControl setAttribute $objectName maxConnections 20

wsadmin>$AdminControl getAttribute $objectName maxConnections

20

Using invoke

wsadmin>$AdminControl invoke $objectName showPoolContents

PoolManager name:DefaultDatasource

PoolManager object:746354514

Total number of connections: 3 (max/min 20/1, reap/unused/aged 180/1800/0,

connectiontimeout/purge 1800/EntirePool)

 (testConnection/inteval false/0, stuck timer/time

/threshold 0/0/0, surge time/connections 0/-1)

Shared Connection information (shared partitions 200)

 No shared connections

Free Connection information (free distribution table/partitions 5/1)

 (2)(0)MCWrapper id 5c6af75b Managed connection WSRdbManagedConnectionImpl@4b5

a775b State:STATE_ACTIVE_FREE

1420 Administering WebSphere applications

(2)(0)MCWrapper id 3394375a Managed connection WSRdbManagedConnectionImpl@328

5f75a State:STATE_ACTIVE_FREE

 (2)(0)MCWrapper id 4795b75a Managed connection WSRdbManagedConnectionImpl@46a

4b75a State:STATE_ACTIVE_FREE

 Total number of connection in free pool: 3

UnShared Connection information

 No unshared connections

Here is an example Java program using the wsadmin tool to invoke showPoolContents: the Example:

using wsadmin to invoke showPoolContents topic in the Administering applications and their environment

PDF.

Example: Invoking showPoolContents using the wsadmin tool:

This example Java program uses the wsadmin tool to invoke showPoolContents.

/**

 * "This sample program is provided AS IS and may be used, executed, copied and modified without royalty payment

 * by customer (a) for its own instruction and study, (b) in order to develop applications designed to run with

 * an IBM WebSphere product, either for customer’s own internal use or for redistribution by customer, as part

 * of such an application, in customer’s own products. "

 * Product 5724i63, (C) COPYRIGHT International Business Machines Corp., 2004

 *

 * All Rights Reserved * Licensed Materials - Property of IBM

 *

 * This program will display an active mbean object name and the connection pool.

 *

 * To run this program

 *

 * 1. call "%WAS_HOME%/bin/setupCmdLine.bat"

 *

 * 2. "%JAVA_HOME%\bin\java" "%CLIENTSAS%" "-Dwas.install.root=%WAS_HOME%" "-Dwas.repository.root=%CONFIG_ROOT%"

 * -Dcom.ibm.CORBA.BootstrapHost=%COMPUTERNAME% -classpath "%WAS_CLASSPATH%;%WAS_HOME%\runtimes

\com.ibm.ws.admin.client_7.0.0.jar;%WAS_HOME%

 * \lib\wasjmx.jar;." ShowPoolContents DataSource_mbean_name

 */

import java.util.Properties;

import java.util.Set;

import javax.management.*;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

public class ShowPoolContents {

 private AdminClient adminClient;

 public static void main(String[] args) {

 try {

 String name2 = null;

 String port = null;

 if (args.length < 2) {

 System.out.println("Enter name for the mbean and port");

 return;

 }

 else {

 name2 = args[0];

 port = args[1];

 System.out.println("Searching for name" + name2);

 }

 ShowPoolContents ace = new ShowPoolContents();

 // Create an AdminClient

 ace.createAdminClient(port);

 ObjectName[] cfON = ace.queryMBean("DataSource", null);

 if (cfON.length == 0) {

 System.out.println(" *Error : queryMBean did not find any active mbeans of type DataSource.");

 System.out.println(" At first touch of a DataSource, an mbean will be created.

To touch a DataSource, use getConnection");

 return;

 }

 int selectedObjectName = -1;

 String findName = name2;

Chapter 7. Data access resources 1421

for (int i = 0; i < cfON.length; i++) {

 System.out.println("\ncfON[i] = " + cfON[i]);

 }

 }

 catch (Exception e) {

 System.out.println(" *Exception : " + e.toString());

 e.printStackTrace(System.out);

 }

 }

 private void createAdminClient(String port) {

 // Set up a Properties object for the JMX connector attributes

 Properties connectProps = new Properties();

 connectProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 connectProps.setProperty(AdminClient.CONNECTOR_PORT, port);

 // Get an AdminClient based on the connector properties

 try {

 adminClient = AdminClientFactory.createAdminClient(connectProps);

 }

 catch (ConnectorException e) {

 System.out.println("Exception creating admin client: " + e);

 System.exit(-1);

 }

 System.out.println("Connected to DeploymentManager");

 }

 // helper method to query mbean by type / name

 public ObjectName[] queryMBean(String type, String name) throws Exception {

 String s = "*:";

 if (type != null)

 s += "type=" + type;

 if (name != null)

 s += ",name=" + name;

 s += ",*";

 System.out.println("queryMBean: " + s);

 ObjectName ion = new ObjectName(s);

 Set set = adminClient.queryNames(ion, null);

 Object[] o = set.toArray();

 ObjectName[] on = new ObjectName[o.length];

 for (int i = 0; i < o.length; i++) {

 on[i] = (ObjectName)o[i];

 }

 return on;

 }

}

Related tasks

“Changing connection pool settings with the wsadmin tool” on page 1416
You can use the wsadmin scripting tool to change connection pool settings.

Configuring new data source custom properties using scripting

You can configure new data source custom properties using the wsadmin tool and scripting.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new data source custom property:

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

1422 Administering WebSphere applications

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_8)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new Java 2 Connector authentication data entries using

scripting

You can configure new Java 2 Connector (J2C) authentication data entries with the wsadmin tool and

scripting.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Chapter 7. Data access resources 1423

About this task

Perform the following steps to configure a new J2C authentication data entry:

1. Identify the parent ID:

v Using Jacl:

set security [$AdminConfig getid /Cell:mycell/Security:/]

v Using Jython:

security = AdminConfig.getid(’/Cell:mycell/Security:/’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

Attribute Type

alias String

userId String

password String

3. Set up required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

print jaasAttrs

Example output:

[[’alias’, ’myAlias’], [’userId’, ’myid’], [’password’, ’secret’]]

4. Create JAAS auth data:

v Using Jacl:

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell|security.xml#JAASAuthData_2)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

1424 Administering WebSphere applications

Configuring new WAS40 data sources using scripting

Use scripting to configure a new WAS40 data source.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps:

1. Identify the parent ID:

v Using Jacl:

set newjdbc [$AdminConfig getid "/JDBCProvider:Apache Derby JDBC Provider/"]

v Using Jython:

newjdbc = AdminConfig.getid(’/JDBCProvider:Apache Derby JDBC Provider/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml$JDBCProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40DataSource

v Using Jython:

print AdminConfig.required(’WAS40DataSource’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name was4DS1]

set ds4Attrs [list $name]

v Using Jython:

name = [’name’, ’was4DS1’]

ds4Attrs = [name]

4. Create WAS40DataSource:

v Using Jacl:

set new40ds [$AdminConfig create WAS40DataSource $newjdbc $ds4Attrs]

v Using Jython:

new40ds = AdminConfig.create(’WAS40DataSource’, newjdbc, ds4Attrs)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynode|resources.xml#WAS40DataSource_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WAS40 connection pools using scripting

You can use scripting to configure a new WAS40 connection pool.

Chapter 7. Data access resources 1425

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new WAS40 connection pool:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/

Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/

Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes:resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40ConnectionPool

v Using Jython:

print AdminConfig.required(’WAS40ConnectionPool’)

Example output:

Attribute Type

minimumPoolSize Integer

maximumPoolSize Integer

connectionTimeout Integer

idleTimeout Integer

orphanTimeout Integer

statementCacheSize Integer

3. Set up required attributes:

v Using Jacl:

set mps [list minimumPoolSize 5]

set minps [list minimumPoolSize 5]

set maxps [list maximumPoolSize 30]

set conn [list connectionTimeout 10]

set idle [list idleTimeout 5]

set orphan [list orphanTimeout 5]

set scs [list statementCacheSize 5]

set 40cpAttrs [list $minps $maxps $conn $idle $orphan $scs]

Example output:

{minimumPoolSize 5} {maximumPoolSize 30}

{connectionTimeout 10} {idleTimeout 5}

{orphanTimeout 5} {statementCacheSize 5}

v Using Jython:

minps = [’minimumPoolSize’, 5]

maxps = [’maximumPoolSize’, 30]

conn = [’connectionTimeout’, 10]

idle = [’idleTimeout’, 5]

orphan = [’orphanTimeout’, 5]

scs = [’statementCacheSize’, 5]

cpAttrs = [minps, maxps, conn, idle, orphan, scs]

print cpAttrs

Example output:

1426 Administering WebSphere applications

[[minimumPoolSize, 5], [maximumPoolSize, 30],

[connectionTimeout, 10], [idleTimeout, 5],

[orphanTimeout, 5], [statementCacheSize, 5]]

4. Create was40 connection pool:

v Using Jacl:

$AdminConfig create WAS40ConnectionPool $new40ds $40cpAttrs

v Using Jython:

print AdminConfig.create(’WAS40ConnectionPool’, new40ds, 40cpAttrs)

Example output:

(cells/mycell/nodes/mynode:resources.xml#WAS40ConnectionPool_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WAS40 custom properties using scripting

You can use scripting and the wsadmin tool to configure a new WAS40 custom property.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new WAS40 custom properties:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/

JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/

JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes|resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_9)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Chapter 7. Data access resources 1427

Attribute Type

name String

4. Set up required attributes:

v Using Jacl:

set name [list name RP5]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP5’]

rpAttrs = [name]

5. Create J2EE Resource Property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP5(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_9)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C resource adapters using scripting

Use the wsadmin tool to configure resource adapters with Resource Adapter Archive (RAR) files. A RAR

file provides the classes and other code to support a resource adapter for access to a specific enterprise

information system (EIS), such as the Customer Information Control System (CICS). Configure resource

adapters for an EIS only after you install the appropriate RAR file.

Before you begin

A RAR file, which is often called a J2EE Connector Architecture (JCA) connector, must comply with the

JCA Specification. Meet these requirements by using a supported assembly tool (as described in the

Assembly tools article) to assemble a collection of Java archive (JAR) files, other runnable components,

utility classes, and so on, into a deployable RAR file. Then you are ready to install your RAR file in

Application Server.

There are two ways to complete this task. This topic uses the AdminConfig object to install resource

adapters. Alternatively, you can use the installJ2CResourceAdapter script in the AdminJ2C script library to

install a J2C resource adapter in your configuration, as the following example demonstrates:

AdminJ2C.installJ2CResourceAdapter(“myNode", "C:\temp\jca15cmd.rar", "J2CTest")

The scripting library provides a set of procedures to automate the most common administration functions.

You can run each script procedure individually, or combine several procedures to quickly develop new

scripts.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Identify the configuration ID of the node to which the resource adapter is installed, as the following

examples demonstrate:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

1428 Administering WebSphere applications

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

3. Identify the optional attributes.

The J2CResourceAdapter object does not require specific arguments. Use the following command to

display the optional attributes for the J2CResourceAdapter object:

v Using Jacl:

$AdminConfig defaults J2CResourceAdapter

v Using Jython:

print AdminConfig.defaults(’J2CResourceAdapter’)

The following displays the command output that displays each optional attribute and the data type for

the attribute, and denotes the default attributes:

Attribute Type

name String

description String

classpath String

nativepath String

providerType String

archivePath String

threadPoolAlias String

propertySet J2EEResourcePropertySet

jaasLoginConfiguration JAASConfigurationEntry

deploymentDescriptor Connector

connectionDefTemplateProps ConnectionDefTemplateProps

activationSpecTemplateProps ActivationSpecTemplateProps

j2cAdminObjects J2CAdminObject

adminObjectTemplateProps AdminObjectTemplateProps

j2cActivationSpec J2CActivationSpec

4. Set up the attributes of interest.

Determine the attributes to configure for the J2C resource adapter. In the following examples, the

commands set the RAR file path to the rarFile variable and the name and description configuration

options to the option variable:

v Using Jacl:

set rarFile /currentScript/cicseci.rar

set option {-rar.name RAR1 -rar.desc "New resource adapter"}

v Using Jython:

5. Create a resource adapter.

Use the installResourceAdapter command for the AdminConfig object to install the resource adapter

with the previously set configuration options, as the following examples demonstrate:

v Using Jacl:

$AdminConfig installResourceAdapter $rarFile mynode $option

v Using Jython:

AdminConfig.installResourceAdapter(rarFile, ’mynode’, option)

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

6. Save the configuration changes.

7. Synchronize the node.

Use the syncActiveNode or syncNode scripts in the AdminNodeManagement script library to propagate

the configuration changes to node or nodes.

v Use the syncActiveNodes script to propagate the changes to each node in the cell, as the following

example demonstrates:

AdminNodeManagement.syncActiveNodes()

Chapter 7. Data access resources 1429

v Use the syncNode script to propagate the changes to a specific node, as the following example

demonstrates:

AdminNodeManagement.syncNode("myNode")

Configuring custom properties for J2C resource adapters using

scripting

You can configure custom properties for J2C resource adapters with scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new custom property for a J2C resource adapters:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newra propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newra, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_8)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

1430 Administering WebSphere applications

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C connection factories using scripting

Use scripting and the wsadmin tool to configure new J2C connection factories.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new J2C connection factory:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C connection factory. Perform one of the following:

v Using the AdminTask object:

a. List the connection factory interfaces:

– Using Jacl:

$AdminTask listConnectionFactoryInterfaces $newra

– Using Jython:

AdminTask.listConnectionFactoryInterfaces(newra)

Example output:

javax.sql.DataSource

b. Create a J2CConnectionFactory:

– Using Jacl:

$AdminTask createJ2CConnectionFactory $newra { -name cf1

-jndiName eis/cf1 -connectionFactoryInterface

avax.sql.DataSource

– Using Jython:

AdminTask.createJ2CConnectionFactory(newra, ’[’-name’, ’cf1’,

’-jndiName’, ’eis/cf1’, ’-connectionFactoryInterface’,

’avax.sql.DataSource’]’)

v Using the AdminConfig object:

a. Identify the required attributes:

– Using Jacl:

$AdminConfig required J2CConnectionFactory

Chapter 7. Data access resources 1431

– Using Jython:

print AdminConfig.required(’J2CConnectionFactory’)

Example output:

Attribute Type

connectionDefinition ConnectionDefinition@

b. If your resource adapter is JCA1.5 and you have multiple connection definitions defined, it is

required that you specify the ConnectionDefinition attribute. If your resource adapter is JCA1.5

and you have only one connection definition defined, it will be picked up automatically. If your

resource adapter is JCA1.0, you do not need to specify the ConnectionDefinition attribute.

Perform the following command to list the connection definitions defined by the resource

adapter:

– Using Jacl:

$AdminConfig list ConnectionDefinition $newra

– Using Jython:

print AdminConfig.list(’ConnectionDefinition’, $newra)

c. Set up the required attributes:

– Using Jacl:

set name [list name J2CCF1]

set jname [list jndiName eis/j2ccf1]

set j2ccfAttrs [list $name]

– Using Jython:

name = [’name’, ’J2CCF1’]

jname = [’jndiName’, ’eis/j2ccf1’]

j2ccfAttrs = [name,jname]

d. If you are specifying the ConnectionDefinition attribute, also set up the following:

– Using Jacl:

set cdattr [list connectionDefinition $cd]

– Using Jython:

cdattr = [’connectionDefinition’, $cd]

e. Create a J2C connection factory:

– Using Jacl:

$AdminConfig create J2CConnectionFactory $newra $j2ccfAttrs

– Using Jython:

print AdminConfig.create(’J2CConnectionFactory’, newra, j2ccfAttrs)

Example output:

J2CCF1(cells/mycell/nodes/mynode|resources.xml#J2CConnectionFactory_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C activation specifications using scripting

You can configure new J2C activation specifications using scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

1432 Administering WebSphere applications

About this task

Perform the following steps to configure a J2C activation specifications:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listMessageListenerTypes $newra

Using Jython:

AdminTask.listMessageListenerTypes(newra)

Example output:

javax.jms.MessageListener

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CActivationSpec $newra { -name ac1

-jndiName eis/ac1 -messageListenerType

javax.jms.MessageListener}

Using Jython:

AdminTask.createJ2CActivationSpec(newra, [’-name’, ’ao1’,

’-jndiName’, ’eis/ao1’, ’-messageListenerType’,

’javax.jms.MessageListener’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CActivationSpec

Using Jython:

print AdminConfig.required(’J2CActivationSpec’)

Example output:

Attribute Type

activationSpec ActivationSpec@

b. If your resource adapter is JCA V1.5 and you have multiple activation specifications defined, it is

required that you specify the activation specification attribute. If your resource adapter is JCA

V1.5 and you have only one activation specification defined, it will be picked up automatically. If

your resource adapter is JCA V1.0, you do not need to specify the activationSpec attribute.

Perform the following command to list the activation specifications defined by the resource

adapter:

Using Jacl:

$AdminConfig list ActivationSpec $newra

Using Jython:

print AdminConfig.list(’ActivationSpec’, $newra)

c. Set the administrative object that you need to a variable:

Using Jacl:

Chapter 7. Data access resources 1433

set ac [$AdminConfig list ActivationSpec $newra]

set name [list name J2CAC1]

set jname [list jndiName eis/J2CAC1]

set j2cacAttrs [list $name $jname $cdcttr]

Using Jython:

ac = AdminConfig.list(’ActivationSpec’, $newra)

name = [’name’, ’J2CAC1’]

jname = [’jndiName’, ’eis/j2cac1’]

j2cacAttrs = [name, jname,cdattr]

d. If you are specifying the ActivationSpec attribute, also set up the following:

Using Jacl:

set cdcttr [list activationSpec $ac]

Using Jython:

cdattr = [’activationSpec’, ac]

e. Create a J2C activation specification object:

Using Jacl:

$AdminConfig create J2CActivationSpec $newra $j2cacAttrs

Using Jython:

print AdminConfig.create(’J2CActivationSpec’, newra,j2cacAttrs)

Example output:

J2CAC1(cells/mycell/nodes/mynode|resources.xml#J2CActivationSpec_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C administrative objects using scripting

You can use scripting and the wsadmin tool to configure new J2C administrative objects.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a J2C administrative object:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listAdminObjectInterfaces $newra

1434 Administering WebSphere applications

Using Jython:

AdminTask.listAdminObjectInterfaces(newra)

Example output:

com.ibm.test.message.FVTMessageProvider

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CAdminObject $newra { -name ao1 -jndiName eis/ao1

-adminObjectInterface com.ibm.test.message.FVTMessageProvider }

Using Jython:

AdminTask.createJ2CAdminObject(newra, [’-name’, ’ao1’, ’-jndiName’, ’eis/ao1’,

’-adminObjectInterface’, ’com.ibm.test.message.FVTMessageProvider’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CAdminObject

Using Jython:

print AdminConfig.required(’J2CAdminObject’)

Example output:

Attribute Type

adminObject AdminObject@

b. If your resource adapter is JCA V1.5 and you have multiple administrative objects defined, it is

required that you specify the administrative object attribute. If your resource adapter is JCA V1.5

and you have only one administrative object defined, it will be picked up automatically. If your

resource adapter is JCA V1.0, you do not need to specify the administrative object attribute.

Perform the following command to list the administrative objects defined by the resource

adapter:

Using Jacl:

$AdminConfig list AdminObject $newra

Using Jython:

print AdminConfig.list(’AdminObject’, $newra)

c. Set the administrative objects that you need to a variable:

Using Jacl:

set ao AdminObjectId

set name [list name J2CAO1]

set jname [jndiName eis/j2cao1]

set j2caoAttrs [list $name $jname]

Using Jython:

ao = AdminObjectId

name = [’name’, ’J2CAO1’]

set jname = [’jndiName’, eis/j2cao1]

j2caoAttrs = [name, jname]

d. If you are specifying the AdminObject attribute, also set up the following:

Using Jacl:

set cdattr [list adminObject $ao]

Using Jython:

cdattr = [’adminObject’, ao]

e. Create a J2C administrative object:

Using Jacl:

$AdminConfig create J2CAdminObject $newra $j2caoAttrs

Using Jython:

print AdminConfig.create(’J2CAdminObject’, newra, j2caoAttrs)

Chapter 7. Data access resources 1435

Example output:

J2CAO1(cells/mycell/nodes/mynode|resources.xml#J2CAdminObject_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Managing the message endpoint lifecycle using scripting

Use the Jython scripting language to manage your message endpoints with the wsadmin tool. Use this

topic to query your configuration for message endpoint properties, and to deactivate or reactivate a

message endpoint.

About this task

The Java EE Connector Architecture (JCA) allows the application server to link inbound requests from

messaging resource adapters to message endpoints. The message endpoint managed bean (MBean) is a

Java Management Extensions (JMX) framework MBean that the application server associates with a

message endpoint instance.

Use this topic to manage situations where messaging providers fail to deliver messages to their intended

destinations. For example, a provider might fail to deliver messages to a message endpoint when its

underlying Message Driven Bean attempts to commit transactions against a database server that is not

responding. To troubleshoot the problem, use the wsadmin tool to temporarily disable the message

endpoint from handling messages. After troubleshooting the issue, use the wsadmin tool to reactivate the

message endpoint.

The steps in this topic display how to use the AdminControl object and the wsadmin tool to invoke a

Message Endpoint MBean to:

v Display properties of the a message endpoint

v Temporarily deactivate a message endpoint

v Reactivate a message endpoint

Note: Starting in Version 7.0, you can use the AdminControl object and the wsadmin tool to deactivate

message endpoints to pause the endpoints from receiving messages, and to reactivate message

endpoints to resume message handling. Previously, the application server activated and deactivated

message endpoints when the application or resource adapter was started and stopped.

v Display properties of a message endpoint.

Use the following command to display a list of all message endpoints in your configuration:

AdminControl.queryNames(’*:type=J2CMessageEndpoint,*’)

For the previous example, the command returns the following information for the

JMSMDB_MessageEndpoint:

WebSphere:name=JMSMDB_J2CMessageEndpoint,

process=myServer,

platform=dynamicproxy,

cell=myNode01Cell,

node=myNode01,

version=6.1.0.0,

type=J2CMessageEndpoint,

mbeanIdentifier=cells/myNode01Cell/nodes/myNode01/servers/myServer/resources.xml#example#example.jar#JMSMDB_J2CMessageEndpoint,

spec=1.0,

Server=server1,

diagnosticProvider=false,

j2eeType=JCAMessageEndpoint,

J2EEApplication=example

J2EEServer=myServer,

J2CResourceAdapter=SIB JMS Resource Adapter,

MessageDrivenBean=example#example.jar#JMSMDBActivationSpec=3727AS1

v Temporarily deactivate the message endpoint.

1436 Administering WebSphere applications

Use the following commands to cache the instance and deactivate the message endpoint:

objectName=AdminControl.queryNames(’*:name=JMSMDB_MessageEndpoint,*’)

AdminControl.invoke(objectName, ’pause’)

The command returns the following output:

Message Endpoint JMSMDB_J2CMessageEndpoint is deactivated

v Reactivate the message endpoint.

Use the following commands to cache the instance and reactivate the message endpoint:

objectName=AdminControl.queryNames(’*:name=JMSMDB_MessageEndpoint,*’)

AdminControl.invoke(objectName, ’resume’)

The command returns the following output:

Message Endpoint JMSMDB_J2CMessageEndpoint is activated

Testing data source connections using scripting

You can test connections for data sources with the wsadmin tool and scripting. After you have defined and

saved a data source, you can test the data source connection to ensure that the parameters in the data

source definition are correct.

About this task

You can use the testConnection command for the AdminControl object to test data source connections for

a cell, node, server, application, or cluster scope. This topic provides an example that tests the data

source connection for the application scope.

v Test the data source connection for a cell, node, or server scope.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Identify the DataSourceCfgHelper MBean and assign it to the dshelper variable.

– Using Jacl:

set ds [$AdminConfig getid /DataSource:DS1/]

$AdminControl testConnection $ds

– Using Jython:

ds = AdminConfig.getid(’/DataSource:DS1/’)

AdminControl.testConnection(ds)

Example output:

WASX7217I: Connection to provided datasource was successful.

3. Test the connection. The following example invokes the testConnectionToDataSource operation on

the MBean, passing in the classname, userid, password, database name, JDBC driver class path,

language, and country.

– Using Jacl:

– Using Jython:

Example output:

WASX7217I: Connection to provided data source was successful.

v Test the data source connection for an application scope.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Get the data source for the application of interest.

Use the AdminConfig object to determine the configuration IDs of the myApplication application and

DSA1 data source, as the following examples demonstrate:

– Using Jacl:

set appID [$AdminConfig getid /Deployment:myApplication/]

set ds [$AdminConfig list DataSource $appID]

– Using Jython:

Chapter 7. Data access resources 1437

appID = AdminConfig.getid("/Deployment:myApplication/")

ds = AdminConfig.list("DataSource", appID)

3. Test the connection.

Use the AdminConfig object to test the connection for the data source of interest, as the following

examples demonstrate:

– Using Jacl:

$AdminControl testConnection $ds

– Using Jython:

AdminControl.testConnection(ds)

The command returns output that indicates whether the connection is successful, as demonstrated in

the following sample output:

WASX7467I: Connection to provided datasource on node myNode processnodeagent was successful.

WASX7217I: Connection to provided datasource was successful.

v Test the data source connection for a cluster scope.

In the following example, the Cluster1 server cluster contains cluster members on the node1, node2, and

node3 nodes. The Cluster1 server cluster contains the DSC1 data source.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Get the data source configuration ID for the cluster of interest.

Use the AdminConfig object to determine the configuration IDs of the Cluster1 cluster and DSA1 data

source, as the following examples demonstrate:

– Using Jacl:

set cluster [$AdminConfig getid /ServerCluster:Cluster1/]

set ds [$AdminConfig list DataSource $cluster]

– Using Jython:

cluster = AdminConfig.getid("/ServerCluster:Cluster1/")

ds = AdminConfig.list("DataSource", cluster)

3. Test the connection.

Use the AdminConfig object to test the connection for the data source of interest, as the following

examples demonstrate:

– Using Jacl:

$AdminControl testConnection $ds

– Using Jython:

AdminControl.testConnection(ds)

The command returns output that indicates whether the connection is successful, as demonstrated in

the following sample output:

WASX7467I: Connection to provided datasource on node node1 process nodeagent was successful.

WASX7467I: Connection to provided datasource on node node2 process nodeagent was successful.

WASX7467I: Connection to provided datasource on node node3 process nodeagent was successful.

WASX7217I: Connection to provided datasource was successful.

JDBCProviderManagement command group for the AdminTask object

You can use the Jython or Jacl scripting languages in interactive mode to configure data access and data

sources with scripting. The commands and parameters in the JDBCProviderManagement group can be

used to create or list data sources and Java database connectivity (JDBC) providers.

The JDBCProviderManagement command group for the AdminTask object includes the following

commands:

v “createDatasource” on page 1439

v “createJDBCProvider” on page 1440

v “listDatasources” on page 1441

1438 Administering WebSphere applications

v “listJDBCProviders” on page 1442

createDatasource

The createDatasource command creates a new data source to access the back end data store. Application

components use the data source to access connection instances to your database.

Target object

JDBC Provider Object ID - The configuration object of the JDBC provider to which the new data source

will belong.

Required parameters

- name

The name of the data source. (String, required)

-jndiName

The Java Naming and Directory Interface (JNDI) name. (String, required)

-dataStoreHelperClassName

The name of the DataStoreHelper implementation class that extends the capabilities of the selected

JDBC driver implementation class to perform data-specific functions. WebSphere Application Server

provides a set of DataStoreHelper implementation classes for each of the JDBC provider drivers it

supports. (String, required)

configureResourceProperties

This command step configures the resource properties that are required by the data source.

(Required) You can specify the following parameters for this step:

name

The name of the resource property. (String, required)

type

The type of the resource property. (String, required)

value

The value of the resource property. (String, required)

Optional parameters

-description

The description of the data source. (String, optional)

-category

The category that you can use to classify a group of data sources. (String, optional)

-componentManagedAuthenticationAlias

The alias used for database authentication at run time. This alias is only used when the application

resource reference is using res-auth=Application. (String, optional)

-containerManagedPersistence

Specifies if the data source is used for container managed persistence for enterprise beans. The

default value is true. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

Chapter 7. Data access resources 1439

$AdminTask createDatasource "DB2 Universal JDBC Driver Provider (XA)(cells/myCell|resources.xml#JDBCProvider_1180538152781)" {-name

"DB2 Universal JDBC Driver XA DataSource" -jndiName s1 -dataStoreHelperClassName com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

 -componentManagedAuthenticationAlias myCellManager01/a1 -xaRecoveryAuthAlias myCellManager01/a1 -configureResourceProperties

{{databaseName java.lang.String db1} {driverType java.lang.Integer 4} {serverName java.lang.String dbserver1} {portNumber java.lang.Integer 50000}}}

v Using Jython string:

AdminTask.createDatasource(’DB2 Universal JDBC Driver Provider(XA) (cells/myCell|resources.xml#JDBCProvider_1180501752515)’, ’[-name

"DB2 Universal JDBC Driver XA DataSource 2" -jndiName ds2 -dataStoreHelperClassName com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

 -componentManagedAuthenticationAlias myCellManager01/a1 -xaRecoveryAuthAlias myCellManager01/a1 -configureResourceProperties

[[databaseName java.lang.String db1] [driverType java.lang.Integer 4] [serverName java.lang.String dbserver1] [portNumber java.lang.Integer 50000]]]’)

v Using Jython list:

AdminTask.createDatasource(’DB2 Universal JDBC Driver Provider(XA) (cells/myCell|resources.xml#JDBCProvider_1180501752515)’, [’-name’, ’

DB2 Universal JDBC Driver XA DataSource 2’, ’-jndiName’, ’ds2’, ’-dataStoreHelperClassName’,

 ’com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper’, ’-componentManagedAuthenticationAlias’, ’myCellManager01/a1’,

 ’-xaRecoveryAuthAlias’, ’myCellManager01/a1’, ’-configureResourceProperties’, ’[[databaseName java.lang.String db1]

[driverType java.lang.Integer 4] [serverName java.lang.String dbserver1] [portNumber java.lang.Integer 50000]]’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createDatasource {-interactive}

v Using Jython:

AdminTask.createDatasource(’-interactive’)

createJDBCProvider

The createJDBCProvider command creates a new Java database connectivity provider (JDBC) that you

can use to connect to a relational database for data access.

Target object

None

Required parameters

-scope

The scope for the new JDBC provider. Provide the scope in the form type=name. Type can be Cell,

Node, Server, Application, or Cluster, and name is the name of the specific instance of the cell, node,

server, application, or cluster that you are using. The default is none. (String, required)

-databaseType

The type of database that will be used by the JDBC provider. For example, DB2, Derby, Informix,

Oracle, and so on. (String, required)

-providerType

The JDBC provider type that will be used by the JDBC provider. (String, required)

-implementationType

The implementation type for this JDBC provider. Use Connection pool data source if your application

runs in a single phase or a local transaction. Otherwise, use XA data source to run in a global

transaction. (String, required)

Optional parameters

-classpath

Specifies a list of paths or JAR file names that form the location for the resource provider classes.

(String, optional)

-description

The description for the JDBC provider. (String, optional)

-implementationClassName

Specifies the Java class name for the JDBC driver implementation. (String, optional)

1440 Administering WebSphere applications

-isolated

Specifies that the JDBC provider will load in its own class loader. The default value is false. You

cannot specify a native path for an isolated JDBC provider. (Boolean, optional)

-name

The name of the JDBC provider. The default is the value from the provider template. (String, optional)

-nativePath

Specifies a list of paths that form the location for the resource provider native libraries. (String,

optional)

-isolated

Specifies whether the JDBC provider loads within the class loader. The default value is false. You

cannot specify a native path for an isolated JDBC provider. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createJDBCProvider {-scope Cell=my02Cell -databaseType DB2 -providerType "DB2 Universal JDBC Driver Provider"

-implementationType "XA data source" -name "DB2 Universal JDBC Driver Provider (XA)" -description "XA DB2 Universal JDBC Driver-compliant

Provider. Datasources created under this provider support the use of XA to perform 2-phase commit processing. Use of driver type 2 on WAS z/OS is not

supported for datasources created under this provider." -classpath

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar;${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar;${DB2UNIVERSAL_JDBC_DRIVER_PATH}/

db2jcc_license_cisuz.jar -nativePath ${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}}

v Using Jython string:

AdminTask.createJDBCProvider(’[-scope Cell=myCell -databaseType DB2 -providerType "DB2 Universal JDBC Driver Provider"

 -implementationType "XA datasource" -name "DB2 Universal JDBC Driver Provider (XA)" -description "XA DB2 Universal JDBC

Driver-compliant Provider. Datasources created under this provider support the use of XA to perform 2-phase commit processing. Use of driver

 type 2 on WAS z/OS is not supported for datasources created under this provider." -classpath

 ${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar;${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar;${DB2UNIVERSAL_JDBC_DRIVER_PATH}/

db2jcc_license_cisuz.jar -nativePath ${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}]’)

v Using Jython list:

AdminTask.createJDBCProvider([’-scope’, ’Cell=myCell’, ’-databaseType’, ’DB2’, ’-providerType’, ’DB2 Universal JDBC Driver Provider’,

 ’-implementationType’, ’XA data source’, ’-name’, ’DB2 Universal JDBC Driver Provider (XA)’, ’-description’, ’XA DB2 Universal

JDBC Driver-compliant Provider. Datasources created under this provider support the use of XA to perform 2-phase commit processing. Use of

driver type 2 on WAS z/OS is not supported for datasources created under this provider.’, ’-classpath’,

 ’${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar;${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar;${DB2UNIVERSAL_JDBC_DRIVER_PATH}/

db2jcc_license_cisuz.jar’, ’-nativePath’, ’${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJDBCProvider {-interactive}

v Using Jython:

AdminTask.createJDBCProvider(’-interactive’)

listDatasources

Use the listDatasources command to list data sources that are contained in the specified scope.

Target object

None

Required parameters

None.

Optional parameters

-scope

The scope for the data sources that will be listed. Provide the scope in the form type=name. Type can

Chapter 7. Data access resources 1441

be Cell, Node, Server, Application, or Cluster, and name is the name of the specific instance of the cell,

node, server, application, or cluster that you are using. The default is All. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listDatasources {-scope Cell=my02Cell}

v Using Jython string:

AdminTask.listDatasources(’[-scope Cell=my02Cell]’)

v Using Jython list:

AdminTask.listDatasources(’-scope’, ’Cell=my02Cell’)

Interactive mode example usage:

v Using Jacl:

$AdminTask listDatasources {-interactive}

v Using Jython:

AdminTask.listDatasources(’-interactive’)

listJDBCProviders

The listJDBCProviders command lists JDBC providers that are contained in the specified scope.

Target object

None

Required parameters

None.

Optional parameters

-scope

The scope for the JDBC providers that will be listed. Provide the scope in the form type=name. Type

can be Cell, Node, Server, Application, or Cluster, and name is the name of the specific instance of the

cell, node, server, application, or cluster that you are using. The default is All. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listJDBCProviders {-scope Cell=my02Cell}

v Using Jython string:

AdminTask.listJDBCProviders(’-scope Cell=my02Cell’)

v Using Jython list:

AdminTask.listJDBCProviders([’-scope’, ’Cell=my02Cell’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listJDBCProviders {-interactive}

v Using Jython:

AdminTask.listJDBCProviders(’-interactive’)

1442 Administering WebSphere applications

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

Configuring Persistence Provider support in the application server

Persistence providers are implementations of the Java Persistence API (JPA) specification and can be

deployed in the Java EE compliant application server that supports JPA persistence.

About this task

The Enterprise JavaBeans (EJB) 3.0 specifications require that an application server container that

supports the EJB 3.0 programming model must provide a JPA implementation. This is also referred to as a

persistence provider. There are two built-in JPA persistence providers: the JPA persistence provider for the

application server and the OpenJPA persistence provider. If an explicit provider element is not specified in

the persistence unit definitions, the application server will use the default persistence provider, which is the

JPA persistence provider for the application server.

The application server provides both the default persistence provider and the Apache OpenJPA

persistence provider to support the open source implementation of JPA and allow for easy migration of

existing OpenJPA applications to the application server’s solution for JPA.

v Configuring a default persistence provider

Use the default persistence provider, or specify a persistence provider for your application. With the

application server’s JPA persistence provider, you can take advantage of the stability and application

extensions that are provided with the application server’s implementation of JPA. You can decide which

persistence implementation best fits your needs. If an application relies on a specific persistence

provider for certain functions and settings, you should specify the provider in the persistence unit

definition to avoid any incompatibilities.

v Using third-party persistence providers

Use third-party persistence providers in the application server environment.

Configuring the Java Persistence API (JPA) default persistence

provider

Two persistence providers are included in WebSphere Application Server: JPA for WebSphere Application

Server persistence provider and Apache OpenJPA persistence provider. The JPA for WebSphere

Application Server persistence provider is the default provider for WebSphere Application Server. You can

use one of the two providers, or a third-party persistence provider, as the default provider.

About this task

On the application server’s feature pack for enterprise beans (EJB) 3.0 the default persistence provider,

default Java Transaction API (JTA) datasource Java Naming and Directory Interface (JNDI) name, and

default non-JTA datasource JNDI name, values are set through the following Java virtual machine (JVM)

properties: com.ibm.websphere.jpa.default.provider, com.ibm.websphere.jpa.default.jta.datasource, and

com.ibm.websphere.jpa.default.nonjta.datasource. Support for these properties has been deprecated. Any

values that were set through these properties will be displayed as default values on this panel. Any change

to these values through the Administrative Console panel will override any values set via the JVM

properties.

Chapter 7. Data access resources 1443

While built from the Apache OpenJPA persistence provider, the JPA for WebSphere Application Server

persistence provider contains the following enhancements and differences:

v Enhanced tracing support

v Version ID generation

v ObjectGrid cache plug-in support

v WebSphere product-specific commands and scripts

v Translated message files

v Static SQL support using the DB2 pureQuery feature

v Access intent support

v The following table shows how the default values for the JPA for WebSphere Application Server provider

configuration properties are different from the Apache OpenJPA provider:

Property Apache OpenJPA default value

JPA for WebSphere Application

Server default value

openjpa.Compatibility StrictIdentityValues=false StrictIdentityValues=true

openjpa.RuntimeUnenhancedClasses supported warn

If no JPA provider is configured in the <provider> element of the persistence.xml file within an EJB

module, the default JPA provider that is currently configured for this server is used. The WebSphere

Application Server is packaged with the JPA for WebSphere Application Server persistence provider

defined as the default provider. However, it is possible to override this default and specify a different

default via the Websphere Administrative Console.

You can set your default persistence provider in one of two ways. Use one of the following procedures.

1. Select the default JPA provider from a list of providers included with WebSphere Application Server.

a. Open the administrative console.

b. From the left-hand navigation, navigate to Servers → Application Servers

c. Select a server.

d. Navigate to Container Services → Default Java Persistence API Settings

e. Select Select a default persistence provider that is included with WebSphere Application

Server.

f. Click the slider and select from the list.

g. Click Apply and save the configuration.

2. Specify an alternative default persistence provider via the Administrative Console

a. Open the administrative console.

b. From the left-hand navigation, navigate to Servers → Application Servers

c. Select a server.

d. Navigate to Container Services → Default Java Persistence API Settings

e. Select Specify an alternative default persistence provider .

f. Enter the fully qualified JPA implementation class name of a JPA persistence provider in the box.

g. Click Apply and save the configuration.

1444 Administering WebSphere applications

Related tasks

“Configuring Persistence Provider support in the application server” on page 1443
Persistence providers are implementations of the Java Persistence API (JPA) specification and can be

deployed in the Java EE compliant application server that supports JPA persistence.

“Using third-party persistence providers” on page 1446
Java Persistence API (JPA) for WebSphere Application Server allows users to specify third-party

persistence providers in their application server environment.

Default Java Persistence API settings

The Java Persistence API (JPA) specification requires a default provider to be defined. If you have

applications that use JPA, it is recommended you use this page to provide default values. To increase the

portability of your applications, you can use this page to configure the default JPA settings for applications

running on this server instead of defining the <provider> element in each persistence unit in your

applications. The JPA settings defined here are used for the persistence unit of an application only when

the application does not define the JPA settings for that persistence unit.

Note: Application JPA settings always override the settings on this page.

To view this administrative console page, click Applications → server → Container Services → Default

Java Persistence API settings.

Default persistence provider:

Specify the default persistence provider for the application server container. The default persistence

provider can be selected either from a list of providers that are included with the product or a

user-specified alternate persistence provider.

 Select a persistence provider from the product list or specify a fully package qualified JPA implementation

class name of an alternate persistence provider.

Default

com.ibm.websphere.persistence.PersistenceProviderImpl

Note: If an alternate persistence provider is specified as the default, make sure the alternate persistence

provider is created in the server. See the information center topic on using a third-party persistence

provider.

Default Java Transaction API (JTA) data source Java Naming and Directory Interface (JNDI) name:

Specify the default JTA data source used by persistence units for the application server container.

 Select the JNDI name for the data source from the drop down box. The JTA data sources that are

currently configured and visible to the application server are available in the drop down box selection.

Default

None

Note: If a default JTA data source is not specified, ensure an appropriate JTA data source is specified in

the <jta-data-source> or connection properties field in the <properties> element in the persistence

unit.

Default non-JTA data source JNDI name:

Specify the default non-JTA data source used by persistence units for the application server container.

Chapter 7. Data access resources 1445

Select the JNDI name for the data source from the drop down box. The data sources that are currently

configured, visible to the application server, and are set to ″non-transactional″ are available in the drop

down box selection.

Default

None

Note: Some JPA entity features will require a non-JTA data source to be specified. An example of this is

automatic entity identity generation. Ensure a non-JTA data source is configured to match your

application needs. For information on configuring a non-JTA data source, see the information center

topic on associating persistence units and data sources.

Configuring the default JTA and non-JTA data source JNDI Names

The Java Transaction API (JTA) and non-JTA data sources to be used for an application can be specified

through the <jta-data-source> and <non-jta-data-source> elements of the persistence.xml file within an

Enterprise JavaBeans (EJB) module.

About this task

If these elements are not configured in the persistence.xml file, then the default JTA and non-JTA data

sources configured for the server are used. These values are null by default. However, the default JTA and

non-JTA data source Java Naming and Directory Interface (JNDI) names to be used by applications

running on this server can be defined using the administrative console.

1. Open the administrative console.

2. Select Servers → Application server → server → Container Services.

3. Click Default Java Persistence API settings.

4. Select the Default JTA data source JNDI name or the Default non-JTA data source JNDI name

field.

5. Click Apply to save the configuration.

Related tasks

“Configuring the Java Persistence API (JPA) default persistence provider” on page 1443
Two persistence providers are included in WebSphere Application Server: JPA for WebSphere Application

Server persistence provider and Apache OpenJPA persistence provider. The JPA for WebSphere

Application Server persistence provider is the default provider for WebSphere Application Server. You can

use one of the two providers, or a third-party persistence provider, as the default provider.

Using third-party persistence providers

Java Persistence API (JPA) for WebSphere Application Server allows users to specify third-party

persistence providers in their application server environment.

About this task

Java EE applications that use JPA functions can employ third-party persistence providers other than those

that are included with the application server. Applications can also specify an Apache OpenJPA provider

that is other than the version that is included with the application server. There are two basic means to

incorporate third-party providers into an application:

v Embedding the persistence provider inside an application

v Making use of shared libraries.

Depending on your requirements, you can embed a persistence provider inside an application, or place the

persistence provider into a shared library.

v Embedding a third-party persistence provider within an application Sometimes an application

design must rely on the implementation of a specific persistence provider. The JPA specification permits

embedding of a specific JPA provider within a persistence archive. When building the application, you

1446 Administering WebSphere applications

can assemble a specific version of a provider’s implementation in the application enterprise archive

(EAR) file or in a web application (WAR) file. To embed a third-party persistence provider into an

application, you need to inspect the application design and all dependent prerequisites. Use the

following steps to embed a persistence provider inside an application:

1. Modify the <provider> element to specify explicitly which persistence provider to use to access the

persistence entity.

2. Build the specific version of the third-party persistence provider into the application. To manage the

persistence correctly, verify that the EntityManagerFactory and the EntityManager are calling the

correct provider. Many providers write startup and version information to standard output, which gets

included in the SystemOut.log of the application server. This information can be helpful to determine

if a third-party provider is being used by your application.

3. To use a third-party JPA provider that was not bundled with the application server, configure the

class loader order for your application to load the classes with the application class loader first. This

is also required if the third-party JPA provider is defined in a shared library that is assigned to a

user-defined classloader on the server. If the class loader is not configured properly, the third-party

JPA provider that is included with the application server will be loaded and used by your application.

4. Depending on how you packaged the provider, perform one of the following steps:

– If you packaged the provider in an EAR file, specify the third-party persistence provider binaries

in the Manifest.mf classpath in those application modules that needs JPA access.

– If the provider was bundled in a WAR file, include the necessary provider binaries in the

WEB-INF/lib directory of the web application.

5. Install your application normally.

This configuration localizes the availability of the provider and limiting it to the application alone. While

sometimes necessary, embedding persistence providers will increase the application’s memory footprint

accordingly.

v Using shared libraries to implement a third-party persistence provider Persistence providers

accessed by applications in a global environment can be installed as a shared library for the application

server. Depending on your requirements, you can share the library to the server and application. Use

the following steps to implement a third-party persistence provider using shared libraries:

1. Modify the <provider> element to specify explicitly which persistence provider to use to access the

persistence entity.

2. Define the persistence provider in a shared library. See the topic on creating shared libraries for

more information.

3. Associate the shared library with the application class loader, or associate the shared library with the

server class loader if the library is accessed by many applications.

4. Configure the class loader order for your application to load the classes with the application class

loader first. This is required if the third-party JPA provider is included in the application or if it is

defined in a shared library. If the class loader is not configured properly, the JPA provider that is

included with the application server will be used by your application instead of the third-party JPA

provider.

When the application starts, the specified persistence provider will be resolved. From this point on, all

persistence requests will be handled by this provider.

v If the shared library persistence provider is overriding an existing persistence provider that is the same

type and exists in your application’s classloader hierarchy (example: attempting to override the version

of OpenJPA that is shipped with WebSphere), using an isolated classloader for the shared library is

recommended. See the topic on creating shared libraries for more information.

Chapter 7. Data access resources 1447

Related tasks

Creating shared libraries
Shared libraries are files used by multiple applications. Create a shared library to reduce the number of

duplicate library files on your system.

Configuring class loaders of a server
You can configure the application class loaders for an application server. Class loaders enable applications

that are deployed on the application server to access repositories of available classes and resources.

Task overview: Data Studio pureQuery

Data Studio pureQuery provides Java Persistence API (JPA) users an alternative way to access a DB2

database. PureQuery supports static Structured Query Language (SQL).

About this task

Note: JPA in the Java EE and Java SE environments provides optional support for the DB2 pureQuery

runtime environment. PureQuery is a high performance Java data access platform that helps

manage applications that access data. PureQuery provides an alternate set of APIs that can be

used instead of Java Database Connectivity (JDBC) to access the DB2 database.

To use this feature on the application server, Data Studio pureQuery runtime version 1.2 must be installed.

If you plan on performing the DB2 bind command from the administrative console or with the wsadmin

tool, you must have pureQuery v1.2 or later. Refer to the Data Studio information center topic on installing

pureQuery Runtime for more information.

The application server offers support for static SQL for Enterprise JavaBeans (EJB) 2.x entity beans with

the ejbdeploy SQLj option. With JPA, this feature is offered through pureQuery.

DB2 pureQuery offers a number of benefits over JDBC and SQLJ. Static SQL offers greater security and

control over access to data because applications are only granted authority to execute known SQL. Static

SQL offers better resource utilization on the DB2 server because it avoids runtime parsing and optimizing

of the SQL statements.

PureQuery makes use of DB2 packages. These packages consist of information for one or more SQL

statements and are stored in the DB2 catalog. To create the packages, the user must first run the

wsdb2gen command on a JPA application. The wsdb2gen command creates a

persistence_unit_name.pdqxml file. This file contains pre-generated SQL statements for Create, Update,

Delete, and Retrieve, NamedQueries and NamedNativeQueries of JPA entities. The

persistence_unit_name.pdqxml file must be bound against database. Associated DB2 packages are

generated and the SQL statement is executed statically at runtime. This persistence_unit_name.pdqxml

file must be included into the application Java archive (JAR) file.

When doing the bind process and when you define your JDBC provider, the following four JAR files must

be in the class path:

v db2jcc_license_cisuz.jar

v db2jcc_license_cu.jar

v pdq.jar

v pdqmgmt.jar

WebSphere Application Server support for pureQuery

Note:

v There is no support for the QueryTimeout property specified either through the FetchPlan API or

through the property plug-in string for wsjpa.ConnectionFactoryProperties. The QueryTimeout

value is ignored if specified.

1448 Administering WebSphere applications

v OpenJPA large result processing uses JDBC APIs for scrollable cursors.

Note:

v JPA sets the pureQuery property, pdq.executionMode, to the value STATIC.

v In addition to the JDBC driver JAR file, the JDBC provider configuration must include the JAR file

for the pureQuery runtime environment.

v OpenJPA provides support to allow application programs to programmatically access and alter

the FetchPlan at run time. Altering the fetch plan might result in SQL that has not been

generated by the wsdb2gen command at application build time. If this occurs, the SQL is

executed dynamically rather than using static SQL from the DB2 package.

v If the user makes changes to the application queries, entity mapping or persistence properties,

then run the wsdb2gen command and bind again. This process generates and binds the updated

DB2 packages.

v Input parameter values in JPA queries (with both EJB SQL queries and native SQL queries)

cannot be NULL values except in the case of update statements SET expression values. To search

for NULL values in a WHERE clause of SELECT, UPDATE or DELETE, then enter the is null

predicate instead.

v Learn how to “Configuring to use pureQuery in a Java EE environment”.

v Learn how to “Configuring to use pureQuery in Java SE environment” on page 1452.

Related tasks

“Configuring Persistence Provider support in the application server” on page 1443
Persistence providers are implementations of the Java Persistence API (JPA) specification and can be

deployed in the Java EE compliant application server that supports JPA persistence.

wsdb2gen command
The command allows users to utilize the pureQuery feature in Java Persistence API (JPA) applications.

wsenhancer command
The entity enhancer tool for Java Persistence API (JPA) applications in the application server inserts

bytecode into an entity class file that allows the JPA provider to manage the state of an entity.

Developing and packaging JPA applications for a Java EE environment
Containers in the application server can provide many of the necessary functions for the Java Persistence

API (JPA) in a Java Enterprise Edition (Java EE) environment. The application server also provides JPA

tools to assist you with developing applications in a Java EE environment.

Developing and packaging JPA applications for a Java SE environment
Prepare and package persistence applications to test outside of the application server container in a Java

SE environment.

Configuring to use pureQuery in a Java EE environment

Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use

pureQuery to access DB2.

Before you begin

If you need to use multiple DB2 package collections, see the information center topic configure pureQuery

to use multiple package collections before continuing with this task.

About this task

PureQuery makes use of DB2 packages. These packages consist of information for one or more SQL

statements and are stored in the DB2 catalog. You must first run the wsdb2gen command on a JPA

application to create the packages. The wsdb2gen command creates an XML file containing SQL

statement information. This XML file must be included into the application Java archive (JAR) file. The DB2

bind command uses this file as input to create the DB2 package .

Chapter 7. Data access resources 1449

Note:

v JPA sets the pureQuery property pdq.executionMode to the value STATIC.

v The JDBC provider configuration must include the JAR file for the pureQuery runtime environment. This

JAR file is in addition to the JDBC driver JAR file. See the information center topic on installing

pureQuery runtime for more information.

v If this is an XA data source, define a new custom property on the data source where property_name =

downgradeHoldCursorsUnderXa and boolean value = true.

1. Update the application data source JDBC provider configuration to include the pureQuery runtime JAR

file. Either define an new JDBC provider or modify an existing provider to include the following JAR

files. See information center topics on JDBC provider settings and installing pureQuery Runtime for

more information.

v pdq.jar

v pdqmgmt.jar

2. Using the DB2 bind command, bind the XML file to the database. This creates the DB2 packages.

There are three ways to do this:

v Use the wsadmin command. Refer to the information center topic on application management

command group for the AdminTask object for more information.

v Using the administrative console. Refer to the information center topic on SQLj profiles and

pureQuery bind files settings for more information.

v Using the DB2 bind command provided by Data Studio. Refer to the information center topic on the

pureQuery Bind utility for more information.

What to do next

If you want to reconfigure the data source for JDBC, just remove the pdq.jar and pdqmgmt.jar from the

class path.

1450 Administering WebSphere applications

Related tasks

“Task overview: Data Studio pureQuery” on page 1448
Data Studio pureQuery provides Java Persistence API (JPA) users an alternative way to access a DB2

database. PureQuery supports static Structured Query Language (SQL).

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

Related reference

wsenhancer command
The entity enhancer tool for Java Persistence API (JPA) applications in the application server inserts

bytecode into an entity class file that allows the JPA provider to manage the state of an entity.

wsdb2gen command
The command allows users to utilize the pureQuery feature in Java Persistence API (JPA) applications.

“JDBC provider settings” on page 1531
Use this page to modify the settings for a JDBC provider.

SQLj profiles and pureQuery bind files settings
Use this panel to specify customization and binding settings for the Structured Query Language in Java

(SQLJ) profiles and pureQuery bind files for DB2 that are included in this application. You can view SQLJ

profiles for other database types, but you cannot change the these profiles. PureQuerybind files are only

valid for DB2. Use SQLJ or pureQuery to develop data access applications that connect to DB2

databases. SQLJ is a set of programming extensions that enable a programmer to use the Java

programming language to embed statements that provide SQL (Structured Query Language) database

requests. PureQuery provides an alternate set of APIs that can be used instead of JDBC to access the

DB2 database.

Application management command group for the AdminTask object
You can use the Jython or Jacl scripting languages to manage applications with the wsadmin tool. Use the

commands and parameters in the AppManagementCommands group can be used to display and process

SQL-Java (SQLJ) profiles or pureQuery bind files.

Configuring pureQuery to use multiple package collections:

Set up a pureQuery Java Persistence API (JPA) application to use multiple DB2 package collections.

 About this task

It is possible for multiple copies of a database schema to exist. This situation might happen in a partitioned

database schema where there is one database for east coast employee data and another database for

west coast employee data. In this case, the two databases have the same schema. There might be two

databases with two database catalogs. Or there might be only one database, in which case, the high-level

qualifier of the table names (the schema name) must be different. Since the schemas are the same, there

can be a single set of JPA entities that are used to access both sets of data. There are several ways to

configure JPA to handle these situations.

Note: When there are multiple persistence units, either with separate databases or a single database, you

must run the wsdb2gen command once for each persistence unit.

The following three scenarios exist that require the use of multiple DB2 package collections. If you need

more information on configuring pureQuery, read about configuring an application to use pureQuery.

1. When there are two persistence units with different data source names, using static SQL, two sets of

DB2 packages exist: one DB2 package in each database. Since two persistence units exist, two

persistence_unit_name.pdqxml files for the JPA runtime environment exist.

2. If the tables are in a single database, then two persistence units can also be used. In this case, the

data source is the same in both persistence units. However, the schema name property,

wsjpa.jdbc.Schema must be different. There are two sets of DB2 packages. Each DB2 package must

Chapter 7. Data access resources 1451

have a different package name or a different package collection name. Both the wsdb2gen and the

DB2 bind command have options to specify the package collection and package names.

3. You can create a single persistence unit, which will eliminate the need to maintain two persistence unit

configurations and run the wsdb2gen command multiple times. This configuration requires a common

package name. Thus the package collection names must be different. Use the

createEntityManager(Map map) method, where the map contains the values for the wsjpa.jdbc.Schema

and wsjpa.jdbc.CollectionId properties to specify the package collection name and schema name.

Related tasks

“Configuring to use pureQuery in a Java EE environment” on page 1449
Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use

pureQuery to access DB2.

Related reference

wsdb2gen command
The command allows users to utilize the pureQuery feature in Java Persistence API (JPA) applications.

Configuring to use pureQuery in Java SE environment

Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use

pureQuery to access DB2.

Before you begin

If you need to use multiple DB2 package collections, see the information center topic configure pureQuery

to use multiple package collections before continuing with this task.

About this task

PureQuery makes use of DB2 packages. These packages consist of information for one or more

Structured Query Language (SQL) statements and are stored in the DB2 catalog. You must first run the

wsdb2gen command on a Java Persistence API (JPA) application to create the packages. The wsdb2gen

command creates an XML file containing SQL statement information. This XML file must be included into

the application Java archive (JAR) file. The DB2 bind command uses this file as input to create the DB2

package .

Note:

v JPA sets the pureQuery property pdq.executionMode to the value STATIC.

v The class path must include the install location for the pureQuery Runtime. See the information center

topic on installing pureQuery Runtime for more information.

v The JPA provider implementation must be JPA for the application server

(com.ibm.websphere.persistence.PersistenceProviderImpl). The OpenJPA persistence provider does

not provide support for pureQuery.

v The wsdb2gen command requires the URL of a database. The wsdb2gen command forces a

synchronize mapping function that creates or alters the required tables. For DB2 zOS, V8 unique

indexes and LOB tables must be manually created prior to executing the wsdb2gen command.

PureQuery properties are specified in a pdq.properties file in the META-INF directory of the application

jar. The pdq.ExecutionMode property is defaulted to STATIC for JPA applications. PDQ properties, if

specified, pass on to the pureQuery runtime. See Data Studio pureQuery runtime documentation for list of

properties and valid values.

v wsjpa.jdbc.CollectionId : String value specifying the collection id to use. This overrides any collection

id used during wsdb2gen.

1. Update the application data source JDBC provider configuration to include the pureQuery Runtime JAR

files. Include the pdq.jar and pdqmgmt.jar files on the class path in addition to the JDBC driver jar

files. Either define an new JDBC provider or modify an existing provider to include the JAR files. The

1452 Administering WebSphere applications

class path must include the install location for the pureQuery Runtime. See the information center

topics on JDBC provider settings and installing pureQuery Runtime for more information.

2. Using the DB2 bind command provided by Data Studio, bind the XML file to the database. This creates

the DB2 packages. Refer to the information center topic on the pureQuery Bind utility for more

information.

What to do next

If you want to reconfigure the data source for JDBC, remove the pdq.jar and pdqmgmt.jar from the class

path.

Related tasks

“Task overview: Data Studio pureQuery” on page 1448
Data Studio pureQuery provides Java Persistence API (JPA) users an alternative way to access a DB2

database. PureQuery supports static Structured Query Language (SQL).

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

Related reference

wsenhancer command
The entity enhancer tool for Java Persistence API (JPA) applications in the application server inserts

bytecode into an entity class file that allows the JPA provider to manage the state of an entity.

wsdb2gen command
The command allows users to utilize the pureQuery feature in Java Persistence API (JPA) applications.

“JDBC provider settings” on page 1531
Use this page to modify the settings for a JDBC provider.

SQLj profiles and pureQuery bind files settings
Use this panel to specify customization and binding settings for the Structured Query Language in Java

(SQLJ) profiles and pureQuery bind files for DB2 that are included in this application. You can view SQLJ

profiles for other database types, but you cannot change the these profiles. PureQuerybind files are only

valid for DB2. Use SQLJ or pureQuery to develop data access applications that connect to DB2

databases. SQLJ is a set of programming extensions that enable a programmer to use the Java

programming language to embed statements that provide SQL (Structured Query Language) database

requests. PureQuery provides an alternate set of APIs that can be used instead of JDBC to access the

DB2 database.

Application management command group for the AdminTask object
You can use the Jython or Jacl scripting languages to manage applications with the wsadmin tool. Use the

commands and parameters in the AppManagementCommands group can be used to display and process

SQL-Java (SQLJ) profiles or pureQuery bind files.

Configuring pureQuery to use multiple package collections:

Set up a pureQuery Java Persistence API (JPA) application to use multiple DB2 package collections.

 About this task

It is possible for multiple copies of a database schema to exist. This situation might happen in a partitioned

database schema where there is one database for east coast employee data and another database for

west coast employee data. In this case, the two databases have the same schema. There might be two

databases with two database catalogs. Or there might be only one database, in which case, the high-level

qualifier of the table names (the schema name) must be different. Since the schemas are the same, there

can be a single set of JPA entities that are used to access both sets of data. There are several ways to

configure JPA to handle these situations.

Chapter 7. Data access resources 1453

Note: When there are multiple persistence units, either with separate databases or a single database, you

must run the wsdb2gen command once for each persistence unit.

The following three scenarios exist that require the use of multiple DB2 package collections. If you need

more information on configuring pureQuery, read about configuring an application to use pureQuery.

1. When there are two persistence units with different data source names, using static SQL, two sets of

DB2 packages exist: one DB2 package in each database. Since two persistence units exist, two

persistence_unit_name.pdqxml files for the JPA runtime environment exist.

2. If the tables are in a single database, then two persistence units can also be used. In this case, the

data source is the same in both persistence units. However, the schema name property,

wsjpa.jdbc.Schema must be different. There are two sets of DB2 packages. Each DB2 package must

have a different package name or a different package collection name. Both the wsdb2gen and the

DB2 bind command have options to specify the package collection and package names.

3. You can create a single persistence unit, which will eliminate the need to maintain two persistence unit

configurations and run the wsdb2gen command multiple times. This configuration requires a common

package name. Thus the package collection names must be different. Use the

createEntityManager(Map map) method, where the map contains the values for the wsjpa.jdbc.Schema

and wsjpa.jdbc.CollectionId properties to specify the package collection name and schema name.

Related tasks

“Configuring to use pureQuery in a Java EE environment” on page 1449
Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use

pureQuery to access DB2.

Related reference

wsdb2gen command
The command allows users to utilize the pureQuery feature in Java Persistence API (JPA) applications.

Associating persistence units and data sources

Java Persistence API (JPA) applications allow you to specify the underlying data source used by the

persistence provider to access the database.

About this task

The application server provides three methods for defining the data sources in the persistence.xml file.

v Explicitly specify the Java Naming and Directory Interface (JNDI) name in the persistence.xml file, and

the application will directly reference the data source. Switching to another data source requires an

update to the persistence.xml file.

JPA has two transactional patterns for accessing a data source:

– The Java Transaction API (JTA) resource pattern depends on global transactions. The JTA resource

pattern is typically used within the scope of an Enterprise JavaBeans (EJB) session facade. This

allows the session bean to control transaction and security contexts while JPA handles the

persistence mappings. In this case, the application does not use the EntityTransaction interface but

relies on the EntityManager enlisted with the global transaction when it is accessed.

– The non-JTA resource pattern is generally used when dealing with a single resource in the absence

of global transactions. The non-JTA resource pattern is typically used within the scope of a web

application or an application client. The application controls the transaction with the data source with

the EntityTransaction interface.

Within the application server, the use of the <non-jta-data-source> element requires a special

configuration for a non-transactional data source. Data sources that are configured for the application

server will not function as a <non-jta-data-source>, because all data sources that are configured by

the application server are automatically enlisted with the current transactional context. To prevent this

automatic enlistment, add an additional data source custom property

nonTransactionalDataSource=true:

1454 Administering WebSphere applications

1. Select Resources → JDBC → Data sources

2. Select the name of the data source that you want to configure.

3. Select WebSphere Application Server data source properties from the Additional Properties

heading.

4. Select Non-transactional data source.

5. Click OK.

Note: The JPA specification assumes that connections will be obtained with an isolation level that does

not hold long term locks in the database, such as READ_COMMITTED. This may not match the

WebSphere Application Server default isolation level, which is REPEATABLE_READ for most

databases. You can check the level which is used for your database by referring to the topic

Requirements for setting isolation level.

If the default for your database is not READ_COMMITTED, you may change the default by adding an

additional data source custom property webSphereDefaultIsolationLevel. The following table

shows the valid values.

 Table 9. Isolation level values

Value Isolation Level

1 READ_UNCOMMITTED

2 READ_COMMITTED (JPA default)

4 REPEATABLE_READ (WebSphere Application Server default)

8 SERIALIZABLE

If the isolation level is set to a value that will hold long-term read locks, you need to configure the

JPA provider to use Pessimistic Locking instead of the default Optimistic Locking. For the JPA

provider included with WebSphere Application Server, you may do this by adding the following

properties to persistence.xml file:

<property name="openjpa.Optimistic"="false"/>

<property name="openjpa.LockManager"=pessimistic"/>

The JPA specification mandates that the data sources that are defined in the <jta-data-source> and

<non-jta-data-source>elements of a persistence unit register in the JNDI name space. For example,

the persistence.xml file should contain an entry similar to the following:

<jta-data-source>jdbc/FooBarDataSourceJNDI</jta-data-source>

v The JPA solution for the application server extends the implementation to allow you to reference data

sources in component name space. In the EJB or Web module deployment descriptor file, this is the

<resource-ref> element. You can prefix the data source with java:comp/env/ so the application indirectly

references the data source by using the local JNDI name. In this association, the application does not

require updates, you change the <resource-ref> to use another data source. See the following example:

<jta-data-source>java:comp/env/jdbc/FooBarDataSourceJNDI</jta-data-source>

Note: JPA specifications do not require implementations to include data sources referenced through

local JNDI names, so this method of reference may not be portable to other implementations of

JPA.

v You can declare openjpa.Connection* properties in the persistence unit. If you are not using JPA inside

the application server, you need to use this method:

Example

<property name="openjpa.ConnectionDriverName" value="org.apache.derby.jdbc.EmbeddedDriver" />

<property name="openjpa.ConnectionURL" value="jdbc:derby:target/database/jpa-test-database;create=true"/>

What to do next

For information about configuring data sources, see the topic on creating and configuring a data source.

Chapter 7. Data access resources 1455

For information about data sources and JPA, see the section on persistence in the Apache OpenJPA

User’s Guide.

Configuring OpenJPA caching to improve performance

The OpenJPA implementation allows users the option of storing frequently used data in the memory to

improve performance. OpenJPA provides concurrent data and concurrent query caches that allow

applications to save persistent object data and query results in memory to share among threads and for

use in future queries.

About this task

OpenJPA data cache functionality

The OpenJPA data cache is a cache of persistent object data that operates at the EntityManagerFactory

level. This optional-use cache is designed to increase performance while remaining in full compliance with

the Java Persistence API (JPA) standard. This means that enabling the caching option can increase the

performance of your application, with no changes to your code. The OpenJPA data cache is designed to

provide significant performance increases over cacheless operations and ensures that behavior will be

identical in both cache-enabled and cacheless operations.

When enabled, the cache is examined before accessing the datastore. The cache stores data when

objects are committed and when persistent objects are loaded from the datastore. If operating in a single

Java virtual machine (JVM) environment, the JVM maintains and shares a data cache across all

EntityManager instances obtained from a particular EntityManagerFactory. The OpenJPA data cache

cannot do this in a distributed environment because caches in different JVMs, created from different

EntityManagerFactory objects will not be synchronized. Using the OpenJPA cache in a multi-JVM

environment requires either using the event notification framework or through custom integrations with a

third-party distributed cache utilities such as IBM ObjectGrid.

Enabling and configuring the OpenJPA data cache

You can enable the OpenJPA data cache for a single or a multiple JVM environment, set its default

element size, including soft references, and specify timeout values.

To set up and configure the OpenJPA data cache, do the following:

1. To enable the cache for a single JVM, set the openjpa.DataCache property to true, and set the

openjpa.RemoteCommitProvider property to sjvm:

<property name="openjpa.DataCache" value="true"/>

<property name="openjpa.RemoteCommitProvider" value="sjvm"/>

To enable the data cache in a distributed environment, the openjpa.RemoteCommitProvider must be

configured specifically for the environment, or a third-party cache management utility can be used.

2. The maximum cache size can be adjusted by setting the CacheSize property:

<property name="openjpa.DataCache" value=true(CacheSize=5000...

By default, the OpenJPA data cache holds 1000 elements. Objects that are pinned into the cache are

not counted when determining if the cache size exceeds its maximum size. If the cache overflows, it

evicts random elements. You can preserve evicted elements longer with the SoftReferenceSize

property. By default, soft references are unlimited. If you need to, you can limit the number of soft

references or set to 0 to disable soft references completely:

<property name="openjpa.DataCache" value="true(CacheSize=5000 SoftReferenceSize=0 ...

3. You can specify that a cache should be cleared at certain times. The EvictionSchedule property of the

OpenJPA cache implementation accepts a cron style eviction schedule. The cron format specifies the

1456 Administering WebSphere applications

minute, hour of day, day of month, day of month, and day of the week beginning with 1 for Sunday; the

* symbol (asterisk), indicates match all. To schedule a cache to evict at 45 minutes past 3 PM on

Sunday every month you would add this property:

<property name="openjpa.DataCache" value="true(CacheSize=5000 SoftReferenceSize=0 EvictionSchedule=’15,45 * * 1’")/>

Note: You also can specify a cache timeout value for a single class by setting the timeout metadata

extension to the amount of time in milliseconds that the data of the class is valid. Refer to the

org.apache.openjpa.persistence.DataCache Javadoc for more information.

After configuring your data cache, you can use it after you restart your application.

Refresh with active DataCache

Refreshing an entity may lead to different behavior with or without a DataCache when a separate process

or part of the same application are updated or even deleted the corresponding record in the database. By

default, entities are refreshed from the database even when DataCache is active. Therefore, with the

default configuration the refresh behaves identically with or without a DataCache. However, a persistence

unit can be configured to refresh entities from DataCache with the property openjpa.RefreshFromDataCache

for improved performance. Under this configuration, any out-of-band changes that occur in the database

record will not appear in the refreshed state of the entity.

Note: Regardless of the openjpa.RefreshFromDataCache setting, the DataCache is always bypassed for

refresh when locks are active, such as for a pessimistic transaction, in a persistence context. An

application may activate openjpa.RefreshFromDataCache but can still bypass the DataCache while

refreshing an entity by explicitly evicting the entity from DataCache prior to refresh.

Query Caching functions

OpenJPA provides a concurrent query cache that allows applications to save persistent object data and

query results in memory to share among threads and for use in future queries. The query cache stores the

object ids returned by query executions. When you run a query, OpenJPA assembles a key based on the

query properties and the parameters used at execution time, and checks for a cached query result. If one

is found, the object ids in the cached result are looked up, and the resultant persistence-capable objects

are returned. Otherwise, the query is executed against the database, and the object ids loaded by the

query are put into the cache.

Configuring or disabling the query cache

You can configure the query cache settings in a similar way to the data cache. The interface provided to

the query cache is the org.apache.openjpa.persistence.QueryResultCache class. You can access this

class through the OpenJPAEntityManagerFactory.

The default query cache implementation caches 100 query executions in a least-recently-used cache. This

can be changed by setting the cache size in the CacheSize plugin property. Like the data cache, the query

cache also has a backing soft reference map that can be changed using the SoftReferenceSize property.

To keep queries in the cache at all times, you can pin them to a cache. To change the query cache

properties do the following:

1. Modify the CacheSize property of the openjpa.QueryCache:

<property name="openjpa.QueryCache" value=("CacheSize=1000, ...

2. Change the SoftReferenceSize property to enable and control the size of this map:

<property name="openjpa.QueryCache" value=("CacheSize=1000, SoftReferenceSize=100")/>

The SoftReferenceSize table is disabled by default. Setting the size enables it.

3. Pin or unpin queries in the cache through the QueryResultCache with this syntax:

Chapter 7. Data access resources 1457

public void pin(Query q);

public void unpin(Query q);

Modifying these properties allows you to make better use of the query cache.

Extending a cache

OpenJPA provides classes that may be extended for further functionality.

v As previously mentioned, if you want to implement a distributed cache that uses an unsupported

method for communications, create an implementation of

org.apache.openjpa.event.RemoteCommitProvider.

v If you are adding new behavior, you should extend org.apache.openjpa.datacache.DataCacheImpl.

v To use your own storage mechanism, extend org.apache.openjpa.datacache.AbstractDataCache.

v To add query functionality, you can extend the default org.apache.openjpa.datacache.QueryCacheImpl.

v Implement your own storage mechanism for query results by extending

org.apache.openjpa.datacache.AbstractQueryCache

OpenJPA query SQL cache

OpenJPA provides a cache that provides caching of SQL strings used by find operations performed on the

entity manager and some queries to manage eagerly fetched relationships. When this cache is enabled,

SQL queries used by these operations are generated once per entity manager factory and may be reused.

This cache is enabled by default but can also be configured through the openjpa.jdbc.QuerySQLCache

configuration property.

Configuring or disabling the SQL query cache

The query SQL cache can be configured or disabled through the openjpa.jdbc.QuerySQLCache property. By

default, this property is set to true. When set to true the cache is enabled and uses the

org.apache.openjpa.util.CacheMap class for its cache store. The CacheMap is a managed cache,

meaning that it limits the number of cache entries and has a cache eviction scheme to manage memory

usage. If the cache is set to all the org.apache.openjpa.lib.util.ConcurrentHashMap class is used as a

cache store. The ConcurrentHashMap is not a managed cache so entries will remain in the cache for the

lifetime of an entity manager factory. This caching mechanism may provide better performance at the

expense of increased memory usage. A custom cache store class can also be specified provided that it

implements the java.util.Map interface. To disable the cache, specify the value false. See the following

examples on how to configure or disable the SQL query cache:

v To use an unmanaged cache:

<property name="openjpa.jdbc.QuerySQLCache" value="all"/>

v To specify a custom cache class:

<property name="openjpa.jdbc.QuerySQLCache" value="com.mycompany.MyCustomCache"/>

v To use an unmanaged cache:

<property name="openjpa.jdbc.QuerySQLCache" value="false"/>

What to do next

Refer to chapter 10, Caching in the OpenJPA reference for all caching extensions.

1458 Administering WebSphere applications

Related tasks

Developing and packaging JPA applications for a Java SE environment
Prepare and package persistence applications to test outside of the application server container in a Java

SE environment.

Troubleshooting Java Persistence API (JPA) applications

Use this information to find various known problems with JPA applications.

v Review messages that are related to transactions.

Under certain conditions, a message similar to the following might be logged:

Unable to execute {0} on a WebSphere managed transaction. WebSphere does not support direct

manipulation of managed transactions.

This error is probably caused by a data source that is not configured correctly as <non-jta-data-source>.

See the information center topic on how to configure a data source to be used as a

<non-jta-data-source>.

v Troubleshoot classes that have not been enhanced by run time.

It is difficult to diagnose these situations. Sometimes you can trace the problem back to a lack of

OpenJPA enhancement of entity classes. Examples of these situations might be detecting when entities

are not ″persistence capable″. Look for a message similar to the following in the log:

This configuration disallows runtime optimization, but the following listed types were not

enhanced at build time or at class load time with a javaagent: "{0}".

This message indicates that the expected runtime enhancement did not take place on the listed entity

types. In most cases, this is just a build time failure and the PCEnhancer needs to be run on the listed

classes. It can also indicate a more involved problem, especially if you are expecting the container

classloader transform to do the entity enhancement.

v Troubleshoot issues with closed cursors.

The following is an exception from DB2 in the log

org.apache.openjpa.persistence.PersistenceException:

[ibm][db2][jcc][10120][10898] Invalid operation: result set is closed can be a WebSphere

Application Server configuration problem.

By default, the application server configures the resultSetHoldability custom property with a value of 2

(CLOSE_CURSORS_AT_COMMIT). This property causes DB2 to close its resultSet/cursor at

transaction boundaries. Despite DB2’s default resultSetHoldability value of 1

(HOLD_CURSORS_OVER_COMMIT), the application server retains the default value of 2 to avoid

breaking compatibilities with previous releases of the application server. You can change the default if

the need arises.

Note: If this is an XA datasource, define a new custom property on the datasource where

property_name = downgradeHoldCursorsUnderXa and boolean value = true.

Note: In Version 7.0, if a DB2 XA Data source is used, the following configuration are required to

overcome the ″result set closed″ problem:

1. Apply DB2 Version 8.1 FP17 for APAR IZ18070 or Version 9 FP4 for APAR IZ18072.

2. Add custom property name=″downgradeHoldCursorsUnderXa″, value=″true″ and

type=″java.lang.Boolean″

3. Add custom property name=″resultSetHoldability″, value=″1″, and

type=″java.lang.Integer″

v Avoid multi-threaded EntityManager usage. If you experience an exception with the following message

text, you might be accidentally allowing the usage of an EntityManager across multiple threads.

Chapter 7. Data access resources 1459

Per the JPA specification, EntityManagers are meant to be used by a single thread. You might receive

an exception message that is similar to the following (in this context, brokers and EntityManagers are

essentially the same thing):

Multiple concurrent threads attempted to access a single broker. By default brokers are not

thread safe; if you require and/or intend a broker to be accessed by more than one thread,

set the openjpa.Multithreaded property to true to override the default behavior.There are

some ways to address this issue:

– As documented in this exception text, an easy workaround to the situation is to tell OpenJPA that

you are requiring multi-threaded access to the EntityManagers through the openjpa.Multithreaded

property. This can introduce unnecessary overhead if multi-threaded access occurs that is not

intentional.

–

Note: Utilize the get-use-close pattern when using application-managed (extended) persistence

contexts. Remember to close the EntityManager before leaving the method that used the

EntityManager. Leaving the EntityManager open can accidentally allow other threads to use

the same EntityManager instance at the same time.

– Change the application to use container-managed persistence contexts by injecting the

EntityManager instance through the @PersistenceContext annotation, if the programming model for

the application is amenable to this change. Essentially, this enforces the get-use-close pattern by

allowing the container to do the management.

v Be aware of versioning conditions if you are using optimistic locking. In the JPA architecture, the

persistence provider uses the version property to perform optimistic locking and concurrency semantics

for a persisting entity. For example:

@Entity

public class VersionedTimestampEntity

{ @Id private int id;

 @Version private java.sql.Timestamp version;

}

The provider updates the versioned property to a new value when an entity is written to the database.

During an entity merge operation, the persistence provider examines this versioned property to

determine if the entity that is being merged is a stale copy of the entity. If the operation failed due to the

stale versioning condition, an OptimisticLockException will be thrown. The versioned property can be

one of these types:

– int

– Integer

– short

– Short

– long

– Long

– Timestamp.

Note: If you use the Timestamp type for the versioned property, the application needs to be aware of

behavior that can be exhibited due from the implementation precision that is used for creating the

Timestamp object. The typical implementation uses System.currentTimeMills(), and the time

precision of this method is platform specific. For example, the precision is approximately 15ms

for 32-bit Windows and 2ms for z/OS.
If an entity is persisted, and the entity is then fetched and updated in a separate persistence context

that is within the precision window of the platform, the persistence provider will not be able to detect the

optimistic locking and concurrent condition. As a result, an OptimisticLockException may not be thrown

and data integrity could be compromised.

1460 Administering WebSphere applications

v Troubleshoot database constraint violations when working with entities.

The JPA providers included with WebSphere Application Server use a constraint update manager to

determine the order of SQL requests to the database based on each entity’s configuration. This update

manager may rearrange the order of SQL requests to the database. This alleviates an application from

knowing the order of entity manager operations required to perform its business logic and optimizes

database performance using underlying batching support.

Since the JPA provider does not assume that there are implied database constraints for relationships

between entities, if there are constraints in the database (for example, a foreign key constraint) the JPA

provider may not issue SQL statements in the desired order. Under these conditions, the following or

similar exception may be observed:

com.ibm.db2.jcc.b.SqlException: DB2 SQL error: SQLCODE: -530, SQLSTATE: 23503, SQLERRMC: xxxxxx

There are some ways to address this issue:

– The JPA provider can be configured to read constraint information from the database and apply to

the update manager at runtime by adding the following configuration property to the persistence unit.

<property name="openjpa.jdbc.SchemaFactory" value="native(ForeignKeys=true)" />

– The application can enhanced entity to use @ForeignKey annotation to indicate to the JPA provider

which relationships have foreign key constraints.

public class Person {

 @ManyToOne

 @ForeignKey

 private Address address;

 }

– The application can take on the responsibility of ordering the SQL statements by adding the following

configuration property to the persistence unit.

<property name="openjpa.jdbc.UpdateManager" value="operation-order" />

With this configuration option present, the JPA provider will execute the SQL statements in the same

order as the entity operations were requested. The application must be aware of any

interdependencies between entities.

– Remove the constraints from the database.

v Troubleshoot using the OpenJPA MappingTool ANT task.

The MappingTool ANT task provided by OpenJPA uses a temporary classloader to load the JDBC driver

classes. This temporary classloader may have trouble loading some JDBC drivers such as DB2.

When you run the MappingTool ANT task, you could see something similar to the following

error:[mappingtool] java.lang.UnsatisfiedLinkError: com/ibm/jvm/Trace.initTrace([Ljava/lang/
String;[Ljava/lang/String;)V [mappingtool] at

com.ibm.jvm.Trace.initializeTrace(Trace.java:94) [mappingtool] at

com.ibm.jvm.Trace.<clinit>(Trace.java:59) [mappingtool] at

java.lang.J9VMInternals.initializeImpl(Native Method) [mappingtool] at

java.lang.J9VMInternals.initialize(J9VMInternals.java:200) [mappingtool] at

java.lang.Class.forNameImpl(Native Method) [mappingtool] at

java.lang.Class.forName(Class.java:136) [mappingtool] at com.ibm.db2.jcc.a.o.n(o.java:577)

[mappingtool] at com.ibm.db2.jcc.a.o.<clinit>(o.java:329)

In order to use the mapping tool, you can disable the temporary classloader by adding the

tmpClassLoader=false argument to the ANT task. Two example ANT scripts follow :

This example will exhibit the problem:

 <taskdef name="mapping" classname="org.apache.openjpa.jdbc.ant.MappingToolTask" classpathref="jpa.cp"/>

 . . .

 <target name="map.broken">

 <mapping>

 <!-- this will exhibit the problem -->

 . . .

 </mapping>

 </target>

Chapter 7. Data access resources 1461

This example will prevent the problem:

 <taskdef name="mapping" classname="org.apache.openjpa.jdbc.ant.MappingToolTask" classpathref="jpa.cp"/>

 . . .

 <target name="map.fixed">

 <mapping tmpClassLoader="false">

 <!-- this will work -->

 . . .

 </mapping>

 </target>

v Impact of DataCache on inconsistent domain models

When an application persists an inconsistent domain model and later retrieves the entities in a separate

persistence context, the retrieved entities will differ depending on whether DataCache is active or not.

For example, consider bi-directional, one-to-one relationship between two entities mapped by a single

foreign key column in the database. It is possible for an application to set the relation fields in the

entities inconsistently. When such inconsistent values are mapped to the database, the database

records become consistent only because a single foreign key column expresses the bi-directional

relationships DataCache is active, however, then DataCache captures the inconsistent in-memory entity

states. Therefore, when an application persists a pair of entities related in a bi-directional relation but

their relation fields are set to inconsistent values and later retrieves the entities in a different persistence

context, the bi-directional relationship either remains inconsistent or becomes consistent depending on

whether DataCache is used or not.

When multiple fields are mapped to the same column but set to different values is another example

where an inconsistent entity state is persisted but retrieved as consistent in a separate persistence

context. In this case, the introduction of DataCache will also cause an entity realized in a separate

persistence context to retain different and inconsistent values while without a DataCache, an entity will

hold the same value for both the fields.

Note: The best practice is to avoid populating the application domain model inconsistently. It is also

possible to configure openjpa.InverseManager property to detect certain inconsistencies such as

bi-directional relationship.

Related tasks

Task overview: Storing and retrieving persistent data with the Java Persistence API (JPA)
The Java Persistence API (JPA) for the application server defines the management of persistence and

object/relational mapping within Java Enterprise Edition (Java EE) and Java Standard Edition (Java SE)

environments.

Logging with the Java Persistence API (JPA) and the application

server

Logging allows you to view, trace, and troubleshoot the runtime behavior of an application. JPA provides a

flexible logging system that is integrated with the application server to assist you in troubleshooting

problems.

About this task

Logging channels

Note: Logging can have a negative impact on performance. Limit or disable logging when you run any

performance tests.

In additional to the channels used by OpenJPA, a trace group named openjpa enables channels that are

prefixed with “openjpa.” Specifying “openjpa” for a trace group will override any other trace group

specification that is specific to a channel. Example

openjpa.Runtime=debug:openjpa.jdbc.SQL=all

 openjpa=all

1462 Administering WebSphere applications

Note: The openjpa.Log property will be ignored if it is defined in a container-managed persistence unit

that uses the persistence providers that are provided with the application server. In this case, you

must use the standard trace specification for the application server.

OpenJPA and JPA for WebSphere Application Server implement logging channels to which message data,

trace data, and debugging data can be recorded to a configurable repository. The JPA component creates

the logging channel at run time and assigns a channel name for identification. The component writes

information to the configured repository through the channel. OpenJPA and JPA for WebSphere Application

Server create the following channels:

v openjpa.Tools - Command line and Ant server tools

v openjpa.MetaData - Meta data information

v openjpa.Enhance - Enhancement and runtime class generation

v openjpa.Runtime - Messages generated during runtime

v openjpa.Query - Query information

v openjpa.DataCache - L2 data cache plugin information

v openjpa.jdbc.JDBC - JDBC connection information

v openjpa.jdbc.SQL- Detailed SQL execution statements and information

v wsjpa.pdq- Trace of all interactions between store manager and PDQ runtime

v wsajpa.Sqlgen- Diagnostic trace for wsdb2gen program

Logging levels

Each of the logging channels use logging levels to control which messages are recorded. The following

logging levels are supported by the JPA architecture:

v TRACE - the most detailed option

v INFO - information related to the specific channel

v WARN - warning messages

v ERROR - error condition messages

v FATAL - fatal condition messages

By using a particular logging channel together with logging levels, you can control the types of logging

messages and the amount of logging messages that are recorded.

Note: These logging functions only apply to OpenJPA and JPA for the application server. Logging

functions that are provided in implementations of a third-party persistence provider are not covered.

However, if the logging output from a third-party persistence provider is directed to the Java

System.out or System.err output streams, the messages are handled by the environment

accordingly at run time.

Logging in the application server

The default JPA persistence provider that is supported by the application server records messages and

tracing data that are automatically integrated into the RAS component. Alternatively, OpenJPA implements

a custom logger to route messages from OpenJPA channels to the channels of the application server.

The channel names that are supported by OpenJPA are used as the trace group names in the trace level

for the application server. The mappings of OpenJPA logging levels to trace levels in the application server

are:

 OpenJPA logging level Trace level for the application server

TRACE debug

INFO info

Chapter 7. Data access resources 1463

OpenJPA logging level Trace level for the application server

WARN warning

ERROR error

FATAL fatal

Logging in a client container and standalone Java application

OpenJPA logging uses the basic logging framework and output format:

millis [persistence-unit name]level[thread identifier] channel - message

.

Note: When using pureQuery, the PDQ store manager also uses JDBC in some situations, such as for

large result set processing. When tracing all calls to the database, you will need to trace both JDBC

and PDQ.

Example:

property name=”wsjpa.Log” value=”SQL=TRACE”/

This will trace the SQL and input parameter values.

property name=”wsjpa.Log” value=”pdq=TRACE, JDBC=TRACE”/

This will perform a detailed trace of calls to the pureQuery runtime as well as any calls to JDBC. If you are

using pureQuery and need to trace calls to the database, you will need to perform both traces.

The default logging system accepts the following parameters:

v File: The name of the file to which the application server will log information. You can also use standard

output stdout or standard error stderr to send messages. By default, JPA sends log messages to

standard error.

v DefaultLevel: The default logging level for channels that are not configured. The values can be TRACE,

INFO, WARN, and ERROR. The default setting is INFO.

v DiagnosticContext: A string that will be placed at the beginning of all log messages. If a

DiagnosticContext is not supplied and an openjpa.Id property is available, the openjpa.Id value is used.

v <channel>: The channel that is being logged. This parameter can be used to configure the logging level

of the channel.

1. Open the persistence.xml file for the application that you want to modify.

2. Add a property name tag to the XML schema named openjpa.log. For example:

<property name="openjpa.log" .../>

3. Add additional parameters. For example:

<property name="openjpa.log" value="DefaultLevel=WARN .../>

Note: To reduce overhead by disabling logging, set the openjpa.log property to NONE and proceed to

Step 5.

4. Designate the logging channels and the logging level. For example:

<property name="openjpa.log" value="DefaultLevel=WARN, Runtime=INFO, Tool=INFO" .../>

5. Save changes to the file.

Results

The next time the application is started the JPA component will log all channels at the WARN logging level

and the Runtime and Tool channels at the INFO level.

1464 Administering WebSphere applications

What to do next

OpenJPA allows users to substitute other logging methods. Consult the logging section of the Apache

OpenJPA User’s Guide for more information and examples.

Related tasks

Task overview: Storing and retrieving persistent data with the Java Persistence API (JPA)
The Java Persistence API (JPA) for the application server defines the management of persistence and

object/relational mapping within Java Enterprise Edition (Java EE) and Java Standard Edition (Java SE)

environments.

Enabling Enhanced Tracing for Java Persistence API (JPA)

In some situations the trace information generated by the JPA providers shipped with WebSphere

Application Server may not be adequate to diagnose a problem. In these situations, an extended trace

mechanism can be enabled to generate additional information in the trace file. Extended trace will only

function with IBM-shipped persistence providers. It will not work with 3rd party providers, including versions

of OpenJPA bundled within an application or configured as a shared library.

About this task

Enabling enhanced tracing in a WebSphere Application Server environment

Enhanced JPA tracing for an application running on WebSphere Application Server can be enabled with a

few simple steps using wsadmin scripting or the administration console. The steps below describe how to

configure enhanced tracing using the administration console. This process changes server settings so it is

good practice to backup your server configuration before proceeding.

1. Enable the trace agent. A trace agent must be enabled per application server by passing an argument

to the server Java virtual machine (JVM). The trace agent can be enabled using the Administration

console by following these steps:

a. In the navigation pane, select Servers. Select Application Servers.

b. In the server list pane, select the server that needs the enhanced JPA trace. If multiple servers

provide JPA functionality to your application, these steps must be followed for every server.

c. Under the Server Infrastructure heading, select Java and Process Management. Select Process

Definition.

d. Under the Additional Properties heading, select Java virtual machine.

e. Add the following argument to the Generic JVM arguments field, where <WAS install path> is the

fully qualified path of your application server install directory. Make sure to use the path separator

character appropriate for your operating system.

-javaagent:<WASinstall path>/optionalLibraries/IBM/wsjpa/wsjpatrace.jar

2. Enable additional trace components and adjust trace file options. You can accomplish this with

wsadmin scripting or the Administration Console. These steps describe how to adjust trace file settings

and enable components using the Administration Console:

a. In the navigation pane, select Troubleshooting. Click Logs and Trace.

b. Select the name of the server to trace.

c. Under the General Properties heading, selectDiagnostic Trace.

d. Make sure Enable Log is checked and optionally increase the Maximum File Size and Maximum

Number of Historical Files. Depending on the number of additional trace categories and the trace

levels chosen, the trace file can become extremely large.

e. Under the Additional Properties heading, select Change Log Detail Levels.

Note: The use of generic JVM arguments in the Administrative console does not currently support

spaces within arguments. If spaces are specified in this field, the server may fail to start.

This is more likely to occur in a Windows environment because the default install path is

Chapter 7. Data access resources 1465

C:\Program Files\IBM\WebSphere\AppServer, which contains a space in the path. To work

around this problem in a Windows environment use an abbreviated path name for the

<WAS install path>. For example, C:\Progra~1\IBM\WebSphere|AppServer. On Unix-type

systems a symbolic link can be used to eliminate spaces in the <WAS install path>. For

example, if the WebSphere Application Server installation path is /opt/WAS

Install/AppServer, a symbolic link can be created in /opt from WAS Install to WASInstall,

eliminating the space. Then, specify /opt/WASInstall/AppServer as the <WAS install path> in

the generic JVM argument.

f. Enable various extended trace categories by specifying one or more trace categories from the table

below. An example trace string is: *=info:JPA=all:openjpa.*=finer:openjpa.kernel=finest. Extended

trace traces at the FINER or FINEST trace levels. The FINEST level includes more detail than

FINER. When ALL is specified, extended trace traces at the FINEST level.

 Category Relevant trace levels Description

JPA OFF, ALL, FINER, FINEST Adds extended trace to the JPA trace

group.

openjpa.* OFF, ALL, FINER, FINEST Normal OpenJPA trace in addition to

extended trace for all categories in

OpenJPA when extended trace is

enabled.

openjpa.xtrace.* OFF, ALL, FINER, FINEST Extended trace for all categories in

OpenJPA when extended trace is

enabled.

openjpa.xtrace.Jdbc OFF, ALL, FINER, FINEST Extended trace for OpenJPA JDBC

classes when extended trace is

enabled.

openjpa.xtrace.Lib OFF, ALL, FINER, FINEST Extended trace for OpenJPA library

classes when extended trace is

enabled.

openjpa.xtrace.Persist OFF, ALL, FINER, FINEST Extended trace for OpenJPA

persistence classes when extended

trace is enabled.

openjpa.xtrace.Kernel OFF, ALL, FINER, FINEST Extended trace for OpenJPA kernel

classes when extended trace is

enabled.

openjpa.xtrace.General OFF, ALL, FINER, FINEST Extended trace for OpenJPA classes

not included in the JDBC, Lib, Persist,

or Kernel categories when extended

trace is enabled.

openjpa.xtrace.ApiSpi OFF, ALL, FINER, FINEST Extended trace for public API/SPI

interfaces defined for WsJPA,

OpenJPA and JPA when extended

trace is enabled.

3. Save the application server configuration and restart the application server.

Results

After you restart the application server, the new trace settings are picked up.

What to do next

Note: Tracing can degrade performance significantly and should be disabled when not in use. To disable

trace, remove the Generic JVM argument and any trace detail levels added for enhanced tracing.

1466 Administering WebSphere applications

Enabling Enhanced Tracing for Java Persistence API (JPA) in a Java SE

environment

In some cases it may be necessary to run a JPA trace from a Java SE environment.

About this task

Enabling enhanced tracing for a Java SE environment

Enhanced trace can also be used gather additional JPA trace information in a Java SE environment. In the

WebSphere Application Server environment, the application server takes care of coupling the standard

OpenJPA trace with the enhanced trace function to produce a single trace output. This must be done

manually in a Java SE environment. Here are the steps to use enhanced tracing in a Java SE

environment:

1. Create a logging configuration properties file. This file must use the standard java.util.logging

configuration file format. Below is a sample configuration file. The trace categories defined in the table

below can also be used in the configuration file. As standard for java.util.logging configuration files,

trace categories must be suffixed with .level.

Sample logger.properties file # Enable the file handler handlers =

 java.util.logging.FileHandler # Set a trace file pattern - this pattern will write a file named # jpa_jse.log into the current

 directory java.util.logging.FileHandler.pattern = jpa_jse.log # Setup the basic logging level of the file handler

 java.util.logging.FileHandler.level = ALL # Set the standard OpenJPA jdbc.SQL category to trace level to ALL

 openjpa.jdbc.SQL.level = ALL # Set the enhanced OJPA_General category to trace at FINEST openjpa.OJPA_General.level = FINEST #

 Set the enhanced OJPA_Kernel category to trace at FINER openjpa.OJPA_Kernel.level = FINER

 Category Relevant trace levels Description

JPA OFF, ALL, FINER, FINEST Adds extended trace to the JPA trace

group.

openjpa.* OFF, ALL, FINER, FINEST Normal OpenJPA trace in addition to

extended trace for all categories in

OpenJPA when extended trace is

enabled.

openjpa.xtrace.* OFF, ALL, FINER, FINEST Extended trace for all categories in

OpenJPA when extended trace is

enabled.

openjpa.xtrace.Jdbc OFF, ALL, FINER, FINEST Extended trace for OpenJPA JDBC

classes when extended trace is

enabled.

openjpa.xtrace.Lib OFF, ALL, FINER, FINEST Extended trace for OpenJPA library

classes when extended trace is

enabled.

openjpa.xtrace.Persist OFF, ALL, FINER, FINEST Extended trace for OpenJPA

persistence classes when extended

trace is enabled.

openjpa.xtrace.Kernel OFF, ALL, FINER, FINEST Extended trace for OpenJPA kernel

classes when extended trace is

enabled.

openjpa.xtrace.General OFF, ALL, FINER, FINEST Extended trace for OpenJPA classes

not included in the JDBC, Lib, Persist,

or Kernel categories when extended

trace is enabled.

2. Modify your persistence.xml file to use Apache commons logging instead of the default OpenJPA

logger. Add this property to your persistence unit:

<property name="openjpa.Log" value="commons"/>

3. Add the apache commons logging Java archive (JAR) file to your class path. You can download the

JAR file from the Apache Web site.

Chapter 7. Data access resources 1467

4. Add the following argument to the Java virtual machine (JVM), where <WAS install path> is the fully

qualified path of your application server install directory. Be sure to use the path separator character

appropriate for your operating system. This parameter must be specified before the name of the class

or JAR file to be executed.

-javaagent:<WAS install path>/optionalLibraries/IBM/wsjpa/wsjpatrace.jar

5. Add this additional argument to the JVM which specifies the path to your logging configuration file. This

option must also be specified before the name of the class or jar to be executed.

-Djava.util.Logging.config.file=Logger.properties

6. Run your Java SE application. Here is a sample Java SE application invocation with enhanced trace

enabled:

java -javaagent:"C:\Program

 Files\IBM\WebSphere\AppServer\optionalLibraries\IBM\wsjpa\wsjpatrace.jar" -Djava.util.logging.config.file=logger.properties

 my.JPAApplication

Results

Enhanced tracing is now functioning in your Java SE environment.

What to do next

Note: Use of extended trace agent should not be used in combination with the OpenJPA PCEnhancer

agent in a Java SE environment. If enhanced tracing is used, the OpenJPA PCEnhancer must be

used at compile time. If the enhancer and enhanced trace agents are used together the results are

unpredictable.

Troubleshooting Java Persistence API (JPA) deadlocks and transaction

time-outs

If an application encounters deadlocks and locked time-outs from the database, you can adjust the locking

or transaction type to resolve the problem. Transactions are critical to maintaining data integrity. They are

used to group operations into units of work that act together in an all-or-nothing fashion. There are two

types of transactions, optimistic and pessimistic. JPA for WebSphere Application Server uses optimistic

transactions by default, however, OpenJPA also supports pessimistic transactions. This topic includes the

steps to configure these transactions.

Before you begin

Pessimistic transactions prevent all other concurrent transactions from using or modifying the same data

by locking the datastore records that they are using. The advantage of a pessimistic transaction is that

conflicts between multiple transactions are avoided. However, preventing these conflicts consumes more

database resources than optimistic transactions. Because pessimistic transactions lock their records, it is

possible that two transactions can wait for the other to release its lock before continuing. This results in a

deadlock. The result is that one transaction is forced to unlock its records after a specified timeout interval

and an exception is generated.

Optimistic transactions operate with the assumption that transactions do not conflict with each other.

Optimistic transactions do not lock datastore records. Therefore, it is possible for two transactions to

access and change the persistent information at the same time. Optimistic transactions consume less

database resources than pessimistic transactions but they can be less reliable.

These changes are not detected until one transaction attempts to commit its changes. At that time, the

transaction realizes that the data has been changed by another transaction and an

OptimisticLockException exception displays. Despite this disadvantage, optimistic transactions are typically

a better choice for applications because of performance and a low risk of deadlock.

Locking

1468 Administering WebSphere applications

Servers use objects called locks to maintain transaction and data integrity. Locks are managed

automatically by lock management programs. Locking is handled on a per-transaction basis. When you

obtain a lock on an entity, the lock indicates that you have the right to use the entity. The lock indicates

that no other user can alter the data of the entity until the lock is released. Locking management ensures

that no other user can obtain a lock that conflicts with a lock already in place. A lock cannot be used by

more than one user. Locking management automatically assigns and releases locks, according the actions

of the user.

To manage locks with JPA for WebSphere Application Server, you need to use the LockManager plug-in.

The LockManager controls how the JPA application locks the data involved in the transaction. Depending

on the setting used, LockManager determines if locking takes place, and if so, optimistic or pessimistic. In

addition to LockManager, you need to control the level of isolation that the lock places on the entities and

determine when the locking takes place in the transaction.

JPA for WebSphere Application Server contains advanced locking and versioning APIs for more control

over database resources and object versions. The implementation works with the application server

container for managed transactions. This allows the use of the declarative transaction demarcation and

Java Transaction API (JTA) implementations within the container.

JPA Access Intent

JPA Access Intent in JPA for WebSphere Application Server provides an application improved control over

the settings of isolation level and read lock when accessing data. This ability allows the data access

criteria to be set based on the entity use and the taskName associated to the current transaction. By

refining the scope of access, the deadlock condition is further minimized.

About this task

The following steps show you how to enable optimistic or pessimistic locking:

v Enable Optimistic locking by setting the isolation and LockManager levels: Optimistic locking should be

used when the chance of contention between updating transactions is low or when you have to read

and update transaction across multiple transactions.

1. Ensure that the LockManager is set to the following version: openjpa.LockManager = ″version″. This

is the default setting.

2. Ensure that the isolation level is set to Read_Committed: openjpa.TransactionIsolation =

″Read_Committed″. This is the default setting.

3. Place the @Version annotation column in the entity class definition.

4. Set the LockMode API for the EntityManager to guarantee repeatable read on a per entity instance,

if needed: EntityManager.setLock(LockMode.READ) or EntityManager.setLock(LockMode.WRITE).

Optimistic locking is now in place with versions enabled to monitor the entities involved in transactions

and repeatable read permitted in case of OptimisticLockException exceptions. If you still experience

frequent OptimisticLockException exceptions because transactions are rolled back and reinitiated, you

should use pessimistic locking.

v Enable pessimistic locking by modifying the LockManager and isolation levels:

1. Change the LockManager from version to pessimistic: openjpa.LockManager=″pessimistic″

2. Set the isolation level to Repeatable_Read: openjpa.TransactionIsolation=″Repeatable_Read″. For

more information about this property, see the OpenJPA documentation.

The locking type is now pessimistic. You might experience deadlocks if two transactions access read

data, obtain read locks and attempt to update the data concurrently.

v If you encounter frequent deadlocks, you can modify your pessimistic locking as follows:

1. Set the isolation level to Serializable: openjpa.TransactionIsolation=″Serializable″.

Chapter 7. Data access resources 1469

2. Modify the ReadLockLevel property to ″write″: openjpa.ReadLockLevel=″write″. You can also use

query hint with this property: openjpa.FetchPlan.ReadLockLevel=″write″.

After your modifications are done, transactions acquire an update lock on data and cause other update

transactions to serialize. The transaction throughput is less because transactions are serialized, but they

execute without deadlock.

Results

For more information, consult chapter 9 of the JPA Reference guide.

Related tasks

JPA Access Intent

Java Persistence API (JPA) Access intent specifies the isolation level and lock level used when reading

data from a data source. Access intent controls the JDBC isolation level and whether read, update or

exclusive locks are acquired when retrieving data.

wsjpaversion command

Use this command line tool to find out information about the installed version of Java Persistence API

(JPA) for WebSphere Application Server.

Syntax

The command syntax is as follows:

wsjpaversion

Usage

The version tool can be very useful when debugging problems with JPA in applications and for providing

customer support teams with the information about the current JPA environment.

Examples

Find the version information of your JPA installation:

WSJPA 1.2.0-SNAPSHOT

version id: WSJPA-1.2.0-SNAPSHOT-r1118:1319

revision: 1118:1319

OpenJPA 1.2.0-SNAPSHOT

version id: openjpa-1.2.0-SNAPSHOT-r420667:634150

Apache svn revision: 420667:634150

os.name: Linux

os.version: 2.6.9-55.0.9.ELsmp

os.arch: x86

java.version: 1.6.0

java.vendor: IBM Corporation

java.class.path:

app_server_root\dev\JavaEE\5.0\j2ee.jar

app_server_root\plugins\com.ibm.ws.jpa.jar

user.dir: /opt/WebSphere70/AppServer9/bin

On Windows operating systems the output looks like this:

C:\a.was.src\WASX Iww0811.63 S11.48 F11.32>wsjpaversion

WSJPA 1.2.0-SNAPSHOT

version id: WSJPA-1.2.0-SNAPSHOT-r1118:1356

revision: 1118:1356

1470 Administering WebSphere applications

OpenJPA 1.2.0-SNAPSHOT

version id: openjpa-1.2.0-SNAPSHOT-r420667:638667M

Apache svn revision: 420667:638667M

os.name: Windows XP

os.version: 5.1 build 2600 Service Pack 2

os.arch: x86

java.version: 1.6.0

java.vendor: IBM Corporation

java.class.path:

app_server_root\dev\JavaEE\5.0\j2ee.jar

app_server_root\plugins\com.ibm.ws.jpa.jar

c:\a.tools.common\java.tools

user.dir: C:\a.was.src\WASX Iww0811.63 S11.48 F11.32

C:\a.was.src\WASX Iww0811.63 S11.48 F11.32>

Using object cache instances

Perform this task so that your application can access dynamic cache object cache instances with the

DistributedMap or DistributedObjectCache interfaces.

Before you begin

Before you begin, enable the dynamic cache service. See “Using the dynamic cache service” on page

2328 for more information.

About this task

Using object cache instances can improve the performance of your application because you can

programmatically store and share frequently used objects. By using object cache instances, you also have

the necessary control over the dynamic cache when you are running multiple applications in an application

server. See “Cache instances” on page 1410 for more information.

1. Configure one or more cache instances.

a. In the administrative console, click Resources > Cache instances > Object cache instances.

b. Specify the scope for the cache instance.

Cell scope makes the cache instance available to all servers within the cell. Node scope makes the

cache instance available to all servers on the particular node. Cluster scope makes the cache

instance available to all members in a specified cluster. Server scope makes the cache instance

available to only the selected server. You can mix scopes, if necessary.

c. Click Apply after changing the scope.

d. Click New.

e. Enter the Java Naming and Directory Interface (JNDI) name for this cache instance.

This is name that you pass to the InitialContext lookup() method from within your application. For

example, services/cache/instance_one.

f. Enter or modify other properties as needed.

2. Update your application. To store and retrieve objects in an object cache instance, you need a

DistributedMap or DistributedObjectCache reference for the named object cache instance. See “Using

the DistributedMap and DistributedObjectCache interfaces for the dynamic cache” on page 2375 for

more information.

Chapter 7. Data access resources 1471

Results

You configured object cache instances that you can access programmatically with the DistributedMap and

DistributedObjectCache interfaces.

Administering data access applications

These administrative tasks consist primarily of configuring the objects, or resources, through which

applications connect with a backend, and tuning those resources to handle the volume of connection

requests.

1. If your application contains Web modules or EJB modules that require access to a backend, configure

resources according to your type of enterprise information system (EIS):

v For a relational database, follow the steps outlined in the “Configuring a JDBC provider and data

source” on page 1507 topic. If you are using a DB2 database, the ″Configuring an application to use

pureQuery″ topic found in the related links section is another option. PureQuery provides an

alternative to JDBC as a way to access the DB2 database.

v For a non-relational database, or another type of EIS such as the Customer Information Control

System (CICS), you must configure a resource adapter and connection factories. The topic

Accessing data using Java EE Connector Architecture connectors provides information on setting up

these objects.

Note: When you specify the Java Naming and Directory Interface (JNDI) name for resources, adhere

to the following requirements:

v Do not assign duplicate JNDI names across different resource types (such as data sources

versus J2C connection factories or JMS connection factories).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same

scope.

2. Configure an authentication alias for the new Web module resource or EJB module resource only if the

application code, rather than WebSphere Application Server, authenticates connections with the

backend. This security configuration is called component-managed authorization, and is indicated in

the application deployment descriptor as res-auth = Application.

Container-managed authorization, which is designated as res-auth = Container, indicates that

Application Server performs signon for backend connections. The container-managed authentication

alias must be specified on the application resource reference. This task can be done during application

assembly or deployment, along with mapping the resource reference to a data source or connection

factory resource. After application deployment, however, you can alter the container-managed

authentication alias using the administrative console. Click Applications → Websphere enterprise

applications → application_name, and select the link to the appropriate mapping page. For example,

if you want to alter the alias of an EJB module resource, you might click Map data sources for all 2.x

CMP beans. For a Web module resource, click Resource References.

Consult the “J2EE connector security” on page 1501 topic for detailed reference on resource

authentication.

3. If your application contains a client module that requires data access, see Configuring data access for

application clients. In this single configuration process, you can define authentication data for either

component-managed or container-managed signon.

4. Specify connection pool settings.

5. Test a connection to the new data source. See the article “Test connection service” on page 1598 for

information on the available methods for testing connections. This article also addresses important

data source settings that can affect the accuracy of your test connection results.

6. Set the JDBC trace service. The JDBC trace log information augments the JVM log data for data

source failures.

To activate the trace using the administrative console, consult Enabling trace at server startup. Specify

WAS.database as the trace group and select com.ibm.ws.db2.logwriter as the trace string.

1472 Administering WebSphere applications

7. Gather connection pool statistics by activating the JDBC connection pool counters or the J2C

connection pool counters. Alternatively, you can use Performance Monitoring Infrastructure (PMI)

method calls to gather connection statistics; consult the article “Connection and connection pool

statistics” on page 1397.

8. Tune your database to accommodate the connection volume. If you use DB2 UDB for iSeries, consult

the “DB2 Universal Database performance tips” on page 1624 article as a starting point reference.

Configuring Java EE Connector connection factories in the

administrative console

To access an enterprise information system (EIS), configure connection factories, which instantiate

resource adapter classes for establishing and maintaining resource connections.

About this task

An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying enterprise information system (EIS). Examples of

connections include database connections, Java Message Service connections, and SAP R/3 connections.

1. Click Resources → Resource Adapters → Resource adapters.

2. In the Resource adapters panel, select the resource adapter that you want to configure.

3. From the Additional Properties heading, click J2C connection factories.

a. Click New.

b. Specify any properties for the connection factory in the General Properties panel.

c. Select the authentication preference.

d. Select the aliases for Component-managed authentication, Container-managed authentication,

or both. Some choices for the mapping-configuration alias do not use a container-managed

authentication alias, so you will not be able to select a container-managed alias if one of those

mapping-configuration aliases is selected.

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain

to which an alias belongs, and the tree view can help you determine the servers that will be able to

access each authentication alias. The tree view is tailored for each resource, so domains and

aliases are hidden when you cannot use them.

Note: If the resource adapter supports XA, an option for Authentication alias for XA recovery

will be available.
If there are no aliases that are available, or you want to define a different alias:

1) Click Apply to save the current settings.

2) Click JAAS - J2C authentication data from the Related Items heading.

3) Click New.

4) Define the properties for the alias in General Properties.

5) Click OK.

e. Click OK.

4. Click the name of the J2C connection factory that you created.

5. From the Additional Properties heading, click Connection pool properties.

a. Change any values by clicking the property name. For more information on the settings for

connection pools, read “Tuning connection pools” on page 1539 or “Connection pool settings” on

page 1475.

a. Click OK.

6. Click Custom properties from the Additional Properties heading.

Chapter 7. Data access resources 1473

a. Click any property name to change its value. If the UserName and Password properties are

defined, they will be overridden by the component-managed authentication alias that you specified

in the previous step.

b. Click Save.

7. Restart the Deployment Manager and the node agent for the changes to take effect.

Configuring connection factories for resource adapters within applications

To access an enterprise information system (EIS), configure connection factories, which instantiate

resource adapter classes for establishing and maintaining resource connections.

About this task

An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying enterprise information system (EIS). Examples of

connections include database connections, Java Message Service connections, and SAP R/3 connections.

1. Optional: Install the application if it is not already installed on the application server.

a. Click Applications > Install New Application.

b. Browse to find the appropriate EAR file, which contains an RAR file.

c. Click Next.

d. Complete the installation process for the application. For more information on installing

applications, refer to Installing enterprise application files with the console.

2. Select the application that you want to configure.

3. Click Modules > Manage Modules.

4. Select the name of the RAR file in the Manage Modules panel.

5. Click Resource Adapter under the Additional Properties heading.

6. Under the Additional Properties heading, click J2C connection factories.

a. Click New.

b. Specify any properties for the connection factory in the General Properties panel.

c. Select the authentication preference.

d. Select an alias for Component-managed authentication if any application components with

Application or Per connection factory authentication specified in the resource reference are going to

be getting connections from this connection factory using the empty-argument getConnection()

method. For resources that support XA, you can specify an Authentication alias for XA recovery. If

there are no aliases that are available, or you want to define a different alias:

1) Click Apply to save the current settings.

2) Click JAAS - J2C authentication data under the Related Items heading.

3) Click New.

4) Define the properties for the alias in General Properties.

5) Click OK.

e. Click OK.

7. Click the name of the J2C connection factory that you created.

8. Under the Additional Properties heading, click Connection pool properties.

a. Change any values by clicking on the property name. For more information on the settings for

connection pools, refer to “Tuning connection pools” on page 1539 or “Connection pool settings” on

page 1475.

a. Click OK.

9. Click Custom properties under the Additional Properties heading.

1474 Administering WebSphere applications

a. Click any property name to change its value. If the UserName and Password properties are

defined, they will be overridden by a component-managed authentication alias that you might

have configured.

b. Click Save.

Connection pool settings

Use this page to configure connection pool settings.

This administrative console page is common to a range of resource types, like JDBC data sources and

JMS queue connection factories. To view this page, the path depends on the type of resource, but

generally you select an instance of the resource provider, then an instance of the resource type, then click

Connection Pool.

Note: Connection pooling is not supported in an application client. The application client calls the

database directly and does not go through a data source. If you want to use the getConnection()

request from the application client, configure the JDBC provider in the application client deployment

descriptors, using Rational Application Developer or an assembly tool. The connection is

established between application client and the database. Application clients do not have a

connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

For example: click Resources → JDBC → JDBC Providers → JDBC_provider → Data Sources →

data_source → Connection pool properties

The path for JMS queue connection factories is:Resources → JMS → Queue connection factories →

JMS_queue_connection_factory → [Additional properties] Connection pool properties.

Connection timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 This value indicates the number of seconds that a connection request waits when there are no

connections available in the free pool and no new connections can be created. This usually occurs

because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection Timeout is set to 300, and the maximum number of connections are all in use,

the pool manager waits for 300 seconds for a physical connection to become available. If a physical

connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.

In most cases you should not retry the getConnection() method; if a longer wait time is required you

should increase the Connection Timeout setting value. If a ConnectionWaitTimeout exception is caught by

the application, review the expected connection pool usage of the application and tune the connection pool

and database accordingly.

If the Connection Timeout is set to 0, the pool manager waits as long as necessary until a connection

becomes available. This happens when the application completes a transaction and returns a connection

to the pool, or when the number of connections falls below the value of Maximum Connections, allowing a

new physical connection to be created.

If Maximum Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Chapter 7. Data access resources 1475

Maximum connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown. For example: If the Max

Connections value is set to 5, and there are five physical connections in use, the pool manager waits for

the amount of time specified in Connection Timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend (such

as a DB2 database or a CICS server) helps you determine a value for the Maximum Connections property.

For multiple standalone application servers that use the same data source configuration, or J2C

connection factory configuration, a separate physical connection pool exists for each server. If you clone

these same application servers, WebSphere Application Server implements a separate connection pool for

each clone.

All of these connection pools correspond to the same data source or connection factory configuration.

Therefore all of these connection pools can potentially request connections from the same backend

resource, at the same time. The single Maximum Connections value that you set on this console panel

applies to every one of these connection pools. Consequently, setting a high Maximum Connections value

can result in a load of connection requests that overwhelms your backend resource.

 Data type Integer

Default 10

Range 0 to maximum integer

If Max Connections is set to 0, the Connection Timeout

value is ignored.

Note: For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform

better than higher settings, such as 100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If

the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider

increasing the connection pool size. If the Percent Used value is consistently low under normal

workload, consider decreasing the number of connections in the pool.

Minimum connections:

Specifies the minimum number of physical connections to maintain.

 If the size of the connection pool is at or below the minimum connection pool size, the Unused Timeout

thread does not discard physical connections. However, the pool does not create connections solely to

ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged Timeout,

connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the

Unused Timeout thread does not discard that connection. By the same token, the thread does not

automatically create two additional physical connections to reach the Minimum Connections setting.

 Data type Integer

Default 1

Range 0 to max int

1476 Administering WebSphere applications

Reap time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Minimum Connections. The pool maintenance

thread also discards any connections that remain active longer than the time value specified in Aged

Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections exceeds the Minimum

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” for

more information.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance.

Chapter 7. Data access resources 1477

For example, if the Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical

connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only

exception is if the connection is involved in a transaction when the aged timeout is reached, the

application server will not discard the connection until after the transaction is completed and the

connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly.

 Data type String

Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you

create through the administrative console

v EntirePool for current version data sources that you

script through wsadmin AdminConfig commands,

invoking JDBC templates that are built into WebSphere

Application Server (For information on the command

createUsingTemplate, see the information center

article ″Commands for the AdminConfig object.″)

v FailingConnectionOnly for data sources that you script

in wsadmin without invoking JDBC templates

:

1478 Administering WebSphere applications

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and issues a stale

connection Exception during the next operation

on that connection. Subsequent getConnection()

requests from the application result in new

connections to the database opening. When

using this purge policy, there is a slight possibility

that some connections in the pool are closed

unnecessarily when they are not stale. However,

this is a rare occurrence. In most cases, a purge

policy of EntirePool is the best choice.

FailingConnectionOnly

Only the connection that caused the stale

connection exception is closed. Although this

setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection() request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

 The connection pretest function attempts to

insulate an application from pooled connections

that are not valid. When a backend resource,

such as a database, goes down, pooled

connections that are not valid might exist in the

free pool. This is especially true when the purge

policy is failingConnectionOnly; in this case, the

failing connection is removed from the pool.

Depending on the failure, the remaining

connections in the pool might not be valid.

Connection pool advanced settings

Use this page to specify connection pooling related settings.

This administrative console page is common to a range of resource types: for example, JDBC data

sources and JMS queue connection factories. To view this page, the path depends on the type of

resource, but generally you select an instance of the resource provider, then an instance of the resource

type, then click Connection pool properties → Advanced connection pool properties.

For example, click:

v Resources → JDBC → JDBC providers → JDBC_provider → Data sources → data_source →

Connection pool properties → Advanced connection pool properties

v Resources → JMS → JMS provider → Default messaging → Queue connection factory →

JMS_queue_connection_factory → Connection pool properties → Advanced connection pool

properties.

The number of shared partitions, the number of free pool partitions, and the free pool distribution table size

are properties related to reducing the time a thread needs to wait for a synchronization lock. On systems

with a single processor, these values make no difference. On systems with multiple processors, these

settings can reduce the performance cost associated with managing multiple threads.

Chapter 7. Data access resources 1479

Related concepts

“Resource adapters” on page 1389
A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS). A resource adapter plugs into an application server and provides

connectivity between the EIS, the application server, and the enterprise application.

“JDBC providers” on page 1393
Installed applications use JDBC providers to interact with relational databases.

Number of shared partitions:

Specifies the number of partitions that are created in each of the shared pools.

 Partition support is always enabled. The default values of 0 should be used to enable the connection pool

to pick the best values for performance. In some cases where large multiprocessor systems are used,

adjusting the partition support properties might help performance.

 Data type integer

Default value 0

Range 0 to max int

Number of free pool partitions:

Specifies the number of partitions that are created in each of the free pools.

 Data type integer

Default value 0

Range 0 to max int

Free pool distribution table size:

Determines the distribution of Subject and CRI hash values in the table that indexes connection usage

data.

 These hash values are used to match connection request credentials with the connections. A free pool

distribution table size larger than 1 can yield more efficient distribution of hash values, to help minimize

search collisions within the table. Fewer collisions can result in faster retrieval of a connection that

matches a request. Use a larger value for free pool distribution table size if your resource receives many

incoming requests with varying credentials. Smaller values (1) should be used if the same credentials

apply to all incoming requests for the resource. The value of 0 means random distribution.

 Data type integer

Default value 0

Range 0 to max int

Surge threshold:

Specifies the number of connections created before surge protection is activated.

 Surge protection is designed to prevent overloading of a data source when too many connections are

created at the same time. Surge protection is controlled by two properties, surge threshold and surge

creation interval.

The surge threshold property specifies the number of connections created before surge protection is

activated. After you reach the specified number of connections, you enter surge mode.

1480 Administering WebSphere applications

The surge creation interval property specifies the amount of time, in seconds, between the creation of

connections when in surge mode.

For example, assume the follow settings:

v maxConnections = 50

v surgeThreshold = 10

v surgeCreationInterval = 30 seconds

If the connection pool receives 15 connection requests, 10 connections are created at about the same

time. The 11th connection is created 30 seconds after the first 10 connections. The 12th connection is

created 30 seconds after the 11th connection. Connections continue to be created every 30 seconds until

there are no more new connections needed or you reach the maxConnections value.

Surge connection support starts if the surge threshold is > -1 and the surge creation interval is > 0. The

surge threshold property has a default value of -1, which indicates that it is turned off.

wsadmin examples

$AdminControl getAttribute $objectname surgeCreationInterval

$AdminControl setAttribute $objectname surgeCreationInterval 30

$AdminControl getAttribute $objectname surgeThreshold

$AdminControl setAttribute $objectname surgeThreshold 15

 Data type integer

Default value -1

Range -1 to max int

Surge creation interval:

Specifies the amount of time between connection creates when you are in surge protection mode.

 When the number of connections specified for the surge threshold property is reached, the surge creation

interval property dictates how much time each new connection request must wait before fulfillment.

Note: Surge protection does not work for a connection pool that is managed through an activation

specification that coordinates with a JMS queue connection factory and default messaging provider.

To control incoming connections for JMS calls such as onMessage, refer to the help article for the

administrative console page JMS > Activation specification > activation_specification_name.

 Data type integer

Default value 0

Range 0 to max int

Stuck timer interval:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. The stuck timer interval property is the interval for the timer.

This is how often the connection pool checks for stuck connections. The default value is 0 seconds.

 If an attempt to change the stuck time, stuck timer interval, or stuck threshold properties using the

wsadmin scripting tool fails, an IllegalState exception occurs. The pool cannot have any active requests

or active connections during this request. For the stuck connection support to start, the stuck time and the

stuck threshold property values must be greater than 0 and maximum connections must be greater than 0.

Chapter 7. Data access resources 1481

Also, the stuck timer interval, if it is set, must be less than the stuck time value. In fact, it is suggested that

the stuck timer interval should be one-quarter to one-sixth the value of stuck time so that the connection

pool checks for stuck connections 4 to 6 times before a connection is declared stuck. This reduces the

likelihood of false positives.

wsadmin examples

$AdminControl getAttribute $objectname stuckTime

$AdminControl setAttribute $objectname stuckTime 30

$AdminControl getAttribute $objectname stuckTimerInterval

$AdminControl setAttribute $objectname stuckTimerInterval 15

$AdminControl getAttribute $objectname stuckThreshold

$AdminControl setAttribute $objectname stuckThreshold 10

 Data type integer

Default value 0

Range 0 to max int

Stuck time:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. The stuck time property is the interval, in seconds, allowed

for a single active connection to be in use to the backend resource before it is considered to be stuck.

 Data type integer

Default value 0

Range 0 to max int

Stuck threshold:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. An application can explicitly catch this exception and

continue processing. The pool will continue to periodically check for stuck connections when the number of

stuck connections is past the threshold. If the number of stuck connections drops below the stuck

threshold, the pool will detect this during its periodic checks and enable the pool to begin servicing

requests again. The stuck threshold is the number of connections that need to be considered stuck for the

pool to be in stuck mode.

 Data type integer

Default value 0

Range 0 to max int

Connection pool (Version 4) settings

Use this page to create a connection pool for a Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC > JDBC Providers > JDBC_provider > Data sources (WebSphere Application

Server V4) > data_source > Connection pool properties (version 4)

v Resources > JDBC > Data sources (WebSphere Application Server V4) > data_source >

Connection pool properties (version 4)

Scope: Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

1482 Administering WebSphere applications

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the cell level, all users in

that cell can look up and use that data source, which is unique within that cell. However, resource property

settings are local to each server in the cell. For example, if you define max connections to 10, then each

server in that cell can have 10 connections.

When resources are created, they are always created into the current scope selected in the panel. To view

resources in other scopes, specify a different node or server in the scope selection form.

For general information, see Administrative console scope settings in the Related Reference section.

 Data type String

Minimum pool size:

Specifies the minimum number of connections to maintain in the pool.

 The minimum pool size can affect the performance of an application. Smaller pools require less overhead

when the demand is low because fewer connections are held open to the database. When the demand is

high, the first applications experience a slow response because new connections are created if all others

in the pool are in use.

 Data type Integer

Default 1

Range Any non-negative integer.

Maximum pool size:

Specifies the maximum number of connections to maintain in the pool.

 If the maximum number of connections is reached and all connections are in use, additional requests for a

connection wait up to the number of seconds specified as the connection timeout. The maximum pool size

can affect the performance of an application. Larger pools require more overhead when demand is high

because there are more connections open to the database at peak demand. These connections persist

until idled out of the pool. If the maximum value is smaller, longer wait times or possible connection

timeout errors during peak times can occur. Ensure that the database can support the maximum number

of connections in the application server, in addition to any load that it has outside of the application server.

 Data type Integer

Default 10

Range Any positive integer

Connection timeout:

Specifies the maximum number of seconds an application waits for a connection from the pool before

timing out and triggering a ConnectionWaitTimeout exception. WebSphere Application Server acts on this

value only if you set the maximum pool size property, in which case the number of maximum connections

serves as a trigger for enforcing the wait timeout property.

 Data type Integer

Units Seconds

Default 180

Range Any non-negative integer

Chapter 7. Data access resources 1483

Setting this value to 0 disables the connection timeout.

If you accept the default value, Application Server issues the ResourceAllocation exception immediately

after the pool manager indicates that the maximum number of connections are in use. If you disable

connection timeout, Application Server does not issue an exception. Instead, the pool manager queues

subsequent connection requests until it can allocate a connection.

Idle timeout:

Specifies the maximum number of seconds that an idle (unallocated) connection can remain in the pool

before being removed to free resources.

 Connections need to idle out of the pool because keeping connections open to the database can cause

database memory problems. However, not all connections are idled out of the pool, even if they are older

than the Idle Timeout setting. A connection is not idled if removing the connection would cause the pool to

shrink below its minimum size. Setting this value to 0 disables the idle timeout.

 Data type Integer

Units Seconds

Default 1800

Range Any non-negative integer

Orphan timeout:

Specifies the maximum number of seconds that an application can hold a connection without using it

before the connection returns to the pool

 If there is no activity on an allocated connection for longer than the Orphan Timeout setting, the

connection is marked for orphaning. After another Orphan Timeout number of seconds, if the connection

still has no activity, the connection returns to the pool. If the application tries to use the connection again, it

is issued a stale connection exception. Connections that are enlisted in a transaction are not orphaned.

Setting this value to 0 disables the orphan timeout.

 Data type Integer

Units Seconds

Default 1800

Range Any non-negative integer

Statement cache size:

Specifies the number of cached prepared statements to keep per connection.

 The largest value you would need to set your cache size to if you do not want any cache discards is

determined as follows: for each application that uses this data source on a particular server, add up the

number of unique prepared statements (as determined by the sql string, concurrency, and the scroll type).

This is the maximum number of possible prepared statements that can be cached on a given connection

over the life of the server. Setting the cache size to this value means you never have cache discards. This

provides better performance. However, because of potential resource limitations, this might not always be

possible.

 Data type Integer

Default 10

Range Any non-negative integer

Disable auto connection cleanup:

1484 Administering WebSphere applications

Specifies whether the connection pooling software automatically closes connections from the data source

at the end of a transaction. Set this property if you want to maintain and reuse the same connection

across multiple transactions.

 The default is false, which indicates that when a transaction completes, the application server closes the

connection and returns it to the pool. Any use of the connection after the transaction has ended results in

a stale connection exception, because the connection is closed and has returned to the pool. This

mechanism ensures that connections are not held indefinitely by the application. If the value is set to true,

the connection is not returned to the pool at the end of a transaction. In this case, the application must

return the connection to the pool by calling the close() method. If the application does not close the

connection, the pool can run out of connections for other applications to use.

 Data type Boolean (check box)

Default False (clear)

J2C Connection Factories collection

Use this page to view Java 2 Connector (J2C) connection factories, which represent sets of connection

configuration values.

Application components such as enterprise beans have resource reference descriptors that refer to the

connection factory, not the resource adapter. The connection factory is really a configuration properties list

holder. In addition to the arbitrary set of configuration properties defined by the vendor of the resource

adapter, there are several standard configuration properties that apply to the connection factory. These

standard properties are used by the Java 2 Connectors connection pool manager in the application server

run time and are not known by the vendor-supplied resource adapter code.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories

v Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C connection

factories

Name:

Specifies a list of the connection factory display names.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of this connection factory.

 Data type String

Scope:

Specifies the scope of the connection factory. Only applications that are installed within this scope can use

this connection factory.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

Description:

Chapter 7. Data access resources 1485

Specifies a text description of this connection factory.

 Data type String

Connection factory interface:

Specifies the fully qualified name of the interface that provides the implementation class for the connection

factory.

Category:

Specifies a string that you can use to classify or group this connection factory.

 Data type String

J2C connection factories settings:

Use this panel to specify settings for a connection factory.

 You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → J2C connection factories → J2C_connection_factory

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C connection

factories → J2C_connection_factory

Scope:

Specifies the scope of the resource adapter that connects applications to an enterprise information system

(EIS) through this connection factory. Only applications that are installed within this scope can use this

connection factory.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

 Provider is displayed in this location only when you create a new connection factory. The list shows all of

the existing resource adapters that are defined at the relevant scope. Select one from the list if you want

to use an existing resource adapter as Provider.

Create new provider:

Provides the option of configuring a new resource adapter for the new connection factory.

 Create New Provider is displayed only when you create, rather than edit, a connection factory.

Clicking Create New Provider triggers the console to display the resource adapter configuration page,

where you create a new adapter. After you click OK to save your settings, you see the connection factory

collection page. Click New to define a new connection factory for use with the new resource adapter; the

console now displays a configuration page that lists the resource adapter as the new connection factory

Provider.

Name:

Specifies the name of this connection factory.

1486 Administering WebSphere applications

This is a required property.

 Data type String

JNDI name:

Specifies the JNDI name of this connection factory.

 For example, the name could be eis/myECIConnection.

After you set this value, save it and restart the server. You can see this string when you run the

dumpNameSpace tool. This is a required property. If you do not specify a JNDI name, it is filled in by

default using the Name field.

 Data type String

Default eis/display name

Note: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as data sources

versus J2C connection factories or JMS connection factories).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same scope.

Description:

Specifies a text description of this connection factory.

 Data type String

Connection factory interface:

Specifies the fully qualified name of the Connection Factory Interfaces supported by the resource adapter.

 This is a required property. For new objects, the list of available classes is provided by the resource

adapter in a drop-down list. After you create the connection factory, the field is a read only text field.

 Data type Drop-down list or text

Category:

Specifies a string that you can use to classify or group this connection factory.

 Data type String

Component-managed authentication alias:

Specifies authentication data for component-managed signon to the resource.

 Select an alias from the list.

To define a new alias that is not displayed in the list:

v Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java EE)

Connector Architecture (J2C) authentication data entries.

v Click J2EE Connector Architecture (J2C) authentication data entries.

Chapter 7. Data access resources 1487

v Click New.

v Define an alias.

v Click OK. The console now displays an alias collection page. This page contains a table that lists all of

your configured aliases. Before the table, this page also displays the name of your connection factory.

v Click the name of your J2C connection factory. You now see the configuration page for the connection

factory.

v Select the new alias in the Component-managed authentication alias list.

v Click Apply.

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

 Data type List

The alias that you configure for component-managed authentication does not apply to all clients that must

access the secured resource. External Java clients with Java Naming and Directory Interface (JNDI)

access can look up a Java 2 Connector (J2C) resource such as a data source or Java Message Service

(JMS) queue. However, they are not permitted to take advantage of the component-managed

authentication alias defined on the resource. This alias is the default value that is used when the

getConnection() method does not specify any authentication data, like user and password, or a value for

ConnectionSpec. If an external client needs to get a connection, it must assume responsibility for the

authentication by passing it through arguments on the getConnection() call.

However, if clients such as servlets or enterprise beans run in processes within the same cell of the

application server, and the clients can look up a resource in the JNDI namespace, these clients can obtain

connections without explicitly providing authentication data on the getConnection() call. In this case, if the

component’s res-auth setting is Application, authentication is taken from the component-managed

authentication alias that is defined on the connection factory. When you set res-auth to Container,

authentication is taken from the login configuration that is defined on the component’s resource-reference.

If the resource reference for the component does not define a login configuration, authentication will be

taken from the Container-managed authentication alias that is defined on the connection factory.

Note: The J2C authentication alias is per cell. An enterprise bean or servlet in one application server

cannot look up a resource in another server process that is in a different cell, because the alias

would not be resolved.

Authentication alias for XA recovery:

This field is used to specify the authentication alias that should be used during XA recovery processing. If

this alias name is changed after a server failure, the subsequent XA recovery processing will use the

original setting that was in effect before the failure.

 If the resource adapter does not support XA transactions, then this field will not be displayed. The default

value will come from the selected alias for application authentication (if specified).

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

1488 Administering WebSphere applications

Data type Drop-down list

Mapping-configuration alias:

Specifies the authentication alias for the Java Authentication and Authorization Service (JAAS) mapping

configuration that is used by this connection factory.

 Click Security → Global security → Java Authentication and Authorization Service → Application

logins, and select an alias from the table.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the userid and

password. You may define and use other mapping configurations.

Note: Some mapping-configuration aliases do not use a container-managed authentication aliases, so you

will not be able to select a container-managed authentication alias if one of those

mapping-configuration aliases is selected.

 Data type Pick-list

Container-managed authentication alias:

Specifies authentication data, which is a JAAS - J2C authentication data entry, for container-managed

signon to the resource.

 Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java

EE) Connector Architecture (J2C) authentication data entries.

2. Click J2EE Connector Architecture (J2C) authentication data entries.

3. Click New.

4. Define an alias.

5. Click OK. The console now displays an alias collection page. This panel contains a table that lists all

of your configured aliases. Before the table, this page also displays the name of your connection

factory.

6. Click the name of your J2C connection factory. You now see the configuration panel for the connection

factory.

7. Select the new alias in the container-managed authentication alias list.

8. Click Apply.

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

 Data type Pick-list

Authentication preference (deprecated):

Specifies the authentication mechanisms defined for this connection factory.

Chapter 7. Data access resources 1489

Note: Beginning with WebSphere Application Server Version 6.0, the authentication preference is

superseded by the combination of the <res-auth> application component deployment descriptor

setting and the specification of a login configuration on the resource-reference mapping at

deployment time.

This setting specifies which of the authentication mechanisms defined for the corresponding resource

adapter applies to this connection factory. Common values, depending on the capabilities of the resource

adapter, are: KERBEROS, BASIC_PASSWORD, and None.

If None is chosen, the application component is expected to manage authentication (<res-
auth>Application</res-auth>). In this case, the user ID and password are taken from one of the following:

v The component-managed authentication alias

v UserName, Password Custom Properties

v Strings passed on the getConnection method

For example, if two authentication mechanism entries are defined for a resource adapter in the ra.xml

document:

v <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

v <authentication-mechanism-type>Kerbv5</authentication-mechanism-type>

the authentication preference specifies the mechanism to use for container-managed authentication. An

exception is issued during server startup if a mechanism that is not supported by the resource adapter is

selected.

 Data type Pick-list

Default BASIC_PASSWORD

J2C Connection Factory advanced settings:

Use this page to specify settings for a connection factory.

 You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories > J2C_connection_factory > Advanced

connection factory properties

v Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C connection

factories > J2C_connection_factory > Advanced connection factory properties

Related concepts

“Resource adapters” on page 1389
A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS). A resource adapter plugs into an application server and provides

connectivity between the EIS, the application server, and the enterprise application.

“JDBC providers” on page 1393
Installed applications use JDBC providers to interact with relational databases.

Log missing transaction contexts:

Specifies whether or not the container logs that there is a missing transaction context when a connection

is obtained.

 Data type Boolean

Default True (enabled)

Cached handles:

1490 Administering WebSphere applications

Specifies whether cached handles (handles held in inst vars in a bean) should be tracked by the

container.

 Data type Boolean

Default False (clear)

Connection factory JNDI name practices

Observe the conventions of the Java Naming and Directory Interface (JNDI) service in WebSphere

Application Server when you create connection factory JNDI names.

Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services use name-to-object mappings to associate

names with objects such locations, services, information, and resources. The Java Naming and Directory

Interface (JNDI) provides a common interface that is used to access the various naming and directory

services.

Naming your resources indirectly

When creating a connection factory or data source, a JNDI name is given by which the connection factory

or data source can be looked up by a component. WebSphere Application Server uses an indirect name

with the java:comp/env prefix:

v When you create a WebSphere Application Server data source, the default JNDI name is set to

jdbc/data_source_name.

v When you create a connection factory, its default name is eis/j2c_connection_factory_name.

If you override these values by specifying your own, retain the java:comp/env prefix. An indirect name

makes any resource-reference data associated with the application available to the connection

management runtime, to better manage resources based on the res-auth, res-isolation-level,

res-sharing-scope, and res-resolution-control settings.

Naming your resources for use with CMP

In addition, if you click the checkbox for the Use this data source for container managed persistence

(CMP) option when you create the data source, another reference is created with the name of

eis/jndi_name_of_datasource_CMP. For example, if a data source has a JNDI name of jdbc/myDatasource,

the CMP JNDI name is eis/jdbc/myDatasource_CMP. This name is used internally by CMP and is provided

simply for informational purposes.

Installing a resource adapter archive

The application server uses the classes and other code that comprise a resource adapter archive (RAR) to

support the resource adapters that you configure.

Before you begin

A RAR file, which is often called a Java EE Connector Architecture (JCA) connector, must comply with the

JCA Specification. Meet these requirements by using a supported assembly tool to assemble a collection

of Java archive (JAR) files, other runnable components, utility classes, and so on, into a deployable

resource adapter archive (RAR). You can then install the RAR file in the application server.

About this task

A resource adapter archive provides the classes and other code to support a resource adapter for access

to a specific enterprise information system (EIS), such as the Customer Information Control System

Chapter 7. Data access resources 1491

(CICS). Therefore, you can only configure resource adapters for an EIS after you install the appropriate

RAR file.

1. Navigate to the Resource adapter panel. Click Resources → Resource Adapters → Resource

adapters.

2. Install a new resource adapter archive.

a. Click Install RAR. A dialog opens for installing a RAR file and configuring the associated resource

adapter. Only click New if you want to configure a new resource adapter for a previously installed

RAR file.

Note: When installing a RAR file using this dialog, the scope you define on the Resource

adapters panel has no effect on where the RAR file is installed. You can install RAR files

only at the node level, which you specify on the Install RAR panel.

b. Browse to find the appropriate RAR file.

v If your RAR file is located on your local workstation, select Local path, and browse to find the

file.

v If your RAR file is located on your server, select Server path, and specify the fully qualified path

to the file.

c. Click Next.

3. Enter the resource adapter name and any other properties needed under General Properties. For more

details on the settings that you can configure, see the topic on configuring a resource adapter in the

administrative console.

4. Click OK.

Results

You have installed a resource adapter archive that will provide access to the EIS when it is properly

configured. If you need to configure more settings, or change some settings that were configured during

the installation process, refer to the topic on configuring a resource adapter in the administrative console

for more information.

Installing resource adapters within applications

Install resource adapters in your applications so they can access outside data sources.

1. Assemble an application with resource adapter archive (RAR) modules in it. See Assembling

applications.

2. Install the application following the steps in Installing a new application. In the Map modules to

servers step, specify target servers or clusters for each RAR file. Be sure to map all other modules

that use the resource adapters defined in the RAR modules to the same targets. Also, specify the Web

servers as targets that serve as routers for requests to this application. The plug-in configuration file

(plugin-cfg.xml) for each Web server is generated based on the applications that are routed through

it.

Note: When installing a RAR file onto a server, WebSphere Application Server looks for the manifest

(MANIFEST.MF) for the connector module. It looks first in the connectorModule.jar file for the

RAR file and loads the manifest from the _connectorModule.jar file. If the class path entry is in

the manifest from the connectorModule.jar file, then the RAR uses that class path.

To ensure that the installed connector module finds the classes and resources that it needs,

check the Class path setting for the RAR using the console. For more information, see

“Resource adapter settings” on page 1497 and “WebSphere relational resource adapter

settings” on page 1390

3. Click Finish > Save to save the changes.

4. Create connection factories for the newly installed application.

a. Open the administrative console.

1492 Administering WebSphere applications

b. Click Resources → Resource Adapters → Resource adapters → resource_adapter → J2C

connection factories.

c. Click New to create a new connection factory, or click on an existing connection factory to update

it.

After you create and save the connection factories, you can modify the resource references defined

in various modules of the application and specify the Java Naming and Directory Interface (JNDI)

names of the connection factories wherever appropriate.

Note: A given native library can only be loaded one time for each instance of the Java virtual machine

(JVM). Because each application has its own classloader, separate applications with embedded

RAR files cannot both use the same native library. The second application receives an

exception when it tries to load the library.

If any application deployed on the application server uses an embedded RAR file that includes

native path elements, then you must always ensure that you shut down the application server

cleanly, with no outstanding transactions. If the application server does not shut down cleanly it

performs recovery upon server restart and loads any required RAR files and native libraries. On

completion of recovery, do not attempt any application-related work. Shut down the server and

restart it. No further recovery is attempted by the application server on this restart, and normal

application processing can proceed.

Install RAR

Use this page to install a RAR file in one of two ways. You can either upload a RAR file from the local file

system, or specify an existing RAR file on a server. The RAR file must be installed at the node level, and

you can select the node below.

For information on installing a resource adapter, see the article ″Installing a Resource Adapter Archive

(RAR) file.″

Related tasks

“Installing a resource adapter archive” on page 1491
The application server uses the classes and other code that comprise a resource adapter archive (RAR) to

support the resource adapters that you configure.

Related reference

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

Administrative console page features
This topic provides information about the basic elements of an administrative console page, such as the

various tabs.

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console

panel. The preference settings vary from one administrative console panel to another.

Local path:

Specifies the local path of the RAR.

 Data type String

Server path:

Specifies the server path where the RAR is located.

 Data type String

Chapter 7. Data access resources 1493

Scope:

Specifies the scope of the resource adapter. Only applications that are installed within this scope can use

this adapter.

Configuring resource adapters

You can view a list of installed and configured resource adapters in the administrative console, as well as

use the administrative console to install new resource adapters, create additional configurations of installed

resource adapters, or delete resource adapter configurations. You can also configure a single instance

resource adapter.

Before you begin

A resource adapter is an implementation of the Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) Specification that provides access for applications to resources outside of the server or

provides access for an enterprise information system (EIS) to applications on the server. It can provide

application access to resources such as DB2, CICS, SAP and PeopleSoft. It can provide an EIS with the

ability to communicate with message-driven beans that are configured on the server. Some resource

adapters are provided by IBM; however, third party vendors can provide their own resource adapters. A

resource adapter implementation is provided in a resource adapter archive file; this file has an extension of

.rar. A resource adapter can be provided as a standalone adapter or as part of an application, in which

case it is referred to as an embedded adapter.

About this task

Use this task to configure a standalone resource adapter archive file. Embedded adapters are installed as

part of the application installation. This panel can be used to work with either kind of adapter.

 1. Open the administrative console.

 2. Select Resources → Resource Adapters → Resource adapters → resource_adapter.

 3. Set the scope setting. This field specifies the level to which this resource definition is visible. For

general information, see the topic on administrative console scope settings in the Related Reference

section. The Scope field is a read-only string field that shows where the particular definition for a

resource adapter is located. This is set either when the resource adapter is installed, which can only

be at the node level, or when a new resource adapter definition is added.

 4. Configure the description. This field specifies a text description of the resource adapter. Use a

free-form text string to describe the resource adapter and its purpose.

 5. Set the archive path. Use this field to specify the path to the RAR file containing the module for this

resource adapter. This property is required.

 6. Set the classpath. The class path includes the list of paths or JAR file names that, together, form the

location for the resource adapter classes. This list includes any additional libraries needed by the

resource adapter. The resource adapter code base itself is automatically added to the class path, but

you can use this field to specify anything that is needed and is not within the RAR.

 7. Set the native path. The list of paths which forms the location for the resource adapter native libraries

is set here. The resource adapter code base itself is automatically added to the class path, but if

anything outside the RAR is needed it can be specified here.

 8. Set the ThreadPool alias. The name of a thread pool that is configured in the server that is used by

the resource adapter’s Work Manager is specified in this field. If there is no thread pool configured in

the server with this name, the default configured thread pool instance, named Default, is used. This

property is only necessary if this resource adapter uses Work Manager.

 9. Optional: Isolate the class loading for the resource adapter.

1494 Administering WebSphere applications

Note: You can isolate a resource adapter to allow different versions of the same resource provider to

be loaded in the same Java Virtual Machine (JVM). For example, you might want to deploy

multiple applications on a single server, and each application requires different versions or

implementations of the same resource adapter. You can now isolate each version or

implementation of the resource adapter so that the classes of each adapter will be loaded by

its own class loader, and the class loader will not inadvertently link with classes of the other

versions or implementations of the adapter.

a. Select Isolate this resource provider.

Note: Be aware of the following conditions:

v You cannot isolate a resource adapter if you specify a native library path. If you specify

a native path manually, using wsadmin or editing the XML descriptors, the native paths

are ignored and Application Server will issue a warning at run time. The Application

Server will define a value for the native library path for some JDBC providers; this

behavior is intended to help you configure your provider when a native library path is

necessary. If you do not require the native library path, delete the value, and you will be

able to select the option to isolate the resource provider.

v If you are running a mixed cell environment, the application server will remove any

isolated JDBC providers from nodes that are running at versions earlier than 7.0 if the

provider is scoped for a version 7.0 cell, and you have not migrated the provider from an

older release. If you want to use isolated resources at the cell level, do not use the

resources in nodes that are running at versions earlier than 7.0. Define a resource at the

node level, or avoid using the resource in nodes that are earlier than version 7.0,

because there will be a ″Naming not found″ exception when the application server

attempts to perform a lookup on an isolated resource at the cell level.

There are other general considerations that you should take into account when isolating

any type of resource provider. Refer to the topic on considerations for isolated resource

providers for more information.

b. Give the resource adapter a unique class path that is appropriate for that version.

10. Optional: Restrict the JVM to allow only one instance of the resource adapter. This setting prevents

more than one instance of a resource adapter enterprise bean with a unique resource adapter

implementation class name from existing in the same Java Virtual Machine (JVM). Enabling this

setting imposes a highly restrictive environment on the system and should be used with caution. For

example, if two applications use the same embedded resource adapter, only the first application to

start will be able to access resources through its embedded resource adapter. If a standalone

resource adapter is configured for a single instance, no applications that embed that same resource

adapter will be able to access resources.

a. Click Advanced resource adapter properties.

b. Select Restrict the JVM to allow only one instance of the resource adapter.

11. Optional: Register this resource adapter with the high availability manager.

Note: Registering the resource adapter with the high availability manager specifies that the high

availability (HA) manager will manage the lifecycle of a JCA 1.5 resource adapter in a cluster,

ensuring that applications using resource adapters for inbound communication remain highly

available. To that end, appropriate use of the HA capability options enable you to set up an

environment that will be able to implement failover for inbound activity when a server goes

down.

Do not select this option without first consulting the product documentation for the resource adapter,

because this option requires the resource adapter to support high availability of inbound messaging.

This field is only available on resource archives that allow definitions for activation specifications.

a. Click Advanced resource adapter properties.

b. Select Register this resource adapter with the high availability manager. This setting can be

implemented with:

Chapter 7. Data access resources 1495

v Endpoint failover: allows only one resource adapter in an HA group to receive messages

across multiple servers. The result is that only one resource adapter can have endpoints active

at one time.

v Resource adapter instance failover: allows only one resource adapter in an HA group to be

started across multiple servers. Inbound or outbound communication is limited to one resource

adapter in the cluster, and the result is that only one runtime resource adapter instance can

exist at one time.

Resource adapters collection

Use this panel to view the list of installed and configured resource adapters that you can use, install new

resource adapters, create additional configurations of installed resource adapters, or delete resource

adapter configurations. You can install a stand-alone resource adapter archive (RAR) file, or manage

embedded adapters that are installed as part of the installation of an application.

You can configure a single instance resource adapter after a resource adapter archive (RAR) file is

installed. The RAR file can either be stand-alone or embedded in an application through the administrative

console or through the scripting tool. A checkbox is located on the console for you to specify that you want

a single instance to be created at run time.

To view this administrative console page, click Resources → Resource Adapters → Resource adapters.

A resource adapter is an implementation of the Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) specification that provides access for applications to resources outside of the server or

provides access for an enterprise information system (EIS) to applications on the server. Resource

adapters can provide application access to resources such as DB2, CICS, SAP and PeopleSoft. A

resource adapter can provide an EIS with the ability to communicate with message-driven beans that are

configured on the server. Some resource adapters are provided by IBM; however, third party vendors can

provide their own resource adapters. A resource adapter implementation is provided in a resource adapter

archive file; this file has an extension of .rar. A resource adapter can be provided as a stand-alone

adapter or as part of an application, in which case the resource adapter is referred to as an embedded

adapter.

To view the resource adapters that are provided with the application server, select Show built-in

resources in Preferences.

Scope:

Specifies the level at which this resource adapter is visible. For general information, read about

administrative console scope settings.

 Some considerations that you should keep in mind for this particular panel are:

v Changing the scope enables you to see which resource adapter definitions exist at that level.

v Changing the scope does not have any effect on installation. Installations are always done under a

scope of node, no matter what you set the scope to.

v When you create a new resource adapter from this panel, you must change the scope to what you want

it to be before clicking New.

Install RAR:

Specifies to install a resource archive (RAR). You can upload a RAR file from the local file system, or

specify an existing RAR file on a server.

 The RAR file must be installed at the node level.

New:

1496 Administering WebSphere applications

Specifies to create a copy of a resource archive that is already installed in the application server. This will

create a copy of the resource adapter that you select in the table.

 If you wish to create a copy of an installed resource adapter, specify a server for the scope, and click

New. You cannot create a copy of a resource adapter at the node scope. If you want to install a new

resource adapter, click Install RAR.

Delete:

Specifies to delete the copy of a resource adapter. This will delete the copy that you select in the table.

Update RAR:

Specifies to update the resource adapter that you select in the table. Update a resource adapter archive

(RAR) file when you determine that a resource adapter, or a set of resource adapters, needs to be

updated with a different version or implementation.

 Different versions or implementations of resource adapters can include different settings, so updating your

adapter might be beneficial if you require a certain set of configuration options. You can choose if you

would like to update the resource adapter for all of the nodes in a cell or all the nodes in a cluster. If some

of your nodes are earlier than Version 7.0, the RAR update will not be supported until those nodes are

migrated to Version 7.0.

Name:

Specifies the name of the resource adapter.

Resource adapter settings:

Use this page to specify settings for a resource adapter.

 A resource adapter is an implementation of the Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) specification that provides access for applications to resources outside of the server,

provides access for applications to an enterprise information system (EIS), or provides access for an EIS

to applications on the server. Resource adapters provide applications access to resources such as DB2,

CICS, SAP and PeopleSoft. Resource adapters can provide an EIS with the ability to communicate with

message driven beans that are configured on the server. Some resource adapters are provided by IBM;

however, third party vendors can provide their own resource adapters. A resource adapter implementation

is provided in a resource adapter archive file (RAR); this file has an extension of .rar. A resource adapter

can be provided as a stand alone adapter or as part of an application, in which case the resource adapter

is referred to as an embedded adapter. Use this panel to install a stand alone resource adapter archive

file. Embedded adapters are installed as part of the application installation.

To view this administrative console page, click one of the following paths:

v Resources → Resource Adapters → Resource adapters → New.

v Resources → Resource Adapters → Resource adapters → resource_adapter.

v Install a new resource adapter archive:

1. Click Resources → Resource Adapters → Resource adapters → Install RAR.

2. Specify a full path for the local file system or remote file system, and click Next.

Scope:

Specifies the highest topological level at which application servers can use this adapter.

Chapter 7. Data access resources 1497

The Scope field is a read-only string field that specifies where the particular definition for a resource

adapter is located. The Scope field is set when the resource adapter is installed, which can only be at the

node level, or when a new resource adapter definition is added.

Name:

Specifies the name of the resource adapter definition.

 This property is a required string containing no spaces that is a meaningful text identifier for the resource

adapter.

Description:

Specifies a text description of the resource adapter.

 This description is a free-form text string to describe the resource adapter and its purpose.

Archive path:

Specifies the path to the installed resource archive file that contains the module for this resource adapter.

 You can only select RAR files that are installed on the nodes within the selected scope, preventing you

from configuring a selection that might fail for some of your nodes.

Note: For resources at the cell scope, the RAR files that are available are those that are installed on each

individual node in the entire cell. For resources at a cluster scope, the RAR files that are available

are those that are installed on each individual node in that particular cluster.

This property is required.

 Data type String

Class path:

Specifies a list of paths or Java archive file (JAR) names that together form the location for the resource

adapter classes.

 Class path entries are separated by using the ENTER key and must not contain path separator characters

like ’;’ or ’:’. Class paths can contain variable (symbolic) names that can be substituted using a variable

map. Check your driver installation notes for specific JAR file names that are required.

Native library path:

Specifies an optional path to any native libraries, which are .dll or .so files.

 Native path entries are separated by using the ENTER key and must not contain path separator

characters like ’;’ or ’:’. Native paths can contain variable (symbolic) names that can be substituted using a

variable map.

Isolate this resource provider:

Specifies that this resource provider will be loaded in its own class loader. This allows different versions of

the same resource provider to be loaded in the same Java Virtual Machine. Give each version of the

resource provider a unique class path that is appropriate for that version.

1498 Administering WebSphere applications

Ensure that all copies of a resource adapter have the same value for this option. For example, if you

create a resource adapter at the cluster scope, the value of this option will be taken from the resource

adapter archive (RAR) that you copy. When you create the copy, you cannot modify the value for any

instances of that RAR, which would be the copies at the node or cluster scope in this example. If you

need to modify the value, you have to delete the copies of the RAR until there is only one instance of that

particular RAR that is left.

Note: You cannot isolate a resource provider if you specify a native library path.

Thread pool alias:

Specifies the name of a thread pool that is part of the server configuration for this resource adapter. Set

this property only if the resource adapter uses the work manager service.

 If you input a thread pool name that does not exist in the server configuration, the application server uses

the name DEFAULT.

Advanced resource adapter properties:

Use this page to specify advanced settings for resource adapters that comply with the Version 1.5 Java

Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) specification.

 A resource adapter is an implementation of the Java EE Connector Architecture (JCA) specification that

provides access for applications to an enterprise information system (EIS), like DB2, CICS, SAP and

PeopleSoft, or provides access for an EIS to applications on the server. A resource adapter can also

provide an EIS with the ability to communicate with message-driven beans that are configured on the

server. Some resource adapters are provided by IBM, but third party vendors can provide their own

resource adapters.

A resource adapter implementation is provided in a resource adapter archive file; this file has an extension

of .rar. A resource adapter can be provided as a stand-alone adapter or as part of an application, in which

case it is referred to as an embedded adapter. Use this panel to install a stand-alone resource adapter

archive file. Embedded adapters are installed as part of the application installation.

To view this administrative console page, click Resources → Resource Adapters → Resource adapters →

resource_adapter → Advanced resource adapter properties.

Restrict the JVM to allow only one instance of this resource adapter:

Prevents more than one instance of a resource adapter JavaBean with a unique resource adapter

implementation class name from existing in the same Java Virtual Machine (JVM). This field is only

available on resource archives that allow definitions for activation specifications.

Note: Enabling this setting imposes a restrictive condition on the inbound communications. For example, if

two applications embed the same resource adapter, only the first application to start will be able to

access resources through its embedded resource adapter. If a stand-alone resource adapter is

configured for a single instance, no applications that embed that same resource adapter will be able

to access resources.

 Data type Boolean (checkbox)

Default False (disabled)

Register this resource adapter with the high availability manager:

Specifies that the high availability (HA) manager will manage the lifecycle of a JCA 1.5 resource adapter in

a cluster. Do not select this option without first consulting the product documentation for the resource

Chapter 7. Data access resources 1499

adapter, because this option requires the resource adapter to support high availability of inbound

messaging. This field is only available on resource archives that allow definitions for activation

specifications.

Note: Enabling this setting imposes a restrictive condition on the inbound communications.

This setting can be implemented with:

v Endpoint failover: allows only one resource adapter in an HA group to receive messages across

multiple servers. The result is that only one resource adapter can have endpoints active at one time.

v Resource adapter instance failover: allows only one resource adapter in an HA group to be started

across multiple servers. Inbound or outbound communication is limited to one resource adapter in the

cluster.

 Data type Boolean (checkbox with implementation options)

Default False (disabled)

Updating a resource adapter archive

Use the resource adapter archive (RAR) update wizard to update RAR files to a newer version. The

application server uses the classes and other code that comprise a resource adapter archive to support

the resource adapters that you configure.

Before you begin

A resource adapter must be installed on the application server, and you must have a new version of the

resource adapter that is compatible with the old version. You can create the new RAR file with an

assembly tool, or the vendor for the resource adapter can provide the new version. If the new version of a

RAR file is not compatible with the old version of the resource adapter, an update is not possible.

About this task

Update a RAR file when you determine that a resource adapter or a set of resource adapters needs to be

updated with a different version. Different versions of resource adapters can include different settings, so

updating your adapter might be beneficial if you require a certain set of configuration options. You can

choose if you would like to update the resource adapter for all of the nodes in a cell or all the nodes in a

cluster. If some of your nodes are earlier than Version 7.0, the RAR update will not be supported until

those nodes are migrated to Version 7.0.

If you prefer to have more than one version of a resource adapter active in a given Java Virtual Machine

(JVM), the update wizard will not provide the option of creating a new version and keeping the old. In this

case, you will need to create an isolated resource adapter and configure it accordingly. Refer to the topic

on configuring a resource adapter for more information.

 1. Save all configuration changes.

 2. Backup your configuration settings with the backupConfig tool. The backupConfig tool is located in

the app_server_root/bin directory. Read the topic on the backupConfig command for more

information on how to use this command.

 3. Synchronize any of the nodes that will be updated.

 4. Ensure that the node agents are running if they are associated with the resource adapter that you are

updating.

 5. Stop any servers that contain the RAR file that you will update. You must stop all of the servers in the

node or cluster to which the RAR file is associated. Refer to Administering applications and their

environment for information on how to stop or start an application server.

 6. Click Resources → Resource Adapters.

 7. Select the checkbox next to the RAR file to update, and click Update RAR.

1500 Administering WebSphere applications

welc6topmanaging.html
welc6topmanaging.html

8. Specify the installation path for the RAR file, and click Next.

v If your RAR file is located on the same workstation as your browser, select Local file system, and

browse to find the file.

v If your RAR file is located on the server workstation where the application server is installed, select

Remote file system, and specify the fully qualified path to the file.

 9. Review the configuration information that is provided for the RAR file. The following information is

displayed for the RAR file:

v Name

v Current RAR version

v New RAR version

v Scope

v Any existing copies of the resource adapter. The resource adapters with an asterisk (*) are copies

of the resource adapter and must also be updated at the same time.

Click Next when you are finished.

10. Optional: Edit any properties that were added by the new version of the resource adapter. You can

also edit these properties after completing the update.

a. Select a resource in the list to edit the new properties. Only resources with new properties are

included in the list.

b. Edit the resource properties. Use the table that is provided to set the values for the selected

resource’s new properties.

v Select the Set for all checkbox to apply the property value to all of the resources of the same

type.

v Click the Reset to Default button to reset all of the properties to the default values that are

defined in the RAR file. This only affects the selected resource.

c. Click Next.

11. Review the summary panel, and click Finish when you are satisfied with the configuration settings.

When you click Finish, all of the configuration changes will be automatically saved. To revert to an

older version of the resource adapter you must perform the update process again, and specify the

older version of the RAR file.

What to do next

If you are not satisfied with the results, and you backed up your configuration with backupConfig tool, use

the restoreConfig tool to restore your backup configuration. Read the topic on the restoreConfig command

for more information on how to use this command.

J2EE connector security

The Java 2 Platform, Enterprise Edition (J2EE) connector architecture defines a standard architecture for

connecting J2EE to heterogeneous enterprise information systems (EIS). Examples of EIS include

Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database systems.

The connector architecture enables an EIS vendor to provide a standard resource adapter for its EIS. A

resource adapter is a system-level software driver that is used by a Java application to connect to an EIS.

The resource adapter plugs into an application server and provides connectivity between the EIS, the

application server, and the enterprise application. Accessing information in EIS typically requires access

control to prevent unauthorized accesses. J2EE applications must authenticate to the EIS to open a

connection.

The J2EE connector security architecture is designed to extend the end-to-end security model for

J2EE-based applications to include integration with EIS environments. An application server and an EIS

collaborate to ensure the correct authentication of a resource principal, which establishes a connection to

Chapter 7. Data access resources 1501

an underlying EIS. The connector architecture identifies the following mechanisms as the commonly

supported authentication mechanisms, although other mechanisms can be defined:

v BasicPassword: Basic user-password-based authentication mechanism that is specific to an EIS

v Kerbv5: Kerberos Version 5-based authentication mechanism

Applications define whether to use application-managed sign-on or container-managed sign-on in the

resource-ref elements in the deployment descriptor. Each resource-ref element describes a single

connection factory reference binding. The res-auth element in a resource-ref element, whose value is

either Application or Container, indicates whether the enterprise bean code can perform sign-on or

whether application server can sign-on to the resource manager using the principal mapping configuration.

The resource-ref element is typically defined at application assembly time with an assembly tool. The

resource-ref can also be defined, or redefined, at deployment time.

Application managed sign-on

To access an EIS system, applications locate a connection factory from the Java Naming and Directory

Interface (JNDI) namespace and invoke the getConnection method on that connection factory object. The

getConnection method might require a user ID and password argument. A J2EE application can pass in a

user ID and password to the getConnection method, which subsequently passes the information to the

resource adapter. Specifying a user ID and password in the application code might compromise some

security, however.

The user ID and password, if coded into the Java source code, are available to developers and testers in

the organization. Also, the user ID and password are visible to users if they decompile the Java class.

The user ID and password cannot be changed without first requiring a code change. Alternatively,

application code might retrieve sets of user IDs and passwords from persistent storage or from an external

service. This approach requires that IT administrators configure and manage a user ID and password

using the application-specific mechanism.

To access this authentication data, the application server supports a component-managed authentication

alias to be specified on a resource. This authentication data is common to all references to the resource.

Click Resources > Resource Adapters > J2C connection factories > configuration_name . Select Use

component-managed authentication alias.

When res-auth=Application, the authentication data is taken from the following elements, in order:

1. The user ID and password that are passed to the getConnection method

2. The component-managed authentication alias in the connection factory or the data source

3. The custom properties user name and password in the data source

The user name and password properties can be initially defined in the resource adapter archive (RAR) file.

Do not use the custom properties, which enable users to connect to the resources.

Container-managed sign-on

The user ID and password for the target enterprise information systems (EIS) can be supplied by the

application server. The product provides container-managed sign-on functionality. The application server

locates the proper authentication data for the target EIS to enable the client to establish a connection.

Application code does not have to provide a user ID and password in the getConnection call when it is

configured to use container-managed sign-on, and authentication data does not have to be common to all

references to a resource. The uses a Java Authentication and Authorization Service (JAAS) pluggable

authentication mechanism to use a pre-configured JAAS login configuration, and LoginModule to map a

client security identity and credentials on the running thread to a pre-configured user ID and password.

1502 Administering WebSphere applications

The product supports a default many-to-one credential mapping LoginModule module that maps any client

identity on the running thread to a preconfigured user ID and password for a specified target EIS. The

default mapping module is a special purpose JAAS LoginModule module that returns a

PasswordCredential credential that is specified by the configured Java 2 connector (J2C) authentication

data entry. The default mapping LoginModule module performs a table lookup, but does not perform actual

authentication. The user ID and password are stored together with an alias in the J2C authentication data

list.

The J2C authentication data list is located on the Global security panel from Java Authentication and

Authorization Service > J2C Authentication data. The default principal and credential mapping function

is defined by the DefaultPrincipalMapping application JAAS login configuration.

J2C authentication data that is modified using the administrative console takes effect when the

modification is saved into the repository, and Test Connection is performed. Also, J2C authentication data

that is modified using wsadmin scripting takes effect when any application is started or restarted for a

given the application server server process. J2C authentication data modification takes effect by invoking

the SecurityAdmin MBean method, updateAuthDataCfg. Set the HashMap parameter to null to enable the

Securityadmin MBean to refresh the J2C authentication data using the latest values in the repository.

Do not modify the DefaultPrincipalMapping login configuration because the product includes performance

enhancements to this frequently used default mapping configuration. The product does not support

modifying the DefaultPrincipalMapping configuration, changing the default LoginModule module, or

stacking a custom LoginModule module in the configuration.

For most systems, the default method with a many-to-one mapping is sufficient. However, the product

does support custom principal and credential mapping configurations. Custom mapping modules can be

added to the application logins JAAS configuration by creating a new JAAS login configuration with a

unique name. For example, a custom mapping module can provide one-to-one mapping or Kerberos

functionality.

Trusted connections also provide a one-to-one mapping while supporting client identity propagation. In

addition by utilizing the DB2 trusted context object, trusted connections can take advantage of connection

pooling to reduce the performance penalty of closing and reopening connections with a different identity.

Using trusted connections also enhances the security of your DB2 database by eliminating the need to

assign all privileges to a single user. The connection is established by a user whose credentials are

trusted by the DB2 server to open the connection and the same user is also then trusted to assert the

identity of the other users accessing the DB2 server from the application. A new mapping configuration

called TrustedConnectionMapping has been created to implemented trusted connections.

You also can use the WebSphere Application Server administrative console to bind the resource manager

connection factory references to one of the configured resource factories. If the value of the res-auth

element is Container within the deployment descriptor for your application, you must specify the mapping

configuration. To specify the mapping configuration, use the Resource references link under References

on the Applications > Application Types > WebSphere enterprise applications > application_name

panel. See Mapping resource references to references for additional directions.

J2C mapping modules and mapping properties

Mapping modules are special JAAS login modules that provide principal and credential mapping

functionality. You can define and configure custom mapping modules using the administrative console.

You also can define and pass context data to mapping modules by using login options in each JAAS login

configuration. In the product, you also can define context data using mapping properties on each

connection factory reference binding.

Chapter 7. Data access resources 1503

Login options that are defined for each JAAS login configuration are shared among all resources that use

the same JAAS login configuration and mapping modules. Mapping properties that are defined for each

connection factory reference binding are used exclusively by that resource reference.

Consider a usage scenario where an external mapping service is used.

For example, you might use the Tivoli Access Manager global sign-on (GSO) service. Use the Tivoli

Access Manager GSO to locate authentication data for both backend servers.

You have two EIS servers: DB2 and MQ. The authentication data for DB2 is different from that for MQ,

however. Use the login option in a mapping JAAS login configuration to specify the parameters that are

required to establish a connection to the Tivoli Access Manager GSO service. Use the mapping properties

in a connection factory reference binding to specify which EIS server requires the user ID and password.

For more detailed information about developing a mapping module, see the J2C principal mapping

modules article.

Note:

v The mapping configuration at the connection factory has moved to the resource manager

connection factory reference. The mapping login modules that are developed using WebSphere

Application Server Version 5 JAAS callback types can be used by the resource manager

connection factory reference, but the mapping login modules cannot take advantage of the

custom mapping properties feature.

v Connection factory reference binding supports mapping properties, and passes those properties

to mapping login modules by way of a new WSMappingPropertiesCallback callback. In addition,

the WSMappingPropertiesCallback callback and the new WSManagedConnectionFactoryCallback

callback are defined in the com.ibm.wsspi package. Use the new mapping login modules with the

new callback types.

Mapping resource references to references

You can use the administrative console to bind the resource manager connection factory references to one

of the configured resource factories.

About this task

If the value of the res-auth element is Container within the deployment descriptor for your application, then

you must specify the mapping configuration.

 1. Click Applications > Enterprise applications > application_name.

 2. From Additional Properties, select Resource references.

 3. Select the application module and specify an authentication method for the selected connection

factory reference binding. Select either Use default method, Use custom login configuration or

Use trusted connections. If you select the Use default method option, the DefaultPrincipalMapping

login configuration is selected. If you select the Use trusted connections option, then the

TrustedConnectionMapping login configuration is selected. You must select an authentication data

alias from the list.

 4. After you make a selection, click Apply for the configuration to take effect.

 5. If you select the Use trusted connection option, then you must select an authentication data alias

from the menu list. The alias that is specified is what the application server uses to get the initial

trusted connection.

 6. Click Apply. The selected login configuration name and an Mapping properties button is displayed

in the Login configuration field of the particular connection factory reference binding.

 7. Click Mapping properties > New to specify the properties for your configuration. Click OK after

specifying the properties on the Mapping properties panel.

1504 Administering WebSphere applications

8. If you select the Use trusted connection option, then you must select an authentication data alias

from the menu list.

 9. Click Apply. The Mapping properties button is displayed in the login configuration field of the

particular connection factory reference binding.

10. Click Mapping properties to modify the properties of the trusted connection. Read about “Setting the

security properties for trusted connections” on page 1580 for information on tuning the mapping

properties for the trusted connection.

11. Click OK and Save on the Resource references panel to save your changes to the master

configuration.

Managing messages with message endpoints

Manage message delivery for message-driven beans (MDB) that are deployed as message endpoints. The

message endpoints are managed beans (MBeans) for inbound resource adapters that are compliant with

Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) Version 1.5.

About this task

The application server provides message endpoint MBeans to assist you in managing the delivery of a

message to your message-driven beans that are acting as listeners on specific endpoints, which are

destinations, and in managing the enterprise information system (EIS) resources that are utilized by these

message-driven beans. Message-driven beans that are deployed as message endpoints are not the same

as message-driven beans that are configured against a listener port. Message-driven beans that are used

as message endpoints must be deployed using an ActivationSpecification that is defined within a resource

adapter configuration for JCA Version 1.5.

With message endpoint MBeans, you can activate and deactivate specific endpoints within your

applications to ensure that messages are delivered only to listening message-driven beans that are

interacting with healthy EIS resources. This capability allows you to optimize the performance of your JMS

applications in situations where an EIS resource is not behaving as expected. Message delivery to an

endpoint typically fails when the message driven bean that is listening invokes an operation against a

resource that is not healthy. For example, a messaging provider, which is an inbound resource adapter

that is JCA Version 1.5 compliant, might fail to deliver messages to an endpoint when its underlying

message-driven bean attempts to commit transactions against a database server that is not responding.

Note: Design your message-driven beans to delegate business processing to other enterprise beans. Do

not access the EIS resources directly in the message-driven bean, but do so indirectly through a

delegate bean.

Message endpoint MBeans alleviate two problems that are inherent to applications that provide message

endpoints that access resources:

v Failed messages require additional processing, such as delivering them to the listening endpoint again

or redirecting them to alternate destinations that process failed messages. In addition, a resource

adapter might redeliver a message to an endpoint an infinite number of times.

v Message redirection requires the implementation of specialized destinations (queues and listeners) to

process failed messages, as well as the logic to detect message failures. Message redirection is

potentially error prone and computationally expensive due to its complexity.

The capability to deactivate (pause) and reactivate (resume) a specific message endpoint alleviates these

problems by enabling the administrator to deactivate the endpoint from processing messages that are

destined to fail. When the message endpoint is deactivated, you can repair the resource that is causing

the problems and reactivate the endpoint to resume handling message requests. In the course of

troubleshooting, you will not affect the resource adapter or the application that is hosting the endpoint.

1. Using the administrative console, navigate to the Message Endpoints panel for the application that is

hosting the message endpoint.

Chapter 7. Data access resources 1505

a. Select the Applications → Application Types → Websphere enterprise applications →

application_name.

b. Select the Runtime panel.

c. Select Message Endpoints. The panel lists the set of message endpoints that are hosted by the

application.

2. Optional: Temporarily disable a message endpoint from handling messages and troubleshoot the

problem.

a. Deactivate the message endpoint by selecting the appropriate endpoint and clicking Pause.

b. When the message endpoint is inactive, diagnose and repair the underlying cause of the delivery

failures.

c. Reactivate the message endpoint by selecting the appropriate endpoint and clicking Resume.

Results

The behavior you will observe when you deactivate (pause) a message endpoint using the message

endpoint MBean is dependent upon a variety of factors, including the resource adapter that manages the

message endpoint, the configuration of the message endpoint and the application server topology. Some

specific examples of interest are as follows:

v MDB listening on a non-durable topic (dependent on configuration): The behavior that is implied by

the deactivation (pause) of a message endpoint is often dependent upon the function that it is fulfilling.

For example, if you have configured a message-driven bean to listen on a non-durable topic on the

service integration bus, deactivating the message endpoint is analogous to stopping the application and

will cause the subscription to be closed. This means that any messages that are published during the

time that the message endpoint is paused will not be received by the message-driven bean.

v Clustered message-driven bean (dependent on topology): In this scenario a message-driven bean

application has been deployed to a cluster of servers. A given message endpoint MBean controls only

the behavior of the MDB in one server from the cluster, so will cause only one server to stop processing

messages. Depending upon the messaging configuration and the specific resource adapter in use the

messages that would have been consumed by the paused message endpoint may be consumed by the

active message endpoints in the cluster, or they may remain unconsumed until the paused message

endpoint is resumed.

v Clustered message-driven bean, a non-clustered queue: In this scenario, you have a cluster of

servers with the same message-driven bean deployed to them. This is similar to the case, in which you

have different message-driven beans with the same message selection criteria, except that in this case

the message-driven beans are logically the same message-driven bean. Pausing the endpoint will

cause only one of the servers to stop receiving messages, and the other message-driven beans will

receive all the messages; none of the messages will be orphaned. To stop all of the endpoints, you

must direct each server in the cluster to stop the local message endpoint.

v Clustered message-driven bean, clustered queue: In this scenario, each message-driven bean is

pulling messages from a different partition of the queue. Messaging through WebSphere MQ and the

Service Integration Bus have similar, but different, capabilities. If you are using WebSphere MQ, then

pausing one endpoint will not allow the other instances of the message-driven bean to receive the

messages. In the Service Integration Bus, messages from a paused endpoint will be redirected to the

other message-driven beans.

1506 Administering WebSphere applications

Related tasks

“Managing the message endpoint lifecycle using scripting” on page 1436
Use the Jython scripting language to manage your message endpoints with the wsadmin tool. Use this

topic to query your configuration for message endpoint properties, and to deactivate or reactivate a

message endpoint.

Manage message endpoints

Use this panel to manage situations where messaging providers fail to deliver messages to their intended

destinations. For example, a provider might fail to deliver messages to a message endpoint when its

underlying message driven bean attempts to commit transactions against a database server that is not

responding.

To view this administrative console panel:

1. Select the Applications → Application Types → WebSphere enterprise applications →

application_name.

2. Select the Runtime panel. You will only see the Runtime panel if you have an application installed that

is hosting message-driven beans.

3. Select Message Endpoints. The panel lists the set of message endpoints that are hosted by the

application.

Name:

Specifies the name of the message endpoint.

 Click the name of the message endpoint to view the configuration binding for the underlying endpoint

message-driven bean and Activation Specification.

Running object scope:

Specifies the server where the endpoint is running.

 For more information on scope, see Administrative console scope settings.

Status:

Indicates whether the message endpoint is active or inactive.

 Click Pause to deactivate a message endpoint and stop it from handling messages.

Click Resume to reactivate a message endpoint that is inactive.

Configuring a JDBC provider and data source

For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

Before you begin

Each vendor database requires different JDBC driver implementation classes for JDBC connectivity. A

JDBC provider encapsulates those vendor-specific driver files. Through the data source that you associate

with the JDBC provider, an application server obtains and manages the physical connections for

transactions between applications and the database.

Note: If you are accessing a DB2 database, Data Studio pureQuery is an alternative to JDBC. For more

information on pureQuery, see the topic ″Task overview: Data Studio pureQuery″ in the related links

section.

Chapter 7. Data access resources 1507

Determine the version of data source that you need according to the API specification of your applications.

v Data sources (WebSphere Application Server Version 4) are for use with the Enterprise JavaBeans

(EJB) 1.0 specification and the Java Servlet 2.2 specification.

v Data sources of the latest standard version are for use with applications that implement the more

advanced releases of these specifications.

1. Verify that all of the necessary JDBC driver files are installed on your node manager. Consult the

article “Data source minimum required settings, by vendor” on page 1509 for that information. If you

opt to configure a user-defined JDBC provider, check your database documentation for information

about the driver files.

2. Create a JDBC provider.

From the administrative console, see Creating a JDBC provider using the administrative console.

OR

Using the wsadmin scripting client, see “Configuring a JDBC provider using scripting” on page 1412.

OR

Using the Java Management Extensions (JMX) API, see Creating a JDBC provider and data source

using the Java Management Extensions API.

3. Create a data source.

From the administrative console, see Creating a data source using the administrative console.

OR

Using the wsadmin scripting client, see “Configuring new data sources using scripting” on page 1414.

(For V4 data sources, see “Configuring new WAS40 data sources using scripting” on page 1425.)

OR

Using the JMX API, see Creating a JDBC provider and data source using the Java Management

Extensions API.

Note: Different database vendors require different properties for implementations of their JDBC

drivers. Set these properties on the WebSphere Application Server data source. Because

Application Server contains templates for many vendor JDBC implementations, the

administrative console surfaces the required properties and prompts you for them as you create

a data source. However, if you script your data access configurations, you must consult the

article “Data source minimum required settings, by vendor” on page 1509 for the required

properties and settings options.

4. Optional: Configure custom properties. Like the required properties, custom properties for specific

vendor JDBC drivers must be set on the Application Server data source. Consult your database

documentation for information about available custom properties. To configure a custom class to

facilitate the handling of database properties that are not recognized natively by the Application Server,

refer to “Developing a custom DataStoreHelper class” on page 1596

You can also learn about optional data source properties in the Application Programming Guide and

Reference for Java for your version of DB2 for z/OS if you use the DB2 Universal JDBC Driver

provider.

5. Bind resource references to the data source. See the article Data source lookups for enterprise beans

and Web modules .

6. Test the connection (for non-container-managed persistence usage). See the “Test connection service”

on page 1598 article.

Results

If you use the DB2 JDBC Universal Driver, you might experience data source failures that the application

server JVM log does not document. Check the DB2 database log or the WebSphere Application Server

JDBC trace log (if JDBC trace was active). You might find that a bad authentication credential is the cause

1508 Administering WebSphere applications

of failure. Currently the DB2 JDBC Universal Driver does not identify or surface the errors that are

produced by non-valid authentication credentials in a proper or consistent way.

Even if you receive information about a bad credential, check the database and JDBC trace logs. These

logs provide more reliable, detailed error data on authentication failures.

Note: The JDBC trace log exists only if the JDBC trace service is active during server start up. Activate

the service in the administrative console. For more information, see Enabling trace at server

startup. Specify WAS.database as the trace group and select com.ibm.ws.db2.logwriter as the

trace string.

Data source minimum required settings, by vendor

These properties vary according to the database vendor requirements for Java Database Connectivity

(JDBC) driver implementations. You must set the appropriate properties on every data source that you

configure.

Use these tables for quick reference on the JDBC providers that represent your JDBC driver classes. Each

table corresponds to a specific database vendor, product, and platform.

Following the tables are links to detailed requirements for creating data sources that correspond to each

JDBC provider that the application server supports . The list includes information about connection

properties that are required by the database and any optional properties that the JDBC driver supports.

Use the administrative console or the wsadmin scripting tool to define these properties on your data

sources.

 Apache Derby

JDBC provider Transaction support Version and other considerations

Derby JDBC Provider One-phase v Does not support Version 4 data

sources

v Configurable only in nodes at

version 6.0.2 and later

v Not for use in clustered

environment: accessible from a

single JVM only

Derby JDBC Provider (XA) One and two-phase v Does not support Version 4 data

sources

v Configurable only in nodes at

version 6.0.2 and later

v Not for use in clustered

environment: accessible from a

single JVM only

Derby JDBC Provider 40 One-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

Derby JDBC Provider 40 (XA) One and two-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

Chapter 7. Data access resources 1509

Apache Derby

JDBC provider Transaction support Version and other considerations

Derby Network Server using Derby

Client

One-phase v Does not support Version 4.0 data

sources.

v Configurable only in nodes at

version 6.1 and later

v Can be used in clustered

environment: a database instance

can be accessed by multiple JVMs

v Only for use with Apache Derby

databases that run on the same

node as the application server

Derby Network Server using Derby

Client (XA)

One and two-phase v Does not support Version 4 data

sources

v Configurable only in nodes at

version 6.1 and later

v Can be used in clustered

environment: a database instance

can be accessed by multiple JVMs

v Only for use with Apache Derby

databases that run on the same

node as the application server

Derby Network Server using Derby

Client 40

One-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

Derby Network Server using Derby

Client 40 (XA)

One and two-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

 DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase v Configurable in nodes that are at

version 7.0 and later.

DB2 Using IBM JCC Driver (XA) One and two-phase v Configurable in nodes that are at

version 7.0 and later.

DB2 Universal JDBC Provider One-phase N/A

DB2 Universal JDBC Provider (XA) One and two-phase N/A

 DB2 UDB for iSeries

JDBC provider Transaction support Version and other considerations

DB2 UDB for iSeries (Native) One-phase Recommended when you run the

application server on iSeries.

DB2 UDB for iSeries (Native XA) One and two-phase Recommended when you run the

application server on iSeries.

DB2 UDB for iSeries (Toolbox) One-phase N/A

DB2 UDB for iSeries (Toolbox XA) One and two-phase N/A

1510 Administering WebSphere applications

DB2 on z/OS

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase v Configurable in version 7.0 and

later nodes.

DB2 Using IBM JCC Driver (XA) One and two-phase v Configurable in nodes that are at

version 7.0 and later.

DB2 Universal JDBC Provider One-phase when connecting to the

application server that is on AIX,

HP-UX, Linux, Solaris, and Windows

systems

DB2 Universal JDBC Provider (XA) One and two-phase

 Informix

JDBC provider Transaction support Version and other considerations

Informix Using IBM JCC Driver One phase This provider is configurable in nodes

that are at version 7.0 and later.

Informix Using IBM JCC Driver (XA) One and two-phase This provider is configurable in nodes

that are at version 7.0 and later.

Informix JDBC Provider One-phase N/A

Informix JDBC Provider (XA) One and two-phase N/A

 Microsoft SQL Server

JDBC provider Transaction support Version and other considerations

Microsoft SQL Server JDBC Driver One-phase N/A

Microsoft SQL Server JDBC Driver

(XA)

One and two-phase N/A

DataDirect ConnectJDBC Provider,

type 4 driver, for Microsoft SQL

Server

One-phase N/A

DataDirect ConnectJDBC Provider,

type 4 driver, for Microsoft SQL

Server (XA)

One and two-phase N/A

 Oracle

JDBC provider Transaction support Version and other considerations

Oracle JDBC Provider One-phase N/A

Oracle JDBC Provider (XA) One and two-phase N/A

 Sybase

JDBC provider Transaction support Version and other considerations

Sybase JDBC 3 Driver One-phase jConnect v6.05

Sybase JDBC 3 Driver (XA) One and two-phase jConnect v6.05

Sybase JDBC 2 Driver One-phase jConnect v5.5

Sybase JDBC 2 Driver (XA) One and two-phase jConnect v5.5

Chapter 7. Data access resources 1511

Detailed requirements

The following list identifies required class files and connection properties per JDBC provider.

After you determine the JDBC provider that suits your application and environment, ensure that you

acquire the corresponding JDBC driver at a release level supported by this version of the application

server. Consult the IBM support website for supported hardware and software.

Use the following links to navigate to the requirements list. Each link corresponds to a specific database

vendor, product, and platform.

v Apache Derby or Cloudscape 10.x

v DB2 Universal Database for iSeries

v Informix

v Microsoft SQL Server

v Oracle

v Sybase

Data source minimum required settings for Apache Derby:

These properties vary according to the database vendor requirements for JDBC driver implementations.

You must set the appropriate properties on every data source that you configure. These settings are for

Apache Derby and Cloudscape data sources.

 You can configure the following types of providers:

v Derby JDBC Provider

v Derby JDBC Provider (XA)

v Derby JDBC Provider 40

v Derby JDBC Provider 40 (XA)

v Derby Network Server using Derby Client

v Derby Network Server using Derby Client (XA)

v Derby Network Server using Derby Client 40

v Derby Network Server using Derby Client 40 (XA)

v Derby JDBC Provider

The Derby JDBC driver provides JDBC access to the Apache Derby database by using the framework

that is already embedded in the application server. You cannot use any Version 4.0 data sources with

this provider.

This provider:

– Is configurable only in nodes at version 6.0.2 and later

– Supports one phase data source with the following class:

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource

– Requires the JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection

through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Requires the following properties:

databaseName

The name of the database from which the data source obtains connections. If you do not

1512 Administering WebSphere applications

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby JDBC Provider (XA)

The Derby JDBC driver (XA) provides JDBC access to the Apache Derby database by using the

framework that is already embedded in the application server.

This provider:

– Does not support use Version 4.0 data sources.

– Is configurable only in nodes at version 6.0.2 and later

– Supports the two-phase data source with the following class:

org.apache.derby.jdbc.EmbeddedXADataSource

– Requires JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection

through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Does not require a valid authentication alias.

– Requires the following properties:

databaseName

The name of the database from which the data source obtains connections. If you do not

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby JDBC Provider 40

The Derby JDBC Provider 40 provides JDBC access to the Apache Derby database by using the

framework that is already embedded in the application server.

This provider:

– Is configurable only in nodes at version 7.0 and later.

– Does not support Version 4.0 data sources.

– Supports one phase data source with the following class:

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

– Requires the JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection

through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Requires the following properties:

databaseName

The name of the database from which the data source obtains connections. If you do not

Chapter 7. Data access resources 1513

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby JDBC Provider 40 (XA)

The Derby JDBC Provider 40 (XA) provides JDBC access to the Apache Derby database by using the

framework that is already embedded in the application server.

This provider:

– Is configurable only in nodes at version 7.0 and later.

– Does not support Version 4.0 data sources.

– Supports one phase data source with the following class:

org.apache.derby.jdbc.EmbeddedXADataSource40

– Requires the JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection

through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Requires the following properties:

databaseName

The name of the database from which the data source obtains connections. If you do not

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby Network Server using Derby Client

Use this provider to access only Apache Derby databases that run on the same node as the application

server.

This provider:

– Does not support Version 4.0 data sources.

– Is configurable only in nodes at version 6.1 and later

– Uses the following one phase data source for the Derby Network Server using Derby Client provider:

org.apache.derby.jdbc.ClientConnectionPoolDataSource

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName

The name of the database from which the data source obtains connections. If you do not

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

1514 Administering WebSphere applications

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby Network Server using Derby Client (XA)

Use this provider to access only Apache Derby databases that run on the same node as the application

server.

This provider:

– Does not support Version 4.0 data sources.

– Is configurable only in nodes at version 6.1 and later

– Uses the following XA data source for this Derby Network Server using Derby Client provider:

org.apache.derby.jdbc.ClientXADataSource

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires the DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName

The name of the database from which the data source obtains connections. If you do not

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby Network Server using Derby Client 40

Use this provider to access only Apache Derby databases that run on the same node as the application

server.

This provider:

– Is configurable only in nodes at version 7.0 and later

– Does not support Version 4.0 data sources.

– Uses the following one phase data source for the Derby Network Server using Derby Client provider:

org.apache.derby.jdbc.ClientConnectionPoolDataSource40

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName

The name of the database from which the data source obtains connections. If you do not

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

v Derby Network Server using Derby Client 40 (XA)

Chapter 7. Data access resources 1515

Use this provider to access only Apache Derby databases that run on the same node as the application

server.

This provider:

– Is configurable only in nodes at version 7.0 and later

– Does not support Version 4.0 data sources.

– Uses the following one phase data source for the Derby Network Server using Derby Client provider:

org.apache.derby.jdbc.ClientXADataSource40

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName

The name of the database from which the data source obtains connections. If you do not

specify a fully qualified path name, the application server uses the default location of

app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system

environments. An example for the database path name is:

If no database exists for the path name that you want to specify, append ;create=true to

the path name to create a database dynamically. For example:

c:\temp\sampleDB;create=true

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

“Configuring a data source using the administrative console” on page 1536
Application components use a data source to access connection instances to a relational database.

“Creating and configuring a JDBC provider and data source using the Java Management Extensions API”

on page 1556
If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

Related information

http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

Data source minimum required settings for DB2 Universal Database for iSeries:

These properties vary according to the database vendor requirements for JDBC driver implementations.

You must set the appropriate properties on every data source that you configure. These settings are for a

DB2 UDB data source.

 What type of configuration do you have?

v “DB2 UDB for iSeries with the application server for AIX, HP-UX, i5/OS, Linux, Solaris, or Windows” on

page 1517

1516 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

DB2 UDB for iSeries with the application server for AIX, HP-UX, i5/OS, Linux, Solaris, or Windows

You can configure the following types of providers:

v DB2 UDB for iSeries (Native)

v DB2 UDB for iSeries (Native XA)

v DB2 UDB for iSeries (Toolbox)

v DB2 UDB for iSeries (Toolbox XA)

v DB2 UDB for iSeries (Native)

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries.

This provider:

– Is for local DB2 connections on iSeries. It is not recommended for remote access.

– Supports the one-phase data source:

com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

– Requires the following JDBC driver files:

- db2_classes16.jar - for nodes that are running at Version 7.0 or later. The location of the jar file is

/QIBM/Proddata/java400/jdk6/lib/ext/db2_classes16.jar.

- db2_classes.jar - for nodes that are running at Version 6.1 or earlier. The location of the jar file is

/QIBM/ProdData/Java400/ext/db2_classes.jar.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias.

– Requires the following properties:

- databaseName - The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.

v DB2 UDB for iSeries (Native XA)

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries.

This provider:

– Is for local DB2 connections on iSeries. It is not recommended for remote access.

– Supports the following two-phase data source:

com.ibm.db2.jdbc.app.UDBXADataSource

– Requires the following JDBC driver files:

- db2_classes16.jar - for nodes that are running at Version 7.0 or later. The location of the jar file is

/QIBM/Proddata/java400/jdk6/lib/ext/db2_classes16.jar.

- db2_classes.jar - for nodes that are running at Version 6.1 or earlier. The location of the jar file is

/QIBM/ProdData/Java400/ext/db2_classes.jar.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias.

– Requires the following properties:

- databaseName - The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.

v DB2 UDB for iSeries (Toolbox)

This JDBC driver, also known as iSeries Toolbox driver for Java, is provided in the DB2 for iSeries

database server.

Chapter 7. Data access resources 1517

This provider:

– Is for remote DB2 connections on iSeries. Use this driver instead of the IBM Developer Kit for Java

JDBC Driver to access remote DB2 UDB for iSeries systems.

– Supports the following one-phase data source:

com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

– Requires the following JDBC driver files:

- jt400.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias if the application server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

– Requires the following properties:

- serverName - The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.

v DB2 UDB for iSeries (Toolbox XA)

This XA compliant JDBC driver, also known as iSeries Toolbox XA compliant driver for Java, is provided

in the DB2 for iSeries database server.

This provider:

– Is for remote DB2 connections on iSeries. Use this driver instead of the IBM Developer Kit for Java

JDBC Driver to access remote DB2 UDB for iSeries systems.

– Supports the following two-phase data source:

com.ibm.as400.access.AS400JDBCXADataSource

– Requires the following JDBC driver files:

- jt400.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias if the application server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

– Requires the following properties:

- serverName - The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.

1518 Administering WebSphere applications

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

“Configuring a data source using the administrative console” on page 1536
Application components use a data source to access connection instances to a relational database.

“Creating and configuring a JDBC provider and data source using the Java Management Extensions API”

on page 1556
If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

Related information

DB2 Universal Database for iSeries support pages

DB2 for iSeries product Web pages

Data source minimum required settings for Informix:

These properties vary according to the database vendor requirements for JDBC driver implementations.

You must set the appropriate properties on every data source that you configure. These settings are for

Informix data sources.

 You can configure the following types of providers:

v Informix Using IBM JCC Driver

v Informix Using IBM JCC Driver (XA)

v Informix Using IBM Universal JDBC Driver

v Informix Using IBM Universal JDBC Driver (XA)

v Informix Using IBM JCC Driver

The Informix Using IBM JCC Driver is a one-phase commit provider for Informix that uses the IBM Data

Server Driver for JDBC and SQLJ. The IBM Data Server Driver is JDBC 4.0 compliant and is the next

generation of the Universal JCC driver.

This provider:

– Is configurable in version 7.0 and later nodes.

– Supports the following one-phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

– Requires the following JDBC driver files and class path settings:

${INFORMIX_JCC_DRIVER_PATH}/db2jcc4.jar

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The TCP/IP address or host name for the DRDA server. The name of the Informix

instance on the server.

- portNumber - The TCP/IP port number where the DRDA server resides.

Chapter 7. Data access resources 1519

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm
http://www.ibm.com/servers/eserver/iseries/db2/

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

v Informix Using IBM JCC Driver (XA)

The Informix Using IBM JCC Driver (XA) is a two-phase commit provider for Informix that uses the IBM

Data Server Driver for JDBC and SQLJ. The IBM Data Server Driver is JDBC 4.0 compliant and is the

next generation of the Universal JCC driver.

This provider:

– Is configurable in version 7.0 and later nodes.

– Supports two phase data source:

com.ibm.db2.jcc.DB2XADataSource

– Requires JDBC driver files:

db2jcc4.jar

db2jcc_license_cu.jar

db2jcc_license_cisuz.jar

Note: If you plan to use SQLJ for queries, this provider also requires driver file ifxsqlj.jar.

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The TCP/IP address or host name for the DRDA server. The name of the Informix

instance on the server.

- portNumber - The TCP/IP port number where the DRDA server resides.

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

Note: You cannot use Informix XA data sources with ANSI databases if SQL statements are issued in

local transactions instead of global transactions. This scenario might occur within the application

code or within a component of Application Server such as scheduler. The following message

might be logged if you are experiencing this problem:

java.sql.SQLException: Already in transaction.

 at com.informix.util.IfxErrMsg.getSQLException(IfxErrMsg.java:398)

 at com.informix.jdbc.IfxSqli.a(IfxSqli.java:3247)

 at com.informix.jdbc.IfxSqli.E(IfxSqli.java:3556)

 at com.informix.jdbc.IfxSqli.dispatchMsg(IfxSqli.java:2382)

 at com.informix.jdbcx.IfxXASqli.receiveMessage(IfxXASqli.java:120)

 at com.informix.jdbc.IfxSqli.X(IfxSqli.java:7926)

 at com.informix.jdbc.IfxSqli.a(IfxSqli.java:854)

 at com.informix.jdbc.IfxSqli.executeCommand(IfxSqli.java:749)

 at com.informix.jdbc.IfxResultSet.b(IfxResultSet.java:293)

 at com.informix.jdbc.IfxStatement.c(IfxStatement.java:1269)

 at com.informix.jdbc.IfxStatement.b(IfxStatement.java:423)

 at com.informix.jdbc.IfxStatement.executeUpdate(IfxStatement.java:277)

 at com.informix.jdbc.IfxSqliConnect.setTransactionIsolation(IfxSqliConnect.java:2565)

To avoid this issue:

– Switch to a non-ANSI database.

– If the error is triggered by an application, update the application such that it always runs in a

global transaction.

v Informix Using IBM Universal JDBC Driver

The Informix JDBC Driver is a Type 4 JDBC driver that is JDBC 3.0 compliant and provides access to

the Informix database.

This provider:

1520 Administering WebSphere applications

– Supports the following one-phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

– Requires the following JDBC driver files:

db2jcc.jar

db2jcc_license_cu.jar

db2jcc_license_cisuz.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The TCP/IP address or host name for the DRDA server. The name of the Informix

instance on the server.

- portNumber - The TCP/IP port number where the DRDA server resides.

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

v Informix Using IBM Universal JDBC Driver (XA)

The Informix JDBC Driver (XA) is a Type 4 JDBC driver that is JDBC 3.0 compliant and provides

XA-compliant JDBC access to the Informix database.

This provider:

– Supports the following two-phase data source:

com.ibm.db2.jcc.DB2XADataSource

– Requires the following JDBC driver files:

db2jcc.jar

db2jcc_license_cu.jar

db2jcc_license_cisuz.jar

– Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The TCP/IP address or host name for the DRDA server. The name of the Informix

instance on the server.

- portNumber - The TCP/IP port number where the DRDA server resides.

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

Note: You cannot use Informix XA data sources with ANSI databases if SQL statements are issued in

local transactions instead of global transactions. This scenario might occur within the application

code or within a component of Application Server such as scheduler. The following message

might be logged if you are experiencing this problem:

java.sql.SQLException: Already in transaction.

 at com.informix.util.IfxErrMsg.getSQLException(IfxErrMsg.java:398)

 at com.informix.jdbc.IfxSqli.a(IfxSqli.java:3247)

 at com.informix.jdbc.IfxSqli.E(IfxSqli.java:3556)

 at com.informix.jdbc.IfxSqli.dispatchMsg(IfxSqli.java:2382)

 at com.informix.jdbcx.IfxXASqli.receiveMessage(IfxXASqli.java:120)

 at com.informix.jdbc.IfxSqli.X(IfxSqli.java:7926)

 at com.informix.jdbc.IfxSqli.a(IfxSqli.java:854)

 at com.informix.jdbc.IfxSqli.executeCommand(IfxSqli.java:749)

 at com.informix.jdbc.IfxResultSet.b(IfxResultSet.java:293)

 at com.informix.jdbc.IfxStatement.c(IfxStatement.java:1269)

 at com.informix.jdbc.IfxStatement.b(IfxStatement.java:423)

 at com.informix.jdbc.IfxStatement.executeUpdate(IfxStatement.java:277)

 at com.informix.jdbc.IfxSqliConnect.setTransactionIsolation(IfxSqliConnect.java:2565)

Chapter 7. Data access resources 1521

To avoid this issue:

– Switch to a non-ANSI database.

– If the error is triggered by an application, update the application such that it always runs in a

global transaction.

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

“Configuring a data source using the administrative console” on page 1536
Application components use a data source to access connection instances to a relational database.

“Creating and configuring a JDBC provider and data source using the Java Management Extensions API”

on page 1556
If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

Related information

IBM Informix product family Web pages

Data source minimum required settings for Microsoft SQL Server:

These properties vary according to the database vendor requirements for Java Database Connectivity

(JDBC) driver implementations. You must set the appropriate properties on every data source that you

configure. These settings are for Microsoft SQL Server data sources.

Note: If you use only the features of Microsoft SQL Server that have no impact on JDBC transactions,

you generally risk no exceptions by upgrading to a newer version.

The application server supports the SNAPSHOT and READ_COMMITTED_SNAPSHOT isolation levels in

Microsoft SQL Server. This chart describes the SNAPSHOT and READ_COMMITTED_SNAPSHOT

isolation levels for different types of providers:

 JDBC provider MS SQL Server feature Configuration consideration

Microsoft SQL Server

JDBC Driver

SNAPSHOT isolation level Set the isolation level constant by invoking the setTransactionIsolation method:

v conn.setTransactionIsolation

(com.microsoft.sqlserver.jdbc.SQLServerConnection.TRANSACTION_

SNAPSHOT)

v conn.setTransactionIsolation(value_of_constant)

READ_COMMITTED_SNAPSHOT

isolation level

This isolation level is an implementation of the Read committed isolation level.

The policy enforces optimistic locking for read operations with MS SQL Server

2005.

1. Configure the isolation level on the database

2. Invoke the setTransactionIsolation method with the

conn.setTransactionIsolation

(java.sql.Connection.TRANSACTION_READ_COMMITTED) attribute.

1522 Administering WebSphere applications

http://www.ibm.com/software/data/informix/

JDBC provider MS SQL Server feature Configuration consideration

DataDirect

ConnectJDBC type 4

driver for MS SQL

Server

SNAPSHOT isolation level This isolation level implements optimistic locking for transactions in which MS

SQL Server 2005 serializes the data.

Configure the ALLOW_SNAPSHOT_ISOLATION setting on the database, and

then set the isolation level in one of two ways:

v By isolation level constant. Invoke the setTransactionIsolation method with one

of two attributes:

– conn.setTransactionIsolation (com.ddtek.jdbc.extensions.

ExtConstants.TRANSACTION_SNAPSHOT)

– conn.setTransactionIsolation(16)

v By the custom data source property:

– Set the data source custom property snapshotSerializable to true.

READ_COMMITTED_SNAPSHOT

isolation level

This isolation level is an implementation of the Read committed isolation level.

The policy enforces optimistic locking for read operations with MS SQL Server

2005.

1. Configure the isolation level on the database

2. Invoke the setTransactionIsolation method with the

conn.setTransactionIsolation

(java.sql.Connection.TRANSACTION_READ_COMMITTED) attribute.

You can configure the following types of providers:

v Microsoft SQL Server JDBC Driver

v Microsoft SQL Server JDBC Driver (XA)

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server (XA)
v Microsoft SQL Server JDBC Driver

This provider:

– Supports the following data source:

com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource

– Requires the following Java archive (JAR) files:

- sqljdbc.jar
– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.MicrosoftSQLServerDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - specifies the name of the server in which Microsoft SQL Server resides. Example:

myserver.mydomain.com

- portNumber - specifies the TCP/IP port that Microsoft SQL Server uses for communication. Port

1433 is the default.

- databaseName - specifies the name of the database from which the data source obtains

connections. Example: Sample.
v Microsoft SQL Server JDBC Driver (XA)

This provider:

– Supports the following data source:

com.microsoft.sqlserver.jdbc.SQLServerXADataSource

– Requires the following Java archive (JAR) files:

- sqljdbc.jar
– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.MicrosoftSQLServerDataStoreHelper

– Requires the following properties:

- serverName - specifies the name of the server in which Microsoft SQL Server resides. Example:

myserver.mydomain.com

- portNumber - specifies the TCP/IP port that Microsoft SQL Server uses for communication. Port

1433 is the default.

Chapter 7. Data access resources 1523

- databaseName - specifies the name of the database from which the data source obtains

connections. Example: Sample.

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server

DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server is a Type 4 JDBC driver that provides

JDBC access to the Microsoft SQL Server database. Use this provider only with a Connect JDBC driver

that is purchased from DataDirect Technologies.

The JDBC provider:

– Supports the following data source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource

– Requires the following JDBC driver files:

- sqlserver.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - specifies the name of the server in which Microsoft SQL Server resides. Example:

myserver.mydomain.com

- portNumber - specifies the TCP/IP port that Microsoft SQL Server uses for communication. Port

1433 is the default.

- databaseName - specifies the name of the database from which the data source obtains

connections. Example: Sample.

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server (XA)

DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server (XA) is a Type 4 JDBC driver that

provides XA-compliant JDBC access to the Microsoft SQL Server database. Use this provider only with

a Connect JDBC driver that is purchased from DataDirect Technologies.

This provider:

– Supports the following data source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource

– Requires the following JDBC driver files:

- sqlserver.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - specifies the name of the server in which Microsoft SQL Server resides. Example:

myserver.mydomain.com

- portNumber - specifies the TCP/IP port that Microsoft SQL Server uses for communication. Port

1433 is the default.

- databaseName - specifies the name of the database from which the data source obtains

connections. Example: Sample.

1524 Administering WebSphere applications

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

“Configuring a data source using the administrative console” on page 1536
Application components use a data source to access connection instances to a relational database.

“Creating and configuring a JDBC provider and data source using the Java Management Extensions API”

on page 1556
If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

Related reference

Microsoft SQL Server 2005 JDBC Driver

Data source minimum required settings for Oracle:

These properties vary according to the database vendor requirements for JDBC driver implementations.

You must set the appropriate properties on every data source that you configure. These settings are for

Oracle data sources.

 You can configure the following types of providers:

v Oracle JDBC Driver

v Oracle JDBC Driver (XA)
v Oracle JDBC Driver

The Oracle JDBC Driver provides JDBC access to the Oracle database. This JDBC driver supports both

Type 2 JDBC access and Type 4 JDBC access.

This provider:

– Supports one-phase data source:

oracle.jdbc.pool.OracleConnectionPoolDataSource

– Requires the following JDBC driver files:

- ojdbc6.jar.

Note: Be aware of the following:

v Oracle does not support the use of ojdbc14.jar in an environment with the Java SE

Development Kit Version 6 or later.

v In mixed node environments, the data source wizard in the administrative console allows

you to choose a class path for ojdbc6.jar or ojdbc14.jar.

v For Oracle trace, use ojdbcversion_g.jar.
– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Note: You must use the Oracle11gDataStoreHelper with the ojdbc6.jar driver file, regardless of

whether you use an Oracle 11g or Oracle 10g database server.

– Requires a valid authentication alias.

– Requires properties:

URL The URL that indicates the database from which the data source obtains connections. For

example:

jdbc:oracle:thin:@myServer:1521:myDatabase

Chapter 7. Data access resources 1525

http://msdn.microsoft.com/data/jdbc

where myServer is the server name, 1521 is the port that the server uses for communication,

and myDatabase is the database name.
v Oracle JDBC Driver (XA)

The Oracle JDBC Driver (XA) provides XA-compliant JDBC access to the Oracle database. This JDBC

driver supports both Type 2 JDBC access and Type 4 JDBC access.

This provider:

– Supports two-phase data source:

oracle.jdbc.xa.client.OracleXADataSource

– Requires the following JDBC driver files:

- ojdbc6.jar.

Note: Be aware of the following notes regarding the use of these driver files:

v Oracle does not support the use of ojdbc14.jar in an environment with the Java SE

Development Kit Version 6 or later.

v In mixed node environments, the data source wizard in the administrative console allows

you to choose a class path for ojdbc6.jar or ojdbc14.jar.

v For Oracle trace, use ojdbcversion_g.jar.
– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Note: You must use the Oracle11gDataStoreHelper with the ojdbc6.jar driver file, regardless of

whether you use an Oracle 11g or Oracle 10g database server.

– Requires a valid authentication alias.

– Requires properties:

URL Indicates the database from which the data source obtains connections. For example:

jdbc:oracle:thin:@myServer:1521:myDatabase

where myServer is the server name, 1521 is the port that the server uses for communication,

and myDatabase is the database name.

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

“Configuring a JDBC provider using the administrative console” on page 1529

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

“Configuring a data source using the administrative console” on page 1536
Application components use a data source to access connection instances to a relational database.

“Creating and configuring a JDBC provider and data source using the Java Management Extensions API”

on page 1556
If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

Related reference

Oracle Technology Network - SQLJ/JDBC Download Page

Data source minimum required settings for Sybase:

These properties vary according to the database vendor requirements for JDBC driver implementations.

You must set the appropriate properties on every data source that you configure. These settings are for

Sybase data sources.

1526 Administering WebSphere applications

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

You can configure the following types of providers:

v Sybase JDBC 3 Driver

v Sybase JDBC 3 Driver (XA)

v Sybase JDBC 2 Driver

v Sybase JDBC 2 Driver (XA)

v Sybase JDBC 3 Driver

The Sybase JDBC 3 Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase

database.

This provider:

– Uses jConnect Version 6.05

– Supports one phase data source:

com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource

– Requires the following JDBC driver files:

jconn3.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The name of the database server. Example: myserver.mydomain.com.

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

- portNumber - The TCP/IP port number through which all communications to the server take

place. Example: 5000.

- connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

v Sybase JDBC 3 Driver (XA)

The Sybase JDBC 3 Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Sybase database.

This provider:

– Uses jConnect Version 6.05

– Supports two phase data source:

com.sybase.jdbc3.jdbc.SybXADataSource

– Requires JDBC driver files:

jconn3.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The name of the database server. Example: myserver.mydomain.com

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

- portNumber - The TCP/IP port number through which all communications to the server take

place. Example: 5000.

- connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

v Sybase JDBC 2 Driver

Chapter 7. Data access resources 1527

The Sybase JDBC 2 Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase

database.

This provider:

– Uses jConnect Version 5.5

– Supports one phase data source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

– Requires the following JDBC driver files:

jconn2.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The name of the database server. Example: myserver.mydomain.com.

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

- portNumber - The TCP/IP port number through which all communications to the server take

place. Example: 5000.

- connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

v Sybase JDBC 2 Driver (XA)

The Sybase JDBC 2 Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Sybase database.

This provider:

– Uses jConnect Version 5.5

– Supports two phase data source:

com.sybase.jdbc2.jdbc.SybXADataSource

– Requires JDBC driver files:

jconn2.jar

– Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

– Requires a valid authentication alias.

– Requires the following properties:

- serverName - The name of the database server. Example: myserver.mydomain.com

- databaseName - The name of the database from which the data source obtains connections.

Example: Sample.

- portNumber - The TCP/IP port number through which all communications to the server take

place. Example: 5000.

- connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

1528 Administering WebSphere applications

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

“Configuring a JDBC provider using the administrative console”

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

“Configuring a data source using the administrative console” on page 1536
Application components use a data source to access connection instances to a relational database.

“Creating and configuring a JDBC provider and data source using the Java Management Extensions API”

on page 1556
If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

Configuring a JDBC provider using the administrative console

To create connections between an application and a relational database, the application server uses the

driver implementation classes that are encapsulated by the JDBC provider.

Before you begin

Each JDBC provider is essentially an object that represents vendor-specific JDBC driver classes to the

application server, for establishing access to that particular vendor database. JDBC providers are

prerequisites for data sources, which supply applications with the physical connections to a database.

Consult the JDBC provider table to identify the appropriate JDBC provider for your database and

application requirements.

About this task

Configure at least one JDBC provider for each database server that you plan to use at a particular scope

within your application server environment.

 1. Open the administrative console.

 2. Click Resources → JDBC → JDBC Providers.

 3. Select the scope at which applications can use the JDBC provider. The scope that you select

becomes the scope of any data source that you associate with this provider. You can choose a cell,

node, cluster, or server. For more information on scope and how it can affect resources, see the

information center topic on administrative scope settings.

 4. Click New. This action causes the Create a new JDBC Provider wizard to launch.

 5. Use the first drop-down list to select the database type of the JDBC provider that you need to create.

Note: Select User-Defined for your database type if you encounter either of the following scenarios:

v You do not see your database type.

v You cannot select the JDBC provider type that you need in the next step.

The user-defined selection triggers the wizard panel to display your provider type as a

user-defined JDBC provider, and your implementation type as user-defined. Consult your

database documentation for the JDBC driver class files, data source properties, and so on that

are required for your user-defined provider. You must supply this information on the next two

panels:

v database class path

v database-specific properties

Chapter 7. Data access resources 1529

6. Select your JDBC provider type if it is displayed in the second drop-down list. Select Show

Deprecated to trigger the display of both current and deprecated providers. If you cannot find your

provider in this expanded list, then select User-Defined from the previous list of database types.

 7. From the third drop-down list, select the implementation type that is necessary for your application. If

your application does not require that connections support two-phase commit transactions, choose

Connection Pool Data Source. Choose XA Data Source, however, if your application requires

connections that support two-phase commit transactions. Applications that use this data source

configuration have the benefit of container-managed transaction recovery.

After you select an implementation type, the wizard fills the name and the description fields for your

JDBC provider. You can type different values for these fields; they exist for administrative purposes

only.

 8. Click Next to see the Enter database class path information wizard panel.

 9. In the Class path field, type the full path location of the database JDBC driver class files. Your class

path information becomes the value of the WebSphere environment variable that is displayed on this

panel, in the form of ${DATABASE_JDBC_DRIVER_PATH}. The application server uses the variable

to define your JDBC provider; this practice eliminates the need to specify static JDBC class paths for

individual applications. Remember that if you do not provide the full, correct JDBC driver class path

for the variable, your data source ultimately fails. If the field already displays a fully qualified class

path, you can accept that variable definition by completing the rest of this wizard panel and clicking

Next.

Note: The application server supports multiple versions of the selected JDBC driver for the

DataDirect ConnectJDBC type 4 driver for MS SQL Server. Each version of the JDBC driver

has a unique class path. Select the appropriate version of the JDBC driver so the class path is

populated correctly.

10. Use the Native library path field to specify additional class files that your JDBC driver might require

to function properly on your application server platform. Type the full directory path name of these

class files.

11. Click Next to see a summary of your JDBC provider settings.

12. Click Finish if you are satisfied with the JDBC provider configuration. You now see the JDBC provider

collection panel, which displays your new JDBC provider in a table along with other providers that are

configured for the same scope.

What to do next

The next step is to create a data source to associate with your JDBC provider. For detailed information,

see the information center topic on configuring a data source using the administrative console.

JDBC provider collection:

Use this page to view JDBC providers. The JDBC provider object encapsulates the specific JDBC driver

implementation class for the data sources that you define and associate with the provider.

 To view this administrative console page, click Resources > JDBC > JDBC providers .

Name:

Specifies a text identifier for this provider.

 For example, this field can be DB2 JDBC Provider (XA).

 Data type String

Scope:

1530 Administering WebSphere applications

Specifies the scope of the JDBC provider; if you use any scope other than the default of Node, the

provider might not be available in other scope contexts. Data sources that are created with this JDBC

provider inherit this scope.

Description:

Specifies a text string describing this provider.

 Data type String

JDBC provider settings:

Use this page to modify the settings for a JDBC provider.

 To view this administrative console page, click Resources → JDBC → JDBC providers → JDBC_provider.

Note: If you use this page to modify the class path or native library path of an existing JDBC provider:

After you apply and save the new settings, you must restart every application server within the

scope of that JDBC provider for the new configuration to work. Otherwise, you receive a data

source failure message.

Scope:

Specifies the scope of the JDBC provider; data sources that are created with this JDBC provider inherit

this scope.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a text description for the resource provider.

 Data type String

Class path:

Specifies a list of paths or JAR file names which together form the location for the resource provider

classes.

 For example:

v QIBM/ProdData/Java400/ext/db2_classes.jar for iSeries platforms.

Class path entries are separated by using the ENTER key and must not contain path separator characters

(such as ’;’ or ’:’). Class paths contain variable (symbolic) names which you can substitute using a variable

map. Check the driver installation notes for the specific required JAR file names.

 Data type String

Native Library Path:

Chapter 7. Data access resources 1531

Specifies a list of paths that forms the location for the resource provider native libraries.

 Native path entries are separated by using the ENTER key and must not contain path separator

characters (such as ’;’ or ’:’). Native paths can contain variable (symbolic) names which you can substitute

using a variable map.

 Data type String

Isolate this resource provider:

Specifies that this resource provider will be loaded in its own class loader. This allows different versions or

implementations of the same resource provider to be loaded in the same Java Virtual Machine. Give each

version of the resource provider a unique class path that is appropriate for that version or implementation.

Note: Be aware of the following:

v You cannot isolate a resource provider if you specify a native library path. The Application Server

will define a value for the native library path for some JDBC providers; this behavior is intended

to help you configure your provider when a native library path is necessary. If you do not require

the native library path, delete the value, and you will be able to select the option to isolate the

resource provider.

v If you are running a mixed cell environment, the application server will remove any isolated

JDBC providers from nodes that are running at versions earlier than 7.0 if the provider is scoped

for a version 7.0 cell, and you have not migrated the provider from an older release. If you want

to use isolated resources at the cell level, do not use the resources in nodes that are running at

versions earlier than 7.0. Define a resource at the node level, or avoid using the resource in

nodes that are earlier than version 7.0, because this will result in a ″Naming not found″ exception

when the application server attempts to perform a lookup on an isolated resource at the cell

level.

Implementation class name:

Specifies the Java class name of the JDBC driver implementation.

 This class is available in the driver file mentioned in the class path description above.

For example, com.ibm.db2.jdbc.app.UDBXADataSource for iSeries platforms.

Note: If you modify the implementation class name of the JDBC provider after you have created the

provider, you might disconnect the provider from the template used to create it. As a result, data

sources created from this JDBC provider do not have an associated template; you must manually

configure a working data source through setting custom properties.

 Data type String

JDBC provider summary:

JDBC providers are prerequisites for data sources, which supply applications with the physical connections

to a database.

1532 Administering WebSphere applications

Use these tables for quick reference on database-specific JDBC providers.

 Apache Derby

JDBC provider Transaction support Version and other considerations

Derby JDBC Provider One-phase v Does not support Version 4 data

sources

v Configurable only in nodes at

version 6.0.2 and later

v Not for use in clustered

environment: accessible from a

single JVM only

Derby JDBC Provider (XA) One and two-phase v Does not support Version 4 data

sources

v Configurable only in nodes at

version 6.0.2 and later

v Not for use in clustered

environment: accessible from a

single JVM only

Derby JDBC Provider 40 One-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

Derby JDBC Provider 40 (XA) One and two-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

Derby Network Server using Derby

Client

One-phase v Does not support Version 4.0 data

sources.

v Configurable only in nodes at

version 6.1 and later

v Can be used in clustered

environment: a database instance

can be accessed by multiple JVMs

v Only for use with Apache Derby

databases that run on the same

node as the application server

Derby Network Server using Derby

Client (XA)

One and two-phase v Does not support Version 4 data

sources

v Configurable only in nodes at

version 6.1 and later

v Can be used in clustered

environment: a database instance

can be accessed by multiple JVMs

v Only for use with Apache Derby

databases that run on the same

node as the application server

Derby Network Server using Derby

Client 40

One-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

Chapter 7. Data access resources 1533

Apache Derby

JDBC provider Transaction support Version and other considerations

Derby Network Server using Derby

Client 40 (XA)

One and two-phase v Configurable only in nodes at

version 7.0 and later

v Does not support Version 4 data

sources

 DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase v Configurable in nodes that are at

version 7.0 and later.

DB2 Using IBM JCC Driver (XA) One and two-phase v Configurable in nodes that are at

version 7.0 and later.

DB2 Universal JDBC Provider One-phase N/A

DB2 Universal JDBC Provider (XA) One and two-phase N/A

 DB2 UDB for iSeries

JDBC provider Transaction support Version and other considerations

DB2 UDB for iSeries (Native) One-phase Recommended when you run the

application server on iSeries.

DB2 UDB for iSeries (Native XA) One and two-phase Recommended when you run the

application server on iSeries.

DB2 UDB for iSeries (Toolbox) One-phase N/A

DB2 UDB for iSeries (Toolbox XA) One and two-phase N/A

 DB2 on z/OS

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase v Configurable in version 7.0 and

later nodes.

DB2 Using IBM JCC Driver (XA) One and two-phase v Configurable in nodes that are at

version 7.0 and later.

DB2 Universal JDBC Provider One-phase when connecting to the

application server that is on AIX,

HP-UX, Linux, Solaris, and Windows

systems

DB2 Universal JDBC Provider (XA) One and two-phase

 Informix

JDBC provider Transaction support Version and other considerations

Informix Using IBM JCC Driver One phase This provider is configurable in nodes

that are at version 7.0 and later.

Informix Using IBM JCC Driver (XA) One and two-phase This provider is configurable in nodes

that are at version 7.0 and later.

Informix JDBC Provider One-phase N/A

Informix JDBC Provider (XA) One and two-phase N/A

1534 Administering WebSphere applications

Microsoft SQL Server

JDBC provider Transaction support Version and other considerations

Microsoft SQL Server JDBC Driver One-phase N/A

Microsoft SQL Server JDBC Driver

(XA)

One and two-phase N/A

DataDirect ConnectJDBC Provider,

type 4 driver, for Microsoft SQL

Server

One-phase N/A

DataDirect ConnectJDBC Provider,

type 4 driver, for Microsoft SQL

Server (XA)

One and two-phase N/A

 Oracle

JDBC provider Transaction support Version and other considerations

Oracle JDBC Provider One-phase N/A

Oracle JDBC Provider (XA) One and two-phase N/A

 Sybase

JDBC provider Transaction support Version and other considerations

Sybase JDBC 3 Driver One-phase jConnect v6.05

Sybase JDBC 3 Driver (XA) One and two-phase jConnect v6.05

Sybase JDBC 2 Driver One-phase jConnect v5.5

Sybase JDBC 2 Driver (XA) One and two-phase jConnect v5.5

Configuring a JDBC provider for a clustered environment

Use these steps to define a data source on multiple nodes that comprise a cluster.

Before you begin

See Administrative console scope settings for more information about scope settings in general.

About this task

The cluster scope has precedence over the node and cell scopes. Create a JDBC provider for a cluster if

you want the associated data source to:

v Be available for all the members of this cluster to use

v Override any resource factories that have the same JNDI name that is defined within the cell scope

1. Open the administrative console.

2. Click Resources > JDBC > JDBC Providers.

3. From the scope drop-down list, select the cluster for which you are creating the JDBC provider. (This

scope becomes the scope of any data source that you associate with this provider.)

4. Click New. This action causes the Create a new JDBC Provider wizard to launch.

5. Complete the wizard, then click Finish. For details on using this wizard, see the article “Configuring a

JDBC provider using the administrative console” on page 1529.

6. Click Environment > WebSphere Variables in the administrative console.

Chapter 7. Data access resources 1535

7. For each node in the cluster, select the symbolic variable used in the class path of your JDBC

provider, and provide a value that is appropriate for the selected node. For example, if the class path

of your JDBC provider uses the symbolic variable ${DB2390_JDBC_DRIVER_PATH}, you might supply

the value /usr/lpp/db2 on one node and /usr/lpp/db2710 on another node, depending on where your

DB2 390 installation is located.

8. Click DB2_JDBC_DRIVER_PATH (this already exists by default). Here provide the path (in the value

field) where db2java.zip exists on the selected node.

9. Click Apply and save the changes.

Note: This variable must be defined on each node within the cluster.

What to do next

You are now ready to configure your data source. For guidance, refer to “Configuring a data source using

the administrative console.”

Configuring a data source using the administrative console

Application components use a data source to access connection instances to a relational database.

Before you begin

The application server supports two different versions of data source. Determine the data source for your

environment according to the enterprise bean and servlet specification levels that are the basis of your

applications:

v Data sources (WebSphere Application Server Version 4) are for use with the Enterprise JavaBeans

(EJB) 1.0 specification and the Java Servlet 2.2 specification.

v Data sources of the latest standard version are for use with applications that implement the more

advanced releases of these specifications.

About this task

When you create a data source, you associate it with a JDBC provider that is configured for access to a

specific vendor database. The application server requires both objects for your applications to make calls

to that particular database and receive data from it. The data source provides connection management

capabilities that physically make possible these exchanges between your applications and the database.

 1. Open the administrative console.

 2. Access the necessary console panel. Use one of the following paths:

v Click Resources → JDBC → Data sources.

v Click Resources → JDBC → Data sources (WebSphere Application Server Version 4)

v Click Resources → JDBC → JDBC providers → jdbc_provider → Data sources

v Click Resources → JDBC → JDBC providers → jdbc_provider → Data sources (WebSphere

Application Server Version 4).

 3. Select the scope at which applications can use the data source. You can choose a cell, node, cluster,

or server. For more information, see the topic on scope settings.

Note: From this point onward, the steps for creating WebSphere Application Server Version 4 data

sources differ from the steps for creating data sources of the latest standard version. To

configure a Version 4 data source:

v Click New to proceed to the console panel for defining required properties.

v On this properties panel specify values for the fields that are grouped under the heading

Configuration. The application server requires these properties to implement your JDBC

driver classes.

1536 Administering WebSphere applications

v Save your configuration by clicking OK. You are now finished with the primary data source

configuration tasks.

v Define other properties that your database vendor might require, or offer as options, for

using the JDBC driver. The application server calls them custom properties, and requires

that you set them on the data source. Begin by clicking the Custom Properties link that is

now displayed on the administrative console panel. Consult your database documentation to

learn about these required and optional properties.

 4. Click New. This action causes the Create a data source wizard to launch and display the Enter

basic data source information panel. The first field is the scope field, which is read-only. This field

displays your previous scope selection.

 5. Type a data source name in the Data source name field. This name identifies the data source for

administrative purposes only.

 6. Type a Java Naming and Directory Interface (JNDI) name in the JNDI name field. The application

server uses the JNDI name to bind resource references for an application to this data source. Follow

these requirements when you specify JNDI names:

v Do not assign duplicate JNDI names across different resource types, such as data sources versus

J2C connection factories or JMS connection factories.

v Do not assign duplicate JNDI names for multiple resources of the same type in the same scope.

For more information on JNDI, consult the topic on naming.

 7. Click Next to see the Select JDBC provider panel . The Select JDBC provider panel is skipped if

you do not have any JDBC providers that are configured at the current scope.

 8. Select an existing JDBC provider, or create a new provider.

v Select an existing JDBC provider.

a. Click Select an existing JDBC provider.

b. Select a JDBC driver from the drop-down list.

c. Click Next. You now see the panel entitled Enter database specific properties for the data

source.

v Create a new JDBC provider.

a. Click Create new JDBC provider.

b. Click Next to see the Create JDBC provider panel.

c. Use the first drop-down list to select the database type of the JDBC provider that you need to

create.

Note: Select User-Defined for your database type if you encounter either of the following

scenarios:

– You do not see your database type.

– You cannot select the JDBC provider type that you need in the next step.

The user-defined selection triggers the wizard panel to display your provider type as a

User-defined JDBC provider, and your implementation type as User-defined. Consult

your database documentation for the JDBC driver class files, data source properties,

and so on that are required for your user-defined provider. You must supply this

information on the next two wizard panels:

– database class path information

– database-specific properties

d. If the JDBC provider type is displayed in the second drop-down list, select your JDBC provider

type. Select Show Deprecated to trigger the display of both current and deprecated providers.

If you cannot find your provider in this expanded list, then select User-Defined from the

previous list of database types.

Chapter 7. Data access resources 1537

e. From the third drop-down list, select the implementation type that is necessary for your

application. If your application does not require that connections support two-phase commit

transactions, choose Connection Pool Data Source. Choose XA Data Source, however, if

your application requires connections that support two-phase commit transactions. Applications

that use this data source configuration have the benefit of container-managed transaction

recovery.

After you select an implementation type, the wizard fills the name and the description fields for

your JDBC provider. You can type different values for these fields; they exist for administrative

purposes only.

f. Click Next after you have defined your database type, provider type, and implementation type.

Now you see the wizard panel Enter database class path information.

g. In the class path field, type the full path location of the database JDBC driver class files. Your

class path information becomes the value of the WebSphere environment variable that is

displayed on this panel, in the form of ${DATABASE_JDBC_DRIVER_PATH}. The application

server uses the variable to define your JDBC provider; this practice eliminates the need to

specify static JDBC class paths for individual applications. Remember that if you do not provide

the full, correct JDBC driver class path for the variable, your data source ultimately fails. If the

field already displays a fully qualified class path, you can accept that variable definition by

completing the rest of this wizard panel and clicking Next.

h. Use the Native library path field to specify additional class files that your JDBC driver might

require to function properly on your application server platform. Type the full directory path

name of these class files.

i. Click Next. You now see the Enter database specific properties for the data source panel.

 9. Complete all of the fields on the Enter database specific properties for the data source panel.

v Click Use this data source in container managed persistence (CMP) if container managed

persistence (CMP) enterprise beans must access this data source.

v Any other property fields that are displayed on this wizard panel are specific to your database type.

Consult the article “Data source minimum required settings, by vendor” on page 1509 for

information on these property settings. The article addresses both current and deprecated JDBC

providers that are pre-defined in the application server.

Note: This wizard panel does not display additional property fields for data sources that

correspond with your user-defined JDBC providers. However, from the JDBC driver class

files that you installed, The application server can generally extract the necessary data

source property names. The application server defines them as data source custom

properties, displays them on a custom properties console panel, and assigns them default

values. Consult your database documentation about setting these properties and any other

requirements for your user-defined data source. After you create the data source, navigate

to the corresponding custom properties collection panel in the administrative console by

clicking Data sources → data_source → Custom properties. Review the property default

values and modify them if necessary.

The application server can only extract vendor-specific properties from the driver class files if you

install the files on the deployment manager node and configure their representative WebSphere

variables correctly. Otherwise, the product displays an informational message (as opposed to an

error message) that directs you to manually define the necessary properties as custom properties.

10. Optional: Configure the security aliases for the data source. You can select none for any of the

authentication methods, or choose one of the following types:

v Component-managed authentication alias - specifies an authentication alias to use when the

component resource reference res-auth value is Application. To define a new alias, navigate to

Related Items → J2EE Connector Architecture (J2C) authentication data entries. A

component-managed alias represents a combination of ID and password that is specified in an

application for data source authentication. Therefore, the alias that you set on the data source

must be identical to the alias in the application code.

1538 Administering WebSphere applications

a. Use the drop-down list to select an existing component-managed authentication alias.

b. To create a new alias, click the links that are provided. This action closes the data source

wizard and triggers the administrative console to display the J2C authentication data panel.

Click New to define a new alias. Click OK to save your settings and view the new alias on the

J2C authentication data panel. Restart the data source wizard by navigating back to the data

source collection panel, selecting the appropriate scope, and clicking New.

For more information on Java 2 Connector (J2C) security, see the topic on managing Java 2

Connector Architecture authentication data entries.

v Mapping-configuration alias - will be used only in the absence of a login configuration on the

component resource reference. The specification of a login configuration and the associated

properties on the component resource reference is the preferred way to define the authentication

strategy when the res-auth value is set to Container. If you specify the DefaultPrincipalMapping

login configuration, the associated property will be a JAAS - J2C authentication data entry alias.

v Container-managed authentication alias - will be used only in the absence of a login

configuration on the component resource reference. The specification of a login configuration and

the associated properties on the component resource reference determines the container-managed

authentication strategy when the res-auth value is set to Container.

Note: If you have defined security domains in the application server, you can click Browse... to

select an authentication alias for the resource that you are configuring. Security domains allow

you to isolate authentication aliases between servers. The tree view is useful in determining

the security domain to which an alias belongs, and the tree view can help you determine the

servers that will be able to access each authentication alias. The tree view is tailored for each

resource, so domains and aliases are hidden when you cannot use them.

11. Click Next to view the Summary panel, and review any information for the data source. If any

information is not correct, you can click Previous to go back and correct it.

12. Click Finish to save the configuration and exit the wizard. You now see the Data sources panel,

which displays your new configuration in a table along with other data sources that are configured for

the same scope.

What to do next

You can override the default values for some data source properties. You can also configure additional

properties that your database vendor might require or offers as options. Consult your database

documentation about these settings. The following topics in this information center inform you of how to

use the administrative console to assign the property values:

v “Connection pool settings” on page 1475

v “Tuning connection pools”

v “WebSphere Application Server data source properties” on page 1546

v “Java EE resource provider or connection factory custom properties collection” on page 1553

Tuning connection pools:

Using connection pools helps to both alleviate connection management overhead and decrease

development tasks for data access. Each time an application attempts to access a backend store (such as

a database), it requires resources to create, maintain, and release a connection to that datastore. To

mitigate the strain this process can place on overall application resources, the application server enables

administrators to establish a pool of backend connections that applications can share on an application

server. Connection pooling spreads the connection overhead across several user requests, thereby

conserving application resources for future requests.

Chapter 7. Data access resources 1539

About this task

Connection pooling can improve the response time of any application that requires connections, especially

Web-based applications. When a user makes a request over the Web to a resource, the resource

accesses a data source. Because users connect and disconnect frequently with applications on the

Internet, the application requests for data access can surge to considerable volume. Consequently, the

total overhead for a datastore can become high for Web-based applications quickly, and performance

deteriorates. When connection pooling capabilities are used, however, Web applications can realize

performance improvements of up to 20 times the normal results.

Note: Connection pooling is not supported in an application client. The application client calls the

database directly and does not go through a data source. If you want to use the getConnection()

request from the application client, configure the JDBC provider in the application client deployment

descriptors, using Rational Application Developer or an assembly tool. The connection is

established between application client and the database. Application clients do not have a

connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

v Prevent a connection deadlock. Deadlock can occur if the application requires more than one

concurrent connection per thread, and the database connection pool is not large enough for the number

of threads. Suppose each of the application threads requires two concurrent database connections and

the number of threads is equal to the maximum connection pool size. Deadlock can occur when both of

the following are true:

– Each thread has its first database connection, and all are in use.

– Each thread is waiting for a second database connection, and none would become available since all

threads are blocked.

To prevent the deadlock in this case, increase the maximum connections value for the database

connection pool by at least one. This will allow at least one of the waiting threads to obtain a second

database connection and avoid a deadlock scenario.

For general prevention of connection deadlock, code your applications to use only one connection per

thread. If you code the application to require C concurrent database connections per thread, the

connection pool must support at least the following number of connections, where T is the maximum

number of threads:

T * (C - 1) + 1

The connection pool settings are directly related to the number of connections that the database server

is configured to support. If you increase the maximum number of connections in the pool and the

corresponding settings in the database are not increased accordingly, the application might fail. The

resulting SQL exception errors would be displayed in the following location(s):

– the stderr.log file

v Disable connection pooling.

– For relational resource adapters (RRAs), add the disableWASConnectionPooling custom property for

your data sources.

1. Click JDBC > Data sources.

2. Click on the name of the data source that you want to configure.

3. Click Custom properties under the Additional Properties heading.

4. Click New.

5. Complete the required fields with the following information:

 Table 10. Custom property panel

Name Value

disableWASConnectionPooling true

– For other resource adapters, consult with the binding specifications for that resource adapter to

configure your applications to disable connection pooling.

1540 Administering WebSphere applications

1. Programmatically disable connection pooling through the resource adapter.

2. The application server leverages the following code to detect the

javax.resource.NotSupportedException exception and disable connection pooling:

_managedFactory.matchManagedConnections(s,subject,cri); // 169059 174269 }

 catch(javax.resource.NotSupportedException e){

v Enable deferred enlistment. In the application server environment, deferred enlistment refers to the

technique in which the application server waits until the connection is used before the connection is

enlisted in the application’s unit of work (UOW) scope.

Consider the following illustration of deferred enlistment:

– An application component that uses deferred enlistment calls the getConnection method from within

a global transaction.

– The application component does not immediately use the connection.

– When the application issues the call for initial use of the connection, the transaction manager

intercepts the call.

– The transaction manager enlists the XA resource for the connection and calls the XAResource.start

method.

– The connection manager associated with the XA resource sends the call to the database.

Given the same scenario, but the application component does not use deferred enlistment, the

component container immediately enlists the connection in the transaction. Thus the application server

incurs, for no purpose, an additional load of all of the overhead associated with that transaction. For XA

connections, this overhead includes the two phase commit (2PC) protocol to the resource manager.

Deferred enlistment offers better performance in the case where a connection is obtained, but not used,

within the UOW scope. The technique saves the cost of transaction participation until the UOW in which

participation must occur.

Check with your resource adapter provider if you need to know if the resource adapter provides this

functionality. The application server relational resource adapter automatically supports deferred

enlistment.

Incorporating deferred enlistment in your code:

The Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) Version 1.5 specification

calls the deferred enlistment technique lazy transaction enlistment optimization. This support comes

through a marker interface (LazyEnlistableManagedConnection) and a new method on the connection

manager (LazyEnlistableConnectionManager()):

package javax.resource.spi; import javax.resource.ResourceException; import

 javax.transaction.xa.Xid; interface LazyEnlistableConnectionManager { // application server void

 lazyEnlist(ManagedConnection) throws ResourceException; } interface LazyEnlistableManagedConnection { // resource adapter }

Disabling statement pooling:

Disable statement pooling performing Data Definition Language (DDL) operations, which might not be

compatible with statement pooling.

 About this task

DDL operations, such as dropping and recreating tables, are not compatible with statement pooling when

using the IBM Informix database. DDL operations invalidate the pooled statements or cause them to

produce unexpected results.

Complete the following steps to use the administrative console to disable statement pooling. Statement

pooling is disabled by specifying a value of zero for the statement cache size setting for your datasource.

1. From the administrative console, select Resources → JDBC → Data sources → datasource_name.

2. Under Additional properties, click WebSphere Application Server data source properties.

3. Enter a value of zero (0) in the Statement cache size field.

4. Click OK, and then click Save.

Chapter 7. Data access resources 1541

Data source collection:

Use this page to view configured data sources, which are the resources that provide connections to your

relational database.

 You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources

Note: If you are using the Enterprise JavaBean (EJB) 1.0 specification and the Java Servlet 2.2

specification, you must use the Data sources (WebSphere Application Server Version 4) console

page.

Name:

Specifies the display name of this data source.

 Click a data source name to edit the data source configuration settings.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for this data source.

 Data type String

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support

this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the appropriate classes.

Description:

Specifies a text description of the data source.

 Data type String

Category:

Specifies a string that you can use to classify or group a data source.

 Data type String

Data source settings:

Use this panel to edit the properties of a data source.

 You can access this administrative console page in one of two ways:

1542 Administering WebSphere applications

v Resources → JDBC → Data sources → data_source

v Resources → JDBC → JDBC providers → JDBC_provider → Data sources → data_source

Note: If your application uses an Enterprise JavaBean (EJB) 1.1 or a Java Servlet 2.2 module, use the

Data sources (WebSphere Application Server V4) → data_source console page.

Test connection:

Activates the test connection service for validating application connections to the data source.

 Before you click Test connection, set your data source properties and click Apply.

Scope:

Specifies the scope of the JDBC provider that supports this data source. Only applications that are

installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the driver implementation classes to support this data

source.

Name:

Specifies the display name for the data source.

 Valid characters for this name include letters and numbers, but NOT most of the special characters. For

example you can set this field to Test Data Source. But any name starting with a period (v) or containing

special characters (\ / , : ; ″ * ? < > | = + & % ’ ` @) is not a valid name.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name.

 Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI

provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a

data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the dump

name space tool.

 Data type String

Chapter 7. Data access resources 1543

Use this data source in container-managed persistence (CMP):

Specifies if this data source is used for container-managed persistence of enterprise beans.

 This option triggers creation of a CMP connection factory, which corresponds to this data source, for the

relational resource adapter.

 Data type Boolean

Default True (enabled)

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string you can use to classify or group the resource.

 Data type String

Data store helper class name:

Specifies the name of the DataStoreHelper implementation class that extends the capabilities of your

selected JDBC driver implementation class to perform database-specific functions.

 The application server provides a set of DataStoreHelper implementation classes for each of the JDBC

provider drivers it supports. These implementation classes are in the package

com.ibm.websphere.rsadapter. For example, if your JDBC provider is DB2, then your default

DataStoreHelper class is com.ibm.websphere.rsadapter.DB2DataStoreHelper. The administrative console

page you are viewing, however, might make multiple DataStoreHelper class names available to you in a

drop-down list; be sure to select the one required by your database configuration. Otherwise, your

application might not work correctly. If you want to use a DataStoreHelper other than those displayed in

the drop-down list, select Specify a user-defined DataStoreHelper, and type a fully qualified class name.

Refer to the information center for instructions on creating a custom DataStoreHelper class.

 Data type Drop-down list or string (if user-defined DataStoreHelper

is selected)

Component-managed authentication alias:

This alias is used for database authentication at run time.

 The Component-managed Authentication Alias is only used when the application resource reference is

using res-auth = Application.

If your database does not support user ID and password, then do not set the alias in the

component-managed authentication alias or container-managed authentication alias fields. Otherwise, you

see the warning message in the system log to indicate that the user and password are not valid

properties. This message is only a warning message; the data source is still created successfully.

If you do not set an alias (component-managed or otherwise), and your database requires the user ID and

password to get a connection, then you receive an exception during run time.

1544 Administering WebSphere applications

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

 Data type Drop-down list

Authentication alias for XA recovery:

This field is used to specify the authentication alias that should be used during XA recovery processing. If

this alias name is changed after a server failure, the subsequent XA recovery processing will use the

original setting that was in effect before the failure.

 If the resource adapter does not support XA transactions, then this field will not be displayed. The default

value will come from the selected alias for application authentication (if specified).

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

 Data type Drop-down list

Container-managed authentication alias:

Specifies authentication data, which is a JAAS - J2C authentication data entry, for container-managed

signon to the resource.

 Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for J2EE Connector Architecture (J2C)

authentication data entries.

2. Click J2EE Connector Architecture (J2C) authentication data entries.

3. Click New.

4. Define an alias.

5. Click OK. The console now displays an alias collection page. This page contains a table that lists all of

your configured aliases. Before the table, this page also displays the name of your connection factory.

6. Click the name of your J2C connection factory. You now see the configuration page for the connection

factory.

7. Select the new alias in the Container-managed authentication alias list.

8. Click Apply.

If you have defined security domains in the application server, you can click Browse... to select an

authentication alias for the resource that you are configuring. Security domains allow you to isolate

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

Chapter 7. Data access resources 1545

Data type Drop-down list

Mapping-configuration alias:

Specifies the authentication alias for the Java Authentication and Authorization Service (JAAS) mapping

configuration that is used by this connection factory.

 Click Security → Global security. In the Authentication section, click Java Authentication and

Authorization Service → Application logins, and select an alias from the table.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the user ID and

password. You can define and use other mapping configurations.

 Data type Drop-down list

Common and required data source properties: These properties are specific to the data source that

corresponds to your selected JDBC provider. They are either required by the data source, or are especially

useful for the data source. You can find a complete list of the properties required for all supported JDBC

providers in the information center.

WebSphere Application Server data source properties:

Use this page to set advanced data source properties in the application server. These properties activate

and configure services that the application server applies to data sources to customize connections within

an application server. These properties do not affect connections within the database.

 To access this administrative console page complete one of the following paths:

v Resources → JDBC → Data sources → data_source → WebSphere Application Server data source

properties

v Resources → JDBC → JDBC providers → JDBC_provider → Data sources → data_source →

WebSphere Application Server data source properties

v Applications → Application Types → Websphere enterprise applications → application_name →

Application scoped resources → data_source → WebSphere Application Server data source

properties.

Statement cache size:

Specifies the number of statements that can be cached per connection. The application server caches a

statement after you close that statement.

 The WebSphere Application Server data source optimizes the processing of prepared statements and

callable statements by caching those statements that are not used in an active connection. Both statement

types help maximize the performance of transactions between your application and datastore.

v A prepared statement is a precompiled SQL statement that is stored in a PreparedStatement object.

The application server uses this object to run the SQL statement multiple times, as required by your

application run time, with values that are determined by the run time.

v A callable statement is an SQL statement that contains a call to a stored procedure, which is a series of

precompiled statements that perform a task and return a result. The statement is stored in the

CallableStatement object. The application server uses this object to run a stored procedure multiple

times, as required by your application run time, with values that are determined by the run time.

If the statement cache is not large enough, useful entries are discarded to make room for new entries. To

determine the highest value for your cache size to avoid any cache discards, add the number of uniquely

1546 Administering WebSphere applications

prepared statements and callable statements (as determined by the SQL string, concurrency, and the

scroll type) for each application that uses this data source on a particular server. This value is the

maximum number of possible statements that can be cached on a given connection over the life of the

server. Setting the cache size to this value means you never have cache discards. In general, configure a

larger cache for applications with a greater number of statements.

You can also use the Tivoli Performance Viewer to minimize cache discards. Use a standard workload that

represents a typical number of incoming client requests, use a fixed number of iterations, and use a

standard set of configuration settings.

Note: The higher the statement cache, the more system resources are delayed. Therefore, if you set the

number too high, then you might lack resources because your system cannot open multiple

prepared statements.

If there is a particular statement that you do not want the application server to cache, configure the

statement’s poolability hint to false. The application server does not cache a statement if the poolability

hint is set to false. The application specifies the statement poolability hints at run time.

In test applications, tuning the statement cache improves throughput from 10% to 20%. However, because

of potential resource limitations, this might not always be possible.

 Data type Integer

Default Default values depend on the database. Typically, this

value is 10. For Informix versions 7.3, 9.2, 9.3, and 9.4,

without the respective latest fixes, the default value must

be 0. A default value of 0 means that there is no cache

statement.

Enable multithreaded access detection: When you check this option, the application server detects the

existence of access by multiple threads.

Enable database reauthentication: Indicates that the exact match on connections retrieved out of the

application server’s connection pool (the connection pool search criteria does not include a user name and

password) cannot exist. Instead, the connection reauthentication is done in the

doConnectionSetupPerTransaction() of the DataStoreHelper class. The application server does not provide

a connection reauthentication implementation at run time. Therefore, when you check this box, you must

extend the DataStoreHelper class to provide implementation of the doConnectionSetupPerTransaction()

method where the reauthentication occurs. If you do not complete this process, the application server

might return unusable connections. For more information, refer to the API documentation for the

com.ibm.websphere.rsadapter.DataStoreHelper#doConnectionSetupPerTransaction method.

Connection reauthentication can help improve performance by reducing the overhead of opening and

closing connections, particularly for applications that frequently request connections with different user

names and passwords.

Note: You cannot enable database reauthentication if you select TrustedConnectionMapping for the

mapping configuration alias.

Enable JMS one-phase optimization support: When you check this option, the application server allows

Java messaging service (JMS) to get optimized connections from this data source. This property prevents

Java database connectivity (JDBC) applications from sharing connections with container-managed

persistence (CMP) applications.

Chapter 7. Data access resources 1547

Manage cached handles: Specifies whether the container tracks cached handles, which are connection

handles that an application component holds active across transaction and method boundaries. You can

use this property to debug connection problems, but tracking handles can cause large performance

overhead during run time.

If the Manage cached handles property is selected in the administrative console, and you deselect it, the

field will no longer be visible for resources that are at Version 7.0 of the application server. This field is

only displayed if the manageCachedHandles property is set to true in the resources.xml file. To make the

field available, change the value for the manageCachedHandles entry from false to true in the

resources.xml file, or enter the following Jython command from the wsadmin tool:

AdminConfig.modify(myDataSourceVariable, ’[[manageCachedHandles "true"]]’)

Note: For any resources that are running at Version 6.x of the application server, the Manage cached

handles property will always be visible. For example, if you have a node that is at Version 6.1, the

entry in the resources.xml file will not affect how the field is displayed in the administrative console.

For an alternative method of debugging problems, use the multi-thread and cross-component diagnostic

alerts to detect violations in the Java Connectivity Architecture (JCA) programming model. To enable these

alerts, select those options from Servers → Application servers → application_server → Performance →

Performance and Diagnostic Advisor Configuration → Performance and Diagnostic Advice

configuration panel. These alerts force the connection manager to manage cached handles, detect the

connection conditions, and send alerts.

Note: For these alerts to be active you must also select Enable Performance and Diagnostic Advisor

Framework (Runtime Performance Advisor) from the Servers → Application servers →

application_server → Performance → Performance and Diagnostic Advisor Configuration

panel.

Log missing transaction context: Specifies whether the container issues an entry to the activity log when

an application obtains a connection without a transaction context. These are exceptions to the Java

Platform, Enterprise Edition (Java EE) programming model connection requirements.

Non-transactional data source: Specifies that the application server will not enlist the connections from

this data source in global or local transactions. Applications must explicitly call setAutoCommit(false) on

the connection if they want to start a local transaction on the connection, and they must commit or rollback

the transaction that they started.

Note: Set this property to true in rare circumstances, but the Java Persistence API (JPA) requires both

JTA and non-JTA data sources.

Use WebSphere Application Server exception checking model:

Specifies that the application server uses the error mapping facility that is defined in the data store helper

to identify errors. The application server does not replace exceptions that are thrown by the JDBC driver

with exceptions that are defined in the error map of the data store helper.

Use WebSphere Application Server exception mapping model:

Specifies that the application server uses the error mapping facility that is defined in the data store helper

to identify errors, and the application server will replace the exceptions that are thrown by the JDBC driver

with exceptions that are defined in the error map of the data store helper.

Note: This error detection model functions with JDBC Version 3.0 and earlier.

Validate new connections: Specifies whether the connection manager tests newly created connections to

the database.

1548 Administering WebSphere applications

Number of retries: Specifies the number of times you want to retry making the initial connection to a

database after the first pretest operation fails.

Retry interval: If you select Validate new connections, this option specifies the length of time, in

seconds, that the application server waits before retrying to make a connection if the initial attempt fails.

Validate existing pooled connections: Specifies whether the connection manager tests the validity of

pooled connections before returning them to applications.

Retry interval: If you select Pretest existing pooled connections, this option specifies the length of

time, in seconds, to allot to the JDBC driver for validating a connection.

Validation by JDBC driver:

Specifies that the application server will use the JDBC driver to validate the connections. The JDBC

provider must support JDBC 4.0 or greater to use this option.

Timeout: Specifies the timeout in seconds for testing connections (either new or pooled by the application

server) to the database. If the timeout expires before validating then the connection is considered

unusable. If retries are configured, the full value of the timeout applies to each retry. A value of 0 indicates

the JDBC driver does not impose a timeout on validation attempts.

Note: This option is only available for JDBC drivers that are JDBC 4.0 compliant.

Validation by SQL string (deprecated):

Specifies an SQL statement that the application server sends to the database to test the connection. Use

a query that is likely to have low impact on performance.

Optimize for get/use/close/connection pattern with heterogenous pooling:

Specifies that the application server will use the get/use/close/connection pattern. This allows connection

pooling for the application server to share connections that are in the same transaction. This optimization

pattern allows one connection to be shared during a transaction even when connections use different

connection properties.

 The heterogeneous pooling feature allows you to extend the data source definition so that you can specify

different custom properties or allow applications to override non-core properties for the data source.

Note: This field is only available for DB2 data sources.

Retry interval for client reroute: Specifies the amount of time, in seconds, between retries for automatic

client reroute.

Note: This field is only available for DB2 data sources.

Maximum retries for client reroute: Specifies the maximum number of connection retries that are

attempted by the automatic client reroute function if the primary connection to the server fails. The

property is only used when Retry interval for client reroute is set.

Note: This field is only available for DB2 data sources.

Alternate server names: Specifies the list of alternate server name or names for the DB2 server. If more

than one alternate server name is specified, the names must be separated by commas. For example:

host1,host2

Note: This field is only available for DB2 data sources.

Chapter 7. Data access resources 1549

Alternate port numbers: Specifies the list of alternate server port or ports for the DB2 server. If more than

one alternate server port is specified, the ports must be separated by commas. For example:

5000,50001

Note: This field is only available for DB2 data sources.

Client reroute server list JNDI name: Specifies the JNDI name that is used to bind the DB2 client reroute

server list into the JNDI name space. The DB2 database server will use this name to look up the alternate

server name list when the alternate server information is not already in memory. This option is not

supported for type 2 data sources.

Note: This field is only available for DB2 data sources.

Unbind client reroute list from JNDI: Used with test connection only. When set to true, the Client reroute

server list JNDI name will be unbound from the JNDI name space after a test connection is issued.

Note: This field is only available for DB2 data sources.

Data source (WebSphere Application Server V4) collection:

Use this page to view the settings of a WebSphere Application Server Version 4.0 data source.

 These data sources use the WebSphere Application Server Version 4.0 Connection Manager architecture.

All EJB 1.1 modules must use a WebSphere Application Server Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC> Data sources (WebSphere Application Server V4)

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere Application

Server V4)

Name:

Specifies a text identifier of the data source.

 Data type String

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source.

 Data type String

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support

this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the appropriate classes.

Description:

Specifies a text description of the data source.

1550 Administering WebSphere applications

Data type String

Category:

Specifies a text string that you can use to classify or group the data source.

 Data type String

Data source (WebSphere Application Server Version 4) settings:

Use this page to create a Version 4.0 style data source. This data source uses the WebSphere Application

Server Version 4.0 connection manager architecture. All of your EJB1.x modules must use this data

source.

 You can access this administrative console page in one of two ways:

v Resources > JDBC> Data sources (WebSphere Application Server V4) > data_source

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere Application

Server V4) > data_source

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support

this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that WebSphere Application Server uses for this data source.

 The list shows all of the existing JDBC providers that are defined at the relevant scope. Select one from

the list if you want to use an existing JDBC provider as Provider.

Create new provider:

Provides the option of configuring a new JDBC provider for the new data source.

 Create New Provider is displayed only when you create, rather than edit, a data source.

Clicking Create New Provider causes the Create a new JDBC provider wizard to launch. Complete all of

the wizard panels, then click Finish. The administrative console now displays the Data sources

(WebSphere Application Server V4) configuration page again, where you see the new JDBC provider

name in the Provider field.

Name:

Specifies the display name for the resource.

 For example, you can set this field to Test Data Source.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name.

Chapter 7. Data access resources 1551

Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI

provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a

data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the dump

name space tool.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

 Data type String

Database name:

Specifies the name of the database that this data source accesses.

 For example, you can call the database SAMPLE.

 Data type String

Default user ID:

Specifies the user name to use for connecting to the database.

 For example, you can use the ID db2admin.

 Data type String

Default password:

Specifies the password used for connecting to the database.

1552 Administering WebSphere applications

For example, you can use the password db2admin.

 Data type String

Java EE resource provider or connection factory custom properties collection:

Use this page to view the custom properties of a Java Platform, Enterprise Edition (Java EE) resource

provider or connection factory.

 You can configure custom property collections for numerous resource types. According to the resource

type with which a collection is associated, your ability to add, delete, and modify individual properties and

settings varies. Begin the configuration process by clicking on the Required field to sort those column

values in descending order. All of the required (true) values are then sorted at the beginning of the page.

Be sure to set all required properties.

Note: The following list displays three custom properties that are deprecated in WebSphere Application

Server Version 6.10. The product now offers these properties as pre-configured options, which are

the replacement properties in the following list. To avoid runtime error messages, permanently

disable the original custom properties by deleting them from the table on this administrative console

page.

v dbFailOverEnabled -- replaced by Pretest new connection

v validateNewConnection -- replaced by Number of retries

v connRetriesDuringDBFailover -- replaced by Retry interval

To set the replacement properties, click Data sources > my_data_source > WebSphere

Application Server data source properties.

Name:

Specifies the property name.

 You must ensure that the resource provider has the setting for this name.

 Data type String

Value:

Specifies the property value.

 Data type Variable; see “Custom property settings” on page 1554 for

more information.

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Required:

Specifies whether this property is required for the resource provider.

 Data type Boolean or Check box

Chapter 7. Data access resources 1553

Custom property settings:

Use this page to specify the attributes of custom properties that might be required for resource providers

and resource factories.

 According to the resource type with which a property collection is associated, your ability to modify

individual property settings varies. Therefore, consider the following descriptions as a general reference for

custom property settings. (The administrative console page that you are using to configure your custom

property may only allow you to modify a subset of the following settings.)

Note: The following list displays three custom properties that are deprecated in WebSphere Application

Server Version 6.10. The product now offers these properties as pre-configured options, which are

the replacement properties in the following list.

v dbFailOverEnabled -- replaced by Pretest new connection

v validateNewConnection -- replaced by Number of retries

v connRetriesDuringDBFailover -- replaced by Retry interval

Set the replacement properties on the WebSphere Application Server data source properties

console page. Click Data sources > my_data_source > WebSphere Application Server data

source properties.

Required:

Specifies properties that are required for this resource.

 Data type Check box

Name:

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

 Data type String

Value:

Specifies the value associated with this property in this property set.

 Data type Determined by the Type setting, which you select from a

drop-down list. If the type is java.lang.String then the

value is of type String; if the type is java.lang.Integer,

then the value is of type Integer; and so on.

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Type:

Specifies the fully qualified Java data type of this property .

 There are specific types that are valid:

v java.lang.Boolean

1554 Administering WebSphere applications

v java.lang.String

v java.lang.Integer

v java.lang.Double

v java.lang.Byte

v java.lang.Short

v java.lang.Long

v java.lang.Float

 Data type Drop-down list

Custom Properties (Version 4) collection:

Use this page to view properties for a WebSphere Application Server Version 4.0 data source.

 You can access this administrative console page in one of two ways:

v Resources > JDBC > Data Sources (WebSphere Application Server V4) > data_source > Custom

Properties

v Resources > JDBC > JDBC Providers > JDBC_provider > Data Sources (WebSphere Application

Server V4) > data_source > Custom Properties

Name:

Specifies the name of the custom property

 Data type String

Value:

Specifies the value of the custom property.

 Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Required:

Specifies properties that are required for this resource.

 Data type String

Custom property (Version 4) settings:

Use this page to add properties for a WebSphere Application Server Version 4.0 data source.

 To view this administrative console page, click Resources > JDBC > JDBC Providers> JDBC_provider >

Data Sources (WebSphere Application Server V4) > data_source > Custom Properties >

custom_property.

Required:

Chapter 7. Data access resources 1555

Specifies properties that are required for this resource.

 Data type Check box

Name:

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

 Data type String

Value:

Specifies the value associated with this property in this property set.

 Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Type:

Specifies the fully qualified Java type of this property (java.lang.Integer, java.lang.Byte).

 Data type String

Creating and configuring a JDBC provider and data source using the Java

Management Extensions API

If your application requires access to a JDBC connection pool from a Java 2 Platform, Enterprise Edition

(J2EE) 1.3 or 1.4, or Java Platform Enterprise Edition (Java EE) level WebSphere Application Server

component, you can create the necessary JDBC provider and data source objects using the Java

Management Extensions (JMX) API exclusively.

About this task

Alternatively, you can use the JMX API in combination with the WSadmin - scripting tool.

Note: Use the JMX API to create only data sources for which the product does not provide a template.

For every JDBC provider WebSphere Application Server supports, the product provides a

corresponding data source template. You can create supported providers and associated data

sources through the administrative console, or by using the WSadmin - scripting tool. For a

complete list of supported JDBC providers (and therefore a complete list of data sources that must

be created using a template), refer to the topic “Data source minimum required settings, by vendor”

on page 1509.

These steps outline the general procedure for using the JMX API to create a JDBC provider and data

source, on WebSphere Application Server running on Windows platforms.

1. Put the appropriate JAR files in your classpath. You need thecom.ibm.ws.admin.client_6.1.0.jar JAR file

in your classpath.

The following command is an example for setting your classpath:

set classpath=%classpath%;install_root\runtime\com.ibm.ws.admin.client_6.1.0.jar

1556 Administering WebSphere applications

2. Look up the host and get an administration client handle.

3. Get a configuration service handle.

4. Update the resource.xml file using the configuration service as desired.

a. Add a JDBC provider.

b. Add the data source.

c. Add the connection factory. This step is necessary only for data sources that must support

container-managed persistence.

5. Reload the resource.xml file to bind the newly created data source into the JNDI namespace. Perform

this step if you want to use the newly created data source right away without restarting the application

server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Put together the signature and parameters for the call.

c. Invoke the reload() call.

6. Attention: If you modify the class path or native library path of an existing JDBC provider, you must

restart every application server within the scope of that JDBC provider for the new configuration to

work. Otherwise, you receive a data source failure message.

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

a CMP bean:

This code sample demonstrates how to configure a JDBC provider and data source, designate the data

source for use with CMP beans, set an authorization alias for the data source, and reload the Mbean to

make configuration changes.

 //

// "This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines

// Corp., 2008

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node scoped resource.xml entry for a DB2 XA data source.

 * The data source created is for CMP use.

 *

 * Set the following for the program to run:

 * set classpath=%classpath%;install_root\runtime\com.ibm.ws.admin.client_6.1.0.jar

 * install_root/lib/bootstrap.jar;install_root/lib/j2ee.jar;

 * install_root/plugins/com.ibm.ws.bootstrap_6.1.0.jar;install_root/plugins/com.ibm.ws.emf_2.1.0.jar;

 * install_root/plugins/com.ibm.ws.runtime_6.1.0.jar;install_root/plugins/org.eclipse.emf.common_2.2.1.v200609210005.jar;

 * install_root/plugins/org.eclipse.emf.ecore_2.2.1.v200609210005.jar;

 */

public class CreateDataSourceCMP {

 String dsName = "markSection"; // the display name for the data source,

 // the JNDI name, and the connection factory name

 String dbName = "SECTION"; // the database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // user ID

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the database driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceCMP cds = new CreateDataSourceCMP();

Chapter 7. Data access resources 1557

try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the data source using JMX.

 * The data source created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted or

 * an application is started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 // Specify the SOAP_CONNECTOR_ADDRESS port of your server configuration.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, +

 AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = +

 AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy

 configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null,"Node",

 null);

 ObjectName[] matches = configService.queryConfigObjects(session, null,

 node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null,

 "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1,

 null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName",

 "com.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant

 + XA Driver"));

 //create the provider

 ObjectName jdbcProv = configService.createConfigData(session,node1,

 "JDBCProvider", "JDBCProvider",provAttrs);

 // now plug in the classpath

 configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

 // Search for RRA so we can link it to the data source

 ObjectName rra = null;

 ObjectName j2cra = ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, j2cra, null);

 for (int i = 0; i < matches.length; i++) {

 if (matches[i].getKeyProperty("_Websphere_Config_Data_Display_Name").equals("WebSphere Relational

 Resource Adapter")) {

 rra = matches[i];

 break;

 }

 }

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

 "com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

1558 Administering WebSphere applications

dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra));

 // this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC data source for

 + mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the data source

 System.out.println(" ** Creating data source");

 ObjectName dataSource =

 configService.createConfigData(session,jdbcProv,"DataSource",

 "DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =

 configService.createConfigData(session,dataSource,"propertySet",

 "",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,

 "resourceProperties",propAttrs1,-1);

 // Create the corresponding J2CResourceAdapter Connection Factory object.

 ObjectName jra = ConfigServiceHelper.createObjectName(null,

 "J2CResourceAdapter",null);

 // Get all the J2CResourceAdapter, and add the data source

 System.out.println(" ** Get all J2CResourceAdapters");

 ObjectName[] jras = configService.queryConfigObjects(session, node1,

 jra, null);

 int i=0;

 for (;i< jras.length;i++) {

 System.out.println(ConfigServiceHelper.getConfigDataType(jras[i])

 + " " + i + " = "

 + jras[i].getKeyProperty(SystemAttributes.

 + _WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 + "\nFrom scope ="

 + jras[i].getKeyProperty(SystemAttributes.

 + _WEBSPHERE_CONFIG_DATA_ID));

 // quit on the first builtin_rra

 if (jras[i].getKeyProperty(SystemAttributes.

 + _WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 .equals("WebSphere Relational Resource Adapter")) {

 break;

 }

 }

 if (i >= jras.length) {

 System.out.println("Did not find builtin_rra; the J2CResourceAdapter object is

 + creating connection factory anyway");

 break;

 } else {

 System.out.println("Found builtin_rra J2CResourceAdapter object at index

 + " + i + " creating connection factory");

 }

 // Prepare the attribute list

 AttributeList cfAttrs = new AttributeList();

 cfAttrs.add(new Attribute("name", dsName + "_CF"));

 cfAttrs.add(new Attribute("authMechanismPreference","BASIC_PASSWORD"));

 cfAttrs.add(new Attribute("authDataAlias",authDataAlias));

 cfAttrs.add(new Attribute("cmpDatasource", dataSource));

 // Make the link to data source’s xmi:id

 ObjectName cf = configService.createConfigData(session,jras[i],

 "CMPConnectorFactory", "CMPConnectorFactory",cfAttrs);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " + authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null,

 "Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session,

 null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

Chapter 7. Data access resources 1559

authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias for data source"));

 //create it

 ObjectName authDataEntry = configService.createConfigData(session,security,"authDataEntries",

 "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {}, new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

BMP beans, session beans, or servlets:

This code sample demonstrates how to configure a JDBC provider and data source, set an authorization

alias for the data source, and reload the Mbean to make configuration changes.

// "This program may be used, run, copied, modified and distributed without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

1560 Administering WebSphere applications

/**

 * Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for BMP use.

 *

 * Set the following:

 * set classpath=%classpath%;install_root/lib/bootstrap.jar;install_root/lib/j2ee.jar;

 * install_root/plugins/com.ibm.ws.bootstrap_6.1.0.jar;install_root/plugins/com.ibm.ws.emf_2.1.0.jar;

 * install_root/plugins/com.ibm.ws.runtime_6.1.0.jar;install_root/plugins/org.eclipse.emf.common_2.2.1.v200609210005.jar;

 * install_root/plugins/org.eclipse.emf.ecore_2.2.1.v200609210005.jar;install_root/runtime/com.ibm.ws.admin.client_6.1.0.jar;

 */

public class CreateDataSourceBMP {

 String dsName = "markSection"; // the display name of the datasource

 // this is also the JNDI name and the connection factory

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // user ID

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the database driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceBMP cds = new CreateDataSourceBMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

 *

 * The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted or an

 * application is started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 // Specify the SOAP_CONNECTOR_ADDRESS port of your server configuration.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node-scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null, "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session, null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null, "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName", "com.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant XA Driver"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,"JDBCProvider",

Chapter 7. Data access resources 1561

"JDBCProvider", provAttrs);

 // now add the classpath

 configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

 // Search for RRA so we can link it to the datasource

 ObjectName rra = null;

 ObjectName j2cra = ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, j2cra, null);

 for (int i = 0; i < matches.length; i++) {

 if (matches[i].getKeyProperty("_Websphere_Config_Data_Display_Name").equals("WebSphere Relational

 Resource Adapter")) {

 rra = matches[i];

 break;

 }

 }

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname","com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra));

 // Make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the data source

 System.out.println(" ** Creating datasource");

 ObjectName dataSource = configService.createConfigData(session,jdbcProv,"DataSource",

 "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =configService.createConfigData(session,dataSource,

 "propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,"resourceProperties",propAttrs1,-1);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " + authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null, "Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session, null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias for datasource"));

 //create it

 ObjectName authDataEntry = configService.createConfigData(session,security,"authDataEntries",

 "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

1562 Administering WebSphere applications

System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {}, new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Example: Creating a JDBC provider and data source using Java Management Extensions API and

the scripting tool:

The following sample code is a JACL (WSadmin - scripting tool) script used to create a data source.

 Use this script to create only data sources for which the product does not provide a template. For every

JDBC provider WebSphere Application Server supports, the product provides a corresponding data source

template. See the topic Creating configuration objects using the wsadmin tool for instructions on how to

use the createUsingTemplate command to establish these data sources. For a complete list of supported

JDBC providers (and therefore a complete list of data sources that must be created using a template),

refer to the topic “Data source minimum required settings, by vendor” on page 1509.

This script sets up the following sample JDBC objects:

v Creates a data source fvtDS_1

v Creates a 4.0 data source fvtDS_3

v Creates a container-managed persistence (CMP) data source linked to fvtDS_1

Note: If you later modify the class path or native library path of the JDBC provider associated with your

data source, you must restart every application server within the scope of that JDBC provider for

the new configuration to work. Otherwise, you receive a data source failure message.
#AWE -- Set up XA DB2 data sources, both Version 4.0 and Connector architecture (JCA)-compliant data sources

#UPDATE THESE VALUES:

#The classpath that will be used by your database driver

set driverClassPath "c:/sqllib/java/db2java.zip"

set server "server1"

set fvtbase "c:/wssb/fvtbase"

#Users and passwords..

set defaultUser1 "dbuser1"

set defaultPassword1 "dbpwd1"

Chapter 7. Data access resources 1563

set aliasName "alias1"

set databaseName1 "jtest1"

set databaseName2 "jtest2"

#END OF UPDATES

puts "Add an alias alias1"

set cell [$AdminControl getCell]

set sec [$AdminConfig getid /Cell:$cell/Security:/]

#---

Create a JAASAuthData object for component-managed authentication

#---

puts "create JAASAuthData object for alias1"

set alias_attr [list alias $aliasName]

set desc_attr [list description "Alias 1"]

set userid_attr [list userId $defaultUser1]

set password_attr [list password $defaultPassword1]

set attrs [list $alias_attr $desc_attr $userid_attr $password_attr]

set authdata [$AdminConfig create JAASAuthData $sec $attrs]

$AdminConfig save

puts "Installing DB2 datasource for XA"

puts "Finding the old JDBCProvider.."

#Remove the old jdbc provider...

set jps [$AdminConfig list JDBCProvider]

foreach jp $jps {

 set jpname [lindex [lindex [$AdminConfig show $jp {name}] 0] 1]

 if {($jpname == "FVTProvider")} {

 puts "Removing old JDBC Provider"

 $AdminConfig remove $jp

 $AdminConfig save

 }

}

#Get the server name...

puts "Finding the server $server"

set servlist [$AdminConfig list Server]

set servsize [llength $servlist]

foreach srvr $servlist {

 set sname [lindex [lindex [$AdminConfig show $srvr {name}] 0] 1]

 if {($sname == $server)} {

 puts "Found server $srvr"

 set serv $srvr

 }

}

set desiredNodeName "myNode"

puts "Finding the Node"

set nodelist [$AdminConfig list Node]

foreach node $nodelist {

 set nodename [lindex [lindex [$AdminConfig show $node {name}] 0] 1]

 if {($nodename == $desiredNodeName)} {

 puts "node = $node"

 break

 }

}

puts "Finding the Resource Adapter"

set ralist [$AdminConfig list J2CResourceAdapter $node]

set ralistlen [llength $ralist]

foreach ra $ralist {

 set raname [lindex [lindex [$AdminConfig show $ra {name}] 0] 1]

1564 Administering WebSphere applications

if {($raname == "WebSphere Relational Resource Adapter")} {

 set rsadapter $ra

 }

}

#Create an iSeries JDBC Provider for the data sources

puts "Creating the provider for com.ibm.db2.jdbc.app.UDBXADataSource"

set attrs1 [subst {{classpath $driverClassPath}

 {implementationClassName com.ibm.db2.jdbc.app.UDBXADataSource}{name "FVTProvider2"}

 {description "DB2 UDB for iSeries JDBC Provider"} {xa "true"}}]

set provider1 [$AdminConfig create JDBCProvider $serv $attrs1]

#Create the first data source

puts "Creating the datasource fvtDS_1"

set attrs2 [subst {{name fvtDS_1} {description "FVT DataSource 1"}}]

set ds1 [$AdminConfig create DataSource $provider1 $attrs2]

#Set the properties for the data source.

set propSet1 [$AdminConfig create J2EEResourcePropertySet $ds1 {}]

set attrs3 [subst {{name databaseName} {type java.lang.String} {value $databaseName1}}]

$AdminConfig create J2EEResourceProperty $propSet1 $attrs3

set attrs10 [subst {{jndiName jdbc/fvtDS_1} {statementCacheSize 10}

 {datasourceHelperClassname com.ibm.websphere.rsadapter.DB2DataStoreHelper}

 {relationalResourceAdapter {$rsadapter}} {authMechanismPreference "BASIC_PASSWORD"}

 {authDataAlias $aliasName}}]

$AdminConfig modify $ds1 $attrs10

#Create the connection pool object

$AdminConfig create ConnectionPool $ds1 {{connectionTimeout 1000}

 {maxConnections 30} {minConnections 1} {agedTimeout 1000}

 {reapTime 2000} {unusedTimeout 3000} }

#Create the 4.0 data sources

puts "Creating the 4.0 datasource fvtDS_3"

set ds3 [$AdminConfig create WAS40DataSource $provider1 {{name fvtDS_3} {description "FVT 4.0 DataSource"}}]

#Set the properties on the data source

set propSet3 [$AdminConfig create J2EEResourcePropertySet $ds3 {}]

#These attributes should be the same as fvtDS_1

set attrs4 [subst {{name user} {type java.lang.String} {value $defaultUser1}}]

set attrs5 [subst {{name password} {type java.lang.String} {value $defaultPassword1}}]

$AdminConfig create J2EEResourceProperty $propSet3 $attrs3

$AdminConfig create J2EEResourceProperty $propSet3 $attrs4

$AdminConfig create J2EEResourceProperty $propSet3 $attrs5

set attrs10 [subst {{jndiName jdbc/fvtDS_3} {databaseName $databaseName1}}]

$AdminConfig modify $ds3 $attrs10

$AdminConfig create WAS40ConnectionPool $ds3 {{orphanTimeout 3000} {connectionTimeout 1000}

 {minimumPoolSize 1} {maximumPoolSize 10} {idleTimeout 2000}}

#Add a CMP connection factory for the JCA-compliant data source. This step is not necessary for

#Version 4 data sources, as they contain built-in CMP connection factories.

puts "Creating the CMP Connector Factory for fvtDS_1"

set attrs12 [subst {{name "FVT DS 1_CF"} {authMechanismPreference BASIC_PASSWORD}

 {cmpDatasource $ds1} {authDataAlias $aliasName}}]

set cf1 [$AdminConfig create CMPConnectorFactory $rsadapter $attrs12]

#Set the properties for the data source.

$AdminConfig create MappingModule $cf1 {{mappingConfigAlias "DefaultPrincipalMapping"} {authDataAlias "alias1"}}

$AdminConfig save

Chapter 7. Data access resources 1565

Using the DB2 Universal JDBC Driver to access DB2 for z/OS

The z/OS operating system requires that you configure the DB2 Universal JDBC Driver and your database

to ensure interoperability. Within WebSphere Application Server, configure a JDBC provider object and a

data source object to implement the driver capabilities for your applications.

Before you begin

Use only the following versions of the DB2 Universal JDBC Driver to connect with DB2 on z/OS; consult

DB2 service updates for available enhancements on the version that you choose.

v The DB2 Universal JDBC Driver in DB2 UDB for z/OS Version 8. This version supports both driver

Types 2 and 4.

v The DB2 Universal JDBC Driver for DB2 UDB for OS/390® and z/OS Version 7, as documented in

APAR PQ80841. This version supports both driver Types 2 and 4.

v The DB2 Universal JDBC Driver with the feature z/OS Application Connectivity to DB2 for z/OS, which

provides Type 4 connectivity only. If you install this version of the driver, you must configure a DB2

Universal JDBC Driver provider (XA) to access remote DB2 databases.

Note: If you are replacing the DB2 for 390 and z/OS Legacy JDBC driver with the DB2 Universal JDBC

Driver, you can migrate your existing JDBC provider settings. Consult the topic ″Migrating from the

JDBC/SQLJ Driver for OS/390 and z/OS to the DB2 Universal JDBC Driver″ in the Information

Management Software for z/OS Solutions Information Center, which is located at

http://publib.boulder.ibm.com/infocenter/dzichelp.

1. Install the driver class files and any necessary native files in an available HFS directory. (Native files

are class files that some versions of the DB2 Universal JDBC Driver require for running on the z/OS

operating system.)

2. Configure the driver and database for interoperability

a. Bind the required DB2 packages

As with any application that executes SQL statements in DB2 for z/OS, the Universal JDBC driver

must first bind with DB2 the packages that represent the SQL statements to be executed.

The specific details of the bind utility and bind process are described by the README provided

with the installed DB2 Universal JDBC Driver. Refer to this README for details on how to setup

and perform the required binding.

Also note that the utility requires the server name (or IP address), the port number, and the

database name (the database location on z/OS) for the target DB2. To get this information, issue a

DB2 -DISPLAY DDF command on the target DB2 system. This displays the IPADDR (IP address),

the SQL DOMAIN (server name), the TCPPORT number, and the LOCATION (database

name/location) for you to use as input to the utility.

You must perform the bind process for each target DB2 that will be accessed using the DB2

Universal JDBC Driver.

b. Set up to handle in-doubt transactions

You must perform this setup once for each target DB2 for z/OS Version 7 location that is accessed

using the DB2 Universal JDBC Driver Type 4 XA support.

Because DB2 for z/OS Version 7 does not implement Java Platform, Enterprise Edition (Java EE)

XA support, the Type 4 driver XA processing uses DB2 V7 two-phase commit protocol and a table

in each location (database) to store a list of global transactions that are in doubt (finished but not

committed).

This table must be set up at each DB2 V7 location that is accessed. To do this, use the In-Doubt

Utility, which is included as part of the installed DB2 Universal JDBC Driver. Use this utility to

create the SYSIBM.INDOUBT Table that stores information about In-Doubt Global Transactions.

This utility also binds the package T4XAIndbtPkg, which contains the SQL statements to insert and

delete from the SYSIBM.INDOUBT Table. The T4XAIndbtPkg package is written with SQLJ.

1566 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/dzichelp

This installation process requires that the target DB2 subsystem be configured with DDF enabled

for incoming TCP/IP connections.

1) To enable DDF on the target DB2, issue the DB2 -START DDF command on that system.

2) This utility requires the server name (or IP address) and the port number for the target DB2 V7.

To obtain this information, issue a DB2 -DISPLAY DDF command on the target DB2 V7

system. This displays the IPADDR (IP address), the SQL DOMAIN (server name), and the

TCPPORT number that can be used as input to the utility.

To find more detailed information about the In-Doubt utility, refer to the DB2® Universal Database™

for z/OS Version 7 Application Programming Guide and Reference for JavaTM publication. (You can

download it from the Library section of the DB2 Universal Database for z/OS Version 7 product

information Web pages.) Within this publication, search for discussion about the utility under

DB2T4XAIndoubtUtil, which is the official name of the In-Doubt utility.

Note: The previously described setup for in-doubt transactions is not a requirement for DB2 FOR

z/OS Version 8 servers because DB2 FOR z/OS Version 8 natively supports XA commands

over DRDA® and manages the In-Doubt Global Transactions internally.

c. Define a db2.jcc.propertiesFile

A db2.jcc.propertiesFile for use by DB2 Universal JDBC Driver Type 2 processing under

WebSphere Application Server for z/OS can be created and specified as input to the driver. This

runtime properties file is for use in specifying various runtime options that the DB2 Universal JDBC

Driver uses for Type 2 connectivity. These options are specified as properties in the form of

parameter=value. Refer to the README file packaged with the installed DB2 Universal JDBC

Driver for a detailed description of each of the properties.

This file is not required; however, if it is not provided, universal driver default processing is

performed.

Of specific interest is the db2.jcc.ssid property. This property specifies the DB2 subsystem identifier

(not location name), to be used by the DB2 Universal JDBC Driver Type 2 processing as the local

subsystem name to which it should connect. If this property is not provided, the driver uses the

subsystem identifier that it finds in the DSNHDECP load module. If the installation wants to use the

DSNHDECP load module to specify the subsystem identifier, this load module must be included in

a steplib dataset in the servant region PROCs associated with each server that will use the DB2

identified by the subsystem ID. Refer to the README file packaged with the universal driver for

more information on using this load module. If that DSNHDECP load module does not accurately

reflect the desired subsystem, or if multiple subsystems might be using a generic DSNHDECP, the

db2.jcc.ssid property must be specified.

Although the db2.jcc.propertiesFile is not required, if you choose to define the file, you must specify

the fully qualified-hfs-filename. To do this, specify the file as a JVM System property as follows:

v db2.jcc.propertiesFile = <fully-qualified-hfs-filename>

Because the driver-general properties are typically specific to a driver load (for example, server)

rather than all servers using the JDBC provider, it is best to set this JVM property at the server

level. To define the db2.jcc.propertiesFile= property to the server level using the WebSphere

Application Server for z/OS Administrative Console:

1) Under the WebSphere Application Server for z/OS Administrative Console, go to Servers >

Application Servers, then click the server to which you want to add the JVM property.

2) On the selected server page, expand Java and Process Management and click Process

Definition > Servant.

3) On the Servant page, click Additional Properties, then click Java Virtual Machine.

4) On the Java Virtual Machine page, click Additional Properties, then click Custom Properties.

5) On the Custom Properties page, scroll down and click New to configure a new JVM property

for the selected server. The name of the property is db2.jcc.propertiesFile. The value of the

Chapter 7. Data access resources 1567

property is the fully-qualified-hfs-filename that you created and initialized with the DB2

Universal JDBC Driver properties. These are the properties that you want the Type 2 driver to

use for the selected server

6) Click Ok.

7) Click Save to save the new JVM property.

3. Define a JDBC provider for the DB2 Universal JDBC Driver. The JDBC provider object encapsulates

the driver classes for implementation in WebSphere Application Server.

a. From the WebSphere Application Server for z/OS Administrative Console, click Resources >

JDBC > JDBC Providers.

b. Select the scope at which applications can use the JDBC provider. (This scope becomes the scope

of any data source that you associate with this provider.) You can choose a cell, node, cluster, or

server. For more information, see Administrative console scope settings.

c. Click New. This action causes the Create a new JDBC Provider wizard to launch.

d. Use the first drop-down list to select DB2 for z/OS as your database type.

e. Select the DB2 Universal JDBC Driver provider as your JDBC provider type in the second

drop-down list.

f. From the third drop-down list, select the implementation type that is necessary for your application.

If your application does not require that connections support two-phase commit transactions, and

you plan to use type 4 connectivity, choose Connection Pool Data Source. If you use the

connection pool data source with type 2 connectivity, however, Application Server on z/OS uses

RRS to process both one-phase and two-phase transactions.

Note: Do not select Connection Pool Data Source if your installation has the z/OS Application

Connectivity to DB2 for z/OS feature defined to WebSphere Application Server for z/OS.

Only the XA implementation of the DB2 Universal JDBC Driver supports this feature.

Choose XA Data Source if you plan to use driver type 4, and your application requires connections

that support two-phase commit transactions. Use only driverType 4 connectivity for the XA data

source.

After you select an implementation type, the wizard fills the name and the description fields for your

JDBC provider. You can type different values for these fields; they exist for administrative purposes

only.

g. Click Next after you have defined your database type, provider type, and implementation type. Now

you see the wizard page Enter database class path information.

Typically you do not need to change the class path that already populates the field. (That class

path is the value of the WebSphere environment variable that is displayed on this page, in the form

of ${DATABASE_JDBC_DRIVER_PATH}.) Most likely you also do not need to change the native

library path or the data source implementation class name.

h. Click Next to see a summary of your JDBC provider settings.

i. Click Finish if you are satisfied with the entire JDBC provider configuration. You now see the JDBC

provider collection page, which displays your new JDBC provider in a table along with other

providers that are configured for the same scope.

4. Define a data source. WebSphere Application Server uses the data source object to obtain database

connections and manage those connections.

a. From the WebSphere Application Server for z/OS Administrative Console, access the page for the

data source version that your applications require. If you need support for two-phase transactions,

use only a data source of the latest standard version. Version 4 data sources do not support

connections that participate in two-phase transactions.

You can reach the appropriate page in one of two ways:

v Click Resources > JDBC > Data sources, or Data sources (WebSphere Application Server

Version 4).

1568 Administering WebSphere applications

v Click Resources > JDBC > JDBC providers > JDBC_provider > Data sources, or Data

sources (WebSphere Application Server Version 4).

b. Select the scope at which applications can use the data source. You can choose a cell, node,

cluster, or server. For more information, see the Administrative console scope settings article.

Note: From this point onward, the steps for creating Data sources (WebSphere Application Server

Version 4) differ from the steps for creating data sources of the latest standard version. To

configure a Version 4 data source:

v Click New to proceed to the console page for defining required properties.

v On this properties page specify values for the fields that are grouped under the heading

Configuration. Application Server requires these properties to implement your JDBC

driver classes; consult “Data source minimum required settings, by vendor” on page 1509

to learn about acceptable values.

v Save your configuration by clicking OK. You are now finished with the primary data

source configuration tasks.

v Optional: Define additional properties that are supported by the DB2 Universal JDBC

provider. Application Server calls them custom properties, and requires that you set them

on the data source as well. Begin by clicking the Custom Properties link that is now

displayed on the administrative console page. You can learn about optional data source

properties in the Application Programming Guide and Reference for Java for your version

of DB2 for z/OS.

c. Click New. This action causes the Create a data source wizard to launch and display the Enter

basic data source information page. The first field is the scope field, which is read-only. This field

displays your previous scope selection.

d. Type a data source name in the Data source name field. This name identifies the data source for

administrative purposes only.

e. Type a Java Naming and Directory Interface (JNDI) name in the JNDI name field. WebSphere

Application Server uses the JNDI name to bind application resource references to this data source.

For more information on JNDI, consult the “Naming” on page 2142 article.

f. Configure a component-managed alias to secure your data source if you plan to implement

driverType 4 connectivity with the DB2 Universal JDBC Driver. If you plan to use driverType 2

connectivity, you do not have to set an alias. In this case the connection manager uses a default

authentication alias, which is the user identity of a thread when that thread delivers a getConnection

request.

A component-managed alias consists of an ID and password that are specified in an application for

data source authentication. Therefore, the alias that you set on the data source must be identical to

the alias in the application code. For more information on Java 2 Connector (J2C) security, see the

Managing Java 2 Connector Architecture authentication data entries article.

To set a component-managed alias, either select an existing alias or create a new one.

v Use the drop-down list to select an existing component-managed authentication alias.

v To create a new alias, click the create a new one link. This action closes the data source wizard

and triggers the administrative console to display the J2C authentication data collection page.

Click New to define a new alias. Click OK to save your settings and view the new alias on the

J2C authentication data collection page. Restart the data source wizard by navigating back to the

data source collection page, selecting the appropriate scope, and clicking New.

g. Click Next to see the wizard page Select JDBC provider.

h. Either select an existing JDBC provider, or create a new provider.

To select an existing JDBC provider:

1) Click Select an existing JDBC provider.

2) Select a JDBC driver from the drop-down list.

Chapter 7. Data access resources 1569

3) Click Next. You now see the page entitled Enter database specific properties for the data

source.

To create a new JDBC provider:

1) Click Create new JDBC provider.

2) Click Next to see the Create JDBC provider page.

3) Use the first drop-down list to select DB2 for z/OS as your database type.

4) Select the DB2 Universal JDBC Driver provider as your JDBC provider type in the second

drop-down list.

5) From the third drop-down list, select the implementation type that is necessary for your

application.

If your application does not require that connections support two-phase commit transactions,

choose Connection Pool Data Source. Both driverType 2 and driverType 4 connectivity

implementations of the DB2 Universal JDBC Driver support connection pool data sources.

Note: Do not select this provider if your installation has the z/OS Application Connectivity to

DB2 for z/OS feature defined to WebSphere Application Server for z/OS. Only the XA

implementation of the DB2 Universal JDBC Driver supports this feature.

Choose XA Data Source if your application requires connections that support two-phase

commit transactions. Applications that use this data source configuration have the benefit of

container-managed transaction recovery. Use only driverType 4 connectivity for the XA

implementation.

After you select an implementation type, the wizard fills the name and the description fields for

your JDBC provider. You can type different values for these fields; they exist for administrative

purposes only.

6) Click Next after you have defined your database type, provider type, and implementation type.

Now you see the wizard page Enter database class path information.

Typically you do not need to change the class path that already populates the field. (That class

path is the value of the WebSphere environment variable that is displayed on this page, in the

form of ${DATABASE_JDBC_DRIVER_PATH}.) Most likely you also do not need to change the

native library path or the data source implementation class name.

7) Click Next. You now see the page entitled Enter database specific properties for the data

source.

i. Click Use this data source in container managed persistence (CMP) if container managed

persistence (CMP) enterprise beans must access this data source.

j. Specify all of the remaining properties, as they are required for implementation of the DB2 Universal

JDBC Driver. These properties include:

v Database name, which is the location name of the target database used when establishing

connections with this data source

v driverType, which is the JDBC connectivity type used by the data source

v Server name, which is the TCP/IP address or host name for the Distributed Relational Database

Architecture™ (DRDA) server.

This property is required only if driverType is set to 4. This property is not used if driverType is

set to 2.

v Port number, which is the TCP/IP port number where the DRDA server resides.

Provide a value for this property only if driverType is set to 4. Do not set this property if

driverType is set to 2.

k. Click Finish to save the configuration and exit the wizard. You now see the Data source collection

page, which displays your new configuration in a table along with other data sources that are

configured for the same scope.

1570 Administering WebSphere applications

What to do next

You can override the default values for some data source properties. Click your new data source link in

the table to view the general configuration page for required data source properties. You can also define

additional properties that are supported by the DB2 Universal JDBC Driver. Application Server requires

that you set them as custom properties on the data source. Learn about optional data source properties in

the Application Programming Guide and Reference for Java for your version of DB2 for z/OS.

Extend DB2 data source definitions at the application level

Extend data source definitions, which consist of non-core or custom properties, for DB2 data sources to

add a greater level of application flexibility when you are using the DB2 Universal JDBC driver or DB2

Using IBM JCC driver. Use this feature to configure a DB2 data source in the application server with a

core set of data source properties, and defer to individual applications to define any custom or non-core

properties, like currentSchema or clientApplicationInformation, that you want to be application specific. You

can also use these extended definitions to override any non-core or custom properties that are already

defined for the data source. In addition, this feature can reduce the number of physical connections that

the application server uses by employing one connection pool between resources that connect to the

same data source.

Before you begin

You must be using a DB2 data source, and the data source must be configured in the application server

with one of the following JDBC providers:

v DB2 Universal JDBC driver (Version 3.1 or higher)

v DB2 Using IBM JCC driver (Version 3.1 or higher)

About this task

Associate non-core properties with different resource references for a data source, and configure your

applications to take advantage of these resource references to extend or override any non-core properties

for the data source. You can choose to define new non-core or custom properties, or override any

non-core properties that are already defined for the data source.

Also, applications can share the same connection pool in the application server, even though each

application might have its own unique set of data source properties. There might be only one data source

that is defined in the application server, and therefore only one connection pool, but to individual

applications it would appear that there is more than one data source that is defined. This can result in:

v Reduction in memory consumption by the application server. Data source definitions will correspond to

one connection pool, so there are fewer objects in memory when compared with a data source

definition that corresponds to its own connection pool.

v Reduction in the number of open connections to the data source, which can reduce the memory

consumption by the data source. The application server can reduce the number of idle connections by

providing one connection pool that corresponds to multiple data sources, providing a more efficient use

of connections.

v Avoidance of two-phase commit (XA) transactions in certain DB2 scenarios, when your applications use

the get/use/close connection pattern. The application server can share connections between different

resource references that have same set of core properties, even if they have different non-core

properties, within the same transaction. This behavior can avoid two-phase commit processing if the

connection sharing leads the application server to use one and only one physical connection.

1. Update the data source definitions for an application that is already installed.

a. Navigate to the panel to manage the resource references for the application.

v For applications that do not use container-managed persistence, click Applications →

WebSphere enterprise applications → application_name → Resource references.

Chapter 7. Data access resources 1571

v For applications that use container-managed persistence, click Applications → WebSphere

enterprise applications → application_name → Provide default data source mapping for

modules containing 2.x entity beans. You cannot add extended properties for individual CMP

beans.

v You can to configure two resource reference files on the same data source. This allows you to

extend the custom properties on the data source to include two different schema names

(currentSQLId on z/OS or currentSchema name in the custom properties) that can be used to

exploit the capabilities of the application server. See “Configure two resource reference files on

the same data source” on page 1573 for more information.

Note: For pureQuery, if this is an XA data source you must define a new custom property on

the data source where property_name = downgradeHoldCursorsUnderXa and boolean

value = true.

b. Navigate to the panel for extended data source properties. Click Extended properties... in the

Target Resource JNDI Name column. If the data source does not support extended data source

properties, you will receive an error when you try to apply these changes.

c. Add a data source definition that is specific to that target resource. Click New, and complete the

required fields. You cannot modify the following data source properties, which must be the same for

all applications that use this data source:

v accountingInterval

v dataSourceName

v databaseName

v kerberosServerPrincipal

v loginTimeout

v logWriter

v password

v pkList

v planName

v portNumber

v readOnly

v securityMechanism

v serverName

v user

d. Optional: Configure two res-refs and the isolation level in the ibm-ejb-jar-ext.xml

2. Optional: To avoid two-phase commit transactions, employ the get/use/close connection pattern. The

get/use/close pattern is when an application gets a connection from a data source or connection

factory and completes the current work within a single method, and the application does not call

another method until that work is complete.

a. Ensure that your applications use the get/use/close connection pattern.

b. Enable the application server to verify use of the get/use/close connection pattern in applications,

which will lead to the avoidance of two-phase commit processing if the sharing leads to one and

only one physical connection being used.

1) Click Resources → JDBC → Data sources → data_source → WebSphere Application Server

data source properties

2) Select Optimize for get/use/close connection pattern with heterogenous pooling. You will

receive error messages if you select this option and your applications do not use the

get/use/close connection pattern.

1572 Administering WebSphere applications

Related concepts

“Data sources” on page 1393
Installed applications use a data source to obtain connections to a relational database. A data source is

analogous to the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection

factory, which provides connectivity to other types of enterprise information systems (EIS).

“JDBC providers” on page 1393
Installed applications use JDBC providers to interact with relational databases.

Related tasks

“Using the DB2 Universal JDBC Driver to access DB2 for z/OS” on page 1566
The z/OS operating system requires that you configure the DB2 Universal JDBC Driver and your database

to ensure interoperability. Within WebSphere Application Server, configure a JDBC provider object and a

data source object to implement the driver capabilities for your applications.

Related reference

“WebSphere Application Server data source properties” on page 1546
Use this page to set advanced data source properties in the application server. These properties activate

and configure services that the application server applies to data sources to customize connections within

an application server. These properties do not affect connections within the database.

Extended data source properties:

Use this page to set the extended data source properties for a DB2 database. You can use these

properties to allow an application to extend the custom properties for a data source or override any

non-core properties that already exist for that data source.

 To access this administrative console page:

v For applications that do not use container-managed persistence click Applications → Application

Types → WebSphere enterprise applications → application_name → Resource references

v For applications that use container-managed persistence click Applications → Application Types →

WebSphere enterprise applications → application_name → Provide default data source mapping

for modules containing 2.x entity beans.

For data sources that use the DB2 Universal JDBC driver or DB2 Using IBM JCC Driver, click Extended

properties... in the Target Resource JNDI Name column.

Name: Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property that has that name is used.

Do not start your property names with was, because this prefix is reserved for properties that are

predefined in the application server.

 Data type String

Value:

Specifies the property value.

 Data type Variable

Configure two resource reference files on the same data source:

Chapter 7. Data access resources 1573

You can configure two resource reference files on the same data source. This allows you to extend the

custom properties for the data source to be extended to include two different schema names

(currentSQLId on z/OS or currentSchema name in the custom properties) that can be used to exploit the

capabilities of the application server.

 About this task

When an EntityManager is created, the application server obtains a connection to the database. When you

are using a pessimistic transaction, the EntityManager will retain that connection until the EntityManager is

closed. When there are two EntityManagers that extend the data source definitions, the

openjpa.jdbc.TransactionIsolation property might cause a problem with the transaction. This property

can be found in the persistence.xml file in the following entry:

property name="openjpa.jdbc.TransactionIsolation" value="read-committed"

In order to satisfy this request, Java Persistence API (JPA) will obtain a connection and immediately call

setTransactionIsolation(READ_COMMITTED). When you have two EntityManagers share a single physical

connection to the database, the first EntityManager creates a connection to the database and involves that

connection in a transaction. When the second EntityManager creates a connection, it is not able to change

the isolation level.

You can avoid this problem by creating two resource reference files in the same data source. You can

create the resource references with Rational Application Developer or by editing the XML files. You will

need to make changes to the ejb-jar.xml, ibm-ejb-jar-bnd.xml, ibm-ejb-jar-ext.xml, persistence.xml

files.

Note: For pureQuery, if this is an XA data source you must define a new custom property on the data

source where property_name = downgradeHoldCursorsUnderXa and boolean value = true.
See the following sections for information on how to accomplish this:

v Configure two resource reference files on the same data source using Rational Application Developer.

v Configure two resource reference files on the same data source by editing the XML files.

v Configure two resource reference files on the same data source using Rational Application Developer.

1. Edit the ejb-jar.xml file

a. Create the deployment descriptor if it doesn’t already exist:

1) Go to the context menu of the Enterprise Java beans (EJB) project and select Java EE →

Generate Deployment Descriptor Stub.

b. Edit the deployment descriptor:

1) Go to the project’s META-INF directory and select the ejb-jar.xml file.

c. Add the enterprise bean’s element to the deployment descriptor if it doesn’t already exist:

1) In the left hand pane, select EJB Project node. Click Add.

2) In the dialog, select Enterprise Beans. Click OK.

d. Add the session bean to the deployment descriptor if it’s not already there:

1) In the left pane, select Enterprise Beans. Click Add.

2) Select Session Bean. Click OK.

3) Enter the name of the session bean in the dialog. Click OK.

4) In the right-side pane, enter the EJB Class, the business local, and the business remote

interfaces.

e. Add the resource reference elements to the session bean:

1) Select the session bean in the left pane and click Add.

2) Select Resource Reference. Click OK.

3) In the Add Resource Reference dialog, enter the name, type, authentication and sharing

scope fields. Click OK.

1574 Administering WebSphere applications

4) Repeat for the second resource reference.

f. Save the editor

2. Edit the ibm-ejb-jar-bnd.xml file

a. Create the WebSphere EJB bindings descriptor if it doesn’t already exist

1) Go to the context menu of the Enterprise JavaBeans (EJB) project and select Java EE →

Generate WebSphere Bindings Deployment Descriptor.

b. Edit the bindings descriptor:

1) In the project’s META-INF directory, select the ibm-ejb-jar-bnd.xml file.

c. Add a binding element for the session bean to the bindings descriptor:

1) In the left pane, select EJB Jar Bindings node and click Add.

2) In the dialog, select Session and click OK.

3) In the right pane, enter the name of the session bean.

d. Add the bindings for the resource references to the session bean:

1) In the left pane, select the session bean and click Add.

2) In the dialog, select Resource Reference and click OK.

3) In the left pane, select the resource reference.

4) In the right pane, enter the name and binding name for the reference

5) Repeat for the second resource reference.

e. Save the editor

3. Edit the ibm-ejb-jar-ext.xml file.

a. Create the WebSphere EJB extensions descriptor if it doesn’t already exist:

1) Go to the context menu of the Enterprise JavaBeans (EJB) project and select Java EE →

Generate WebSphere Extensions Deployment Descriptor.

b. Edit the extensions descriptor:

1) In the project’s META-INF directory, select the ibm-ejb-jar-ext.xml file.

c. Add an extensions element for the session bean to the extensions descriptor:

1) In the left pane, select the EJB Jar Extensions node and click Add.

2) In the dialog, select Session and click OK.

3) In the right pane, enter the name of the session bean.

d. Define the isolation level for the resource references:

1) In the left pane, select the session bean and click Add.

2) In the dialog, select Resource Reference and click OK.

3) In the left pane, select the resource reference.

4) In the right pane, enter the name and the isolation level.

5) Repeat for the second resource reference.

e. Save the editor

4. Edit the persistence.xml file.

a. Add JPA support to the EJB project, which will create the persistence.xml file:

1) From the project’s context menu, select Properties.

2) In the left pane, select the Project Facets node.

3) In the right pane, check the box beside Java Persistence.

4) Click OK.

b. Edit the persistence.xml file:

1) In the project’s META-INF directory, select the persistence.xml file

Chapter 7. Data access resources 1575

c. The created persistence.xml file already contains a persistence unit definition. Edit this

persistence.xml file

1) In the left pane, select the Persistence Unit node. Set the name, JTA data source and

exclude the unlisted classes fields.

d. Create a new persistence unit definition in the file:

1) In the left pane, select the Persistence node and click Add .

2) In the dialog, select Persistence Unit and click OK.

3) In the left pan, select the Persistence Unit node. Set the name, JTA data source and

exclude the unlisted classes fields.

e. Add classes to the persistence unit:

1) In the left pane, select the persistence unit node and click Add .

2) In the dialog, select Class and click OK.

3) In the right pane, enter the name of the class.

4) Repeat for each class.

f. Add properties to the persistence unit

1) If there is not already a Properties element in the file, select the persistence unit node in the

left pane and click Add.

2) In the dialog, select Properties and click OK.

3) In the left pane, select the Properties node and click Add.

4) In the dialog, select Property and click OK.

5) In the right pane, enter the name and value for the property

6) Repeat the previous three steps to add the additional properties.

g. Save the editor

v Configure two resource reference files on the same data source by editing the XML files.

1. Edit the ejb-jar.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar id="ejb-jar_ID" metadata-complete="false" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">

 <enterprise-beans>

 <session>

 <ejb-name>NewOrderSessionFacadeBean</ejb-name>

 <business-local>newordersession.ejb3.NewOrderSessionFacade</business-local>

 <business-remote>newordersession.ejb3.NewOrderSessionFacadeRemote</business-remote>

 <ejb-class>newordersession.ejb3.NewOrderSessionFacadeBean</ejb-class>

 <session-type>Stateless</session-type>

 <resource-ref>

 <description></description>

 <res-ref-name>jdbc/ERWWDataSourceV5</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

 <resource-ref>

 <description></description>

 <res-ref-name>jdbc/ERWWDataSourceV5_HP</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

 </session>

 </enterprise-beans>

</ejb-jar>

2. Edit the ibm-ejb-jar-bnd.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar-bnd xmlns="http://websphere.ibm.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-bnd_1_0.xsd"

 version="1.0">

 <session name="NewOrderSessionFacadeBean" simple-binding-name="ejb/session/NewOrderSessionFacadeBean">

 <resource-ref name="jdbc/ERWWDataSourceV5" binding-name="jdbc/ERWWDataSourceV5"></resource-ref>

 <resource-ref name="jdbc/ERWWDataSourceV5_HP" binding-name="jdbc/ERWWDataSourceV5"></resource-ref>

 </session>

</ejb-jar-bnd>

1576 Administering WebSphere applications

3. Edit the ibm-ejb-jar-ext.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar-ext xmlns="http://websphere.ibm.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-ext_1_0.xsd"

 version="1.0" metadata-complete="true">

 <session name="NewOrderSessionFacadeBean">

 <resource-ref name="jdbc/ERWWDataSourceV5"

 isolation-level="TRANSACTION_READ_COMMITTED" />

 <resource-ref name="jdbc/ERWWDataSourceV5_HP"

 isolation-level="TRANSACTION_READ_COMMITTED" />

 </session>

</ejb-jar-ext>

4. Edit the persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 version="1.0" xsi:schemaLocation=

"http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="NewOrderSessionEJB3">

 <jta-data-source>java:comp/env/jdbc/ERWWDataSourceV5</jta-data-source>

 <class>warehouseejb3.WarehouseJPA</class>

 <class>districtejb3.DistrictJPA</class>

 <class>customerejb3.CustomerJPA</class>

 <class>stockejb3.StockJPA</class>

 <class>orderejb3.OrderJPA</class>

 <class>orderlineejb3.OrderlineJPA</class>

 <class>neworderejb3.NewOrderJPA</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>

 <property name="openjpa.LockManager" value="pessimistic"/>

 <property name="openjpa.ReadLockLevel" value="read"/>

 <property name="openjpa.WriteLockLevel" value="write"/>

 <property name="openjpa.LockTimeout" value="30000"/>

 <property name="openjpa.FetchBatchSize" value="1" />

 <property name="openjpa.jdbc.TransactionIsolation" value="read-committed" />

 <property name="openjpa.Log" value="none"/>

 </properties>

 </persistence-unit>

 <persistence-unit name="ItemEJB3">

 <jta-data-source>java:comp/env/jdbc/ERWWDataSourceV5_HP</jta-data-source>

 <class>itemejb3.ItemJPA</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>

 <property name="openjpa.LockManager" value="pessimistic"/>

 <property name="openjpa.ReadLockLevel" value="read"/>

 <property name="openjpa.WriteLockLevel" value="write"/>

 <property name="openjpa.LockTimeout" value="30000"/>

 <property name="openjpa.FetchBatchSize" value="1" />

 <property name="openjpa.jdbc.TransactionIsolation" value="read-committed" />

 <property name="openjpa.Log" value="none"/>

 </properties>

 </persistence-unit>

</persistence>

Related tasks

“Extend DB2 data source definitions at the application level” on page 1571
Extend data source definitions, which consist of non-core or custom properties, for DB2 data sources to

add a greater level of application flexibility when you are using the DB2 Universal JDBC driver or DB2

Using IBM JCC driver. Use this feature to configure a DB2 data source in the application server with a

core set of data source properties, and defer to individual applications to define any custom or non-core

properties, like currentSchema or clientApplicationInformation, that you want to be application specific. You

can also use these extended definitions to override any non-core or custom properties that are already

defined for the data source. In addition, this feature can reduce the number of physical connections that

the application server uses by employing one connection pool between resources that connect to the

same data source.

Enabling trusted context for DB2 databases

Enable trusted context in your applications to improve how the application server interacts with DB2

database servers. Use trusted connections to preserve the identity records of clients that are connecting to

a DB2 database through your applications; trusted connections can provide a more secure environment by

granting access based on the identity of those users.

Chapter 7. Data access resources 1577

Before you begin

Ensure that the following prerequisites are met before enabling trusted connections:

v You are using a database server that is running DB2 Version 9.5 or later for AIX, HP-UX, Linux, Solaris,

or Windows operating systems or DB2 Version 9.1 or later for z/OS. See the list of list of supported

software for the application server for more support information.

v You do not need to be connected to the database to configure trusted context in the application server.

v Trusted context is enabled for the DB2 database.

v Global security is enabled. Read about Setting up and enabling security for more information on

configuring security.

About this task

Note: With trusted connections you can:

v Access the DB2 database with the caller identity, obviating the need to create a new connection

for every user.

v Preserve the identity of the end-user when the application server is interacting with the database.

v Strengthen database security by avoiding granting all of the privileges to a single user.

v Improve performance, as compared to the existing model of using the resetConnection() method

to take advantage of identity propagation.

Note: Non-trusted connections cannot be used as trusted connections. If the connection pool contains

only non-trusted connections and a request comes in for a trusted connection, a new request will

be sent to the database for the trusted connection.

Enable trusted context for your applications.

v Enable trusted context when you are installing a new application.

1. Perform a typical installation for the application until you reach Step 7: Map resource references

to resources in the installation wizard.

2. In Step 7: Map resource references to resources, select Use trusted connections (one-to-one

mapping) in the Specify authentication method section.

3. Select an authentication alias from the list that matches an alias that is already defined in the DB2

data source. If you do not have an alias defined that is suitable, continue with the installation, and

enable trusted context after the application is installed.

Note: You can specify a default user (UNAUTHENTICATED) to be used if no client identity is

available, but that default ID (UNAUTHENTICATED) must also exist in the DB2 database. If

the com.ibm.mapping.unauthenticatedUser is set to null or an empty string, then the

application server will use the default user (UNAUTHENTICATED). Read about setting the

com.ibm.mapping.unauthenticatedUser property for more information on this property.

4. Select a data source from the table that has trusted context enabled.

5. Click Apply.

6. Edit the properties of the custom login configuration. Read “Setting the security properties for trusted

connections” on page 1580.

7. Finish the installation wizard.

v Enable trusted context on an application that is already installed.

Note: Remove the propagateClientIdentityUsingTrustedContext custom property for the DB2 data

source, if it is present. If the propagateClientIdentityUsingTrustedContext is enabled, the

application server will issue the following warning at run time:

IDENTITY_PROPAGATION_PROP_WARNING=DSRA7029W: The propagateClientIdentityUsingTrustedContext

 custom property for the Datasource is no longer used, value will be ignored.

1578 Administering WebSphere applications

The application server will determine at run time if the request is using trusted context, and the

application server will enable trusted context based on that information. Therefore, the same data

source in the application server can be used for both trusted and non-trusted access.

1. Click Websphere enterprise applications > application_name.

2. Click Resource references from the Resources heading.

3. Select Use trusted connections (one-to-one mapping) in the Specify authentication method

section.

4. Select an authentication alias from the list that matches an alias that is already defined in the DB2

data source. If you do not have an alias defined that is suitable, define a new alias.

a. Click JDBC > Data sources > data_source_name.

b. Click JAAS - J2C authentication data from the Related Items heading.

c. Click New.

d. Define the properties for the alias in General properties.

e. Click OK.

Note: You can specify a default user (UNAUTHENTICATED) to be used if no client identity is

available, but that default ID (UNAUTHENTICATED) must also exist in the DB2 database. If

the com.ibm.mapping.unauthenticatedUser is set to null or an empty string, then the

application server will use the default user (UNAUTHENTICATED). Read about setting the

com.ibm.mapping.unauthenticatedUser property for more information on this property.

5. Select a data source from the table that has trusted context enabled.

6. Click Apply.

7. Edit the properties of the custom login configuration. Read “Setting the security properties for trusted

connections” on page 1580.

What to do next

Be aware of the following error conditions that can occur if trusted context is not configured properly:

v The application server will issue a warning if you use the TrustedConnectionMapping login configuration

and the database server does not support trusted context. The application server will then return a

normal, non-trusted connection. If you are using a DB2 database for the database server, and it doesn’t

support trusted connections, then the DB2 database server will throw an exception.

v The application server will throw the following exception if you use the TrustedConnectionMapping login

configuration and ThreadIdentity is specified:

IDENTITY_PROPAGATION_CONFLICT2_ERROR=DSRA7028E: You cannot use the TrustedConnectionMapping

 login configuration when the ThreadIdentity property is enabled.

v The application server will throw the following exception if you use the TrustedConnectionMapping login

configuration and reauthentication is specified:

IDENTITY_PROPAGATION_CONFLICT1_ERROR=DSRA7025E: The reauthentication custom property for

 the Datasource cannot be enabled when you are using the TrustedConnectionMapping login configuration.

Chapter 7. Data access resources 1579

Related concepts

“Data sources” on page 1393
Installed applications use a data source to obtain connections to a relational database. A data source is

analogous to the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection

factory, which provides connectivity to other types of enterprise information systems (EIS).

“JDBC providers” on page 1393
Installed applications use JDBC providers to interact with relational databases.

Related tasks

“Using the DB2 Universal JDBC Driver to access DB2 for z/OS” on page 1566
The z/OS operating system requires that you configure the DB2 Universal JDBC Driver and your database

to ensure interoperability. Within WebSphere Application Server, configure a JDBC provider object and a

data source object to implement the driver capabilities for your applications.

Setting the security properties for trusted connections:

Trusted connections are a solution that can pass the requesting user identity to DB2 and also take full

advantage of the connection pooling. Utilizing the DB2 trusted context object, the trusted connection is

used to separate the identity used to establish the connection from the identity that accessed the DB2

server services. The connection is established by a user whose credentials are authorized by the DB2

server to open the connection and trusted by the DB2 server to assert the identity of the requesting users

when accessing the DB2 server from the application.

 Before you begin

To use the trusted connection functionality, you must be running at database server with DB2 Version 9.5

or later for AIX, HP-UX, Linux, Solaris, or Windows operating systems or DB2 Version 9.1 or later for

z/OS. Trusted connections can be used if the application server is installed on iSeries systems, as long as

a supported version of DB2 is installed on a platform other than iSeries systems, and the DB2 universal

driver is used. See the list of list of supported software for the application server for more support

information. An existing J2EE connector (J2C) data alias must exist for passing user credentials to the

DB2 server when establishing a connection, meaning container authorization must be used.

Read about “Enabling trusted context for DB2 databases” on page 1577 for steps to configure the

application server to use trusted connections.

About this task

Trusted connections support client identity propagation while taking advantage of connection pooling to

reduce the performance penalty of closing and reopening connections with a different identity. When you

select Use trusted connection (one-to-one mapping) for the connection mapping, five custom properties

are created. Review these properties to ensure that the default values of these properties correspond with

your intended settings.

1. Click Enterprise applications → application_name → Resource references → Resources panel in the

administrative console.

2. Select the correct enterprise bean, and click Mapping Properties to view the properties that are set by

default when you configured the trusted connection.

3. Confirm that the default values assigned to these properties are correct for your environment.

 Table 11. Security Properties

Property Default Value Information

com.ibm.mapping.authDataAlias none The value that is assigned for this property is the

value that you selected from the menu list.

1580 Administering WebSphere applications

Table 11. Security Properties (continued)

Property Default Value Information

com.ibm.mapping.propagateSecAttrs false A false value for this property specifies that the

security attributes are not propagated. You can

change this value to true to add the RunAs

subject as an opaque token in the

IdentityPrincipal object.

com.ibm.mapping.targetRealmName null If this value is not specified or null, the security

run time process will use the current user realm

name. This process assumes that the Enterprise

Information System (EIS) is using the current

user realm. In this context, a realm is a logical

representation of the user repository. If the

application server and DB2 server are using

different user repositories, the value of this

property should be set to the realm name of the

DB2 server. This enables a principal or

credential mapping to be set at the target EIS.

com.ibm.mapping.unauthenticatedUser UNAUTHENTICATED This property is a user identity that is used by

the EIS to indicate a user identity that is

unauthenticated. This is defined at

com.ibm.ISecurityUtilityImpl.SecConstants.java

public final static String UnauthenticatedString =

″UNAUTHENTICATED″

com.ibm.mapping.useCallerIdentityproperty false A false value for this property specifies the Run

As identity is asserted in the IdentityPrincipal

object. Change the value of this property to true

if you want to assert the caller identity in the

IdentityPrincipal object instead of the Run As

identity.

4. Click OK to confirm all the current values.

5. Click OK and Save on the Resource references panel to save your changes to the master

configuration.

Results

After the completion of these steps and a restart of the application server, trusted connections will be used

with the chosen mapping properties to connect with the DB2 database server.

Trusted connections with DB2:

Trusted connections allow for the application server to use DB2 Trusted Context objects to establish

connections with a user whose credentials are trusted by the DB2 server to open the connection. By

establishing a Trusted Context, this user is then trusted to assert other user identities on the DB2 server

without the expense of reauthentication. This also enhances the security of your DB2 database by

eliminating the need to assign all privileges to a single user. Implementing trusted connections results in

client identity propagation while leveraging connection pooling to eliminate the performance penalty of

closing and reopening connections with a different identity.

 Note: To use the trusted connection functionality you must be using DB2 Version 9.5 or later for AIX,

HP-UX, Linux, Solaris, or Windows operating systems or DB2 Version 9.1 or later for z/OS. You can

use trusted connections if version 7.0 is installed on an iSeries system as long as a supported

version of DB2 is installed on a platform other than an iSeries system and the DB2 universal driver

is being used. See the list of list of supported software for the application server for more support

information.

To reduce the significant expense of establishing new connections, the connection manager maintains a

connection pool in which each connection is tracked by the credential originally used to open the

connection. When an application needs a connection, the connection manager uses the credential object

to match a free connection from the connection pool. If no free connection is available and the maximum

number of connections has not been reached, the connection pool manager opens a new connection

Chapter 7. Data access resources 1581

using that credential object. This connection mapping is the default connection mapping used by the

application server and is known as a many-to-one credential mapping because the connection is opened

using the credential object in the subject, which is usually not the same as the RunAs identity. This simple

mapping supports easy connection pooling, but the caller identity is never propagated to database server.

To propagate the caller identify to the database server, you can plug in a Java Authentication and

Authorization Service (JAAS) login module. Using this method, you would map the application server user

credential to the user credential suitable for the database server security realm. This approach maintains

the caller identity, but does not use connection pooling.

Trusted connections are used instead of the default mapping or a JAAS mapping to connect to the data

source. Trusted connections support client identity propagation and can also use connection pooling to

reduce the performance penalty of closing and reopening connections with a different identity. Trusted

connections use the DB2 trusted context object.

The DB2 trusted context is an object that the database administrator defines and that contains a system

authorization ID and a set of trust attributes. The trust attributes identify characteristics of a connection that

are required for the connection to be considered trusted. The relationship between a database connection

and a trusted context is established when the connection to the DB2 server is created. After a trusted

context is defined, and an initial trusted connection to the DB2 database server is made, the application

server can use that database connection from a different user without a full reauthentication. This is

because an authentication token is required with the user identity. The database authenticates the user

and then verifies the user authorization to access the database before allowing any database requests to

be processed on behalf of that user.

Using the trusted connection provides the needed plug-in points to support adding your own secure

implementation of the DB2 trusted context. Trusted connections separate the identity used to establish the

connection from the identity that accesses the back-end server services. The connection is established by

a user whose credentials are trusted by the DB2 server to open the connection. The same user is also

then trusted to assert the identity of the other users. This assertion also helps strengthen database

security by eliminating the need to grant all privileges to a single user.

When the application requests a connection to the database, the connection manager can find any idle

trusted connection and assert the user identity to the backend server. All the operations performed on the

backend server are from the asserted user identity. The use of an identity mapping may still be needed if

the back-end server uses a different user repository than that of the application server.

A new mapping configuration called TrustedConnectionMapping implements trusted connections. The

TrustedConnectionMapping configuration maps the RunAs subject to a resource subject that contains the

following elements:

v A resource principal object that this resource subject represents

v A PasswordCredential object in the private credential set

v An IdentityPrincipal object in the principal set

The principal object represents the RunAs identity. The PasswordCredential object contains a user ID and

password to be used by the resource adapter to establish the trusted connection. The IdentityPrincipal

object by default contains the RunAs identity, but can be changed to use the identify of the caller. The

IdentityPrincipal object also contains an original user identity that represents the user who sent the request

initially, an optional realm name that indicates the set of registries where the user identity is defined and

an optional security token, which is a serialized security context of the user.

Enabling trusted context with authentication:

Enable trusted context in your applications to improve how the application server interacts with DB2

database servers. Use trusted connections to preserve the identity records of clients that are connecting to

a DB2 database through your applications; trusted connections can provide a more secure environment by

1582 Administering WebSphere applications

granting access based on the identity of those users. DB2 provides an option for trusted connections in

which a password is required when switching the user identity. You can configure the application server to

use trusted connections with authentication, and plug-in your own code to take advantage of trusted

context with authentication.

 Before you begin

Refer to the topic on enabling trusted context for DB2 databases to ensure that trusted connections are

properly configured for the application server.

About this task

If the WITH AUTHENTICATION option is specified when the trusted context is created, the database

requires that you provide an authentication token with the end user’s identity. The database authenticates

the end user and verifies the end user’s authorization to access the database before the database allows

any requests to be processed.

1. Set useTrustedContextWithAuthentication custom property to true for the DB2 data source.

a. Click JDBC → Data sources.

b. Click the name of the data source that you want to configure.

c. Click Custom properties from the Additional Properties heading.

d. Click New.

e. Complete the required fields. Use the following information:

 Table 12. Custom property panel

Name Value

useTrustedContextWithAuthentication true

If the useTrustedContextWithAuthentication custom property is not set to true, the application server

will provide an implementation of reusing DB2 trusted connections without authentication at run time. In

this case you are not required to provide anything to use the trusted context feature.

2. Use the login configuration for TrustedConnectionMapping, as described in the topic on enabling

trusted context for DB2 databases.

3. Extend the DataStoreHelper class, and provide the implementation for the

getPasswordForUseWithTrustedContextWithAuthentication method as described in the topic on

developing a custom DataStoreHelper class. At run time, the application server will call this method to

return the password that the application server is required to use to switch the trusted context identity

when you have enabled trusted context with authentication. The password that is returned by this

method will be sent to the database when the application server switches trusted context identities,

and the password will not be stored by the application server.

This application server only calls this method if the following is true:

v You set the useTrustedContextWithAuthentication data source custom property to true.

v You use the TrustedConnectionMapping login configuration.

The following is an example of the getPasswordForUseWithTrustedContextWithAuthentication method:

public String getPasswordForUseWithTrustedContextWithAuthentication(String identityname, String realm)

 throws SQLException

 {

 return customersOwnUtility().getPassword(identityname) // customers use their own

 // implementation to get the password

 }

Note: You cannot enable the useTrustedContextWithAuthentication custom property for the data

source without overwriting the getPasswordForUseWithTrustedContextWithAuthentication

method in the DataStoreHelper class to get the password for switching the identity for trusted

connections. If you do not provide implementation for the

Chapter 7. Data access resources 1583

getPasswordForUseWithTrustedContextWithAuthentication method, the application server will

throw an exception with the following message at run time:

TRUSTED_WITH_AUTHENTICATION_IMPLEMENTATION_ERROR=DSRA7033E: You cannot enable the

useTrustedContextWithAuthentication custom property for the data source without

overwriting the getPasswordForUseWithTrustedContextWithAuthentication DataStoreHelper.

TRUSTED_WITH_AUTHENTICATION_IMPLEMENTATION_ERROR.explanation=The

useTrustedContextWithAuthentication custom property is enabled, but the implementation

code for the DataStoreHelper method that will return the password that the application

server will use to switch the identity is not provided.

TRUSTED_WITH_AUTHENTICATION_IMPLEMENTATION_ERROR.useraction=Overwrite the

getPasswordForUseWithTrustedContextWithAuthentication DataStoreHelper method and

provide the implementation code that will return the password, or set the

useTrustedContextWithAuthentication custom property for the data source to false.

Related concepts

“Trusted connections with DB2” on page 1581
Trusted connections allow for the application server to use DB2 Trusted Context objects to establish

connections with a user whose credentials are trusted by the DB2 server to open the connection. By

establishing a Trusted Context, this user is then trusted to assert other user identities on the DB2 server

without the expense of reauthentication. This also enhances the security of your DB2 database by

eliminating the need to assign all privileges to a single user. Implementing trusted connections results in

client identity propagation while leveraging connection pooling to eliminate the performance penalty of

closing and reopening connections with a different identity.

“Data sources” on page 1393
Installed applications use a data source to obtain connections to a relational database. A data source is

analogous to the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection

factory, which provides connectivity to other types of enterprise information systems (EIS).

“JDBC providers” on page 1393
Installed applications use JDBC providers to interact with relational databases.

Related tasks

“Developing a custom DataStoreHelper class” on page 1596
Apply the WebSphere extension, GenericDataStoreHelper class, to create your own data store helper for

data sources that the application server does not support. With this helper class, your JDBC configuration

can use database-specific functions during transactions.

“Setting the security properties for trusted connections” on page 1580
Trusted connections are a solution that can pass the requesting user identity to DB2 and also take full

advantage of the connection pooling. Utilizing the DB2 trusted context object, the trusted connection is

used to separate the identity used to establish the connection from the identity that accessed the DB2

server services. The connection is established by a user whose credentials are authorized by the DB2

server to open the connection and trusted by the DB2 server to assert the identity of the requesting users

when accessing the DB2 server from the application.

“Using the DB2 Universal JDBC Driver to access DB2 for z/OS” on page 1566
The z/OS operating system requires that you configure the DB2 Universal JDBC Driver and your database

to ensure interoperability. Within WebSphere Application Server, configure a JDBC provider object and a

data source object to implement the driver capabilities for your applications.

Configuring the application server and DB2 to authenticate with Kerberos

Configure the application server to use Kerberos as the authentication mechanism for the application

server that connects to a DB2 database server. The Kerberos authentication mechanism enables

interoperability between other applications that support Kerberos authentication. It provides single sign on

(SSO) end-to-end interoperable solutions and preserves the original requester identity.

1584 Administering WebSphere applications

About this task

In order to take advantage of Kerberos authentication with resources in the application server, you need to

configure both DB2 and the application server to use Kerberos as the authentication mechanism. Read

about Kerberos (KRB5) authentication mechanism support for security for a better understanding of how to

set up Kerberos as the authentication mechanism in this version of the application server.

1. Configure Kerberos as the authentication mechanism for the application server.

a. Configure the application server to use an LDAP user registry. See the topic on configuring

Lightweight Directory Access Protocol user registries for more information.

b. Configure Kerberos as the authentication mechanism. See the topic on configuring Kerberos as the

authentication mechanism using the administrative console.

c. Enable global security. See the topic on enabling security for more information.

2. Configure resource adapters for the application server to use Kerberos authentication.

a. Create a JDBC Provider for DB2, and use it to create a data source. For more information on this

task, refer to the topic on configuring a JDBC provider and data source.

b. Configure the data source to connect to the desired DB2 server and data table.

c. Configure the appropriate security settings for the data source.

1) Set the authentication alias for XA recovery to (none)

2) Set the component-managed authentication alias to (none)

3) Set the mapping-configuration alias to KerberosMapping.

Note: If the Kerberos credential connection fails, the resource adapter can be configured to try

a second connection authentication using Default Principle Mapping. To configure this

fallback, select an alias from the Container-managed authentication alias list. To disable

this fallback, select (none) from the Container-managed authentication alias list.

4) Configure the custom properties for the data source. In the Additional Properties → Custom

properties panel for the data source, set the following properties to use Kerberos as the

primary authentication method on a data source:

 Name Value

KerberosServerPrincipal domain_name

For example,

domain.rchland.ibm.com

SecurityMechanism 11

3. Configure the settings for DB2 to use Kerberos authentication. For more information on how to

configure DB2, see the link to the DB2 product family site in the IBM Suggests section.

a. Configure the databases and tables that you will use for tests and general operation.

b. Start a db2 command prompt.

c. From the DB2 command prompt, set the authentication mechanism for DB2.

1) To set the mechanism, enter the following:

db2 update dbm cfg using authentication <mechanism>

<mechanism> can be Kerberos or Server. Therefore, to configure Kerberos authentication,

enter:

db2 update dbm cfg using authentication Kerberos

2) To validate that the authentication is set:

a) Retrieve the configuration by entering the following command:

 db2 get db2 cfg

Chapter 7. Data access resources 1585

b) Scroll through the properties until you find the <Authentication> entry. Validate that this

entry is set to the mechanism that you specified.

d. Configure the DB2 service. Start the db2 service that corresponds to your DB2 instance with a

Kerberos user account that is not mapped to a SPN. This must be the same user account that you

used when you configured LDAP security in the application server. To start a service with a defined

user on Windows operating systems, for example:

1) Open the Windows Services control panel. Click Control Panel → Administrative Tools →

Services.

2) Find the service that controls the DB2 installation.

3) Right-click the service, and choose Properties from the list.

4) In the new window, select the Log On tab.

5) Select the This account radio button.

6) Enter the user name and password for Kerberos User 2.

7) Apply the changes, and click OK.

8) Stop and start the DB2 service. If the user name and password is correct, then the service

should start.

e. Configure java security.

1) Create a jaas.conf file, and put it in the appropriate directory. On Windows operating systems,

for example, you can put this file in c:\winnt

2) Complete the jaas.conf file with the following:

JaasClient {

com.ibm.security.auth.module.Krb5LoginModule required

debug=false useDefaultCcache=false;

};

3) Locate the java directory structure that DB2 uses. Modify the java.security file, which is located

in the java/jre/lib/security directory, to point to the jaas.conf file. For example:

login.config.url.1=file:c:/temp/jaas.conf

f. Verify that you can retrieve a ticket granting ticket (TGT). The DB2 machine requires a TGT from

the Kerberos server. To manually attempt to retrieve a TGT, enter the following command at a

prompt:

java DEBUG=TRUE com.ibm.security.krb5.internal.tools.Kinit –f –p

DB2 should now be fully configured with Kerberos.

1586 Administering WebSphere applications

Related concepts

Kerberos (KRB5) authentication mechanism support for security
The Kerberos authentication mechanism enables interoperability with other applications (such as .NET,

DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end

interoperable solutions and preserves the original requester identity.

Related tasks

Configuring Lightweight Directory Access Protocol user registries
To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid

user name (ID) and password, the server host and port of the registry server, the base distinguished name

(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user

registry that is searchable. You can use any user ID that has the administrative role to log in.

Configuring Kerberos as the authentication mechanism using the administrative console
You can use the administrative console to configure Kerberos as the authentication mechanism for the

application server. When you have entered and applied the required information to the configuration, the

Kerberos service principal name is formed as <service name>/<fully qualified

hostname>@KerberosRealm, and is used to verify incoming Kerberos token requests.

Enabling security
By enabling security, you protect your server from unauthorized users and are then able to provide

application isolation and requirements for authenticating application users.

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

Related reference

“WebSphere Application Server data source properties” on page 1546
Use this page to set advanced data source properties in the application server. These properties activate

and configure services that the application server applies to data sources to customize connections within

an application server. These properties do not affect connections within the database.

Configuring Oracle Real Application Cluster (RAC) with the application server

Oracle Real Application Cluster (RAC) is a ″share-everything″ database architecture in which two or more

Oracle RAC nodes are clustered together and share the same storage. The RAC nodes are connected

together with a high-speed interconnect that enables fast communication between the Oracle nodes. The

nodes can exchange various categories of data block ownership information during startup, lock

information, exchange transaction information and data, and so on.

About this task

Note: Using the Oracle JDBC driver, you can configure failover support, load balancing, or both, in an

Oracle RAC environment.

Oracle Real Application Clusters (RAC) is an option of an Oracle database that brings together two or

more computers to form a clustered database that behaves as a single system. In a RAC database,

Oracle processes that are running in separate nodes access the same data from a shared disk storage.

First introduced in Oracle Version 9i, RAC provides both high availability and flexible scalability.

A typical Oracle RAC cluster consists of the following:

v Cluster nodes – 2 to n nodes or hosts, running the Oracle database server.

v Network Interconnect – a private network used for cluster communications and cache fusion. This is

typically used for transferring database blocks between node instances.

v Shared Storage – used to hold the database system and data files. The shared storage is accessed by

the cluster nodes.

v Production network – used by clients and application servers to access the database.

Chapter 7. Data access resources 1587

The following figure depicts a typical configuration for Oracle RAC:

High speed
interconnect

WebSphere Application Server

.....
RAC node1 RAC node2 RAC node3 RAC node4

Shared cache with Oracle Cache Fusion

SAN
FabricStorage Area

Network

Shared
storage

Production
Network

.....
.....

.....
.....

Users

Here are two of the many features that Oracle RAC provides:

v Oracle Notification Service (ONS) allows for Oracle RAC to communicate the status for the nodes,

which are typically UP and DOWN events, to the Oracle JDBC driver and the driver’s connection cache.

To take advantage of ONS, you must configure the application server to use Oracle’s connection

caching instead of the application server’s connection pooling feature. Read “Configuring Oracle

connection caching in the application server” on page 1590 for more information on this process.

v Distributed Transaction Processing (DTP) is a feature that was introduced in Oracle 10gR2. When this

feature is enabled, Oracle will ensure that all in-flight prepared transactions that belong to a DTP

service for failed RAC instances are pushed to disk. Then, Oracle will restart the DTP service on any of

the RAC instances that are still operational.

For more information on Oracle RAC and how it works with the application server, refer to Building a high

availability database environment using WebSphere middleware: Part 3: Handling two-phase commit in

WebSphere Application Server using Oracle RAC on the developerWorks web site.

v “Configuring a simple RAC configuration in an application server cluster.”

v “Configuring Oracle connection caching in the application server” on page 1590.

v “Configuring two-phase commit distributed transactions with Oracle RAC” on page 1592.

Related reference

Building a high availability database environment using WebSphere middleware: Part 3: Handling

two-phase commit in WebSphere Application Server using Oracle RAC

Configuring a simple RAC configuration in an application server cluster:

1588 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0710_barghouthi/0710_barghouthi.html
http://www.ibm.com/developerworks/websphere/techjournal/0710_barghouthi/0710_barghouthi.html

Oracle Real Application Cluster (RAC) is a ″share-everything″ database architecture that can provide high

availability and load balancing. A typical configuration for an Oracle RAC contains two or more Oracle RAC

nodes that are clustered together and share the same storage.

 About this task

This figure depicts a typical RAC physical topology in a cluster environment for the application server, and

both the failover and load balancing are enabled:

Load balance = on
Failover = on

Router

WebSphere Application Server Cluster

cluster-member1 cluster-member1

rac-node1 rac-node2

Interconnect

Shared disk

P. Primary

In the figure above, the application server cluster consists of two members: cluster-member1 and

cluster-member2. The Oracle RAC physical configuration contains two nodes: rac-node1 and rac-node2.

The RAC nodes can be located in the same physical machine with the cluster members, or they could be

placed in entirely different machines. The actual placement does not impact the fundamental qualities of

the services provided by RAC. To achieve both high availability and load-balancing, you can specify the

Oracle data source URL for both cluster members in the application server with the required properties.

1. Navigate to the Oracle data source. Click Resources → JDBC → Data sources → oracle_data_source.

If you don’t already have an Oracle data source, create a new data source by clicking New and

completing the wizard. For the URL, substitute the properties in the next step.

2. Set the URL for the Oracle database with the required configuration parameters.

Chapter 7. Data access resources 1589

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=

 (ADDRESS=(PROTOCOL=TCP)(HOST= rac-node1)(PORT=1521))

 (ADDRESS=(PROTOCOL=TCP)(HOST= rac-node2)(PORT=1521))

 (FAILOVER=on)(LOAD_BALANCE=on)

 (CONNECT_DATA=(SERVER=DEDICATED)

 (SERVICE_NAME=<service_name>)))

Note: Be aware of these configuration options:

v If you are not using Oracle services, then service_name will be the database name in the

example. If you are using Oracle services, then service_name will be the name of the

services.

v The example has FAILOVER and LOAD_BALANCE turned on. To turn one or both of these

features off, change on to off in the above example.

3. Click Apply or OK.

Related tasks

“Configuring Oracle connection caching in the application server”
You can elect to configure an Oracle data source to use Oracle’s connection caching feature instead of

using the application server’s connection pooling. Connection caching for Oracle databases is similar to

connection pooling in the application server.

“Configuring two-phase commit distributed transactions with Oracle RAC” on page 1592
Real Application Cluster (RAC) configurations for Oracle 10g have an inherent issue with the transaction

manager when Oracle attempts to recover two-phase commit distributed transactions that span over

multiple Oracle RAC nodes. A problem can occur when one node fails, and Oracle opens up the other

surviving nodes for business before the Oracle RAC completes the necessary recovery action for the node

that has failed. The application server’s ability to maintain transaction affinity provides you the ability to

circumvent this issue.

“Configuring Oracle Real Application Cluster (RAC) with the application server” on page 1587
Oracle Real Application Cluster (RAC) is a ″share-everything″ database architecture in which two or more

Oracle RAC nodes are clustered together and share the same storage. The RAC nodes are connected

together with a high-speed interconnect that enables fast communication between the Oracle nodes. The

nodes can exchange various categories of data block ownership information during startup, lock

information, exchange transaction information and data, and so on.

Configuring Oracle connection caching in the application server:

You can elect to configure an Oracle data source to use Oracle’s connection caching feature instead of

using the application server’s connection pooling. Connection caching for Oracle databases is similar to

connection pooling in the application server.

 About this task

Currently, Oracle only supports connection caching with data sources that use the

oracle.jdbc.pool.OracleDataSource implementation class, instead of the

oracle.jdbc.pool.OracleConnectionPoolDataSource or oracle.jdbc.xa.client.OracleXADataSource classes.

By default, the Oracle JDBC providers in the application server are configured to use the

oracle.jdbc.pool.OracleConnectionPoolDataSource for non-XA data sources, or

oracle.jdbc.xa.client.OracleXADataSource for XA data sources. To enable Oracle connection caching, you

must configure and use a new JDBC provider in the application server that implements the

oracle.jdbc.pool.OracleDataSource class.

Note: Oracle connection caching does not support XA.

1. Create a data source and user-defined JDBC provider.

a. Click Resources → JDBC → Data sources

b. Select a server from the Scope drop-down list.

1590 Administering WebSphere applications

c. Click New.

d. Enter the name and JNDI name for the data source. Click Next.

e. Create a new JDBC provider. Select Create new JDBC provider, and click Next.

f. Define the required properties for the JDBC provider. Use the following configuration settings:

v Database type: User-defined

v Implementation class name: oracle.jdbc.pool.OracleDataSource

Click Next.

g. Enter the class path for ojdbc6.jar, and click Next.

h. For Data store helper class name, enter

com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper. Click Next.

i. Define the security aliases for this data source, and click Next.

j. Finish the wizard.

k. Save the configuration changes.

2. Configure the data source that you created.

a. Click the name of the data source. You will be taken to the configuration panel.

b. Select Custom properties, and create or modify the properties for this data source. Enter or

update the following custom properties:

 Name Value

disableWASConnectionPooling true

connectionCachingEnabled true

connectionCacheName your_cache_name

removeExistingOracleConnectionPoolIfExists true

Note: The removeExistingOracleConnectionPoolIfExists

property must be set to true so the application server will

remove any existing Oracle connection pools with an

identical name. Otherwise, the Oracle data source will fail

the getConnection method if the pool name that is

created has a name that is identical to an existing pool.

For example, if you run a test connection, the test

connection process will create an Oracle connection pool

that will prevent the application server from working

properly at run time.

URL Oracle_URL

Note: The order in which the custom properties are set is important. This could be an issue, as

the application server passes the properties as a collection and the order is not guaranteed.

If you encounter this issue, contact Oracle and reference Oracle bug #6638862.

3. Click Apply or OK.

4. Save the changes to the application server’s configuration.

5. Restart the application server.

Results

Be aware that Oracle will not display a message if the pool creation fails, and a normal connection will be

returned instead. You can confirm that the connection pool is created by running your application, and try

to issue a test connection. If the Oracle connection pool was created successfully, the test connection will

fail with an exception that the Oracle pool name is already used. Therefore, you must create the data

source and JDBC provider at the server scope.

Chapter 7. Data access resources 1591

Related tasks

“Configuring Oracle Real Application Cluster (RAC) with the application server” on page 1587
Oracle Real Application Cluster (RAC) is a ″share-everything″ database architecture in which two or more

Oracle RAC nodes are clustered together and share the same storage. The RAC nodes are connected

together with a high-speed interconnect that enables fast communication between the Oracle nodes. The

nodes can exchange various categories of data block ownership information during startup, lock

information, exchange transaction information and data, and so on.

“Configuring two-phase commit distributed transactions with Oracle RAC”
Real Application Cluster (RAC) configurations for Oracle 10g have an inherent issue with the transaction

manager when Oracle attempts to recover two-phase commit distributed transactions that span over

multiple Oracle RAC nodes. A problem can occur when one node fails, and Oracle opens up the other

surviving nodes for business before the Oracle RAC completes the necessary recovery action for the node

that has failed. The application server’s ability to maintain transaction affinity provides you the ability to

circumvent this issue.

Configuring two-phase commit distributed transactions with Oracle RAC:

Real Application Cluster (RAC) configurations for Oracle 10g have an inherent issue with the transaction

manager when Oracle attempts to recover two-phase commit distributed transactions that span over

multiple Oracle RAC nodes. A problem can occur when one node fails, and Oracle opens up the other

surviving nodes for business before the Oracle RAC completes the necessary recovery action for the node

that has failed. The application server’s ability to maintain transaction affinity provides you the ability to

circumvent this issue.

 About this task

Errors can occur when the recovery process attempts to commit or rollback a transaction branch through a

RAC node that was previously active but later failed. The transaction manager would receive the following

exception:

ORA- 24756: transaction does not exist

If this error is encountered, the Oracle database administrator might need to manually resolve the in-doubt

transaction by forcing a rollback or commit process. If you do not desire a manual intervention, however,

you might want to configure an automatic and transparent strategy for transaction recovery.

If the in-doubt transaction is not resolved, any subsequent transactions will receive the following exception:

ORA-01591 lock held by in-doubt distributed transaction

The result is that portions of the database will not be usable.

The key to a transparent recovery strategy is to eliminate the possibility of a global transaction spanning

more than one transaction branch over multiple RAC nodes. A transaction branch corresponds to a

database connection that is enlisted in a global transaction. If all connections in a global two-phase commit

transaction originate from the same node, transaction recovery problems should not arise. Configure an

Oracle RAC with the application server to prevent errors with two-phase transactions.

The application server maintains transaction affinity for incoming connections, and you can take advantage

of this feature to configure automatic recovery for Oracle RAC with two-phase commit transactions. If you

implement this configuration, all connections from a given application server will be received from the

same Oracle node, and the connections will finish on that same node. This configuration will avoid

situations in which transactions span multiple nodes, and you should not experience a recovery problem if

one or more Oracle nodes go down.

v You can elect to manually resolve the in-doubt transaction.

1. Get the orphaned transaction ID. Issue the following command:

sql > select state, local_tran_ID, Global_tran_Id from dba_2pc_pending where state = "prepared"

1592 Administering WebSphere applications

2. Roll back all of the transaction IDs that are in the prepared phase.

sql > rollback force ’’;

v Configure an automatic strategy for transaction recovery.

1. Create an Oracle service that has only one primary node. Creating the service with one primary

node will ensure that load balancing is disabled. You can also specify one or more alternate nodes

with the -a parameter. Run this command to create the service:

srvctl add service -d <database_name> -s <service_name> -r <primary nodes> -a <alternate_nodes>

2. Enable Distributed Transaction Processing (DTP) on the Oracle service. DTP was first introduced in

Oracle 10gR2. Each DTP service is a singleton service that is available on only one Oracle RAC

instance. Run this command:

execute dbms_service.modify_service (service_name => ’<service_name>’ , dtp => true);

3. Configure each cluster member in the application server to use the Oracle DTP service.

Results

If you configured an automatic recovery strategy, the DTP service will start automatically on the preferred

instance. However, if the database is restarted, the DTP service will not start automatically. You can start

the DTP service using this command:

srvctl start service -d -s

If a RAC node stops working, Oracle will not failover the DTP service until the Oracle RAC cleanup and

recovery is complete. Even if the Oracle nodes come back up, the Oracle DTP service will not return to

the freshly restarted RAC node. Instead, you will have to manually move the service to the restarted RAC

node.

When you configure DTP on the Oracle service, you have transferred load balancing from the Oracle

JDBC provider to the application server. The workload will be distributed by the application server instead

of Oracle, which is why you created services that do not implement load balancing and only use one

primary node. This configuration prevents situations in which transaction processes span multiple RAC

nodes and alleviates recovery problems that can arise when one or more RAC nodes fail.

Related tasks

“Configuring Oracle connection caching in the application server” on page 1590
You can elect to configure an Oracle data source to use Oracle’s connection caching feature instead of

using the application server’s connection pooling. Connection caching for Oracle databases is similar to

connection pooling in the application server.

“Configuring Oracle Real Application Cluster (RAC) with the application server” on page 1587
Oracle Real Application Cluster (RAC) is a ″share-everything″ database architecture in which two or more

Oracle RAC nodes are clustered together and share the same storage. The RAC nodes are connected

together with a high-speed interconnect that enables fast communication between the Oracle nodes. The

nodes can exchange various categories of data block ownership information during startup, lock

information, exchange transaction information and data, and so on.

Configuring client reroute for applications that use DB2 databases

The client reroute feature enables you to configure your client applications for a DB2 universal database to

recover from a communication loss, and the applications can continue to work with minimal interruption.

Rerouting is central to the support of continuous operations, but rerouting is only possible when there is an

alternate location that is identified to the client connection.

Before you begin

This task assumes the following:

v You have a DB2 data source defined in the application server.

v The DB2 data source to which your application connects is running one of the following:

Chapter 7. Data access resources 1593

– DB2 for z/OS Version 9.1 or later

– DB2 Version 9.5 or later of DB2 for Linux, HP-UX, Solaris, or Windows.

v You have implemented the DB2 database with a redundant setup or the ability to fail the DB2 server to

a standby node.

About this task

Note: Client reroute for DB2 allows you to provide an alternate server location, in case the connection to

the database server fails. If you decide to use client reroute with the persistence option, the

alternate server information will persist across Java Virtual Machines (JVMs). In the event of an

application server crash, the alternate server information will not be lost when the application server

is restored and attempts to connect to the database.

Without any configuration on the client side, a JDBC driver for DB2 supports the client reroute capability, if

it is enabled, when the driver makes an initial connection to the DB2 server. When the JDBC driver

connects to a DB2 server that has an alternate server configured, the primary server sends information

about the alternate server to the JDBC driver. If the connection to the primary server fails, the JDBC driver

is able to reroute connections to the alternate server. If the client process crashes, however, the alternate

server information is lost, and the client will need to connect to the primary server again. If the client

cannot make an initial connection to the primary server, the client will have no knowledge of the alternate

server and cannot reroute.

You can configure a DB2 data source in the application server with the Alternate server name and

Alternate port number fields, or with the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber data source custom properties, to support client reroute even on the

initial connection attempt. If the JDBC driver is not able to connect to the primary DB2 server, the

information that is necessary for a client reroute is already present, and the JDBC driver can reroute the

connection to an alternate server.

Additionally, if you have configured a DB2 data source as a Type 4 JDBC driver, you can use the Client

reroute server list JNDI name field, or the clientRerouteServerListJNDIName data source custom

property, to enable persistence of the client reroute state. Typically, when a connection is rerouted and the

JDBC driver has connected to the alternate DB2 server, the alternate server sends information about its

own alternate server to the JDBC driver. The JDBC driver will then have the information that is required to

reroute the connection again if the alternate DB2 server is not available. Effectively, the server that was

originally the alternate server is now the primary server, and a new alternate server has been established.

If you enable persistence for client reroute, this new state can be remembered. If the application server

crashes and is restarted, the JDBC driver can connect to the DB2 server that was considered the primary

server at the time of the crash. Without the persistence feature, the JDBC driver would have to start from

the original server configuration and attempt to connect to the server that was originally considered the

primary server.

You can use the automatic client rerouting feature within the following DB2 configurable environments:

v Enterprise Server Edition (ESE) with the data partitioning feature (DPF)

v Data Propagator (DPROPR)-style replication

v High availability cluster multiprocessor (HACMP™)

v High availability disaster recovery (HADR).

1. In the administrative console, click Resources → JDBC → Data sources → data_source.

2. Click WebSphere Application Server data source properties.

3. In the DB2 automatic client reroute options section, fill in the fields to enable client rerouting.

Complete the following fields:

1594 Administering WebSphere applications

Alternate server names

Specifies the list of alternate server name or names for the DB2 server. If more than one

alternate server name is specified, the names must be separated by commas. For example:

 host1,host2

Alternate port numbers

Specifies the list of alternate server port or ports for the DB2 server. If more than one alternate

server port is specified, the ports must be separated by commas. For example:

5000,50001

Note: Ensure that an equal number of entries must be specified for both alternate ports and

hosts. Otherwise, a warning is displayed and client reroute is not enabled.

4. Optional: Enable client reroute with the persistence option.

a. Complete the field for Client reroute server list JNDI name. The field specifies the JNDI name

that is used to bind the DB2 client reroute server list into the JNDI name space. The DB2 database

server will use this name to look up the alternate server name list when the alternate server

information is not already in memory.

Note: Be aware of the following:

v This option is not supported for Type 2 data sources. If you use a DB2 data source that is

configured as a Type 2 JDBC driver, the JDBC driver uses a catalog to persist the client

reroute information. If this property is configured with a Type 2 driver, the application

server will issue a warning.

v Use different JNDI names among different data sources. Otherwise, when you delete a

data source, and the JNDI entry is removed from the name space, the other data sources

that share the JNDI entry will be affected.

5. Configure the retry count and interval for the client reroute function. Complete these two fields:

Retry interval for client reroute

Specifies the amount of time, in seconds, between retries for automatic client reroute.

Maximum retries for client reroute

Specifies the maximum number of connection retries that are attempted by the automatic client

reroute function if the primary connection to the server fails. The property is only used when

Retry interval for client reroute is set.

6. Click OK.

7. Restart the application server.

What to do next

If you later want to remove the client reroute information that is bound in JNDI, you can do so by deleting

the data source. You can also use the unbind feature with the test connection service to delete the JNDI

binding for the client reroute function from the application server’s JNDI name space without deleting the

data source.

To delete the JNDI binding for client reroute:

1. Select Unbind client reroute list from JNDI.

2. Click OK.

3. Save the configuration.

4. Click Test connection for the data source.

5. Deselect Unbind client reroute list from JNDI.

6. Click OK.

7. Save the configuration.

Chapter 7. Data access resources 1595

Related tasks

“Configuring a JDBC provider and data source” on page 1507
For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

Developing a custom DataStoreHelper class

Apply the WebSphere extension, GenericDataStoreHelper class, to create your own data store helper for

data sources that the application server does not support. With this helper class, your JDBC configuration

can use database-specific functions during transactions.

Before you begin

If you are using a configuration with a data source that is not supported by the application server, you

might want to create a custom data store helper. This helper will allow you to leverage the database to

perform functions during a transaction that would not otherwise be available. You will need to create a

user-defined DataStoreHelper class, and there is information for creating a new exception handler to catch

any exceptions that might be created with the use of your custom data handler.

1. Create a class that extends the com.ibm.websphere.rsadapter.GenericDataStoreHelper.java class or

any of the existing data store helpers. Use the following code as an example; this type of data source

is based on a user-defined JDBC provider:

package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;

import javax.resource.ResourceException;

import com.ibm.websphere.appprofile.accessintent.AccessIntent;

import com.ibm.websphere.ce.cm.*;

import com.ibm.websphere.rsadapter.WSInteractionSpec;

/**

* Example DataStoreHelper class, demonstrating how to create a user-defined DataStoreHelper.

* The implementation for each method is provided only as an example. More detail is probably

* required for any custom DataStoreHelper that is created for use by a real application.

* In this example, we will override the doStatementCleanup(),getIsolationLevel(), and set userDefined

* exception map.

*/

public class ExampleDataStoreHelper extends com.ibm.websphere.rsadapter.GenericDataStoreHelper

{

 public ExampleDataStoreHelper(java.util.Properties props)

 {

 super(props);

 // Update the DataStoreHelperMetaData values for this helper.

 getMetaData().setGetTypeMapSupport(false);

 // Update the exception mappings for this helper.

 java.util.Map xMap = new java.util.HashMap();

 // Add an Error Code mapping to StaleConnectionException.

 xMap.put(new Integer(2310), StaleConnectionException.class);

 // Add an Error Code mapping to DuplicateKeyException.

 xMap.put(new Integer(1062), DuplicateKeyException.class);

 // Add a SQL State mapping to the user-defined ColumnNotFoundException

 xMap.put("S0022", ColumnNotFoundException.class);

 // Undo an inherited StaleConnection SQL State mapping.

 xMap.put("S1000", Void.class);

 setUserDefinedMap(xMap);

 // If you are extending a helper class, it is

 // normally not necessary to issue ’getMetaData().setHelperType(...)’

 // because your custom helper will inherit the helper type from its

 // parent class.

 }

 public void doStatementCleanup(java.sql.PreparedStatement stmt) throws SQLException

 {

 // Clean up the statement so it may be cached and reused.

 stmt.setCursorName("");

 stmt.setEscapeProcessing(true);

 stmt.setFetchDirection(java.sql.ResultSet.FETCH_FORWARD);

 stmt.setMaxFieldSize(0);

 stmt.setMaxRows(0);

1596 Administering WebSphere applications

stmt.setQueryTimeout(0);

 }

 public int getIsolationLevel(AccessIntent intent) throws ResourceException

 {

 // Determine an isolation level based on the AccessIntent.

 // set WebSphere default isolation level to TRANSACTION_SERIALIZABLE.

 if (intent == null) return java.sql.Connection.TRANSACTION_SERIALIZABLE;

 return intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_OPTIMISTIC ?

 java.sql.Connection.TRANSACTION_READ_COMMITTED :

 java.sql.Connection.TRANSACTION_REPEATABLE_READ;

 }

 public int getLockType(AccessIntent intent) {

 if (intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC) {

 if (intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ) {

 return WSInteractionSpec.LOCKTYPE_SELECT;

 }

 else {

 return WSInteractionSpec.LOCKTYPE_SELECT_FOR_UPDATE;

 }

 }

 return WSInteractionSpec.LOCKTYPE_SELECT;

 }

}

2. Optional: Create your own exception handler class. Use the following code as a guide:

package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;

import com.ibm.websphere.ce.cm.PortableSQLException;

/**

* Example PortableSQLException subclass, which demonstrates how to create a user-defined

* exception for exception mapping.

*/

public class ColumnNotFoundException extends PortableSQLException

{

 public ColumnNotFoundException(SQLException sqlX)

 {

 super(sqlX);

 }

}

3. Compile the newly created DataStoreHelper class or classes. You will need the following JAR files in

your classpath to compile them:

v app_server_root/dev/JavaEE/j2ee.jar

v app_server_root/dev/was_public.jar

Note: was_public.jar contains classes from app_server_root/lib/rsahelpers.jar that are needed to

compile a custom DataStoreHelper class.

v app_server_root/plugins/com.ibm.ws.runtime.jar

v If you are using a development environment, such as Eclipse, you need to set the above JAR files

in your classpath to be able to compile. Then, create a JAR file of the project after you have finished

editing your files (see the help documentation for your development environment for specific

instructions).

v If you do not have development environment, and you are using the javac compiler:

a. Create your .java file that extends the GenericDataStoreHelper or any other data store helper, as

shown in Step 1.

b. Change to your home directory after you are done editing your file or files in the command line

utility.

c. Set the classpath using this command:

d. Compile your class or classes. For example, on Windows operating systems enter the following

command (this will compile all the .java files in the directory that you specify):

C:\javac your_directory*.java

e. From the Java directory, create a JAR file of all the compiled class files in your directory. For

example, enter the following command on Windows operating systems (change myFile to the

name you want for your JAR file):

Chapter 7. Data access resources 1597

C:\Java> jar cf myFile.jar *.class

For more information on using the javac compiler go to the website for the Java compiler at Sun

Microsystems.

4. Place your compiled JAR files in a directory, and update the class path for the JDBC provider to

include that location. For example, if your JAR file is c:\myFile.jar, then make sure to modify the JDBC

class path to include c:\myFile.jar.

a. Click Resources → JDBC → JDBC Providers > JDBC_provider.

b. In the Class path field, add the location of the JAR files that you compiled. For example, press

ENTER in the field and add a new line:

c:\myFile.jar

5. Configure the application server to use your new custom DataStoreHelper class.

a. From the administrative console select Resources > JDBC > Data Sources.

b. Select the data source that you want to configure with your custom DataStoreHelper class.

c. In the section labeled Data store helper class name, select Specify a user-defined data store

helper.

d. Enter the class name for the data store helper that you created.

e. Apply your changes and select OK.

Verifying a connection

Many connection problems can be easily fixed by verifying some configuration parameters. There are

some steps that you must complete to enable a successful connection.

About this task

If your connection is still not successful after completing these steps and reviewing the applicable

information, check the SystemOut.log for warning or exception messages. Then use the technical support

search function to find known problems. See the IBM Suggests section of this article for a link to the IBM

support and downloads page, which contains the search function.

1. Create the authentication data alias.

2. Create the JDBC provider.

3. Create a data source.

4. Save the data source.

5. If you created a new authentication alias, restart the server for which you need to verify connectivity.

6. Test the connection

You can test your connection from the data source collection view or the data source details view.

Access either view in the administrative console, and then select a connection from the list. Click the

Test Connection button on the connection.

Test connection service

WebSphere Application Server provides a test connection service for validating data source configurations.

The testConnection operation instantiates the data source configuration, gets a connection, and then

immediately closes the connection.

If the definition of your data source includes a WebSphere variable, you need to determine how your

scope settings for both the variable and data source can affect the test connection results. Your next step

is to choose which of the three ways you want to activate the test connection service: through the

administrative console, the wsadmin tool, or a Java stand-alone program.

1598 Administering WebSphere applications

Verifying your scope settings

Associating WebSphere variables with your data source configurations can elicit test connection results

that are incongruent with the run-time behavior of your application. In some cases, a test connection

operation fails, but the physical data source functions normally during application runtime. The cause of

the potential conflict is the difference between how your application server handles the scope settings of

WebSphere variables at runtime, and how it handles those same scope settings for a test connection

operation. Understanding the difference helps you create successful data source configurations.

At runtime, WebSphere Application Server invokes a physical data source by resolving the appropriate

variable at a level where one of the following criteria exists:

v The scope of the variable can contain the data source configuration; that is, the variable has the larger

scope.

v The variable and the data source have identical scopes.

Application Server meets these conditions by attempting to resolve the variable at each level of the scope

spectrum. That is, the product tries to resolve the variable in the server scope, then the cluster scope, then

the node scope, and lastly the cell scope.

However, Application Server tests connections at one scope only; it performs the test operation in the JVM

of the same scope as that of the data source configuration. The product attempts to resolve the driver

class path variable at that scope only.

 Table 13. Correlation of data source scope with the test connection JVM

Data source scope JVM where the test connection operation occurs

Cell Deployment manager process

Node Node agent process (of the relevant node)

Cluster Node agent for each node that contains a cluster member

Server Server; if the server is unavailable, the test connection

operation is retried in the node agent for the node that

contains the application server.

If the scope of the WebSphere variable is smaller than that of the data source, the test connection

operation fails. The following table shows the scenarios that produce this failure, as well as those that

produce success.

 Table 14. Test connection results for different data source and WebSphere variable combinations

Data source scope Cell level variables Node level variables Server level variables

Cell level Ok Fail Fail

Node level Ok Ok Fail

Server level Ok Ok Ok

Contrary to expectations, these test connection failures generally do not translate into run-time failures.

Ensure that the location of your JDBC driver files is accessible to every client that must use the data

source, and configure your WebSphere variable with the full path of that location.

Test connection success, but run-time failure

However, one of the scope combinations listed in Table 2 can produce the reverse scenario: the test

connection operation succeeds, but the data source fails at runtime. This anomaly occurs in the case of a

cell-scoped data source that uses a cell-scoped WebSphere variable. The connection test is successful

because the operation takes place in the deployment manager process (as indicated in Table 1), where

Chapter 7. Data access resources 1599

Application Server can resolve the cell-scoped variable. That data source can fail at runtime because the

cell-scoped variable might be overridden with a null value.

When you create a node, Application Server creates environment variables for all supported JDBC drivers

at the node scope, and initializes each variable with an empty string. Because an application server

attempts to resolve variables from the low end of the scope spectrum to the high end, the node scope

variable overrides the cell scope variable at runtime. The server reads the empty string and accepts it as

the JDBC driver class path. The null class path elicits a classNotFound exception when the server

attempts to use the data source.

Using either one of the Application Server administrative options, you can prevent the empty string from

becoming the final value for the driver class path variable.

v Using the WebSphere Application Server administrative console: The data source wizard program

copies the value of the cell-scoped variable (which you specify in the JDBC provider creation wizard) to

the node-scoped variable of the same name. The wizard program performs this copy operation only if

the node-scoped variable has the empty string value; thus the program does not change a valid class

path that you specified earlier.

To ensure that the data source works with the node-scoped variable at runtime, follow these steps:

1. Install the JDBC driver files on the deployment manager node, as well as every node where the

data source must function.

2. Use the driver file path on the deployment manager to define the WebSphere variable for a JDBC

provider at the cell scope.

3. Ensure that the data source is associated with the deployment manager JDBC provider, and has the

same cell scope.

Note: Ensure success by installing the driver files in locations with identical full-path names on all

nodes, including the deployment manager node. Otherwise, the same scenario of test

connection success, but run-time failure, is likely to reoccur.

v Using the wsadmin scripting tool: To make the data source work for both the test connection

operation and runtime, create the same driver class path configurations at the cell scope and at all

relevant node scopes. Follow these steps:

1. Install the JDBC driver files on the deployment manager node; use that path name to define the

driver class path variable for a JDBC provider at the cell scope.

2. Ensure that the data source is associated with the deployment manager JDBC provider, and has the

same cell scope.

3. On each node where the data source must function, install the JDBC driver files and use the path to

define the WebSphere variable for a JDBC provider at the node scope. Each of these providers

must have the same configuration.

Note: Ensure success by installing the driver files in locations with identical full-path names on all

nodes, including the deployment manager node. Otherwise, the same scenario of test

connection success, but run-time failure, is likely to reoccur.

Use cell scope resources only if all nodes that need access to the data source, including the deployment

manager node, run on the same platform and have the JDBC drivers installed in the same location.

Otherwise, use the node scope as the largest scope setting for your data sources.

Bypassing variable lookups

You can bypass the environment variable lookups by changing the class path entries for the JDBC

provider to hard-coded values. However, this strategy succeeds only if you configure the class path

identically on all nodes where the data source must function.

1600 Administering WebSphere applications

Activating the test connection service

There are three ways to activate the test connection service: through the administrative console, the

wsadmin tool, or a Java stand-alone program. Each process invokes the same methods on the same

MBean.

Administrative console

WebSphere Application Server allows you to test a connection from the administrative console by simply

pushing a button: the Data source collection, Data source settings, Version 4 data source collection, and

Version 4 data source settings pages all have Test Connection buttons. After you define and save a data

source, you can click this button to ensure that the parameters in the data source definition are correct. On

the collection page, you can select several data sources and test them all at once. Note that there are

certain conditions that must be met first. For more information, see Testing a connection with the

administrative console.

Note: The following exception occurs when you click Test Connection to connect a Sybase data source

from the administrative console.

Test connection failed for data source isagent on server server1 at node

svtaix24Node01 with the following exception: java.lang.Exception:

java.sql.SQLException: JZ006: Caught IOException: java.net.ConnectException: A

remote host refused an attempted connect operation.DSRA0010E: SQL State = JZ006,

Error Code = 0

This exception occurs when the Sybase data source port number is not matched to the port

configured in Sybase server. The default port number is 5000. Check the port number of your

Sybase server in the interfaces file under /<sybase install directory>.

WsAdmin tool

The wsadmin tool provides a scripting interface to a full range of WebSphere Application Server

administration activities. Because the Test Connection functionality is implemented as a method on an

MBean, and wsadmin can invoke MBean methods, wsadmin can be utilized to test connections to data

sources. You have two options for testing a data source connection through wsadmin:

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties

of a data source object. For information, see Testing a connection using wsadmin.

You can also test a connection by invoking the MBean operation. Use Example: Testing data source

connection using wsadmin as a guide for this technique.

Java stand-alone program

Finally, you can test a connection by executing the testConnection() method on the DataSourceCfgHelper

MBean. This method allows you to pass the configuration ID of the configured data source. The Java

program connects to a running Java Management Extensions (JMX) server to access the MBean. In a

Network Deployment installation of Application Server, you connect to the JMX server running in the

deployment manager, usually running on port 8879.

The return value from this invocation is either 0, a positive number, or an exception. 0 indicates that the

operation completed successfully, with no warnings. A positive number indicates that the operation

completed successfully, with the number of warnings. An exception indicates that the test of the connection

failed.

You can find an example of this code in Example: Test a connection using testConnection(ConfigID).

Chapter 7. Data access resources 1601

Testing a connection with the administrative console

After you have defined and saved a data source, you can click the Test Connection button to ensure that

the parameters in the data source definition are correct.

Before you begin

About this task

You can select multiple data sources on the data source collection page and test them as a group. Be

sure that the following conditions are met before using the Test Connection button:

v If you are testing a connection using a WebSphere Application Server Version 4.0 type of data source,

ensure that the user and password information is set.

v Designate variables appropriately.

– WebSphere Application Server automatically sets environment variables for JDBC driver class paths

on the i5/OS platform. Application Server names the variable according to your driver, either

${OS400_NATIVE_JDBC_DRIVER_PATH} or ${OS400_TOOLBOX_JDBC_DRIVER_PATH}. In the

administrative console, you designate the complete path location of your driver as the value of the

environment variable. (See the “JDBC provider settings” on page 1531 article for more information.)

– If you download the latest JTOpen version of the jt400.jar file, use one of two placement strategies to

keep the value of your environment variable accurate. You can place the file in the same directory

that you specify for the ${OS400_TOOLBOX_JDBC_DRIVER_PATH} variable. Alternatively, you can

place the jt400.jar file in a different directory and change the value of

${OS400_TOOLBOX_JDBC_DRIVER_PATH} to this different path.

v Verify that the environment variables exist in the scope of the test. For example, if the node scoped

data source you defined uses ${DB2_JDBC_DRIVER_PATH}, check that there exists a node level

definition for DB2_JDBC_DRIVER_PATH = c:\sqllib\java(or your system dependent value).

v Restart the deployment manager and node agents after you define or edit WebSphere variables.

v Restart the deployment manager and node agents after you create or edit an authentication alias for the

data source.

v Ensure that the deployment manager and node agent are up and running.

v You can now test a connection to the data source. On the data source collection page in the

administrative console, select the data source and click Test Connection .

A Test Connection operation can have three different outcomes, each resulting in a different message

being displayed in the messages panel of the page on which you press the Test Connection button.

1. The test can complete successfully, meaning that a connection is successfully obtained to the

database using the configured data source parameters. The resulting message states: Test

Connection for data source DataSourceName on process ProcessName at node NodeName was

successful.

2. The test can complete successfully with warnings. This means that while a connection is

successfully obtained to the database, warnings were issued. The resulting message states: Test

Connection for data source DataSourceName on process ProcessName at node NodeName was

successful with warning(s). View the JVM Logs for more details.

The View the JVM Logs text is a hyperlink that takes you to the JVM Logs console screen for the

process.

3. The test can fail. A connection to the database with the configured parameters is not obtained. The

resulting message states: Test Connection failed for data source DataSourceName on process

ProcessName at node NodeName with the following exception: ExceptionText. View the JVM Logs

for more details.

Again, the text for View the JVM Logs is a hyperlink to the appropriate logs screen.

Testing a connection using wsadmin

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties

of a data source object.

1602 Administering WebSphere applications

Before you begin

About this task

The testConnection operation takes a data source configuration ID as an argument.

Note: This invocation cannot accept user IDs and passwords that must be defined in the database itself.

This invocation can only be used for databases that do not require a user ID and password to make

a connection (such as DB2 on a Windows machine), or for data sources that have a

component-managed or container-managed authentication alias set on the data source object.

1. Invoke the getid() method for your data source.

2. Set the value of the configuration id to a variable.

set myds [$AdminConfig getid /JDBCProvider:mydriver/DataSource:mydatasrc/]

where /JDBCProvider:mydriver/DataSource:mydatasrc/ is the data source you want to test. After you

have the configuration ID of the data source, you can test the connection to the database.

3. Test the connection to the database.

$AdminControl testConnection $myds

Example: Testing a connection using testConnection(ConfigID):

The following sample code creates a data source instance and an associated connection instance, and

tests them to ensure database connectivity.

 This program uses JMX to connect to a running server and invoke the testConnection method on the

DataSourceCfgHelper MBean. The acronym ND in a comment line indicates that the following code applies

to WebSphere Application Server Network Deployment. The word Base in a comment line indicates that

the following code applies to WebSphere Application Server.

/**

 * Description

 * Resource adapter test program to make sure that the MBean interfaces work.

 * Following interfaces are tested

 *

 * --- testConnection()

 *

 *

 * We need following to run

 * C:\src>java -Djava.ext.dirs=C:\WebSphere\AppServer\lib;C:\WebSphere\AppServer\java\jre\lib\ext testDSGUI

 * must include jre for log.jar and mail.jar, else get class not found exception

 *

 *

 */

import java.util.Iterator;

import java.util.Locale;

import java.util.Properties;

import java.util.Set;

import javax.management.InstanceNotFoundException;

import javax.management.MBeanException;

import javax.management.MalformedObjectNameException;

import javax.management.ObjectName;

import javax.management.RuntimeMBeanException;

import javax.management.RuntimeOperationsException;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.ws.rsadapter.exceptions.DataStoreAdapterException;

public class testDSGUI {

Chapter 7. Data access resources 1603

//Use port 8880 for a Base installation or port 8879 for ND installation

String port = "8880";

// String port = "8879";

String host = "localhost";

final static boolean verbose = true;

// eg a configuration ID for DataSource declared at the node level for Base

private static final String resURI = "cells/cat/nodes/cat:resources.xml#DataSource_1";

// eg a 4.0 DataSource declared at the node level for Base

// private static final String resURI = "cells/cat/nodes/cat:resources.xml#WAS40DataSource_1";

// eg Apache Derby DataSource declared at the server level for Base

//private static final String resURI = "cells/cat/nodes/cat/servers/server1/resources.xml#DataSource_6";

// eg node level DataSource for ND

//private static final String resURI = "cells/catNetwork/nodes/cat:resources.xml#DataSource_1";

// eg server level DataSource for ND

//private static final String resURI = "cells/catNetwork/nodes/cat/servers/server1:resources.xml#DataSource_4";

// eg cell level DataSource for ND

//private static final String resURI = "cells/catNetwork:resources.xml#DataSource_1";

 public static void main(String[] args) {

 testDSGUI cds = new testDSGUI();

 cds.run(args);

 }

/**

 * This method tests the ResourceMbean.

 *

 * @param args

 * @exception Exception

 */

 public void run(String[] args) {

 try {

 System.out.println("Connecting to the application server.......");

 /***/

 /** Initialize the AdminClient */

 /***/

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, host);

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, port);

 AdminClient adminClient = null;

 try {

 adminClient = AdminClientFactory.createAdminClient(adminProps);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("NLS: Cannot make a connection to the application server\n");

 ce.printStackTrace();

 System.exit(1);

 }

 /***/

 /** Locate the Mbean */

 /***/

 ObjectName handle = null;

 try {

 // Send in a locator string

 // eg for a Base installation this is enough

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

1604 Administering WebSphere applications

// for ND you need to specify which node/process you would like to test from

 // eg run in the server

//ND: ObjectName queryName = new OjectName

 ("WebSphere:cell=catNetwork,node=cat,process=server1,type=DataSourceCfgHelper,*");

 // eg run in the node agent

//ND: ObjectName queryName = new ObjectName

 ("WebSphere:cell=catNetwork,node=cat,process=nodeagent,type=DataSourceCfgHelper,*");

//ND: eg run in the Deployment Manager

//ND: ObjectName queryName = new ObjectName

 ("WebSphere:cell=catNetwork,node=catManager,process=dmgr,type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 while (iter.hasNext()) {

 // use the first MBean that is found

 handle = (ObjectName) iter.next();

 System.out.println("Found this ->" + handle);

 }

 if (handle == null) {

 System.out.println("NLS: Did not find this MBean>>" + queryName);

 System.exit(1);

 }

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 /***/

 /** Build parameters to pass to Mbean */

 /***/

 String[] signature = { "java.lang.String" };

 Object[] params = { resURI };

 Object result = null;

 if (verbose) {

 System.out.println("\nTesting connection to the database using " + handle);

 }

 try {

 /***/

 /** Start to test the connection to the database */

 /***/

 result = adminClient.invoke(handle, "testConnection", params, signature);

 } catch (MBeanException mbe) {

 // ****** all user exceptions come in here

 if (verbose) {

 Exception ex = mbe.getTargetException(); // this is the real exception from the Mbean

 System.out.println("\nNLS:Mbean Exception was received contains " + ex);

 ex.printStackTrace();

 System.exit(1);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find " + infe);

 } catch (RuntimeMBeanException rme) {

 Exception ex = rme.getTargetException();

 ex.printStackTrace(System.out);

 throw ex;

 } catch (Exception ex) {

 System.out.println("\nUnexpected Exception occurred: " + ex);

 ex.printStackTrace();

 }

 /***/

 /** Process the result. The result will be the number of warnings */

 /** issued. A result of 0 indicates a successful connection with */

 /** no warnings. */

 /***/

Chapter 7. Data access resources 1605

//A result of 0 indicates a successful connection with no warnings.

 System.out.println("Result= " + result);

 } catch (RuntimeOperationsException roe) {

 Exception ex = roe.getTargetException();

 ex.printStackTrace(System.out);

 } catch (Exception ex) {

 System.out.println("General exception occurred");

 ex.printStackTrace(System.out);

 }

 }

}

Configuring data access for the Application Client

Configuring data access for the Application Client involves specifying the resource reference and

associated database information required for data access. This specification is done as part of the

assembly and deployment steps for the Application Client.

About this task

There are two tools needed to configure data sources used by J2EE application clients:

v An assembly tool for defining the resource reference in the deployment descriptor; and

v The Application Client Resource Configuration Tool (ACRCT) for defining the connection to the database

in the client deployment environment.

Data access from an application client uses the JDBC driver connection functions directly from the client

side. It does not take advantage of the additional pooling support available in the WebSphere Application

Server run time. Configuring data access for an application client does not require configuration of a JDBC

provider and data source on the WebSphere Application Server server machine.

If you want to take advantage of the pooling and additional database functions provided by the product, it

is recommended that your client application utilize an enterprise bean running on the server side to

perform data access.

Defining an application client resource reference using an assembly tool

1. Assemble your application client module as described in Assembling application clients.

2. Create a new resource reference:

a. In a Project Explorer view, right-click your application client module and click Open With >

Deployment Descriptor Editor.

b. On the References tab, click Add > Resource reference > Next.

c. On the Resource Reference page, enter the Name of this resource reference. The Application

Client for WebSphere Application Server run time uses this name for two purposes: to bind the

object into the java:comp/env portion of the JNDI namespace, and to find client specific

configuration information. If the code for the Application Client performs a lookup for

java:comp/env/jdbc/myDB, the name of the resource reference should be jdbc/myDB.

d. For Type, select javax.sql.DataSource for JDBC connections.

e. For Authentication, select Application if your client application intends to provide authentication

information. If the Application Client run time provides the authentication information (as configured

by the Application Client Resource Configuration tool), select Container.

f. Ignore the Sharing scope setting; it is unused in an application client resource reference. All

Application Client resources are not shared.

g. Click Finish.

h. Close the deployment descriptor and save your changes.

1606 Administering WebSphere applications

Results

The JNDI name field appears under WebSphere Bindings after your add the reference.

Client configuration with the ACRCT

About this task

There are two client resources for you to configure in the Application Client Resource Configuration Tool

(ACRCT) to enable data access from an application client: a data source provider and a data source.

Note: The following objects, which can be bound into the server name space, are not supported on the

client:

v Java 2 Connector (J2C) objects

v Connection manager objects

The Application Client does not provide client database drivers. If your client application uses a

database directly, rather than using an enterprise bean, you must provide the database drivers on

the client machine. This action can involve contacting your database vendor to acquire client

database driver code and licenses.

Instead of accessing the database directly, it is recommended that your client application use an

enterprise bean. Accessing a database through an enterprise bean eliminates the need to have

database drivers on the client machine because the database access is handled by the enterprise

bean running on the application server. Enterprise beans can also take advantage of the additional

database functions provided by the run time.

1. Configure a new data source provider as described in Configuring new data source providers. This

provider describes the JDBC database implementation for your client application.

2. Enter the following information on the General tab:

a. A name for this data source provider.

b. Optional: A description.

c. The classpath to the data source provider implementation classes or JAR files. This is optional if

the implementation classes or JAR files are already in the class path configuration of the client.

d. The name of the implementation class. For example, for DB2 this value is

COM.ibm.db2.jdbc.DB2DataSource. Remember this class must implement the

javax.sql.DataSource class. The ACRCT does not verify this class and you receive an error when

you run your client application if the class does not implement javax.sql.DataSource.

Use the Custom tab to configure non-standard properties of the data source provider. This panel

enables you to enter property-value pairs. During run time the implementation class name is created

and any custom properties added on this panel are set on the newly created data source object using

reflection. Any properties configured on this panel must have an appropriate set method on the data

source class. For example, assume there is a property called use2Phase and its value should be 1.

On the custom panel you enter the value use2Phase into the name column and the value 1 into the

value column. The Application Client run time then uses reflection to find a property on the data

source class called, typically setUse2Phase and call that method passing the value of 1. See your

database product documentation for valid properties on your data source implementation.

3. Click OK.

4. Configure a new data source as described in Configuring new data sources for application clients. This

describes the client properties of the database your client application uses.

5. Enter the following information on the General tab:

a. A Name. This field is required and identifies a name for the Application Client Resource

Configuration Tool to use. This name is not used by your client application program.

b. Optional: A description.

Chapter 7. Data access resources 1607

c. The JNDI name. This field is required and must match the value entered in the Name field on the

Add Resource Reference page of the assembly tool. In the example above, set this value to

jdbc/myDB.

d. Optional: The Database Name.

e. Optional: Your userid in the User field.

f. Optional: Your password in the Password field. This password does not display.

g. Your password again to confirm in the Re-Enter password field. Note: The User and Password

fields are used only when the Authentication field on the Add Resource Reference page of the

assembly tool is set to Container.

Resource references

Use this page to designate how the resource references of application modules map to the actual

resources that are configured for the application.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Resource references.

v If your application uses any of the following resource types, you can set or reset their mapping

configurations:

– Default messaging JMS queues destinations

– Default messaging JMS topic destinations

– Data source

– Generic JMS connection factory

– Mail session

– J2C connection factory

– JMS queue connection factory for the JMS provider of WebSphere MQ

– JMS queue destination for WebSphere MQ

– JMS topic connection factory for WebSphere MQ

– JMS topic destination for WebSphere MQ

– Unified JMS connection factory for WebSphere MQ

– URL configuration

v The page is comprised of sections that correspond to each applicable resource type. Each section

heading is the class name for the resource. If your application contains only one applicable resource

type, you see only one section.

v Each section contains a table. Each table row depicts a resource reference within a specific module of

your application.

v The rows contain the JNDI names of resource mapping targets for your references only if you bound

them together during application assembly. You can modify those bindings on this administrative

console page.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target

that you select in step 2 applies to all of those references.

2. Click Browse to select a resource from the new page that is displayed, the Available Resources

page. The Available Resources page shows all resources that are available mapping targets for your

application references.

3. Click Apply. The console displays the Resource references page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

1608 Administering WebSphere applications

v For data sources and connection factories: Sections for these resource types contain an additional

set of steps for modifying your security settings. Use the last column in the displayed table to view the

authorization type for each resource configuration per application module. You can modify the

corresponding authentication method only if the authorization type is container. Container-managed

authorization indicates that the product performs signon to the resource rather than the enterprise bean

code. The reconfiguring process differs slightly for each authentication method option:

– If you select None:

1. Determine which resource configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

– If you select Default:

1. Determine which resources to designate with the WebSphere Application Server

DefaultPrincipalMapping login configuration. You must apply this option to each resource

individually if you want to designate different authentication data aliases. See the ″J2EE

connector security″ Information center topic for more information on the default mapping

configuration.

2. Select the appropriate table rows.

3. Select Use default method from the list of authentication method options that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

– If you select Use trusted connections (one-to-one mapping):

1. You must have a data source server that is running DB2 Version 9.1 for z/OS, and the data

source must have trusted context enabled.

2. Select an authentication alias from the list that matches an alias that is already defined in the

DB2 data source. If you do not have an alias defined that is suitable, you need to define a new

alias.

3. Select a data source from the table that has trusted context enabled.

4. Click Apply.

5. To edit the properties of the custom login configuration, click Mapping Properties in the table

cell.

– If you select Custom login configuration:

1. Determine which resources to designate with a custom Java Authentication and Authorization

Service (JAAS) login configuration. See the ″J2EE connector security″ Information center topic

for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that

precede the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table

cell.

Select

Select the check boxes of the rows that you want to edit.

Module

The name of a module in the application.

Chapter 7. Data access resources 1609

EJB

The name of an enterprise bean that is contained by the module.

URI

Specifies location of the module relative to the root of the application EAR file.

Resource Reference

The name of a resource reference that is used in the enterprise bean, if applicable, and is declared in the

deployment descriptor of the application module.

Target Resource JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target of the

resource reference.

 Data type String

Login configuration

This column applies to data sources and connection factories only and refers to the authorization type and

the authentication method for securing the resource.

Mapping-configuration alias

This panel allows you to select a mapping configuration alias for the resource that you are configuring.

This panel is only available when security domains are defined. Security domains allow you to isolate

mapping configuration aliases between servers. The tree view is useful in determining the security domain

to which an alias belongs, and the tree view can help you determine the servers that will be able to access

each authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden

when you cannot use them. For example, a cell-scoped security domain will be hidden from the tree if all

servers and clusters in the tree have defined their own security domain. If you are looking for an alias that

is not visible in the tree, it is because the alias cannot be used by any servers that have visibility to this

resource. In this case, you must define the alias at the global scope or in a different security domain that

is visible to this resource.

To view this administrative console panel:

1. You must have a security domain defined in the application server.

2. Click one of the following paths in the administrative console:

v Resources → JDBC → Data sources → data_source. Click Browse... in the security section for

Component-managed authentication alias or Container-managed authentication alias.

v Resources → JDBC → JDBC Providers → jdbc_provider → Data sources → data_source. Click

Browse... in the security section for Component-managed authentication alias or

Container-managed authentication alias.

v Resources → Resource Adapters → J2C connection factories → j2c_connection_factory. Click

Browse... in the security section for Component-managed authentication alias or

Container-managed authentication alias.

Note: Be careful when selecting an alias, because it is possible to select an alias that is only accessible

by a subset of the servers that will use the resource. If you select a global alias, you are

guaranteed that an alias by that name will be accessible to all users of the resource. If the alias has

been overridden in a security domain, however, that alias will be used instead of the global one.

The tree view includes icons to help you select the proper alias:

v

The alias is accessible by all servers that can access this resource.

v

There is at least one server that cannot access the alias. Check the tree view to see if this is

OK for the application that will be using this resource.

1610 Administering WebSphere applications

v

The alias is defined in multiple places.

Select a J2C authentication alias

This panel allows you to select a J2C authentication alias for the resource that you are configuring. This

panel is only available when security domains are defined. Security domains allow you to isolate J2C

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them. For example, a cell-scoped security domain will be hidden from the tree if all servers

and clusters in the tree have defined their own security domain. If you are looking for an alias that is not

visible in the tree, it is because the alias cannot be used by any servers that have visibility to this

resource. In this case, you must define the alias at the global scope or in a different security domain that

is visible to this resource.

To view this administrative console panel:

1. You must have a security domain defined in the application server.

2. Click one of the following paths in the administrative console:

v Resources → JDBC → Data sources → data_source. Click Browse... in the security section for

Component-managed authentication alias or Container-managed authentication alias.

v Resources → JDBC → JDBC providers → jdbc_provider → Data sources → data_source. Click

Browse... in the security section for Component-managed authentication alias or

Container-managed authentication alias.

v Resources → Resource Adapters → J2C connection factories → j2c_connection_factory. Click

Browse... in the security section for Component-managed authentication alias or

Container-managed authentication alias.

v Resources → Resource Adapters → J2C activation specifications →

j2c_activation_specification. Click Browse... in the security section for Authentication Alias.

v Resources → JMS → Connection factories → connection_factory. Click Browse... in the security

section for Authentication Alias.

v Resources → JMS → JMS providers → jms_provider → [Additional properties] Connection

factories → connection_factory. Click Browse... in the security section for Authentication Alias.

Note: Be careful when selecting an alias, because it is possible to select an alias that is only accessible

by a subset of the servers that will use the resource. If you select a global alias, you are

guaranteed that an alias by that name will be accessible to all users of the resource. If the alias has

been overridden in a security domain, however, that alias will be used instead of the global one.

The tree view includes icons to help you select the proper alias:

v

The alias is accessible by all servers that can access this resource.

v

There is at least one server that cannot access the alias. Check the tree view to see if this is

OK for the application that will be using this resource.

v

The alias is defined in multiple places.

Considerations for isolated resource providers

There are some design considerations that you should be aware of when working with resource providers

that you have specified to be isolated in their own class loaders.

Be aware of the following issues that you need to address if you isolate a resource provider in it’s own

class loader:

v Client container

Chapter 7. Data access resources 1611

The client container does not manage the class path of resource providers, so resource providers that

are isolated will not be supported in the client container.

v Multiple resource provider versions per application

If an application refers to resources from multiple versions or implementations of the same resource

provider, then all of the resource providers that are referenced must be isolated.

v References to isolated resource provider classes

If a module directly refers to classes that are loaded by an isolated resource provider, which means the

module has import statements of resource provider classes, the following restrictions are in place:

– The module can only refer to resources from one version or implementation of an isolated resource

provider. This is an inherent class loading restriction, because a module class loader can only refer

to one version of a class.

– The module cannot perform direct JNDI lookup without the use of Java EE resource reference

meta-data. This restriction is required, because without resource reference metadata the application

server has no mechanism to link the class loader of the module to the class loader of the isolated

resource provider.

The relational resource adapter does not generally allow direct access to resource provider classes, so

these restrictions will typically only affect modules that implement the

com.ibm.websphere.rsadapter.WSCallHelper class. For mail providers, these restrictions will most likely

be in place, because the javax.mail API relies heavily on classes rather than interfaces. Therefore, the

implementation details are necessarily part of the API.

Configuring data access security

Safeguard access to your enterprise data by designating credentials that WebSphere Application Server

uses to authenticate database connections.

Before you begin

Review the history and roles of the database tables in your environment; this information helps you

determine the best approach for securing each table. You can either rely on the default authentication

mechanism of a user profile, or override it by configuring a security scheme for the individual application

component that requires access to the database. Generally, consider overriding the default profile security

if your database tables were created prior to the Application Server installation, or if programs outside of

Application Server also access the tables.

About this task

To authenticate database connections with user profile credentials, use an existing profile from any of

three scopes in your application serving environment. Otherwise, consult the following Application

component authentication table for methods of overriding user profile settings.

v System-level scope option: Change the default user profile of WebSphere Application Server to an

existing profile in your i5/OS system that has authority to access the database tables.

v WebSphere Application Server instance scope option: Add authority for accessing the tables to the

default Application Server user profile.

v Individual application server scope option: If you designated a user profile for an individual application

server that is different from the profile of the entire WebSphere Application Server instance, add

database authority to that new user profile.

For database tables that are created by WebSphere Application Server and are used only within the

Application Server environment, you generally do not need to change or override the default security.

You can simply add authority for accessing the database to the WebSphere Application Server user

profile.

v Overriding user profile credentials: In the following table, locate the type of application component for

which you need to create authentication credentials. Choose a method from the Authentication

1612 Administering WebSphere applications

strategies column.

 Table 15. Application component authentication

Type of object that

requires access to

backend data The data is created by: Library Authentication strategies

Servlet session WebSphere Application

Server

By default, QWAS6SN.

Specify a different library by

editing the libraries custom

property in the Session

Manager persistence panel.

By default, the user profile

under which the application

server runs. Specify a

different library by editing

the libraries custom

property in the Session

Manager persistence panel.

Entity enterprise beans that

use container managed

persistence (CMP)

WebSphere Application

Server or already exists

User-defined By default, the user profile

under which the application

server runs. Specify a

different user profile by

creating a JAAS alias for

the enterprise bean data

source. See the ″Creating

JAAS aliases″ note that

follows this table for more

information.

User-written data access

code in servlets, session

beans, and entity beans

with bean-managed

persistence (BMP), which

might use connection

pooling

WebSphere Application

Server, user code, or

already exists

User-defined By default, the user profile

under which the application

server runs. Specify a

different user profile by

modifying the user code to

explicitly use a user ID and

password with the database

connection. Alternatively,

you can create a JAAS

alias for the data source

that you configure for your

servlet or enterprise bean.

See the ″Creating JAAS

aliases″ note that follows

this table for more

information.

Note:

1. Consult the Managing Java 2 Connector Architecture authentication data entries article for

instruction on creating a JAAS alias.

2. After following those steps, navigate to the relevant data source properties page in the

administrative console: Resources > Data sources > my_data_source.

3. Designate the new JAAS credentials as the component-managed alias for the data source.

4. Restart the application server for the new security configuration to take effect.

Note: If you use component-specific authentication, be aware that some authentication strategies take

precedence over others:

Enterprise bean

You can specify a data source for the enterprise bean and create a JAAS alias for

association with that data source. The user ID and password properties of the alias

control which user ID can access the tables that are defined by the data source. The

JAAS alias that you associate with the enterprise bean data source takes precedence

Chapter 7. Data access resources 1613

over both the application server user ID and the ID of the EJB container data source. If

you specify a data source for the enterprise bean but do not specify a JAAS alias for it,

your i5/OS system uses the application server ID. The application server ID is the

default, regardless of whether you specified a data source for the EJB container.

EJB container

You can specify a data source for the EJB container and create a JAAS alias for

association with that data source. The user ID and password properties of the alias

control which user ID can access the tables that are defined by the data source. The

JAAS alias that you associate with the EJB container data source takes precedence over

the application server user ID. However, if you do not specify a JAAS alias for the EJB

container data source, your i5/OS system uses the application server ID to authenticate

access to the database tables.

Application server

The application server runs under the user ID that is specified in the USER ID property

for the application server. Any database tables that are accessed should allow access to

the specified user ID. By default, the application server runs under the QEJBSVR user

profile. Therefore, the database tables must allow access to the QEJBSVR user profile.

Passing client information to a database

Using a WebSphere Application Server API or trace function, you can pass unique client information on

every connection that originates from the same data source.

About this task

Some databases, such as DB2, support a data source custom property that triggers your database servers

to extract client information from WebSphere Application Server connections. (Consult the database

documentation to see whether your product supports this capability and which property the product

requires.) Be aware, however, that these properties introduce a very limited functionality in Application

Server. Consequently, an application server connection manager incurs the following risky behaviors,

which can result in the transfer of wrong client information to the database.

v The connection manager cannot change client information on the data source, or the connections

obtained from that data source, dynamically.

v The connection manager must set the same client information on all connections that are obtained from

that data source. For example, if you set ApplicationName as part of the data source clientInformation

property, all connections from that data source have the same application name.

Application Server offers two methods of passing client information that provide the necessary connection

management flexibility. Using either method, you can set client information on some connections and not

others, as well as set different client information on different database connections from the same data

source.

v Use the IBM proprietary setClientInformation(Properties) API. The API is defined on the WSConnection

class, which is part of the plugins_root/com.ibm.ws.runtime_6.1.0.jar file.

1. Cast the connection objects in your applications to com.ibm.websphere.rsadapter.WSConnection

before calling the API.

2. Optionally, set a properties object for adding new client information on a connection if and when new

information is introduced by the backend database:

public void setClientInformation (Properties props)throws SQLException;

v You can also activate the function implicitly (that is, within Application Server) by using the

WAS.clientinfo trace string. Enable this trace dynamically, from the administrative console, just as you

activate any other trace. For more information about passing client information implicitly, see “Implicitly

set client information” on page 1615.

1614 Administering WebSphere applications

Results

Example

See “Example: Setting client information with the setClientInformation(Properties) API.”

Example: Setting client information with the setClientInformation(Properties) API

With this API, set WebSphere Application Server client information on connections to pass that information

to your database.

The following example code calls setClientInformation(Properties) on the

com.ibm.websphere.rsadapter.WSConnection object.

import com.ibm.websphere.rsadapter.WSConnection;

.....

try {

 InitialContext ctx = new InitialContext();

 //Perform a naming service lookup to get the DataSource object.

 DataSource ds = (javax.sql.DataSource)ctx.lookup("java:comp/jdbc/myDS");

 }catch (Exception e) {System.out.println("got an exception during lookup: " + e);}

 WSConnection conn = (WSConnection) ds.getConnection();

 Properties props = new properties();

 props.setProperty(WSConnection.CLIENT_ID, "user123");

 props.setProperty(WSConnection.CLIENT_LOCATION, "127.0.0.1");

 props.setProperty(WSConnection.CLIENT_ACCOUNTING_INFO, "accounting");

 props.setProperty(WSConnection.CLIENT_APPLICATION_NAME, "appname");

 props.setProperty(WSConnection.CLIENT_OTHER_INFO, "cool stuff");

 conn.setClientInformation(props);

 conn.close()

Parameters

props contains the client information to be passed. Possible values are:

v WSConnection.CLIENT_ACCOUNTING_INFO

v WSConnection.CLIENT_LOCATION

v WSConnection.CLIENT_ID

v WSConnection.CLIENT_APPLICATION_NAME

v WSConnection.CLIENT_OTHER_INFO

v WSConnection.OTHER_CLIENT_TYPE

Refer to the WSConnection documentation for more details on which client information is passed to the

backend database. To reset the client information, call the method with a null parameter.

Exceptions

This API creates an SQL exception if the database issues an exception when setting the data.

Passing client info to a db cdat_clientinfo

Implicitly set client information

If you track client information in your database, you can choose one of two ways to pass WebSphere

Application Server client data on database connections.

You can choose to explicitly pass the information on connections by calling an IBM proprietary API,

setClientInformation(Properties), on the com.ibm.websphere.rsadapter.WSConnection object within your

application code. The com.ibm.websphere.rsadapter.WSConnection object is located in the

plugins_root/com.ibm.ws.runtime_6.1.0.jar file. In some cases, however, you might want WebSphere

Chapter 7. Data access resources 1615

Application Server to handle the passing of client information to database connections. This method of

setting the client information is referred to as implicit. You might choose the implicit method because:

v You want to keep your application free of proprietary APIs, or

v Your application uses container-managed persistence (CMP), in which case you cannot use the

proprietary API to set client information on database connections.

The WebSphere Application Server trace facility provides the capability for setting client information

implicitly. You can designate one of two special trace groups to enable or disable client information

passing: “WAS.clientinfo trace” or “WAS.clientinfopluslogging trace” on page 1617.

Possible run-time scenarios

v Connection sharing

In the case of connection sharing, WebSphere Application Server sets the client information on the first

acquired connection handle only. If connection sharing is enabled and two or more getConnection

methods are called (resulting in two handles on the same connection), only the first getConnection call

causes the client information to pass to the backend database. This scenario does not apply to the

explicit process of passing client information; in such cases every setClientinformation method is relayed

to the database regardless of connection sharing.

v Implicit/explicit co-existence

When you use both the explicit and implicit procedures for relaying client information, some combination

of the explicitly set data and implicitly set data is combined, but the explicit setting usually takes

precedence. For example, if the application sets the client accounting information to

″myAccountingInfo″, the final accountingInfo string that is passed to the backend database looks

something like the following sample code:

000325_WSRdbManagedConnectionImpl@1234_myAccountingInfo:

where 000325 is the thread id and WSRdbManagedConnectionImpl@1234 is the WebSphere connection

instance.

v Client information reset

When you configure Application Server to pass client information, it does reset client information when a

connection is returned to the pool, but only if the WAS.clientinfo and WAS.clientinfopluslogging trace

mechanisms are disabled (that is, WAS.clientinfo=all=disabled:WAS.clientinfopluslogging=all=disabled).

In the explicit case, however, the reset operation is done only when the application issues

setClientInformation(null) on the WSConnection connection.

WAS.clientinfo trace

By default, the implicit mechanism is disabled. You can turn on this mechanism dynamically, without

stopping and starting your application server, or statically by setting the WebSphere Application Server

trace group WAS.clientinfo=all=enabled.

The information implicitly collected and set on the database connection consists of the user name, user

location and application name.

Note: User name and user location can only be implicitly collected and set on the database connection if

you enable Java 2 security.

user name

The name of the user that initiates the application request. This option is collected and passed to

the backend database (when supported) only if Java 2 security is enabled. Information here is

collected by calling the WSSecurityHelper.getFirstCaller method.

user location

The name of the location of the user, in the form of cell:node:server. This option is collected and

1616 Administering WebSphere applications

passed to the backend database, when appropriate, only when Java 2 security is enabled.

Information here is collected by calling the WSSecurityHelper.getFirstServer method.

application name

The name of the application running. This value is the output of the getApplication method from

the Java EEName object. This value is collected regardless of the Global Security setting.

WAS.clientinfopluslogging trace

When debugging database problems, such as deadlocks, there is a set of information that is needed to

help with the debugging effort. This information is typically obtained by enabling a WebSphere Relational

Resource Adapter (RRA) trace, and an Enterprise JavaBean (EJB) container trace. However, there are

some cases where timing is an issue when reproducing a given problem. Having too much tracing

information can alter the behavior of the application, such as change the timing, and the problem might no

longer occur.

Because of this situation, a new trace group is provided where only a minimum set of information is

collected. This trace group is WAS.clientinfopluslogging. This function sets the client information implicitly

on the connection, just like the WAS.clientinfo trace, as well as logs and traces important application

activities. Those activities are:

v SQL Strings that are run (such as, select userId from tabl1 where id=? for update).

v Start, commit, and rollback of transactions.

v EJB calls (such as, Create, Remove, findByPrimaryKey, and so on).

Setting client information traces with the administrative console

Use one of two WebSphere Application Server trace groups to pass client information to a database.

About this task

The WAS.clientinfo and WAS.clientinfopluslogging traces pass client data on every connection that

originates from the same data source.

1. Open the administrative console.

2. Select Troubleshooting.

3. Select Log and Trace.

4. Select the server you want to use.

5. Select Change log detail levels.

6. Select the Configuration or Run time tab.

7. In the Trace Specification entry field, type WAS.clientinfopluslogging=all. This starts the

WAS.clientinfopluslogging trace, which passes the client information to the backend data store (if your

database supports receiving client information in this manner) and logs important client activities. Type

WAS.clientinfo=all to pass client information to the backend without tracing of client activities. To

deactivate either trace, simply type the trace group name followed by =off (without spacing between

characters).

About Apache Derby

Use Apache Derby as a test and development database only. Apache Derby must run at a minimal version

of v10.3 or Cloudscape v10.1x. The Apache Derby package that is bundled with the application server is

backed by full IBM Quality Assurance (QA).

Unlike versions 5.1.60x and earlier, Apache Derby is a pure Java database server. The Apache Derby

code base, which the open source community calls Derby, is a product of the Apache Software Foundation

(ASF) open source relational database project. Apache Derby includes the Derby base code without any

modification to the underlying source code. You can investigate more incompatibilities about Derby code at

the Apache Derby web site.

Chapter 7. Data access resources 1617

Note: Earlier versions of Apache Derby cannot conduct two phase-commit transactions over the Network

Server framework, but later versions of the Derby Client JDBC driver provides Apache Derby with

support for XA transactions. Only the Network Server framework provides support for multiple Java

virtual machines (JVMs), such as application servers, to access Apache Derby.

Apache Derby is equipped with the following .bat/sh tools:

v sysinfo: displays database version information

v ij: manipulates the database instances

Note: Use ij as an alternative for the Cloudscape cview tool, which does not exist in Derby.
When you run the ij tool, surround the dbname by double quotation marks (″ ″) if it includes the full path

name; for example:

ij> connect ’"c:\temp;create=true"’

This is ’ ″ ″ ’ without spaces.

v dblook: dumps DDL information

v networkServerControl: controls the networkServer process (can be used for functions such as ping and

trace)

v startNetworkServer: starts the networkServer process

v stopNetworkServer: stops the networkServer process

Verifying the Cloudscape automatic migration

Version 7.0 of the application server requires Cloudscape or Apache Derby to run at a minimal version of

v10.1.x. During the application server upgrade to version 7.0, the migration tool automatically upgrades the

database instances that are accessed through the embedded framework by some internal components,

such as the UDDI registry. The tool also attempts to upgrade Cloudscape or Derby instances that your

applications access through the embedded framework. You must verify the migration results for these

backend databases.

Before you begin

Do not use Apache Derby or Cloudscape as a production database. Use it for development and test

purposes only.

The migration tool attempts to upgrade Cloudscape database instances that are accessed through the

embedded framework only. You must manually upgrade Cloudscape instances that transact with

application servers on the Network Server framework. See the “Upgrading Cloudscape manually” on page

1621 topic. This requirement eliminates the risk of corrupting third party applications that use the Network

Server framework to access the same database instances as WebSphere Application Server.

Other applications can access Apache Derby or Cloudscape on Network Server because the framework

provides the database with a foundation of connectivity software; the embedded framework does not.

Derby Network Server or Cloudscape Network Server can transact with multiple Java Virtual Machines

(JVM) or application servers concurrently, whereas Cloudscape or Derby on the embedded framework

works with only a single JVM. Clustered or coexistence implementations of Application Server require

Network Server. For more information, consult the IBM Cloudscape Information Center. Find the link in the

following IBM Suggests section.

About this task

For database instances that your applications access through the embedded framework, the automatic

migration can succeed completely, fail completely, or succeed with warnings. A migration that produces

warning messages does create an Apache Derby or Cloudscape database with your data, but does not

migrate all of your configured logic and other settings, such as:

v keys

1618 Administering WebSphere applications

v checks

v views

v triggers

v aliases

v stored procedures

To distinguish between a partially and a completely successful migration, you must verify the

auto-migration results by checking both the general post-upgrade log and the individual database logs.

Performing these tasks gives you vital diagnostic data to troubleshoot the partially migrated databases as

well as those that fail auto-migration completely. Ultimately, you migrate these databases through a

manual process.

1. Open the post-upgrade log of each new profile for the application server. The path name of the log is

app_server_root/profiles/profileName/logs/WASPostUpgrade.timestamp.log.

2. Examine the post-upgrade log for database error messages. These exceptions indicate database

migration failures. The following lines are an example of post-upgrade log content, in which the

database error code is DSRA7600E. The migration tool references all database exceptions with the prefix

DSRA.

MIGR0344I: Processing configuration file /opt/WebSphere51/AppServer/cloudscape

/db2j.properties.

MIGR0344I: Processing configuration file /opt/WebSphere51/AppServer/config/cells

/migr06/applications/MyBankApp.ear/deployments/MyBankApp/deployment.xml.

DSRA7600E: Cloudscape migration of database instance /opt/WebSphere61/Express

/profiles/default/databases/_opt_WebSphere51_AppServer_bin_DefaultDB failed,

reason: java.sql.SQLException: Failure creating target db

MIGR0430W: Cloudscape Database /fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9

/testRun/pre/websphere_backup/bin/DefaultDB failed to migrate <new database name>

Note: Call IBM WebSphere Application Server Support if you see a migration failure message for a

Cloudscape instance that is accessed by a WebSphere internal component (that is, a

component that helps comprise WebSphere Application Server rather than one of your

applications).

3. Open the individual database migration log that corresponds with each of your backend Cloudscape

databases. These logs have the same timestamp as that of the general post-upgrade log. The logs

display more detail about errors that are listed in the general post-upgrade log, as well as expose

errors that are not documented by the general log.

The path name of each database log is app_server_root/profiles/profileName/logs/
myFulldbPathName_migrationLogtimestamp.log.

4. Examine each database migration log for errors. For a completely successful migration, the log

displays a message that is similar to the following text:

MIGR0429I: Cloudscape Database F:\temp\51BaseXExpress\PostUpgrade50BaseFVTTest2\testRun

\pre\websphere_backup\bin\DefaultDB was successfully migrated. See log C:\WebSphere61

\Express\profiles\default\logs\DefaultDB_migrationLogSun-Dec-18-13.31.40-CST-2005.log

Otherwise, the log displays error messages in the format of the following example:

connecting to source db <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9

/testRun/pre/websphere_backup/bin/DefaultDB>

connecting to source db <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9

/testRun/pre/websphere_backup/bin/DefaultDB> took 0.26 seconds

creating target db <jdbc:derby:/opt/WebSphere61/Express/profiles/default/databases

/_opt_WebSphere51_AppServer_bin_DefaultDB>

Chapter 7. Data access resources 1619

ERROR: An error occurred during migration. See debug.log for more details.

shutting down databases

shutting down databases took 0.055 seconds

5. For more data about a migration error, consult the debug log that corresponds with the database

migration log. The WebSphere Application Server migration utility triggers a debug migration trace by

default; this trace function generates the database debug logs. The full path name of a debug log is

app_server_root/profiles/profileName/logs/myFulldbPathName_migrationDebugtimestamp.log.

The following lines are a sample of debug text. The lines display detailed exception data for the error

that is referenced in the previous sample of database migration log data.

java.sql.SQLException: Database_opt_WebSphere51_AppServer_bin_DefaultDB already exists. Aborting migration

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.doMigrate(Unknown Source)

 at com.ibm.db2j.tools.MigrateFrom51.doMigrate(Unknown Source)

 at com.ibm.ws.adapter.migration.CloudscapeMigrationUtility.migr

Results

v The migration utility for the application server changes your Apache Derby or Cloudscape JDBC

configurations whether or not it successfully migrates the database instances that are accessed by your

applications. The tool changes the class paths for the Derby or Cloudscape JDBC provider, data source

implementation classes, and data source helper classes. The following table depicts these changes:

 Table 16. New class information

Class type Old value New value

JDBC provider class path ${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar ${DERBY_JDBC_DRIVER_PATH}/derby.jar

v Where DERBY_JDBC_DRIVER_PATH is the WebSphere

environment variable that defines your Cloudscape

JDBC provider

v Where derby.jar is the base name of the JDBC driver

class file (In your environment, reference the JDBC

driver class file by the full path name.)

Data source implementation class: Connection pool com.ibm.db2j.jdbc.DB2jConnectionPool DataSource org.apache.derby.jdbc.EmbeddedConnection

PoolDataSource

Data source implementation class: XA com.ibm.db2j.jdbc.DB2jXADataSource org.apache.derby.jdbc.EmbeddedXADataSource

Data source helper class com.ibm.websphere.rsadapter.Cloudscape

DataStoreHelper

com.ibm.websphere.rsadapter.Derby DataStoreHelper

Additionally, the db2j.properties file changes:

– The name app_server_root/cloudscape/dbj.properties changes to app_server_root/derby/
derby.properties

– Within the file, property names change from db2j.drda.* to derby.drda.*

v A partial or a completely successful database migration changes the location and name of the database

according to the following example:

– Old database name: c:\temp\mydb

– New database name: The new name includes a hash code that combines the entire path name of

the old database and the migration time stamp. The new name also includes the old database name

and time stamp exactly. For example:

app_server_root\profiles\profile_name\databases\my_database_hashCode_timestamp

Note: For both partial and failed migrations, the log messages contain the exact old and new database

path names that you must use to run the manual migration. Note these new path names

precisely.

What to do next

If you experience a partial migration, attempt to troubleshoot the Cloudscape or Derby database only if you

have expert knowledge of these database types. Otherwise, delete the new database. Perform the manual

1620 Administering WebSphere applications

migration procedure on the original database, just as you do for each database that completely fails

auto-migration. Consult “Upgrading Cloudscape manually” for instructions.

For successfully migrated Derby or Cloudscape instances, be aware that new cell-scoped data sources

can only be used by nodes that run version 6.0.2 or later of the application server. Earlier versions of the

product do not support the new versions of Derby or Cloudscape. When applications on nodes that are

earlier than version 6.0.2 try to access a Cloudscape or Derby data source, the application server will

issue exceptions at run time.

After a successful database migration, reboot the database and compress tables to improve performance.

See the Apache Derby documentation for instructions.

Upgrading Cloudscape manually

During the upgrade of your application server, the migration tool attempts to upgrade instances of

Cloudscape that are accessed through the embedded framework only. The automatic upgrade excludes

Cloudscape instances that transact with applications through the Network Server framework. This

exclusion eliminates the risk of corrupting third party applications that access the same database instances

as the application server. You must manually upgrade database instances that are accessed through the

Network Server framework. Do the same for databases that fail the automatic migration.

Before you begin

Do not use Apache Derby Version 10.1.x or Cloudscape v10.1.x as a production database. Use them for

development and test purposes only.

For instances of Cloudscape that are accessed through the embedded framework, determine which

instances completely failed the automatic upgrade process and which ones were only partially upgraded.

The topic on verifying the Cloudscape automatic migration documents how to uncover database errors and

diagnostic data from various migration logs. The log messages contain the exact old and new database

path names that you must use to run the manual migration. Note these new path names precisely.

To minimize the risk of migration errors for databases that were only partially upgraded during the

automatic migration process, delete the new database. Troubleshoot the original database according to the

log diagnostic data, then perform manual migration on the original database.

About this task

The following section consists of steps to migrate Cloudscape instances that are accessed through both

the embedded framework as well as the Network Server framework. Steps that apply only to the

Cloudscape Network Server framework are marked accordingly. As a migration best practice, ensure that

your user ID has one of the following authorities:

v Administrator of the application server that accesses the Cloudscape instance

v A umask that can access the database instance

Otherwise, you might see runtime errors about the database instance being read-only.

1. Network Server framework only: Ensure that every client of the Cloudscape database can support

Cloudscape v10.1.x or Apache Derby. Application server clients of the database must run versions

6.02.x or later of the application server.

In the case of mixed-node cells, remember that only nodes of Version 6.02 or later of the application

server can use data sources that you create post-migration for access to Cloudscape 10.1.x or Apache

Derby. Earlier versions of the product do not support Cloudscape 10.1x or Apache Derby. When

applications on nodes that are earlier than v6.02 try to access a cell-scoped Cloudscape 10.1.x or

Apache Derby data source, the application server will issue exceptions at run time.

Chapter 7. Data access resources 1621

2. Network Server framework only: Take the database offline. No clients can access it during the

migration process.

3. Examine a sample Cloudscape migration script that the application server provides, either

db2jmigrate.bat or db2jmigrate.sh. The path of both scripts is app_server_root\derby\bin\embedded.

You can modify the script according to the requirements of your environment. Consult the Cloudscape

migration document for information about options that you can use with the script. For example, you

can use the following option to specify the DDL file for the new database:

-DB2j.migrate.ddlFile=filename

4. To generate database debug logs when you run the migration script, ensure that the debug migration

trace is active. By default, this trace function is enabled. Reactivate the debug trace if it is disabled.

a. To set the trace options in the administrative console, click Troubleshooting > Logging and

Tracing in the console navigation tree.

b. Select the application server name.

c. Click Change Log Level Details.

d. Optional: If All Components has been enabled, you might want to turn it off, and then enable

specific components.

e. Optional: Select a component or group name. For more information see the topic on log level

settings. If the selected server is not running, you will not be able to see individual component in

graphic mode.

f. Enter a trace string in the trace string box. In this case, enter one of the following:

v all traces*=all

v com.ibm.ws.migration.WASUpgrade=all

For more information on tracing read the topic on working with trace.

g. Select Apply, then OK.

5. Specify your old database name and the full post-migration path of the new database name when you

run the script. For example: E:\WebSphere\AppServer\derby\bin\embedded>db2jMigrate.bat myOldDB

myNewDB The logs from the automatic migration provide the exact path names to specify for both the old

database and the target database. You must use this target database name to specify the new

database, because your migrated Cloudscape data sources (updated by the WebSphere Application

Server migration utilities) now point to the target database name. The following sample text

demonstrates how log messages display target database names:

DSRA7600E: Cloudscape migration of database instance C:\temp\migration2\profiles\AppSrv01\

installedApps\ghongellNode01Cell\DynamicQuery.ear\EmployeeFinderDB to new database instance

C:\WebSphere\AppServer\profiles\AppSrv01\databases\C__WAS602_AppServer_profiles_AppSrv01_

installedApps_ghongellNode01Cell_DynamicQuery.ear_EmployeeFinderDB failed,

reason: java.sql.SQLException: Failure creating target db

For instances of Cloudscape that are accessed through the Network Server framework, input any

name that you want for the new database. Remember to modify your existing data sources to point to

the new database name.

6. When the migration process ends, examine the database migration log to verify the results. The path

name of each database migration log is app_server_root/logs/derby/
myFulldbPathName_migrationLog.log.

For a successful migration, the database migration log displays a message that is similar to the

following text:

Check E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log for progress

Migration Completed Successfully

E:\WebSphere\AppServer\derby\bin\embedded>

Otherwise, the log displays error messages in the format of the following example:

Check E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log for progress

ERROR: An error occurred during migration. See debug.log for more details.

ERROR XMG02: Failure creating target db

java.sql.SQLException: Failure creating target db

1622 Administering WebSphere applications

at com.ibm.db2j.tools.migration.MigrationState.getCurrSQLException(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.handleException(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.main(Unknown Source)

 at com.ibm.db2j.tools.MigrateFrom51.main(Unknown Source)

...

7. For more data about a migration error, consult the debug log that corresponds with the database

migration log. The full path name of a debug log file is app_server_root/logs/derby/
myFulldbPathName_migrationDebug.log.

The following lines are a sample of debug text.

sourceDBURL=jdbc:db2j:E:\WebSphere\myOldDB

 newDBURL=jdbc:derby:e:\tempo\myNewDB

 ddlOnly=false

connecting to source db <jdbc:db2j:E:\WebSphere\myOldDB>

connecting to source db <jdbc:db2j:E:\WebSphere\myOldDB> took 0.611 seconds

creating target db <jdbc:derby:e:\tempo\myNewDB>

creating target db <jdbc:derby:e:\tempo\myNewDB> took 6.589 seconds

initializing source db data structures

initializing source db data structures took 0.151 seconds

recording DDL to create db <E:\WebSphere\myOldDB>

recording DDL to create db <E:\WebSphere\myOldDB> took 5.808 seconds

Results

As indicated in the previous steps, the database migration log displays either a Migration Completed

Successfully message, or a message containing migration failure exceptions.

What to do next

v For databases that fail migration, troubleshoot according to the logged error data. Then rerun the

migration script.

v To access successfully upgraded databases through the embedded framework, modify your data

sources to point to the new database names.

v To access successfully upgraded databases through the Network Server framework, you can use either

the DB2 Universal JDBC driver or the Derby Client JDBC driver.

– If you want your existing JDBC configurations to continue to use the DB2 Universal JDBC driver,

modify your data sources to point to the new database names.

– If you want to use the Derby Client JDBC driver, which can support XA data sources, modify your

JDBC providers to use the new Derby Client JDBC driver class and the new data source

implementation classes. Then reconfigure every existing data source to use the correct Derby data

source helper class, and to point to the new database name.

Consult the article in the information center on vendor-specific data sources minimum required

settings for all of the new class names.

Database performance tuning

Database performance tuning can dramatically affect the throughput of your application. For example, if

your application requires high concurrency (multiple, simultaneous interactions with backend data), an

improperly tuned database can result in a bottleneck. Database access threads accumulate in a backlog

when the database is not configured to accept a sufficient number of incoming requests.

Because WebSphere Application Server supports the integration of many different database products,

each one with unique tuning configurations, consult your database vendor documentation for

comprehensive tuning information. This information center provides introductory material on for your

convenience:

v “DB2 Universal Database performance tips” on page 1624

Chapter 7. Data access resources 1623

DB2 Universal Database performance tips

You can easily adjust your system QSQSRVR prestart job settings to optimize the process of acquiring

connections from DB2 Universal Database for i5/OS.

On the i5/OS platform, QSQSRVR jobs process Java Database Connectivity (JDBC) tasks. By default, five

QSQSRVR jobs are initially active. When fewer than two QSQSRVR jobs are unused, the i5/OS system

creates two more jobs. If you increase the active job values, an application that establishes a large

number of database connections over a short period of time might create connections more quickly.

Increase the values for the initial number of jobs, threshold, and additional number of jobs by running this

command on an i5/OS command line:

CHGPJE SBSD(QSYS/QSYSWRK) PGM(QSYS/QSQSRVR)

Do not start more QSQSRVR jobs than your application requires. Active QSQSRVR jobs require some

overhead, even if these jobs are not used.

Managing resources through JCA lifecycle management operations

You can manage the run-time status of your data source and connection factory resources to perform

some data access administrative tasks without restarting the application server. This topic outlines the

process for managing those resources through the administrative console.

Before you begin

When you manage the run-time status of connection factories or data sources, you are applying Java

Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) lifecycle management operations to

the MBeans that are associated with these resources. The management operations are PAUSE and

RESUME. Pausing an MBean halts outbound communication to the backend, such as a database. This

action affects all applications that use the corresponding connection factory or data source on the same

server.

About this task

With these management operations, you can perform some administrative tasks dynamically, without

restarting your application server:

v Respond to a security threat, and prevent new connection requests from reaching the backend

v Perform maintenance on the backend

v Apply configuration changes to non-required properties of the connection factory or data source, such

as turning JDBC trace on or off, or modifying preferences for collecting client information

1. Navigate to the administrative console page that corresponds to the resource type that you want to

manage.

v For connection factories, use either of the following paths:

– Resources > Resource Adapters > J2C connection factories

– Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C

connection factories

v For data sources, use either of the following paths:

– Resources > JDBC > Data sources

– Resources > JDBC > JDBC providers > JDBC_provider > Data sources

2. Select the connection factory or data source configurations that you want to manage, and click

Manage state. The administrative console now displays the JCA lifecycle management page, which

contains a table that depicts the full scope configuration of your previous selection.

The table is comprised of three columns:

v JNDI name: The Java Naming and Directory Interface (JNDI) name of the connection factory or

data source configuration.

1624 Administering WebSphere applications

v Running object scope: The server that is running the connection factory or data source MBean.

v Status: The status of the connection factory or data source MBean.

3. Select the rows that represent each invocation of the resource, per running server, that you want to

manage. Be aware that when you click your management operation, WebSphere Application Server

applies it to every resource object in your selection.

Note: If the MBean status of a row has a value of NOT_ACCESSED, you cannot apply JCA lifecycle

management operations to that MBean. The NOT_ACCESSED state indicates that the MBean

exists on the specified server, but no applications performed a JNDI namespace lookup on the

corresponding connection factory or data source.

4. Click Pause or Resume. The status column of the table changes to reflect the new state of the

MBean.

JCA lifecycle management

Use this page to perform JCA lifecycle management operations on data source and connection factory

MBeans. With these management operations, you can control the runtime status of the corresponding data

source and connection factory resources.

You can view this administrative console page in different locations, depending on whether you want to

manage data sources or J2C connection factories. For example:

v For connection factories: Click Resources → Resource adapters → J2C connection factories. Select

the connection factory configurations that you want to manage, and click Manage state.

v For data sources, click Resources → JDBC → Data sources. Select the data source configurations that

you want to manage, and click Manage state.

Guidelines for using this administrative console page:

v The table displays a list of MBeans that correspond to the data sources or connection factories in your

selection from the previous console page. These MBeans are compatible with Version 6.0.2 and later of

the application server.

v You can only perform JCA lifecycle management actions on MBeans that are in the active state. In this

context, an MBean is considered active when an application performs a Java Naming and Directory

Interface (JNDI) name space lookup on the corresponding data source or connection factory resource.

v Pausing an MBean halts outbound communication to the backend, such as a database. This action

affects all applications that use the resource on the selected server.

Pause:

Specifies to pause the MBean that is selected. Pausing an MBean halts outbound communication to the

back end resource, and this action will affect all applications that use the resource on the selected server.

Resume:

Specifies to resume the MBean that is selected. Resuming an MBean will enable outbound communication

to the back end resource, and this action will affect all applications that use the resource on the selected

server.

Purge:

Specifies to purge the contents of the connection pool for the data source or connection factory that is

specified. Purging the pool will not affect ongoing transactions.

Name (JNDI name):

Chapter 7. Data access resources 1625

The name of the connection factory or data source configuration, followed by the Java Naming and

Directory Interface (JNDI) name in parenthesis.

Running object scope:

The server that is running the connection factory or data source MBean.

Status:

The state of the connection factory or data source MBean.

 Possible values:

 State Indications

ACTIVE v The resource that corresponds with the MBean is

ready to provide an application with connections to a

backend.

v An application performed a JNDI namespace lookup on

this resource.

You can apply the JCA lifecycle management operation of

PAUSE to an MBean in this state.

PAUSED v All outbound communication to the backend through

the corresponding resource is stopped, as a result of a

JCA lifecycle management operation that was applied

previously to the MBean.

v An application performed a JNDI namespace lookup on

the resource.

You can apply the JCA lifecycle management operation of

RESUME to an MBean in this state.

NOT_ACCESSED v The MBean exists on the specified server, but no

applications performed a JNDI name space lookup on

the corresponding connection factory or data source.

You cannot apply JCA lifecycle management operations

to an MBean in this state.

Data access problems

WebSphere Application Server diagnostic tools provide services to help troubleshoot database connection

problems. Additionally, the IBM Web site provides flexible searching capabilities for finding documented

solutions to database-specific connection problems.

The following steps help you quickly isolate connectivity problems.

1. Browse the log files of the application server for clues.

See Viewing JVM logs. By default, these files are app_server_root/server_name/SystemErr.log and

SystemOut.log.

2. Browse the Helper Class property of the data source to verify that it is correct and that it is on the

WebSphere Application Server class path. Mysterious errors or behavior might result from a missing or

misnamed Helper Class name. If WebSphere Application Server cannot load the specified class, it

uses a default helper class that might not function correctly with your database manager.

3. Verify that the Java Naming and Directory Interface (JNDI) name of the data source matches the name

used by the client attempting to access it. If error messages indicate that the problem might be

1626 Administering WebSphere applications

naming-related, such as referring to the name server or naming service, or including error IDs

beginning with NMSV, look at the Naming related problems and Troubleshooting the naming service

component topics.

4. Enable tracing for the resource adapter using the trace specification, RRA=all=enabled. Follow the

instructions for dumping and browsing the trace output, to narrow the origin of the problem.

For a comprehensive list of database-specific troubleshooting tips, see the WebSphere Application Server

product support page. (Find the link at the end of this article.) In the Search Support field, type a database

vendor name among your search terms. Select Solve a problem, then click Search.

Remember that you can always find Support references in the Troubleshooting help from IBM article of

this information center.

Currently this information center provides a limited number of troubleshooting tips for the following

databases:

v Oracle

v DB2

v SQL Server

v Apache Derby

v Sybase

v General data access problems

General data access problems

v An exception ″IllegalConnectionUseException″ occurs

v WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has occurred.

v ConnectionWaitTimeoutException.

v com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N The database alias

name or database name ″NULL″ could not be found. SQLSTATE=42705

v java.sql.SQLException: java.lang.UnsatisfiedLinkError:

v ″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in error ″WTRN0063E: An

illegal attempt to enlist a one phase capable resource with existing two phase capable resources has

occurred″ when attempting to execute a transaction.

v java.lang.UnsatisfiedLinkError:xaConnect exception when attempting a database operation

v ″J2CA0114W: No container-managed authentication alias found for connection factory or datasource

datasource″ when attempting a database operation

v An error is thrown if you use the ws_ant command to perform the database customization for Structured

Query Language in Java on HP platforms

v Container-managed persistence (CMP) cannot successfully obtain the database access function as

defined.

IllegalConnectionUseException

This error can occur because a connection obtained from a WAS40DataSource is being used on more

than one thread. This usage violates the J2EE 1.3 programming model, and an exception generates when

it is detected on the server. This problem occurs for users accessing a data source through servlets or

bean-managed persistence (BMP) enterprise beans.

To confirm this problem, examine the code for connection sharing. Code can inadvertently cause sharing

by not following the programming model recommendations, for example by storing a connection in an

instance variable in a servlet, which can cause use of the connection on multiple threads at the same time.

WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has

occurred

This error can occur because:

Chapter 7. Data access resources 1627

v An attempt was made to share a single-phase connection, when each getConnection method has

different connection properties; such as the AccessIntent. This attempt causes a non-shareable

connection to be created.

v An attempt was made to have more than one unshareable connection participate in a global transaction,

when the data source is not an XA resource.

v An attempt was made to have a one-phase resource participate in a global transaction while an XA

resource or another one-phase resource already participated in this global transaction.

– Within the scope of a global transaction you try to get a connection more than once and at least one

of the resource-refs you use specifies that the connection is unshareable, and the data source is not

configured to support two-phase commit transactions. It does not support an XAResource. If you do

not use a resource-ref, you default to unshareable connections.

– Within the scope of a global transaction you try to get a connection more than once and at least one

of the resource-refs you use specifies that the connection is shareable and the data source is not

configured to support two-phase commit transactions. That is, it does not support an XAResource. In

addition, even though you specify that connections are shareable, each getConnection request is

made with different connection properties (such as IsolationLevel or AccessIntent). In this case, the

connections are not shareable, and multiple connections are handed back.

– Multiple components (servlets, session beans, BMP entity beans, or CMP entity beans) are accessed

within a global transaction. All use the same data source, all specify shareable connections on their

resource-refs, and you expect them to all share the same connection. If the properties are different,

you get multiple connections. AccessIntent settings on CMP beans change their properties. To share

a connection, the AccessIntent setting must be the same. For more information about CMP beans

sharing a connection with non-CMP components, see the Data access application programming

interface support and Example: Accessing data using IBM extended APIs to share connections

between container-managed and bean-managed persistence beans topics in the DataAccess section

of the information center.

To correct this error:

v Check what your client code passes in with its getConnection requests, to ensure they are consistent

with each other.

v Check the connection sharing scope from the resource binding, using an assembly tool.

– If you are running an unshareable connection scope, verify that your data source is an XA data

source.

– If you are running a shareable connection scope, verify that all connection properties, including

AccessIntent, are sharable.
v Check the JDBC provider implementation class from the Manage JDBC resource panel of the

administrative console to ensure that it is a class that supports XA-type transactions.

ConnectionWaitTimeoutException accessing a data source or resource adapter

If your application receives exceptions like a com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException

or com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException when attempting to access a WebSphere

Application Server data source or JCA-compliant resource adapter, respectively, some possible causes

are:

v The maximum number of connections for a given pool is set too low. The demand for concurrent use of

connections is greater then the configured maximum value for the connection pool. One indication that

this situation is the problem is that you receive these exceptions regularly, but your CPU utilization is

not high. This exception indicates that there are too few connections available to keep the threads in the

server busy.

v Connection Wait Time is set too low. Current demand for connections is high enough such that

sometimes there is not an available connection for short periods of time. If your connection wait timeout

value is too low, you might timeout shortly before a user returns a connection back to the pool.

Adjusting the connection wait time can give you some relief. One indication of this problem is that you

use close to the maximum number of connections for an extended period and receiving this error

regularly.

1628 Administering WebSphere applications

v You are not closing some connections or you are returning connections back to the pool at a very slow

rate. This situation can happen when using unshareable connections, when you forget to close them, or

you close them long after you are finished using them, keeping the connection from returning to the

pool for reuse. The pool soon becomes empty and all applications get

ConnectionWaitTimeoutExceptions. One indication of this problem is you run out of connections in the

connection pool and you receive this error on most requests.

v You are driving more load than the server or backend system have resources to handle. In this case

you must determine which resources you need more of and upgrade configurations or hardware to

address the need. One indication of this problem is that the application or database server CPU is

nearly 100% busy.

To correct these problems, either:

v Modify an application to use fewer connections

v Properly close the connections.

v Change the pool settings of MaxConnections or ConnnectionWaitTimeout.

v Adjust resources and their configurations.

com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N

The database alias name or database name ″NULL″ could not be found.

SQLSTATE=42705

This error occurs when a data source is defined but the databaseName attribute and the corresponding

value are not added to the custom properties panel.

To add the databaseName property:

1. Click Resources>Manage JDBC Providers link in the administrative console.

2. Select the JDBC provider that supports the problem data source.

3. Select Data Sources and then select the problem data source.

4. Under Additional properties click Custom Properties.

5. Select the databaseName property, or add one if it does not exist, and enter the actual database

name as the value.

6. Click Apply or OK, and then click Save from the action bar.

7. Access the data source again.

java.sql.SQLException: java.lang.UnsatisfiedLinkError:

This error indicates that the directory containing the binary libraries which support a database are not

included in the LIBPATH environment variable for the environment in which the WebSphere Application

Server starts.

The path containing the DBM vendor libraries vary by dbm. One way to find them is by scanning for the

missing library specified in the error message. Then you can correct the LIBPATH variable to include the

missing directory, either in the .profile of the account from which WebSphere Application Server is

executed, or by adding a statement in a .sh file which then executes the startServer program.

″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in

error ″WTRN0063E: An illegal attempt to enlist a one phase capable resource with

existing two phase capable resources has occurred″ when attempting to execute a

transaction.

This error can occur when last participant support is missing or disabled. last participant support allows a

one-phase capable resource and a two-phase capable resource to enlist within the same transaction.

Last participant support is only available if the following are true:

Chapter 7. Data access resources 1629

v WebSphere Application Server Programming Model Extensions (PME) is installed. PME is included in

the Application Server Integration Server product.

v The Additional Integration Server Extensions option is enabled when PME is installed. If you perform a

typical installation, this function is enabled by default. If you perform a custom installation, you have the

option to disable this function, which disables last participant support.

v The application enlisting the one-phase resource is deployed with the Accept heuristic hazard option

enabled. This deployment is done with an assembly tool.

java.lang.UnsatisfiedLinkError:xaConnect exception when attempting a database

operation

This problem has two main causes:

v The most common cause is that the jdbc driver which supports connectivity to the database is missing,

or is not the correct version, or that native libraries which support the driver are on the system’s path.

– To resolve this problem on a Windows platform, verify that the JDBC driver jar file is on the system

PATH environment variable:

- If you are using DB2,verify that at least the DB2 client product has been installed on the

WebSphere host

v On DB2 version 7.2 or earlier, the file where the client product is installed on the WebSphere

Application Server is db2java.zip. Verify that the usejdbc2.bat program has been executed after

the database install and after any upgrade to the database product.

v On DB2 version 8.1 or later, use the DB2 Universal JDBC Provider Driver when defining a

JDBC provider in WebSphere Application Server. The driver file is db2jcc.jar. If you use the type

2 (default) option, verify that at least the DB2 client product is installed on the WebSphere

Application Server host. If you specify the type 4 option, the DB2 client does not need to be

installed, but the file db2jcc.jar still must be present.

When specifying the location of the driver file, it is recommended to that you specify the path

and file name of the target DB2 installation, rather than simply copying the file to a local

directory, if possible. Otherwise, you may be exposed to problems if the target DB2 installation

is upgraded and the driver used by WebSphere Application Server is not.

– On operating systems such as AIX or Linux, ensure that any native libraries required to support the

database client of your database product are specified in the LD_LIBRARY_PATH environment

variable in the profile of the account under which WebSphere Application Server executes.

If you are using DB2 The native library is libdb2jdbc.so. The best way to ensure that this library is

accessed correctly by WebSphere is to call the db2profile script supplied with DB2 from the .profile

script of the account (such as ″root″) under which WebSphere runs.

- If you are using DB2 version 7.2 or earlier, ensure that the usejdbc2,script provided with DB2 is

called from the profile of the account under which WebSphere Application server is launched.

- If you are using DB2 version 8.1 or later, see the previous instructions for the Windows operating

system.

v If the database manager is DB2, you may have chosen the option to create a 64-bit

instance. Sometimes a 64-bit configuration is not supported. If this has happened, remove the

database instance and create a new one with the default 32-bit setting.

If you are using the Universal JDBC T2 driver, WebSphere Application Server does support interaction

with a DB2 UDB 64-bit server, but it must be through a DB2 UDB 32-bit client. The WebSphere

Application Server environment (CLASSPATH and so on) must use the 32-bit client code to ensure

correct function.

With a Universal JDBC T4 driver, you do not need the 32-bit DB2 client. You need only configure the

CLASSPATH to include db2jcc.jar and its license files in the WebSphere Application Server

environment.

Note: For general help in configuring JDBC drivers and data sources in WebSphere Application Server,

see the topic Accessing data from applications.

1630 Administering WebSphere applications

″J2CA0114W: No container-managed authentication alias found for connection

factory or datasource datasource″ when attempting a database operation

This error might occur in the SystemOut.log file when you run an application to access a data source after

creating the data source using JACL script.

The error message occurs because the JACL script did not set container-managed authentication alias for

CMP connection factory. The JACL is missing the following line:

$AdminConfig create MappingModule $cmpConnectorFactory "{mappingConfigAlias

DefaultPrincipalMapping} {authDataAlias $authDataAlias}

To correct this problem, add the missing line to the JACL script and run the script again. See “Example:

Creating a JDBC provider and data source using Java Management Extensions API and the scripting tool”

on page 1563 for a sample JACL script.

An error is thrown if you use the ws_ant command to perform the database

customization for Structured Query Language in Java on HP platforms

If you use the ws_ant command to perform the database customization for Structured Query Language in

Java (SQLJ) on HP platforms, you can receive an error similar to the following:

[java] [ibm][db2][jcc][sqlj]

[java] [ibm][db2][jcc][sqlj] Begin Customization

[java] [ibm][db2][jcc][sqlj] encoding not supported!!

The cause of this error might be that your databases were created using the HP default character set. The

Java Common Client (JCC) driver depends on the software development kit (SDK) to perform the

codepage conversions. The SDK shipped with this product, however, does not support the HP default

codepage.

You need to set your LANG to the ISO locale before creating the databases. It should be similar to the

following:

export LANG=en_US.iso88591

Refer to the IBM support site for Information Management software to access the latest technotes for DB2.

Container-managed persistence (CMP) cannot successfully obtain the database

access function as defined.

When WebSphere Application Server is caching certain generated code that is accessed in the database

on the connection factory, and if any changes in the Java archive (JAR) file require regeneration of the

database access, the changes are not effective until you stop and restart the server.

Examples of when this failure might occur include:

v Adding an enterprise bean custom finder method; a NullPointerException exception is created.

v Updating an enterprise bean custom finder method; the new SQL statement does not run.

v Changing schema mapping; the new SQL statement does not run.

In summary, if you add or update an enterprise bean that contains a custom finder method, you must stop

and then restart the server.

Data access problems - Oracle data source

This article provides troubleshooting tips for accessing Oracle data sources.

Chapter 7. Data access resources 1631

What kind of error do you see when you try to access your Oracle-based data source?

v “An invalid Oracle URL is specified”

v “″DSRA0080E: An exception was received by the data store adapter. See original exception message:

ORA-00600″ when connecting to or using an Oracle data source”

v “DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the linkedException for more

information.” on page 1633

v “″Error while trying to retrieve text for error″ error when connecting to an Oracle data source” on page

1633

v “″java.lang.UnsatisfiedLinkError:″ connecting to an Oracle data source” on page 1633

v “java.lang.NullPointerException referencing 8i classes, or ″ internal error: oracle.jdbc.oci8. OCIEnv″

connecting to an Oracle data source” on page 1633

v “WSVR0016W: Classpath entry for the Oracle JDBC Thin Driver has an invalid variable” on page 1634

v “Transaction recovery failure (for XA data sources)” on page 1634

An invalid Oracle URL is specified

This error might be caused by an incorrectly specified URL on the URL property of the target data source.

Examine the URL property for the data source object in the administrative console. For the 8i OCI driver,

verify that oci8 is used in the URL. For the 9i OCI driver, you can use either oci8 or oci.

Examples of Oracle URLs:

v For the thin driver: jdbc:oracle:thin:@hostname.rchland.ibm.com:1521:IBM

v For the thick (OCI) driver: jdbc:oracle:oci8:@tnsname1

″DSRA0080E: An exception was received by the data store adapter. See original exception

message: ORA-00600″ when connecting to or using an Oracle data source

A possible reason for this exception is that the version of the Oracle JDBC driver being used is older than

the Oracle database. It is possible that more than one version of the Oracle JDBC driver is configured on

the WebSphere Application Server.

Examine the version of the JDBC driver. Sometimes you can determine the version by looking at the class

path to determine what directory the driver is in.

If you cannot determine the version this way, use the following program to determine the version. Before

running the program, set the class path to the location of your JDBC driver files.

import java.sql.*;

 import oracle.jdbc.driver.*;

 class JDBCVersion

 {

 public static void main (String args[])

 throws SQLException

 {

 // Load the Oracle JDBC driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Get a connection to a database

 Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin:@appaloosa:1521:app1","sys","change_on_install");

 // Create Oracle DatabaseMetaData object

 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:

 System.out.println("JDBC driver version is " + meta.getDriverVersion());

 }

 }

If the driver and the database are at different versions, replace the JDBC driver with the correct version. If

multiple drivers are configured, remove any that occur at the incorrect level.

1632 Administering WebSphere applications

DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the

linkedException for more information.

When using an oracle thin driver, Oracle creates a ″java.sql.SQLException: invalid arguments in call″ error

if no user name or password is specified when getting a connection. If you see this error while running

WebSphere Application Server, the alias is not set.

To remove the exception, define the alias on the data source.

″Error while trying to retrieve text for error″ error when connecting to an Oracle data

source

The most likely cause of this error is that the Oracle 8i OCI driver is being used with an ORACLE_HOME

property that is either not set or is set incorrectly.

To correct the error, examine the user profile that WebSphere Application Server is running under to verify

that the $ORACLE_HOME environment variable is set correctly.

″java.lang.UnsatisfiedLinkError:″ connecting to an Oracle data source

The environment variable LIBPATH might not be set or is set incorrectly, if your data source creates an

UnsatisfiedLinkError error, and the full exception indicates that the problem is related to an Oracle

module, as in the following examples.

Example of invalid an LIBPATH for the 8i driver:

Exception in thread "main" java.lang.UnsatisfiedLinkError:

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so:

load ENOENT on shared library(s)

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so libclntsh.a

Example of an invalid LIBPATH for the 9i driver:

Exception in thread "main" java.lang.UnsatisfiedLinkError:

no ocijdbc9 (libocijdbc9.a or .so) in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java(Compiled Code))

at java.lang.Runtime.loadLibrary0(Runtime.java:780)

To correct the problem:

1. Examine the user profile under which the WebSphere Application Server is running to verify that the

LIBPATH environment variable includes Oracle libraries. Scan for the lobocijdbc8.so file to find the

right directory.

java.lang.NullPointerException referencing 8i classes, or ″ internal error: oracle.jdbc.oci8.

OCIEnv″ connecting to an Oracle data source

The problem might be that the 9i OCI driver is being used on an AIX 32-bit machine, the LIBPATH is set

correctly, but the ORACLE_HOME environment variable is not set or is set incorrectly. You can encounter

an exception similar to either of the following when your application attempts to connect to an Oracle data

source:

Exception example for the java.lang.NullPointerException:

Exception in thread "main" java.lang.NullPointerException

at oracle.jdbc.oci8.OCIDBAccess.check_error(OCIDBAccess.java:1743)

at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:69)

at oracle.jdbc.oci8.OCIDBAccess.logon(OCIDBAccess.java:452)

at oracle.jdbc.driver.OracleConnection. <init>(OracleConnection.java:287)

Exception example for the java.sql.SQLException:

Chapter 7. Data access resources 1633

Exception in thread "main" java.sql.SQLException:

internal error: oracle.jdbc.oci8. OCIEnv@568b1d21

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:184)

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:226)

at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:79)

To correct the problem, examine the user profile that WebSphere Application Server is running under to

verify that it has the $ORACLE_HOME environment variable set correctly, and that the $LIBPATH includes

$ORACLE_HOME/lib.

WSVR0016W: Classpath entry for the Oracle JDBC Thin Driver has an invalid variable

This error occurs when there is no environment variable defined for the property,

ORACLE_JDBC_DRIVER_PATH.

Verify this problem in the administrative console. Go to Environment > Manage WebSphere Variables to

verify whether the variable ORACLE_JDBC_DRIVER_PATH is defined.

To correct the problem, click New and define the variable. For example, name :

ORACLE_JDBC_DRIVER_PATH , value : c:\oracle\jdbc\lib. Use a value that names the directory in your

operating system that contains the ojdbc6.jar file (or the ojdbc14_g.jar file to enable Oracle trace).

Transaction recovery failure (for XA data sources)

Problem

When WebSphere Application Server attempts to recover Oracle database transactions, the transaction

service issues the following exception:

WTRN0037W: The transaction service encountered an error on an xa_recover operation.

The resource was com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl@1114a62.

The error code was XAER_RMERR. The exception stack trace follows:

javax.transaction.xa.XAException

at oracle.jdbc.xa.OracleXAResource.recover(OracleXAResource.java:726)

at com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl.recover(WSRdbXaResourceImpl.java:954)

at com.ibm.ws.Transaction.JTA.XARminst.recover(XARminst.java:137)

at com.ibm.ws.Transaction.JTA.XARecoveryData.recover(XARecoveryData.java:609)

at com.ibm.ws.Transaction.JTA.PartnerLogTable.recover(PartnerLogTable.java:511)

at com.ibm.ws.Transaction.JTA.RecoveryManager.resync(RecoveryManager.java:1784)

at com.ibm.ws.Transaction.JTA.RecoveryManager.run(RecoveryManager.java:2241)

Cause

Oracle requires services such as the WebSphere Application Server transaction service to have special

permissions for performing transaction recoveries.

Solution

As user SYS, run the following commands on your Oracle server:

grant select on pending_trans$ to public;

grant select on dba_2pc_pending to public;

grant select on dba_pending_transactions to public;

grant execute on dbms_system to <user>;

User is a user ID in the application server that is authorized to perform transaction recovery for the XA

data source. If you have not authorized any user IDs to perform transaction recovery, the application

server will use the login alias for the data source as the user ID.

This problem is mentioned under Oracle bug: 3979190. Running the preceding commands solves the

problem.

1634 Administering WebSphere applications

Data access problems - DB2 database

This article provides troubleshooting tips for accessing DB2 databases.

What kind of problem are you having accessing your DB2 database?

v “SQL0567N ″DB2ADMIN ″ is not a valid authorization ID. SQLSTATE=42602”

v “SQL0805N Package package-name was not found”

v “SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002” on page 1636

v “SQL30082N Attempt to establish connection failed with security reason "17" ("UNSUPPORTED

FUNCTION’) SQLSTATE=08001” on page 1636

v “SQLException, with ErrorCode -99,999 and SQLState 58004, with Java ″StaleConnectionException:

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected system failure.

SQLSTATE=58004″, when using WAS40-type data source” on page 1636

v “Error message java.lang.reflect.InvocationTargetException: com.ibm.ws.exception.WsException:

DSRA0023E: The DataSource implementation class ″COM.ibm.db2.jdbc.DB2XADataSource″ could not

be found. when trying to access a DB2 database” on page 1637

v “CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a XAconnection or

DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected

system failure. SQLSTATE=5800” on page 1637

v “COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The current transaction has

been rolled back because of a deadlock or timeout. Reason code ″2″. SQLSTATE=40001” on page

1638

v “″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data source

([data-source-name])″” on page 1638

v “ java.sql.SQLException: Failure in loading T2 native library db2jcct2 DSRA0010E: SQL State = null,

Error Code = -99,999 ” on page 1639

v Lock contention exception occurs in database when data source implementation type is XA

v “″DSRA8050W: Unable to find the DataStoreHelper class specified″ exception occurs when trying to

use a DB2 Universal Datasource in a mixed release cell.” on page 1640

v “Receive "’SYSTEM’ is not a valid authorization ID" message when trying to access DB2 on a Windows

machine where WebSphere Application Server is also installed.” on page 1640

v “XAException: XAER_NOTA on XA prepare call in DB2 Universal JDBC Driver type 4 after one phase

transaction rollback” on page 1640

v “java.rmi.MarshalException logged for application client due to incompatibility of JDBC driver file

versions” on page 1641

v “Database failure triggers problematic -99999 exception for applications that use DB2 Universal Driver

type 4” on page 1642

v “Cannot access DB2 on Linux when using the DB2 Universal JDBC Driver” on page 1642

v “Data access problems - DB2 database”

v “Illegal conversion occurs on any VARCHAR FOR BIT DATA column in a container-managed persistent

bean” on page 1643

SQL0567N ″DB2ADMIN ″ is not a valid authorization ID. SQLSTATE=42602

If you encounter this error when attempting to access a DB2 Universal Database (UDB):

1. Verify that your user name and password in the data source properties page in the administrative

console are correct.

2. Ensure that the user ID and password do not contain blank characters before, in between, or after.

SQL0805N Package package-name was not found

Possible reasons for these exceptions:

v If the package name is NULLID.SQLLC300, see SQL0805N Package ″NULLID.SQLLC300″ was not

found. SQLSTATE=51002. for the reason.

v You are attempting to use an XA-enabled JDBC driver on a DB2 database that is not XA-ready.

Chapter 7. Data access resources 1635

To correct the problem on a DB2 Universal Database (UDB), run this one-time procedure, using the

db2cmd interface while connected to the database in question:

1. DB2 bind @db2ubind.lst blocking all grant public

2. DB2 bind @db2cli.lst blocking all grant public

The db2ubind.lst and db2cli.lst files are in the bnd directory of your DB2 installation root. Run the

commands from that directory.

SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002

This error can occur because:

v The underlying database was dropped and recreated.

v DB2 was ugpraded and its packages are not rebound correctly.

To resolve this problem, rebind the DB2 packages by running the db2cli.lst script found in the bnd

directory. For example: db2>@db2cli.lst.

SQL30082N Attempt to establish connection failed with security reason ″17″

(″UNSUPPORTED FUNCTION’) SQLSTATE=08001

This error can occur when the security mechanism specified by the client is not valid for this server. Some

typical examples:

v The client sent a new password value to a server that does not support the change password function.

v The client sent SERVER_ENCRYPT authentication information to a server that does not support

password encryption.

v The client sent a userid, but no password, to a server that does not support authentication by userid

only.

v The client has not specified an authentication type, and the server has not responded with a supported

type. This can include the server returning multiple types from which the client is unable to choose.

To resolve this problem, ensure that your client and server use the same security mechanism. For

example, if this is an error on your data source, verify that you have assigned a user id and password or

authentication alias.

SQLException, with ErrorCode -99,999 and SQLState 58004, with Java

″StaleConnectionException: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E

Unexpected system failure. SQLSTATE=58004″, when using WAS40-type data source

An unexpected system failure usually occurs when running in XA mode (two-phase commit). Among the

many possible causes are:

v An invalid username or password was provided.

v The database name is incorrect.

v Some DB2 packages are corrupted.

To determine whether you have a user name or password problem, look in the db2diag.log file to view the

actual error message and SQL code. A message like the following example, with an SQLCODE of -1403,

indicates an invalid user ID or password:

2002-07-26-14.19.32.762905 Instance:db2inst1 Node:000

PID:9086(java) Appid:*LOCAL.db2inst1.020726191932

XA DTP Support sqlxa_open Probe:101

DIA4701E Database "POLICY2" could not be opened

for distributed transaction processing.

String Title: XA Interface SQLCA PID:9086 Node:000

SQLCODE = -1403

To resolve these problems:

1636 Administering WebSphere applications

1. Correct your user name and password. If you specify your password on the GUI for the data source,

ensure that the user name and password you specify on the bean are correct. The user name and

password you specify on the bean overwrite whatever you specify when creating the data source.

2. Use the correct database name.

3. Rebind the packages (in the bnd directory) as follows:

db2connect to dbname

c:\SQLLIB\bnd>DB2 bind @db2ubind.lst blocking all grant public

c:\SQLLIB\bnd>DB2 bind @db2cli.lst blocking all grant public

4. Ensure that the \WebSphere\AppServer\properties\wsj2cdpm.properties file has the right user ID and

password.

Error message java.lang.reflect.InvocationTargetException:

com.ibm.ws.exception.WsException: DSRA0023E: The DataSource implementation class

″COM.ibm.db2.jdbc.DB2XADataSource″ could not be found. when trying to access a DB2

database

One possible reason for this exception is that a user is attempting to use a JDBC 2.0 DataSource, but

DB2 is not JDBC 2.0-enabled. This situation frequently happens with new installations of DB2 because

DB2 provides separate drivers for JDBC 1.X and 2.0, with the same physical file name. By default, the

JDBC 1.X driver is on the class path.

To confirm this problem:

v On Windows systems, look for the inuse file in the java12 directory in your DB2 installation root. If the

file missing, you are using the JDBC 1.x driver.

v On operating systems such as AIX or Linux, check the class path for your data source. If the class path

does not point to the db2java.zip file in the java12 directory, you are using the JDBC 1.x driver.

To correct this problem:

v On Windows systems, stop DB2. Run the usejdbc2.bat file from the java12 directory in your DB2

instalation root. Run this file from a command line to verify that it completes successfully.

v On operating systems such as AIX or Linux, change the class path for your data source to point to the

db2java.zip file in the java12 directory of your DB2 installation root.

CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a XAconnection or

DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E

Unexpected system failure. SQLSTATE=5800

If you encounter this error when attempting to access a DB2 Universal Database (UDB) data source:

1. On the data source properties page in the administrative console, verify that the correct database

name is specified on the data source.

2. On the custom properties page, check your user name and password custom properties. Verify that

they are correct.

3. Ensure the user ID and password do not contain any blank characters, before, in between, or after.

4. Check that the WAS.policy file exists for the application, for example, D:\WebSphere\AppServer\
installedApps\markSection.ear\META-INF\was.policy.

5. View the entire exception listing for an underlying SQL error, and look it up using the DBM vendor

message reference.

If you encounter this error while running DB2 on Red Hat Linux, the max queues system wide parameter

is too low to support DB2 while it acquires the necessary resources to complete the transaction. When this

problem exists, the exceptions J2CA0046E and DSRA0010E can precede the exception DSRA8100E.

To correct this problem, edit the /proc/sys/kernal/msgmni file to increase the value of the max queues

system wide parameter to a value greater than 128.

Chapter 7. Data access resources 1637

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The current

transaction has been rolled back because of a deadlock or timeout. Reason code ″2″.

SQLSTATE=40001

This problem is probably an application-caused DB2 deadlock, particularly if you see an error similar to the

following when accessing a DB2 data source:

ERROR CODE: -911

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N

The current transaction has been rolled back because of a deadlock or timeout.

Reason code "2". SQLSTATE=40001

To diagnose the problem:

1. Execute these DB2 commands:

a. db2 update monitor switches using LOCK ON

b. db2 get snapshot for LOCKS on dbName >

The directory_name\lock_snapshot.log now has the DB2 lock information.

2. Turn off the lock monitor by running: db2 update monitor switches using LOCK OFF

To verify that you have a deadlock:

1. Look for an application handle that has a lock-wait status, and then look for the ID of the agent

holding lock to verify the ID of the agent.

2. Go to that handle to verify it has a lock-wait status, and the ID of the agent holding the lock for it. If it

is the same agent ID as the previous one, then you know that you have a circular lock (deadlock).

To resolve the problem:

1. Examine your application and use a less restrictive isolation level if no concurrency access is needed.

2. Use caution when changing the accessIntent value to move to a lower isolation level. This change

can result in data integrity problems.

3. For DB2/UDB Version 7.2 and earlier releases, you can set the DB2_RR_TO_RS flag from the DB2

command line window to eliminate unnecessary deadlocks, such as when the accessIntent defined on

the bean method is too restrictive, for example, PessimisticUpdate. The DB@_RR_TO_RS setting has

two impacts:

v If RR is your chosen isolation level, it is effectively downgraded to RS.

v If you choose another isolation level, and the DB2_RR_TO_RS setting is on, a scan skips over

rows that are deleted but not committed, even though the row might qualify for the scan. The

skipping behavior affects the RR, Read Stability (RS), and Cursor Stability (CS) isolation levels.

For example, consider the scenario where transaction A deletes the row with column1=10 and

transaction B does a scan where column1>8 and column1<12. With DB2_RR_TO_RS off, transaction

B waits for transaction A to commit or rollback. If transaction A rolls back, the row with column1=10 is

included in the result set of the transaction B query. With DB2_RR_TO_RS on, transaction B does not

wait for transaction A to commit or rollback. Transaction B immediately receives query results that do

not include the deleted row. Setting DB2_RR_TO_RS effectively changes locking behavior, thus

avoiding deadlocks.

″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data source

([data-source-name])″

This error is denoted by message DSRA8040I: Failed to connect to the DataSource.

This error usually occurs when the class path of the DB2 JDBC driver is set correctly to

${DB2_JDBC_DRIVER_PATH}/db2java.zip but the environment variable DB2_JDBC_DRIVER_PATH is not

set.

This error can also occur if you are using DB2 Version 7.1 or 7.2 and you have not yet run usejdbc2. This

might be the problem if your path is correct but you still receive this error.

1638 Administering WebSphere applications

To confirm this problem:

1. Go to the Manage WebSphere Variables panel.

2. Select Environment to verify that there is no entry for the variable DB2_JDBC_DRIVER_PATH.

To correct this problem: Add the variable DB2_JDBC_DRIVER_PATH with value equal to the directory

path containing the db2java.zip file.

java.sql.SQLException: Failure in loading T2 native library db2jcct2 DSRA0010E: SQL

State = null, Error Code = -99,999

The Failure in loading message indicates one of two things:

v Usually this happens when the machine was not rebooted after installing DB2. Reboot the machine

getting the error and try it again.

v The DB2 context is not getting set up correctly for the user running WebSphere Application Server.

Source the db2profile file on the machine, and ensure that the environment contains pointers to the DB2

native libraries.

Lock contention exception occurs in database when data source implementation type is

XA

Note: Because a lock contention exception can be caused by many factors, consider the following

explanation and recommended response as a strategy for eliminating the possible reasons for your

lock contention problem.

 Symptom A lock contention exception occurs in a DB2 database that

your application accesses through a data source of

implementation type XA.

Problem Your application is trying to access database records that

are locked by an XA transaction that is in ended (e) state,

but cannot be prepared by the transaction manager.

Description An XA transaction to DB2 that ends, but cannot be

prepared, is in ended (e) state. Because it is not

considered to be in doubt, the transaction manager cannot

recover this transaction. DB2 does not return it in the list

of in doubt transactions.

DB2 also does not roll the transaction back immediately; it

waits until all connections to the database are released.

During this period of inaction, the transaction continues to

hold locks on the database. If your application server does

not disconnect all connections from the database to allow

rollback, the ended transaction persists in locking the

same database records. If your application attempts to

access these locked records, a lock contention exception

occurs in DB2.

Recommended response DB2 Version 8.2 is shipped with a sample application that

connects to a defined DB2 server and uses the available

DB2 APIs to obtain a list of these particular ended

transactions. The application offers a configuration setting

that enables you to designate an amount of time after

which the application rolls these transactions back. Locate

the sample application in the sqllib/samples/db2xamon.c

directory of DB2 Version 8.2 and run it.

Chapter 7. Data access resources 1639

″DSRA8050W: Unable to find the DataStoreHelper class specified″ exception occurs when

trying to use a DB2 Universal Datasource in a mixed release cell.

This error usually occurs when you are using WebSphere Application Server Version 6.0 or above in

conjunction with a previous version and attempt to create a DB2 Universal Datasource on the previous

version.

This can happen because the DB2 Universal Datasource was not available on Version 5 and previous

versions, but the Version 6 administrative console allows you to build one.

To correct this problem: create the datasource on Version 6.0 or later.

Receive ″’SYSTEM’ is not a valid authorization ID″ message when trying to access DB2 on

a Windows machine where WebSphere Application Server is also installed.

 Symptom For a WebSphere Application Server on Windows installation that uses DB2 as the

backend, you see the following exception in the JVM log:

java.sql.SQLException: [IBM][CLI Driver] SQL0567N "SYSTEM" is not a valid

authorization ID. SQLSTATE=42602 DSRA0010E: SQL State = 42602, Error Code = -567

 at COM.ibm.db2.jdbc.app.SQLExceptionGenerator.throw_SQLException

 (Unknown Source)

 at COM.ibm.db2.jdbc.app.SQLExceptionGenerator.check_return_code

 (Unknown Source)

 at COM.ibm.db2.jdbc.app.DB2Connection.connect(Unknown Source)

 at COM.ibm.db2.jdbc.app.DB2Connection.<init>(Unknown Source)

 at COM.ibm.db2.jdbc.app.DB2ReusableConnection.<init>(Unknown Source)

 at COM.ibm.db2.jdbc.DB2PooledConnection.getConnection(Unknown Source)

 at com.ibm.ws.rsadapter.spi.WSRdbDataSource.getConnection

 (WSRdbDataSource.java:1035)

 at com.ibm.ws.rsadapter.spi.WSManagedConnectionFactoryImpl.

 createManagedConnection(WSManagedConnectionFactoryImpl.java:937)

 at com.ibm.ejs.j2c.poolmanager.FreePool.

 createManagedConnectionWithMCWrapper(FreePool.java:1502)

Problem This exception occurs for configurations in which WebSphere Application Server is a client

to the DB2 server. The underlying problem is an authorization conflict between WebSphere

Application Server on Windows and DB2 that arises when an application attempts to

connect to DB2 without providing a user ID and a password.

Description When a DB2 client and the DB2 database run on the same machine, DB2 allows the client

to connect without a user ID and password. The connection is made under the credentials

of the user that owns the client process: in this case, the application server JVM. However,

if WebSphere Application Server runs as a Windows service, and the ″Log on as″ option is

set to ″Local System Account″, the application server JVM is categorized as a

subcomponent of a special Windows user called SYSTEM. This user is not allowed to

connect to DB2, resulting in the previously shown exception.

Recommended

response

You have two options:

v Modify the WebSphere Application Server service to use a Log on as option of This

account, and provide an account with permission to connect to DB2. Or

v Configure your application server to provide credentials on the DB2 connection by using

container-managed or component-managed authentication.

XAException: XAER_NOTA on XA prepare call in DB2 Universal JDBC Driver type 4 after

one phase transaction rollback

Symptom

1640 Administering WebSphere applications

For applications that use the DB2 Universal JDBC Driver type 4 XA available with DB2 v8.2, a connection

might fail and trigger an XAER_NOTA XAException error. The following code block is an example of this

exception:

J2CA0027E: An exception occurred while invoking prepare

on an XA Resource Adapter from dataSource jdbc/SDOSVT,

within transaction ID {XidImpl: formatId(57415344),

gtrid_length(36), bqual_length(54),

data(000000ff5191398200000001000000296cac5c42fe3c6838631cbaafc8b5a9253b846544

000000ff5191398200000001000000296cac5c42fe3c6838631cbaafc8b5a9253b8465440000000

10000000000000000000000000002)}:

javax.transaction.xa.XAException: XAER_NOTA

at com.ibm.db2.jcc.a.xb.a(xb.java:1682)

at com.ibm.db2.jcc.a.xb.a(xb.java:841)

at com.ibm.db2.jcc.a.xb.prepare(xb.java:812)

at com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl.prepare

(WSRdbXaResourceImpl.java:837)

...

Problem

If a DB2 Universal JDBC Driver type 4 XA connection is used in a single-phase transaction, such as a

local transaction with autocommit set to false, and that single-phase transaction is rolled back, the next

use of the connection in a two-phase transaction fails on the prepare call.

A problem in the DB2 Universal JDBC Driver type 4 XA support causes the XA prepare call to fail. This

problem does not occur if the single-phase transaction is committed, and it does not occur when using the

DB2 Universal JDBC Driver in type 2 mode.

Solution

Upgrade to DB2 Version 8.2 Fix Pack 1, which is equivalent to Version 8.1 Fix Pack 8. The Universal

JDBC Driver XA that is available with these releases solves the previously described issue for type 4

mode.

java.rmi.MarshalException logged for application client due to incompatibility of JDBC

driver file versions

Symptom

For an application that includes a application client, the following error message is displayed in the client

log file of the application server:

java.rmi.MarshalException: CORBA MARSHAL

0x4942f89a No; nested exception is:

org.omg.CORBA.MARSHAL: Unable to read value from

underlying bridge : Mismatched serialization

UIDs : Source (Rep.

IDRMI:com.ibm.db2.jcc.c.SqlException:63EEE52211DCD763:82CE0C0DA2B0A000)

= 82CE0C0DA2B0A000 whereas Target (Rep. ID

RMI:com.ibm.db2.jcc.c.SqlException:63EEE52211DCD763:91C6171BC645E41B)

= 91C6171BC645E41B vmcid: 0x4942f000 minor code:

2202 completed: No

Problem

The db2jcc.jar files on the application client machine and on your application server are from versions of

DB2 that are not compatible with each other, or are not compatible with the version of DB2 that functions

as the datastore.

Solution

Chapter 7. Data access resources 1641

Check the db2jcc.jar files on the application client machine, your application server, and your DB2 server.

On the client machine and the application server, install files of the same version that is compatible with

the DB2 server.

Database failure triggers problematic -99999 exception for applications that use DB2

Universal Driver type 4

Symptom

If you use the DB2 Universal Driver type 4 for access to DB2 or Cloudscape Network Server, and your

database fails, the database server issues a generic -99999 exception in response to every JDBC

getConnection request. This exception, which is exemplified in the following code excerpt, can cause

unexpected behavior in your applications.

java.sql.SQLException: IO Exception opening socket to

 server bs8.rchland.ibm.com on port 1527.

The DB2 Server may be down.DSRA0010E: SQL State = null,

 Error Code = -99,999DSRA0010E: SQL State = null,

Error Code = -99,999

at com.ibm.db2.jcc.b.a.<init>(a.java:125)

at com.ibm.db2.jcc.b.b.a(b.java:1011)

at com.ibm.db2.jcc.c.l.<init>(l.java:197)

at com.ibm.db2.jcc.b.b.<init>(b.java:258)

at com.ibm.db2.jcc.DB2PooledConnection.

 <init>(DB2PooledConnection.java:44)

at com.ibm.db2.jcc.DB2ConnectionPoolDataSource.getPooledConnectionX

 (DB2ConnectionPoolDataSource.java:80)

at com.ibm.db2.jcc.DB2ConnectionPoolDataSource.getPooledConnection

 (DB2ConnectionPoolDataSource.java:45)

at com.ibm.ws.rsadapter.DSConfigurationHelper$1.run

 (DSConfigurationHelper.java:945)

Problem

When running in type 4 mode, some versions of the DB2 Universal Driver trigger a generic exception for

database failure rather than a specific error code that WebSphere Application Server can map to a stale

connection exception. This problem occurs with versions of the driver that are associated with DB2 8.1 Fix

Pack 6 or Fix Pack 7, and DB2 8.2.

Solution

Upgrade to DB2 Version 8.2 Fix Pack 1, equivalent to Version 8.1 Fix Pack 8, which provides a valid error

code in the previously described scenario. WebSphere Application Server maps this error code to a

StaleConnectionException, as expected.

Cannot access DB2 on Linux when using the DB2 Universal JDBC Driver

Symptom

In the WebSphere Application Server on Linux environment, applications that use the DB2 Universal JDBC

Driver to access DB2 on Linux might not connect with the database. The database server can issue the

following exceptions to the application server error log:

v java.security.AccessControlException: Access denied

(java.lang.RuntimePermission accessClassInPackage.sun.io)

v If you run 64-bit Linux:

com.ibm.db2.jcc.b.SqlException: Failure in loading T2 native library db2jcct2

Problem

1642 Administering WebSphere applications

The process for configuring DB2 on Linux to work with the Universal JDBC Driver is not complete.

Solution

v Verify that the setup requirements for the Java™ SDK 1.4.2 for the Linux platform are complete.

v Configure your development environment for building Java applications on Linux with DB2 JDBC

support. See the application development topics for DB2 for more information.

v If you run DB2 on the Linux/IA64 platform and are using DB2 v8.1 Fix Pack 7A, perform the additional

step that is described in the technote on DB2 UDB Version 8 FixPak 7a for Linux on IA64 reporting a

missing libdb.so.3 library. This step is necessary only for Fix Pack 7A. This step is not necessary for

DB2 v8.1 Fix Pack 7 or earlier versions of DB2; this step is not necessary for DB2 v8.1 Fix Pack 8 or

later versions of DB2.

Illegal conversion occurs on any VARCHAR FOR BIT DATA column in a

container-managed persistent bean

When enterprise beans with container-managed persistent (CMP) types that have any VARCHAR FOR

BIT DATA columns defined on a DB2 table are deployed in the DB2 universal JDBC type 4 driver to

persist the data, an SQLException of illegal conversion is thrown at run time. This exception only occurs

when you use the DB2 universal JDBC type 4 driver and with the deferPrepares property being set to true.

When the deferPrepares property is set to true, the DB2 universal JDBC type 4 driver uses the standard

JDBC data mapping.

Currently, the generated deployed code does not follow the standard JDBC specification mapping. The

failure at execution time is because of a problem in the tool that prepared the enterprise beans for

execution.

To avoid receiving this exception, choose one of the following options:

v Set the deferPrepares property to false in the data source configuration.

v Do not use the DB2 universal JDBC type 4 driver if your table has any VARCHAR FOR BIT DATA or

LONG VARCHAR FOR BIT DATA columns. Refer to DB2 V8.1 readme for more details.

Data access problems - Microsoft SQL Server data source

This article provides troubleshooting tips for accessing Microsoft SQL Server data sources.

What kind of problem are you having accessing your Microsoft SQL Server database?

v “ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database”

v “Application fails with message stating ″Cannot find stored procedure...″ accessing a Microsoft SQL

Server database” on page 1644

v “ERROR CODE: SQL5042 when you run a Java application” on page 1644

ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database

The problem might be that the distributed transaction coordinator service is not started. Look for an error

similar to the following example when attempting to access a Microsoft SQL Server database:

ERROR CODE: 20001

SQL STATE: HY000

java.sql.SQLException: [Microsoft][SQLServer JDBC Driver]

[SQLServer]xa_open (0) returns -3

at com.microsoft.jdbc.base.BaseExceptions.createException(Unknown Source) ...

at com.microsoft.jdbcx.sqlserver.SQLServerDataSource.getXAConnection

(Unknown Source) ...

To confirm this problem:

1. Go to the Windows Control Panel and click Services(or click Control Panel > Administrative Tools

> Services)

2. Verify whether the service Distributed Transaction Coordinator or DTC is started.

Chapter 7. Data access resources 1643

3. If not, start the Distributed Transaction Coordinator service.

Application fails with message stating ″Cannot find stored procedure...″ accessing a

Microsoft SQL Server database

This error can occur because the stored procedures for the Java Transaction API (JTA) feature are not

installed on the Microsoft SQL Server.

To resolve the problem, repeat the installation for the stored procedures for the JTA feature, according to

the DataDirect Connect for JDBC driver installation guide.

ERROR CODE: SQL5042 when you run a Java application

This error can occur when you configure your application to run in the following manner:

1. You use a type 2 (application) driver running on the gateway to the OS 390

2. Your application is an XA application.

OS 390 does not use XA, but uses SPM. To resolve the problem:

1. Check your dbm cfg to see that the SPM is not started on the gateway.

2. Assign a port and set the db2comm variable to TCPIP.

3. Update the dbm cfg value SPM_NAME to use your machine name.

4. Start the SPM on the gateway.

Data access problems - Apache Derby database

This article provides troubleshooting tips for accessing Apache Derby databases.

What kind of problem are you having accessing your Apache Derby database?

v “Unexpected IOException wrapped in SQLException, accessing Apache Derby database”

v “The ″select for update″ operation causes table lock and deadlock when accessing Apache Derby”

v “ERROR XSDB6: Another instance of Apache Derby may have already booted the database

″database″” on page 1645

v “Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity to Apache

Derby databases″” on page 1645

v “Running an application causes a runtime exception which produces an unreadable message.” on page

1645

Tip: Apache Derby errorCodes (2000, 3000, 4000) indicate levels of severity, not specific error conditions.

In diagnosing Apache Derby problems, pay attention to the given sqlState value.

Unexpected IOException wrapped in SQLException, accessing Apache Derby database

This problem can occur because Apache Derby databases use a large number of files. Some operating

systems, such as the Solaris Operating Environment, limit the number of files an application can open at

one time. If the default is a low number, such as 64, you can get this exception.

If your operating system lets you configure the number of file descriptors, you can correct the problem by

setting the number to a high value, such as 1024.

The ″select for update″ operation causes table lock and deadlock when accessing Apache

Derby

If a select for update operation on one row locks the entire table, which creates a deadlock condition,

there might be undefined indexes on that table. The lack of an index on the columns you use in the where

clause can cause Apache Derby to create a table lock rather than a row level lock.

1644 Administering WebSphere applications

To resolve this problem, create an index on the affected table.

ERROR XSDB6: Another instance of Apache Derby may have already booted the database

″database″

This problem occurs because Apache Derby embedded framework only allows one Java virtual machine

(JVM) to access the database instance at a time.

To resolve this problem:

1. Verify that you do not have other JDBC client programs, such as ij or cview running on that database

instance, when WebSphere Application Server is running.

2. Verify that you do not use the same instance of the database for more than one data source or use the

networkServer framework, which doesn’t have this limitation.

3. If there are no connections to Apache Derby, delete the db.lck lock file. This file can be found in the

directory where the Apache Derby database is mounted, under the schema directory. For example, if

the database is mounted at /myDerbyDB, issue the command: rm /myDerbyDB/schemaName/db.lck

Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity to Apache

Derby databases″

Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity

to Apache Derby databases″

At the client runtime, an error similar to the following occurs:

The version of the IBM Universal JDBC driver in use is not

licensed for connectivity to Apache Derby databases. To connect

to this DB2 server, please obtain a licensed copy of the IBM DB2

Universal Driver for JDBC and SQLJ. An appropriate license file

db2jcc_license_*.jar for this target platform must be installed to

the application classpath. Connectivity to Apache Derby databases is

enabled by any of the following license files:

{ db2jcc_license_c.jar, b2jcc_license_cu.jar, db2jcc_license_cisuz.jar }

The problem occurs because an incorrect JDBC driver jar file name is specified in the class path for JDBC

provider. For example, the jar file name may have an extra ’_’, as follows:

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license__cu.jar

To resolve the problem:

1. Correct the UNIVERSAL_JDBC_DRIVER_PATH jar file name in the JACL script

2. Restart the cluster.

3. Rerun the client.

Running an application causes a runtime exception which produces an unreadable

message.

At client runtime, you may receive a message similar to the following: Caused by:

com.ibm.db2.jcc.a.SqlException: DB2 SQL error: SQLCODE: -1, SQLSTATE: 42X05, SQLERRMC:

ANNUITYHOLDER20^T42X05

The problem occurs because the property retrieveMessagesfromServerOnGetMessage, which is required

by WebSphere Application Server, has not been set.

To resolve the problem, on the admininstrative console

1. Click Resources -> JDBC Providers

2. Click on a Apache Derby provider

3. Scroll down and click on Data Sources

Chapter 7. Data access resources 1645

4. Select your data source (or add a new one)

5. Scroll down and select Custom Properties

6. If the property retrieveMessagesFromServerOnGetMessage already exists, set its value to true. If the

property does not exist, select Newand add the property retrieveMessagesFromServerOnGetMessage

with a value true

7. Rerun the client

The SystemOut.log will now generate readable messages so that you can resolve the underlying problem.

Data access problems - Sybase data source

This article provides troubleshooting tips for accessing Sybase data sources.

What kind of problem are you having accessing your Sybase database?

v ″Sybase Error 7713: Stored Procedure can only be executed in unchained transaction mode″ error.

v ″JZ0XS: The server does not support XA-style transactions. Please verify that the transaction feature is

enabled and licensed on this server.″

v A container managed persistence (CMP) enterprise bean is causing exceptions.

v “Sybase JDBC data source fails with ″Incorrect URL format″ exception in IPv6 environment” on page

1647

v “Executing the DatabaseMetaData.getBestRowIdentifier() method in an XA transaction causes errors” on

page 1648

v “Sybase requirements for using the escapes and DatabaseMetaData methods” on page 1648

v “Database deadlocks and XA_PROTO errors occur when using Sybase” on page 1649

v “Executing a stored procedure containing a SELECT INTO command causes exception” on page 1649

v “Error is incorrectly reported about IMAGE to VARBINARY conversion” on page 1649

v “JDBC 1.0 standard methods are not implemented and generate a SQL exception when used” on page

1649

v “Sybase transaction manager fails after trying to alleviate a deadlock error” on page 1649

v “Starting an XA transaction when the autoCommit value of the connection is false causes error” on page

1650

v “Sybase does not throw an exception when an incorrect database name is specified” on page 1650

″Sybase Error 7713: Stored Procedure can only be executed in unchained transaction

mode″ error

This error occurs when either:

v The JDBC attempts to put the connection in autocommit(true) mode.

v A stored procedure is not created in a compatible mode.

To fix the autocommit(true) mode problem, let the application change the connection to chained mode

using the Connection.setAutoCommit(false) mode, or use a set chained on language command.

To resolve the stored procedure problem, use the sp_procxmode procedure_name "anymode" command.

″JZ0XS: The server does not support XA-style transactions. Please verify that the

transaction feature is enabled and licensed on this server.″

This error occurs when XA-style transactions are attempted on a server that does not have Distributed

Transaction Management (DTM) installed.

To resolve this problem, use the instructions in the Sybase Manual titled: Using Adaptive Server

Distributed Transaction Management Features to enable Distributed Transaction Management (DTM). The

main steps in this procedure are:

1. Install the DTM option.

2. Check the license.dat file to verify that the DTM option is installed.

3. Restart the license manager.

1646 Administering WebSphere applications

4. Enable DTM in ISQL.

5. Restart the ASE service.

A container managed persistence (CMP) enterprise bean is causing exceptions

This error is caused by improper use of reserved words. Reserved words cannot be used as column

names.

To correct this problem: Rename the variable to remove the reserved word. You can find a list of reserved

words in the Sybase Adaptive Server Enterprise Reference Manual; Volume 1: Building Blocks, Chapter 4.

This manual is available online at: http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman.

Sybase JDBC data source fails with ″Incorrect URL format″ exception in IPv6 environment

Problem

If you configure a Sybase JDBC data source through the administrative console and attempt to use it in an

IPv6 environment, you can experience the following exception:

java.sql.SQLException: JZ0NE: Incorrect URL format

Cause

The Sybase JDBC drivers that are listed as selections for JDBC provider type in the administrative console

do not support IPv6. The administrative console does not contain a pre-formatted template for the Sybase

jConnect JDBC driver v6.0 EBF12884, which is the version required to connect to the database in an IPv6

environment.

However, you can still use the administrative console to define the Sybase jConnect JDBC driver v6.0

EBF12884.

Solution

Complete the following steps to define the Sybase jConnect JDBC driver v6.0 EBF12884:

1. In the administrative console, go to Resources > JDBC Providers and click New.

2. Select User-defined for the database type. This selection triggers the console to set your provider type

to User-defined JDBC provider and implementation type to User-defined.

3. Click Next to go to the JDBC provider general configuration page.

4. In the Class path field, replace the default JAR file name with jconn3.jar.

5. For Implementation class name:

v For a data source implementation that supports only one phase transactions, input

com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource

v For an implementation that supports two phase transactions, input

com.sybase.jdbc3.jdbc.SybXADataSource

6. Click Apply. Then click the Data sources link.

7. Click New to define the general properties of your data source.

8. Click Apply after defining the general data source properties. Then click the Custom properties link.

9. Define the following properties as custom properties. To set these properties, click New. Input the

property name and a valid value for each one.

v databaseName

v serverName

v portNumber

Chapter 7. Data access resources 1647

http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman

Executing the DatabaseMetaData.getBestRowIdentifier() method in an XA transaction

causes errors

Executing the DatabaseMetaData.getBestRowIdentifier() method while in an XA transaction causes the

following errors:

SQL Exception: The ’CREATE TABLE’ command is not allowed within a

multi-statement transaction in the ’tempdb’ database. Calling

DatabaseMetaData.getBestRowIdentifier()

Currently, this method fails when using Sybase. This problem occurs with other methods as well, including:

v getBestRowIdentifier();

v getVersionColumns();

v getTablePrivileges();

v getProcedureColumns();

v getPrimaryKeys();

v getIndexInfo();

v getImportedKeys();

v getExportedKeys();

v getCrossReference();

v getColumns();

v getColumnPrivileges();

Case 10880427 has been opened with Sybase to resolve this problem.

Sybase requirements for using the escapes and DatabaseMetaData methods

To use the escapes and DatabaseMetaData methods, you must install stored procedures on the Adaptive

Server Enterprise or Adaptive Server Anywhere database where you want to use these methods. These

stored procedures are also required by some of the connection methods.

To check for the presence of LOCATE ():

1. Open a Sybase isql command prompt.

2. Type the command use master.

3. Type the command go.

4. Type the SQL command and select * from jdbc_function_escapes.

5. Type the command go.

The following appears:

escape_name map_string

 abs abs(%1)

 acos acos(%1)

 asin asin(%1)

 atan atan(%1)

 atan2 atn2(%1, %2)

 ceiling ceiling(%1)

::

locate charindex ((convert (varchar, %1)), (convert (varchar, %2)))

If the function does not exist, upgrade jConnect to at least Version 5.2 EBF 10635 and run the following

command:

java IsqlApp -U sa -P -S jdbc:sybase:Tds:hostname:4100 -I %JDBC_HOME%\sp\sql_server12.sql -c go

1648 Administering WebSphere applications

Database deadlocks and XA_PROTO errors occur when using Sybase

When using Sybase with the IBM WebSphere Application Server, do one of the following to prevent

database deadlocks and errors:

v Change the transaction isolation level on the connection to TRANSACTION_READ_COMMITTED. Set

the isolation level on the connection for unshareable connections or, for shareable connections, define

the isolation levels in the resource reference for your data source using an assembly tool.

v Modify Sybase by doing one of the following:

– If you want to use the existing tables, modify the table locking scheme using the alter table table

name lock datarows command to get a row lock level granularity.

– If you want to set the system-wide locking scheme to data rows, all subsequently created tables

inherit that value and have a locking scheme of data rows.

Note: You must drop your original databases and tables.

Executing a stored procedure containing a SELECT INTO command causes exception

An attempt to execute a stored procedure containing a SELECT INTO command results in the following

exception:

SVR-ERROR: SQL Exception SELECT INTO command not allowed within multi-statement transaction

Case 10868947 has been opened with Sybase to resolve this problem.

Error is incorrectly reported about IMAGE to VARBINARY conversion

The following error is incorrectly reported:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from data type ’IMAGE’ to ’VARBINARY’ is not allowed.

 Use the CONVERT function to run this query.

The error is about a VARBINARY column only and causes confusion if you also have an IMAGE column.

Do one of the following to work around this problem:

v Use a PreparedStatement.setBytes() method instead of a PreparedStatement.setBinaryStream() method

v Use a LONG VARBINARY for the column type if you want to continue using the setBinaryStream()

method. You might want to make this change because the size limit for VARBINARY is 255 bytes.

For example:

// ***************CORRECTION*****************************

 // setBinaryStream fails for column type of VARBINARY , use setBytes() instead

 //stmt4.setBinaryStream(8,new java.io.ByteArrayInputStream(tempbyteArray),tempbyteArray.length);

 stmt4.setBytes(8,tempbyteArray);

JDBC 1.0 standard methods are not implemented and generate a SQL exception when

used

The following JDBC 1.0 standard methods are not implemented and generate a SQL exception when

used:

v ResultSetMetaData.getSchemaName()

v ResultSetMetaData.getTableName() (implemented only for text and image datatypes)

v ResultSetMetaData.getCatalogName()

Sybase transaction manager fails after trying to alleviate a deadlock error

If an application encounters a deadlock, Sybase detects the deadlock and throws an exception. Because

of this detection, the transaction manager calls an xa_end with a TMFAIL in it.

Chapter 7. Data access resources 1649

The call succeeds, but causes another Sybase exception, XAERR_PROTO. This exception only appears in the

error log and does not cause any functional problems. All applications should continue to run, therefore no

workaround is necessary.

Case 10869169 has been opened with Sybase to resolve this problem.

Starting an XA transaction when the autoCommit value of the connection is false causes

error

The exception thrown is javax.transaction.xa.XAException with stack trace similar to the following:

 at com.sybase.jdbc2.jdbc.SybXAResource.sendRPC(SybXAResource.java:711)

 at com.sybase.jdbc2.jdbc.SybXAResource.sendRPC(SybXAResource.java:602)

 at com.sybase.jdbc2.jdbc.SybXAResource.start(SybXAResource.java:312)

This problem affects you when you do both local and global transactions. If, in a local transaction, the

autoCommit default value is set to false, and a global or XA transaction starts (either a user transaction

started by you, or a container transaction started by a container), the exception occurs.

This problem is a Sybase bug as the start() method can fail unexpectedly, regardless of the value of

autoCommit. Currently, there is no workaround for this problem, therefore it is not recommended that you

mix local and global transactions. Case 10880792 has been opened to resolve this problem.

Sybase does not throw an exception when an incorrect database name is specified

Verify that your database name is correctly entered on the data source properties.

Most databases (DB2, Oracle, Informix , MS SQL Server and Cloudscape) throw an exception when the

database specified does not exist. But Sybase does not throw an exception when an incorrect database

name is specified. Sybase generates an SQL warning and then connects to the default database. If you

misspell the requested database name, Sybase connects you to the master or the default database where

the table you requested is not found.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you do not find your

problem listed there, contact IBM Support.

JDBC trace configuration

If your application displays JDBC-related exception messages, activate the JDBC trace service. The

resulting log text can help you identify the problem.

Trace strings for JDBC data sources

Turn on tracing for most database JDBC implementations through the administrative console; see the

article Enabling trace at server startup for instructions.

This method activates JDBC trace for all applications that run in the server you specify. Identify your

database type by selecting the trace group WAS.database and typing one of the following trace strings in

the console:

v com.ibm.ws.database.logwriter Trace string for databases that use the GenericDataStoreHelper. You

can also use this trace string for unsupported databases.

v com.ibm.ws.db2.logwriter Trace string for DB2 databases.

v com.ibm.ws.oracle.logwriter Trace string for Oracle databases.

v com.ibm.ws.derby.logwriter Trace string for Derby databases.

v com.ibm.ws.informix.logwriter Trace string for Informix databases.

v com.ibm.ws.sqlserver.logwriter Trace string for Microsoft SQL Server databases.

v com.ibm.ws.sybase.logwriter Trace string for Sybase databases.

1650 Administering WebSphere applications

A few JDBC drivers require that you set trace differently, at the data source level. These drivers include:

v Microsoft SQL Server JDBC driver

v DataDirect Connect for JDBC driver for MS SQL Server

Configuring trace for these drivers through the WAS.database group results in corrupt trace information.

The application server sets trace for the group at the server level, causing the trace service to begin only

after your application establishes an initial connection. Because that first connection does not carry trace

information, re-use of it is never tracked. Consequently the application cannot accurately match trace

information to connection use.

Set trace for the previously mentioned JDBC drivers through data source custom properties. For example,

use the spyAttributes custom property to enable JDBC trace for the DataDirect Connect for JDBC driver.

Consult your driver documentation for details on the custom property that enables trace for your JDBC

implementation.

Additional resources

If the JDBC tracing service cannot help you isolate and fix your problem, consult the IBM Support web site

for WebSphere Application Server. Use the site search function to find current information on known

problems and their resolutions. Locating the right troubleshooting tip can save time that you might

otherwise spend on opening and tracking a PMR.

Configuring the connection validation timeout

You can configure a timeout for connection validation by the Java Database Connectivity (JDBC) driver

through a data source custom property in the data source configuration panels.

About this task

You can choose between validating connections with the JDBC driver or by having the application server

run a SQL query. Select one or both of the following connection pretest attributes:

v Validate new connections

v Validate existing pooled connections

By default, connection validation is disabled. When you save the configuration for the data source, the

administrative console supplies only the option that is selected. The administrative console will select

validation by timeout or validation by a query, but if validation is not enabled then the application server

will select neither option.

1. Open the administrative console.

2. Go to the WebSphere Application Server Data Source properties panel for the data source.

a. Select Resources → JDBC → Data Sources → data_source

b. Select WebSphere Application Server Data Source properties.

3. Go to the Connection Validation Properties section.

4. Select the type of connections that the application server will validate.

v Select Validate new connections. This option specifies that the connection manager tests newly

created connections to the database.

v Select Validate existing pooled connections. This options specifies that the connection manager

tests the validity of pooled connections before returning them to applications.

v You can also select both options

Note: You must make a selection here. If you do not select one or both of these options, you will

not be able to select Validation by JDBC Driver. The Validation by JDBC Driver timeout

feature is only available for JDBC providers that comply with the JDBC 4.0 specification.
.

Chapter 7. Data access resources 1651

5. Click Validation by JDBC Driver. The application server issues a warning if Validation by JDBC

driver is configured and the JDBC driver does not implement JDBC 4.0, or if the Connection.isValid

method raises an error.

Note: Connection validation by SQL query is deprecated. Use validation by JDBC Driver instead.

6. Enter the timeout value in the input box. The timeout value is in seconds.

Note: If retries are configured, meaning the retry interval is not set to 0, for Validate new

connections or Validate existing pooled connections, then the full value of the timeout

applies to each retry. For each retry, the application server waits for the retry interval. Then the

JDBC driver uses the full value of the timeout to validate the connection

7. Save the data source configuration.

What to do next

If you are modifying an existing data source, restart your server for this change to go into effect. If this is a

new data source, restarting the server is not necessary.

Deploying data access applications

Frequently, deploying data access applications involves more than installing your WAR or EAR file onto a

server. Deployment can include tasks for configuring your application to use the data access resources of

the server and overall run-time environment.

Before you begin

You can only deploy application code that is assembled into the appropriate modules. The topic

Assembling data access applications provides guidelines for this process.

About this task

Perform the following steps if your application requires access to a relational database (RDB). If your

application requires access to a different type of enterprise information system (EIS), such as an

object-oriented database or the Customer Information Control System (CICS), consult the topics “Resource

adapters” on page 1389 and Accessing data using Java EE Connector Architecture connectors.

1. If your RDB configuration does not already exist:

a. Create a database to hold the data.

b. Create tables required by your application.

If your application uses CMP entity beans to access the data

You can create the tables using the data definition language (DDL) generated from the

enterprise bean configuration. For more information, see Recreating database tables from

the exported table data definition language.

If your application uses BMP entity beans, or does not use entity beans

You must use your database server interfaces to create the tables.

You can also use the EJB to RDB Mapping wizard of an assembly tool to create your database

tables for either type of entity bean. Select the top-down mapping option in the wizard. Keep in

mind, however, that this option does not give you direct control in naming the RDB elements or

choosing column types. Additionally, because the top-down process is automatic, it might not

provide mappings to reflect the precise relationships that you intend.

If you use Rational Application Developer, consult the information center about the mapping wizard.

To learn about all of your assembly tool options, consult the Assembly tools article in this

information center.

c. Check “Data source minimum required settings, by vendor” on page 1509 to see any database

vendor requirements for connecting to an application server.

1652 Administering WebSphere applications

2. If necessary, map your entity beans to the database tables through the meet-in-the-middle mapping

option of an assembly tool. This step is necessary only if you did not create your database schema

through the top-down mapping option, did not generate your mapping relationships through bottom-up

mapping, or did not generate mappings during the application assembly process. For information on

the top-down mapping option refer to the information center for Rational Application Developer.

3. Install your application onto the application server. Consult Installing enterprise application files. When

you install the application, you can alter data access settings that were made during application

assembly, or set them for the first time if they were omitted from the assembly process. These settings

include resource bindings and resource authentication aliases, which are addressed in the following

substeps:

a. Bind application resource references to the data sources, or other resource objects, that provide

database connectivity. For details on the concept of binding, see the Data source lookups for

enterprise beans and Web modules topic.

Note: After deployment, you can use the WebSphere Application Server administrative console to

alter resource bindings. Click Applications → Application Types → Webphere enterprise

applications → application_name, and select the link to the appropriate mapping page. For

example, if you want to alter the binding of an EJB module resource, you might click Map

data sources for all 2.x CMP beans . For a Web module resource, click Resource

references.

b. Define authentication alias data for resources that must be authenticated with the backend through

container-managed authorization. In this security configuration, WebSphere Application Server

performs EIS signon for data source or connection factory connections. Consult the “J2EE

connector security” on page 1501 topic for detailed reference on resource authentication.

4. Start the deployed application files using the administrative console , the wsadmin startApplication

command, or your own Java program.

5. Save the changes to your administrative configuration.

6. Test the application. For example, point a Web browser at the URL for a deployed application and

examine the performance of the application.

Results

When you deploy an application that uses a DB2 UDB for i5/OS back-end database, you might find the

following exception in the SystemOut.log file:

PMGR6022E: Error using adapter to create or execute an Interaction

This type of error indicates that you deployed an application with Container-managed persistence (CMP)

enterprise beans that were originally configured to access a DB2 database on Windows, Linux, or a

supported UNIX system. Using the administrative console, uninstall the affected CMP applications, then

reinstall the applications with the new database setting. Remember to select Deploy enterprise beans; on

the EJB deploy panel, select the appropriate version of your DB2 UDB for i5/OS database.

What to do next

If the application does not perform as desired, update the application, then save and test it again.

Available resources

Use this page to select configured resources that you want to bind to the resource references of the

enterprise beans or web modules in your application.

To view this administrative console page:

1. Click Applications → Application Types → Websphere enterprise applications → application_name.

2. Click the link for any of these resource configuration pages:

Chapter 7. Data access resources 1653

v Resource references

v Map data sources for all 2.x CMP beans

v Provide default data source mapping for modules containing 2.x entity beans

3. Locate the table row of the EJB or web module that you want to map to a different resource.

4. Within the row, locate the JNDI name of the resource that is currently bound to the EJB or web

module.

5. Click Browse.

You now see Available resources.

Each table row corresponds to a resource that you can bind to your enterprise bean or web module.

Select

Select the resource that you want to bind to the resource reference of your module.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource that you want to bind to the

resource reference of your module.

 Data type String

Scope

The scope of the resource. Note that this administrative console page displays only resources that are

configured for a scope at which your application operates.

Description

The text description of the resource.

Map data sources for all 1.x CMP beans

Use this page to designate how the container-managed persistence (CMP) 1.x beans of an application

map to data sources that are available to the application.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Map data sources for all 1.x CMP beans.

Guidelines for using this administrative console page:

v The table depicts the 1.x CMP bean contents of your application.

v Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name

of the data source mapping target of the bean only if you bound them together during application

assembly or installation. For every data source that is displayed, you see the corresponding security

configuration.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target

that you select in step 2 applies to all of those CMP beans.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources

page. The Available Resources page shows all data sources that are available mapping targets for

your CMP beans.

3. Click Apply. The console displays the 1.x CMP bean data sources page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.

Use the following steps.

v To specify data source security settings:

1654 Administering WebSphere applications

1. Select one or more rows in the table.

2. Type in a user name and password that comprise the authentication alias for signing on to the data

source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)

Connector (J2C) authentication data list, you must input them into the list after saving your settings

on this page. Read the information center topic on managing Java EE Connector Architecture

authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your settings.

Select

Select the check boxes of the rows that you want to edit.

EJB

The name of an enterprise bean in the application.

EJB Module

The name of the module that contains the enterprise bean.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the data source that is configured for the

enterprise bean.

 Data type String

User name

The user name and password that comprise the authentication alias for securing the data source.

Map default data sources for modules containing 1.x entity beans

Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed

persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this

default mapping applies to all beans within the module.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Map default data sources for modules containing 1.x

entity beans.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping

target of the EJB module only if you bound them together during application assembly. For every data

source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target

that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources

page. The Available Resources page shows all data sources that are available mapping targets for

your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

Chapter 7. Data access resources 1655

4. Before you click OK to save your new configuration, set the security parameters for the data source.

Use the following steps.

v To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you

select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data

source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)

Connector (J2C) authentication data list, you must input them into the list after saving your settings

on this page. Read the information center topic on managing Java EE Connector Architecture

authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your work.

Select

Select the check boxes of the rows that you want to edit.

EJB Module

The name of the module that contains the 1.x enterprise beans.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

 Data type String

User name

The user name and password that comprise the authentication alias for securing the data source.

Map data sources for all 2.x CMP beans settings

Use this page to map container-managed persistence (CMP) 2.x beans of an application to data sources

that are available to the application.

To view this administrative console page, click Applications → Application Types → Websphere

enterprise applications → application_name → Map data sources for all 2.x CMP beans.

Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name of

the data source mapping target of the bean only if you bound them together during application assembly.

For every data source that is displayed, you see the corresponding security configuration.

Set Multiple JNDI names

Specify the Java Naming and Directory Interface (JNDI) name for multiple EJB modules. Select one or

more EJB modules from the table, and select a JNDI name from this list to configure the EJB modules

with that JNDI name.

 Data type Drop-down list

Set Authorization Type

Specify the authorization type for securing the data source. Select one or more EJB modules from the

table to set the authorization type.

1656 Administering WebSphere applications

Select either Container or Application from the displayed list. Container-managed authorization indicates

that WebSphere Application Server performs signon to the data source. Application-managed authorization

indicates that the enterprise bean code performs signon.

Modify Resource Authentication Method

Specify the authorization type and the authentication method for securing the data source. Select one or

more EJB modules from the table to modify the resource authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server

DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you

want to designate different authentication data aliases. See the information center topic on J2EE

Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options

that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the

table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database

when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and

Authorization Service (JAAS) login configuration. See the information center topic on J2EE

Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method

options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database

when you select this option.

v Custom login configuration:

Chapter 7. Data access resources 1657

1. Determine which data source configurations to designate with a custom Java Authentication and

Authorization Service (JAAS) login configuration. See the information center topic on J2EE

Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede

the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select

Select the check boxes of the rows that you want to edit.

EJB

The name of an enterprise bean in the application.

EJB Module

The name of the module that contains the enterprise bean.

URI

Specifies location of the module relative to the root of the application EAR file.

Target resource JNDI name

Specifies the resource to which the CMP bean is bound.

Resource authorization

Specifies the current setting for the resource authorization type.

Modify this setting with Set authorization type.

Map data sources for all 2.x CMP beans

Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed

persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this

default mapping applies to all beans within the module.

To view this administrative console panel, click Applications → Application Types → Websphere

enterprise applications → application_name → Map data sources for all 2.x CMP beans .

This panel displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.

Each table row corresponds to a module. A row shows the JNDI name of the data source mapping target

of the EJB module only if you bound them together during application assembly. For every data source

that is displayed, you see the corresponding security configuration.

Set Multiple JNDI Names

Specifies the JNDI name to bind to one or more modules. Select one or more modules, click Set Multiple

JNDI Names, and select the JNDI name for the resource to which you would like to bind the module.

Set Authorization Type

Specifies the authorization type that you to use for the modules. Select one or more modules, click Set

Authorization Type, and select the authorization type.

You can choose:

v Per application - indicates that the enterprise bean code performs signon.

v Container - indicates that the application server performs signon to the data source.

1658 Administering WebSphere applications

Modify Resource Authentication Method

Specifies the resource authentication method for the modules that you have configured with

container-managed authorization. Select one or more modules, click Modify Resource Authentication

Method, and select the authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server

DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you

want to designate different authentication data aliases. See the information center topic on J2EE

Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options

that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the

table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database

when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and

Authorization Service (JAAS) login configuration. See the information center topic on J2EE

Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method

options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database

when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and

Authorization Service (JAAS) login configuration. See the information center topic on J2EE

Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

Chapter 7. Data access resources 1659

3. Select Use custom login configuration from the list of authentication method options that precede

the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select

Select the check boxes of the rows you want to edit.

EJB Module

Specifies the name of the module that contains the 2.x enterprise beans.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

Specifies the Java Naming and Directory Interface (JNDI) name of the default data source for the EJB

module.

 Data type String

Resource authorization

Specifies the authorization type and the authentication method for securing the data source.

Extended Datasource Properties

When selected, you will be directed to a panel on which you can specify extended properties that the

module can use for the DB2 data source.

The application server will attempt to verify that you are connecting to the correct type of database when

you select this option.

1660 Administering WebSphere applications

Chapter 8. Messaging resources

Managing messaging with the default messaging provider

This topic is the entry point into a set of topics about enabling WebSphere Application Server applications

to use messaging resources provided by the default messaging provider.

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,

you can use the default messaging provider as described in this topic. To integrate WebSphere Application

Server messaging into a predominantly WebSphere MQ network, you can use the WebSphere MQ

messaging provider. You can also use a third party messaging provider. To choose the provider that is best

suited to your needs, see Choosing a messaging provider.

About this task

The default messaging provider is installed and runs as part of WebSphere Application Server, and is

based on service integration technologies.

The default messaging provider supports JMS 1.1 domain-independent interfaces (sometimes referred to

as “unified” or “common” interfaces). This enables applications to use common interfaces for both

point-to-point and publish/subscribe messaging. This also enables both point-to-point and

publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is recommended

for new applications. The domain-specific interfaces are supported for backwards compatibility for

applications developed to use domain-specific queue interfaces, as described in section 1.5 of the JMS 1.1

specification.

You can use the WebSphere Application Server administrative console to configure JMS resources for

applications, and can manage messages and subscriptions associated with JMS destinations.

WebSphere Application Server Version 5.1 Java EE applications can use messaging resources of the

default messaging provider in WebSphere Application Server Version 7.0. This JMS interoperation from

WebSphere Application Server Version 5.1 to later versions is enabled and managed by a WebSphere MQ

client link created on the WebSphere Application Server Version 7.0 node. This JMS interoperation is only

intended as an aid to the migration from the embedded messaging in WebSphere Application Server

Version 5.1 to the default messaging provider in WebSphere Application Server Version 7.0.

Note: Java EE applications running under WebSphere Application Server Version 7.0 can use messaging

resources of Version 5 embedded messaging without any need for a WebSphere MQ client link.

For more information about using the default messaging provider of WebSphere Application Server, see

the following topics:

v Learning about the default messaging provider

v “Configuring resources for the default messaging provider” on page 1662

v “Interoperating with a WebSphere MQ network” on page 1691

v Migrating from WebSphere Application Server Version 5 embedded messaging

v “Managing WebSphere Application Server Version 5.1 JMS use of messaging resources in later

versions of the product” on page 1725

v “Configuring the messaging engine selection process for JMS applications” on page 1735

v “Managing messages and subscriptions for JMS destinations” on page 1737

v “Using JMS from standalone clients to interoperate with service integration resources” on page 1738

v “Using JMS from a third party application server” on page 1745

© Copyright IBM Corp. 2008 1661

friend.was/ae/tm_ep.dita

Configuring resources for the default messaging provider

Use the following tasks to configure JMS connection factories, activation specifications, and destinations

for the default messaging provider.

About this task

Use these tasks to configure administrative JMS resources provided by the default messaging provider.

These administrative JMS resources are in addition to any temporary JMS destinations created by

applications.

v “Listing JMS resources for the default messaging provider”

v Configuring a JMS connection factory.

v Configuring a JMS queue connection factory.

v Configuring a JMS topic connection factory.

v Configuring a JMS queue destination.

v Configuring a JMS topic destination.

v “Configuring a JMS activation specification for the default messaging provider” on page 1670

Configuring resources for the default messaging provider by using the wsadmin

tool

You can use these commands to manage JMS resources for the default messaging provider.

About this task

These commands provide an alternative to using the administrative console or using the more complex

syntax of wsadmin and JACL.

1. Open a wsadmin command session in local mode For example:

wsadmin –conntype none

Note: The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell to

run WebSphere Application Server scripts.

2. Type the command as indicated in the related reference topics.

Listing JMS resources for the default messaging provider

Use the WebSphere Application Server administrative console to list JMS resources for the default

messaging provider, for administrative purposes.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to

view, modify or delete any of the following resources:

v Connection factory (unified)

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

When you use the Administrative Console to locate these resources, two different navigation pathways are

available:

v Provider-centric navigation. This lets you view all providers (or just those for a specified scope if

required), then navigate to a specific resource for a specific provider. This is the traditional way of

navigating to a resource when you know which provider owns it. Any navigation that starts with

Resources → JMS → JMS providers is provider-centric.

1662 Administering WebSphere applications

v Resource-centric navigation. This lets you view all resources of a specified type, then navigate to a

resource. This is useful if you want to find a resource, but you do not know which provider owns it (you

can list all resources of a given type across all scopes, for all providers, in a single panel). Any

navigation that follows the pattern Resources → JMS → resource_type, where resource_type is one of

the resource types listed above is resource-centric.

You can use either of these navigation pathways to locate resources of any type.

v Optional: To use provider-centric navigation, for example to navigate to a specified connection factory,

use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers. This opens the providers

collection which lists all currently configured providers across all scopes (you can modify the scope

if required).

2. From the providers collection, select the required provider. This opens the configuration tab for that

provider. The configuration tab contains a set of links to all the resources owned by that provider.

3. From the configuration tab, click the link for a resource type, for example the connection factories

link. This opens the connection factories collection which lists all the connection factories for that

provider.

4. From the connection factories collection, select the required connection factory.

v Optional: To use resource-centric navigation, for example to navigate to a specified connection factory,

use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → Connection factories. This opens the connection

factories collection which lists all the connection factories across all providers.

2. From the connection factories collection, select the required connection factory.

Results

You can now view and work with the resource’s properties.

Configuring JMS resources for point-to-point messaging

Configure connection factories, queues and service integration bus destinations for point-to-point

messaging.

About this task

For an application to use point-to-point messaging with JMS queues, you need to configure the following

JMS resources. These JMS resources depend on the corresponding configuration of service integration

resources, including a service integration bus and a queue. For more information about defining these

resources, see the related tasks.

v Configure a connection factory.

Use the connection factory type that matches the JMS level and domain pattern in which an application

is developed. For example, use a domain-independent JMS connection factory for a JMS application

developed to use JMS 1.1 domain-independent interfaces, and use a JMS queue connection factory for

a JMS application developed to use domain-specific queue interfaces.

v Configure a queue.

A JMS queue is an administrative object that encapsulates the name of a queue destination on a

service integration bus. Applications find the JMS queue by looking up its name in the JNDI namespace.

v Configure a queue destination.

For each JMS queue, define a bus destination of type queue on the appropriate service integration bus.

Configuring JMS resources for publish/subscribe messaging

Use this task to configure a JMS resources for publish/subscribe messaging.

Chapter 8. Messaging resources 1663

About this task

For an application to use publish/subscribe messaging with JMS topics, you need to configure the

following JMS resources. These JMS resources depend on the corresponding configuration of service

integration resources, including a service integration bus and topicspace. For more information about

defining these resources, see the related tasks.

v A JMS connection factory

You should use the connection factory type that matches the JMS level and domain pattern in which an

application is developed. For example, use a domain-independent JMS connection factory for a JMS

application developed to use JMS 1.1 domain-independent interfaces, and use a JMS topic connection

factory for a JMS application developed to use domain-specific topic interfaces.

If durable subscriptions are to be used by the application, then you need to set the durable subscription

properties on the connection factory.

v A JMS topic

A JMS topic is an administrative object that encapsulates the name of a topic and a topic space on a

service integration bus. Applications can obtain the JMS topic by looking its name up in the JNDI

namespace.

v Service integration resources For each JMS topic, you need to define a bus destination as a topic

space on a service integration bus, and assign the JMS topic to a topic name within that topic space.

Configuring a unified JMS connection factory for the default messaging provider

Use this task to configure a unified JMS connection factory for applications that use the JMS 1.1

domain-independent (unified) interfaces.

About this task

A unified9 JMS connection factory can be used for both point-to-point and publish/subscribe JMS

messaging. With JMS 1.1, this approach is preferred to the domain-specific queue connection factory and

topic connection factory.

To configure a JMS connection factory for the default messaging provider, use the administrative console

to complete the following steps. This task contains an optional step for you to create a new connection

factory if you have not already created the connection factory that you want to configure.

1. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure a unified connection factory.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,

according to your needs.

4. In the content pane, under the Additional properties heading, click Connection factories. This displays

any existing connection factories in the content pane.

5. If the connection factory is for use by client applications, display the properties of the JMS connection

factory. If you want to display an existing JMS connection factory, click one of the names listed.

Alternatively, if you want to create a new JMS connection factory, click New, then specify the following

required properties:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into the name space.

9. The term “unified” refers to the support of both queues and topics by the same connection factory. This is similar to the JMS 1.1

domain-independent interfaces (referred to as the “common interfaces” in the JMS specification).

1664 Administering WebSphere applications

Bus name

Select the name of the service integration bus to which the connection factory is to create

connections. This service integration bus hosts the destinations that the JMS queues and

topics represent.

6. Review the other properties for the JMS connection factory, to check that the defaults are suitable. If

needed, change the values according to your needs.

If the connection factory is for use by client applications running outside of an application server, you

need to specify suitable provider endpoints. For more information about configuring provider endpoints,

see “Configuring a connection to a non-default bootstrap server” on page 1677.

By default connections created using the connection factory in the server containers (for example, from

an enterprise bean) are pooled using Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) connection pooling. You can modify the connection pool settings for the connection

factory by selecting the Connection pool properties link in the Additional Properties section of the

panel. For more information about changing the connection pool properties, see Changing connection

pool settings with the wsadmin tool.

7. Click OK.

8. Save your changes to the master configuration.

Administrative properties for JMS connections to a bus:

This topic describes properties that you can configure to enable workload management of connections to a

service integration bus for JMS applications.

 The same properties can also be used to control the client connection topology. For example, connection

options can be specified such that client applications only connect to a set of client serving messaging

engines and never to the set of destination serving messaging engines in a bus.

The properties for connecting JMS applications to a bus are for administrator interest; the JMS

applications are unconcerned with connections to the bus, beyond using a JMS connection factory or JMS

activation specification (for message-driven beans).

The general aim of connecting to a bus is to connect to a suitable messaging engine that provides the

message point for a JMS destination that the application wants to use. Applications running inside an

application server can locate a suitable messaging engine and connect directly to the selected messaging

engine. Client applications running outside of an application server cannot locate a suitable messaging

engine themselves, these clients must use a bootstrap server to locate a suitable messaging engine on

behalf of the client application.

When an application connects to the bus, the bus chooses a suitable messaging engine based on

administrative properties of the JMS connection factory or activation specification that the application uses.

For maximum connection flexibility, you can leave most properties to default, the only required connection

property is the name of the bus that the application is to connect to.

The bus uses the following general process to choose a suitable messaging engine, based on the value

you select for the Connection proximity property. If you understand this process, you can better configure

the properties that control how the bus chooses messaging engines.

v If a Target group is specified then the process checks the nearest messaging engine that supports the

required Remote transport chain and is a member of the target group in the bus. If the messaging

engine is within the specified Connection proximity it is chosen as a suitable messaging engine for the

application to connect to.

v If a Target group is not specified then the process checks the nearest messaging engine that supports

the required Remote transport chain in the bus. A messaging engine in the same server is nearer than

Chapter 8. Messaging resources 1665

friend.was/ae/udat_conpoolset.html
friend.was/ae/tdat_chgconwsadmin.html
friend.was/ae/tdat_chgconwsadmin.html

a messaging engine in the same host, which is nearer than a messaging engine in another host. If the

messaging engine is within the specified Connection proximity it is chosen as a suitable messaging

engine for the application to connect to.

v If the selected messaging engine is not within the specified Connection proximity, then the Target

significance is used. If the Target significance is set to Required, then no connection is possible and

the connection request is rejected with no suitable messaging engine being available. If the Target

significance is set to Preferred then the target group is ignored and the nearest messaging engine that

supports the required Remote transport chain is used. If no messaging engine is found then the

connection request is rejected with no suitable messaging engine being available.

The following rules are used to test the connection proximity for a selected messaging engine:

v If the Connection proximity value is Bus, then the selected messaging engine is used.

v If the Connection proximity value is Cluster, then the selected messaging engine is used if it is in the

same cluster as the application (or the bootstrap server). Otherwise, one of the following options is

chosen.

– If the selected messaging engine is not in the same cluster as the application (or the bootstrap

server), and the Target significance is set to Required, then no connection is possible and the

connection request is rejected with no suitable messaging engine being available.

– If the Target significance is set to Preferred then the nearest messaging engine - in the same

cluster - that supports the required Remote transport chain is used

– If no suitable messaging engine is found, then the connection request is rejected.

v If the Connection proximity value is Host, and the selected messaging engine is in the same host as the

application (or bootstrap server), then the selected messaging engine is used. Otherwise, one of the

following options is chosen.

– If the selected messaging engine is not in the same host as the application (or the bootstrap server),

and the Target significance is set to Required, then no connection is possible and the connection

request is rejected with no suitable messaging engine being available.

– If the Target significance is set to Preferred then the nearest messaging engine - in the same host -

that supports the required Remote transport chain is used

– If no suitable messaging engine is found, then the connection request is rejected.

v If the Connection proximity value is Server, and the selected messaging engine is in the same server as

the application (or bootstrap server), then the selected messaging engine is used. Otherwise, one of the

following options is chosen.

– If the selected messaging engine is not in the same server as the application (or is in the bootstrap

server), and the Target significance is set to Required, then no connection is possible and the

connection request is rejected with no suitable messaging engine being available.

– If the Target significance is set to Preferred then the nearest messaging engine - in the same

server - that supports the required Remote transport chain is used

– If no suitable messaging engine is found, then the connection request is rejected.

When a connection is made to a messaging engine in the same server as the application, the connection

is made directly through memory, so the Remote transport chain is ignored.

Configuring a JMS queue connection factory for the default messaging provider

Use this task to configure a JMS queue connection factory for point-to-point messaging with the default

messaging provider. This is intended more for backwards compatibility, as described in section 1.5 of the

JMS 1.1 specification.

About this task

To configure a JMS queue connection factory for the default messaging provider, use the administrative

console to complete the following steps. This task contains an optional step for you to create a new queue

connection factory.

1666 Administering WebSphere applications

1. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure a queue connection factory.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,

according to your needs.

4. In the content pane, under the Additional properties heading, click Queue connection factories. This

displays any existing JMS queue connection factories for the default messaging provider in the content

pane.

5. Display the properties of the JMS connection factory. If you want to display an existing JMS connection

factory, click one of the names listed.

Alternatively, if you want to create a new JMS connection factory, click New, then specify the following

required properties:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into the name space.

Bus name

Type the name of the service integration bus that the connection factory is to create

connections to. This service integration bus hosts the destinations that the JMS queues and

topics represent.

6. Review the other JMS queue connection factory [Settings], to check that the defaults are suitable. If

needed, change the values according to your needs.

If the connection factory is for use by client applications running outside of an application server, you

need to specify suitable provider endpoints. For more information about configuring provider endpoints,

see “Configuring a connection to a non-default bootstrap server” on page 1677.

By default connections created using the connection factory in the server containers (for example, from

an enterprise bean) are pooled using Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) connection pooling. You can modify the connection pool settings for the connection

factory by selecting the Connection pool properties link in the Additional Properties section of the

panel. For more information about changing the connection pool properties, see Changing connection

pool settings with the wsadmin tool.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a JMS topic connection factory for the default messaging provider

Use this task to configure a JMS topic connection factory for publish/subscribe messaging with the default

messaging provider. This is intended more for backwards compatibility, as described in section 1.5 of the

JMS 1.1 specification.

About this task

You need to configure JMS connection factories when deploying JMS applications that use

publish/subscribe messaging.

To configure a JMS topic connection factory for the default messaging provider, use the administrative

console to complete the following steps. This task contains an optional step for you to create a new topic

connection factory.

1. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure a topic connection factory.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,

according to your needs.

Chapter 8. Messaging resources 1667

friend.was/ae/udat_conpoolset.html
friend.was/ae/tdat_chgconwsadmin.html
friend.was/ae/tdat_chgconwsadmin.html

4. In the content pane, under the Additional properties heading, click Topic connection factories. This

displays any existing JMS topic connection factories for the default messaging provider in the content

pane.

5. Optional: Display the properties of the JMS connection factory. If you want to display an existing JMS

connection factory, click one of the names listed.

Alternatively, if you want to create a new JMS connection factory, click New, then specify the following

required properties:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into the name space.

Bus name

Type the name of the service integration bus that the connection factory is to create

connections to. This service integration bus hosts the destinations that the JMS queues and

topics represent.

6. Review the other properties for the connection factory, to check that the defaults are suitable. If

needed, change the values according to your needs.

If the connection factory is for use by client applications running outside of an application server, you

need to specify suitable provider endpoints. For more information about configuring provider endpoints,

see “Configuring a connection to a non-default bootstrap server” on page 1677.

By default connections created using the connection factory in the server containers (for example, from

an enterprise bean) are pooled using Java Platform, Enterprise Edition (Java EE) Connector

Architecture (JCA) connection pooling. You can modify the connection pool settings for the connection

factory by selecting the Connection pool properties link in the Additional Properties section of the

panel. For more information about changing the connection pool properties, see Changing connection

pool settings with the wsadmin tool.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a JMS queue for the default messaging provider

Use this task to configure a JMS queue for point-to-point messaging with the default messaging provider.

Before you begin

This task configures a JMS queue to use a queue destination on a service integration bus. The queue

destination is the virtual location on the bus where messages are stored and processed for the JMS

queue. If you have not created the required destination, use the task described in Configuring a

destination for JMS queues.

About this task

To configure a JMS queue for the default messaging provider, use the administrative console to complete

the following steps.

1. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure a queue.

3. Optional: Change the Scope check box to set the level at which the JMS queue is to be visible,

according to your needs.

4. In the content pane, under the Additional properties heading, click Queues. This displays any existing

JMS queues for the default messaging provider in the content pane.

5. Display the properties of the JMS queue. If you want to display an existing JMS queue, click one of the

names listed.

1668 Administering WebSphere applications

friend.was/ae/udat_conpoolset.html
friend.was/ae/tdat_chgconwsadmin.html
friend.was/ae/tdat_chgconwsadmin.html

Alternatively, if you want to create a new JMS queue, click New, then specify the following required

properties:

Name Type the name by which the queue is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the queue into the name space.

Queue name

Select the name of the queue on a service integration bus that this JMS queue is to use.

6. Specify properties for the JMS queue, according to your needs.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a JMS topic for the default messaging provider

Use this task to configure a JMS topic for publish/subscribe messaging with the default messaging

provider.

Before you begin

This task configures a JMS topic to use a topic space destination on a service integration bus. The topic

space (a hierarchical collection of topics) is the virtual location on the bus where messages are stored and

processed for the JMS topic. If you have not created the required destination, use the task described in

Configuring a destination for publish/subscribe messaging.

About this task

To configure a JMS topic for the default messaging provider, use the administrative console to complete

the following steps. This task contains an optional step for you to create a new JMS topic.

1. Display the default messaging provider. In the navigation pane, expand Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure a topic.

3. Optional: Change the Scope check box to set the level at which the topic is to be visible, according to

your needs.

4. In the content pane, under the Additional properties heading, click Topics. This displays any existing

JMS topics for the default messaging provider in the content pane.

5. Display the properties of the JMS topic. If you want to display an existing JMS topic, click one of the

names listed.

Alternatively, if you want to create a new JMS topic, click New, then specify the following required

properties:

Name Type the name by which the topic is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the topic into the name space.

Topic name

Type the name of the topic (as a qualifier in the topic space) that this JMS topic is to use.

Topic space

Type the name of the topic space that this JMS topic is to use.

6. Specify properties for the JMS topic, according to your needs.

7. Click OK.

8. Save your changes to the master configuration.

Chapter 8. Messaging resources 1669

Configuring a JMS activation specification for the default messaging provider

A JMS activation specification is a configurable resource that enables a message-driven bean to

communicate with the default messaging provider.

About this task

You create a JMS activation specification if you want to use a message-driven bean to communicate with

the default messaging provider through Java EE Connector Architecture (JCA) 1.5. JCA provides Java

connectivity between application servers such as WebSphere Application Server, and enterprise

information systems. It provides a standardized way of integrating JMS providers with Java EE application

servers, and provides a framework for exchanging data with enterprise systems, where data is transferred

in the form of messages.

One or more message-driven beans can share a single JMS activation specification.

For WebSphere Application Server Version 5.1, the interface between message-driven beans and their

destinations was the listener port. Although you cannot use listener ports with the default messaging

provider in Version 7.0, you can continue to use listener ports with external JMS providers such as the

WebSphere MQ messaging provider.

Listener ports can be manually started and stopped. When the listener port is stopped, the

message-driven bean associated with it can no longer process messages. Furthermore, if a

message-driven bean fails to process a message several times, the listener port is automatically stopped

by the application server. Because a JMS activation specification is a group of messaging configuration

properties not a component, it cannot be manually started and stopped. For this reason, to prevent a

message-driven bean from processing messages you must complete the following tasks:

 Stop the application that contains the message-driven bean.

 Stop the messaging engine.

The following guidelines show which scenarios use activation specifications or listener ports:

v If you are using Java EE 1.4 and EJB 2.1 with the default message provider in WebSphere Application

Server Version 7.0 or Version 6.x, you must use activation specifications. A connector message-driven

bean uses JCA to access its resources, so the connector must be configured with an activation

specification. This is for new bean development, and does not affect the conversion of message-driven

beans from EJB 2.0 to EJB 2.1.

v If you are using Java EE 1.4 and EJB 2.1 with a third-party JMS provider in WebSphere Application

Server Version 7.0 or Version 6.x, the decision depends on whether your JMS provider API is

implemented with JCA. In Java EE 1.4, the JMS 1.1 API can be implemented with the JCA 1.5 API. If

so, your message-driven bean is a JMS message-driven bean that is implemented as a connector

message-driven bean, and must therefore be configured with an activation specification. If not, this is

the same JMS situation as for Java EE 1.3, and you must configure this EJB 2.1 message-driven bean

in the same way as you would configure an EJB 2.0 message-driven bean, which in WebSphere

Application Server is to use a listener port.

v If you are using Java EE 1.3 and EJB 2.0 with WebSphere Application Server Version 5.1, you must

use listener ports. The message-driven beans are JMS message-driven beans that implement

MessageListener, and there is no Java EE Connector Architecture (JCA) support. WebSphere

Application Server Version 5.1 uses listener ports to associate message-driven bean classes with their

JMS destinations.

All the activation specification configuration properties apart from Name, JNDI name, Destination JNDI

name, and Authentication alias are overridden by appropriately named activation-configuration properties

in the deployment descriptor of an associated EJB 2.1 message-driven bean. For an EJB 2.0

message-driven bean, the Destination type, Subscription durability, Acknowledge mode and Message

1670 Administering WebSphere applications

selector properties are overridden by the corresponding elements in the deployment descriptor. For either

type of bean the Destination JNDI name property can be overridden by a value specified in the

message-driven bean bindings.

To configure a JMS activation specification for the default messaging provider, use the administrative

console to complete the following steps. This task contains an optional step for creating a new JMS

activation specification.

1. Display the default messaging provider. In the navigation pane, expand Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure an activation specification.

3. Optional: Change the Scope check box to the scope level at which the activation specification is to be

visible to applications, according to your needs.

4. In the content pane, under the Additional properties heading, click Activation specifications. This lists

any existing JMS activation specifications for the default messaging provider in the content pane.

5. Display the properties of the JMS activation specification. If you want to display an existing activation

specification, click one of the names listed.

Alternatively, if you want to create a new activation specification, click New, then specify the following

required properties:

Name Type the name by which the activation specification is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the activation specification into the JNDI name space.

Destination type

Whether the message-driven bean uses a queue or topic destination.

Destination JNDI name

Type the JNDI name that the message-driven bean uses to look up the JMS destination in the

JNDI name space.

 Select the type of destination on the Destination type property.

Bus name

The name of the bus to connect to.

 Specify the name of the service integration bus to which connections are made. This must be

the name of the bus on which the bus destination identified by the Destination JNDI name

property is defined.

You can either select an existing bus or type the name of another bus. If you type the name of

a bus that does not exist, you must create and configure that bus before the activation

specification can be used.

6. Specify properties for the JMS activation specification, according to your needs.

7. Optional: Specify the JMS activation specification connection properties that influence how the default

messaging provider chooses the messaging engine to which your message-driven bean application

connects. By default, the environment automatically connects applications to an available messaging

engine on the bus. However you can specify extra configuration details to influence the connection

process; for example to identify special bootstrap servers, or to limit connection to a subgroup of

available messaging engines, or to improve availability or performance, or to ensure sequential

processing of messages received. For information about why and how to do this, see How JMS

applications connect to a messaging engine on a bus.

8. Click OK.

9. Save your changes to the master configuration.

Deleting JMS resources for the default messaging provider

Use this task with the WebSphere Application Server administrative console to delete JMS resources.

Chapter 8. Messaging resources 1671

About this task

To delete JMS resources, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. Select the default provider for which you want to delete resources.

3. In the content pane, under the Additional properties heading, select the link for the type of JMS

resource:

v Connection factory

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

This displays a list of the selected JMS resource type in the content pane.

4. Select the check box next to the JMS resource that you want to delete.

5. Click Delete

6. Save your changes to the master configuration.

Configuring JMS connection factory properties for durable subscriptions

Use this task to configure durable subscription properties of JMS connection factories for use by enterprise

beans with the default messaging provider.

About this task

To enable applications to create durable subscriptions to JMS topics with the default messaging provider,

you can set a number of properties on JMS connection factories.

If applications use message-driven beans to create durable subscriptions, you should set the properties on

the JMS activation specification used by the message-driven beans, as described in Configuring JMS

activation specifications for durable subscriptions, instead of using the task described in this topic.

This topic describes the setting of properties on a unified JMS connection factory. You can also set the

same properties on a JMS topic connection factory instead.

To configure the durable subscription properties to a topic for use by enterprise beans with the default

messaging provider, use the administrative console to complete the following steps:

1. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure connection factory properties.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,

according to your needs.

4. In the content pane, under the Additional properties heading, click Connection factories. This displays

any existing JMS connection factories for the default messaging provider in the content pane.

5. Click the name of the connection factory you want to configure. This displays the properties for the

connection factory in the content pane.

6. Specify the following properties for the connection factory:

Client identifier

This is the JMS client identifier that applications need to identify durable topic subscriptions

created on all connections using this connection factory. For more information about client

identifiers, see section 4.3.2 of the JMS 1.1 specification.

1672 Administering WebSphere applications

Durable subscription home

The name of the messaging engine used to store messages delivered to durable subscriptions

for objects created from this JMS connection factory.

 This identifies the messaging engine where durable subscriptions are localized on the service

integration bus. Administrators can manage the runtime state of durable subscriptions through

publication points for that messaging engine.

7. Click OK.

8. Save your changes to the master configuration.

What to do next

When applications have created durable subscriptions, you can use the administrative console to manage

the runtime state of those subscriptions, as described in “Administering durable subscriptions” on page

1324.

The JMS connection factory has some other advanced properties that you can configure to change the

behavior for durable subscriptions. You should not normally need to change these properties from there

defaults.

Read ahead

This controls read ahead optimization during message delivery. This defines whether or not the

provider can stream messages to durable subscribers ahead of their requests (to provide a

performance enhancement).

Share durable subscriptions

This controls whether or not durable subscriptions can be accessed simultaneously by several

subscribers.

If you want to control read ahead optimization during message delivery for individual topics, you can set

the Read ahead property on the topics.

Configuring JMS activation specification properties for durable subscriptions

Use this task to configure durable subscription properties of JMS activation specifications for use by

message-driven beans with the default messaging provider.

About this task

To enable a message-driven bean (MDB) application to create durable subscriptions on JMS topics with

the default messaging provider, you set a number of properties on the JMS activation specification used by

the application.

If applications use message-driven beans to create durable subscriptions, you should set the properties on

the JMS activation specification used by the message-driven beans, as described in this topic. Otherwise,

for enterprise beans to create durable subscriptions, you should set the properties on the JMS connection

factory as described in “Configuring JMS connection factory properties for durable subscriptions” on page

1672.

To configure the durable subscription properties to a topic for use by message-driven beans with the

default messaging provider, use the administrative console to complete the following steps

1. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

2. Select the default provider for which you want to configure activation specification properties.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,

according to your needs.

Chapter 8. Messaging resources 1673

4. In the content pane, under the Additional properties heading, click Activation specifications. This

displays any existing JMS activation specifications for the default messaging provider in the content

pane.

5. Click the name of the activation specification you want to configure. This displays the properties for the

activation specification in the content pane.

6. Specify the following properties for the activation specification:

Client identifier

This is the JMS client identifier that applications need to identify durable topic subscriptions

created on all connections using this activation specification. For more information about client

identifiers, see section 4.3.2 of the JMS 1.1 specification.

Durable subscription home

The name of the messaging engine used to store messages delivered to durable subscriptions

for objects created from this JMS activation specification. This is a required field when using a

durable topic subscription.

 This identifies the messaging engine where durable subscriptions are localized on the service

integration bus. Administrators can manage the runtime state of durable subscriptions through

publication points for that messaging engine.

Subscription durability

To be able to create durable subscriptions, set this property to Durable.

Subscription name

The subscription name needed for durable topic subscriptions. Required field when using a

durable topic subscription.

 Each JMS durable subscription is identified by a subscription name (specified on this property).

A JMS connection also has an associated client identifier (specified on the Client identifier

property), which is used to associate a connection and its objects with the list of messages (on

the durable subscription) that is maintained by the JMS provider for the client.

This subscription name must be unique within a given client identifier.

7. Specify the properties for the activation specification, according to your needs.

8. Click OK.

9. Save your changes to the master configuration.

What to do next

When applications have created durable subscriptions, you can use the administrative console to manage

the runtime state of those subscriptions, as described in “Administering durable subscriptions” on page

1324.

Enabling a provider to stream messages to cloned durable subscriptions

Use this task to enable a provider to stream messages to consumers ahead of their message requests.

This is most often used by publish/subscribe consumers to provide a performance enhancement.

About this task

To indicate that a provider must stream messages to consumers, you can set the Read ahead property to

Enabled. This property can be set on a connection factory to specify the behavior for all connections

created using that connection factory. The property can also be set on JMS topics, to enable different

behavior when sending messages to different JMS topics from the same connection.

You are recommended to leave this property set to Default, which enables the messaging provider to

decide whether or not it should stream messages to consumers. The messaging provider makes this

1674 Administering WebSphere applications

decision based on the environment in which the durable subscriber is running. You should only set this

property to enable message streaming if you are sure that a durable subscription is used by only one

consumer at a time.

v In a non-cloned environment, the default setting enables messaging streaming for durable subscribers.

v For cloned durable subscribers (that is, a durable subscriber that is part of an application cloned in a

server cluster), the default setting prevents message streaming and the messages on the subscription

are shared among the clones. If you are moving from a non-cloned environment, to cloned durable

subscribers, you may see a drop in performance. If you are sure that a durable subscription is still used

by only one consumer at a time, you can enable message streaming as described in this topic.

Messages that are streamed to the consumer but are not consumed before the consumer disconnects are

unlocked when the consumer closes. Only then do those messages become available for consumption by

other consumers.

To force the messaging provider to stream messages to cloned durable subscriptions, use the

administrative console to complete the following steps to change the connection factory:

1. Display the JMS connection factory; for example, as described in “Configuring a unified JMS

connection factory for the default messaging provider” on page 1664. All clones of a durable subscriber

use the same JMS connection factory.

2. Set the Read ahead property to Enabled.

3. Click OK.

4. Save your changes to the master configuration.

Enabling CMP entity beans and messaging engine data stores to share database

connections

Use this task to enable container-managed persistence (CMP) entity beans to share the database

connections used by the data store of a messaging engine. This has been estimated as a potential

performance improvement of 15% for overall message throughput, but can only be used for entity beans

connected to the application server that contains the messaging engine.

About this task

To enable CMP entity beans to share the database connections used by the data store of a messaging

engine, complete the following steps.

1. Configure the data store to use a data source that is not XA-capable. For more information about

configuring a data store, see “Configuring a JDBC data source for a messaging engine” on page 1285.

2. Select the Share data source with CMP option.

This option is provided on the JMS connection factory or JMS activation specification used to connect

to the service integration bus that hosts the bus destination that is used to store and process

messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete the following steps:

a. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

b. Select the default provider for which you want to configure a unified connection factory.

c. Optional: Change the Scope check box to set the level at which the connection factory is to be

visible, according to your needs.

d. In the content pane, under Additional Properties, click Connection factories

e. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for administrative purposes.

Chapter 8. Messaging resources 1675

JNDI name

Type the JNDI name that is used to bind the connection factory into the name space.

Bus name

Type the name of the service integration bus that the connection factory is to create

connections to. This service integration bus hosts the destinations that the JMS queues

and topics are assigned to.

f. Optional: To change the properties of an existing connection factory, click one of the connection

factories displayed. This displays the properties for the connection factory in the content pane.

g. Select the check box for the Share data source with CMP field

h. Click OK.

i. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging engine that is in the

application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging engine, and specify

the same data source as used by the messaging engine. You can use the administrative consoles to

complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click Servers → Server

Types → WebSphere application servers → server_name → [Server messaging] Messaging

engines → engine_name → [Additional Properties] Message store The Data source name field

displays the name of the data source; by default:

jdbc/com.ibm.ws.sib/engine_name

b. Click Applications → New Application → New Enterprise Application.

c. On the first Preparing for application install page, specify the full path name of the source

application file (.ear file otherwise known as an EAR file), then click Next

d. On the second Preparing for application install page, complete the following steps:

1) Select the check box for the Generate Default Bindings property. Data source bindings (for EJB

1.1 JAR files) are generated based on the JNDI name, data source user name password

options. This results in default data source settings for each EJB JAR file. No bean-level data

source bindings are generated.

2) Under Connection Factory Bindings, click the check box for the Default connection factory

bindings: property, then type the JNDI name for the data source and optionally select a

Resource authorization value.

3) Click Next

4. If your application uses EJB modules that contain Container Managed Persistence (CMP) beans that

are based on the EJB 1.x specification, for Step: Provide default data source mapping for modules

containing 1.x entity beans, specify a JNDI name for the default data source for the EJB modules. The

default data source for the EJB modules is optional if data sources are specified for individual CMP

beans.

5. If your application has CMP beans that are based on the EJB 1.x specification, for Step: Map data

sources for all 1.x CMP, specify a JNDI name for data sources to be used for each of the 1.x CMP

beans. The data source attribute is optional for individual CMP beans if a default data source is

specified for the EJB module that contains CMP beans. If neither a default data source for the EJB

module nor a data source for individual CMP beans are specified, then a validation error displays after

you click Finish (step 13) and the installation is cancelled.

6. Complete other panels as needed.

7. On the Summary panel, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click the Click here link.

b. Verify the settings on the Map modules to servers page displayed. Ensure that the application

server that is specified contains the messaging engine and its data store.

1676 Administering WebSphere applications

c. Specify the Web servers as targets that will serve as routers for requests to this application. This

information is used to generate the plug-in configuration file (plugin-cfg.xml) for each Web server.

d. Click Finish.

Results

For more information about installing applications, see Installing application files with the console.

Configuring a connection to a non-default bootstrap server

A bootstrap server is an application server running in the same cell, specifically the same core group, as

the service integration bus.

About this task

Connection to a non-default bootstrap server is provided by a JMS connection factory or a JMS activation

specification. The connection allows applications to use a bootstrap server with a non-default endpoint

address. The provider endpoint syntax example described here is also relevant to bootstrap endpoint

configuration in other tasks, for example when configuring a service integration bus link.

To use JMS destinations of the default messaging provider, an application or MDB connects to a

messaging engine on the target service integration bus where the destinations are assigned. For example,

a JMS queue is assigned to a queue destination on a service integration bus.

Applications running in a server that is part of the same cell as the service integration bus can normally

connect to a messaging engine on that bus without requiring the configuration of provider endpoints. If the

cell has been split using two core groups, each defined with its own policies, client applications that are

running in a client container and client applications running outside the WebSphere Application Server

environment cannot automatically locate the required service integration bus so it is necessary to configure

one or more provider endpoints, unless a core group bridge has been configured between the core groups

in the same cell. Similarly, an application running on a server in one cell cannot connect to a bus in

another cell without the configuration of provider endpoints, unless a core group bridge has been

established between the two cells.

In the scenarios where provider endpoints are required, the clients or the servers in another bus must

complete a bootstrap process through a bootstrap server. The bootstrap server does not have to be a

member of the service integration bus, and it does not have to contain any messaging engines. For the

application to locate the required bootstrap server, the provider endpoint property of the JMS connection

factory or JMS activation specification used by the client application must be configured. When the

bootstrap server receives the client request, it selects a messaging engine that matches the criteria

specified by the connection factory or activation specification, for example the target transport chain, target

group, connection proximity. It returns the location information for this messaging engine to the client, and

the client transparently creates a new connection to the target messaging engine if necessary.

Chapter 8. Messaging resources 1677

friend.was/ae/trun_app_instwiz.html

server1

client container

bus1

1. Bootstrap 2. Connect

hostA hostB

server2

(bootstrap server)

Application
X

ME1

Figure 17. Connection to a messaging engine - Applications running outside an application server. This figure shows a

client application running outside an application server. To connect to a messaging engine, the application connects

first to a bootstrap server. The bootstrap server selects a messaging engine then tells the client application to connect

to that messaging engine.

1678 Administering WebSphere applications

A bootstrap server listens on an endpoint that is defined by the combination of:

v the host name of the host on which the bootstrap server is running

v a specific port which is either SIB_END_POINT or, if security is enable,

SIB_ENDPOINT_SECURE_ADDRESS

v a bootstrap transport chain

The properties of a JMS connection factory or activation specification used by an application control the

selection of a suitable messaging engine and how the application connects to the selected messaging

engine. If a provider endpoint is not specified, a default value is inserted depending on whether or not a

password has been supplied. If the application does not supply a password, a default endpoint address of

localhost:7276:BootstrapBasicMessaging is used. That is, by default, applications try to use a bootstrap

server on the same host as the client, and using port 7276 and the predefined bootstrap transport chain

called BootstrapBasicMessaging. If the application does supply a password, the default secure port of

7286 and transport chain of BootstrapSecureMessaging is provided to prevent transmission of an

unencrypted password to the server.

Note: For the i5/OS platform, you must (at least) change the default host name from localhost to

your.server.name.

If you want an application to use a bootstrap server with a different endpoint address, you need to specify

the required endpoint address on the Provider endpoints property of the JMS connection factories or

JMS activation specifications that the client application or MDB uses. You can specify one or more

endpoint addresses of bootstrap servers using a comma separated list.

The endpoint addresses for bootstrap servers must be specified in every JMS connection factory that is

used by applications outside of an application server. To avoid having to specify a long list of bootstrap

server1

server3

bus1

1. Bootstrap 2. Connect

hostA

Cell1

Cell2

hostB

server2

(bootstrap server)

MDB

ME1

Figure 18. Connection to a messaging engine - MDB application connecting to a destination in a different cell. This

figure shows an MDB running in an application server that is in a different cell to the bus that the MDB needs to be

connected to in order to receive messages. To connect to a messaging engine, the MDB connects first to a bootstrap

server. The bootstrap server selects a messaging engine then tells the MDB to connect to that messaging engine.

Chapter 8. Messaging resources 1679

servers, you can provide a few highly-available servers as dedicated bootstrap servers. Then you only

need to specify a short list of bootstrap servers on each connection factory.

This task is based on an application that uses a unified JMS connection factory. You can use the same

task to configure a JMS queue connection factory or JMS topic connection factory, but during the task

would need to select the appropriate type of connection factory instead of JMS connection factory. You

can also use this task to configure a JMS activation specification instead of a JMS connection factory.

Note: When configuring a connection to a non-default bootstrap server, specify the required values using

colons as separators. The syntax is as follows:
[[host_name] [":" [port_number] [":" chain_name]]]

Specifying host_name : chain_name instead of host_name : : chain_name (with two colons) is incorrect.

The default value applies if you do not specify a value, but you must separate the fields with ″:″s.

For an application to use a bootstrap server with a non-default endpoint address, complete the following

steps:

1. Identify the endpoint address of the application server that you want to use as the bootstrap server.

The endpoint address has the form host_name:port_number:chain_name where:

host_name

is the name of the host on which the server runs. It can be an IP address. In the case of an

IPv6 address, put square braces ([]) around host_name.The default is localhost.

Note: For the i5/OS platform, you must (at least) change the default host name from

localhost to your.server.name.

port_number

where specified, is one of the following addresses of the messaging engine hosting the remote

end of the link:

v SIB_ENDPOINT_ADDRESS if security is not enabled

v For secure connections, SIB_ENDPOINT_SECURE_ADDRESS if security is enabled.

This value is mandatory. The default is 7276 if the application has not specified a password, or

7286 if a password has been specified.

To find either of these values by using the administrative console, click Servers → Server

Types → WebSphere application servers → server_name → [Communications] Ports.

chain_name

is the name of a predefined bootstrap transport chain used to connect to the bootstrap server.

If not specified, the default is BootstrapBasicMessaging if a password has not been provided,

or BootstrapSecureMessaging if a password has been provided.

 The following predefined bootstrap transport chains are provided:

BootstrapBasicMessaging

This corresponds to the server transport chain InboundBasicMessaging (JFAP-TCP/IP)

BootstrapSecureMessaging

This corresponds to the server transport chain InboundSecureMessaging

(JFAP-SSL-TCP/IP)

BootstrapTunneledMessaging

Before you can use this bootstrap transport chain, you must define a corresponding

server transport chain on the bootstrap server. (See Servers → Server Types →

WebSphere application servers → server_name → [Server messaging] Messaging

engine inbound transports.) This transport chain tunnels JFAP using HTTP

wrappers.

1680 Administering WebSphere applications

BootstrapTunneledSecureMessaging

Before you can use this bootstrap transport chain, you must define a corresponding

server transport chain on the bootstrap server. (See Servers → Server Types →

WebSphere application servers → server_name → [Server messaging] Messaging

engine inbound transports.) This transport chain tunnels JFAP using HTTP

wrappers.

If you want to provide more than one bootstrap server, identify all the required endpoint addresses.

Separate each endpoint address by a comma character. You should be able to specify the endpoint

address for each bootstrap server; for example: for a server assigned non-secure port 7278, on host

boothost1, and using the default transport chain BootstrapBasicMessaging:

boothost1:7278:BootstrapBasicMessaging

or

boothost1:7278

and for a server assigned secure port 7289, on host boothost2, and using the predefined transport

chain BootstrapTunneledSecureMessaging:

boothost2:7289:BootstrapTunneledSecureMessaging

2. Optional: Configure the endpoint address of the bootstrap server on the Provider endpoint property of

the connection factory.

If the client application uses a JMS connection factory in the client container, use the Client Resource

Configuration tool (ACRCT):

a. Start the tool and open the EAR file for which you want to configure the JMS connection factory.

The EAR file contents are displayed in a tree view.

b. From the tree, select the JAR file in which you want to configure the JMS connection factory.

c. Expand the JAR file to view its contents.

d. Expand Messaging Providers > Default Provider > Connection Factories.

e. Display the general properties of the connection factory:

v If you want to use an existing JMS connection factory, click the name of the connection factory.

v If you want to create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory in the JMS provider

configuration for your application client, see Configuring new JMS providers with the Application

Client Resource Configuration Tool.

f. On the General tab, ensure that the Provider Endpoints property includes the provider endpoint

address for each bootstrap server. Type the value as a comma-separated list of endpoint

addresses; for example:

boothost1:7278,boothost2:7289:BootstrapTunneledSecureMessaging

g. Click OK.

h. To save your changes, click File > Save.

If the client application uses a JMS connection factory on the server, use the WebSphere Application

Server administrative console:

a. Start the WebSphere Application Server administrative console.

b. To display the default messaging provider, click Resources → JMS → JMS providers.

c. Change the Scope check box to set the level at which the connection factory is to be visible,

according to your needs.

d. In the content pane click Default messaging provider. This displays a table of properties for the

default messaging provider, including links to the types of JMS resources that it provides.

e. In the content pane, under Additional Properties, click Connection factories. This displays any

existing connection factories in the content pane.

f. Display the general properties of the connection factory:

Chapter 8. Messaging resources 1681

friend.was/ae/ucli_tjmcr.html
friend.was/ae/ucli_tjmcr.html

v If you want to use an existing JMS connection factory, click the name of the connection factory.

v If you want to create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory, see “Configuring a unified JMS

connection factory for the default messaging provider” on page 1664.

g. Ensure that the Provider Endpoints property includes the provider endpoint address for each

bootstrap server. Type the value as a comma-separated list of endpoint addresses; for example:

boothost1:7278,boothost2:7289:BootstrapTunneledSecureMessaging

h. Click OK.

i. Save your changes to the master configuration.

3. Optional: Follow this step to configure the endpoint address of the bootstrap server on the Provider

endpoint property of the activation specification.

If the client application uses a JMS activation specification on the server, use the WebSphere

Application Server administrative console:

a. Start the WebSphere Application Server administrative console.

b. To display the default messaging provider, click Resources → JMS → JMS providers.

c. Select the default provider for which you want to configure an activation specification.

d. Optional: Change the Scope check box to the scope level at which the activation specification to

be visible to applications, according to your needs.

e. In the content pane, under the Additional Properties heading , click Activation specifications. This

lists any existing JMS activation specifications for the default messaging provider in the content

pane.

f. Display the properties of the JMS activation specification:

v If you want to use an existing JMS activation specification, click one of the names listed.

v If you want to create a new JMS activation specification, click New.

For more information about configuring a JMS activation specification, see “Configuring a JMS

activation specification for the default messaging provider” on page 1670.

g. Ensure that the Provider Endpoints property includes the provider endpoint address for each

bootstrap server. Type the value as a comma-separated list of endpoint addresses; for example:

boothost1:7278,boothost2:7289:BootstrapTunneledSecureMessaging

h. Click OK.

i. Save your changes to the master configuration.

Configuring MDB throttling on the default messaging provider

Use this task to configure the throttling of messages for message-driven beans that you have deployed as

JCA 1.5 resources on the default messaging provider.

About this task

Use this task if you want to throttle messages for a message-driven bean deployed as a J2EE Connector

Architecture (JCA) 1.5 resource on the default messaging JMS provider.

The default messaging provider (the service integration bus JMS Resource Adapter) uses a special type of

message throttling. You should use the throttling support described in this topic instead of the JCA 1.5

throttling of messages described in Throttling of inbound message flow for JCA 1.5 message-driven beans.

You can leave the message-driven bean pools to the default size of 500.

The default messaging provider enables the throttling of message delivery to a message-driven bean

through a configuration option on the JMS activation specification used to deploy the bean. This

configuration option is labelled Maximum concurrent endpoints and can be found on the JMS activation

specification panels in the administrative console.

1682 Administering WebSphere applications

friend.was/ae/tdat_throttle.html

v The maximum number of instances of each message-driven bean is controlled by the Maximum

concurrent endpoint setting in the activation specification used to deploy the message-driven bean. This

maximum concurrency limit helps prevent a temporary build up of messages from starting an excessive

number of MDB instances. By default, the maximum number of concurrent MDB instances is set to 10.

The Maximum concurrent endpoints field limits the number of endpoints (instances of a given

message-driven bean) that process messages concurrently. If the maximum has been reached, new

messages are not accepted from the messaging engine for delivery until an endpoint finishes its current

processing.

If the available message count (queue depth) associated with a message-driven bean is frequently high,

and if your server can handle more concurrent work, you can benefit from increasing the maximum

concurrency setting.

If you set the maximum concurrency for a message-driven bean, be sure that you specify a value

smaller than the maximum number of endpoint instances that can be created by the adapter that the

message-driven bean is bound to. If necessary, increase the endpoint instance limit.

v An activation specification also has a Maximum batch size that refers to how many messages can be

allocated to an endpoint in one batch for serial delivery. So, for example, if you have set the Maximum

concurrent endpoints property to 10 and the Maximum batch Size property to 3, then there can be up to

10 endpoints each processing up to 3 messages giving a total of 30 messages allocated to that

message-driven bean. If there are multiple message-driven beans deployed against a single activation

specification then these maximum values apply to each message-driven bean individually.

v Take care to ensure that you always set the Maximum concurrent endpoints property is always less

than the JCA pool size.

Note: You might want to tune the throttling of your message-driven beans, which is especially important

on z/OS. Workload arriving on the destination the message-driven bean is consuming from might

use up more server resource and therefore obstruct other activities. An example of this is when

restarting MDB applications you find a backlog of messages. The number of messages can be

throttled so that the message-driven bean can process them in the most efficient manner.

To configure the message throttling support of the default messaging provider (the service integration bus

JMS Resource Adapter), use the administrative console to complete the following steps.

v Tune the maximum number of instances of a message-driven bean.

The maximum concurrency is set in the activation specification used to deploy the message-driven

bean.

1. Click Resources → Resource Adapters → J2C activation specifications →

activation_specification_name → → [Additional Properties] J2C activation specification custom

properties.

2. View the maxConcurrency custom property. The default is value is 10. For high throughput primitive

MDB tests, 40 was found to be an optimal value.

3. Optional: To change the maxConcurrency setting, click the value field. This displays a panel for you

to type a new value. In the Value field, type the new value then click OK. Save your changes to the

master configuration.

v Tune the maximum batch size for a message-driven bean.

By default, only a single message is delivered to a message-driven bean instance at one time. You can

improve performance by batching messages to the message-driven bean. Each message-driven bean

instance then receives a number (between 1 and the batch size) of messages at a time. A change in

the maximum concurrency is likely to be beneficial if the available message count (queue depth)

associated with the message-driven bean is frequently high. For more information about the available

message count, see View the Available Message Count on a destination. The maximum batch size is

set in the activation specification used to deploy the message-driven bean.

1. Click Resources → Resource Adapters → J2C activation specifications →

activation_specification_name → → [Additional Properties] J2C activation specification custom

properties.

Chapter 8. Messaging resources 1683

2. View the maxBatchSize custom property. The default value is 1. For high throughput primitive MDB

tests, 5 was found to be optimal value (providing a 20 per cent gain over batch size 1).

3. Optional: To change the maxBatchSize setting, click the value field. This displays a panel for you to

type a new value. In the Value field, type the new value then click OK. Save your changes to the

master configuration..

Protecting a message-driven bean from system resource problems

This task describes how to configure the system so that, in the event of a dependent external system

resource problem, the enterprise application is stopped before messages are moved to an exception

destination unnecessarily. This configuration also allows occasional problems with messages to be

handled without blocking the enterprise application.

Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean

(MDB) that interacts with external system resources. To complete this task an exception destination must

be configured for the messaging engine, and you need the following information:

v The enterprise application that contains the MDB

v The dependent external system resources

v An acceptable value for the Sequential failed message threshold, that is, the maximum number of

sequential failures of delivery of messages, after which the MDB is stopped. This property applies to

sets of messages.

v An acceptable value for the Delay between failing message retries, that is, the time in milliseconds

before a failing message is available to be delivered to the MDB. Other messages may be delivered

during this period, unless theSequential failed message threshold and the maximum concurrency is

set to 1.

v An acceptable value for the Maximum failed deliveries per message, that is, the maximum number of

failed attempts to process a message, after which the message is forwarded from its intended

destination to the exception destination. This property applies to individual messages.

About this task

When an MDB fails to process a message, the message is rolled back and made available to the MDB

again. Typically, the messaging system is configured in one of the following ways:

1. Failed messages are retried a finite number of times, and if they continue to fail are moved to an

exception destination allowing subsequent messages to be processed.

2. Failed messages are retried indefinitely until the problem is rectified.

Configuration (1) protects the MDB against an occasional problem message that prevents subsequent

messages from being processed. However if there is a prolonged problem with a resource that the MDB’s

enterprise application is dependent on, for example a database, all messages that are sent to the

destination may be moved to the exception destination.

Configuration (2) blocks the delivery of messages until the original failing message problem is resolved.

This configuration prevents messages being moved to an exception destination unnecessarily, but it also

blocks subsequent messages as soon as a single problem message fails to be processed.

An MDB’s activation specification can be configured to stop an MDB endpoint automatically when it

detects a number of failures with sequential messages, which indicates a problem with a dependent

resource. When the problem is resolved, the MDB endpoint is restarted manually. This configuration

tolerates occasional message failures, allowing individual problem messages to be moved to the exception

destination without blocking the entire MDB.

Follow these steps to protect an enterprise application from dependent external system resource failures.

1684 Administering WebSphere applications

1. Navigate to the deployed enterprise application that contains the MDB.

2. From the MDB, navigate to its JMS activation specification, Resources → JMS → Activation

specifications → activation_specification_name.

3. Enter a value for the Sequential failed message threshold.

4. Save the configuration and navigate to the destination to which the MDB is listening, Service

integration → Buses → bus_name → [Destination resources] Destinations → queue_name or

Service integration → Buses → bus_name → [Destination resources] Destinations →

topic_space_name.

5. Check Override messaging engine blocked retry timeout default and enter a value for the Blocked

retry timeout in milliseconds..

6. Enter a value for the Maximum failed deliveries per message.

7. Save your changes to the master configuration..

Results

You have configured the enterprise application to protect itself from the sort of external resource problem

that can occur at any time. This means that, in the event of a system resource problem, the MDB is

stopped automatically when the Sequential failed message threshold is reached for any message.

What to do next

When the system resource that failed becomes available, you can restart the system resource and resume

the MDB. The messages that failed during the system resource downtime are retried instead of being left

on an exception destination.

Example 1: Handling a planned outage of a message-driven bean’s external resource:

This task describes how to configure the system so that, in the event of a dependent external system

resource problem, the enterprise application can continue.

 Before you begin

During the time that the system resource is unavailable, there must be no exceptions in the enterprise

application or messages on the exception destination that need to be resolved later.

About this task

Add a maintenance level to an external system resource that is used by the deployed message-driven

bean (MDB) of one of the company’s enterprise applications. The act of applying the maintenance level

requires the system resource (for example, a database) to be unavailable for about five minutes.

1. Navigate to the deployed enterprise application that contains the MDB.

2. From the MDB, navigate to its JMS activation specification, Resources → JMS → Activation

specifications → activation_specification_name and click Pause on the administrative panel for the

MDB.

3. When you receive a JMX notification and a log entry indicating that the MDB has been paused, stop

the database and apply the maintenance level. While the MDB is paused, no messages are sent to the

exception destination and no error messages appear in the console related to the stopped database.

4. Restart the database and test that it is working as expected.

5. Log onto the administrative console again, navigate to the same enterprise application and click

Resume on the administrative panel for the MDB. You can also resume the MDB using scripting using

the JCA MBean. The initial JMX notification and log entry indicate which MBean to use to resume the

MDB. The MDB begins to be driven with the messages that are on the destination.

Chapter 8. Messaging resources 1685

Results

You have paused and resumed an application while an external resource that is uses is briefly not

available.

Example 2: Automatically stopping a message-driven bean when a system resource becomes

unavailable:

To prepare for a system resource becoming unavailable, configure the system to stop the message-driven

bean automatically after a small number of message failures and alert you to the problem.

 Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean

(MDB) that interacts with external system resources. To complete this task an exception destination must

be configured for the messaging engine, and you need the following information:

v The enterprise application that contains the MDB

v The dependent external system resources

v Set a value of 3 for the Sequential failed message threshold. This is the maximum number of

sequential failures of delivery of messages, after which the MDB is stopped. This property applies to

sets of messages.

v Set a value of 5000 for the Delay between failing message retries, that is, the time in milliseconds

before a failing message is available to be delivered to the MDB. Other messages may be delivered

during this period, unless theSequential failed message threshold and the maximum concurrency is

set to 1.

v Set a value of 5 for the Maximum failed deliveries per message, that is, the maximum number of

failed attempts to process a message, after which the message is forwarded from its intended

destination to the exception destination. This property applies to individual messages.

About this task

Scenario: The enterprise application is a continuously running system that uses a deployed MDB to

access an external system resource.

When this resource experiences a problem and is no longer available, the deployed MDB can no longer

access this resource and so the transaction associated with the MDB is rolled back and the message

(msg1 in this scenario) is put back on the queue.

Instead of msg1 being made available to the MDB immediately, it is hidden for the MDB’s Delay between

failing message retries retry delay of five seconds.

The next message on the queue (msg2) is processed by the MDB. The external resource is still

unavailable so the processing of this message also fails and the message’s transaction is rolled back. This

message is also hidden for five seconds and the next message on the queue (msg3) is processed, fails

and is also hidden.

When the number of hidden messages reaches the Sequential failed message threshold, the MDB will

not process any further messages until one of the hidden messages becomes re-available.

When the Delay between failing message retries for msg1 expires, msg1 is unhidden and reprocessed.

Because the resource is still unavailable, it is re-hidden. This also happens to msg2 and msg3.

Note: A message is considered a failed message when it is rolled back one less than the Maximum

failed deliveries per message limit (five times in this scenario). So once msg1 is unhidden for the

forth time, rolled back and rehidden, the sequential failure count is incremented. At which point

1686 Administering WebSphere applications

msg2 becomes unhidden, rolled back and rehidden. Similarly, msg3 becomes unhidden, rolled back

and rehidden. The sequential failure count reaches the Sequential failed message threshold and

the MDB stops automatically. A JMX notification is emitted by the JCA MBean and a log entry alerts

the system administrator that the MDB has stopped.

Note: In this scenario, the MDB is automatically stopped when the system resource has been unavailable

for approximately 20 seconds. If the system resource was unavailable for less than this time, the

system could continue normally, and without numerous messages being sent to the exception

destination.

 1. Navigate to the deployed enterprise application that contains the MDB.

 2. From the MDB, navigate to its JMS activation specification, Resources → JMS → Activation

specifications → activation_specification_name.

 3. Enter a value of 3 for the Sequential failed message threshold.

 4. Save the configuration and navigate to the destination to which the MDB is listening, Service

integration → Buses → bus_name → [Destination resources] Destinations → queue_name or

Service integration → Buses → bus_name → [Destination resources] Destinations →

topic_space_name.

 5. Check Override messaging engine blocked retry timeout default and enter a value of 5000 for the

Blocked retry timeout in milliseconds..

 6. Enter a value of 5 for the Maximum failed deliveries per message.

 7. Save your changes to the master configuration..

 8. When you receive a JMX notification and a log entry indicating that the MDB (or endpoint) has been

paused, investigate the problem with the system resource that the MDB was using. While the MDB is

paused, no messages are sent to the exception destination and no error messages appear in the

console related to the stopped database.

 9. When the system resource that failed becomes available, restart it.

10. Log onto the administrative console again, navigate to the same enterprise application and click

Resume on the administrative panel for the MDB. You can also resume the MDB using scripting

using the JCA MBean. The initial JMX notification and log entry indicate which MBean to use to

resume the MDB. The MDB begins to be driven with the messages that are on the destination.

Results

You have configured the system to protect itself from external resource failures.

What to do next

When the MDB is resumed, the JCA MBean emits a JMX notification to indicate that the MDB has

resumed. Messages on the queue are consumed, messages that had failed are retried, and the

transaction commits.

Example 3: The system experiences problems with a problem message:

To prepare for a problem message, configure the system to move that message to an exception

destination and allow other messages to be processed successfully.

 Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean

(MDB) that interacts with external system resources. To complete this task an exception destination must

be configured for the messaging engine, and you need the following information:

v The enterprise application that contains the MDB

v The dependent external system resources

Chapter 8. Messaging resources 1687

v Set a value of 3 for the Sequential failed message threshold. This is the maximum number of

sequential failures of delivery of messages, after which the MDB is stopped. This property applies to

sets of messages.

v Set a value of 5000 for the Delay between failing message retries, that is, the time in milliseconds

before a failing message is available to be delivered to the MDB. Other messages may be delivered

during this period, unless theSequential failed message threshold and the maximum concurrency is

set to 1.

v Set a value of 5 for the Maximum failed deliveries per message, that is, the maximum number of

failed attempts to process a message, after which the message is forwarded from its intended

destination to the exception destination. This property applies to individual messages.

About this task

Scenario: The enterprise application is a continuously running system that uses a deployed MDB to

access an external system resource.

When a problem message (msg1 in this scenario) is encountered, it is put back on the queue.

Instead of msg1 being made available to the MDB immediately, it is hidden for the MDB’s Delay between

failing message retries retry delay of five seconds.

The next message on the queue (msg2) is processed by the MDB. This message and subsequent

messages succeeds.

When the Delay between failing message retries for msg1 expires, msg1 is unhidden and reprocessed.

It is put back on the queue again.

The MDB continues to process subsequent messages normally but each time msg1 is processed, it is put

back on the queue.

When the number of times msg1 has been unhidden, rolled back and rehidden reaches the Maximum

failed deliveries per message limit (five times in this scenario), it is moved to the configured exception

destination.

1. Navigate to the deployed enterprise application that contains the MDB.

2. From the MDB, navigate to its JMS activation specification, Resources → JMS → Activation

specifications → activation_specification_name.

3. Enter a value of 3 for the Sequential failed message threshold.

4. Save the configuration and navigate to the destination to which the MDB is listening, Service

integration → Buses → bus_name → [Destination resources] Destinations → queue_name or

Service integration → Buses → bus_name → [Destination resources] Destinations →

topic_space_name.

5. Check Override messaging engine blocked retry timeout default and enter a value of 5000 for the

Delay between failing message retries.

6. Enter a value of 5 for the Maximum failed deliveries per message.

7. Save your changes to the master configuration..

Results

You have configured the system to protect itself from external resource failures and send problem

messages to the exception destination.

Example 4: Automatically stopping a message-driven bean when no exception destination has

been defined:

1688 Administering WebSphere applications

To prepare for a system resource becoming unavailable or a problem message, configure the system to

stop the message-driven bean automatically. To maintain message ordering, do not configure an exception

destination.

 Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean

(MDB) that interacts with external system resources. To complete this task no exception destination must

be configured for the messaging engine, and you need the following information:

v The enterprise application that contains the MDB

v The dependent external system resources

v Set a value of 1 for the Sequential failed message threshold. This is the maximum number of

sequential failures of delivery of messages, after which the MDB is stopped. This property applies to

sets of messages.

v Set a value of 5000 for the Delay between failing message retries, that is, the time in milliseconds

before a failing message is available to be delivered to the MDB. Other messages may be delivered

during this period, unless theSequential failed message threshold and the maximum concurrency is

set to 1.

v An acceptable value for the Maximum failed deliveries per message, that is, the maximum number of

failed attempts to process a message, after which the message is forwarded from its intended

destination to the exception destination. This property applies to individual messages.

About this task

Scenario: The enterprise application is a continuously running system that uses a deployed MDB to

access an external system resource.

When a problem message (msg1 in this scenario) is encountered, it is put back on the queue.

Instead of msg1 being made available to the MDB immediately, it is hidden for the MDB’s Blocked retry

timeout in milliseconds retry delay of 30 seconds.

When the number of hidden messages reaches the Sequential failed message threshold, the MDB will

not process any further messages until one of the hidden messages becomes re-available. In this

scenario, this threshold is reached as soon as msg1 is hidden.

When the Blocked retry timeout in milliseconds for msg1 expires, msg1 is unhidden and reprocessed.

This process is repeated until msg1 reaches its Maximum failed deliveries per message limit (five times

in this scenario).

Once msg1 is unhidden for the forth time, rolled back and rehidden, the Sequential failed message

threshold is reached and the MDB stops automatically. A JMX notification is emitted by the JCA MBean

and a log entry alerts the system administrator that the MDB has stopped.

 1. Navigate to the deployed enterprise application that contains the MDB.

 2. From the MDB, navigate to its JMS activation specification, Resources → JMS → Activation

specifications → activation_specification_name.

 3. Enter a value of 1 for the Sequential failed message threshold.

 4. Save the configuration and navigate to the destination to which the MDB is listening, Service

integration → Buses → bus_name → [Destination resources] Destinations → queue_name or

Service integration → Buses → bus_name → [Destination resources] Destinations →

topic_space_name.

Chapter 8. Messaging resources 1689

5. Check Override messaging engine blocked retry timeout default and enter a value of 30 for the

Blocked retry timeout in milliseconds..

 6. Enter a value of 5 for the Maximum failed deliveries per message.

 7. Save your changes to the master configuration..

 8. When you receive a JMX notification and a log entry indicating that the MDB (or endpoint) has been

paused, investigate the problem. While the MDB is paused, as no exception destination is configured,

msg1 remains on the queue. No other messages are processed

 9. If you resume the MDB but the problem with the failing message continues, the maximum failed

deliveries limit is reached on the first retry of the message, but as no exception destination is

configured the message is not moved to another queue. Instead, the whole queue point is blocked to

all consumers for the destination block retry interval (30 seconds). After this time, consumers begin

again. If the failing message is still there, and fails again, the queue point is blocked for another 30

seconds. This continues until you remove the failing message from the queue, either by deleting it

manually or solving the problem with it, and in doing so allowing the consuming application to

succeed in processing

10. Log onto the administrative console again, navigate to the same enterprise application and click

Resume on the administrative panel for the MDB. You can also resume the MDB using scripting

using the JCA MBean. The initial JMX notification and log entry indicate which MBean to use to

resume the MDB. The MDB begins to be driven with the messages that are on the destination.

Results

You have configured the system to protect itself from external resource failures while maintaining message

ordering.

What to do next

When the MDB is resumed, the JCA MBean emits a JMX notification to indicate that the MDB has

resumed. Messages on the queue are consumed, messages that had failed are retried, and the

transaction commits.

Sample JMS 1.1 application client

This topic provides a typical example of JMS 1.1 application client code.

About this task

import java.util.Hashtable;

import javax.jms.JMSException;

import javax.naming.Context;

import javax.naming.*;

import javax.jms.*;

public class JMSppSampleClient

{

 public static void main(String[] args)

 throws JMSException, Exception

 {

 String messageID = null;

 String outString = null;

 String cfName = "jms/blueconfactory";

 String qnameIn = "java:comp/env/jms/Q1";

 String qnameOut = "jms/bluequename";

 boolean verbose = false;

 Session session = null;

 Connection connection = null;

 ConnectionFactory cf = null;

1690 Administering WebSphere applications

MessageProducer mp = null;

 Destination destination = null;

 try {

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL, "iiop://localhost:2809");

 Context initialContext = new InitialContext(env);

 System.out.println("Getting Connection Factory");

 cf= (ConnectionFactory)initialContext.lookup(cfName);

 System.out.println("Getting Queue");

 destination =(Destination)initialContext.lookup(qnameOut);

 System.out.println("Getting Connection for Queue");

 connection = cf.createConnection();

 System.out.println("staring the connection");

 connection.start();

 System.out.println("creating session");

 session = connection.createSession(false, 1);

 System.out.println("creating messageProducer");

 mp = session.createProducer(destination);

 System.out.println("creating TextMessage");

 TextMessage outMessage = session.createTextMessage("this is test application");

 System.out.println("sending Message");

 mp.send(outMessage);

 mp.close();

 session.close();

 connection.close();

 }

 catch (Exception je) {}

Interoperating with a WebSphere MQ network

The default messaging provider (service integration) can interoperate with a WebSphere MQ network by

using a WebSphere MQ link or a WebSphere MQ server. Alternatively, you can use WebSphere MQ as

your messaging provider. Each type of connectivity is designed for different situations, and provides

different advantages. Choose the most appropriate interoperation method for each of your messaging

applications.

About this task

WebSphere Application Server can interoperate with WebSphere MQ in the following ways:

v By configuring WebSphere MQ as an external JMS provider using the WebSphere MQ messaging

provider.

v By connecting a service integration bus to a WebSphere MQ network using the default messaging

provider and a WebSphere MQ link.

v By integrating WebSphere MQ queues into a bus using the default messaging provider and a

WebSphere MQ server.

A WebSphere MQ link provides a traditional WebSphere MQ -style solution to connecting resources. A

WebSphere MQ server adds the ability to directly access WebSphere MQ queues from within a bus.

Chapter 8. Messaging resources 1691

Table 17. The different ways of interoperating with WebSphere MQ

No bus: The WebSphere MQ messaging

provider

WebSphere MQ network as a foreign

bus (using a WebSphere MQ link)

WebSphere MQ queue manager or

queue-sharing group as a bus member

(using a WebSphere MQ server)

JMS application

WMQ queue WMQ topic

WebSphere MQ
provider

WebSphere MQ

JMS application

service integration

WMQ queue WMQ topic

MQ link (server to server
channel connection)

default messaging
provider

service integration
bus

WebSphere MQ
(a foreign bus)

JMS application

service integration

WMQ topic
not supported

WMQ queue

(client
connection)

default messaging
provider

service integration
bus

WebSphere MQ
(a bus member)

1692 Administering WebSphere applications

Table 17. The different ways of interoperating with WebSphere MQ (continued)

No bus: The WebSphere MQ messaging

provider

WebSphere MQ network as a foreign

bus (using a WebSphere MQ link)

WebSphere MQ queue manager or

queue-sharing group as a bus member

(using a WebSphere MQ server)

The WebSphere MQ messaging provider

does not use service integration. It

provides JMS messaging access to

WebSphere MQ from WebSphere

Application Server.

A WebSphere MQ link provides a server to

server channel connection between a

service integration bus and a WebSphere

MQ queue manager or queue-sharing

group, which acts as the gateway to the

WebSphere MQ network.When you use a

WebSphere MQ link, the messaging bus is

seen by the WebSphere MQ network as a

virtual queue manager, and the

WebSphere MQ network is seen by

service integration as a foreign bus. A

WebSphere MQ link allows WebSphere

Application Server applications to send

point-to-point messages to WebSphere

MQ queues (defined as destinations in the

service integration bus), and allows

WebSphere MQ applications to send

point-to-point messages to destinations in

the service integration bus (defined as

remote queues in WebSphere MQ). The

link also allows WebSphere Application

Server applications to subscribe to

messages published by WebSphere MQ

applications, and WebSphere MQ

applications to subscribe to messages

published by WebSphere Application

Server applications. The link ensures that

messages are converted between the

formats used by WebSphere Application

Server and those used by WebSphere

MQ.

A WebSphere MQ server provides a direct

client connection between a service

integration bus and queues on a

WebSphere MQ queue manager or (for

WebSphere MQ for z/OS) queue-sharing

group. For interoperation with WebSphere

Application Server Version 7.0, the version

of WebSphere MQ must be WebSphere

MQ for z/OS Version 6 or later, or

WebSphere MQ (distributed platforms)

Version 7 or later. A WebSphere MQ

server supports the high availability and

optimum load-balancing characteristics

provided by a WebSphere MQ for z/OS

network. A WebSphere MQ server defines

the connection and quality of service

properties used for the connection, and

also ensures that messages are converted

between the formats used by WebSphere

Application Server and those used by

WebSphere MQ.

For more information about these approaches, see Learning about interoperating with a WebSphere MQ

network.

To interoperate with a WebSphere MQ network complete one or more of the following steps.

v Choose the most appropriate interoperation method for each of your messaging applications. Complete

this step if your existing or planned messaging environment involves both WebSphere MQ and

WebSphere Application Server systems, and it is not clear to you whether you should use the default

messaging provider, the WebSphere MQ messaging provider, or a mixture of the two.

v Configure WebSphere MQ as an external JMS provider (WebSphere MQ messaging provider).

v Use WebSphere MQ links to connect a bus to a WebSphere MQ network.

v Use WebSphere MQ server to integrate WebSphere MQ queues into a bus.

Using WebSphere MQ links to connect a bus to a WebSphere MQ network

If you operate within a WebSphere Application Server environment, sending messages across a service

integration bus, you can also exchange point-to-point and publish/subscribe messages with applications in

a WebSphere MQ network. To do this, you configure a foreign bus connection that links to a WebSphere

MQ network through a WebSphere MQ link.

Before you begin

Decide on which method you want to use to configure these resources. You can configure a WebSphere

MQ link by using the administrative console as described in this task, or you can configure a WebSphere

MQ link by using the wsadmin tool.

Chapter 8. Messaging resources 1693

friend.was/ae/tmj_jmsp_mixed.dita
friend.was/ae/tmm_ep.dita

About this task

A WebSphere MQ link provides a server to server channel connection between a service integration bus

and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the

WebSphere MQ network. The link operates on a messaging engine in a service integration bus to provide

functions that simplify and automate interoperation with WebSphere MQ.

Using the WebSphere MQ link panels of the WebSphere Application Server administration console, you

can choose:

v The WebSphere MQ queue manager or queue-sharing group in the WebSphere MQ network through

which your messages will flow

v Whether to enable WebSphere Application Server applications to publish and subscribe to a message

broker in the WebSphere MQ network

v Learn about interoperating with a WebSphere MQ network.

v Create a new WebSphere MQ link.

v Administer an existing WebSphere MQ link.

v Create applications that can interoperate with WebSphere MQ. For more information, see Learning

about programming for interoperation with WebSphere MQ.

Creating a new WebSphere MQ link:

A WebSphere MQ link provides a server to server channel connection between a service integration bus

and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the

WebSphere MQ network. Use the foreign bus connection wizard to create a foreign bus and link it to the

WebSphere MQ network through a WebSphere MQ link.

 Before you begin

Decide on which method you want to use to configure these resources. You can create a new WebSphere

MQ link by using the administrative console as described in this task, or you can create a new WebSphere

MQ link by using the wsadmin tool.

The following resources must be defined in WebSphere Application Server:

v A service integration bus that you want to connect from (known as the local bus) with at least one bus

member.

The following resources must be defined in WebSphere MQ:

v A queue manager or queue-sharing group, which acts as the gateway to the WebSphere MQ network.

v A listener that is configured and running.

v (optionally) A sender channel to receive messages on the local bus, a receiver channel to send

messages from the local bus, or both.

v (For publish-subscribe messaging) A topic and input queue for broker publish-subscribe flow.

About this task

You use the foreign bus connection wizard to connect a bus and a WebSphere MQ network. You can

configure the connection for either point-to-point or publish-subscribe messaging.

Specifically, the wizard helps you configure the following resources:

v The bus and messaging engine on which the WebSphere MQ link is defined.

v The foreign bus that represents the WebSphere MQ network.

v The WebSphere MQ link.

1694 Administering WebSphere applications

v (Optionally) The sender and receiver channels and protocol. Using the wizard you can choose to define

no channels (and add them afterward), or one channel if your WebSphere MQ link is to be one-way, or

both channels.

v (Optionally) Security for messages flowing across the link.

v (Optionally) A publish/subscribe broker profile and associated topic mappings, to allow publication and

subscription with a broker in the WebSphere MQ network.

The wizard does not ask you to set all possible properties of a WebSphere MQ link, and many of the

properties are set to default values. You can fine tune these properties afterward if necessary, by

modifying the WebSphere MQ link.

For a sample configuration showing a systems view of the setup for a WebSphere MQ link, see

“WebSphere MQ link sample configuration” on page 1696.

1. Use the foreign bus connection wizard to connect a bus and a WebSphere MQ network to use

point-to-point messaging or publish-subscribe messaging.

A WebSphere MQ link is created and configured as part of the action of the wizard.

Note: You can subsequently convert a point-to-point connection to a publish/subscribe connection, by

adding a publish/subscribe broker on the WebSphere MQ link for the connection.

2. Optional: Modify the new WebSphere MQ link.

When you create a new WebSphere MQ link, the following properties are set to default values:

v Description

v Adoptable

v Exception destination

v Initial state

v Nonpersistent message speed

You can fine tune these properties by modifying the link.

3. Optional: Add or modify the WebSphere MQ receiver channel.

If you did not choose to Enable Service integration bus to WebSphere MQ message flow in the

foreign bus connection wizard, you have not yet defined a WebSphere MQ receiver channel. If you did

choose this option in the wizard, you have defined the receiver channel name, host name and

communication port, and the wizard has used default values for the following properties:

v Inbound nonpersistent message reliability

v Inbound persistent message reliability

v Prefer queue points local to this link’s messaging engine

v Initial state

You can fine tune these properties by modifying the channel.

4. Optional: Add or modify the WebSphere MQ sender channel

If you did not choose to Enable WebSphere MQ to Service integration bus message flow in the

foreign bus connection wizard, you have not yet defined a WebSphere MQ sender channel. If you did

choose this option in the wizard, you have defined the sender channel name, host name,

communication port and transport chain, and the wizard has used default values for the following

properties:

v Disconnect interval

v Short retry count

v Short retry interval

v Long retry count

v Long retry interval

v Initial state

Chapter 8. Messaging resources 1695

You can fine tune these properties by modifying the channel.

WebSphere MQ link sample configuration:

This topic describes a sample configuration sequence for connecting a WebSphere MQ link messaging

engine on a WebSphere Application Server to a WebSphere MQ queue manager or queue-sharing group

(known as a “gateway queue manager”) in a WebSphere MQ network.

 Sample configuration context

This sample shows a set up required to achieve connectivity between a WebSphere Application Server

messaging engine (ME), and a WebSphere MQ (Version 5.3 and above) network. Connectivity is achieved

using WebSphere MQ link definitions (on a WebSphere Application Server) and WebSphere MQ channels

(on a WebSphere MQ network). A WebSphere MQ link definition can be thought of as synonymous with a

WebSphere MQ channel definition. A WebSphere MQ link defines the properties of both the sending and

receiving ends of the link on a WebSphere Application Server.

The figure below shows an overview of the sample configuration.

Configuration

v Software: IBM WebSphere Application Server and IBM WebSphere MQ.

v Machine name: LONDON (this is the local host).

v WebSphere Application Server bus names: Local Bus Name: BUS1. Foreign Bus Name: QM01 (this

is the virtual bus name by which a remote WebSphere MQ queue manager is known to WebSphere

Application Server; the remote WebSphere MQ queue manager may in turn be a part of a network of

WebSphere MQ queue managers).

v Name of WebSphere Application Server: server1.

v WebSphere Application Server messaging engine name: london.server1-london.

v WebSphere Application Server messaging engine virtual queue manager name: BUS1 (this is the

name by which the WebSphere Application Server messaging engine is known to a network of

WebSphere MQ queue managers). As there is one messaging engine in the bus that is acting as a

gateway to the WebSphere MQ network and, therefore, is used to send messages from, or receive

messages for, any messaging engine in the bus, it is given the bus name.

FOREIGN BUS:
FB.QM01

BUS: BUS1

Gateway
QMGR

QM 01

WebSphere MQ
link ME

QM01.TO.BUS1

BUS1.TO.QM01

ME 1

QM 03

ME 3

QM 02

ME 2

WEBSPHERE MQWEBSPHERE APPLICATION SERVER: server1

1696 Administering WebSphere applications

v WebSphere MQ queue manager name: QM01 (This is the name of the gateway queue manager to

the WebSphere MQ network. If the WebSphere MQ network consists only of this single queue manager,

then it is also the name of the target queue manager. Otherwise, messages may first be routed to the

gateway queue manager, from where they could be directed to the target queue manager.)

v Listeners:

– By default, on a WebSphere Application Server, the listener for (unsecured) inbound connections

from a WebSphere MQ JMS client, or from a WebSphere MQ queue manager, listens on port 5558.

– By default, a listener is started on WebSphere MQ to listen on port 1414.

Overview of resource properties

The figure below shows the resources and their properties.

Properties of resources defined in WebSphere Application Server

v WebSphere MQ link (a WebSphere MQ link is defined at the messaging engine level):

– Name: (TO.QM01).

– Description: (Link to send and receive data to and from queue manager QM01).

– Foreign bus name: (FB.QM01).

– Queue manager name: (BUS1) - the virtual queue manager name by which WebSphere Application

Server is known to WebSphere MQ.

– Batch Size: 50 (default).

– Maximum message size: 4194304 (default).

– Heartbeat: 300 (default).

– Sequence wrap: 999999999 (default).

– Nonpersistent message speed: Fast (default).

– Adoptable: Ticked (default).

– Initial state: Started (default).

v WebSphere MQ link receiver (this is defined at the messaging level when defining the

WebSphere MQ link):

– Receiver channel name: (QM01.TO.BUS1).

– Inbound nonpersistent message reliability: Reliable (default).

– Inbound persistent message reliability: Assured (default).

– Initial State: Started (default).

FOREIGN BUS: FB.QM01
BUS: BUS1 WEBSPHERE MQ

WEBSPHERE APPLICATION SERVER: server1

LOCALHOST: LONDON

ME: london.server1-london

ALIASDEST (AQ1)

LOCAL DEST (Q1)

TARGID: LQ1@QM01
TARG.BUS: FB.QM01

LQ1

BUS1
(XMITQ)

QM01.TO.BUS1

BUS1.TO.QM01

SEND

PUT

(QMGR: BUS1)

(QMGR: BUS1)

MQLINK (TO.QM01)

S

R

BUS1.TO.QM01

QM01.TO.BUS1

S

S

R

R

RQ1

RNAME (Q1)
RQMNAME (BUS1)
XMITQ (BUS1)

A
P

P
LI

C
AT

IO
N

A
P

P
LI

C
AT

IO
N

= sender channel

= receiver channel

Chapter 8. Messaging resources 1697

v WebSphere MQ link sender (this is defined at the messaging level when defining the WebSphere

MQ link):

– Sender channel name: (BUS1.TO.QM01).

– Host name: (LONDON).

– Port: 1414 (default).

– Disconnect interval: 900 (default).

– Short retry count: 10 (default).

– Short retry interval: 60 (default).

– Long retry count: 999999999 (default).

– Long retry interval: 1200 (default).

– Initial State: Started (default).

v Server: By default server1 is created during installation (this has been used for this example).

v Local Bus: When installing an application server, a default bus is created. The name for this is

produced from the node name specified at install time. It is london in this example setup.

v Foreign Bus: (This is defined at the bus level and needs to be specified on the WebSphere MQ link

definition and also on alias destinations.)

– Name: (FB.QM01).

– Description: (Foreign bus needed to send messages to queue manager QM01).

v Destination defaults on foreign bus:

– Default priority: (0).

– Reliability: Assured persistent (default).

– Maximum reliability: Assured persistent (default).

– Send allowed: Ticked.

Note: In this example context security is not set.

v Routing definition on foreign bus:

– Routing type: MQLink.

– Name: (RD.QM01).

Routing definition can be created from the foreign bus collection panel which you navigate to through

Buses>busname. The name you supply is for administration purposes only, it has no effect on

routing capacity or operation.

– Inbound userid: In this example this field is left set to blanks.

– Outbound userid: In this example this field is left set to blanks.

Properties of resources defined in WebSphere MQ

These examples use the syntax of the runmqsc definitional program for WebSphere MQ.

1. Sender Channel

DEFINE CHL(QM01.TO.BUS1)

 CHLTYPE(SDR)

 TRPTYPE(TCP)

 CONNAME(’LONDON(5558)’)

 XMITQ(BUS1)

Define a TCP sender channel called ’QM01.TO.BUS1’ with transmission queue ’BUS1’ to WebSphere

MQ.

Let all other channel properties default.

2. Receiver Channel

DEFINE CHL(BUS1.TO.QM01)

 CHLTYPE(RCVR)

 TRPTYPE(TCP)

1698 Administering WebSphere applications

Define a TCP receiver channel called ’BUS1.TO.QM01’.

Let all other channel properties default.

3. Transmission Queue

DEFINE QL(BUS1)

 USAGE(XMITQ)

Define a local queue called ’BUS1’ which will be used as the transmission queue for the sender

channel.

Let all other channel properties default.

Sending messages from WebSphere MQ to a WebSphere Application Server destination

To send messages from WebSphere MQ to WebSphere Application Server, the following resources are

defined:

v Resources on WebSphere MQ

1. Remote Queue

DEFINE QR(RQ1)

 RNAME(Q1)

 RQMNAME(BUS1)

 XMITQ(BUS1)

Define a remote queue definition called ’RQ1’. This definition specifies that the remote queue name

is ’Q1’ and the remote queue manager name is ’BUS1’. The transmission queue associated with the

remote queue definition is ’BUS1’.

Let all other channel properties default.

v Resources on WebSphere Application Server

1. Create a queue destination on the messaging engine with the MQ link (this is defined at the bus

level):

– Identifier (Q1).

– Description: (Local queue to receive messages from a WebSphere MQ network).

– Reliability: Assured persistent (default).

2. Create default messaging resources. The JMS queue points to the bus queue Q1:

Let this default to the local bus and server1 (london:server1).

3. An application sending messages would have WebSphere MQ resources configured for the queue

manager QM01 and the WebSphere MQ queue destination would use the RQ1 queue.

An application connected to queue manager QM01 would put messages to remote queue RQ1. These

messages would be routed to Q1 on the target messaging engine.

Sending messages from WebSphere Application Server to a target local queue on WebSphere MQ

To send messages from WebSphere Application Server to WebSphere MQ, the following resources are

defined:

v Resources on WAS: Alias Destination (this is defined at the bus level):

– Identifier(AQ1).

– Description(Alias for target queue LQ1).

– Bus() - leave this blank to let it default.

– Target Identifier(LQ1@QM01).

– Target Bus(FB.QM01).

– Reliability(Inherit) - default.

– Maximum Reliability(Inherit) - default.

– Producer can override quality of service(Inherit) - default.

Chapter 8. Messaging resources 1699

– Send allowed(Inherit) - default.

– Receive allowed(Inherit) - default.

– Default priority(-1) - default.

– Reply destination() - default.

– Reply destination bus() - default.

– Default Forward Routing Path() - default.

v Resources on WebSphere MQ: Local Queue

DEFINE QL(LQ1)

Let all other channel properties default.

An application connected to server1 would put messages to alias destination AQ1. These messages would

be routed to LQ1 on target queue manager QM01.

Administering an existing WebSphere MQ link:

The WebSphere MQ link enables the exchange of point-to-point and publish/subscribe messages with a

WebSphere MQ network. After you have created a WebSphere MQ link you can perform various

administrative actions on the link.

 About this task

The WebSphere MQ link connects a WebSphere Application Server and a WebSphere MQ network.

Because these two systems are working together, their functions need to be in step so that each is aware

of the status of the other. Administrative actions on the WebSphere MQ link and its functions include the

following:

v Modify individual functions of the WebSphere MQ link .

You can modify the link itself, add or modify the sender channel and receiver channel, or define a

broker profile and associated topic mappings.

v Modify security for a WebSphere MQ link.

v View the status of a WebSphere MQ link and its components. You can view the status of a WebSphere

MQ link and its sender and receiver channels, and you can view the status of subscriptions for a

WebSphere MQ link publish/subscribe broker profile.

v Start a WebSphere MQ link.

v Stop a WebSphere MQ link.

When you stop the link, all its functions are stopped too. For example, stopping a WebSphere MQ link

with broker profiles on it might leave a message broker in the WebSphere MQ network with a backlog

of messages. For more information, see “Stopping a WebSphere MQ link” on page 1712, “Stopping the

sender channel on a WebSphere MQ link” on page 1714 and “Stopping the receiver channel on a

WebSphere MQ link” on page 1713.

v Delete a WebSphere MQ link or one of its components. When you remove a foreign bus connection

between a service integration bus and a WebSphere MQ network, you also delete the associated

WebSphere MQ link along with any publish/subscribe broker profiles and topic mappings. You can also

delete a WebSphere MQ link publish/subscribe broker profile or delete a topic mapping from a

WebSphere MQ link.

Modifying a WebSphere MQ link:

How and when to modify the properties of a WebSphere MQ link.

1700 Administering WebSphere applications

Before you begin

Decide on which method you want to use to configure these resources. You can modify a WebSphere MQ

link by using the administrative console as described in this task, or you can modify a WebSphere MQ link

by using the wsadmin tool.

You need to know the name of the bus, and the messaging engine on the bus that contains the

WebSphere MQ link you want to modify.

About this task

A WebSphere MQ link provides a server to server channel connection between a service integration bus

and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the

WebSphere MQ network. At any time after you create a new WebSphere MQ link, you can modify its

properties.

When you use the foreign bus connection wizard to connect a bus and a WebSphere MQ queue manager

or queue-sharing group (known as the “gateway queue manager”) to use point-to-point messaging or

publish-subscribe messaging, one or more WebSphere MQ links are created and configured as part of the

task. However the wizard does not ask you to set all possible properties of a WebSphere MQ link, and

some of the link properties are not set or are set to default values. You can fine tune these properties by

modifying the link.

When you create a new WebSphere MQ link, you can also choose not to create sender or receiver

channels. These channels can be added later by modifying the link.

When you use the foreign bus connection wizard to create a WebSphere MQ link for point-to-point

messaging, you can later modify the link for publish-subscribe messaging by adding a publish/subscribe

broker profile to the link.

1. In the navigation pane, click, Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name.

2. Modify the properties of the link.

For information about all the properties that you can modify, see WebSphere MQ link [Settings].

When you create a new WebSphere MQ link, the following properties are set to default values:

Description

An optional description for the WebSphere MQ link, for administrative purposes.

Adoptable

Whether or not a running instance of a WebSphere MQ link receiver channel (associated with

this MQ link) should be adopted or not. In the event of a communications failure, it is possible

for a running instance of a WebSphere MQ link receiver channel to be left waiting for

messages. When communication is re-established, and the partner WebSphere MQ sender

channel next attempts to establish a session with the WebSphere MQ link receiver channel,

the request will fail as there is already a running instance of the WebSphere MQ link receiver

channel that believes it is in session with the partner WebSphere MQ sender channel. You can

overcome this problem by selecting this option, which causes the already running instance of

the WebSphere MQ link receiver channel to be stopped and a new instance to be started. By

default, this option is not selected.

Exception destination

The destination to which a message is forwarded by the system when it cannot be delivered to

this destination. By default, exceptions are sent to the “System” destination. However, it can

aid problem-solving if you separate these exceptions out from other system messages by

sending them to another destination.

Chapter 8. Messaging resources 1701

Initial state

Whether the WebSphere MQ link is started or stopped when the hosting messaging engine is

first started. Until started, the WebSphere MQ link is unavailable. By default, the value is

“Started”.

Nonpersistent message speed

The class of service for nonpersistent messages on channels of this WebSphere MQ link. By

default, the value is “Fast”.

3. Configure the additional properties. You can configure any of the following additional properties of this

WebSphere MQ link:

v Publish/subscribe broker profiles

v Receiver channel

v Sender channel

v Sender channel transmitters

4. Configure the related items. You can configure any of the following related items of this WebSphere

MQ link:

v Foreign bus connection

v Link transmitters

5. Save your changes to the master configuration.

6. If you have enabled dynamic configuration updates, the changes take effect immediately (or on

channel restart if you also modified WebSphere MQ link sender or receiver channels), otherwise restart

the application server.

Adding or modifying a publish/subscribe broker on the WebSphere MQ link:

Defining a broker profile, part of the WebSphere MQ link, that forms a publish/subscribe bridge with a

WebSphere MQ network.

 Before you begin

You need to know the name of the bus, messaging engine name, and the name of the WebSphere MQ

link on which you intend to create or modify the broker profile. You also need to know the queue manager

name for the message broker in the WebSphere MQ network where the input queues for the required

publication message flows are located.

About this task

A publish/subscribe broker profile, and associated topic mappings, allows publication and subscription with

a broker in the WebSphere MQ network.

When you use the foreign bus connection wizard to connect a bus and a WebSphere MQ queue manager

to use publish-subscribe messaging, you can define a publish/subscribe broker profile and associated topic

mappings. Alternatively, you can use the foreign bus connection wizard to connect a bus and a

WebSphere MQ queue manager to use point-to-point messaging, then later modify the WebSphere MQ

link for publish-subscribe messaging by adding a publish/subscribe broker profile and associated topic

mappings to the link.

After you have created the broker profile you must ensure that the service integration bus has sufficient

authority on the message broker instance to send subscription requests.

1. In the navigation pane, click one of the following paths:

v Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name → [Related Items] WebSphere MQ links → link_name → [Additional

Properties] Publish/subscribe broker profiles

1702 Administering WebSphere applications

v Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional properties] WebSphere MQ links → link_name → [Additional Properties]

Publish/subscribe broker profiles

2. In the content pane, either click New to add a new broker profile, or click the name of a existing broker

profile that you want to modify.

3. Add or modify the properties of the broker profile.

For information about the broker profile properties (name, description, broker queue manager name),

see Publish/subscribe broker profiles [Settings].

For an existing broker profile you can only modify the description. Note that, for an existing broker

profile created through using the foreign bus connection wizard, the broker profile name was generated

automatically by adding “_broker_profile” to the end of the broker queue manager name.

4. Optional: Under Additional properties, configure the topic mappings for this broker profile. For more

information, see “Adding or modifying topic mappings on the WebSphere MQ link publish/subscribe

broker” on page 1704.

5. Click OK.

6. Save your changes to the master configuration.

What to do next

After you have created the broker profile you must ensure that the service integration bus has sufficient

authority on the message broker instance to send subscription requests. You can do this either by

modifying the message broker configuration on the WebSphere MQ network, or by modifying the service

integration bus configuration. See “Defining permissions for a WebSphere MQ link publish/subscribe

broker to work with WebSphere MQ.”

Defining permissions for a WebSphere MQ link publish/subscribe broker to work with WebSphere MQ:

This topic gives a choice of ways to ensure that a service integration bus has authority with a message

broker (in a WebSphere MQ network) to send subscription requests.

 Before you begin

Before you start this task, you must have created a broker profile, part of a publish/subscribe bridge on a

WebSphere MQ link.

About this task

When you have created a broker profile you must ensure that the service integration bus has sufficient

authority on the message broker instance to send subscription requests. You can do this either by:

v Modifying the message broker configuration in the WebSphere MQ network if you are a WebSphere MQ

administrator. Or

v Modifying the service integration bus configuration if you are a WebSphere Application Server

administrator.

To ensure authority, do one of the following steps:

1. Modify the message broker configuration by granting WebSphere MQ permissions for the user

″SIBServer″, which is the user name under which the publish/subscribe bridge control messages will

be published.

2. Modify the service integration bus by setting the OutboundUserID of the foreign bus that represents the

WebSphere MQ network (which you defined as part of the WebSphere MQ link configuration). The

OutboundUserID should be set to a user ID that already has the relevant WebSphere MQ permissions

Chapter 8. Messaging resources 1703

on the message broker install image. By doing this you can be sure the publish/subscribe bridge

control messages will arrive at the message broker in the WebSphere MQ network with the appropriate

user ID set in them.

What to do next

You are now ready to define topic mappings on the publish/subscribe broker profile.

Adding or modifying topic mappings on the WebSphere MQ link publish/subscribe broker:

Define topic mappings on a publish/subscribe broker profile, part of the publish/subscribe bridge on a

WebSphere MQ link. A topic mapping is a mapping between a topic on a service integration bus and a

stream queue and subscription point provided by a WebSphere MQ broker.

 Before you begin

You need to know the bus name, messaging engine name, WebSphere MQ link name and the name of

the broker profile on which you intend to define the topic mappings.

About this task

Topic mappings are associated with a WebSphere MQ link publish/subscribe broker profile. Together, the

profile and topic mappings enable publication and subscription with a broker in a WebSphere MQ network.

Note: Publication messages forwarded to a message broker in the WebSphere MQ network are

republished on the same topic as they were originally published to in the service integration bus

topic space, and vice versa.

To define topic mappings, use the administrative console to complete the following steps:

 1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name →

[Additional Properties] Publish/subscribe broker profiles → profile_name → [Additional

Properties] Topic mappings

 2. In the content pane, either click New to add a new topic mapping, or click the name of a existing

topic mapping that you want to modify. The Topic Mapping [Settings] form is displayed.

 3. Type the topic name.

The name of the topic on the service integration bus. The name must be the same as the topic name

on the message broker in a WebSphere MQ network.

The topic name can contain wild cards that are in the service integration bus syntax. For more

information, see Wild cards in topic mapping.

 4. Select the name of the topic space that contains the topic. If you don’t select a name the default is

used.

 5. Select the direction of publication flow. The direction of publication flow can be:

Bi-directional

Messages flow in both directions between the bus and WebSphere MQ.

To WebSphere MQ

Messages flow only from the bus to WebSphere MQ. That is, from WebSphere Application

Server to a message broker in the WebSphere MQ network.

From WebSphere MQ

Messages flow only to the bus from WebSphere MQ. That is, from a message broker in the

WebSphere MQ network to WebSphere Application Server.

 6. Select the broker stream queue you want to use. If the queue you require is not on the list, click

other, please specify then enter the name of the broker stream queue.

1704 Administering WebSphere applications

The broker stream queue in this instance is a queue on the WebSphere MQ queue manager to which

the message broker is connected. This queue is being used as the input node for a message flow

containing a publication node. Messages sent to this queue are processed by the message broker,

then published to applications that have subscribed on the topic specified in the message.

Stream names are case sensitive.

After you type a new name, then save your changes, the name becomes available for selection in the

drop-down list.

 7. Select the WebSphere MQ message broker subscription point from which the service integration bus

receives messages. If the subscription point you require is not on the list, click other, please specify

then enter the name of the subscription point.

The default subscription point is used if no value is specified.

After you type a new name, then save your changes, the name becomes available for selection in the

drop-down list.

 8. Click OK.

 9. Save your changes to the master configuration.

10. Optional: If you have enabled dynamic configuration updates, the changes take effect immediately.

Otherwise, restart the application server.

Adding or modifying a WebSphere MQ link receiver channel:

How you can define the properties of the receiver channel on a WebSphere MQ link. This channel

receives messages from the WebSphere MQ queue manager or queue-sharing group (known as the

“gateway queue manager”). The receiver channel communicates with a WebSphere MQ sender channel

on the gateway queue manager, and converts MQ format messages to service integration bus messages.

 Before you begin

You need to know the name of the bus, and the messaging engine on the bus that contains the

WebSphere MQ link with the receiver channel you intend to add or modify.

About this task

When you use the foreign bus connection wizard to connect a bus and a gateway queue manager to use

point-to-point messaging or publish-subscribe messaging, the wizard does not ask you to set all possible

properties of a WebSphere MQ link. If you did not choose to Enable Service integration bus to

WebSphere MQ message flow in the foreign bus connection wizard, you have not yet defined a

Websphere MQ receiver channel. If you did choose this option in the wizard, you have defined the

receiver channel name, host name and port number, and the wizard has set the other properties to default

values.

To add or modify a WebSphere MQ link receiver channel, use the administrative console to complete the

following steps:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name → [Additional

Properties] Receiver channel.

2. In the content pane, either click New to add a new receiver channel, or click the name of a existing

receiver channel that you want to modify.

3. Add or modify the properties of the channel.

For information about all the properties that you can modify, see WebSphere MQ link receiver channel

[Settings].

If you used the foreign bus connection wizard to create the channel, the wizard has used default

values for the following properties:

Chapter 8. Messaging resources 1705

Inbound nonpersistent message reliability

The acceptable reliability of message delivery for nonpersistent message flows from

WebSphere MQ through this WebSphere MQ link, from Best effort to Reliable, in order of

increasing reliability. By default, the value is “Reliable”.

Inbound persistent message reliability

The acceptable reliability of message delivery for inbound persistent message flows from

WebSphere MQ through this WebSphere MQ link, from Reliable to Assured, in order of

increasing reliability. By default, the value is “Assured”.

Prefer queue points local to this link’s messaging engine

When this check box is selected, the link prefers to send inbound messages to available

queue points of target queue destinations that are located on the same messaging engine as

the link. By default the check box is selected, which corresponds to the behavior in

WebSphere Application Server Version 6.x and can make it easier to handle links in a

mixed-version cell. If you clear the check box, preference is not given to local queue points

and inbound messages are workload balanced across all available queue points of target

queue destinations. This option (not to give preference to local queue points) is available only

on links running on WebSphere Application Server Version 7.0.

Initial state

Whether the receiver channel is started or stopped when the associated WebSphere MQ link

is first started. Until started, the channel is unavailable. By default, the value is “Started”.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the application server.

Adding or modifying a WebSphere MQ link sender channel:

How you can define the properties of the sender channel on a WebSphere MQ link. This channel sends

messages to the WebSphere MQ queue manager or queue-sharing group (known as the “gateway queue

manager”). The sender channel communicates with a WebSphere MQ receiver channel on the gateway

queue manager, and converts service integration bus messages to MQ format messages.

 Before you begin

You need to know the name of the bus, and the messaging engine on the bus that contains the

WebSphere MQ link with the sender channel you intend to add or modify.

About this task

When you use the foreign bus connection wizard to connect a bus and a gateway queue manager to use

point-to-point messaging or publish-subscribe messaging, the wizard does not ask you to set all possible

properties of a WebSphere MQ link. If you did not choose to Enable WebSphere MQ to Service

integration bus message flow in the foreign bus connection wizard, you have not yet defined a

WebSphere MQ sender channel. If you did choose this option in the wizard, you have defined the sender

channel name, host name, communication port and transport chain, and the wizard has set the other

properties to default values.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name → [Additional

Properties] Sender channel.

3. In the content pane, either click New to add a new sender channel, or click the name of a existing

sender channel that you want to modify.

4. Add or modify the properties of the channel.

1706 Administering WebSphere applications

For information about all the properties that you can modify, see WebSphere MQ link sender channel

[Settings].

If you used the foreign bus connection wizard to create the channel, the wizard has used default

values for the following properties:

Disconnect interval

The time in seconds for which the sender channel waits for new messages to arrive on the

transmission queue after sending a batch of messages. The channel disconnects after this

interval, and must be restarted manually or by triggering. By default, the value is 900 seconds.

Short retry count

The maximum number of times that the sender channel tries to restart after a communication

or partner failure. If the count of remaining retries reaches zero, and the channel has not

restarted, then the long retry mechanism is invoked. By default, the value is 10.

Short retry interval

The number of seconds between attempts by the sender channel to restart after a

communication or partner failure. By default, the value is 60 seconds.

Long retry count

The maximum number of times that the sender channel tries to restart after the short retry

mechanism did not recover from a communication or partner failure. If the count of remaining

retries reaches zero, and the channel has not restarted, then an error is logged and the

channel is stopped. By default, the value is 999999999.

Long retry interval

The number of seconds between attempts by the sender channel to restart after the short retry

mechanism did not recover from a communication or partner failure. By default, the value is

1200 seconds.

Initial state

Whether the sender channel is started or stopped when the associated WebSphere MQ link is

first started. Until started, the channel is unavailable. By default, the value is “Started”.

5. Click OK.

6. Save your changes to the master configuration.

7. Restart the application server.

Modifying security for a WebSphere MQ link:

Securing access between a service integration bus and a WebSphere MQ Queue Manager.

 About this task

When you create a new WebSphere MQ link, you can use the foreign bus connection wizard to enable

security:

v If the WebSphere MQ queue manager requires a secure connection, you can set the WebSphere MQ

receiver channel to accept only connections that have secure sockets layer (SSL) based encryption.

v If the local bus is secure, you can set the service integration bus inbound user ID to replace the user ID

in messages from the WebSphere MQ queue manager, so that these messages are authorized to

access their destinations.

Use this task to secure the local and foreign bus that are part of a WebSphere MQ links configuration, and

to secure an existing WebSphere MQ link that was not secured when it was first created.

For more general information about service integration bus security, see “Security” on page 1184.

1. Enable security on the service integration bus and the foreign bus representing the WebSphere MQ

network. See “Disabling bus security” on page 1346.

Chapter 8. Messaging resources 1707

2. Secure the link between the buses - see Securing connections to a WebSphere MQ network.

3. Grant access to the local bus for users who will be sending messages to the foreign bus - see

“Disabling bus security” on page 1346.

4. Grant access to the foreign bus for users who will be sending messages to it - see “Administering

foreign bus roles” on page 1365.

5. Optional: Give users access to foreign or alias destinations that will forward messages to a foreign bus

- see “Administering destination roles” on page 1314.

Viewing the status of a WebSphere MQ link and its sender and receiver channels:

This topic describes how you can view the status of a WebSphere MQ link and its components, such as

the sender and receiver channels.

 Before you begin

You may want to view the status of a WebSphere MQ link or its components because:

v You intend to stop the WebSphere MQ link and you need to see if there are any messages currently

held on it.

v You are about to delete the WebSphere MQ link and you need to verify there are no messages on it.

v Messages have not arrived at their expected destination and you want to check if they are being held,

pending transmission over the WebSphere MQ link.

Note: If you attempt to start a WebSphere MQ sender channel that is already in RUNNING state, the

WebSphere Application Server administrative console might occasionally incorrectly report the

channel status as INACTIVE. If this happens, you can ignore the error because the channel is still

running. To return the channel status to RUNNING, stop and then restart the channel.

About this task

To view the status of a WebSphere MQ link, use the administrative console to complete the following

steps:

1. In the navigation pane, click one of the following paths:

v Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name → [Related Items] WebSphere MQ links

v Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional properties] WebSphere MQ links

2. Click the WebSphere MQ link you want to view.

3. Click the Runtime tab. The content pane displays the status of the WebSphere MQ link.

4. Click the Configuration tab.

5. To view the status of the sender channel:

a. Click Sender channel.

b. Click the channel you want to view.

c. Click the Runtime tab. The content pane displays status information for the sender channel. Some

of the more important fields to check are:

v The status of the channel.

v Whether or not the message on the channel is in doubt. If the message is in doubt, it has not

been acknowledged by WebSphere MQ.

v The number of messages in the current batch.

v The number of batches that have been sent.

v The time and date at which the channel was last started.

v The time and date at which the last message was sent.

1708 Administering WebSphere applications

d. Click Saved batch status. The content pane displays the saved status of message batches that

have been saved for transmission to WebSphere MQ.

e. If a batch is in doubt, you can either commit or rollback the batch.

6. To view the status of the receiver channel:

a. Return to the WebSphere MQ link page.

b. Click Receiver channel.

c. Click the Runtime tab. The content pane displays the status of the receiver channel.

d. Click Receiver channel connections. The content pane displays the connections existing on the

receiver channel, and their current status. You can stop connections if required, by selecting the

check box next to the connection and clicking Stop.

e. Return to the receiver channel page.

f. Click Saved batch status. The content pane displays the saved status of message batches that

have been received from WebSphere MQ.

What to do next

You can also view the status of subscriptions for a broker profile on the WebSphere MQ link: “Viewing the

status of subscriptions for a WebSphere MQ link publish/subscribe broker profile.”

Viewing the status of subscriptions for a WebSphere MQ link publish/subscribe broker profile:

This topic describes how you can view the status of subscriptions for a broker profile on a WebSphere MQ

link.

 1. In the navigation pane, click one of the following paths:

v Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name → [Related Items] WebSphere MQ links → link_name → [Additional

Properties] Publish/subscribe broker profiles

v Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional properties] WebSphere MQ links → link_name → [Additional Properties]

Publish/subscribe broker profiles

2. Click the broker profile containing the subscriptions you want to view.

3. Click the Runtime tab. The content pane displays the current number of subscriptions for the broker

profile.

4. Click Subscriptions. The content pane displays the status of the subscriptions for the broker profile.

Position the mouse over a status icon to view hover help for that icon. You can remove the runtime

subscriptions if required, by clicking Unsubscribe.

States of the WebSphere MQ link and its channels:

This topic describes the various states of the WebSphere MQ link and its sender and receiver channels,

on a service integration bus.

Chapter 8. Messaging resources 1709

State of WebSphere MQ link

WebSphere MQ link sender

channel

WebSphere MQ link receiver

channel

INACTIVE Same as STOPPED for the

WebSphere MQ link sender. If the

administrator requests that the

channel go into target state

STOPPED it will transition into the

STOPPED state. Similarly, an

administrator starting the channel will

cause it to transition into STANDBY

state.

No network connection exists

between the application server and

the queue manager. If the attempts of

a WebSphere MQ sender channel to

establish a connection should

succeed, it will become possible for

messages to flow from the queue

manager to the messaging engine. In

this case the receiver channel will

transition into RUNNING state.

STARTING A transitional state. The channel

should successfully pass through this

into BINDING state with no

intervention.

A transitional state. The channel

should successfully pass through this

into BINDING state with no

intervention.

BINDING A transitional state. The channel

should successfully pass through this

into RUNNING state with no

intervention. The channel may

transition into STOPPING state if a

problem occurs.

A transitional state. The channel

should successfully pass through this

into RUNNING state with no

intervention. The channel may

transition into STOPPING state if a

problem occurs.

INITIALIZING A transitional state. The channel

should successfully pass through this

into STARTING state with no

intervention.

A transitional state. The channel

should successfully pass through this

into STARTING state with no

intervention.

RETRYING A network connection to the queue

manager has been lost. Whilst in this

state the channel is attempting to

reestablish the connection. If the retry

intervals are exhausted without

successfully establishing the

connection then the channel

transitions into STOPPED state. If a

connection is successfully

reestablished, the channel enters

INITIALIZING state.

Not applicable to receiver channel.

STANDBY When in this state, the sender

channel is not network-connected to

its WebSphere MQ counterpart

receiver channel. It is waiting for a

message to send before attempting to

establish a connection. When a

message arrives for transmission, the

channel will transition into STARTING

state and start the process of

attempting to establish a network

connection. The administrator may

command the channel to transition

into either INACTIVE or STOPPED

state from this state.

Not applicable to receiver channel.

1710 Administering WebSphere applications

State of WebSphere MQ link

WebSphere MQ link sender

channel

WebSphere MQ link receiver

channel

RUNNING In this state a network connection has

been established between application

server and queue manager.

Messages destined for the queue

manager will be transmitted. Either

attempting to stop the channel by

using the administrative console, or

the loss of the network connection will

cause transition into the STOPPING

state.

Network connection established

between application server and queue

manager. Messages destined for the

messaging engine will be received.

Attempting to stop the channel, or the

loss of the network connection will

cause a transition into STOPPING

state.

STOPPING A transitional state. The channel

should transition into either

RETRYING state or STOPPED state

without intervention. If the channel

has been placed in STOPPING state

by the administrative request to

become INACTIVE then it will

transition into the STANDBY state. If

the channel has been placed in this

state by administrator request to stop,

it will transition into the STOPPED

state. If the channel has been placed

in this state by a broken network

connection it will transition into the

RETRYING state, assuming that it

has non-zero retry intervals or is

otherwise STOPPED.

A transitional state. The channel will

transition from this state into

STOPPED without intervention.

STOPPED No network connection exists

between the application server and

the queue manager. Messages

destined for the queue manager will

not be transmitted. To transition from

this state requires the administrator to

start the channel, this will place it in

STANDBY state.

No network connection exists

between the application server and

the queue manager. Any attempt by a

sender channel in the WebSphere

MQ network to establish a connection

will be rejected. Messages destined

for the messaging engine will not be

received. Administrator action is

required to move the channel out of

this state. Starting the channel will

move it into INACTIVE state.

For information about the states of the channels in a WebSphere MQ network refer to the

Intercommunications book available at the WebSphere MQ publications site

Starting a WebSphere MQ link:

Change the state of a WebSphere MQ link from stopped to started.

 Before you begin

You might want to tell the WebSphere MQ administrator that you are about to start this WebSphere MQ

link.

About this task

To start a WebSphere MQ link, use the administrative console to complete the following steps.

1. In the navigation pane, click one of the following paths:

Chapter 8. Messaging resources 1711

http://www.ibm.com/software/integration/wmq/library/index.html

v Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name → [Related Items] WebSphere MQ links

v Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional properties] WebSphere MQ links

2. In the content pane, select the check box next to the WebSphere MQ link you want to start.

3. Click Start.

Results

If the WebSphere MQ link starts successfully, the status icon changes to indicate that the WebSphere MQ

link is running.

Stopping a WebSphere MQ link:

This topic describes how you change the state of a WebSphere MQ link from started or running to

stopped.

 Before you begin

You might want to tell the WebSphere MQ administrator that you are about to stop this WebSphere MQ

link.

About this task

When you stop a WebSphere MQ link, all communication with the target WebSphere MQ network is

stopped for both point-to-point and publication and subscription. Messages waiting for transmission are

held on the service integration bus, and the MQ sender channel cannot start. If there is a

publish/subscribe bridge on the WebSphere MQ link, its operations are stopped.

You can also stop either the sender or receiver channel on the WebSphere MQ link, while leaving the link

itself running. See “Stopping the sender channel on a WebSphere MQ link” on page 1714, and “Stopping

the receiver channel on a WebSphere MQ link” on page 1713.

To stop a WebSphere MQ link, use the administrative console to complete the following steps.

1. In the navigation pane, click one of the following paths:

v Service integration → Buses → bus_name → [Topology] Foreign bus connections →

foreign_bus_name → [Related Items] WebSphere MQ links

v Service integration → Buses → bus_name → [Topology] Messaging engines → engine_name →

[Additional properties] WebSphere MQ links

2. In the content pane, select the check box next to the WebSphere MQ link you want to stop.

3. In the Stop mode list, select Quiesce or Force.

4. In the Target state list select Inactive or Stopped.

5. Click Stop.

Results

The resultant state of the WebSphere MQ link, its sender and receiver channels, and the WebSphere MQ

sender channel which is connected to the WebSphere MQ link receiver channel, depends on the options

you chose:

v Stopping the WebSphere MQ link to target state INACTIVE will cause the sender channel to go into

state STANDBY and the receiver channel to go into state INACTIVE. The overall WebSphere MQ link

status will be RUNNING.

1712 Administering WebSphere applications

v Stopping the WebSphere MQ link to target state STOP will cause the sender channel to go into state

STOPPED and the receiver channel to go into state STOPPED. The overall WebSphere MQ link status

will be STOPPED.

These are the final states that the sender, receiver and WebSphere MQ link transition into. If you specify a

mode of QUIESCE for either of the two final states, the channels and link might not transition into their

final states immediately. Instead they temporarily transition through other states required to reach their final

state.

For more details about stopped states of the WebSphere MQ link, see “States of the WebSphere MQ link

and its channels” on page 1709.

What to do next

You can restart the WebSphere MQ link by selecting the link again and clicking Start. When the

WebSphere MQ link is stopped and not in doubt, you can delete the WebSphere MQ link and any

associated publish/subscribe broker profiles and topic mappings as described in “Removing a foreign bus

connection from a bus” on page 1239.

Stopping the receiver channel on a WebSphere MQ link:

This topic describes how to stop the receiver channel on a WebSphere MQ link while leaving the link itself

running.

 Before you begin

Note: If you stop the receiver channel on a WebSphere MQ link, communication with the target

WebSphere MQ network on that channel will cease for both point-to-point messaging and

publishing and subscribing. Messages will be held at their transmission locations.

You may wish to warn the administrator of the WebSphere MQ network that you are about to stop the

channel.

About this task

If you stop a receiver channel, messages sent to the WebSphere MQ link engine are not received.

If a WebSphere MQ sender channel is started while an MQ link receiver channel is stopped, the request

fails with an error indicating that the receiver channel is not available.

For more information on stopped states of the WebSphere MQ link and its channels, see “States of the

WebSphere MQ link and its channels” on page 1709.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name → [Additional

Properties] Receiver channel.

3. Select the check box next to the channel you want to stop.

4. In the Stop mode list, select Quiesce or Force.

5. In the Target state list, select Inactive or Stopped.

6. Click Stop.

Results

Stopping a receiver channel stops all the receiver channel connections for that receiver. The resultant

state of the receiver channel, and the sender channel in the WebSphere MQ network with which it is

Chapter 8. Messaging resources 1713

communicating, depends on the options you choose:

 Stop mode

Quiesce Force

Target state

Inactive The receiver channel moves to the

stopping state and the data flow to

the WebSphere MQ sender channel

stops. When the WebSphere MQ

sender channel next tries to

communicate with the receiver

channel the WebSphere MQ sender

channel enters a state of retrying.

The receiver channel then becomes

inactive. The retrying WebSphere MQ

sender channel then reestablishes a

session with the receiver channel,

and both channels become running.

The receiver channel immediately

becomes inactive. When the

WebSphere MQ sender channel next

tries to communicate with the

receiver channel, the WebSphere MQ

sender channel enters a state of

retrying. The retrying WebSphere MQ

sender channel then reestablishes a

session with the receiver channel,

and both channels become running.

Stopped The receiver channel moves to the

stopping state and the data flow to

the WebSphere MQ sender channel

stops. When the WebSphere MQ

sender channel next tries to

communicate with the receiver

channel the WebSphere MQ sender

channel enters a state of retrying.

The receiver channel then becomes

stopped, so preventing the

WebSphere MQ sender channel from

reestablishing a session. The

WebSphere MQ sender channel itself

then becomes stopped.

The receiver channel immediately

becomes stopped. When the

WebSphere MQ sender channel next

tries to communicate with the

receiver channel, the WebSphere MQ

sender channel enters a state of

retrying, and then becomes stopped

itself.

Stopping the sender channel on a WebSphere MQ link:

This topic describes how to stop the sender channel on a WebSphere MQ link while leaving the link itself

running.

 Before you begin

You might want to tell the WebSphere MQ network administrator that you are about to stop a channel.

About this task

When you stop the sender channel on a WebSphere MQ link, communication with the target WebSphere

MQ network on that channel is stopped for both point-to-point messaging and publishing and subscribing.

Messages are held at their transmission locations.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name → [Additional

Properties] Sender channel.

3. Select the check box next to the channel you want to stop.

4. In the Stop mode list, select Quiesce or Force.

5. In the Target state list, select Inactive or Stopped.

6. Click Stop.

1714 Administering WebSphere applications

Results

Only the sender channel is affected by this procedure. The resultant state of the sender channel depends

on the options you chose:

 Stop mode

Quiesce Force

Target state

Inactive The sender channel becomes

inactive either when it has finished

processing its current batch, or when

it reaches a heartbeat interval.

The sender channel immediately

becomes inactive.

Stopped The sender channel becomes

stopped either when it has finished

processing its current batch, or when

it reaches a heartbeat interval.

The sender channel immediately

becomes stopped.

For more information on stopped states of the WebSphere MQ link and its channels, see “States of the

WebSphere MQ link and its channels” on page 1709.

Deleting a WebSphere MQ link publish/subscribe broker profile:

This describes how you delete a broker profile and all topic mappings on a WebSphere MQ link, which

forms a publish/subscribe bridge between WebSphere Application Server and a WebSphere MQ network.

 Before you begin

Before you start you need to know the names of the bus, messaging engine, and WebSphere MQ link that

has the broker profile that you intend to delete. You should also consider informing the WebSphere MQ

administrator that you are about to delete the connection to the message broker in the WebSphere MQ

network.

If you also intend to delete the associated WebSphere MQ link, you need not complete this task. Refer

instead to “Removing a foreign bus connection from a bus” on page 1239.

About this task

Deleting a broker profile is a three-stage operation to ensure both the application server and the

WebSphere MQ network and its message brokers are synchronized after the deletion:

v Remove the subscriptions by unsubscribing the topic mappings on the broker profile.

v When the Runtime view is empty, delete the broker profile.

v If you have enabled dynamic configuration updates, the changes take effect immediately, otherwise

restart the application server.

Note: If you remove the subscriptions but do not delete the broker profile, then the subscriptions are

recreated when the server is restarted (because they are still present in the static configuration

information for the WebSphere MQ link). These subscriptions are unrelated to the original

subscriptions so this can lead to some messages in a publication flow being missing for subscribers

on the target side of the bridge. For example, any messages published on an unsubscribed topic

between the time the unsubscribe took place and the application server was restarted are not

republished to the target side of the WebSphere MQ link.

1. Start the administrative console.

2. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name → [Additional

Properties] Publish/subscribe broker profiles → profile_name.

Chapter 8. Messaging resources 1715

3. Remove the subscriptions:

a. Click the Runtime tab.

b. Click Subscriptions.

c. Click Unsubscribe to remove all the subscriptions listed. When an unsubscribe command is sent

to the message broker in the WebSphere MQ network, the relevant topic mapping is put into an ″in

doubt″ state until the unsubscribe is confirmed when the topic mapping is deleted. After the

unsubscribe is confirmed the topic mapping is no longer shown in the runtime view. You might need

to refresh the runtime view for all subscriptions to be shown as removed.

4. Delete the broker profile:

a. Return to the Publish/subscribe broker profiles page.

b. Select the check box next to the broker profile you want to delete.

c. Click Delete.

5. Save your changes to the master configuration.

6. If you have enabled dynamic configuration updates, the changes take effect immediately. Otherwise,

restart the application server.

Deleting a topic mapping on a WebSphere MQ link publish/subscribe broker profile:

This describes how you delete a topic mapping on a broker profile on a WebSphere MQ link, which forms

part of a publish/subscribe bridge between WebSphere Application Server and WebSphere MQ.

 Before you begin

Before you start you need to know the bus name, messaging engine name, WebSphere MQ link name

and broker profile name on which you intend to delete the topic mapping.

Note:

v If you intend to delete all topic mappings prior to deleting the broker profile or the WebSphere

MQ link, you can avoid restarting the application server more than once by following the steps

given in “Deleting a WebSphere MQ link publish/subscribe broker profile” on page 1715.

v Deleting a topic mapping is a two-stage operation to ensure both the WebSphere Application

Server (base) and the message brokers in the WebSphere MQ network are synchronized once

the deletions have taken place:

1. Delete the topic mapping (see below).

2. When you have deleted the topic mappings, the changes take effect immediately if you have

enabled dynamic configuration updates, otherwise restart the application server.

About this task

To delete a topic mapping, use the administrative console to complete the following steps.

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional properties] WebSphere MQ links → link_name → [Additional

Properties] Publish/subscribe broker profiles → profile_name → [Additional Properties] Topic

mappings

2. Select the check box next to the topic mapping you want to delete.

3. Click Delete.

4. Save your changes to the master configuration.

What to do next

Any topic mappings that you have deleted are automatically cleaned up by the publish/subscribe bridge

when the application server is restarted.

1716 Administering WebSphere applications

Using a WebSphere MQ server to integrate WebSphere MQ queues into a bus

A WebSphere MQ server provides a direct client connection between a service integration bus and queues

on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. For

interoperation with WebSphere Application Server Version 7.0, the version of WebSphere MQ must be

WebSphere MQ for z/OS Version 6 or later, or WebSphere MQ (distributed platforms) Version 7 or later.

Before you begin

WebSphere Application Server can interoperate with WebSphere MQ in any of the following ways:

v Using WebSphere MQ as an external JMS provider

v Using a WebSphere MQ link

v Using a WebSphere MQ server

Each type of interoperation is designed for different situations, and provides different advantages. For

information about the differences between these approaches, see “Interoperating with a WebSphere MQ

network” on page 1691.

Decide on which method you want to use to configure these resources. You can configure WebSphere MQ

server resources by using the administrative console as described in this task, or by using the

SIBAdminCommands: WebSphere MQ server administrative commands for the AdminTask object.

About this task

To set up and use a WebSphere MQ server, you configure the server properties, add the server to a

service integration bus as a bus member, and create a WebSphere MQ queue-type destination.

Destinations that are assigned to a WebSphere MQ server bus member can also be mediated.

You add the WebSphere MQ server as a bus member so that messaging engines on the bus can access

queues on the target WebSphere MQ system. If your WebSphere MQ server is connected to a

queue-sharing group, your bus applications can access shared queues on the target installation.

Note:

v You can configure a WebSphere MQ server to connect to a WebSphere MQ queue manager

using either a bindings mode or a client mode connection. To use client mode with WebSphere

MQ for z/OS, you need an additional product called the Client Attach Facility.

v You should configure the queues on the WebSphere MQ network as “shareable”. This allows

multiple server instances to get messages from the queues.

1. Create a new WebSphere MQ server and configure the server properties.

2. Add the new WebSphere MQ server as a member of a bus so that messaging engines on the bus can

access queues on the target WebSphere MQ installation.

3. Create a WebSphere MQ queue type destination for the new bus member and assign it to a

WebSphere MQ queue.

4. Optional: Mediate the new destination using the WebSphere MQ queue as the mediation point.

Creating the WebSphere MQ server definition:

A WebSphere MQ server provides a direct client connection between a service integration bus and queues

on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. Creating a

WebSphere MQ server involves using the administrative console to define the server’s connection and

quality of service properties.

Chapter 8. Messaging resources 1717

Before you begin

Decide on which method you want to use to configure these resources. You can create a new WebSphere

MQ server by using the administrative console as described in this task, or by using the

createSIBWMQServer command.

About this task

When you create a new WebSphere MQ server definition, you specify its connection and quality of service

properties. When you subsequently add the server as a member of a service integration bus, you can

optionally override the server connection settings with the bus connection settings. This means that you

can create a WebSphere MQ server that is specific to a bus, yet reusable in a multiple bus topology.

1. Start the administrative console.

2. Navigate to Servers → Server Types → WebSphere MQ servers. The WebSphere MQ servers

[Collection] form is displayed.

3. Click New. The WebSphere MQ servers wizard starts.

4. Complete the required fields.

v Name: this is any administrative name that you want to use for this server configuration; ensure that

the server name you specify is unique.

v Server: this is the name of the WebSphere MQ queue or queue-sharing group that this server

represents.

v Connection properties: complete the fields and click Test connection.

v Security: select “Trust user identifiers” if you do not want the user identifiers in messages to be

overwritten with the administrative name of the WebSphere MQ server.

v Resource discovery: Select the check box if you want resources on the WebSphere MQ network to

be discovered automatically.

5. Click OK to confirm.

6. Save your changes to the master configuration.

7. Restart the application server.

What to do next

You are now ready to add the new WebSphere MQ server as a member of a bus.

Modifying a WebSphere MQ server:

A WebSphere MQ server provides a direct client connection between a service integration bus and queues

on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. This topic

describes how to modify a WebSphere MQ server definition.

 Before you begin

Decide on which method you want to use to configure these resources. You can modify a WebSphere MQ

server by using the administrative console as described in this task, or by using the modifySIBWMQServer

command.

About this task

A WebSphere MQ server definition defines the connection to an underlying WebSphere MQ queue

manager or queue-sharing group and the associated queues. You can modify some of the properties for

this connection.

1718 Administering WebSphere applications

Note: When you modify a WebSphere MQ server definition, you do not change any configuration values

previously inherited from this WebSphere MQ server by existing bus members. For example,

suppose you create a WebSphere MQ server with the port number 1234, then add the server to a

bus using that server’s port number. If you subsequently modify the WebSphere MQ server’s port

number to 2345, the bus member you previously created is not affected and still has the port

number 1234.

1. Start the administrative console.

2. Navigate to Servers → Server Types → WebSphere MQ servers → server_name. The WebSphere MQ

server [Settings] form is displayed.

3. Make modifications as necessary.

4. Save your changes to the master configuration.

5. Restart the application server.

Deleting a WebSphere MQ server definition:

A WebSphere MQ server provides a direct client connection between a service integration bus and queues

on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. This topic

describes how to delete a WebSphere MQ server definition.

 Before you begin

Decide on which method you want to use to configure these resources. You can delete a WebSphere MQ

server by using the administrative console as described in this task, or by using the deleteSIBWMQServer

command.

Ensure that no application is putting messages to the bus members located on the WebSphere MQ server.

Inform the WebSphere MQ administrator that the WebSphere MQ server is about to be deleted and

therefore will no longer interoperate with its WebSphere MQ queue manager or queue-sharing group in the

WebSphere MQ network.

About this task

When you delete a WebSphere MQ server definition, the deletion process also modifies the following

associated resources:

v It deletes all WebSphere MQ server bus members that were created when the server was added to

service integration buses.

v It unmediates all destinations that were assigned to those bus members.

v It removes all queue points that were assigned to those bus members.

Deleting a WebSphere MQ server definition does not affect the associated queue managers,

queue-sharing groups, queues or messages on your WebSphere MQ network.

1. Start the administrative console.

2. Navigate to Servers → Server Types → WebSphere MQ servers. The WebSphere MQ servers

[Collection] form is displayed.

3. Select the check box next to the WebSphere MQ server you want to delete.

4. Click Delete.

5. Save your changes to the master configuration.

6. Restart the application server.

Adding a WebSphere MQ server as a member of a bus:

Chapter 8. Messaging resources 1719

A WebSphere MQ server provides a direct client connection between a service integration bus and queues

on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. A

WebSphere MQ server bus member is used as a bus member for assigning queue points and mediation

points to WebSphere MQ queues.

 Before you begin

Get details of the client connection from your WebSphere MQ administrator.

Ensure that the WebSphere MQ server has been configured, that the bus has been defined and that the

server is not already a member of the bus.

Decide on which method you want to use to configure these resources. You can add the WebSphere MQ

server as a bus member by using the administrative console as described in this task, or by using the

addSIBusMember command.

About this task

When you add a WebSphere MQ server to one or more buses, messaging engines on these buses can

access queues on the target WebSphere MQ installation. When you make the server a bus member, you

can override the server connection settings with settings that are specific to the new bus member. This

can be useful in a multiple bus topology.

 1. Start the administrative console.

 2. Navigate to the list of bus members for the bus to which you are adding the WebSphere MQ server.

Click Service integration → Buses → bus_name → [Topology] Bus members.

 3. Click Add. The “Add a new bus member” wizard is displayed.

 4. Select the WebSphere MQ server to add to the bus:

a. Select the WebSphere MQ server radio button.

b. From the drop-down list, select the server to add.

c. Click Next.

 5. Specify the virtual queue manager name.

When sending messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the

bus as a remote queue manager. The virtual queue manager name is the name that is passed to

WebSphere MQ as the name of this remote queue manager. The default value is the name of the

bus. If this value is not a valid name for a WebSphere MQ queue manager, or if another WebSphere

MQ queue manager already exists that has the same name, then replace the default value with

another value that is a valid and unique name for a WebSphere MQ queue manager. To be valid, the

name must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the WebSphere MQ topic Rules

for naming WebSphere MQ objects).

 6. Optional: To override the server connection settings, select the Override WebSphere MQ server

connection properties check box.

When you select this option, the connection properties for the server are made available so that you

can change them to settings that are specific to this bus member. For more information about these

connection properties, see WebSphere MQ server bus member [Settings].

 7. Optional: If you have changed the server connection settings, you can click Test connection to test

the connection to the associated WebSphere MQ network.

 8. Click Next.

 9. Click Finish to confirm.

10. Save your changes to the master configuration.

1720 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm

What to do next

You are now ready to create a WebSphere MQ queue-type destination for the new bus member.

Creating a queue-type destination and assigning it to a WebSphere MQ queue:

You can use the administrative console to create a queue-type destination and assign it to a WebSphere

MQ queue. Select the WebSphere MQ server to host the queue, then specify the WebSphere MQ queue

to be hosted.

 Before you begin

Get the name of the WebSphere MQ queue from your administrator, and ensure that the following

configuration is established:

v The WebSphere MQ server is added as a member of a bus

v The WebSphere MQ queue for the queue point exists

v The WebSphere MQ administrator has set the queue attributes to “shareable”

Note: A shareable queue can be accessed by more than one service integration application.

Decide on which method you want to use to configure these resources. You can create a bus destination

by using the administrative console as described in this task, or by using the createSIBDestinations

command.

About this task

After you have added a WebSphere MQ server as a bus member, you can create a queue-type

destination on the bus member that uses a WebSphere MQ queue as a queue point. This configuration

enables service integration applications to send messages to and receive messages from that queue.

1. Start the administrative console.

2. Navigate to the list of destinations for the appropriate bus.

Click Service integration → Buses → bus_name → [Destination resources] Destinations.

The Destinations [Collection] form is displayed.

3. Click New. The “Create a new destination” panel is displayed.

4. Select Queue as the destination type, then click Next. The “create a new queue” wizard is displayed.

5. Set the queue attributes. Enter the name that you want WebSphere Application Server to use to refer

to the associated WebSphere MQ queue, and (optionally) a description of the queue.

6. Assign the queue to the bus member that is to store and process the messages for the queue.

Select a WebSphere MQ server bus member from the list of available bus members.

7. Set the WebSphere MQ queue point attributes:

a. Specify a value in the WebSphere MQ queue name filter field, then click Go.

The wizard automatically discovers available WebSphere MQ queues. However, some WebSphere

MQ topologies have many thousands of queues defined to a queue manager. Use this filter to limit

the number of queues that are listed.

The default filter value is an asterisk (*). If this value (or no value) is set then all queues, or all

queues of a specific type (based on any queue type custom property that is set), are listed. Any

other value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the WebSphere MQ topic

Rules for naming WebSphere MQ objects).

Chapter 8. Messaging resources 1721

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm

You can also use the wildcard character (*) in conjunction with other text. For example, if you enter

a value of PAYROLL*, then all available queues with names that start with PAYROLL are displayed.

b. Specify a WebSphere MQ queue name.

Select a queue name from the filtered list. If the list does not include the queue that you want,

select the last entry in the list labeled “other, please specify”. A text entry box is displayed next to

the list box. Type the queue name into the text entry box.

If the queue is found on the remote WebSphere MQ system, the properties of the queue as

defined within WebSphere MQ are displayed as read-only fields. This should help you to confirm

that you have found the queue that you want, and that it is configured as you intend. If the queue

is not found, these read-only fields are removed from view.

c. Specify the reliability levels that you require when inbound nonpersistent and inbound persistent

WebSphere MQ messages are converted to service integration format messages.

Applications receive messages direct from the specified WebSphere MQ queue, so in general the

reliability level for a message is of no interest to the receiver because the message has already

been delivered successfully. However, the message is converted to a service integration format

message (and typically to a JMS format service integration message) as it is received, and this

option specifies the reliability level for the service integration format message. For information

about the available reliability levels, see WebSphere MQ queue points [Settings].

d. Specify whether you want WebSphere MQ to include an MQRFH2 message header when sending

messages to the queue.

The MQRFH2 header stores service integration messaging information that does not have a

corresponding WebSphere MQ message header field. When a message is sent to the destination,

service integration instructs WebSphere MQ to write the message to the queue. This option

specifies whether or not service integration instructs WebSphere MQ to write the message with an

MQRFH2 header.

If the consumer of the message is a JMS application running in WebSphere MQ or service

integration, or a WebSphere MQ XMS application, or a WebSphere MQ MQI application that

expects an MQRFH2 header, select this option. If the consumer is a WebSphere MQ MQI

application that does not expect an MQRFH2 header, do not select this option.

8. Click Next.

9. Click Finish to confirm queue creation.

Results

You have created a queue-type destination with a WebSphere MQ queue point.

What to do next

You are now ready to (optionally) mediate the new destination using the WebSphere MQ queue as the

mediation point.

Mediating a destination using a WebSphere MQ queue as the mediation point:

Mediate a destination by using the administrative console to specify a WebSphere MQ server bus member

where the mediation point is to be assigned, and a WebSphere MQ queue to use as the mediation point

where messages are stored. To mediate the destination using a service integration mediation, you must

also specify a second bus member (not a WebSphere MQ server) to use as the mediation execution point

and process the messages.

 Before you begin

Decide on which method you want to use to configure these resources. You can mediate a destination by

using the administrative console as described in this task, or by using the mediateSIBDestination

command.

1722 Administering WebSphere applications

Before performing this task, ensure that the following resources exist:

v The mediation that you want to apply to the destination

v The WebSphere MQ server bus member where the mediation point is to be assigned

v The WebSphere MQ queue to use as the mediation point

v For a service integration mediation, a second bus member (not a WebSphere MQ server bus member)

to use as the mediation execution point where the mediation code runs

Note: When you complete this task, the queue manager on the WebSphere MQ network does not have to

be available, but the destination is not usable until the queue manager is available.

About this task

You can mediate a destination with a WebSphere MQ mediation point. This ensures that messages

arriving at the designated WebSphere MQ queue are mediated. In this scenario, the mediated messages

are delivered to the queue point, or to another destination that is determined by the default forward routing

path destination, or by the mediation code.

1. Start the administrative console.

2. Navigate to the list of destinations for the appropriate bus. Click Service integration → Buses →

bus_name → [Destination resources] Destinations.

3. Select the check box beside the destination to mediate, then click Mediate. The Mediation wizard is

displayed.

4. Select the mediation, then click Next. From the drop-down list, select the mediation to apply to the

destination.

5. Assign the mediation to a bus member:

a. From the first drop-down list, select the WebSphere MQ server bus member where the mediation

point is to be assigned.

b. From the second drop-down list, select the bus member where the mediation is to run.

When a mediation is assigned to a WebSphere MQ server bus member, you need a separate bus

member that is not a WebSphere MQ server to act as the mediation execution point and process the

messages.

6. Set the WebSphere MQ mediation point attributes:

a. Specify a value in the WebSphere MQ queue name filter field, then click Go.

The wizard automatically discovers available WebSphere MQ queues. However, some WebSphere

MQ topologies have many thousands of queues defined to a queue manager. Use this filter to limit

the number of queues that are listed.

The default filter value is an asterisk (*). If this value (or no value) is set then all queues, or all

queues of a specific type (based on any queue type custom property that is set), are listed. Any

other value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the WebSphere MQ topic

Rules for naming WebSphere MQ objects).

You can also use the wildcard character (*) in conjunction with other text. For example, if you enter

a value of PAYROLL*, then all available queues with names that start with PAYROLL are displayed.

b. Specify a WebSphere MQ queue name.

Select a queue name from the filtered list. If the list does not include the queue that you want,

select the last entry in the list labeled “other, please specify”. A text entry box is displayed next to

the list box. Type the queue name into the text entry box.

If the queue is found on the remote WebSphere MQ system, the properties of the queue as

defined within WebSphere MQ are displayed as read-only fields. This should help you to confirm

Chapter 8. Messaging resources 1723

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg11180_.htm

that you have found the queue that you want, and that it is configured as you intend. If the queue

is not found, these read-only fields are removed from view.

c. Specify the reliability levels that you require when inbound nonpersistent and inbound persistent

WebSphere MQ messages are converted to service integration format messages.

Mediations receive messages direct from the specified WebSphere MQ queue, so in general the

reliability level for a message is of no interest to the mediation because the message has already

been delivered successfully. However, the message is converted to a service integration format

message (and typically to a JMS format service integration message) as it is received, and this

option specifies the reliability level for the service integration format message. For information

about the available reliability levels, see WebSphere MQ queue points [Settings].

d. Specify whether you want WebSphere MQ to include an MQRFH2 message header when sending

messages to the queue.

The MQRFH2 header stores service integration messaging information that does not have a

corresponding WebSphere MQ message header field. When a message is sent to the destination,

service integration instructs WebSphere MQ to write the message to the queue. This option

specifies whether or not service integration instructs WebSphere MQ to write the message with an

MQRFH2 header.

If the consumer of the message (in this case, the mediation) is a JMS application running in

WebSphere MQ or service integration, or a WebSphere MQ XMS application, or a WebSphere MQ

MQI application that expects an MQRFH2 header, select this option. If the mediation is a

WebSphere MQ MQI application that does not expect an MQRFH2 header, do not select this

option.

7. Click Next.

8. Click Finish to confirm mediation of the destination.

Results

You have mediated a destination using a WebSphere MQ queue as the mediation point.

Setting the WebSphere MQ encoding format for JMS Map entries

JMS Map messages use the class javax.jms.MapMessage. WebSphere MQ Version 6 provides an

encoding format for the body of JMS Map messages that lets you allocate names that are not valid XML

tags to Map entries.

Before you begin

This encoding format can interoperate with WebSphere MQ Version 5.3 and above, but not with the earlier

WebSphere MQ versions. All WebSphere MQ JMS clients use the WebSphere MQ Version 6 encoding

format by default.

About this task

To specify this encoding format, you use the administrative console to set the encoding name/value pair as

custom properties of the connection factory. If you specify TRUE the WebSphere MQ Version 5 encoding

format is used. If you specify FALSE, the WebSphere MQ Version 6 encoding format is used.

For related information, see the WebSphere MQ Using Java book in the WebSphere MQ library.

1. From the administrative console, navigate to Resources → JMS → JMS providers → WebSphere MQ

messaging provider → [Additional Properties] Connection factories → factory_name → Custom

properties.

2. Specify the encoding name and value in the Name and Value fields. The encoding name is

MAPNAMESTYLE and the value is a Boolean expression, where TRUE is the WebSphere MQ Version

5 compatible format and FALSE is the WebSphere MQ Version 6 format.

3. Restart the application server for the properties to take effect.

1724 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/

Managing WebSphere Application Server Version 5.1 JMS use of

messaging resources in later versions of the product

This task enables Java EE applications developed for WebSphere Application Server Version 5.1 to use

messaging resources of the default messaging provider in WebSphere Application Server Version 7.0.

Before you begin

Throughout this topic, the abbreviation “Version 5.1” refers to “WebSphere Application Server Version 5.1”

and “Version 7.0” refers to “WebSphere Application Server Version 7.0”. For example, “Version 5.1 JMS

resources” refers to JMS resources provided by WebSphere Application Server Version 5.1.

This task refers to the default messaging provider. For related information, see “Managing messaging with

the default messaging provider” on page 1183.

JMS connectivity between the Version 5.1 messaging provider and the default messaging provider in later

versions of the product is enabled and managed by a WebSphere MQ client link. This does not mean that

a WebSphere MQ system is involved. The Version 5.1 messaging provider uses WebSphere MQ client

protocols, and is therefore handled as if it were a WebSphere MQ client by the default messaging provider

in later versions of the product. The WebSphere MQ client link is provided only for use with JMS

applications developed for WebSphere Application Server Version 5.1. Moreover, this JMS connectivity is

only intended as an aid to migration from the Version 5.1 messaging provider to the Version 7.0 default

messaging provider. For more information about migrating from the Version 5.1 messaging provider, see

Migrating from WebSphere Application Server Version 5 embedded messaging.

Applications running in Version 7.0 can use the messaging resources of the Version 5.1 messaging

provider without any need for a WebSphere MQ client link.

About this task

To enable JMS applications developed for WebSphere Application Server Version 5.1 to use messaging

resources of the default messaging provider, a WebSphere MQ client link is created on the Version 7.0

node. Each WebSphere MQ client link presents itself as a queue manager and transforms between the

WebSphere MQ client protocols used by Version 5.1 and the protocols used by the default messaging

provider in Version 7.0.

The following figure shows a JMS application running on Version 5.1 using JMS resources provided by the

default messaging provider on a Version 7.0 node. The JMS queue hosted by Version 5.1 is backed by a

service integration bus queue, which is normal for a JMS queue hosted by Version 7.0, but there is no

configured link between the Version 5.1 JMS queue and the bus queue. The JMS application

communicates with the bus queue through the WebSphere MQ client link and the messaging engine. To

send messages to the bus queue or receive messages from the queue, the JMS application opens a

connection on the WebSphere MQ client link. This is all invisible to the JMS application, but can be

displayed and managed by the administrator.

Chapter 8. Messaging resources 1725

v Configure a Version 7.0 node to support Version 5.1 applications that use JMS resources. If you want a

Version 7.0 node to provide JMS destinations for use by applications running on Version 5.1, complete

the following steps:

1. Create an application server. You can use an existing application server on the Version 7.0 node; for

example, an application server onto which a Version 5.1 application is to be deployed.

2. Create a service integration bus. You can use an existing bus.

3. Add the application server as a bus member. This automatically creates a messaging engine on the

application server.

4. Create a WebSphere MQ client link on the messaging engine. Specify the following property values:

Name This can be any name that is useful for your administrative purposes. It is not used by the

application environment.

MQ channel name

This is the name of the channel for the WebSphere MQ client link, used to flow messages

between the application that is running on Version 5.1 and the bus. This name must match

the receiving channel name configured for Version 5.1:

WAS.JMS.SVRCONN

This is the default value shown when you first display the WebSphere MQ client link settings

panel.

Queue manager name

This is the virtual queue manager name that is associated with the messaging engine, and

by which the messaging engine is known to applications running on Version 5.1 . Type the

queue manager name in the form:

WAS_node_name_server_name

Where:

node_name

is the name of the Version 7.0 node.

server_name

is the name of the application server.

The correct value is shown by default when you first display the WebSphere MQ client link

settings panel.

Version 7 node node_name

JMS
application

Messaging
engine

Service integration
bus node_name

Bus
Q

application server
server1

MQ
client
link

BusQ@ME

JNDI
JMS
QCF

(V5.1)

JMS
Q

(V5.1)

= Message flows

Figure 19. WebSphere Application Server Version 5.1 JMS application scenario

1726 Administering WebSphere applications

friend.was/ae/trun_svr_create.html

Default queue manager

Select this check box if you want the WebSphere MQ client link to be used as the default

for applications that cannot find a suitable WebSphere MQ client link to use.

 If an application running on Version 5.1 specifies that it wants to connect to a non-default

queue manager name, you can configure a WebSphere MQ client link with that queue

manager name. If a WebSphere MQ client link cannot be found with the required queue

manager name, the connection is rejected. Alternatively, you can select this option on

another WebSphere MQ client link, which is used instead of rejecting the connection.

5. Define a port called JMSSERVER_QUEUED_ADDRESS on the application server. The port number

must be the same used by the SIB_MQ_ENDPOINT_ADDRESS port.

Specify the following property values:

Port name

For Well-known Port, select JMSSERVER_QUEUED_ADDRESS

Host Type the IP address, domain name server (DNS) host name with domain name suffix, or the

short DNS host name of the Version 7.0 node.

Port Type the port number used by the SIB_MQ_ENDPOINT_ADDRESS port. By default, this is

5558.

v Configure a Version 7.0 managed node to support applications running on Version 5.1 that use JMS

resources. If you want a Version 7.0 managed node to provide JMS destinations for use by applications

running on Version 5.1, complete the following steps:

1. Create an application server. Specify the name jmsserver.

2. Create a service integration bus. You can use an existing bus.

3. Add the application server as a bus member. This automatically creates a messaging engine on the

application server.

4. Create a WebSphere MQ client link on the messaging engine. Specify the following property values:

Name This can be any name that is useful for your administrative purposes. It is not used by the

application environment.

MQ channel name

This is the name of the channel for the WebSphere MQ client link, used to flow messages

between the application running on Version 5.1 and the bus. This name must match the

receiving channel name configured for Version 5.1:

WAS.JMS.SVRCONN

This is the default value shown when you first display the WebSphere MQ client link settings

panel.

Queue manager name

This is the virtual queue manager name that is associated with the messaging engine, and

by which the messaging engine is known to applications running on Version 5.1. Type the

queue manager name in the form:

WAS_node_name_jmsserver

Where:

node_name

is the name of the Version 7.0 node.

The correct value is shown by default when you first display the WebSphere MQ client link

settings panel.

Default queue manager

Select this check box if you want the WebSphere MQ client link to be used as the default

for applications that cannot find a suitable WebSphere MQ client link to use.

Chapter 8. Messaging resources 1727

friend.was/ae/tins_portep.html
friend.was/ae/trun_svr_create.html

If an application developed for WebSphere Application Server Version 5.1 specifies that it

wants to connect to a non-default queue manager name, you can configure another

WebSphere MQ client link with that queue manager name. If a WebSphere MQ client link

cannot be found with the required queue manager name, the connection is rejected.

Alternatively, you can select this option on a WebSphere MQ client link, which is used

instead of rejecting the connection.

5. Define a port called JMSSERVER_QUEUED_ADDRESS on the application server. The port number

must be the same used by the SIB_MQ_ENDPOINT_ADDRESS port.

Specify the following property values:

Port name

For Well-known Port, select JMSSERVER_QUEUED_ADDRESS

Host Type the IP address, domain name server (DNS) host name with domain name suffix, or the

short DNS host name of the Version 7.0 node.

Port Type the port number used by the SIB_MQ_ENDPOINT_ADDRESS port. By default, this is

5558.

v If the application looks up JMS resources in JNDI on the Version 7.0 application server, configure the

JMS resources on the Version 7.0 application server as Version 5.1 default messaging JMS resources.

1. For each JMS queue destination that the application uses, create a Version 5 Default Messaging

WebSphere queue destination.

2. For each JMS queue destination that the application uses, create a bus destination with the same

name. Assign the bus destination to a bus member in the same bus as the jmsserver bus

member.You must also create an alias destination with an identifier WQ_<destination_name>, that

points to the service integration destination that has been created. The WQ_ prefix is needed

because all destination names are prefixed with WQ_. If you are manually migrating the WebSphere

JMS provider resources, you also need to create the “WQ_” queues.

3. Configure JMS connection factories as Version 5.1 default messaging queue connection factories

and topic connection factories.

v If the application looks up JMS resources outside the JNDI on the Version 7.0 application server,

configure the JMS connection factory to point to the Version 7.0 node.

Results

The application running on Version 5.1 can continue to access the Version 5.1 JMS resources, which are

now implemented through the Version 7.0 default messaging provider, as shown in the figure Figure 19 on

page 1726. The JMS application communicates with the Version 5.1 JMS resources through the

WebSphere MQ client link and the messaging engine. This is invisible to the JMS application. The JMS

resources, a JMS queue connection factory, shown as JMS QCF(V5), and a JMS queue, shown as JMS

Q(V5), are managed as Version 5.1 default messaging JMS resources. The new bus queue, shown as

JMS Q, is managed as a resource of the service integration bus. Messages for JMS Q are stored and

processed by the message point for the associated bus destination, a queue shown as Bus Q. The

WebSphere MQ client link presents itself as a queue manager and transforms between the WebSphere

MQ client protocols used by JMS applications developed for WebSphere Application Server Version 5.1

and the protocols used by messaging engines on Version 7.0.

Creating a WebSphere MQ client link

Use this task to create a link that enables a messaging engine to handle message requests from JMS

applications developed for WebSphere Application Server Version 5.1.

Before you begin

The WebSphere MQ client link is provided only for use with JMS applications developed for WebSphere

Application Server Version 5.1.

1728 Administering WebSphere applications

friend.was/ae/tins_portep.html
friend.was/ae/tmj_adm23.html
friend.was/ae/tmj_adm23.html
friend.was/ae/tmj_adm21.html
friend.was/ae/tmj_adm22.html

About this task

The WebSphere MQ client link enables WebSphere Application Server Version 5.1 Java EE applications to

use messaging resources of the WebSphere Application Server Version 7.0 default messaging provider

that are backed by destinations on the service integration bus.

Each WebSphere MQ client link presents itself as a queue manager and transforms between the

WebSphere MQ client protocols used by WebSphere Application Server Version 5.110 JMS applications,

and the WebSphere Application Server Version 7.0 protocols used by messaging engines.

If you migrate a Version 5.1 node to Version 7.0, a default WebSphere MQ client link, with the name

Default.MQClientLink, is created for the application servers on that node. You only need to create another

WebSphere MQ client link if you want some Version 5.1 JMS applications to use a different channel to

connect to the messaging engine, or want to present a messaging engine as a non-default queue

manager name.

If you create a WebSphere MQ client link, you only need to manually specify values for a subset of the

available properties. You can choose to specify values for other optional properties in this task, or if

wanted at a later time by changing the configuration of the client link.

Note: Creating a WebSphere MQ client link is only part of the task to enable WebSphere Application

Server Version 5.1 applications to use messaging resources of the WebSphere Application Server

Version 7.0 default messaging provider. For more information about the overall task, see “Managing

WebSphere Application Server Version 5.1 JMS use of messaging resources in later versions of the

product” on page 1725.

To create a WebSphere MQ client link, use the administrative console to complete the following steps.

1. List the WebSphere MQ client links for the messaging engine that the Version 5.1 JMS applications

are to connect to. Click Service integration → Buses → bus_name → [Topology] Messaging engines

→ engine_name → [Additional Properties] WebSphere MQ client links. This displays any existing

WebSphere MQ client links in the content pane.

2. Click New in the content pane.

3. Specify the following required properties for the WebSphere MQ client link:

Name This can be any name that is useful for your administrative purposes. It is not used by the

application environment.

MQ channel name

This is the name of the channel for the WebSphere MQ client link, used to flow messages

between the JMS application developed for WebSphere Application Server Version 5.1 and the

bus. This name must match the receiving channel name configured for WebSphere Application

Server Version 5.1:

WAS.JMS.SVRCONN

This is the default value shown when you first display the WebSphere MQ client link settings

panel.

Queue manager name

This is the virtual queue manager name that is associated with the messaging engine, and by

which the messaging engine is known to WebSphere Application Server Version 5.1

applications. Type the queue manager name in the form:

WAS_node_name_server_name

10. To make reading easier in this topic, the abbreviation “Version 5.1” is sometimes used to refer to “WebSphere Application Server

Version 5.1” and “Version 7.0” is used to refer to “WebSphere Application Server Version 7.0”. For example, “Version 5.1 JMS

resources” refers to JMS resources provided by WebSphere Application Server Version 5.1.

Chapter 8. Messaging resources 1729

Where:

node_name

is the name of the WebSphere Application Server Version 7.0 node.

server_name

is the name of the application server.

The correct value is shown by default when you first display the WebSphere MQ client link

settings panel.

On a managed node in a WebSphere Application Server Network Deployment cell, an

application server with the name jmsserver is used for interoperation with WebSphere

Application Server Version 5.1 applications, to represent the JMS server that was used in

WebSphere Application Server Version 5.1. For this server, the WebSphere MQ client link has

the queue manager name WAS_nodeName_jmsserver. You should not use this queue manager

name on any other WebSphere MQ client link that is assigned to a messaging engine on the

same node.

Default queue manager

Select this check box if you want the MQ client link to be used as the default for applications

that cannot find a suitable MQ client link to use.

 If a JMS application developed for WebSphere Application Server Version 5.1 specifies that it

wants to connect to a non-default queue manager name, you can configure a WebSphere MQ

client link with that queue manager name. If a WebSphere MQ client link cannot be found with

the required queue manager name, the connection is rejected. Alternatively, you can select this

option on another WebSphere MQ client link, which is used instead of rejecting the connection.

4. Optional: If you want to specify other optional properties, see the property descriptions in WebSphere

MQ client link [Settings].

5. Click OK.

6. Save your changes to the master configuration.

What to do next

To enable WebSphere Application Server Version 5.1 applications to use messaging resources of

WebSphere Application Server Version 7.0, ensure you complete all the steps in the task “Managing

WebSphere Application Server Version 5.1 JMS use of messaging resources in later versions of the

product” on page 1725.

Configuring a WebSphere MQ client link

Use this task to browse or change the properties of a client link that enables a messaging engine to

handle message requests from JMS applications developed for WebSphere Application Server Version 5.1.

Before you begin

The WebSphere MQ client link is provided only for use with JMS applications developed for WebSphere

Application Server Version 5.1.

About this task

The WebSphere MQ client link enables WebSphere Application Server Version 5.1 Java EE applications to

use messaging resources of the WebSphere Application Server Version 7.0 default messaging provider

that are backed by destinations on the service integration bus.

1730 Administering WebSphere applications

Each WebSphere MQ client link presents itself as a queue manager and transforms between the

WebSphere MQ client protocols used by WebSphere Application Server Version 5.111 JMS applications,

and the Version 7.0 protocols used by messaging engines.

1. Start the administrative console.

2. Navigate to the settings page for the WebSphere MQ client link. Click Service integration → Buses →

bus_name → [Topology] Messaging engines → engine_name → [Additional Properties] WebSphere

MQ client links → link_name. This displays the properties of the selected WebSphere MQ client links

in the content pane.

3. Optional: If you want to change any of the general properties, see the property descriptions in

WebSphere MQ client link [Settings].

4. Optional: If you want to change any of the advanced properties, see the property descriptions in

WebSphere MQ client link advanced properties [Settings], then complete the following steps.

5. If you have changed any properties, complete the following steps.

a. Click OK.

b. Save your changes to the master configuration.

Listing WebSphere MQ client links for a messaging engine

Use this task to display a list of WebSphere MQ links for a messaging engine.

About this task

To list the WebSphere MQ client links for a messaging engine, use the administrative console to complete

the following steps.

Display the WebSphere MQ client links collection page. Click Service integration → Buses → bus_name →

[Topology] Messaging engines → engine_name → [Additional Properties] WebSphere MQ client links.

Results

This displays a list of WebSphere MQ client links for the messaging engine in the content pane, with the

following subset of properties for the link:

Name The name of the WebSphere MQ client link.

Description

An optional description for the WebSphere MQ client link, for administrative purposes.

MQ channel name

The name of the channel for the WebSphere MQ client link, used to flow messages between

WebSphere MQ clients and the bus.

Queue manager name

The queue manager name used to represent the bus as a WebSphere MQ queue manager to

WebSphere MQ clients.

Default queue manager

Whether or not this is the default queue manager for the WebSphere MQ clients.

Status

The runtime status of the WebSphere MQ client link.

11. To make reading easier in this topic, the abbreviation “Version 5.1” is sometimes used to refer to “WebSphere Application Server

Version 5.1” and “Version 7.0” is used to refer to “WebSphere Application Server Version 7.0”. For example, “Version 5.1 JMS

resources” refers to JMS resources provided by WebSphere Application Server Version 5.1.

Chapter 8. Messaging resources 1731

What to do next

You can use this panel to create, delete, start, or stop client links, as described in related tasks.

Starting and stopping WebSphere MQ client links

Use this task to start or stop WebSphere MQ client links, to stop message flows between the default

messaging provider and JMS applications developed for WebSphere Application Server Version 5.1,

connected through the client links.

About this task

You can start a WebSphere MQ client link that is not running (has a runtime status of Stopped) or stop a

client link that is running (has a runtime status of Started). This also starts or stops all client connections

on the selected WebSphere MQ client links. Alternatively, you can start or stop individual client

connections on the WebSphere MQ client link, as described in “Starting and stopping WebSphere MQ

client connections” on page 1734.

When stopping a client link, you can choose whether to force the client link to stop immediately or after

any messages currently on its client connections have been processed. You can also choose the final

state that you want the client link to be in when it has been stopped.

To start or stop one or more WebSphere MQ client links, use the administrative console to complete the

following steps.

1. Display the WebSphere MQ client links collection page. Click Service integration → Buses →

bus_name → [Topology] Messaging engines → engine_name → [Additional Properties] WebSphere

MQ client links.

2. Select the check box next to the name of each client link that you want to start or stop.

3. Click the appropriate button:

 Start Click this button to start selected items. This enables JMS

applications to use the client link to access JMS

resources provided by the default messaging provider.

1732 Administering WebSphere applications

Stop Click this button to stop a selected WebSphere MQ client

link. You must first have selected the link to be stopped.

You can choose the mode of stop action and the desired

state when the link has been stopped:

Stop mode:

Force Stop the link immediately.

Quiesce

Stop the link after any messages

currently on its client connections have

been processed.

Target state:

Inactive

Stop the link to an inactive state. If an

application tries to use the link, the link

is started again.

Stopped

Stop the link to a stopped state.

Applications cannot use the client link.

The link can only be started again by

administrator action.

Results

The status of the client link changes and a message stating that the link has started or stopped is

displayed at the top the page.

Listing client connections for a WebSphere MQ client link

Use this task to display a list of client connections for a WebSphere MQ client link. Each client connection

is created automatically for a version 5 JMS application using the WebSphere MQ client link.

About this task

To list the client connections for a WebSphere MQ client link, use the administrative console to complete

the following steps.

Display the client connections collection page. Click Service integration → Buses → bus_name →

[Topology] Messaging engines → engine_name → [Additional Properties] WebSphere MQ client links

→ link_name → [Additional Properties] Client connections.

Results

This displays a list of client connections for the WebSphere MQ client link in the content pane, with the

following subset of properties for the link:

IP address

The TCP/IP IP address of the WebSphere MQ client.

Status

The runtime status of the WebSphere MQ client connection.

Chapter 8. Messaging resources 1733

What to do next

You can use this panel to start or stop client connections, as described in related tasks.

Starting and stopping WebSphere MQ client connections

Use this task to start or stop client connections on a WebSphere MQ client link, to stop message flows

between the default messaging provider and the JMS application developed for WebSphere Application

Server Version 5.1 that uses the connections.

About this task

You can start a WebSphere MQ client connection that is not running (has a runtime status of Inactive) or

stop a client connection that is running (has a runtime status of Started). Alternatively, you can start or

stop all client connections on the WebSphere MQ client link, as described in “Starting and stopping

WebSphere MQ client links” on page 1732.

When stopping a client connection, you can choose whether to force the client connection to stop

immediately or after any messages currently on its client connections have been processed. Client

connections are always stopped to an inactive state.

To start or stop one or more WebSphere MQ client connections, use the administrative console to

complete the following steps.

v Display the WebSphere MQ client connections collection page. Click Service integration → Buses →

bus_name → [Topology] Messaging engines → engine_name → [Additional Properties] WebSphere

MQ client links → link_name → [Additional Properties] Client connections.

v Select the check box next to the name of each client connection that you want to start or stop.

v Click the appropriate button:

 Start Click this button to start selected items.

Stop Click this button to stop a selected WebSphere MQ client

connection. You must first have selected the connection

to be stopped.

You can choose the mode of stop action, but connections

are always stopped to an inactive state:

Stop mode:

Force Stop the connection immediately.

Quiesce

Stop the connection after any

messages currently on the connection

have been processed.

Target state:

Inactive

Stop the link to an inactive state. If an

application tries to use the link, the link

is started again.

Results

The status of the client connection changes and a message stating that the connection has started or

stopped is displayed at the top the page.

1734 Administering WebSphere applications

Deleting WebSphere MQ client links

Use this task to delete WebSphere MQ client links. This prevents JMS applications developed for

WebSphere Application Server Version 5.1 from using those client links to exchange messages with the

default messaging provider.

Before you begin

Before deleting a WebSphere MQ client link, you need to stop version 5 JMS applications using the client

link.

v Stop all message-producing JMS applications in the WebSphere Application Server Version 5.1

environment that are using the client link. For example, you can use the administrative console to stop

the applications, as described in Starting and stopping applications.

v Allow all message-consuming JMS applications (including those consuming publications as a result of

durable subscriptions) to continue until all the JMS queues are drained, then stop those applications.

About this task

To start or stop one or more WebSphere MQ client links, use the administrative console to complete the

following steps.

1. Display the WebSphere MQ client links collection page. Click Service integration → Buses →

bus_name → [Topology] Messaging engines → engine_name → [Additional Properties] WebSphere

MQ client links.

2. Select the check box next to the name of each client link that you want to delete.

3. Click Delete

4. Click OK.

5. Save any changes to the master configuration.

Configuring the messaging engine selection process for JMS

applications

Configure the JMS connection factory for your application, in order to tune the process through which

messaging engine connections are selected for your application.

About this task

To use JMS destinations of the default messaging provider, a client application connects to a messaging

engine on the service integration bus to which the destinations are assigned. For example, a JMS queue

is assigned to a queue destination on a service integration bus.

By default, the environment automatically connects applications to an available messaging engine on the

bus. However you can specify extra configuration details to influence the connection process; for example

to identify special bootstrap servers, or to limit connection to a subgroup of available messaging engines,

or to improve availability or performance, or to ensure sequential processing of messages received.

For a JMS application, you apply the extra configuration to the associated JMS connection factory. For a

message-driven bean (MDB) application, you apply the equivalent extra configuration to the associated

activation specification.

For the default configuration, you only need to specify the one required connection property Bus name,

which sets the name of the bus to which the application wants to connect. To further restrict the range of

messaging engines to which your applications can connect, you can also configure the other connection

properties:

v Target

v Target type

Chapter 8. Messaging resources 1735

friend.was/ae/trun_app_startstop.html

v Target significance

v Target inbound transport chain

v Connection proximity

For detailed information about these connection properties, and an overview of the process through which

the default messaging provider chooses the messaging engine for your application, see How JMS

applications connect to a messaging engine on a bus.

The steps for this task are based on an application that uses a unified JMS connection factory. You can

use the same task to configure a JMS queue connection factory or JMS topic connection factory, but

during the task you need to select the appropriate type of connection factory instead of JMS connection

factory. To configure any of these properties of a connection factory, complete the following steps:

v If the client application uses a JMS connection factory in the client container, use the Client Resource

Configuration tool (ACRCT) to configure the Provider endpoint property:

1. Start the tool and open the EAR file for which you want to configure the JMS connection factory.

The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the JMS connection factory.

3. Expand the JAR file to view its contents.

4. Expand Messaging Providers > Default Provider > Connection Factories.

5. Optional: Display the general properties of the connection factory:

– If you want to use an existing JMS connection factory, click the name of the connection factory.

– If you want to create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory in the JMS provider

configuration for your application client, see Configuring new JMS providers with the Application

Client Resource Configuration Tool.

6. On the General tab, configure the connection properties.

7. Click OK.

8. To save your changes, click File > Save.

v If the client application uses a JMS connection factory on the server, use the WebSphere Application

Server administrative console to configure the connection properties:

1. Display the default messaging provider. In the navigation pane, expand Resources → JMS → JMS

providers.

2. Optional: Change the Scope check box to set the level at which the connection factory is to be

visible, according to your needs.

3. In the content pane click Default messaging provider. This displays a table of properties for the

default messaging provider, including links to the types of JMS resources that it provides.

4. In the content pane, under Additional Properties, click Connection factories This displays any

existing connection factories in the content pane.

5. Optional: Display the general properties of the connection factory:

– If you want to use an existing JMS connection factory, click the name of the connection factory.

– If you want to create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory, see Configuring a unified JMS

connection factory for the default messaging provider.

6. Configure the connection properties.

7. Click OK.

8. Save your changes to the master configuration.

1736 Administering WebSphere applications

friend.was/ae/ucli_tjmcr.html
friend.was/ae/ucli_tjmcr.html

Managing messages and subscriptions for JMS destinations

Use the following tasks to manage the messages and subscriptions that exist for JMS destinations of the

default messaging provide.

About this task

v You can manage the messages on a JMS queue by acting on the queue point for the bus destination to

which JMS queue has been assigned. The Bus name property of the JMS connection factory identifies

the service integration bus. The Queue name property of the JMS queue identifies the name of the bus

destination.

v You can manage the durable subscriptions on a JMS topic by acting on a publication point for the topic

space to which JMS topic has been assigned. The Bus name property of the JMS connection factory

identifies the service integration bus. The Topic space property of the JMS topic identifies the name of

the topic space.

Other tasks that affect the runtime status of the default messaging provider are given in related tasks.

To change the configuration of JMS resources for the default messaging provider, see “Configuring

resources for the default messaging provider” on page 1662.

v “Managing messages on message points” on page 1262

v “Administering durable subscriptions” on page 1324

Managing messages on message points

Use these tasks to list and act on runtime messages that exist on message points in a service integration

bus.

About this task

You can list the message points for bus destinations and messaging engines, and list the messages on a

selected message point. You can use the list of messages as part of a troubleshooting task to find

messages that need to be deleted.

v “Listing messages on a message point” on page 1323

v “Deleting messages on a message point” on page 1324

Listing messages on a message point:

Use this task to list the messages that exist on a message point for a selected bus destination or

messaging engine.

 About this task

To display a list of messages on a message point, use the administrative console to complete the following

steps:

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the service integration bus.

3. Optional: To list the message points for a bus destination, complete the following steps:

a. In the content pane, under Destination resources, click Destinations.

b. Click the destination name.

4. Optional: To list the message points for a messaging engine, complete the following steps:

a. In the content pane, under Topology, click Messaging engines

b. Click the messaging engine name.

5. Under Additional Properties, click Message points This displays a list of message points in the content

pane.

Chapter 8. Messaging resources 1737

6. Click the message point name. This displays the properties of the destination localization in the content

pane.

7. Click the Runtime tab.

8. Under Additional Properties, click Messages

Results

A list of messages on the selected message point is displayed in the content pane.

What to do next

You can select one or more messages to act on; for example, to display the message content, delete

messages.

Deleting messages on a message point:

Use this task to delete one or messages that exist on a message point for a selected bus destination or

messaging engine.

 About this task

You should not normally need to delete messages on a message point. This task is intended as part of a

troubleshooting procedure.

To delete one or messages on a message point, use the administrative console to complete the following

steps:

1. List the messages on the message point.

2. In the content pane, click the check box next to each message you want to delete. Alternatively, you

can select all messages in the list by clicking the Select all items button

3. Click Delete

Results

The selected messages are removed from the list.

Using JMS from standalone clients to interoperate with service

integration resources

The Thin Client for JMS with WebSphere Application Server allows third party applications to interoperate

with default messaging provider messaging engines on WebSphere Application Server.

Using JMS to connect to a WebSphere Application Server default messaging

provider messaging engine

The Thin Client for JMS with WebSphere Application Server is an embeddable technology that provides

Java Message Service (JMS) V1.1 connections to a WebSphere Application Server default messaging

provider messaging engine.

Installing and configuring the Thin Client for JMS with WebSphere Application Server:

To use the Thin Client for JMS with WebSphere Application Server copy the

com.ibm.ws.sib.client.thin.jms_7.0.0.jar and any other required files from the application server or

application client %WAS_HOME%/runtimes directory.

1738 Administering WebSphere applications

About this task

The Thin Client for JMS with WebSphere Application Server can be used for default messaging provider

messaging engines for WebSphere Application Server Version 6.0.2 or later. The connection to the

messaging engine can be either TCP or SSL. HTTP connectivity is not supported.

You can install the client in any location and run it in any supported Java 2 Platform Standard Edition 1.5.0

(also known as 5.0) or above Java Runtime Environment (JRE). The client supports the following JREs:

v IBM JRE 1.5.0 and above

v Sun JRE 1.5.0 and above

v HP-UX JRE 1.5.0 and above

v Lotus Expeditor v6.1 or above with J2SE 5.0 or above Device Runtime Environment. jclDesktop and

jclDevice profiles are not supported.

The client does not require any further configuration after installation, apart from adding the jar file or files

to the classpaths for your client application. You can choose either to create JMS connection factories

programmatically, or use the Java Naming and Directory Interface (JNDI). If required, you can use secure

connections by configuring Secure Sockets Layer (SSL) settings.

1. Install the client in the required location. The client is always installed in the /runtimes directory of a

WebSphere Application Server installation, and may optionally be installed by the Application Client for

WebSphere Application Server, which is a separate WebSphere Application Server deliverable. The

client is shipped as three files:

v com.ibm.ws.sib.client.thin.jms_7.0.0.jar - the regular JMS Client.

v com.ibm.ws.sib.client_ExpeditorDRE_7.0.0.jar - the JMS Client packaged for Lotus Expeditor.

v sibc.nls.zip - language-specific resource bundles. You can extract any combination of these files.

The client jar already includes US English, so you only need the additional language files from

sibc.nls.zip if you require languages other than non-US English.

2. Include the appropriate jar file or files in the classpaths for your client application:

a. To compile JMS code, include the client jar file in the CLASSPATH setting for the javac command.

b. To run JMS code, include the client jar file and any required optional language files extracted from

sibx.nls.zip in the CLASSPATH setting for the java command.

3. Configure the required JMS resources as described in “Using JMS resources with the Thin Client for

JMS with WebSphere Application Server” on page 1740.

4. If you require secure connections, configure SSL as described in “Securing client and resource adapter

connections” on page 1742.

Migration to Thin Client for JMS with WebSphere Application Server:

There are a number of differences to consider when migrating to the Thin Client for JMS with WebSphere

Application Server from an earlier version of the client.

 Table 18. Migration from WebSphere Application Server Version 6.0.2 to WebSphere Application Server Version 7.0

Area

WebSphere Application Server Version

6.0.2 (Client for Java Message Service

on Java 2 Platform, Standard Edition

with WebSphere Application Server)

WebSphere Application Server Version

7.0 (Thin Client for JMS with

WebSphere Application Server)

Installation Available for separate download and

installation

Installed in the WebSphere Application

Server or Application Client /runtimes

directory

JMS jar file name sibc.jms.jar com.ibm.ws.sib.client.thin.jms_7.0.0.jar

Chapter 8. Messaging resources 1739

Table 18. Migration from WebSphere Application Server Version 6.0.2 to WebSphere Application Server Version

7.0 (continued)

Area

WebSphere Application Server Version

6.0.2 (Client for Java Message Service

on Java 2 Platform, Standard Edition

with WebSphere Application Server)

WebSphere Application Server Version

7.0 (Thin Client for JMS with

WebSphere Application Server)

Performing JNDI lookups of JMS

resources

Requires optional sibc.jndi.jar (and ORB

sibc.orb.jar for non-IBM JREs)

Requires Thin Client for EJB with

WebSphere Application Server jar

com.ibm.ws.ejb.thinclient_7.0.0.jar/
com.ibm.ws.ejb.thinclient.z_7.0.0.jar (and

ORB com.ibm.ws.orb_7.0.0.jar for non-IBM

JREs)

SSL configuration Secure connections are configured using

JRE global properties:

-Djavax.net.ssl.keyStore

-Djavax.net.ssl.keyStorePassword

-Djavax.net.ssl.trustStore

-Djavax.net.ssl.trustStorePassword

Two approaches to configuring secure

connections.

The first approach uses JRE global

properties:

-Djavax.net.ssl.keyStore

-Djavax.net.ssl.keyStorePassword

-Djavax.net.ssl.trustStore

-Djavax.net.ssl.trustStorePassword

The second approach is to specify security

settings that are specific to Thin Client for

JMS with WebSphere Application Server

connections:

-Dcom.ibm.ssl.keyStoreType

 -Dcom.ibm.ssl.keyStore

-Dcom.ibm.ssl.keyManager

-Dcom.ibm.ssl.trustManager

-Dcom.ibm.ssl.keyStorePassword

-Dcom.ibm.ssl.protocol

-Dcom.ibm.ssl.contextProvider

-Dcom.ibm.ws.sib.jsseProvider

Minimum JRE level 1.4.2 1.5

Enable trace (set trace specification) -Dcom.ibm.ws.sib.client.traceSetting -Dcom.ibm.ejs.ras.lite.traceSpecification

Set trace filename -Dcom.ibm.ws.sib.client.traceFile -Dcom.ibm.ejs.ras.lite.traceFileName

Set max trace file size Not applicable -Dcom.ibm.ejs.ras.lite.maxFileSize

Set max number of trace files Not applicable -Dcom.ibm.ejs.ras.lite.maxFiles

Set trace format Not applicable -Dcom.ibm.ejs.ras.lite.traceFormat

Using alternative trace properties file -DtraceSettingsFile -DtraceSettingsFile

Thin Client for JMS with WebSphere

Application Server supports new options

described in “Trace user interface for

standalone clients” on page 1744

Enable and specify FFDC filename -DffdcLogFile -Dcom.ibm.ejs.ras.lite.ffdcLogFile

NLS support Install time option for NLS support Non-English versions are available in

sibc.nls.jar

Using JMS resources with the Thin Client for JMS with WebSphere Application Server:

Suitable JMS connection factories and references to JMS queues or topics may be obtained

programmatically without using JNDI. Alternatively, full JNDI support may be obtained from the Thin Client

for EJB with WebSphere Application Server.

 v To obtain suitable connection factories programmatically, without using JNDI, use code similar to that

shown in the following example:

1740 Administering WebSphere applications

import com.ibm.websphere.sib.api.jms.*;

...

JmsConnectionFactory jmsCF =

 JmsFactoryFactory.getInstance().createQueueConnectionFactory();

jmsCF.setBusName("myBus");

jmsCF.setProviderEndpoints("1.2.3.4");

To obtain a suitable reference to a JMS queue or topic programmatically, use code similar to that shown

in the following example:

JmsQueue jmsQ = JmsFactoryFactory.getInstance().createQueue("myQueue");

For further information, see the JmsFactoryFactory class API documentation available with WebSphere

Application Server.

v To obtain full JNDI support from the Thin Client for EJB with WebSphere Application Server:

1. Include the /runtimes/com.ibm.ws.ejb.thinclient_7.0.0.jar file in the compile and runtime classpaths

for your enterprise application as described in “Installing and configuring the Thin Client for JMS with

WebSphere Application Server” on page 1738.

2. Use the following code to create a suitable Initial Context, substituting the server IP address and

port as appropriate:

import javax.naming.*;

...

Properties env = new Properties();

env.put(Context.PROVIDER_URL,"iiop:

 //<server IP address>:<server bootstrap address port>");

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext ctx = new InitialContext(env);

In certain situations, for example when running with a Sun JRE, an additional ORB jar is also

required. For additional information about when this jar is required, see Running the IBM Thin Client

for Enterprise JavaBeans (EJB).

Obtaining WebSphere MQ JMS resources in the thin client environment:

A standalone Java SE JMS thin client application that connects to an external WebSphere MQ queue

manager can get administratively-created WebSphere MQ messaging provider JMS resources from the

WebSphere Application Server Java Naming and Directory Interface (JNDI) namespace.

 1. To obtain WebSphere MQ messaging provider JMS resources from the WebSphere Application Server

JNDI namespace in the thin client environment, include the following jar files in the runtime classpath

of your application:

v A copy of the /runtimes/com.ibm.ws.ejb.thinclient_7.0.0.jar.

v A copy of the /runtimes/com.ibm.ws.messagingClient.jar.

v WebSphere MQ client jar files which must be obtained from the WebSphere MQ product.

2. Use the following code to create a suitable Initial Context, substituting the server IP address and port

as appropriate:

import javax.naming.*;

...

Properties env = new Properties();

env.put(Context.PROVIDER_URL,"iiop:

 //<server IP address>:<server bootstrap address port>");

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext ctx = new InitialContext(env);

In certain situations, for example when running with a Sun JRE, an additional ORB jar is also required.

For additional information about when this jar is required, see the Thin Client for EJB with WebSphere

Application Server information.

Chapter 8. Messaging resources 1741

friend.was/ae/tcli_ejbthinclient.html
friend.was/ae/tcli_ejbthinclient.html

Running with other standalone clients:

The WebSphere Application Server standalone clients are the clients found in the %WAS_HOME%/
runtimes directory. You can run standalone clients either on their own, or in conjunction with one or more

other standalone clients.

 Before you begin

When you are executing two or more of the following WebSphere Application Server standalone clients

together, you must obtain all the clients that you are using from the same WebSphere Application Server

installation or service refresh.

v Thin Client for JMS with WebSphere Application Server

v Thin Client for EJB with WebSphere Application Server

v Thin Client for JAX-WS with WebSphere Application Server

v Thin Client for JAX-RPC with WebSphere Application Server

This is because the mixing of standalone clients from different builds could result in unpredictable behavior

since different builds might contain slightly different versions of the same class. The CWSJE0001E error

message appears if the in-built consistency checker detects that you are trying to run clients with different

build levels together.

Securing client and resource adapter connections

There are two approaches to configuring Secure Sockets Layer (SSL) for the Thin Client for JMS with

WebSphere Application Server and the Resource Adapter for JMS with WebSphere Application Server.

The global configuration approach affects all standalone outbound connections from the process, and the

private approach applies only to client or resource adapter connections from the process.

About this task

The Thin Client for JMS with WebSphere Application Server and the Resource Adapter for JMS with

WebSphere Application Server use the standard Java Secure Socket Extension (JSSE) that all supported

JREs provide for making Secure Sockets Layer (SSL) connections. For information about JSSE, see the

JSSE documentation.

The global configuration approach uses JRE global properties and affects all outbound SSL connections

that your application initiates. For a JRE configured to use SSL connections to connect to WebSphere

Application Server, you typically need to set the following javax.net.ssl system properties:

-Djavax.net.ssl.keyStore=key.p12

-Djavax.net.ssl.keyStorePassword={xor}Lz4sLCgwLTs=

-Djavax.net.ssl.trustStore=trust.p12

-Djavax.net.ssl.trustStorePassword={xor}PSo4LSov

The private configuration approach allows you to specify security settings that are specific to the Thin

Client for JMS with WebSphere Application Server or the Resource Adapter for JMS with WebSphere

Application Server connections. You can configure the com.ibm.ws.sib.client.ssl.properties system property

to specify the location of an IBM SSL properties file. If this system property is not configured, an attempt is

made load the properties file from the classpath instead.

The client obtains the value that it uses for any particular SSL property as follows:

v If the property has a value defined in the properties file containing the IBM SSL properties, the client

uses this value.

v There is no value for the property in the properties file, the client next looks for a suitable property in the

associated JRE system properties.

v If there is no suitable javax.net.ssl property, the client uses the default value.

1742 Administering WebSphere applications

http://java.sun.com/products/jsse/reference/docs/index.html

The table below summarizes the IBM SSL property keys that can be configured inside the IBM SSL

properties file, and the corresponding javax.net.sll.* system property keys and default values.

 Table 19. IBM SSL property values and corresponding JRE global property and default values

IBM SSL property JRE global property Default value

com.ibm.ssl.keyStoreType javax.net.ssl.keyStoreType JKS

com.ibm.ssl.keyStore javax.net.ssl.keyStore None

com.ibm.ssl.keyManager javax.net.ssl.keyStoreProvider IbmX509

com.ibm.ssl.trustManager javax.net.ssl.trustStoreProvider IbmX509

com.ibm.ssl.keyStorePassword javax.net.ssl.keyStorePassword None

com.ibm.ssl.protocol None SSL

com.ibm.ssl.contextProvider None IBMJSSE2

com.ibm.ws.sib.jsseProvider None com.ibm.jsse2.IBMJSSEProvider2

com.ibm.ssl.trustStore javax.net.ssl.trustStore None

com.ibm.ssl.trustStoreType javax.net.ssl.trustStoreType JKS

com.ibm.ssl.trustStorePassword javax.net.ssl.trustStorePassword None

For example, you might create an ssl.properties file that contains the following properties and values:

com.ibm.ssl.keyStore=/thinclient/key.p12

com.ibm.ssl.keyStoreType=PKCS12

com.ibm.ssl.keyStorePassword=WebAS

com.ibm.ssl.trustStore=/thinclient/trust.p12

com.ibm.ssl.trustStoreType=PKCS12

com.ibm.ssl.trustStorePassword=WebAS

You can use the PropFilePasswordEncoder tool in the WebSphere Application Server bin directory to

encode passwords stored in plain text property files. For further information see Encoding passwords in

files.

Note:

1. SSL connections from SUN JREs using the Thin Client for JMS with WebSphere Application

Server cannot use the default WebSphere Application Server PKCS12 key and trust stores. If

you are running the client securely from SUN JREs, you must first extract the certificates from

the trust store using an IBM software development kit (SDK). You can then import these

certificates into a keystore that the Sun JRE can recognize correctly, such as a JKS keystore.

2. SSL connections are not supported using the IBM JRE shipped with WebSphere Application

Server - a non-WebSphere Application Server installed JRE must be used.

1. Obtain the necessary key and trust store files.

2. Set the javax.net.ssl system properties required for the global configuration approach.

3. For the private configuration approach, use the com.ibm.ws.sib.client.ssl.properties system property to

specify the file from which the SSL properties are to be loaded, as shown in the following example:

-Dcom.ibm.ws.sib.client.ssl.properties=c:/ssl.properties

Adding tracing and logging for standalone clients

You can add tracing and logging to help analyze performance and diagnose problems.

About this task

This information applies to the following WebSphere Application Server standalone clients:

v Thin Client for JMS with WebSphere Application Server

v Thin Client for EJB with WebSphere Application Server

v Thin Client for JAX-WS with WebSphere Application Server

Chapter 8. Messaging resources 1743

friend.was/ae/tsec_protplaintxt.html
friend.was/ae/tsec_protplaintxt.html

v Thin Client for JAX-RPC with WebSphere Application Server

v To enable trace, use either a long form or short form system property.

Note: Trace settings are determined from the system property values the first time that a WebSphere

Application Server client is called. The trace settings are then fixed. Therefore, any subsequent

changes to the system property settings do not change the trace settings that the WebSphere

Application Server client uses.

v To enable First Failure Data Capture (FFDC), use either a long or short form system property.

Note: FFDC settings are determined from the system property values the first time that a WebSphere

Application Server client performs an FFDC. The FFDC settings are then fixed. Therefore, any

subsequent changes to the system property settings do not change the FFDC settings that the

WebSphere Application Server client uses.

Trace user interface for standalone clients:

To enable trace, you can either use a long form or a short form system property.

 Long form system properties

The long form system property takes priority over the short form and uses system properties that are

unique to WebSphere Application Server.

 Table 20. Long form system properties

Property Description

com.ibm.ejs.ras.lite.traceSpecification The trace specification string

com.ibm.ejs.ras.lite.traceFileName The trace destination (<file>, stdout, stderr,

java,util.logging)

com.ibm.ejs.ras.lite.maxFileSize The maximum trace file size in mb (if the trace

destination is a file)

com.ibm.ejs.ras.lite.maxFiles The maximum number of trace files kept (if the trace

destination is a file)

com.ibm.ejs.ras.lite.traceFormat The trace output format, which can be either basic or

advanced (the default is basic)

Long form example:

-Dcom.ibm.ejs.ras.lite.traceSpecification=SIB*=all

-Dcom.ibm.ejs.ras.lite.traceFileName=c:/trace.log

-Dcom.ibm.ejs.ras.lite.maxFileSize=20

-Dcom.ibm.ejs.ras.lite.maxFiles=8

Short form system property

The short form uses a system property which is compatible with existing WebSphere Application Server

clients but which, since this property is unqualified, may clash with other third party technologies that are

running in the same Java runtime environment (JRE).

The short form system property is:

traceSettingsFile

1744 Administering WebSphere applications

This property must specify a loadable properties file that can contain the following properties:

 Table 21. Properties in loadable system properties file

Property Header

traceFileName The trace destination (file, stdout, stderr, java,util.logging)

maxFilesSize The maximum trace file size in mb (if the trace

destination is a file)

maxFiles The maximum number of trace files kept (if the trace

destination is a file)

<traceSpec> The trace specification

traceFormat The trace output format, which can be either basic or

advanced (the default is basic)

The following example shows how to use the short form system property:

SIBTrm=all:SIBMfp=all

traceFileName=c:/trace.log

Special meanings for trace file name values

Some trace file name values have a special meaning:

v stdout - causes trace records to be written to stdout

v stderr - causes trace records to be written to stderr

v java.util.logging - causes trace records to be written to java.util.logging

Using any other name causes the trace records to be written to a file of that name.

First Failure Data Capture user interface for standalone clients:

To enable First Failure Data Capture (FFDC) output, you can either use a long or short form system

property.

 Long form system property

The long form takes priority over the short form and uses a system property that is unique to WebSphere

Application Server to specify the FFDC dump file name. This property is:

com.ibm.ejs.ras.lite.ffdcLogFile

The following example shows how to use the long form system property to enable FFDC output:

-Dcom.ibm.ejs.ras.lite.ffdcLogFile=c:\ffdc.log

Short form system property

The short form system property is:

ffdcLogFile

The following example shows how to use the short form system property to enable FFDC output:

-DffdcLogFile=c:\ffdc.log

Using JMS from a third party application server

The Resource Adapter for JMS with WebSphere Application Server provides first class connectivity to

service integration resources from the third party application server on which it is deployed.

Chapter 8. Messaging resources 1745

About this task

The Resource Adapter for JMS with WebSphere Application Server is designed to be deployed into third

party application servers, that is, into non-WebSphere Application Server application servers, that support

Java EE Connector Architecture (JCA) 1. 5 and are Java 2 Platform, Enterprise Edition (J2EE) 1.4

compliant. The standalone resource adapter provides these third party application servers with full

connectivity to service integration resources running inside WebSphere Application Server Version 6.0.2

and later.

Supported third party application servers are:

v WebSphere Application Server Community Edition Version 2.0 and later

v Apache Geronimo v2.0 and later

v JBoss Application Server v4.0.5 and later

Note:

v The resource adapter does not support the unmanaged JCA environment. In an unmanaged

environment use the Thin Client for JMS with WebSphere Application Server.

v If you want to use XA connections to a WebSphere Application Server Version 6.0.2 application

server, contact IBM Support to obtain a required service update.

Deploying the Resource Adapter for JMS with WebSphere Application Server

To provide connections to service integration resources running inside WebSphere Application Server, the

Resource Adapter for JMS with WebSphere Application Server must be installed into the third party

application server.

Before you begin

The Resource Adapter for JMS with WebSphere Application Server requires JRE 1.5 or later. The resource

adapter is called sibc.jmsra.rar and is available from the following runtime directories:

v WebSphere Application Server install

v Application Client for WebSphere Application Server install

Before starting the deployment of the resource adapter, you must first obtain the following information from

the WebSphere Application Server administrator:

v Bus name

v Endpoint provider address

v Target transport chain

v Messaging engine name

v Any other required connection and destination properties

v One or more destination names

The general approach to deploying the resource adapter is to write a deployment XML file to configure the

required and optional properties for the JMS connection factory and JMS resources that will be accessed,

and then deploy the resource adapter using the deployment XML file. The way in which you perform the

installation depends on the particular application server that you are using. Before starting this task, see

the documentation specific to your application server for information about how to install and use a JMS

resource adapter RAR file.

About this task

An enterprise application that looks up a Resource Adapter for JMS with WebSphere Application Server

connection factory in the local Java Naming and Directory Interface (JNDI) repository can access service

integration resources through the resource adapter, provided that the required messaging engine is

1746 Administering WebSphere applications

available in WebSphere Application Server. All outbound connections must access all queues and topics

using Queue or Topic resources. These resources are configured using your particular application server

configuration mechanism when the resource adapter is deployed.

The Resource Adapter for JMS with WebSphere Application Server supports full two-phase XA

transactional connections (except under the JBoss Application Server) but can also be run using local

transactions or no transaction connections.

Multiple deployments of the resource adapter are possible.

1. To deploy an outbound JMS resource on the Resource Adapter for JMS with WebSphere Application

Server, use your particular application server configuration mechanism to configure the following

service integration bus properties:

v Bus name

v Provider endpoints

2. If you want to use XA resources over a Resource Adapter for JMS with WebSphere Application Server

connection, use your particular application server configuration mechanism to configure the following

additional service integration bus properties:

v Target type must be set to ″ME″

v Target significance must be set to ″Required″

v Target must be set to the name of the required messaging engine

These properties permit the recovery of indoubt transactions, should this be necessary. For further

information about indoubt transactions, see Resolving indoubt transactions.

See “Resource Adapter for JMS with WebSphere Application Server configuration properties” for a

description of these property names and other properties that may also be configured.

Results

Subsequent usage of the resource adapter is in accordance with the Java EE programming specifications.

That is, any enterprise bean or message-driven bean may obtain a Resource Adapter for JMS with

WebSphere Application Server connection factory or use an activation specification to connect to a service

integration messaging engine. Message-driven beans behave in just the same way as they would in any

other Java EE environment.

What to do next

You can turn trace and First Failure Data Capture (FFDC) on for the resource adapter in the same way as

for the Thin Client for JMS with WebSphere Application Server. For further information, see “Adding tracing

and logging for standalone clients” on page 1743.

You can configure secure connections by configuring connection factories that require a secure bootstrap

and/or connection transport chain in the same way as for the Thin Client for JMS with WebSphere

Application Server. For further information, see “Securing client and resource adapter connections” on

page 1742.

Resource Adapter for JMS with WebSphere Application Server configuration properties:

As part of deploying Resource Adapter for JMS with WebSphere Application Server, you must configure a

set of JMS resources which the deployed resource adapter instance will support.

 The following tables list the JMS properties and their values.

Chapter 8. Messaging resources 1747

Note: Not all properties available to applications running inside the WebSphere Application Server

environment are available in third party environments. Some properties have no meaning outside of

the WebSphere Application Server environment and some have no meaning for remotely connected

clients.

 Table 22. Connection factory properties

Property name Description Permitted values Default

BusName The name of the service

integration bus to connect to.

ClientID The JMS client identifier

needed for durable topic

subscriptions on all connections

created using this connection

factory.

UserName

Password

NonPersistentMapping The reliability applied to

nonpersistent JMS messages

sent using this connection

factory.

BestEffortNonPersistent,

ExpressNonPersistent,

ReliableNonPersistent

ExpressNonPersistent

PersistentMapping The reliability applied to

persistent JMS messages sent

using this connection factory.

ReliablePersistent,

AssuredPersistent

ReliablePersistent

DurableSubscriptionHome The name of the messaging

engine used to store messages

delivered to durable

subscriptions for objects

created from this JMS

connection factory.

ReadAhead Read ahead is an optimization

that preemptively assigns

messages to consumers. This

improves the time taken to

satisfy consumer requests.

AlwaysOn, AlwaysOff, Default Default

Target The name of a target that

identifies a group of messaging

engines. Specify the type of

target using the Target type

property.

TargetType The type of target named in the

Target property.

BusMember, Custom, ME BusMember

TargetSignificance The significance of the target

group.

Required, Preferred Required

TargetTransportChain The name of the protocol that

resolves to a group of

messaging engines.

ProviderEndpoints The list of comma separated

endpoints used to connect to a

bootstrap server.

ConnectionProximity The proximity of messaging

engines that can accept

connection requests, in relation

to the bootstrap messaging

engine.

Server, Cluster, Host, Bus Bus

TemporaryQueueNamePrefix The prefix of up to twelve

characters used for names of

temporary queues created by

applications that use this

connection factory.

1748 Administering WebSphere applications

Table 22. Connection factory properties (continued)

Property name Description Permitted values Default

TemporaryTopicNamePrefix The prefix used at the start of

temporary topics created by

applications using this

connection factory.

ShareDurableSubscriptions Controls whether or not durable

subscriptions are shared across

connections with members of a

server cluster.

InCluster, AlwaysShared,

NeverShared

InCluster (always resolves to

AlwaysOff as the client is

always outside of a WebSphere

Application Server clustered

server)

ProducerDoesNotModify

PayloadAfterSet

When enabled, Object or Bytes

messages sent by a message

producing application that has

connected to the bus using this

connection factory will not have

their data copied when set and

the system will only serialize

the message data when

absolutely necessary.

Applications sending such

messages must not modify the

data once it has been set into

the message.

true, false false

 Table 23. Queue Connection factory properties

Property name Description Permitted values Default

BusName The name of the service

integration bus to connect to.

UserName

Password

NonPersistentMapping The reliability applied to

nonpersistent JMS messages

sent using this connection

factory.

BestEffortNonPersistent,

ExpressNonPersistent,

ReliableNonPersistent

ExpressNonPersistent

PersistentMapping The reliability applied to

persistent JMS messages sent

using this connection factory.

ReliablePersistent,

AssuredPersistent

ReliablePersistent

ReadAhead Read ahead is an optimization

that preemptively assigns

messages to consumers. This

improves the time taken to

satisfy consumer requests.

AlwaysOn, AlwaysOff, Default Default

Target The name of a target that

identifies a group of messaging

engines. Specify the type of

target using the Target type

property.

TargetType The type of target named in the

Target property.

BusMember, Custom, ME BusMember

TargetSignificance The significance of the target

group.

Required, Preferred Required

TargetTransportChain The name of the protocol that

resolves to a group of

messaging engines.

ProviderEndpoints The list of comma separated

endpoints used to connect to a

bootstrap server.

Chapter 8. Messaging resources 1749

Table 23. Queue Connection factory properties (continued)

Property name Description Permitted values Default

ConnectionProximity The proximity of messaging

engines that can accept

connection requests, in relation

to the bootstrap messaging

engine.

Server, Cluster, Host, Bus Bus

TemporaryQueueNamePrefix The prefix of up to twelve

characters used for names of

temporary queues created by

applications that use this

connection factory.

ProducerDoesNotModify

PayloadAfterSet

When enabled, Object or Bytes

messages sent by a message

producing application that has

connected to the bus using this

connection factory will not have

their data copied when set and

the system will only serialize

the message data when

absolutely necessary.

Applications sending such

messages must not modify the

data once it has been set into

the message.

true, false false

 Table 24. Topic Connection factory properties

Property name Description Permitted values Default

BusName The name of the service

integration bus to connect to.

ClientID The JMS client identifier

needed for durable topic

subscriptions on all connections

created using this connection

factory.

UserName

Password

NonPersistentMapping The reliability applied to

nonpersistent JMS messages

sent using this connection

factory.

BestEffortNonPersistent,

ExpressNonPersistent,

ReliableNonPersistent

ExpressNonPersistent

PersistentMapping The reliability applied to

persistent JMS messages sent

using this connection factory.

ReliablePersistent,

AssuredPersistent

ReliablePersistent

DurableSubscriptionHome The name of the messaging

engine used to store messages

delivered to durable

subscriptions for objects

created from this JMS

connection factory.

ReadAhead Read ahead is an optimization

that preemptively assigns

messages to consumers. This

improves the time taken to

satisfy consumer requests.

AlwaysOn, AlwaysOff, Default Default

Target The name of a target that

identifies a group of messaging

engines. Specify the type of

target using the Target type

property.

1750 Administering WebSphere applications

Table 24. Topic Connection factory properties (continued)

Property name Description Permitted values Default

TargetType The type of target named in the

Target property.

BusMember, Custom, ME BusMember

TargetSignificance The significance of the target

group.

Required, Preferred Required

TargetTransportChain The name of the protocol that

resolves to a group of

messaging engines.

ProviderEndpoints The list of comma separated

endpoints used to connect to a

bootstrap server.

ConnectionProximity The proximity of messaging

engines that can accept

connection requests, in relation

to the bootstrap messaging

engine.

Server, Cluster, Host, Bus Bus

TemporaryTopicNamePrefix The prefix used at the start of

temporary topics created by

applications using this

connection factory.

ShareDurableSubscriptions Controls whether or not durable

subscriptions are shared across

connections with members of a

server cluster.

InCluster, AlwaysShared,

NeverShared

InCluster (always resolves to

AlwaysOff as the client is

always outside of a WebSphere

Application Server clustered

server)

ProducerDoesNotModify

PayloadAfterSet

When enabled, Object or Bytes

messages sent by a message

producing application that has

connected to the bus using this

connection factory will not have

their data copied when set and

the system will only serialize

the message data when

absolutely necessary.

Applications sending such

messages must not modify the

data once it has been set into

the message.

true, false false

 Table 25. Queue properties

Property name Description Permitted values Default

QueueName The name of the associated

queue on the service

integration bus.

DeliveryMode The delivery mode for

messages sent to this

destination. This controls the

persistence of messages on

this destination.

Application, Persistent,

NonPersistent

TimeToLive The default length of time in

milliseconds from its dispatch

time that a message sent to

this destination should be kept

by the system.

Priority The relative priority for

messages sent to this

destination, in the range 0 to 9,

with 0 as the lowest priority and

9 as the highest priority.

Chapter 8. Messaging resources 1751

Table 25. Queue properties (continued)

Property name Description Permitted values Default

ReadAhead Read ahead is an optimization

that preemptively assigns

messages to consumers. This

improves the time taken to

satisfy consumer requests.

AlwaysOn, AlwaysOff,

AsConnection, Default

AsConnection

BusName The name of the service

integration bus to connect to.

ScopeToLocalQP Sets whether the service

integration bus queue

destination identified by this

Queue is dynamically scoped

to a single queue point if one

exists on the messaging engine

that the application is

connected to.

On, Off Off

ProducerPreferLocal Sets whether a

MessageProducer for this

Queue should prefer a locally

connected queue point of the

service integration bus queue

destination over any other

queue points.

On, Off On

ProducerBind Set whether messages sent by

a single MessageProducer to

this Queue will go to the same

service integration bus queue

point, or whether no such

restriction will be applied, and

different messages will be sent

to different queue points.

On, Off Off

GatherMessages Set whether messages on all

service integration bus queue

points or only a single queue

point are visible to

MessageConsumers and

QueueBrowsers using this

Queue.

On, Off Off

 Table 26. Topic properties

Property name Description Permitted values Default

TopicSpace The name of the topic space

that contains the topic, on the

service integration bus defined

by the BusName property.

Default.Topic.Space

TopicName The name of the topic that this

JMS topic is assigned to, in the

topic space defined by the

TopicSpace property

DeliveryMode The delivery mode for

messages sent to this

destination. This controls the

persistence of messages on

this destination.

Application, Persistent,

NonPersistent

TimeToLive The default length of time in

milliseconds from its dispatch

time that a message sent to

this destination should be kept

by the system.

1752 Administering WebSphere applications

Table 26. Topic properties (continued)

Property name Description Permitted values Default

Priority The relative priority for

messages sent to this

destination, in the range 0 to 9,

with 0 as the lowest priority and

9 as the highest priority.

ReadAhead Read ahead is an optimization

that preemptively assigns

messages to consumers. This

improves the time taken to

satisfy consumer requests.

AlwaysOn, AlwaysOff,

AsConnection, Default

AsConnection

BusName The name of the service

integration bus to connect to.

 Table 27. Activation configuration properties

Property name Description Permitted values Default Required/optional

Destination The name of the

destination on the

service integration bus.

Required

ProviderEndpoints The list of comma

separated endpoints

used to connect to a

bootstrap server.

Required

DestinationType Whether the

message-driven bean

uses a queue or topic

destination.

javax.jms.Queue,

javax.jms.Topic

Required

BusName The name of the

service integration bus

to connect to.

Required

MessageSelector The JMS message

selector used to

determine which

messages the

message-driven bean

receives. The value is a

string that is used to

select a subset of the

available messages.

The syntax is based on

a subset of the SQL 92

conditional expression

syntax, as described in

the JMS specification.

Optional

AcknowledgeMode How the session

acknowledges any

messages it receives.

Auto-acknowledge,

Dups-ok-acknowledge

Auto-acknowledge Optional

SubscriptionDurability Whether a JMS topic

subscription is durable

or nondurable.

Durable, Nondurable Nondurable Optional

SubscriptionName The subscription name

needed for durable

topic subscriptions.

Required field when

using a durable topic

subscription.

Optional

Chapter 8. Messaging resources 1753

Table 27. Activation configuration properties (continued)

Property name Description Permitted values Default Required/optional

MaxBatchSize The maximum number

of messages received

from the messaging

engine in a single

batch.

1 through 2147483647 1 Optional

MaxConcurrency The maximum number

of endpoints to which

messages are delivered

concurrently

1 through 2147483647 10 Optional

RetryInterval The delay (in seconds)

between attempts to

connect to a messaging

engine.

1 through 2147483647 30 Optional

UserName Optional

Password Optional

DurableSubscriptionHome The name of the

messaging engine used

to store messages

delivered to durable

subscriptions for objects

created from this JMS

connection factory.

Optional

ShareDurableSubscriptions Controls whether or not

durable subscriptions

are shared across

connections with

members of a server

cluster.

InCluster,

AlwaysShared,

NeverShared

InCluster (always

resolves to AlwaysOff

as the client is always

outside of a

WebSphere Application

Server clustered server)

Optional

ClientID The JMS client identifier

needed for durable

topic subscriptions on

all connections created

using this connection

factory.

Optional

TargetTransportChain The name of the

protocol that resolves to

a group of messaging

engines.

Optional

ReadAhead Read ahead is an

optimization that

preemptively assigns

messages to

consumers. This

improves the time taken

to satisfy consumer

requests.

AlwaysOn, AlwaysOff,

Default

Default Optional

Target The name of a target

that identifies a group

of messaging engines.

Specify the type of

target using the Target

type property.

Optional

TargetType The type of target

named in the Target

property.

BusMember, Custom,

ME

BusMember Optional

TargetSignificance This property specifies

the significance of the

target group.

Required, Preferred Required Optional

1754 Administering WebSphere applications

Table 27. Activation configuration properties (continued)

Property name Description Permitted values Default Required/optional

TopicSpace The name of the topic

space that contains the

topic, on the service

integration bus defined

by the BusName

property.

Default.Topic.Space Optional

ForwarderDoesNotModify

PayloadAfterSet

When enabled,

Object/Bytes messages

forwarded through this

activation specification

that have their payload

modified will not have

the data copied when it

is set into the message

and the system will only

serialize the message

data when absolutely

necessary. Applications

sending such messages

must not modify the

data once it has been

set into the message.

true, false false Optional

Deploying inbound connections for the resource adapter

When deploying inbound connections, you must configure message-driven beans to use the Resource

Adapter for JMS with WebSphere Application Server. A JMS activation configuration associated with one or

more message-driven beans provides the configuration necessary for them to receive messages.

About this task

You can deploy message-driven beans within your application with a JMS activation configuration to

access the Resource Adapter for JMS with WebSphere Application Server connection factories and

destinations. When the message-driven bean is started, it uses the resource adapter to connect to the

service integration bus, provided that the required messaging engine is available in WebSphere Application

Server.

The Resource Adapter for JMS with WebSphere Application Server supports full two-phase XA

transactional connections but it may also be run using local transactions or no transaction connections.

1. Configure the following properties for the activation configuration:

v Destination

v ProviderEndpoints

v DestinationType

v BusName

The Destination property value is the name of the destination from which the message-driven bean will

be receiving messages.

See “Resource Adapter for JMS with WebSphere Application Server configuration properties” on page

1747 for a description of these property names and other properties that may also be configured.

2. Configure the following additional properties if the message-driven bean will be using XA resources

over the Resource Adapter for JMS with WebSphere Application Server connection.

v TargetType must be set to ″ME″

v TargetSignificance must be set to ″Required″

v Target value must be the name of the required ME

Chapter 8. Messaging resources 1755

See “Resource Adapter for JMS with WebSphere Application Server configuration properties” on page

1747 for a description of these property names and other properties that may also be configured.

These properties permit the recovery of in-doubt transactions, should this be necessary. For further

information about in-doubt transactions, see Resolving indoubt transactions.

Configuring high availability for the resource adapter

For XA connections, the Resource Adapter for JMS with WebSphere Application Server must always

connect to the same messaging engine in a bus. High availability is therefore an important consideration.

About this task

If you are using XA resources, a specific messaging engine must be targeted for connection to allow

in-doubt transactions to be recovered, if this becomes necessary. Therefore, the availability of the

messaging engine is critical to the ability of the Resource Adapter for JMS with WebSphere Application

Server to connect to the bus. It is recommended that in this scenario the target messaging engine be

made highly available by deploying it to a cluster so that in the event of a server failure the messaging

engine will be failed over to an alternative server in the cluster.

This restriction does not apply to connections with no transactional context, or with local transactional

context because in this case the transaction is always committed or rolled back immediately and there is

therefore never an in-doubt state.

1. Make the messaging engine highly available by deploying it to a cluster. For further information, see

Service integration high availability and workload sharing configurations

2. Ensure that you have provided the connection factories with a list of provider endpoints for highly

available bootstrap servers that the resource adapter can use to bootstrap to the required messaging

engine. See also “Deploying the Resource Adapter for JMS with WebSphere Application Server” on

page 1746 and “Deploying inbound connections for the resource adapter” on page 1755.

Choosing a messaging provider

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,

you can use the default messaging provider. To integrate WebSphere Application Server messaging into a

predominantly WebSphere MQ network, you can use the WebSphere MQ messaging provider. You can

also use a third-party messaging provider. To choose the provider that is best suited to your needs,

consider what the application needs to do, and the business need for the provider to integrate well with

your enterprise infrastructure.

About this task

Enterprise applications in WebSphere Application Server can use asynchronous messaging through

services based on Java Message Service (JMS) messaging providers and their related messaging

systems. These messaging providers conform to the JMS Version 1.1 specification.

You can configure any of the following messaging providers:

v The default messaging provider (which uses service integration as the provider)

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider)

v A third-party messaging provider (which uses another company’s product as the provider)

The types of messaging providers that can be configured in WebSphere Application Server are not

mutually exclusive:

v All types of provider can be configured within one cell.

v Different applications can use the same, or different, providers.

v One application can access multiple providers.

1756 Administering WebSphere applications

No one of these providers is necessarily better than another. The choice of provider depends on what your

JMS application needs to do, and on other factors relating to your business environment and planned

changes to that environment.

Note: For backwards compatibility with earlier releases, WebSphere Application Server also includes

support for the “V5 default messaging provider”. For more information, see “Maintaining Version 5

default messaging resources” on page 1779.

1. Determine the environment and application requirements.

If you need to use a third-party messaging provider, or interoperate with WebSphere Application Server

Version 5 resources, use the associated provider. For more information, see “Other ways of managing

messaging” on page 1769.

If your existing or planned messaging environment involves both WebSphere MQ and WebSphere

Application Server systems, and it is not clear to you whether you should use the default messaging

provider, the WebSphere MQ provider, or a mixture of the two, complete the task “Choosing

messaging providers for a mixed environment” on page 1763.

2. Choose the messaging provider:

v Choose the default messaging provider.

If you mainly want to use messaging between applications in WebSphere Application Server,

perhaps with some interaction with a WebSphere MQ system, the default messaging provider is the

natural choice because this provider is fully integrated with the WebSphere Application Server

runtime environment. For more information, see “Default messaging provider” on page 1900. To

configure and manage messaging with the default messaging provider, see Managing messaging

with the default messaging provider.

v Choose the WebSphere MQ messaging provider.

If your business also uses WebSphere MQ, and you want to integrate WebSphere Application

Server messaging applications into a predominantly WebSphere MQ network, the WebSphere MQ

messaging provider allows you to define resources for connecting directly to the queues in a

WebSphere MQ system. For more information, see “WebSphere MQ messaging provider” on page

1901. To configure and manage messaging with the WebSphere MQ messaging provider, see

“Managing messaging with the WebSphere MQ messaging provider” on page 1940.

v Choose a third-party messaging provider.

You can use any third-party messaging provider that supports the JMS Version 1.1 unified

connection factory. You might want to do this, for example, because of existing investments.

Note:

– To administer a third-party messaging provider, use the resource adaptor or client supplied

by the third party. You can still use the WebSphere Application Server administrative

console to administer the JMS connection factories and destinations that are within

WebSphere Application Server, but you cannot use the administrative console to

administer the JMS provider itself, or any of its resources that are outside of WebSphere

Application Server.

– To use message-driven beans (MDBs), third-party messaging providers must include

Application Server Facility (ASF), an optional feature that is part of the JMS Version 1.1

specification, or use an inbound resource adapter that conforms to the Java EE Connector

Architecture (JCA) Version 1.5 specification.

To work with a third-party provider, see “Managing messaging with a third-party messaging provider”

on page 1769.

Chapter 8. Messaging resources 1757

friend.sib/tasks/tjn9999_.dita
friend.sib/tasks/tjn9999_.dita

JMS providers collection

In the administrative console page, to view this page click Resources → JMS → JMS providers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS providers that are available to WebSphere applications. For each JMS provider in

the list, the entry indicates the scope level at which JMS resource definitions are visible to applications.

You can create the same type of JMS provider at different Scope settings, to offer JMS resources at

different levels of visibility to applications.

If you want to manage existing JMS resource definitions, or create a new JMS resource definition, you can

select the name of one of the JMS providers in the list.

If you want to define your own JMS provider, other than the default messaging provider or WebSphere

MQ, select the Scope setting at which JMS resource definitions are to be visible for that provider, then

click New.

General properties

Name

Description

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Select JMS resource provider

The variable, {0}, indicates the type of JMS resource that you are creating.

You select the scope setting on an earlier page. The choice of JMS providers depends on the scope that

you selected. You might see a choice like the following list:

v Default messaging provider.

Select this option if you want to the type of JMS resource to be provided by a service integration bus,

as part of WebSphere Application Server.

v My JMSprovider

Select this option if you want the type of JMS resource to be provided by your own JMS provider; not

the default messaging provider or WebSphere MQ. You assign the name, in this example “My

JMSprovider”, when you define the JMS provider to WebSphere Application Server. You must have

installed and configured your own JMS provider before applications can use the JMS resources.

v WebSphere MQ messaging provider

1758 Administering WebSphere applications

Select this option if you want the type of JMS resource to be provided by WebSphere MQ. You must

have installed and configured WebSphere MQ before applications can use the JMS resources.

v V5 default messaging provider

Select this option if you want the type of JMS resource to be provided by a WebSphere Application

Server Version 5 node.

Activation specification collection

In the administrative console page, to view this page click Resources → JMS → Activation specification.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS activation specifications that are available to WebSphere applications at the scope

indicated by the Scope field.

Use a JMS activation specification if you want to use a message-driven bean as a J2EE Connector

Architecture (JCA) 1.5 resource, to act as a listener on the default messaging provider.

General properties

Name

Provider

Description

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Connection factory collection

In the administrative console page, to view this page click Resources → JMS → Connection factory.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS connection factories that are available to WebSphere applications at the scope

indicated by the Scope field.

Chapter 8. Messaging resources 1759

A JMS connection factory is used to create connections to JMS destinations. When an application needs a

JMS connection, an instance can be created by the factory of the JMS provider named in the Provider

column of the list.

This type of connection factory is for applications that use the JMS 1.1 domain-independent interfaces

(referred to as the “common interfaces” in the JMS specification).

This type of JMS connection factory can also be used by the domain-specific (queue and topic) interfaces,

as used in JMS 1.0.2, so applications can still use those interfaces without the need for you to create a

domain-specific connection factory, such as a queue connection factory.

General properties

Name

Provider

Description

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Queue connection factory collection

In the administrative console page, to view this page click Resources → JMS → Queue connection

factory.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS queue connection factories that are available to WebSphere applications at the

scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a

JMS connection, an instance can be created by the factory for the JMS provider that is named in the

Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 queue-specific interfaces.

General properties

Name

Provider

Description

1760 Administering WebSphere applications

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Queue collection

In the administrative console page, to view this page click Resources → JMS → Queue.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS queue destinations that are available to WebSphere applications at the scope

indicated by the Scope field.

Use topic destination administrative objects to manage JMS queues for the JMS provider that is named in

the Provider column of the list. Connections to the queue are created by a connection factory (or queue

connection factory) for that JMS provider.

General properties

Name

Provider

Description

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Topic connection factory collection

In the administrative console page, to view this page click Resources → JMS → Topic connection factory.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

Chapter 8. Messaging resources 1761

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS topic connection factories that are available to WebSphere applications at the

scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a

JMS connection, an instance can be created by the factory for the JMS provider that is named in the

Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 topic-specific interfaces.

General properties

Name

Provider

Description

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Topic collection

In the administrative console page, to view this page click Resources → JMS → Topic.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS topic destinations that are available to WebSphere applications at the scope

indicated by the Scope field.

Use topic destination administrative objects to manage JMS topics for the JMS provider that is named in

the Provider column of the list. Connections to the topic are created by a connection factory (or topic

connection factory) for that JMS provider.

General properties

Name

Provider

Description

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

1762 Administering WebSphere applications

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Choosing messaging providers for a mixed environment

If your existing or planned messaging environment involves both WebSphere MQ and WebSphere

Application Server systems, choose between the default messaging provider, the WebSphere MQ

messaging provider, or a mixture of the two, by considering your messaging requirements, your business

environment, and the needs of each messaging application.

About this task

For messaging between application servers, with interaction with a WebSphere MQ system, you can use

the default messaging provider or the WebSphere MQ provider. Neither provider is necessarily better than

the other. The choice of providers depends primarily on factors relating to your business environment and

planned changes to that environment, and also on what each JMS application needs to do. Moreover,

these two types of messaging providers are not mutually exclusive:

v You can configure both types of providers within one cell.

v Different applications can use the same, or different, providers.

Factors relating to your business environment include the following:

v Messaging requirements

v Existing skill set

v Existing messaging infrastructure

v Planned changes to that infrastructure

Configuring and managing your messaging infrastructure is simpler if you use just one provider. If your

messaging is primarily in WebSphere MQ, you should probably choose the WebSphere MQ messaging

provider. Similarly, if your messaging is primarily in WebSphere Application Server, you should probably

choose the default messaging provider.

If your business environment does not clearly indicate that you should use just one provider, then you

should consider using a mixture of the two, and choosing the most appropriate messaging provider for

each application. A useful way of doing this is to identify the types of destinations (service integration bus,

or WebSphere MQ queue or topic) that the application is using. If the application uses only bus

destinations, the natural choice is to use the default messaging provider (solution ″DMP″). If the

application needs to communicate with one or more WebSphere MQ destinations, you can choose any of

the following solutions depending upon your business environment, usage scenarios, and system

topologies:

v Use the WebSphere MQ messaging provider (solution ″MQP″).

v Use the default messaging provider to integrate a WebSphere MQ server (a WebSphere MQ queue

manager or queue-sharing group) as a bus member (solution ″DMP interop bus member″).

v Use the default messaging provider to integrate a WebSphere MQ network as a foreign bus, using

WebSphere MQ links (solution ″DMP interop, foreign bus″).

For more information about these solutions, see Overview of interoperation with WebSphere MQ.

To help you choose between these solutions, several of the following steps contain tables in which each

row represents a business or system requirement, and asterisks (*) indicate the solutions that are likely to

be most effective for meeting the requirement. These tables are designed to provide general guidance,

Chapter 8. Messaging resources 1763

friend.sib/concepts/cjc1003_.dita

rather than to identify precisely a “right” solution. Most requirements have multiple possible solutions, and

the absence of an asterisk does not necessarily mean that you cannot use that solution. To derive best

guidance from using each of these tables:

v Focus on the rows that reflect your most important requirements.

v For all the rows that you consider, count the number of asterisks for each solution.

The solutions with the largest number of asterisks are likely to be the most effective.

1. If you have limited experience of WebSphere MQ or WebSphere Application Server, and are trying to

decide which product best meets your messaging needs, see “Service integration and WebSphere MQ

messaging - a comparison” on page 1768.

Note: Whichever of these products you choose as the main focus for your messaging, you can still

use either the default messaging provider or the WebSphere MQ provider for interoperation

between the products.

2. Consider your business environment, to see if you can use just one provider.

In deciding which provider to use, consider the following constraints:

v The current and future messaging requirements

v The existing messaging infrastructure

v The skill set that you have in your organization

If the majority of your messaging is today performed in WebSphere MQ, continue with that approach

and configure WebSphere MQ as an external JMS provider (that is, use the WebSphere MQ

messaging provider) in WebSphere Application Server. If the JMS requirements of your WebSphere

Application Server applications are limited, it is debatable whether using a service integration bus for

those applications gives sufficient benefit.

If you have messaging applications in WebSphere Application Server that have no requirement to

interoperate with your WebSphere MQ network, use the default messaging provider (the service

integration bus). If your WebSphere Application Server messaging requirements demand a tighter

integration with WebSphere Application Server, the service integration bus provides the following

benefits:

v Integrated administration

v WebSphere Application Server high availability capabilities

v WebSphere Application Server scalability

If you choose to use the default messaging provider to interoperate between service integration and

WebSphere MQ, be aware that there is an added cost involved in converting messages between

service integration format and WebSphere MQ format.

Also consider the following messaging scenarios:

v A large installed backbone of WebSphere MQ queue managers, perhaps with WebSphere Message

Broker.

If you want to use WebSphere Application Server to run a newly introduced messaging application,

you can deploy a WebSphere Application Server (JMS) messaging application that will exchange

messages with an existing application that uses a WebSphere MQ queue or topic.

v A WebSphere Application Server installation, perhaps with existing Web and enterprise applications,

but no WebSphere Application Server messaging application.

If you have no existing messaging infrastructure, you can deploy a WebSphere Application Server

(JMS) messaging application to exchange messages with an existing WebSphere Application Server

messaging application that uses a service integration bus destination.

v An infrastructure that uses WebSphere Application Server to connect WebSphere Application Server

messaging applications.

Introduce WebSphere Application Server (JMS) messaging between a pair of WebSphere

Application Server applications.

1764 Administering WebSphere applications

v An infrastructure that includes both WebSphere MQ and service integration buses. This could be the

result of a merger, or because the message traffic tends to be from WebSphere Application Server

to WebSphere Application Server, or from WebSphere MQ to WebSphere MQ, but not typically

between WebSphere Application Server and MQ.

Deploy a WebSphere Application Server (JMS) messaging application to exchange messages with

an application that uses a WebSphere MQ queue or topic.

v A WebSphere Process Server or WebSphere Enterprise Service Bus infrastructure, which uses

Service Component Architecture (SCA).

You can choose either a WebSphere MQ or a service integration bus binding for your SCA

components.

3. If your business environment does not clearly indicate that you should use just one messaging

provider, use a mixture of the two and choose the most appropriate provider for each application,

based upon the destination types that the application uses.

The application might need to exchange messages with existing partner applications or services that

use one or more known destinations of known type. Alternatively, the partner applications or services

might not yet be deployed and the choice of destination type might still be open, in which case the

solution architect needs to decide how best to connect the applications or services together.

If the application uses multiple destinations, there are four possible outcomes:

v The application uses only bus destinations.

v The application uses only WebSphere MQ destinations.

v The application uses a mixture of bus and WebSphere MQ destinations.

v The destination types are not yet known.

Note: If there is no clear business or technical reason why the application uses WebSphere MQ

destinations rather than bus destinations, and the partner application is also a WebSphere

Application Server JMS application, consider migrating the existing destinations to service

integration so that the application uses only bus destinations.

4. If the application uses only bus destinations, configure the application and its JMS resources to use

the default messaging provider.

5. If the application uses only WebSphere MQ destinations (queues or topics), use the following checklist

to determine which provider solution to use.

 Table 28. Provider checklist for an application that uses only WebSphere MQ destinations.

Question: MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Is performance critical?

(If so, use WebSphere MQ directly, rather than perform message conversion.)

*

Does the application need to send or receive large messages (that is, messages > 500k.)? *

Is location transparency desirable for simplifying programming and deployment of

applications?

* *

Does the application need to consume from a WebSphere MQ queue, the configuration of

which is fixed?

(That is, the queue cannot be moved to service integration and you do not want to deploy a

push-style WebSphere MQ application to send messages to a bus destination.)

* *

Chapter 8. Messaging resources 1765

Table 28. Provider checklist for an application that uses only WebSphere MQ destinations. (continued)

Question: MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Is the partner application a JMS application that will run outside WebSphere Application

Server, as a bus or WebSphere MQ client?

(Do not mix service integration and WebSphere MQ unless you have to do so; a pure

WebSphere MQ or service integration solution is simpler and avoids the cost of converting

messages between service integration and WebSphere MQ formats.)

*

Is the partner application a non-JMS (non-WebSphere Application Server) application?

(Wherever possible choose a pure WebSphere MQ or service integration solution. Use the

MQI WebSphere MQ client, or the XMS WebSphere MQ client, or the XMS bus client

depending on your API preference.)

*

Do you prefer traffic passing between your WebSphere MQ network and WebSphere

Application Server applications to be funneled into a single long-running connection?

*

Do you want to use the high availability features of WebSphere Application Server? *

Is XA 2pc needed between the application and a WebSphere MQ queue sharing group? * *

Is XA 2pc needed between the application and a WebSphere MQ cluster? *

6. If the application uses a mixture of bus and WebSphere MQ destinations, for example consuming from

service integration and sending to WebSphere MQ, then either of the default messaging provider

interoperation models can support this by using a single connection factory or activation specification.

Use the following checklist to help you decide between a bus member and a foreign bus solution.

 Table 29. Provider checklist for an application that uses a mixture of bus and WebSphere MQ destinations.

Question:

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Does the application need to consume from a WebSphere MQ shared queue? *

Is there a need to distribute work to a pool of WebSphere Application Server workers from a

WebSphere MQ queue?

*

Do you prefer traffic passing between your WebSphere MQ network and WebSphere Application

Server applications to be funneled into a single long-running connection?

*

Do you need distributed WebSphere MQ in versions earlier than WebSphere Application Server

Version 7 and WebSphere MQ Version 7?

*

Do you want store and forward capabilities to allow the application to continue to send messages

when the WebSphere MQ queue manager is unavailable?

*

Do you prefer not to configure server connection channels?

(This is because they open a port, which could be seen as a security risk.)

*

Do you prefer to define a server connection channel, rather than a pair of sender and receiver

channels?

*

7. If the destination types are not yet known, decide the relative priorities of the known concerns then use

the following checklist to assess how well each of them is addressed by the possible provider

solutions.

The choice is really over what type of destinations this application should use. The destination types

are not yet fixed, so any of the four solutions is possible, but as a general rule you should aim for

solution “DMP” or “MQP”, because a pure WebSphere MQ or service integration solution is simpler

1766 Administering WebSphere applications

and avoids the cost of converting messages between service integration and WebSphere MQ formats.

 Table 30. Provider checklist for an application for which the destination types are not yet known.

Question: DMP MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Do you have an existing base of strong skills in managing WebSphere MQ? * * *

Do you want management of all messaging to be handled by the WebSphere MQ

team?

*

Do you have administrators skilled in WebSphere Application Server but not in

WebSphere MQ?

*

Do you want a messaging product with a large installed base (including references)

and a wide choice of ISV tools?

*

Are you reluctant to buy a separately licensed product in addition to WebSphere

Application Server?

*

Are you reluctant to install and manage a separate product in addition to WebSphere

Application Server?

*

Are you already using WebSphere Message Broker?

(If so, you need WebSphere MQ anyway).

* * *

Are you using the WebSphere Enterprise Service Bus to mediate messages from, or

deliver them to, a WebSphere MQ queue?

(For example, using WebSphere Business Integration adapters, or connecting to a

service provider such as CICS.)

*

Does the application need to send or receive large messages (that is, messages >

500k.)?

*

Is location transparency desirable for simplifying programming and deployment of

applications?

* * *

Do the throughput requirements need multiple parallel channels or routes? * * *

Does the application need to consume from a WebSphere MQ queue, the

configuration of which is fixed?

(that is, the queue cannot be moved to service integration and you don’t want to

deploy a push-style WebSphere MQ application to send messages to a bus

destination.)

* * *

Is the partner application a JMS application that will also run in WebSphere Application

Server?

(Service integration runs in the WebSphere Application Server application server. On

distributed platforms that means it is in-process. On the z/OS platform it is in another

region.)

*

Is the partner application a JMS application that will run outside WebSphere

Application Server, as a bus or WebSphere MQ client?

(Do not mix service integration and WebSphere MQ unless you have to do so; a pure

WebSphere MQ or service integration solution is simpler and avoids the cost of

converting messages between service integration and WebSphere MQ formats.)

* *

Is the partner application a non-JMS (non-WebSphere Application Server) application?

(Wherever possible choose a pure WebSphere MQ or service integration solution. Use

the MQI WebSphere MQ client, or the XMS WebSphere MQ client, or the XMS bus

client depending on your API preference.)

* *

Chapter 8. Messaging resources 1767

Table 30. Provider checklist for an application for which the destination types are not yet known. (continued)

Question: DMP MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Is maintenance of strict message order important? *

Does the application require the flexibility and convenience of a WebSphere MQ

cluster?

(WebSphere MQ clustering makes administration simpler and provides selective

parallelism of clustered queues. That is, instances of a clustered queue can be created

on any (but not necessarily all) queue managers in the WebSphere MQ cluster.

Messages sent to the clustered queue can be addressed to a specific instance of the

queue, or allowed to select an instance dynamically based on workload management

statistics. WebSphere Application Server clustering provides some of this flexibility, but

you cannot create partitions of a bus destination on a subset of the messaging

engines in a cluster bus member.)

* * *

Does the application need the level of high availability provided by WebSphere MQ for

z/OS shared queues?

* * *

Do you want to use the high availability or scalability features of WebSphere

Application Server clustering?

* * *

Service integration and WebSphere MQ messaging - a comparison

If you are not already an established user of either WebSphere Application Server or WebSphere MQ, and

you are considering whether the service integration platform or WebSphere MQ better meets your

messaging needs, use this table to compare the main features of the two platforms.

 Table 31. Comparison of service integration and WebSphere MQ main features

service integration (the default messaging provider

for WebSphere Application Server) WebSphere MQ

Service integration is closely integrated with WebSphere

Application Server, and is a natural fit if you are using the

Java Platform, Enterprise Edition (Java EE).

WebSphere MQ can connect to almost anything. It

provides a very heterogeneous environment .

Service integration supports multiple languages through

XMS clients, and multiple platforms.

WebSphere MQ supports multiple languages and multiple

platforms.

Service integration is a single process, pure Java

implementation.

WebSphere MQ has many Independent Software Vendor

(ISV) tools.

Service integration provides strong performance for both

persistent and non-persistent messages for JMS.

WebSphere MQ supports JMS and non-JMS messaging

interfaces, and provides strong performance for non-JMS

applications.

Service integration is designed for a maximum message

size of about 40 megabytes on a 32-bit operating system

(subject to heap usage).

WebSphere MQ supports large message sizes up to

about 100 megabytes.

Service integration is tightly integrated with some Web

services implementations.

WebSphere MQ is a natural fit if you are using

WebSphere Message Brokers.

Service integration messaging is included in a single

administrative model for WebSphere Application Server,

WebSphere Enterprise Service Bus and WebSphere

Process Server.

WebSphere MQ can integrate existing infrastructure and

applications (for example CICS).

Service integration bus clustering is integrated with

WebSphere Application Server clustering for high

availability and scalability.

WebSphere MQ clustering provides selective parallelism

of clustered queues.

1768 Administering WebSphere applications

Note: The messaging platform that you choose for a given task does not necessarily determine which

JMS messaging provider you should use. For example:

v If you need to handle large messages, you probably need to use the WebSphere MQ messaging

provider.

v If you are using WebSphere Message Brokers, you can use either the default messaging

provider or the WebSphere MQ messaging provider.

Other ways of managing messaging

For messaging between application servers, most requirements are best met by either the default

messaging provider or the WebSphere MQ messaging provider. However, you can instead use a

third-party messaging provider (that is, use another company’s product as the provider). For backwards

compatibility with earlier releases, there is also support for the V5 default messaging provider.

Before you begin

If you are not sure which provider combination is best suited to your needs, see “Types of messaging

providers” on page 1899.

About this task

Enterprise applications in WebSphere Application Server can use asynchronous messaging through

services based on Java Message Service (JMS) messaging providers and their related messaging

systems. These messaging providers conform to the JMS Version 1.1 specification.

The choice of provider depends on what your JMS application needs to do, and on other factors relating to

your business environment and planned changes to that environment.

v Choose a third-party messaging provider.

You can configure any third-party messaging provider that supports the JMS Version 1.1 unified

connection factory. You might want to do this, for example, because of existing investments.

To administer a third-party messaging provider, you use the resource adaptor or client supplied by the

third party. You can still use the WebSphere Application Server administrative console to administer the

JMS connection factories and destinations that are within WebSphere Application Server, but you

cannot use the administrative console to administer the JMS provider itself, or any of its resources that

are outside of WebSphere Application Server.

To use message-driven beans (MDBs), third-party messaging providers must include Application Server

Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification, or use an inbound

resource adapter that conforms to the Java EE Connector Architecture (JCA) Version 1.5 specification.

To work with a third-party provider, see “Managing messaging with a third-party messaging provider.”

v Choose the (deprecated) V5 default messaging provider.

This deprecated provider is identical to the WebSphere Application Server Version 5 default provider.

Only the name has changed. It provides backwards compatibility that enables WebSphere Application

Server Version 6 or later applications to connect to WebSphere Application Server Version 5 resources

in a mixed cell. It also allows WebSphere Application Server Version 5 applications to connect to

WebSphere Application Server Version 6 or later resources in a mixed cell. To configure and manage

messaging to interoperate with WebSphere Application Server Version 5, see “Maintaining Version 5

default messaging resources” on page 1779.

Managing messaging with a third-party messaging provider

Enabling your messaging applications to use JMS resources provided by a third-party messaging provider

other than WebSphere MQ.

Chapter 8. Messaging resources 1769

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,

you can use the default messaging provider. To integrate WebSphere Application Server messaging into a

predominately WebSphere MQ network, you can use the WebSphere MQ messaging provider. You can

also use a third-party messaging provider as described in this topic. To choose the provider that is best

suited to your needs, see “Choosing a messaging provider” on page 1756.

About this task

You can install a messaging provider other than the default messaging provider or the WebSphere MQ

messaging provider.

WebSphere Application Server applications can use the JMS 1.1 interfaces or JMS 1.0.2 interfaces to

access JMS resources provided by a third-party messaging provider, and you can use the administrative

console to administer the JMS connection factories and destinations for the provider.

In a mixed-version WebSphere Application Server deployment manager cell, you can administer third-party

messaging resources on Version 7, Version 6 and Version 5 nodes. For Version 5 nodes, the

administrative console presents the subset of resources and properties that are applicable to WebSphere

Application Server Version 5.

To use a third-party messaging provider with WebSphere Application Server, complete one or more of the

following steps:

v Define a third-party messaging provider.

v List third-party JMS messaging resources.

v Configure JMS resources for a third-party messaging provider.

Defining a third-party messaging provider

Use this task to define a third-party messaging provider to WebSphere Application Server, for use instead

of the default messaging provider or WebSphere MQ messaging provider.

Before you begin

Before you configure a third-party messaging provider, you might want to check whether your requirement

can be met by the default messaging provider or the WebSphere MQ messaging provider that are

supplied with WebSphere Application Server. To choose the provider that is best suited to your needs, see

“Choosing a messaging provider” on page 1756.

About this task

You can configure any third-party messaging provider that supports the JMS Version 1.1 unified

connection factory. You might want to do this, for example, because of existing investments.

To administer a third-party messaging provider, you use the resource adaptor or client supplied by the

third-party. You can still use the WebSphere Application Server administrative console to administer the

JMS connection factories and destinations that are within WebSphere Application Server, but you cannot

use the administrative console to administer the JMS provider itself, or any of its resources that are

outside of WebSphere Application Server.

To use message-driven beans (MDBs), third-party messaging providers must include Application Server

Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification, or use an inbound

resource adapter that conforms to the J2EE Connector Architecture (JCA) Version 1.5 specification.

1770 Administering WebSphere applications

To define a new third-party messaging provider to WebSphere Application Server, use the administrative

console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS Providers . The existing messaging providers

are displayed, including the default messaging provider and the WebSphere MQ messaging provider.

2. To define a new third-party messaging provider, click New in the content pane. Otherwise, to change

the definition of an existing messaging provider, click the name of the provider.

3. Specify the following required properties. You can specify other properties, as described in a later step.

Name The name by which this messaging provider is known for administrative purposes within IBM

WebSphere Application Server.

External initial context factory

The Java classname of the initial context factory for the JMS provider.

External provider URL

The JMS provider URL for external JNDI lookups.

4. Optional: Click Apply. This enables you to specify additional properties.

5. Optional: Specify other properties for the messaging provider.

Under Additional Properties, you can use the Custom Properties link to specify custom properties for

your initial context factory, in the form of standard javax.naming properties.

6. Click OK.

7. Save the changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

What to do next

You can now configure JMS resources for your messaging provider, as described in “Configuring JMS

resources for a third-party messaging provider” on page 1777.

Listing third-party JMS messaging resources

Use this task with the WebSphere Application Server administrative console to display administrative lists

of JMS resources provided by a messaging provider other than the default messaging provider or the

WebSphere MQ messaging provider.

About this task

You can use the WebSphere Application Server administrative console to display lists of the following

types of JMS resources provided by a 3rd party messaging provider. You can use the panels displayed to

select JMS resources to administer, or to create or delete JMS resources (where appropriate).

To display administrative lists of JMS resources for a third-party messaging provider, complete the

following steps:

1. Start the administrative console.

2. In the navigation pane, click Resources → JMS → JMS providers.

3. Click the name of the third-party messaging provider.

4. In the content pane, under Additional Resources, click the link for the type of JMS resource. For more

information about the detailed settings displayed for each resource type, see the related reference

topics.

JMS provider collection:

Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration

properties.

Chapter 8. Messaging resources 1771

To view this administrative console page, click Resources → JMS → JMS providers

To view or change the properties of a JMS provider or its resources, select its name in the list displayed.

To define a new third-party messaging provider, click New.

To act on one or more of the JMS providers listed, click the check boxes next to the names of the objects

that you want to act on, then use the buttons provided.

Name The name by which this JMS provider is known for administrative purposes.

Description

A description of this JMS provider for administrative purposes.

 For related information about JMS messaging providers and asynchronous messaging, see

v “Types of messaging providers” on page 1899

v “Asynchronous messaging in WebSphere Application Server using JMS” on page 290

Third-party JMS connection factory collection:

The JMS connection factories configured for a third-party messaging provider for both point-to-point and

publish/subscribe messaging. Use this panel to create or delete JMS connection factories, or to select a

connection factory to browse or change its configuration properties.

 This panel shows a list of the JMS connection factories configured for a third-party messaging provider,

with a summary of their configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. In the content pane, click the name of the third-party messaging provider that you want to support the

JMS connection factory.

3. Under Additional Properties, click Connection factories.

To define a new JMS connection factory, click New.

To view or change the properties of a JMS connection factory, select its name in the list displayed.

To act on one or more of the JMS connection factories listed, click the check boxes next to the names of

the objects that you want to act on, then use the buttons provided.

Third-party JMS connection factory settings:

Use this panel to browse or change the configuration properties of a JMS connection factory configured for

use with a third-party messaging provider. These configuration properties control how connections are

created to the JMS destinations on the provider.

 A JMS connection factory is used to create connections to JMS destinations. The JMS connection factory

is created by the associated JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. If appropriate, in the content pane, change the scope of the third-party messaging provider.

3. In the content pane, click the name of the messaging provider that supports the JMS connection

factory.

4. Under Additional Properties, click Connection factories.

5. Click the name of the JMS connection factory that you want to work with.

1772 Administering WebSphere applications

A JMS connection factory for a third-party messaging provider (that is, a provider other than the default,

the V5 default or the WebSphere MQ messaging provider) has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated messaging provider.

 Data type String

Type:

Whether this connection factory is for creating JMS queue destinations or JMS topic destinations.

 Select one of the following options:

QUEUE

A JMS queue connection factory for point-to-point messaging.

TOPIC

A JMS topic connection factory for publish/subscribe messaging.

JNDI name:

The JNDI name that is used to bind the connection factory into the WebSphere Application Server name

space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Chapter 8. Messaging resources 1773

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the connection factory into the name space of the third-party

messaging provider.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the JMS

provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the

connection factory resource reference of an application component’s deployment descriptors.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the JMS

provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the

connection factory resource reference of an application component’s deployment descriptors.

Mapping-Configuration Alias:

The module used to map authentication aliases.

1774 Administering WebSphere applications

This field provides a list of the modules that have been configured on the Global Security → JAAS

Configuration → Application Logins Configuration property. For more information about the mapping

configurations, see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Custom properties:

An optional set of name and value pairs for custom properties passed to the messaging provider.

Third-party JMS destination collection:

The JMS destinations configured in an associated third-party messaging provider for point-to-point and

publish/subscribe messaging. Use this panel to create or delete JMS destinations, or to select a JMS

destination to browse or change its configuration properties.

 To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. In the content pane, click the name of the third-party messaging provider that you want to support the

JMS destination.

3. Under Additional Properties, click Queues for point-to-point messaging or Topics for publish/subscribe

messaging.

To define a new JMS destination, click New.

Chapter 8. Messaging resources 1775

To view or change the properties of a JMS destination, select its name in the list displayed.

To act on one or more of the JMS destinations listed, click the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

Third-party JMS destination settings:

Use this panel to browse or change the configuration properties of the selected JMS destination for use

with an associated third-party messaging provider.

 A JMS destination is used to configure the properties of a JMS destination for the associated third-party

messaging provider (that is, not the default messaging provider or the WebSphere MQ messaging

provider). Connections to the JMS destination are created by the associated JMS connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. In the content pane, click the name of the third-party messaging provider that you want to support the

JMS destination.

3. Under Additional Properties, click Queues for point-to-point messaging or Topics for publish/subscribe

messaging.

4. Click the name of the JMS destination that you want to work with.

A JMS destination for use with a third-party messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publish/subscribe).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish/subscribe messaging.

JNDI name:

1776 Administering WebSphere applications

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Category:

A category used to classify or group this queue, for your WebSphere Application Server administrative

records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Configuring JMS resources for a third-party messaging provider

Use the following tasks to configure the JMS connection factories and destinations for a third-party

messaging provider (that is, a messaging provider other than the default messaging provider or the

WebSphere MQ messaging provider).

Before you begin

You only need to complete these tasks if your WebSphere Application Server environment uses a

third-party messaging provider to support enterprise applications that use JMS. To enable use of a

third-party messaging provider, you must have installed and configured the messaging provider, as

described in Defining a third-party messaging provider.

About this task

To configure JMS resources for a third-party messaging provider, complete the following tasks:

v Configure a JMS connection factory for a third-party messaging provider.

v Configure a JMS destination for a third-party messaging provider.

Chapter 8. Messaging resources 1777

Configuring a JMS connection factory for a third-party messaging provider:

Use this task to browse or change the properties of a JMS connection factory for use with a JMS

messaging provider other than the default, V5 default or WebSphere MQ messaging providers.

 About this task

To configure a JMS connection factory for use with a third-party messaging provider, use the administrative

console to complete the following steps:

1. Display the third-party messaging provider. In the navigation pane, click Resources → JMS → JMS

Providers .

2. Select the third-party provider for which you want to configure a connection factory.

3. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

4. In the content pane, under Additional Properties, click Connection factories This displays a table

listing any existing JMS connection factories, with a summary of their properties.

5. To browse or change an existing JMS connection factory, click its name in the list. Otherwise, to create

a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS connection factory is known for administrative purposes

within IBM WebSphere Application Server.

Type Select whether the connection factory is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS connection factory into the WebSphere

Application Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS connection factory into the name space of the

messaging provider.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the JMS connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS destination for a third-party messaging provider:

Use this task to browse or change the properties of a JMS destination for use with a third-party messaging

provider (that is, a provider other than the default messaging provider or the WebSphere MQ messaging

provider).

 About this task

To configure a JMS destination for use with a third-party messaging provider, use the administrative

console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. Click the name of the third-party messaging provider.

1778 Administering WebSphere applications

3. In the content pane, under Additional Properties, click Queues for point-to-point messaging or Topics

for publish/subscribe messaging. This displays a table listing any existing JMS destinations, with a

summary of their properties.

4. To browse or change an existing JMS destination, click its name in the list. Otherwise, to create a new

destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS destination is known for administrative purposes within

WebSphere Application Server.

Type Select whether the destination is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS destination into the WebSphere Application

Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS destination into the name space of the

messaging provider.

c. Click Apply. This defines the JMS destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the JMS destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Maintaining Version 5 default messaging resources

This topic is the entry-point into a set of topics about maintaining messaging resources provided for

WebSphere Application Server Version 5.1 applications by the default messaging provider.

About this task

JMS applications running on WebSphere Application Server Version 5.1 can use JMS resources provided

by the default messaging provider in WebSphere Application Server Version 7. You can use the

WebSphere Application Server administrative console to manage the JMS connection factories and

destinations for WebSphere Application Server Version 5.1 applications. Such JMS resources are

maintained as V5 Default Messaging resources.

In a deployment manager cell, you can use V5 Default Messaging resources to maintain Version 5 default

messaging resources for Version 7, Version 6 and Version 5 nodes in the cell.

v V5 Default Messaging configured against a Version 7 node provides a JMS transport to a messaging

engine of a service integration bus that supports the default messaging provider in WebSphere

Application Server Version 7. The messaging engine emulates the service of a JMS server running on

WebSphere Application Server Version 5.1.

v V5 Default Messaging configured against a Version 5.1 node provides a JMS transport to a JMS server

running on WebSphere Application Server Version 5.1.

You can also use the administrative console to manage a JMS server on a Version 5.1 node.

v List Version 5 default messaging resources.

v Configure Version 5 default JMS resources.

v Manage Version 5 JMS servers in a deployment manager cell.

v Configure authorization security for a Version 5 default messaging provider.

Chapter 8. Messaging resources 1779

Listing Version 5 default messaging resources

Use the WebSphere Application Server administrative console to list JMS resources for the Version 5

default messaging provider, for administrative purposes.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to

view, modify or delete any of the following resources:

v Connection factory (unified)

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

When you use the Administrative Console to locate these resources, two different navigation pathways are

available:

v Provider-centric navigation. This lets you view all providers (or just those for a specified scope if

required), then navigate to a specific resource for a specific provider. This is the traditional way of

navigating to a resource when you know which provider owns it. Any navigation that starts with

Resources → JMS → JMS providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a resource.

This is useful if you want to find a resource, but you do not know which provider owns it (you can list all

resources of a given type across all scopes, for all providers, in a single panel). Any navigation that

follows the pattern Resources → JMS → [resource], where [resource] is one of the resource types listed

above is resource-centric.

You can use either of these navigation pathways to locate resources of any type.

v Using provider-centric navigation, for example to navigate to a specified connection factory

1. Start the WebSphere Application Server administrative console.

2. In the navigation pane, expand Resources → JMS → JMS providers. This opens the providers

collection which lists all currently configured providers across all scopes (you can modify the scope

if required).

3. From the providers collection, select the required provider. This opens the configuration tab for that

provider. The configuration tab contains a set of links to all the resources owned by that provider.

4. From the configuration tab, click the link for a resource type, for example the connection factories

link. This opens the connection factories collection which lists all the connection factories for that

provider.

5. From the connection factories collection, select the required connection factory. You can now view

and work with the connection factory’s properties

v Using resource-centric navigation, for example to navigate to a specified connection factory

1. Start the WebSphere Application Server administrative console.

2. In the navigation pane, expand Resources → JMS → Connection factories. This opens the

connection factories collection which lists all the connection factories across all providers.

3. From the connection factories collection, select the required connection factory. You can now view

and work with the connection factory’s properties.

JMS provider settings:

Use this panel to view the configuration properties of a selected JMS provider. You cannot change the

properties of a default messaging provider or a WebSphere MQ messaging provider.

1780 Administering WebSphere applications

To view this page, use the administrative console to complete one of the following steps:

v In the navigation pane, click Resources → JMS → JMS providers. This displays a list of JMS providers

in the content pane. For each JMS provider in the list, the entry indicates the scope level at which JMS

resource definitions are visible to applications. You can create the same type of JMS provider at

different Scope settings, to offer JMS resources at different levels of visibility to applications.

v If you want to manage JMS resources that are defined at a different scope setting, change the Scope

setting to the required level.

v In the Providers column of the list displayed, click the name of a JMS provider.

If you want to browse or change JMS resources of the JMS provider, click the link for the type of resource

under Additional Properties. For more information about the administrative console panels for the types of

JMS resources, see the related topics.

For default messaging providers and WebSphere MQ messaging providers, only the scope, name, and

description properties are displayed for information only. You cannot change these properties.

For another type of JMS provider that you have defined yourself, extra properties are displayed that you

can change.

The default messaging provider is installed and runs as part of WebSphere Application Server, and is

based on service integration technologies.

Scope:

The level to which this resource definition is visible; the cell, node, or server level.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes. For more information about the scope setting, see Scope settings.

Name:

The name by which the JMS provider is known for administrative purposes.

 Data type String

Default v Default messaging provider.

For JMS resources to be provided by a service

integration bus, as part of WebSphere Application

Server.

v My JMSprovider

For JMS resources to be provided by your own JMS

provider; not the default messaging provider or

WebSphere MQ. You assign the name, in this example

“My JMSprovider”, when you define the JMS provider to

WebSphere Application Server. You must have installed

and configured your own JMS provider before

applications can use the JMS resources.

v WebSphere MQ messaging provider

For JMS resources to be provided by WebSphere MQ.

You must have installed and configured WebSphere

MQ before applications can use the JMS resources.

v V5 default messaging provider.

For JMS resources to be provided by a WebSphere

Application Server Version 5 node in a deployment

manager cell.

Chapter 8. Messaging resources 1781

Description:

A description of the JMS provider, for administrative purposes within WebSphere Application Server.

 Data type String

Classpath:

A list of paths or JAR file names which together form the location for the JMS provider classes. Each class

path entry is on a separate line (separated by using the Enter key) and must not contain path separator

characters (such as ’;’ or ’: ’). Class paths can contain variable (symbolic) names to be substituted using a

variable map. Check your driver installation notes for specific JAR file names that are required.

 This property does not apply to default messaging providers or WebSphere MQ providers.

 Data type String

Native library path:

An optional path to any native libraries (*.dll, *.so). Each native path entry is on a separate line (separated

by using the Enter key) and must not contain path separator characters (such as ’;’ or ’: ’). Native paths

can contain variable (symbolic) names to be substituted using a variable map.

 This property does not apply to default messaging providers or WebSphere MQ providers.

 Data type String

External initial context factory:

The Java classname of the initial context factory for the JMS provider.

 This property does not apply to default messaging providers or WebSphere MQ providers.

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

Default Null

External provider URL:

The JMS provider URL for external JNDI lookups.

 This property does not apply to default messaging providers or WebSphere MQ providers.

For example, an LDAP URL for a messaging provider has the form: ldap://hostname.company.com/
contextName.

 Data type String

Default Null

Version 5 JMS server collection:

1782 Administering WebSphere applications

On a WebSphere Application Server Version 5 node, a JMS server provides the functions of the JMS

provider. Use this panel to list JMS servers on WebSphere Application Server Version 5 nodes within the

administration domain, or to select a JMS server to view or change its configuration properties.

 There can be at most one JMS server on each Version 5 node in the administration domain, and any

application server within the domain can access JMS resources served by any JMS server on any node in

the domain.

To view this page, use the administrative console to complete the following step:

1. In the navigation pane, select Servers → Version 5 JMS Servers.

To browse or change the properties of a JMS server, select its name in the list displayed.

To act on one or more of the JMS servers listed, click the check box next to the server name, then use the

buttons provided.

Version 5 JMS server settings:

The JMS functions on a Version 5 node in a deployment manager cell are served by a JMS server. Use

this panel to view or change the configuration properties of the selected JMS server.

 JMS servers are supported only to aid migration of WebSphere Application Server Version 5 nodes to

WebSphere Application Server Version 6.

You can use this panel to configure a general set of JMS server properties, which add to the default

values of properties configured automatically for the Version 5 default messaging provider.

Note: JMS servers make use of WebSphere MQ properties and, in general, the default values of those

properties are adequate. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, properties for log file locations, file pages,

and buffer pages. For more information about configuring WebSphere MQ properties, see the

WebSphere MQ System Administration book, SC33-1873, which is available from the IBM

Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

Name:

The name by which the JMS server is known for administrative purposes within IBM WebSphere

Application Server.

 This name should not be changed.

 Data type String

Units Not applicable

Default WebSphere Internal JMS Server

Range Not applicable

Description:

A description of the JMS server, for administrative purposes within IBM WebSphere Application Server.

 This string should not be changed.

 Data type String

Default WebSphere Internal JMS Server

Chapter 8. Messaging resources 1783

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Number of threads:

The number of concurrent threads to be used by the publish/subscribe matching engine

 The number of concurrent threads should only be set to a small number.

 Data type Integer

Units Threads

Default 1

Range Greater than or equal to 1.

Queue Names:

The names of the queues hosted by this JMS server. Each queue name must be added on a separate

line.

 Each queue listed in this field must have a separate queue administrative object with the same

administrative name. To make a queue available to applications, define a WebSphere queue and add its

name to this field on the JMS Server panel for the host on which you want the queue to be hosted.

 Data type String

Units Queue name

Range Each entry in this field is a queue name of up to 45

characters, which must match exactly (including use of

upper- and lowercase characters) the WebSphere queue

administrative object defined for the queue.

Initial State:

The state that you want the JMS server to have when it is next restarted.

 Data type Enum

Default Started

Range Started

The JMS server is started automatically.

Stopped

The JMS server is not started automatically. If

any deployed enterprise applications are to use

JMS server functions provided by the JMS

server, the system administrator must start the

JMS server manually or select the Started value

of this property then restart the JMS server.

To restart a JMS server on a Version 5 node, stop then

restart that JMS server.

Version 5 WebSphere queue connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server Version 5 applications.

 A WebSphere queue connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server Version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

1784 Administering WebSphere applications

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Queue connection factories. This displays a list of any existing

JMS queue connection factories.

5. Click the name of the JMS queue connection factory that you want to work with.

A queue connection factory for the embedded WebSphere JMS provider has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the JMS connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Chapter 8. Messaging resources 1785

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of Version 5 nodes in the WebSphere

administrative domain.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the

messaging provider. The use of this alias depends on the resource authentication (res-auth) setting

declared in the connection factory resource reference of an application component’s deployment

descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere queue

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 The specification of a login configuration and associated properties on the component resource reference

determines the container-managed authentication strategy when the res-auth value is Container. If the

’DefaultPrincipalMapping’ login configuration is used, the associated property is a container-managed

authentication alias. This field is used only in the absence of a loginConfiguration on the component

resource reference. To define a new alias, see the related item J2EE Connector Architecture (J2C)

authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the

1786 Administering WebSphere applications

messaging provider. The use of this alias depends on the resource authentication (res-auth) setting

declared in the connection factory resource reference of an application component’s deployment

descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. This field is used only in the absence of a loginConfiguration on the

component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are used in the same transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Chapter 8. Messaging resources 1787

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

WebSphere topic connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS topic connection

factory for publish/subscribe messaging by WebSphere Application Server Version 5 applications.

 A WebSphere topic connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server Version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Topic connection factories. This displays a list of any existing JMS

topic connection factories.

5. Click the name of the JMS topic connection factory that you want to work with.

A JMS topic connection factory for use with the Version 5 default messaging provider has the following

properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

1788 Administering WebSphere applications

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the topic connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic connection factory, for your IBM WebSphere Application

Server administrative records.

 Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Chapter 8. Messaging resources 1789

Default Null

Range Pull-down list of nodes in the WebSphere administrative

domain.

Port:

Which of the two ports that connections use to connect to the JMS server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for non-persistent, non-transactional,

non-durable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish/subscribe support. Therefore,

any topic connection factory configured with Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Units Not applicable

Default QUEUED

Range QUEUED

The listener port used for full-function

JMS-compliant, publish/subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (non-transactional, non-persistent,

and non-durable subscriptions only) for

publish/subscribe support.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the

messaging provider. The use of this alias depends on the resource authentication (res-auth) setting

declared in the connection factory resource reference of an application component’s deployment

descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 The specification of a login configuration and associated properties on the component resource reference

determines the container-managed authentication strategy when the res-auth value is Container. If the

’DefaultPrincipalMapping’ login configuration is used, the associated property is a container-managed

1790 Administering WebSphere applications

authentication alias. This field is used only in the absence of a loginConfiguration on the component

resource reference. To define a new alias, see the related item J2EE Connector Architecture (J2C)

authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the JMS

provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the

connection factory resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the embedded

WebSphere JMS provider. For example, the default Windows NT user ID, Administrator, is not

valid for use with embedded WebSphere messaging, because it contains 13 characters. Therefore,

an authentication alias for a WebSphere JMS provider connection factory must specify a user ID no

longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 The specification of a login configuration and associated properties on the component resource reference

determines the container-managed authentication strategy when the res-auth value is Container. This field

is used only in the absence of a loginConfiguration on the component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Clone Support:

Select this checkbox to enable clone support to allow the same durable subscription across topic clones.

 Data type Enum

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Client ID:

Chapter 8. Messaging resources 1791

The JMS client identifier used for connections to the queue manager.

 Data type String

Range A valid JMS client ID

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are used in the same transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance. You

need to configure the connection and session pool properties appropriately for your applications, otherwise

you may not get the connection and session behavior that you want.

1792 Administering WebSphere applications

Version 5 WebSphere queue destination settings:

Use this panel to view or change the configuration properties of the selected JMS queue destination for

point-to-point messaging by WebSphere Application Server Version 5 applications.

 A queue destination is used to configure a JMS queue of the default messaging provider for use by

WebSphere Application Server Version 5 applications. Connections to the queue are created by the

associated V5 Default Messaging WebSphere queue connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Queues. This displays a list of any existing JMS queue destinations.

5. Click the name of the JMS queue destination that you want to work with.

A JMS queue for use with the internal WebSphere JMS provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 To enable applications to use this queue, you must add the queue name to the Queue Names field on the

panel for the JMS server that hosts the queue.

 Data type String

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

Chapter 8. Messaging resources 1793

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Default Null

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

When a persistent message is put to a queue, all

of the message data is written to the messaging

log (under the embedded_messaging_install\log

directory) to make recovery of the message

possible.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Default APPLICATION DEFINED

1794 Administering WebSphere applications

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property.If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Chapter 8. Messaging resources 1795

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Version 5 WebSphere topic destination settings:

Use this panel to browse or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging by WebSphere application server Version 5 applications.

 A WebSphere topic destination is used to configure the properties of a JMS topic for the default

messaging provider on a Version 5 node in a deployment manager cell. Connections to the topic are

created by the associated topic connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Topics. This displays a list of any existing JMS topic destinations.

5. Click the name of the JMS topic destination that you want to work with.

A JMS topic destination for use with the Version 5 default messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic into the application server’s name space.

1796 Administering WebSphere applications

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the topic, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic, for your IBM WebSphere Application Server administrative

records.

 Data type String

Topic:

The name of the topic as defined to the JMS provider.

 Data type String

Default Null

Range The topic value can be dot notation and include wildcard

characters.

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON-PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Chapter 8. Messaging resources 1797

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

1798 Administering WebSphere applications

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Configuring Version 5 default JMS resources

Use the following tasks to configure the JMS connection factories and destinations WebSphere Application

Server Version 5 applications.

About this task

You only need to complete these tasks if you have WebSphere application server Version 5 applications

that need to use JMS resources provided by the default messaging provider. Such JMS resources are

maintained as V5 Default Messaging resources.

In a deployment manager cell, you can use V5 Default Messaging resources to maintain Version 5 default

messaging resources for both Version 6 and Version 5 nodes in the cell.

v Configuring a connection for Version 5 default messaging

v Configuring a Version 5 default JMS queue connection factory

v Configuring a Version 5 default JMS topic connection factory

v Configuring a Version 5 default JMS queue destination

v Configuring a Version 5 default JMS topic destination

Configuring a connection for Version 5 default messaging:

Use this task to configure a connection to Version 5 default messaging. This task is provided to help you

manually migrate nodes from v5 to v6. If you use the supplied tools to migrate existing v5 nodes to v6, the

jmsserver, appserver and port that you create with this task are defined automatically.

 About this task

To configure a connection for Version 5 default messaging, use the administrative console to complete the

following steps:

 1. Create an application server with the name jmsserver (only one of these can exist on each node). In

the navigation pane, expand Servers → Application servers.

 2. On the new server, define a new JMSSERVER_QUEUED_ADDRESS port with the host set to the v6

server host, and the port set to the same as the SIB_MQ_ENDPOINT_ADDRESS of the server which

is a member of your bus. The appserver called jmsserver does not actually have to be started; it is

only used for looking up the port address.

 3. Define a queue connection factory and queue at the Node or Cell scope. In the navigation pane,

expand Resources → JMS → JMS providers.

 4. In the content pane, click the name of the V5 default messaging provider.

 5. Define a queue destination on your bus with the same name as your queue defined under v5 default

messaging.

 6. Define an alias destination on your bus with the same name as your queue defined under v5 default

messaging but with WQ_ appended to the front the name. For example, if your queue has the name

MyV5Queue, your alias should have the name WQ_MyV5Queue.

 7. Point the alias at your queue destination with the correct name. The migration process targets the

queue with the WQ_ prefix; defining the alias to point to the real queue helps migration.

 8. Define the WebSphere MQ Client Link on your messaging engine on the bus. Keep the WebSphere

MQ channel name WAS.JMS.SVRCONN and set the queue manager name so that it contains your

Chapter 8. Messaging resources 1799

node name. For example, if your node name is MyNode, you would set the queue manager name to

WAS_<MyNode>_jmsserver. Now set the queue manager name to the same; in this example it would

be WAS_MyNode_jmsserver. The WebSphere MQ Client Link will show a status of inactive, this is

normal.

 9. Restart your server so that the new JNDI definitions bind correctly. Your v5 client should now be able

to connect to v6 using the host and bootstrap address of the v6 system in the provider url component

of the initial context. Your client should now also be able to send messages to the destination on the

bus.

10. If you open the Client connections view and click the refresh icon, the hostname of the connecting

system is visible whilst the client is connected. In the navigation pane, expandBuses → [bus name] →

Messaging engines → [messaging engine name] → WebSphere MQ client links → [client link

name] → Runtime → Client connections view.

11. Click OK.

12. Save any changes to the master configuration.

13. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 queue connection factory:

Use this task to browse or change the properties of a JMS queue connection factory for point-to-point

messaging with the default messaging provider on a Version 5 node in a deployment manager cell. This

task contains an optional step for you to create a new JMS queue connection factory.

 About this task

To configure a JMS queue connection factory for use by WebSphere application server Version 5

applications, use the administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS providers.

2. Select the Version 5 provider for which you want to configure a queue connection factory.

3. Optional: Change the Scope setting to the level at which the JMS queue connection factory is visible

to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

4. In the content pane, under Additional Properties, click Queue connection factories This displays any

existing JMS queue connection factories for the Version 5 messaging provider in the content pane.

5. To browse or change an existing JMS queue connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS queue connection factory is known for administrative

purposes within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS queue connection factory into the name

space.

c. Click Apply. This defines the JMS queue connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the queue connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

1800 Administering WebSphere applications

Configuring a Version 5 JMS topic connection factory:

Use this task to browse or change a JMS topic connection factory for publish/subscribe messaging by

WebSphere Application Server Version 5 applications.

 About this task

To configure a JMS topic connection factory for use by WebSphere application server Version 5

applications, use the administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS providers.

2. Select the Version 5 provider for which you want to configure a topic connection factory.

3. Optional: Change the Scope setting to the level at which the JMS topic connection factory is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

4. In the content pane, under Additional Properties, click Topic connection factories This displays any

existing JMS topic connection factories for the Version 5 messaging provider in the content pane.

5. To browse or change an existing JMS topic connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS topic connection factory is known for administrative purposes

within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS topic connection factory into the name space.

c. Click Apply. This defines the JMS topic connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the topic connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 WebSphere queue destination:

Use this task to browse or change the properties of a JMS queue destination for point-to-point messaging

by WebSphere Application Server Version 5 applications. This task contains an optional step for you to

create a new topic destination.

 About this task

To configure a JMS queue destination for use by WebSphere Application Server Version 5 applications,

use the administrative console to complete the following steps:

 1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS

→ JMS providers.

 2. Optional: Change the Scope setting to the level at which the JMS destination is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

 3. Select the Version 5 provider for which you want to configure a queue destination.

 4. In the content pane, under Additional Properties, click Queues This displays any existing queue

destinations for the Version 5 default messaging provider in the content pane.

Chapter 8. Messaging resources 1801

5. To browse or change an existing JMS queue destination, click its name in the list. Otherwise, to

create a new queue destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within

IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the queue destination into the name space.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables

you to browse or change additional properties.

 6. Optional: Change properties for the queue destination, according to your needs.

 7. Click OK.

 8. Save any changes to the master configuration.

 9. To make a queue destination available to applications, host the queue on a JMS server. To add a

new queue to a JMS server or to change an existing queue on a JMS server, you define the

administrative name of the queue to the JMS server.

To define the administrative name of the queue to the JMS server, see Managing Version 5 JMS

servers in a deployment manager cell.

10. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 WebSphere topic destination:

Use this task to browse or change the properties of a JMS topic destination for publish/subscribe

messaging by WebSphere application server Version 5 applications.. This task contains an optional step

for you to create a new topic destination.

 About this task

To configure a JMS topic destination for use WebSphere Application Server Version 5 applications, use the

administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS providers.

2. Select the Version 5 provider for which you want to configure a topic destination.

3. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can look up and

use that JMS resource.

4. In the content pane, under Additional Properties, click Topics This displays any existing JMS topic

destinations for the Version 5 default messaging provider in the content pane.

5. To browse or change an existing JMS topic destination, click its name in the list. Otherwise, to create a

new topic destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this topic destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the topic destination into the name space.

Topic The name of the topic in the default messaging provider, to which messages are sent.

1802 Administering WebSphere applications

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

6. Optional: Change properties for the topic destination, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Managing Version 5 JMS servers in a deployment manager cell

Use this task to manage JMS servers on WebSphere Application Server Version 5 nodes in a deployment

manager cell.

About this task

The use of JMS servers is only intended to support migration from WebSphere Application Server Version

5 nodes to WebSphere Application Server Version 6.

In a WebSphere Application Server deployment manager cell, each Version 5 node can have at most one

JMS server, and any Version 5 application server within the cell can use JMS resources served by any of

those JMS servers. Applications on WebSphere Application Server Version 6 can also use JMS resources

served by any of those JMS servers.

You can use the WebSphere administrative console to display a list of all Version 5 JMS servers, to show

and control their runtime status. You can also configure a general set of JMS server properties, which add

to the default values of properties configured automatically for the Version 5 default messaging provider.

Note: In general, the default values of properties for the Version 5 default messaging provider are

adequate for JMS servers. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, WebSphere MQ properties for log file

locations, file pages, and buffer pages. For more information about configuring WebSphere MQ

properties, see the WebSphere MQ System Administration book, SC33-1873, which is available

from the IBM Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

To manage a Version 5 JMS server, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers → JMS Servers This displays a table of the JMS servers,

showing their runtime status.

2. Optional: If you want to change the runtime status of a JMS server, complete the following steps:

a. In the table of JMS servers, select the JMS servers that you want to act on.

v To act on one or more specific JMS servers, select the check box next to the JMS server name.

v To act on all JMS servers, select the check box next to the JMS servers title of the table.

b. Click one of the actions displayed to change the status of the JMS servers; for example, click Stop

to stop a JMS server.

The status of the JMS servers that you have acted on is updated to show the result of your actions.

3. Optional: If you want to change the properties of a JMS server, complete the following steps:

a. Click the name of the server

b. Set one or more of the following configuration properties:

Initial state

If you want the JMS server to be started automatically when the application server is next

started, set this property to Started.

Number of threads

Set the number of concurrent threads to be used by the publish/subscribe matching

engine. The number of concurrent threads should only be set to a small number.

Chapter 8. Messaging resources 1803

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

4. Optional: If you want the JMS server to host a new JMS queue, add the queue name to the Queue

Names field.

The name must match the name of a JMS Queue administrative object, including the use of upper-

and lowercase.

5. Optional: If you want to stop the JMS server hosting a JMS queue, remove the queue name from the

Queue Names field.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the JMS server.

Configuring authorization security for a Version 5 default messaging provider

Use this task to configure authorization security for the default messaging provider on a WebSphere

Application Server Version 5 node in a deployment manager cell.

About this task

To configure authorization security for the Version 5 default messaging provider complete the following

steps.

Note: Security for the Version 5 default messaging provider is enabled when you enable WebSphere

Application Server security on the Version 5 node. For more information about enabling security,

see Enabling security.

1. Configure authorization settings to access JMS resources owned by the embedded messaging

subsystem.

Authorization to access JMS resources owned by the embedded messaging subsystem is controlled by

settings in the profile_root\config\cells\your_cell_name\integral-jms-authorizations.xml file.

The settings grant or deny authenticated users access to messaging resources (queues or topics). As

supplied, the integral-jms-authorisations.xml file grants the following permissions:

v Read and write permissions to all queues.

v Pub, sub, and persist to all topics.

To configure authorization settings, edit the integral-jms-authorisations.xml file according to the

information in this topic and in that file. Please note the file is in Unicode, which requires a binary FTP

to the host from a workstation.

2. Edit the queue-admin-userids element to create a list of userids with administrative access to all

queues. Administrative access is needed to create queues and perform other administrative activities

on queues. For example, consider the following queue-admin-userids section:

<queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

</queue-admin-userids>

In this example the userids adminid1 and adminid2 are defined to have administrative access to all

queues.

3. Edit the queue-default-permissions element to define the default queue access permissions. These

permissions are used for queues for which you do not define specific permissions (in queue sections).

If this section is not specified, then access permissions exist only for those queues for which you have

specifically created queue elements.

For example, consider the following queue-default-permissions element:

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

In this example the default access permission for all queues is write. This can be overridden for a

specific queue by creating a queue element that sets its access permission to read.

1804 Administering WebSphere applications

4. If you want to define specific access permissions for a queue, create a queue element, then define the

following elements:

For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

In this example for the queue q1, the userid useridr has read permission, the userid useridw has write

permission, the userid useridrw has both read and write permissions, and all other userids have no

access permissions (<public></public>).

5. Edit topic elements to define the access permissions for publish/subscribe topic destinations.

For topics, you can grant and deny access permissions. Full permission inheritance is supported on

topics. If you do not define specific access permissions for a userid on a specific topic then

permissions are inherited first from the public permissions on that topic then from the parent topic. The

inheritance of access permissions continues until the root topic from which the root permissions are

assumed.

a. If you want to define default access permissions for the root topic, edit a topic element with an

empty name element. If you omit such a topic section, topics have no default topic permissions

other than those defined by specific topic elements. For example, consider the following topic

element for the root topic:

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

In this example, the default access permission for all topics is set to publish. This can be

overridden by other topic elements for specific topic names.

b. If you want to define access permissions for a specific topic, create a topic element with the name

for the topic then define the access permissions in the public and authorize elements of the topic

element. For example, consider the following topic section:

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

In this example, the subscribe permission is granted to anyone accessing any topic whose name

starts with a/b/c. Also, the userid useridpub is granted publish permission for any topic whose

name starts with a/b/c.

Chapter 8. Messaging resources 1805

6. Save the integral-jms-authorizations.xml file.

Results

If the dynamic update setting is selected, changes to the integral-jms-authorizations.xml file become active

when the changed file is saved, so there is no need to stop and restarted the JMS server. If the dynamic

update setting is not selected, you need to stop and restart the JMS server to make changes active.

Authorization settings for Version 5 default JMS resources:

Use the integral-jms-authorisations.xml file to view or change the authorization settings for Java Message

Service (JMS) resources owned by the default messaging provider on WebSphere Application Server

Version 5 nodes.

 Authorization to access default JMS resources owned by the default messaging provider on WebSphere

Application Server nodes is controlled by the following settings in the was_install\config\cells\
your_cell_name\integral-jms-authorisations.xml file.

This structure of the settings in integral-jms-authorisations.xml is shown in the following example.

Descriptions of these settings are provided after the example. To configure authorization settings, follow

the instructions provided in Configuring authorization security for the Version 5 JMS providers

<integral-jms-authorizations>

 <dynamic-update>true</dynamic-update>

 <queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

 </queue-admin-userids>

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 </queue>

 <queue>

 <name>q2</name>

 <public>

 <permission>write</permission>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 </queue>

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

1806 Administering WebSphere applications

</public>

 </topic>

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

</integral-jms-authorizations>

dynamic-update: Controls whether or not the JMS Server checks dynamically for updates to this file.

true (Default) Enables dynamic update support.

false Disables dynamic update checking and improves authorization performance.

queue-admin-userids: This element lists those userids with administrative access to all Version 5 default

queue destinations. Administrative access is needed to create queues and perform other administrative

activities on queues. You define each userid within a separate userid sub element:

<userid>adminid</userid>

Where adminid is a user ID that can be authenticated by IBM WebSphere Application Server.

queue-default-permissions: This element defines the default queue access permissions that are assumed

if no permissions are specified for a specific queue name. These permissions are used for queues for

which you do not define specific permissions (in queue elements). If this element is not specified, then no

access permissions exist unless explicitly authorized for individual queues.

You define the default permission within a separate permission sub element:

<permission>read-write</permission>

Where read-write is one of the following keywords:

read By default, userids have read access to Version 5 default queue destinations.

write By default, userids have write access to Version 5 default queue destinations.

queue: This element contains the following authorization settings for a single queue destination:

name The name of the queue.

public The default public access permissions for the queue. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the queue.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain the keyword read or write to define the access permission.

 For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

Chapter 8. Messaging resources 1807

<userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

topic: This element contains the following authorization settings for a single topic destination:

Each topic element has the following sub elements:

name The name of the topic, without wildcards or other substitution characters.

public The default public access permissions for the topic. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the topic.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain one of the following keywords to define the access permission:

+pub Grant publish permission

+sub Grant subscribe permission

+persist

Grant persist permission

-pub Deny publish permission

-sub Deny subscribe permission

-persist

Deny persist permission

JMS components on Version 5 nodes

To provide messaging support on a WebSphere Application Server Version 5 node, there is at most one

JMS server and some number of JMS resources configured for the default messaging JMS provider on

that node.

A JMS server on a Version 5 node serves the JMS resources (connection factories and destinations) for

that node. The JMS server is managed as a separate process to application servers on the same node.

Any application server within the domain can access JMS resources served by any JMS server on any

node in the domain.

A connection factory encapsulates the configuration properties used to create connections with the JMS

provider, to enable applications to access JMS destinations.

The main components of JMS support on a Version 5 node are shown in the figure The main components

of WebSphere JMS support.

1808 Administering WebSphere applications

Administering listener ports and activation specifications for

message-driven beans

Use these tasks to manage the listener ports and activation specifications used by message-driven beans

(MDBs). If the JMS provider is implemented as a J2EE Connector Architecture (JCA) resource adapter use

an activation specification, otherwise use a listener port. These tasks are supplementary to the tasks of

administering resource adapters, and JMS provider resources.

About this task

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

Use the WebSphere Application Server administrative console to configure the following resources for

message-driven beans:

v J2C activation specifications for JCA 1.5-compliant message-driven beans. Activation specifications

must be provided when the application’s resources are configured using the default messaging provider

or any generic J2C Resource Adapter that supports inbound messaging.

v The message listener service, listener ports, and listeners for EJB 2.0 message-driven beans deployed

against listener ports. Listener ports must be provided when using the following JMS providers: V5

Default Messaging, or Generic.

Listener port or activation specification?

WebSphere Application Server Version 6 or later supports the enhancements made to the EJB 2.1 and

Java EE specifications that allow any resource that has a JCA 1.5 adapter to trigger an MDB (formerly

only JMS resources could trigger MDBs). WebSphere Application Server Version 5 and EJB 2.0 used the

listener port which specified a JMS connection factory and a destination. This allowed a pool of MDB

instances to connect to the messaging system and listen to the designated destination. EJB 2.1 specifies

an additional requirement of an MDB working with a JCA adapter using an activation specification.

M1

Message

JMS destinations

M2
Business logic beans (Enterprise JavaBeans)

M3 M4

D1 D2 D3

CF1 CF2

JMS Provider

Connection
factories

Connections

Destinations

Your_application_server

JMS server

Figure 20. The main JMS components on a version 5 node. This figure shows the main JMS components on a version

5 node, from JMS provider through a connection to a destination, then to a WebSphere enterprise application (acting

as a JMS client) that processes the message retrieved from the destination. For more information, see the text that

accompanies this figure.

Chapter 8. Messaging resources 1809

If you are developing WebSphere Application Server Version 6 or later applications, you should consider

the following questions:

v Should I use a listener port or an activation specification?

v Should I convert my existing listener ports to activation specifications?

v Will listener ports eventually not be supported anymore?

Here are some guidelines to help you decide:

v If you are using J2EE 1.2 and EJB 1.1 with WebSphere Application Server v4, MDBs are not used, so

you do not have to make a decision. WebSphere Application Server Version 4 uses message beans,

but these are not MDBs or EJBs.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server Version 5, you must use

listener ports. The MDBs are JMS MDBs that implement MessageListener, and there is no JCA support.

WebSphere Application Server Version 5 uses listener ports to associate MDB classes with their JMS

destinations.

v If you are using Java EE and EJB 2.1 with WebSphere Application Server Version 6 or later and not

using JMS, you must use activation specifications. A connector MDB uses JCA to access its resources,

so the connector must therefore be configured with an activation specification. This is for new bean

development, and does not affect the conversion of MDBs from EJB 2.0 to EJB 2.1.

v If you are using Java EE and EJB 2.1 with WebSphere Application Server Version 6 or later, the

decision depends on whether your JMS provider API is implemented with JCA. In Java EE, the JMS 1.1

API can now be implemented with the JCA 1.5 API. If so, your MDB is a JMS MDB that is implemented

as a connector MDB, and must therefore be configured with an activation specification. If not, this is the

same JMS situation as for J2EE 1.3, and you must configure this EJB 2.1 MDB in the same way as you

would configure an EJB 2.0 MDB, which in WebSphere Application Server is to use a listener port.

To summarize: in WebSphere Application Server Version 6 or later, the decision on whether or not to use a

listener port or an activation specification depends on the following scenarios:

v whether you upgrade your EJB 2.0 MDBs to EJB 2.1

v whether you want your EJB 2.1 MDB to use a JCA adapter

v whether you access your JMS provider via a JCA adapter.

If you have JMS API implementations that do not use JCA, WebSphere Application Server requires listener

ports; if all JMS API implementations use JCA, listener ports are no longer required.

You can update the configuration data at any time, but some updates only take effect when the

appropriate server is next started.

For additional information about administering support for message-driven beans, see the following topics:

v Configuring a JMS activation specification for MDBs used by the default messaging provider

v “Configuring a J2C activation specification”

v “Configuring a J2C administered object” on page 1815

v Configuring message listener resources for EJB 2.0 message-driven beans

Configuring a J2C activation specification

Use this task to configure a J2EE Connector (J2C) activation specification used to deploy message-driven

beans with an external resource adapter.

About this task

Use this task if you want to use a message-driven bean as a listener on a Java Connector Architecture

(JCA) 1.5 resource adapter other than the default messaging JMS provider.

1810 Administering WebSphere applications

friend.sib/tasks/tjn0025_.dita

You can create or modify a J2C activation specification under an installed resource adapter at the cell,

node, or server scope. You can select the message listener type from those provided by the given

resource adapter.

Configuring a J2C activation specification offers two distinct advantages:

v The activation specification configuration information can be shared among multiple message-driven

beans across multiple applications.

v Updates to the configuration properties can be made without the need to redeploy the application.

The following guidelines show which scenarios use activation specifications or listener ports:

v If you are using J2EE 1.2 and Enterprise JavaBeans (EJB) 1.1 with WebSphere Application Server

Version 4, message-driven beans are not used so you do not need listener ports or activation

specifications. WebSphere Application Server Version 4 uses message beans, but these are not

message-driven beans or enterprise beans.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server Version 5, you must use

listener ports. The message-driven beans are JMS message-driven beans that implement

MessageListener, and there is no JCA support. WebSphere Application Server Version 5 uses listener

ports to associate message-driven bean classes with their JMS destinations.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server Version 6, you must use

activation specifications. A connector message-driven bean uses JCA to access its resources, so the

connector must therefore be configured with an activation specification. This is for new bean

development, and does not affect the conversion of message-driven beans from EJB 2.0 to EJB 2.1.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server Version 6, the decision

depends on whether your JMS provider API is implemented with JCA. In J2EE 1.4, the JMS 1.1 API can

now be implemented with the JCA 1.5 API. If so, your message-driven bean is a JMS message-driven

bean that is implemented as a connector message-driven bean, and must therefore be configured with

an activation specification. If not, this is the same JMS situation as for J2EE 1.3, and you must

configure this EJB 2.1 message-driven bean in the same way as you would configure an EJB 2.0

message-driven bean, which in WebSphere Application Server is to use a listener port.

To configure a J2C activation specification for an external resource adapter, use the administrative console

to complete the following steps. This task contains an optional step for you to create a new activation

specification.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Activation specifications heading, click J2C Activation Specifications.

This lists any existing J2C activation specifications for the external resource adapter in the content

pane.

4. Display the properties of the J2C activation specification. If you want to display an existing J2C

activation specification, click one of the names listed.

Alternatively, if you want to create a new J2C activation specification, click New, then specify the

following required properties:

Name Type the name by which the activation specification is known for administrative purposes. The

JNDI name is automatically generated based on the value for the Name property.

Message listener type

Select the message listener type that this activation specification instance should support. This

list is based on the deployment descriptor of the external resource adapter.

Chapter 8. Messaging resources 1811

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

activation specification, you may need to click Apply before this custom property selection is available.

5. Specify properties for the activation specification, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Activation Specifications collection:

This page contains a list of J2C activation specifications for a resource adapter configuration and is used

to create new J2C activation specifications, to select J2C activation specifications for configuration

changes, or to delete J2C activation specifications.

 Activation specification definitions and classes are provided by a resource adapter when it is installed.

Using this information, the administrator can create and configure J2C activation specifications with JNDI

names that are then available for applications to use. The resource adapter uses a J2C activation

specification to configure a specific endpoint instance. Each application configuring one or more endpoints

must specify the resource adapter that sends messages to the endpoint. The application must use the

activation specification to provide the configuration properties related to the processing of the inbound

messages.

The following guidelines show which scenarios use activation specifications or listener ports:

v If you are using Java 2 Platform, Enterprise Edition (J2EE) 1.2 and EJB 1.1 with WebSphere Application

Server v4, MDBs are not used so you do not need listener ports or activation specifications. WebSphere

Application Server v4 uses message beans, but these are not MDbs or EJBs.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server v5, you must use listener

ports. The MDBs are JMS MDBs that implement MessageListener, and there is no JCA support.

WebSphere Application Server v5 uses listener ;ports to associate MDB classes with their JMS

destinations.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server v6, you must use activation

specifications. A connector MDB uses JCA to access its resources, so the connector must therefore be

configured with an activation specification. This is for new bean development, and does not affect the

conversion of MDBs from EJB 2.0 to EJB 2.1.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server v6, the decision depends on

whether your JMS provider API is implemented with JCA. In J2EE 1.4, the JMS 1.1 API can now be

implemented with the JCA 1.5 API. If so, your MDB is a JMS MDB that is implemented as a connector

MDB, and must therefore be configured with an activation specification. If not, this is the same JMS

situation as for J2EE 1.3, and you must configure this EJB 2.1 MDB in the same way as you would

configure an EJB 2.0 MDB, which in WebSphere Application Server is to use a listener port.

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C activation

specifications.

v Resources → Resource Adapters → J2C activation specifications.

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification.

 Data type String

1812 Administering WebSphere applications

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this activation specification. Only applications

that are installed within this scope can use this activation specification.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Message Listener Type:

The Message Listener Type that is used by this activation specification.

 The list of available classes is provided by the resource adapter.

 Data type String

J2C Activation Specifications settings:

Use this page to specify the settings for a J2C activation specification.

 The resource adapter uses a J2C activation specification to configure a specific endpoint instance. Each

application configuring one or more endpoints must specify the resource adapter that sends messages to

the endpoint. The application must use the activation specification to provide the configuration properties

related to the processing of the inbound messages.

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C activation

specifications → activation_specification.

v Resources → Resource Adapters → J2C activation specifications → activation_specification.

Scope:

Specifies the scope of the resource adapter that supports this activation specification. Only applications

that are installed within this scope can use this activation specification.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Name:

Chapter 8. Messaging resources 1813

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification. Name

is required

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Authentication alias:

This optional field is used to bind the J2C activation specification to an authentication alias (configured

through the security JAAS screens).

 This alias is used to access a user name and password that are set on the configured J2C activation

specification. This field is only meaningful if the J2C activation specification you are configuring has a

UserName and Password field.

If you have defined security domains in the application server, you can click Browse... to select a J2C

authentication alias for the resource that you are configuring. Security domains allow you to isolate J2C

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

 Data type Text

Message Listener Type:

The Message Listener Type used by this activation specification.

 For new objects, the list of available classes is provided by the resource adapter in a drop-down list. After

you create the activation specification, the field is a read only text field.

 Data type Drop-down list or text

Destination JNDIName:

1814 Administering WebSphere applications

The destination JNDIName field only appears when a message of type javax.jms.Destination with name

Destination is received.

Configuring a J2C administered object

Use this task to configure a J2C administered object used to configure objects with an external resource

adapter.

About this task

To configure a J2C administered object for an external resource adapter, use the administrative console to

complete the following steps. This task contains an optional step for you to create a new administered

object.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Additional Properties heading, click J2C Administered Objects. This

lists any existing J2C administered objects for the external resource adapter in the content pane.

4. Display the properties of the J2C administered object. If you want to display an existing J2C

administered object, click one of the names listed.

Alternatively, if you want to create a new J2C administered object, click New, then specify the following

required properties:

Name Type the name by which the J2C administered object is known for administrative purposes.

The JNDI name is automatically generated based on the value for the Name property.

Administered object class

Select the administered object class that this instance should support. This list is based on the

deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

administered object, you may need to click Apply before this custom property selection is available.

5. Specify properties for the administered object, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Administered Objects collection:

Use this page to specify administered object settings for a Resource Adapter.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C administered

objects

v Resources → Resource Adapters → Resource adapters → J2C administered objects

Chapter 8. Messaging resources 1815

Name:

Specifies display name assigned to this administered object.

 Data type String

JNDI Name:

Specifies the JNDI name of the administered object.

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this administered object. Only applications that

are installed within this scope can use this object.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

Description:

Specifies a description for the administered object.

 Data type String

Administered object class:

Specifies the Administered Object class that is associated with this J2C administered object. This class

must be one that is provided by the resource adapter.

 Data type String

J2C Administered Object settings:

Use this page to specify the settings for an administered object.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C administered

objects → J2C_administered_object

v Resources → Resource Adapters → Resource adapters → J2C administered objects →

J2C_administered_object

Scope:

1816 Administering WebSphere applications

Specifies the scope of the resource adapter that supports this administered object. Only applications that

are installed within this scope can use this object.

 Data type String

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

 Data type String

Name:

Specifies the name of the J2C administered object instance.

 A string with no spaces meant to be a meaningful text identifier for the administered object. This name is

required.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name that this administered object is bound

under.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Description:

Specifies a text description of the J2C administered object instance.

 Data type String

Administered object class:

For new objects, the list of available classes is provided by the resource adapter in a drop-down list. You

can only select classes from this list.

 After you create the administered object, you cannot modify the administered object class; it is read only.

 Data type Class name

Configuring message listener resources for message-driven beans

Use the following tasks to configure resources needed by the message listener service to support

message-driven beans for use with a JMS provider that does not have a J2EE Connector Architecture

(JCA) 1.5 resource adapter.

Chapter 8. Messaging resources 1817

About this task

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

such as the default messaging provider that is part of WebSphere Application Server Version 6. With a

JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA resources to use a J2C

activation specification. If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5

Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a listener

port (as in WebSphere Application Server Version 5).

Here are some guidelines on which scenarios use listener ports or activation specifications:

v If you are using J2EE 1.2 and EJB 1.1 with WebSphere Application Server v4, MDBs are not used, so

you do not used listener ports or activation specifications because WebSphere Application Server v4

uses message beans, but these are not MDbs or EJBs.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server v5, you must use listener

ports. The MDBs are JMS MDBs that implement MessageListener, and there is no JCA support.

WebSphere Application Server v5 uses listener ports to associate MDB classes with their JMS

destinations.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server v6, the decision depends on

whether your JMS provider API is implemented with JCA. In J2EE 1.4, the JMS 1.1 API can be

implemented with the JCA 1.5 API.

– If your JMS provider API is implemented with JCA, your MDB is a JMS MDB that is implemented as

a connector MDB. A connector MDB uses JCA to access its resources, and so the connector must

be configured with an activation specification. This is for new bean development, and does not affect

the conversion of MDBs from EJB 2.0 to EJB 2.1.

– If your JMS provider API is not implemented with JCA, you have the same JMS situation as for Java

EE 1.3, and you must configure this EJB 2.1 MDB in the same way as you would configure an EJB

2.0 MDB, which in WebSphere Application Server is to use a listener port.

If you want to deploy an enterprise application to use JMS message-driven beans with a JMS provider that

does not have a JCA 1.5 resource adapter, refer to the following subtopics:

v “Configuring the message listener service”

v “Creating a new listener port” on page 1825

v “Configuring a listener port” on page 1826

v “Deleting a listener port” on page 1827

v “Administering listener ports” on page 1827

Configuring the message listener service:

Use this task to configure the properties of the message listener service for an application server, to

support message-driven beans deployed against listener ports.

 About this task

If the JMS provider does not have a J2EE Connector Architecture (JCA) 1.5 resource adapter, such as the

V5 Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a

listener port (as in WebSphere Application Server Version 5).

If you want to deploy an enterprise application to use message-driven beans with listener ports, you can

use this task to browse or change the configuration of the message listener service for an application

server.

To configure the message listener service for an application server, use the administrative console to

complete the following steps:

1818 Administering WebSphere applications

1. Display the listener service settings page:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

2. Optional: Browse or change the value of properties for the message-driven bean thread pool.

a. Click Thread Pool

b. Change the following properties, to suit your needs:

Minimum size

The minimum number of threads to allow in the pool.

Maximum size

The maximum number of threads to allow in the pool.

Thread inactivity timeout

The number of milliseconds of inactivity that should elapse before a thread is reclaimed. A

value of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a

negative number. To do this you must modify the value directly in the config.xml file.

Allow thread allocation beyond maximum thread size

Select this check box to enable the number of threads to increase beyond the maximum

size configured for the thread pool.

c. Click OK.

3. Optional: Specify any of the following optional properties that you need, as Custom properties of the

message listener service:

NON.ASF.RECEIVE.TIMEOUT, MQJMS.POOLING.TIMEOUT, MQJMS.POOLING.THRESHOLD,

MAX.RECOVERY.RETRIES, and RECOVERY.RETRY.INTERVAL.

For more information about these custom properties, see Custom Properties.

To browse or change the properties, complete the following steps:

a. Click Custom properties

b. For each custom property, specify a value to suit your needs.

If you have not specified a property before:

1) Click New.

2) Type the name of the property.

3) Type the value of the property.

4) Click OK.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the Application Server.

Message listener service:

The message listener service is an extension to the JMS functions of the JMS provider. It provides a

listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS

destination on behalf of a deployed message-driven bean.

 To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service

Custom Properties:

An optional set of name and value pairs for custom properties of the message listener service.

Chapter 8. Messaging resources 1819

You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

v “DYNAMIC.CONFIGURATION.ENABLED” on page 1825

Message listener port collection:

The message listener ports configured in the administrative domain

 This panel displays a list of the message listener ports configured in the administrative domain. Each

listener port is used with a message-driven bean to automatically receive messages from an associated

JMS destination. You can use this panel to add new listener ports or to change the properties of existing

listener ports.

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

To view this administrative console panel, click Servers → Application Servers → application_server →

[Messaging] Message Listener Service → Listener Ports

To manage a listener port, enable the Select check box beside the listener port name in the list and click a

button:

 Button Resulting action

Convert to activation

specification

Opens a wizard that helps you convert the selected listener port to an activation

specification.

New Accesses the panel to configure a new listener port.

Delete Deletes the selected listener port or ports.

Start Starts the selected listener port or ports.

Stop Stops the selected listener port or ports.

For more information about asynchronous messaging, see “Asynchronous messaging in WebSphere

Application Server using JMS” on page 290.

Listener port settings:

A listener port is used to simplify administration of the association between a connection factory,

destination, and deployed message-driven bean.

 Use this panel to view or change the configuration properties of the selected listener port.

To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

Name:

The name by which the listener port is known for administrative purposes.

1820 Administering WebSphere applications

Data type String

Default Null

Initial state:

The state that you want the listener port to have when the application server is next restarted

 Data type Enum

Units Not applicable

Default Started

Range Started

When the application server is next started, the

listener port is started automatically.

Stopped

When the application server is next started, the

listener port is not started automatically. If

message-driven beans are to use this listener

port on the application server, the system

administrator must start the port manually or

select the Started value of this property then

restart the application server.

Description:

A description of the listener port, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Connection factory JNDI name:

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1.

 Data type String

Default Null

Destination JNDI name:

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

 You cannot use a temporary destination for late responses.

 Data type String

Default Null

Maximum sessions:

Specifies the maximum number of concurrent sessions that a listener can have with the JMS server to

process messages.

 Each session corresponds to a separate listener thread and therefore controls the number of concurrently

processed messages. Adjust this parameter when the server does not fully use the available capacity of

the machine and if you do not need to process messages in a specific message order.

Chapter 8. Messaging resources 1821

Data type Integer

Units Sessions

Default 1

Range 1 through 2147483647

Recommended v If you want to process messages in a strict message

order, set the value to 1, so only one thread is ever

processing messages.

v If you want to process multiple messages

simultaneously (known as “message concurrency”), set

this property to a value greater than 1. Keep this value

as low as possible to prevent overloading client

applications. A good starting point for a 100% JMS

workload with short transaction times is 2 to 4 sessions

per processor. If longer running transactions exist, you

may need more sessions, which should be determined

by experimentation.

Maximum retries:

The maximum number of times that the listener tries to deliver a message to a message-driven bean

instance before the listener is stopped, in the range 0 through 2147483647.

Note: A WebSphere MQ queue has a similar property called the BackoutThreshold property. If your

listener port is reading from a WebSphere MQ queue, then the retry limit and the behavior when

the limit is reached is determined by whichever of these two properties is set to the lower limit:

v If you exceed the WebSphere MQ queue BackoutThreshold limit, the message that cannot be

delivered is moved to somewhere else by WebSphere MQ (for example, to the WebSphere MQ

backout requeue queue or the WebSphere MQ dead letter queue) and the listener port services

the next message on the queue. In this case, WebSphere Application Server might not know that

the message has not been delivered successfully.

v If you exceed the listener port maximum retries limit, the listener port stops. You then manually

intervene to investigate the problem, possibly to remove the message from the WebSphere MQ

queue then restart the listener port.

 Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

Maximum messages:

The maximum number of messages that the listener can process in one transaction.

 If the queue is empty, the listener processes each message when it arrives. Each message is processed

within a separate transaction.

For the WebSphere V5 default messaging provider or WebSphere MQ as the JMS provider, if messages

start accumulating on the queue then the listener can start processing messages in batches. For

third-party messaging providers, this property value is passed to the JMS provider but the effect depends

on the JMS provider.

 Data type Integer

Units Number of messages

Default 1

1822 Administering WebSphere applications

Range 1 through 2147483647

Recommended For the WebSphere default messaging providers or

WebSphere MQ as the JMS provider, if you want to

process multiple messages in a single transaction, then

set this value to more than 1. If messages start

accumulating on the queue, then a value greater than 1

enables multiple messages to be batch-processed into a

single transaction, and eliminates much of the overhead of

transactions on JMS messages.

Note:

v If one message in the batch fails processing with an

exception, the entire batch of messages is put back on

the queue for processing.

v Any resource lock held by any of the interactions for the

individual messages are held for the duration of the

entire batch.

v Depending on the amount of processing that messages

need, and if XA transactions are being used, setting a

value greater than 1 can cause the transaction to time

out. If an XA transaction does time out routinely

because processing multiple messages exceeds the

transaction timeout, reduce this property to 1 (to limit

processing to one message per transaction) or increase

your transaction timeout.

Message listener service custom properties:

Use this panel to view or change an optional set of name and value pairs for custom properties of the

message listener service.

 To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Custom Properties

You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

v DYNAMIC.CONFIGURATION.ENABLED

NON.ASF.RECEIVE.TIMEOUT:

The timeout in milliseconds for synchronous message receives performed by message-driven bean listener

sessions in the non-ASF mode of operation.

 You should set this property to a non-zero value only if you want to enable the non-ASF mode of operation

for all message-driven bean listeners on the application server.

The message listener service has two modes of operation, Application Server Facilities (ASF) and

non-Application Server Facilities (non-ASF).

Chapter 8. Messaging resources 1823

v The ASF mode is meant to provide concurrency and transactional support for applications. For

publish/subscribe message-drive beans, the ASF mode provides better throughput and concurrency,

because in the non-ASF mode the listener is single-threaded.

v The non-ASF mode is mainly for use with third-party messaging providers that do not support JMS ASF,

which is an optional extension to the JMS specification. The non-ASF mode is also transactional but,

because the path length is shorter than the ASF mode, usually provides improved performance.

Use non-ASF if:

– Your third-party messaging provider does not provide JMS ASF support

– You are using message-driven beans with WebSphere topic connections with the DIRECT port,

because the embedded publish/subscribe broker using that port does not support XA transactions or

JMS ASF.

– Message order is a strict requirement

 Data type Integer

Units Milliseconds

Default ASF mode (custom property not created)

Range 0 or greater milliseconds

0 non-ASF mode is disabled

1 or more

The timeout in milliseconds for non-ASF

message-driven bean listener synchronous

session receives

Recommended If a transaction timeout occurs, the message must recycle

causing extra work. If you want to use the non-ASF mode,

set this property to lower than the transaction timeout, but

leave spare at least the maximum duration of your

message-driven bean’s onMessage() method. For

example, if your message-driven bean’s onMessage()

method typically takes a maximum of 10 seconds, and the

transaction timeout is set to 120 seconds, you might set

the NON.ASF.RECEIVE.TIMEOUT property to no more

than 110000 (110000 milliseconds, that is 110 seconds).

MQJMS.POOLING.TIMEOUT:

The number of milliseconds after which a connection in the pool is destroyed if it has not been used.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used

for five minutes.

 Data type Integer

Units Milliseconds

Default 5 minutes

Range

MQJMS.POOLING.THRESHOLD:

The maximum number of unused connections in the pool.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if there are more than

ten unused connections in the pool.

 Data type Integer

1824 Administering WebSphere applications

Units Number of connections

Default 10

Range

MAX.RECOVERY.RETRIES:

The maximum number of times that a listener port managed by this service tries to recover from a failure

before giving up and stopping. When stopped the associated listener port is changed to the stop state.

The interval between retry attempts is defined by the RECOVERY.RETRY.INTERVAL custom property.

 A failure can be one of two things:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a

network error.

 Data type Integer

Units Retry attempts

Default 5

Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL:

The time in seconds between retry attempts by a listener port to recover from a failure. The maximum

number of retry attempts is defined by the MAX.RECOVERY.RETRIES custom property.

 A failure can be one of two things:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a

network error.

 Data type Integer

Units Seconds

Default 60

Range 1 through 2147483647

DYNAMIC.CONFIGURATION.ENABLED:

This property controls whether the application server on which a listener port is created requires to be

restarted. Set this property to true to enable dynamic configuration.

 Data type Boolean

Default False (not selected)

Creating a new listener port:

Use this task to create a new listener port for the message listener service, so that message-driven beans

can be associated with the port to retrieve messages.

Chapter 8. Messaging resources 1825

About this task

Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server Version 5), you are recommended to deploy such beans as J2EE

Connector Architecture (JCA) 1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven

beans.

If you want to deploy an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to create a new listener port for a message-driven bean to retrieve messages from.

To create a new listener port, use the administrative console to complete the following steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Click New.

3. Specify the following required properties:

Name The name by which the listener port is known for administrative purposes.

Connection factory JNDI name

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1

Destination JNDI name

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

4. Optional: Change other properties for the listener port, according to your needs.

5. Click OK.

6. Save your changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

Results

If enabled, the listener port is started automatically when a message-driven bean associated with that port

is installed.

Configuring a listener port:

Use this task to browse or change the properties of an existing listener port, used by message-driven

beans associated with the port to retrieve messages.

 About this task

Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server Version 5), you are recommended to deploy such beans as J2EE

Connector Architecture (JCA) 1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven

beans.

If you have deployed an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to browse or change the configuration of a listener port that a message-driven bean retrieves

messages from.

1826 Administering WebSphere applications

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

To configure the properties of a listener port, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Click the name of the listener port that you want to work with. This displays the properties of the

listener port in the content pane.

3. Optional: Change properties for the listener port, according to your needs.

4. Click OK.

5. Save any changes to the master configuration.

6. To have a changed configuration take effect, stop then restart the application server.

Deleting a listener port:

Use this task to delete a listener port from the message listener service, to prevent message-driven beans

associated with the port from retrieving messages.

 About this task

To delete a listener port, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers-> Application Servers This displays a table of the application

servers in the administrative domain.

2. In the content pane, click the name of the application server. This displays the properties of the

application server in the content pane.

3. Under Communications, click Messaging → Message Listener Service This displays the Message

Listener Service properties in the content pane.

4. In the content pane, click Listener Ports. This displays a list of the listener ports.

5. In the content pane, select the check box for the listener port that you want to delete.

6. Click Delete. This action stops the port (needed to allow the port to be deleted) then deletes the port.

7. To save your configuration, click Save on the task bar of the Administrative console window.

8. To have the changed configuration take effect, stop then restart the application server.

Administering listener ports:

Use the following tasks to administer listener ports, which each define the association between a

connection factory, a destination, and a message-driven bean.

 About this task

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

You can use the WebSphere Application Server administrative console to administer listener ports, as

described in the following tasks.

Chapter 8. Messaging resources 1827

Note: If configured as enabled, a listener port is started automatically when a message-driven bean

associated with that port is installed. You do not normally need to start or stop a listener port

manually.

v Adding a new listener port Use this task to create a new listener port, to specify a new association

between a connection factory, a destination, and a message-driven bean. This enables deployed

message-driven beans associated with the port to retrieve messages from the destination.

v Configuring a listener port Use this task to browse or change the configuration properties of a listener

port.

v Starting a listener port Use this task to start a listener port manually.

v Stopping a listener port Use this task to stop a listener port manually.

Starting a listener port:

Use this task to start a listener port on an application server, to enable the listeners for message-driven

beans associated with the port to retrieve messages.

 About this task

A listener is active, that is able to receive messages from a destination, if the deployed message-driven

bean, listener port, and message listener service are all started. Although you can start these components

in any order, they must all be in a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a message-driven bean associated

with that port is installed. However, you can start a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for each message-driven

bean associated with the port. If a message-driven bean is stopped, the port is started but the listener is

not started, and remains stopped. If you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to complete the following

steps:

1. If you want the listener for a deployed message-driven bean to be able to receive messages at the

port, check that the message-driven bean has been started.

2. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

3. Select the check box for the listener port that you want to start.

4. Click Start.

5. Save your changes to the master configuration.

Stopping a listener port:

Use this task to stop a listener port on an application server, to prevent the listeners for message-driven

beans associated with the port from retrieving messages.

 About this task

When you stop a listener port as described in this topic, the listener manager stops the listeners for all

message-driven beans associated with the port.

1828 Administering WebSphere applications

To stop a listener port on an application server, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Select the check box for the listener port that you want to stop.

3. Click Stop.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

Message-driven beans - listener port components:

The WebSphere Application Server support for message-driven beans deployed against listener ports is

based on JMS message listeners and the message listener service, and builds on the base support for

JMS.

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provided, refer to related tasks.

The main components of WebSphere Application Server support for message-driven beans are shown in

the following figure and described after the figure:

Chapter 8. Messaging resources 1829

The message listener service is an extension to the JMS functions of the JMS provider and provides a

listener manager, which controls and monitors one or more JMS listeners.

Each listener monitors either a JMS queue destination (for point-to-point messaging) or a JMS topic

destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic

destination. Each connection factory encapsulates the configuration parameters needed to create a

connection to a JMS destination.

A listener port defines the association between a connection factory, a destination, and a deployed

message-driven bean. Listener ports are used to simplify the administration of the associations between

these resources.

When a deployed message-driven bean is installed, it is associated with a listener port and the listener for

a destination. When a message arrives on the destination, the listener passes the message to a new

instance of a message-driven bean for processing.

When an application server is started, it initializes the listener manager based on the configuration data.

The listener manager creates a dynamic session thread pool for use by listeners, creates and starts

MDB1

Message

Listeners

JMS destinations

MDB2Message-driven beans MDB3 MDB4

LP3

LP2

LP1

D1 D2 D3

Listener
manager

JMS server

CF1

CF2

JMS Provider

Connection
factories

Listener
ports

Connections

Destinations

WebSphere Application Server

Listener service

Figure 21. The main components for message-driven beans. This figure shows the main components of WebSphere

support for message-driven beans, from JMS provider through a connection to a destination, listener port, then

deployed message-driven bean that processes the message retrieved from the destination. Each listener port defines

the association between a connection factory, destination, and a deployed message-driven bean. The other main

components are the message listener service, which comprises a listener for each listener port, all controlled by the

same listener manager. For more information, see the text that accompanies this figure.

1830 Administering WebSphere applications

listeners, and during server termination controls the cleanup of listener message service resources. Each

listener completes several steps for the JMS destination that it is to monitor, including:

v Creating a JMS server session pool, and allocating JMS server sessions and session threads for

incoming messages.

v Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.

v If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB

method has completed.

v Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

Important file for message-driven beans

The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is important for the

operation of the WebSphere Application Server messaging service, so should not be deleted.

If you do need to delete the WAS_HOME/temp directory or other files in it, ensure that you preserve the

following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Choosing messaging providers for a mixed environment

If your existing or planned messaging environment involves both WebSphere MQ and WebSphere

Application Server systems, choose between the default messaging provider, the WebSphere MQ

messaging provider, or a mixture of the two, by considering your messaging requirements, your business

environment, and the needs of each messaging application.

About this task

For messaging between application servers, with interaction with a WebSphere MQ system, you can use

the default messaging provider or the WebSphere MQ provider. Neither provider is necessarily better than

the other. The choice of providers depends primarily on factors relating to your business environment and

planned changes to that environment, and also on what each JMS application needs to do. Moreover,

these two types of messaging providers are not mutually exclusive:

v You can configure both types of providers within one cell.

v Different applications can use the same, or different, providers.

Factors relating to your business environment include the following:

v Messaging requirements

v Existing skill set

v Existing messaging infrastructure

v Planned changes to that infrastructure

Configuring and managing your messaging infrastructure is simpler if you use just one provider. If your

messaging is primarily in WebSphere MQ, you should probably choose the WebSphere MQ messaging

provider. Similarly, if your messaging is primarily in WebSphere Application Server, you should probably

choose the default messaging provider.

If your business environment does not clearly indicate that you should use just one provider, then you

should consider using a mixture of the two, and choosing the most appropriate messaging provider for

each application. A useful way of doing this is to identify the types of destinations (service integration bus,

or WebSphere MQ queue or topic) that the application is using. If the application uses only bus

destinations, the natural choice is to use the default messaging provider (solution ″DMP″). If the

Chapter 8. Messaging resources 1831

application needs to communicate with one or more WebSphere MQ destinations, you can choose any of

the following solutions depending upon your business environment, usage scenarios, and system

topologies:

v Use the WebSphere MQ messaging provider (solution ″MQP″).

v Use the default messaging provider to integrate a WebSphere MQ server (a WebSphere MQ queue

manager or queue-sharing group) as a bus member (solution ″DMP interop bus member″).

v Use the default messaging provider to integrate a WebSphere MQ network as a foreign bus, using

WebSphere MQ links (solution ″DMP interop, foreign bus″).

For more information about these solutions, see Overview of interoperation with WebSphere MQ.

To help you choose between these solutions, several of the following steps contain tables in which each

row represents a business or system requirement, and asterisks (*) indicate the solutions that are likely to

be most effective for meeting the requirement. These tables are designed to provide general guidance,

rather than to identify precisely a “right” solution. Most requirements have multiple possible solutions, and

the absence of an asterisk does not necessarily mean that you cannot use that solution. To derive best

guidance from using each of these tables:

v Focus on the rows that reflect your most important requirements.

v For all the rows that you consider, count the number of asterisks for each solution.

The solutions with the largest number of asterisks are likely to be the most effective.

1. If you have limited experience of WebSphere MQ or WebSphere Application Server, and are trying to

decide which product best meets your messaging needs, see “Service integration and WebSphere MQ

messaging - a comparison” on page 1768.

Note: Whichever of these products you choose as the main focus for your messaging, you can still

use either the default messaging provider or the WebSphere MQ provider for interoperation

between the products.

2. Consider your business environment, to see if you can use just one provider.

In deciding which provider to use, consider the following constraints:

v The current and future messaging requirements

v The existing messaging infrastructure

v The skill set that you have in your organization

If the majority of your messaging is today performed in WebSphere MQ, continue with that approach

and configure WebSphere MQ as an external JMS provider (that is, use the WebSphere MQ

messaging provider) in WebSphere Application Server. If the JMS requirements of your WebSphere

Application Server applications are limited, it is debatable whether using a service integration bus for

those applications gives sufficient benefit.

If you have messaging applications in WebSphere Application Server that have no requirement to

interoperate with your WebSphere MQ network, use the default messaging provider (the service

integration bus). If your WebSphere Application Server messaging requirements demand a tighter

integration with WebSphere Application Server, the service integration bus provides the following

benefits:

v Integrated administration

v WebSphere Application Server high availability capabilities

v WebSphere Application Server scalability

If you choose to use the default messaging provider to interoperate between service integration and

WebSphere MQ, be aware that there is an added cost involved in converting messages between

service integration format and WebSphere MQ format.

Also consider the following messaging scenarios:

v A large installed backbone of WebSphere MQ queue managers, perhaps with WebSphere Message

Broker.

1832 Administering WebSphere applications

friend.sib/concepts/cjc1003_.dita

If you want to use WebSphere Application Server to run a newly introduced messaging application,

you can deploy a WebSphere Application Server (JMS) messaging application that will exchange

messages with an existing application that uses a WebSphere MQ queue or topic.

v A WebSphere Application Server installation, perhaps with existing Web and enterprise applications,

but no WebSphere Application Server messaging application.

If you have no existing messaging infrastructure, you can deploy a WebSphere Application Server

(JMS) messaging application to exchange messages with an existing WebSphere Application Server

messaging application that uses a service integration bus destination.

v An infrastructure that uses WebSphere Application Server to connect WebSphere Application Server

messaging applications.

Introduce WebSphere Application Server (JMS) messaging between a pair of WebSphere

Application Server applications.

v An infrastructure that includes both WebSphere MQ and service integration buses. This could be the

result of a merger, or because the message traffic tends to be from WebSphere Application Server

to WebSphere Application Server, or from WebSphere MQ to WebSphere MQ, but not typically

between WebSphere Application Server and MQ.

Deploy a WebSphere Application Server (JMS) messaging application to exchange messages with

an application that uses a WebSphere MQ queue or topic.

v A WebSphere Process Server or WebSphere Enterprise Service Bus infrastructure, which uses

Service Component Architecture (SCA).

You can choose either a WebSphere MQ or a service integration bus binding for your SCA

components.

3. If your business environment does not clearly indicate that you should use just one messaging

provider, use a mixture of the two and choose the most appropriate provider for each application,

based upon the destination types that the application uses.

The application might need to exchange messages with existing partner applications or services that

use one or more known destinations of known type. Alternatively, the partner applications or services

might not yet be deployed and the choice of destination type might still be open, in which case the

solution architect needs to decide how best to connect the applications or services together.

If the application uses multiple destinations, there are four possible outcomes:

v The application uses only bus destinations.

v The application uses only WebSphere MQ destinations.

v The application uses a mixture of bus and WebSphere MQ destinations.

v The destination types are not yet known.

Note: If there is no clear business or technical reason why the application uses WebSphere MQ

destinations rather than bus destinations, and the partner application is also a WebSphere

Application Server JMS application, consider migrating the existing destinations to service

integration so that the application uses only bus destinations.

4. If the application uses only bus destinations, configure the application and its JMS resources to use

the default messaging provider.

5. If the application uses only WebSphere MQ destinations (queues or topics), use the following checklist

to determine which provider solution to use.

 Table 32. Provider checklist for an application that uses only WebSphere MQ destinations.

Question: MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Is performance critical?

(If so, use WebSphere MQ directly, rather than perform message conversion.)

*

Chapter 8. Messaging resources 1833

Table 32. Provider checklist for an application that uses only WebSphere MQ destinations. (continued)

Question: MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Does the application need to send or receive large messages (that is, messages > 500k.)? *

Is location transparency desirable for simplifying programming and deployment of

applications?

* *

Does the application need to consume from a WebSphere MQ queue, the configuration of

which is fixed?

(That is, the queue cannot be moved to service integration and you do not want to deploy a

push-style WebSphere MQ application to send messages to a bus destination.)

* *

Is the partner application a JMS application that will run outside WebSphere Application

Server, as a bus or WebSphere MQ client?

(Do not mix service integration and WebSphere MQ unless you have to do so; a pure

WebSphere MQ or service integration solution is simpler and avoids the cost of converting

messages between service integration and WebSphere MQ formats.)

*

Is the partner application a non-JMS (non-WebSphere Application Server) application?

(Wherever possible choose a pure WebSphere MQ or service integration solution. Use the

MQI WebSphere MQ client, or the XMS WebSphere MQ client, or the XMS bus client

depending on your API preference.)

*

Do you prefer traffic passing between your WebSphere MQ network and WebSphere

Application Server applications to be funneled into a single long-running connection?

*

Do you want to use the high availability features of WebSphere Application Server? *

Is XA 2pc needed between the application and a WebSphere MQ queue sharing group? * *

Is XA 2pc needed between the application and a WebSphere MQ cluster? *

6. If the application uses a mixture of bus and WebSphere MQ destinations, for example consuming from

service integration and sending to WebSphere MQ, then either of the default messaging provider

interoperation models can support this by using a single connection factory or activation specification.

Use the following checklist to help you decide between a bus member and a foreign bus solution.

 Table 33. Provider checklist for an application that uses a mixture of bus and WebSphere MQ destinations.

Question:

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Does the application need to consume from a WebSphere MQ shared queue? *

Is there a need to distribute work to a pool of WebSphere Application Server workers from a

WebSphere MQ queue?

*

Do you prefer traffic passing between your WebSphere MQ network and WebSphere Application

Server applications to be funneled into a single long-running connection?

*

Do you need distributed WebSphere MQ in versions earlier than WebSphere Application Server

Version 7 and WebSphere MQ Version 7?

*

Do you want store and forward capabilities to allow the application to continue to send messages

when the WebSphere MQ queue manager is unavailable?

*

Do you prefer not to configure server connection channels?

(This is because they open a port, which could be seen as a security risk.)

*

1834 Administering WebSphere applications

Table 33. Provider checklist for an application that uses a mixture of bus and WebSphere MQ

destinations. (continued)

Question:

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Do you prefer to define a server connection channel, rather than a pair of sender and receiver

channels?

*

7. If the destination types are not yet known, decide the relative priorities of the known concerns then use

the following checklist to assess how well each of them is addressed by the possible provider

solutions.

The choice is really over what type of destinations this application should use. The destination types

are not yet fixed, so any of the four solutions is possible, but as a general rule you should aim for

solution “DMP” or “MQP”, because a pure WebSphere MQ or service integration solution is simpler

and avoids the cost of converting messages between service integration and WebSphere MQ formats.

 Table 34. Provider checklist for an application for which the destination types are not yet known.

Question: DMP MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Do you have an existing base of strong skills in managing WebSphere MQ? * * *

Do you want management of all messaging to be handled by the WebSphere MQ

team?

*

Do you have administrators skilled in WebSphere Application Server but not in

WebSphere MQ?

*

Do you want a messaging product with a large installed base (including references)

and a wide choice of ISV tools?

*

Are you reluctant to buy a separately licensed product in addition to WebSphere

Application Server?

*

Are you reluctant to install and manage a separate product in addition to WebSphere

Application Server?

*

Are you already using WebSphere Message Broker?

(If so, you need WebSphere MQ anyway).

* * *

Are you using the WebSphere Enterprise Service Bus to mediate messages from, or

deliver them to, a WebSphere MQ queue?

(For example, using WebSphere Business Integration adapters, or connecting to a

service provider such as CICS.)

*

Does the application need to send or receive large messages (that is, messages >

500k.)?

*

Is location transparency desirable for simplifying programming and deployment of

applications?

* * *

Do the throughput requirements need multiple parallel channels or routes? * * *

Does the application need to consume from a WebSphere MQ queue, the

configuration of which is fixed?

(that is, the queue cannot be moved to service integration and you don’t want to

deploy a push-style WebSphere MQ application to send messages to a bus

destination.)

* * *

Chapter 8. Messaging resources 1835

Table 34. Provider checklist for an application for which the destination types are not yet known. (continued)

Question: DMP MQP

DMP

interop,

bus

member

DMP

interop,

foreign

bus

Is the partner application a JMS application that will also run in WebSphere Application

Server?

(Service integration runs in the WebSphere Application Server application server. On

distributed platforms that means it is in-process. On the z/OS platform it is in another

region.)

*

Is the partner application a JMS application that will run outside WebSphere

Application Server, as a bus or WebSphere MQ client?

(Do not mix service integration and WebSphere MQ unless you have to do so; a pure

WebSphere MQ or service integration solution is simpler and avoids the cost of

converting messages between service integration and WebSphere MQ formats.)

* *

Is the partner application a non-JMS (non-WebSphere Application Server) application?

(Wherever possible choose a pure WebSphere MQ or service integration solution. Use

the MQI WebSphere MQ client, or the XMS WebSphere MQ client, or the XMS bus

client depending on your API preference.)

* *

Is maintenance of strict message order important? *

Does the application require the flexibility and convenience of a WebSphere MQ

cluster?

(WebSphere MQ clustering makes administration simpler and provides selective

parallelism of clustered queues. That is, instances of a clustered queue can be created

on any (but not necessarily all) queue managers in the WebSphere MQ cluster.

Messages sent to the clustered queue can be addressed to a specific instance of the

queue, or allowed to select an instance dynamically based on workload management

statistics. WebSphere Application Server clustering provides some of this flexibility, but

you cannot create partitions of a bus destination on a subset of the messaging

engines in a cluster bus member.)

* * *

Does the application need the level of high availability provided by WebSphere MQ for

z/OS shared queues?

* * *

Do you want to use the high availability or scalability features of WebSphere

Application Server clustering?

* * *

Service integration and WebSphere MQ messaging - a comparison

If you are not already an established user of either WebSphere Application Server or WebSphere MQ, and

you are considering whether the service integration platform or WebSphere MQ better meets your

messaging needs, use this table to compare the main features of the two platforms.

 Table 35. Comparison of service integration and WebSphere MQ main features

service integration (the default messaging provider

for WebSphere Application Server) WebSphere MQ

Service integration is closely integrated with WebSphere

Application Server, and is a natural fit if you are using the

Java Platform, Enterprise Edition (Java EE).

WebSphere MQ can connect to almost anything. It

provides a very heterogeneous environment .

Service integration supports multiple languages through

XMS clients, and multiple platforms.

WebSphere MQ supports multiple languages and multiple

platforms.

Service integration is a single process, pure Java

implementation.

WebSphere MQ has many Independent Software Vendor

(ISV) tools.

1836 Administering WebSphere applications

Table 35. Comparison of service integration and WebSphere MQ main features (continued)

service integration (the default messaging provider

for WebSphere Application Server) WebSphere MQ

Service integration provides strong performance for both

persistent and non-persistent messages for JMS.

WebSphere MQ supports JMS and non-JMS messaging

interfaces, and provides strong performance for non-JMS

applications.

Service integration is designed for a maximum message

size of about 40 megabytes on a 32-bit operating system

(subject to heap usage).

WebSphere MQ supports large message sizes up to

about 100 megabytes.

Service integration is tightly integrated with some Web

services implementations.

WebSphere MQ is a natural fit if you are using

WebSphere Message Brokers.

Service integration messaging is included in a single

administrative model for WebSphere Application Server,

WebSphere Enterprise Service Bus and WebSphere

Process Server.

WebSphere MQ can integrate existing infrastructure and

applications (for example CICS).

Service integration bus clustering is integrated with

WebSphere Application Server clustering for high

availability and scalability.

WebSphere MQ clustering provides selective parallelism

of clustered queues.

Note: The messaging platform that you choose for a given task does not necessarily determine which

JMS messaging provider you should use. For example:

v If you need to handle large messages, you probably need to use the WebSphere MQ messaging

provider.

v If you are using WebSphere Message Brokers, you can use either the default messaging

provider or the WebSphere MQ messaging provider.

Other ways of managing messaging

For messaging between application servers, most requirements are best met by either the default

messaging provider or the WebSphere MQ messaging provider. However, you can instead use a

third-party messaging provider (that is, use another company’s product as the provider). For backwards

compatibility with earlier releases, there is also support for the V5 default messaging provider.

Before you begin

If you are not sure which provider combination is best suited to your needs, see “Types of messaging

providers” on page 1899.

About this task

Enterprise applications in WebSphere Application Server can use asynchronous messaging through

services based on Java Message Service (JMS) messaging providers and their related messaging

systems. These messaging providers conform to the JMS Version 1.1 specification.

The choice of provider depends on what your JMS application needs to do, and on other factors relating to

your business environment and planned changes to that environment.

v Choose a third-party messaging provider.

You can configure any third-party messaging provider that supports the JMS Version 1.1 unified

connection factory. You might want to do this, for example, because of existing investments.

To administer a third-party messaging provider, you use the resource adaptor or client supplied by the

third party. You can still use the WebSphere Application Server administrative console to administer the

Chapter 8. Messaging resources 1837

JMS connection factories and destinations that are within WebSphere Application Server, but you

cannot use the administrative console to administer the JMS provider itself, or any of its resources that

are outside of WebSphere Application Server.

To use message-driven beans (MDBs), third-party messaging providers must include Application Server

Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification, or use an inbound

resource adapter that conforms to the Java EE Connector Architecture (JCA) Version 1.5 specification.

To work with a third-party provider, see “Managing messaging with a third-party messaging provider” on

page 1769.

v Choose the (deprecated) V5 default messaging provider.

This deprecated provider is identical to the WebSphere Application Server Version 5 default provider.

Only the name has changed. It provides backwards compatibility that enables WebSphere Application

Server Version 6 or later applications to connect to WebSphere Application Server Version 5 resources

in a mixed cell. It also allows WebSphere Application Server Version 5 applications to connect to

WebSphere Application Server Version 6 or later resources in a mixed cell. To configure and manage

messaging to interoperate with WebSphere Application Server Version 5, see “Maintaining Version 5

default messaging resources” on page 1779.

Managing messaging with a third-party messaging provider

Enabling your messaging applications to use JMS resources provided by a third-party messaging provider

other than WebSphere MQ.

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,

you can use the default messaging provider. To integrate WebSphere Application Server messaging into a

predominately WebSphere MQ network, you can use the WebSphere MQ messaging provider. You can

also use a third-party messaging provider as described in this topic. To choose the provider that is best

suited to your needs, see “Choosing a messaging provider” on page 1756.

About this task

You can install a messaging provider other than the default messaging provider or the WebSphere MQ

messaging provider.

WebSphere Application Server applications can use the JMS 1.1 interfaces or JMS 1.0.2 interfaces to

access JMS resources provided by a third-party messaging provider, and you can use the administrative

console to administer the JMS connection factories and destinations for the provider.

In a mixed-version WebSphere Application Server deployment manager cell, you can administer third-party

messaging resources on Version 7, Version 6 and Version 5 nodes. For Version 5 nodes, the

administrative console presents the subset of resources and properties that are applicable to WebSphere

Application Server Version 5.

To use a third-party messaging provider with WebSphere Application Server, complete one or more of the

following steps:

v Define a third-party messaging provider.

v List third-party JMS messaging resources.

v Configure JMS resources for a third-party messaging provider.

Defining a third-party messaging provider

Use this task to define a third-party messaging provider to WebSphere Application Server, for use instead

of the default messaging provider or WebSphere MQ messaging provider.

1838 Administering WebSphere applications

Before you begin

Before you configure a third-party messaging provider, you might want to check whether your requirement

can be met by the default messaging provider or the WebSphere MQ messaging provider that are

supplied with WebSphere Application Server. To choose the provider that is best suited to your needs, see

“Choosing a messaging provider” on page 1756.

About this task

You can configure any third-party messaging provider that supports the JMS Version 1.1 unified

connection factory. You might want to do this, for example, because of existing investments.

To administer a third-party messaging provider, you use the resource adaptor or client supplied by the

third-party. You can still use the WebSphere Application Server administrative console to administer the

JMS connection factories and destinations that are within WebSphere Application Server, but you cannot

use the administrative console to administer the JMS provider itself, or any of its resources that are

outside of WebSphere Application Server.

To use message-driven beans (MDBs), third-party messaging providers must include Application Server

Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification, or use an inbound

resource adapter that conforms to the J2EE Connector Architecture (JCA) Version 1.5 specification.

To define a new third-party messaging provider to WebSphere Application Server, use the administrative

console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS Providers . The existing messaging providers

are displayed, including the default messaging provider and the WebSphere MQ messaging provider.

2. To define a new third-party messaging provider, click New in the content pane. Otherwise, to change

the definition of an existing messaging provider, click the name of the provider.

3. Specify the following required properties. You can specify other properties, as described in a later step.

Name The name by which this messaging provider is known for administrative purposes within IBM

WebSphere Application Server.

External initial context factory

The Java classname of the initial context factory for the JMS provider.

External provider URL

The JMS provider URL for external JNDI lookups.

4. Optional: Click Apply. This enables you to specify additional properties.

5. Optional: Specify other properties for the messaging provider.

Under Additional Properties, you can use the Custom Properties link to specify custom properties for

your initial context factory, in the form of standard javax.naming properties.

6. Click OK.

7. Save the changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

What to do next

You can now configure JMS resources for your messaging provider, as described in “Configuring JMS

resources for a third-party messaging provider” on page 1777.

Listing third-party JMS messaging resources

Use this task with the WebSphere Application Server administrative console to display administrative lists

of JMS resources provided by a messaging provider other than the default messaging provider or the

WebSphere MQ messaging provider.

Chapter 8. Messaging resources 1839

About this task

You can use the WebSphere Application Server administrative console to display lists of the following

types of JMS resources provided by a 3rd party messaging provider. You can use the panels displayed to

select JMS resources to administer, or to create or delete JMS resources (where appropriate).

To display administrative lists of JMS resources for a third-party messaging provider, complete the

following steps:

1. Start the administrative console.

2. In the navigation pane, click Resources → JMS → JMS providers.

3. Click the name of the third-party messaging provider.

4. In the content pane, under Additional Resources, click the link for the type of JMS resource. For more

information about the detailed settings displayed for each resource type, see the related reference

topics.

JMS provider collection:

Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration

properties.

 To view this administrative console page, click Resources → JMS → JMS providers

To view or change the properties of a JMS provider or its resources, select its name in the list displayed.

To define a new third-party messaging provider, click New.

To act on one or more of the JMS providers listed, click the check boxes next to the names of the objects

that you want to act on, then use the buttons provided.

Name The name by which this JMS provider is known for administrative purposes.

Description

A description of this JMS provider for administrative purposes.

 For related information about JMS messaging providers and asynchronous messaging, see

v “Types of messaging providers” on page 1899

v “Asynchronous messaging in WebSphere Application Server using JMS” on page 290

Third-party JMS connection factory collection:

The JMS connection factories configured for a third-party messaging provider for both point-to-point and

publish/subscribe messaging. Use this panel to create or delete JMS connection factories, or to select a

connection factory to browse or change its configuration properties.

 This panel shows a list of the JMS connection factories configured for a third-party messaging provider,

with a summary of their configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. In the content pane, click the name of the third-party messaging provider that you want to support the

JMS connection factory.

3. Under Additional Properties, click Connection factories.

To define a new JMS connection factory, click New.

To view or change the properties of a JMS connection factory, select its name in the list displayed.

1840 Administering WebSphere applications

To act on one or more of the JMS connection factories listed, click the check boxes next to the names of

the objects that you want to act on, then use the buttons provided.

Third-party JMS connection factory settings:

Use this panel to browse or change the configuration properties of a JMS connection factory configured for

use with a third-party messaging provider. These configuration properties control how connections are

created to the JMS destinations on the provider.

 A JMS connection factory is used to create connections to JMS destinations. The JMS connection factory

is created by the associated JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. If appropriate, in the content pane, change the scope of the third-party messaging provider.

3. In the content pane, click the name of the messaging provider that supports the JMS connection

factory.

4. Under Additional Properties, click Connection factories.

5. Click the name of the JMS connection factory that you want to work with.

A JMS connection factory for a third-party messaging provider (that is, a provider other than the default,

the V5 default or the WebSphere MQ messaging provider) has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated messaging provider.

 Data type String

Type:

Whether this connection factory is for creating JMS queue destinations or JMS topic destinations.

 Select one of the following options:

QUEUE

A JMS queue connection factory for point-to-point messaging.

TOPIC

A JMS topic connection factory for publish/subscribe messaging.

JNDI name:

Chapter 8. Messaging resources 1841

The JNDI name that is used to bind the connection factory into the WebSphere Application Server name

space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the connection factory into the name space of the third-party

messaging provider.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the JMS

provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the

connection factory resource reference of an application component’s deployment descriptors.

1842 Administering WebSphere applications

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the JMS

provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the

connection factory resource reference of an application component’s deployment descriptors.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Global Security → JAAS

Configuration → Application Logins Configuration property. For more information about the mapping

configurations, see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Chapter 8. Messaging resources 1843

Custom properties:

An optional set of name and value pairs for custom properties passed to the messaging provider.

Third-party JMS destination collection:

The JMS destinations configured in an associated third-party messaging provider for point-to-point and

publish/subscribe messaging. Use this panel to create or delete JMS destinations, or to select a JMS

destination to browse or change its configuration properties.

 To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. In the content pane, click the name of the third-party messaging provider that you want to support the

JMS destination.

3. Under Additional Properties, click Queues for point-to-point messaging or Topics for publish/subscribe

messaging.

To define a new JMS destination, click New.

To view or change the properties of a JMS destination, select its name in the list displayed.

To act on one or more of the JMS destinations listed, click the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

Third-party JMS destination settings:

Use this panel to browse or change the configuration properties of the selected JMS destination for use

with an associated third-party messaging provider.

 A JMS destination is used to configure the properties of a JMS destination for the associated third-party

messaging provider (that is, not the default messaging provider or the WebSphere MQ messaging

provider). Connections to the JMS destination are created by the associated JMS connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. In the content pane, click the name of the third-party messaging provider that you want to support the

JMS destination.

3. Under Additional Properties, click Queues for point-to-point messaging or Topics for publish/subscribe

messaging.

4. Click the name of the JMS destination that you want to work with.

A JMS destination for use with a third-party messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

1844 Administering WebSphere applications

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publish/subscribe).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish/subscribe messaging.

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Category:

A category used to classify or group this queue, for your WebSphere Application Server administrative

records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Chapter 8. Messaging resources 1845

Configuring JMS resources for a third-party messaging provider

Use the following tasks to configure the JMS connection factories and destinations for a third-party

messaging provider (that is, a messaging provider other than the default messaging provider or the

WebSphere MQ messaging provider).

Before you begin

You only need to complete these tasks if your WebSphere Application Server environment uses a

third-party messaging provider to support enterprise applications that use JMS. To enable use of a

third-party messaging provider, you must have installed and configured the messaging provider, as

described in Defining a third-party messaging provider.

About this task

To configure JMS resources for a third-party messaging provider, complete the following tasks:

v Configure a JMS connection factory for a third-party messaging provider.

v Configure a JMS destination for a third-party messaging provider.

Configuring a JMS connection factory for a third-party messaging provider:

Use this task to browse or change the properties of a JMS connection factory for use with a JMS

messaging provider other than the default, V5 default or WebSphere MQ messaging providers.

 About this task

To configure a JMS connection factory for use with a third-party messaging provider, use the administrative

console to complete the following steps:

1. Display the third-party messaging provider. In the navigation pane, click Resources → JMS → JMS

Providers .

2. Select the third-party provider for which you want to configure a connection factory.

3. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

4. In the content pane, under Additional Properties, click Connection factories This displays a table

listing any existing JMS connection factories, with a summary of their properties.

5. To browse or change an existing JMS connection factory, click its name in the list. Otherwise, to create

a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS connection factory is known for administrative purposes

within IBM WebSphere Application Server.

Type Select whether the connection factory is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS connection factory into the WebSphere

Application Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS connection factory into the name space of the

messaging provider.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the JMS connection factory, according to your needs.

1846 Administering WebSphere applications

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS destination for a third-party messaging provider:

Use this task to browse or change the properties of a JMS destination for use with a third-party messaging

provider (that is, a provider other than the default messaging provider or the WebSphere MQ messaging

provider).

 About this task

To configure a JMS destination for use with a third-party messaging provider, use the administrative

console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. Click the name of the third-party messaging provider.

3. In the content pane, under Additional Properties, click Queues for point-to-point messaging or Topics

for publish/subscribe messaging. This displays a table listing any existing JMS destinations, with a

summary of their properties.

4. To browse or change an existing JMS destination, click its name in the list. Otherwise, to create a new

destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS destination is known for administrative purposes within

WebSphere Application Server.

Type Select whether the destination is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS destination into the WebSphere Application

Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS destination into the name space of the

messaging provider.

c. Click Apply. This defines the JMS destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the JMS destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Maintaining Version 5 default messaging resources

This topic is the entry-point into a set of topics about maintaining messaging resources provided for

WebSphere Application Server Version 5.1 applications by the default messaging provider.

About this task

JMS applications running on WebSphere Application Server Version 5.1 can use JMS resources provided

by the default messaging provider in WebSphere Application Server Version 7. You can use the

Chapter 8. Messaging resources 1847

WebSphere Application Server administrative console to manage the JMS connection factories and

destinations for WebSphere Application Server Version 5.1 applications. Such JMS resources are

maintained as V5 Default Messaging resources.

In a deployment manager cell, you can use V5 Default Messaging resources to maintain Version 5 default

messaging resources for Version 7, Version 6 and Version 5 nodes in the cell.

v V5 Default Messaging configured against a Version 7 node provides a JMS transport to a messaging

engine of a service integration bus that supports the default messaging provider in WebSphere

Application Server Version 7. The messaging engine emulates the service of a JMS server running on

WebSphere Application Server Version 5.1.

v V5 Default Messaging configured against a Version 5.1 node provides a JMS transport to a JMS server

running on WebSphere Application Server Version 5.1.

You can also use the administrative console to manage a JMS server on a Version 5.1 node.

v List Version 5 default messaging resources.

v Configure Version 5 default JMS resources.

v Manage Version 5 JMS servers in a deployment manager cell.

v Configure authorization security for a Version 5 default messaging provider.

Listing Version 5 default messaging resources

Use the WebSphere Application Server administrative console to list JMS resources for the Version 5

default messaging provider, for administrative purposes.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to

view, modify or delete any of the following resources:

v Connection factory (unified)

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

When you use the Administrative Console to locate these resources, two different navigation pathways are

available:

v Provider-centric navigation. This lets you view all providers (or just those for a specified scope if

required), then navigate to a specific resource for a specific provider. This is the traditional way of

navigating to a resource when you know which provider owns it. Any navigation that starts with

Resources → JMS → JMS providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a resource.

This is useful if you want to find a resource, but you do not know which provider owns it (you can list all

resources of a given type across all scopes, for all providers, in a single panel). Any navigation that

follows the pattern Resources → JMS → [resource], where [resource] is one of the resource types listed

above is resource-centric.

You can use either of these navigation pathways to locate resources of any type.

v Using provider-centric navigation, for example to navigate to a specified connection factory

1. Start the WebSphere Application Server administrative console.

2. In the navigation pane, expand Resources → JMS → JMS providers. This opens the providers

collection which lists all currently configured providers across all scopes (you can modify the scope

if required).

1848 Administering WebSphere applications

3. From the providers collection, select the required provider. This opens the configuration tab for that

provider. The configuration tab contains a set of links to all the resources owned by that provider.

4. From the configuration tab, click the link for a resource type, for example the connection factories

link. This opens the connection factories collection which lists all the connection factories for that

provider.

5. From the connection factories collection, select the required connection factory. You can now view

and work with the connection factory’s properties

v Using resource-centric navigation, for example to navigate to a specified connection factory

1. Start the WebSphere Application Server administrative console.

2. In the navigation pane, expand Resources → JMS → Connection factories. This opens the

connection factories collection which lists all the connection factories across all providers.

3. From the connection factories collection, select the required connection factory. You can now view

and work with the connection factory’s properties.

JMS provider settings:

Use this panel to view the configuration properties of a selected JMS provider. You cannot change the

properties of a default messaging provider or a WebSphere MQ messaging provider.

 To view this page, use the administrative console to complete one of the following steps:

v In the navigation pane, click Resources → JMS → JMS providers. This displays a list of JMS providers

in the content pane. For each JMS provider in the list, the entry indicates the scope level at which JMS

resource definitions are visible to applications. You can create the same type of JMS provider at

different Scope settings, to offer JMS resources at different levels of visibility to applications.

v If you want to manage JMS resources that are defined at a different scope setting, change the Scope

setting to the required level.

v In the Providers column of the list displayed, click the name of a JMS provider.

If you want to browse or change JMS resources of the JMS provider, click the link for the type of resource

under Additional Properties. For more information about the administrative console panels for the types of

JMS resources, see the related topics.

For default messaging providers and WebSphere MQ messaging providers, only the scope, name, and

description properties are displayed for information only. You cannot change these properties.

For another type of JMS provider that you have defined yourself, extra properties are displayed that you

can change.

The default messaging provider is installed and runs as part of WebSphere Application Server, and is

based on service integration technologies.

Scope:

The level to which this resource definition is visible; the cell, node, or server level.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes. For more information about the scope setting, see Scope settings.

Name:

The name by which the JMS provider is known for administrative purposes.

 Data type String

Chapter 8. Messaging resources 1849

Default v Default messaging provider.

For JMS resources to be provided by a service

integration bus, as part of WebSphere Application

Server.

v My JMSprovider

For JMS resources to be provided by your own JMS

provider; not the default messaging provider or

WebSphere MQ. You assign the name, in this example

“My JMSprovider”, when you define the JMS provider to

WebSphere Application Server. You must have installed

and configured your own JMS provider before

applications can use the JMS resources.

v WebSphere MQ messaging provider

For JMS resources to be provided by WebSphere MQ.

You must have installed and configured WebSphere

MQ before applications can use the JMS resources.

v V5 default messaging provider.

For JMS resources to be provided by a WebSphere

Application Server Version 5 node in a deployment

manager cell.

Description:

A description of the JMS provider, for administrative purposes within WebSphere Application Server.

 Data type String

Classpath:

A list of paths or JAR file names which together form the location for the JMS provider classes. Each class

path entry is on a separate line (separated by using the Enter key) and must not contain path separator

characters (such as ’;’ or ’: ’). Class paths can contain variable (symbolic) names to be substituted using a

variable map. Check your driver installation notes for specific JAR file names that are required.

 This property does not apply to default messaging providers or WebSphere MQ providers.

 Data type String

Native library path:

An optional path to any native libraries (*.dll, *.so). Each native path entry is on a separate line (separated

by using the Enter key) and must not contain path separator characters (such as ’;’ or ’: ’). Native paths

can contain variable (symbolic) names to be substituted using a variable map.

 This property does not apply to default messaging providers or WebSphere MQ providers.

 Data type String

External initial context factory:

The Java classname of the initial context factory for the JMS provider.

 This property does not apply to default messaging providers or WebSphere MQ providers.

1850 Administering WebSphere applications

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

Default Null

External provider URL:

The JMS provider URL for external JNDI lookups.

 This property does not apply to default messaging providers or WebSphere MQ providers.

For example, an LDAP URL for a messaging provider has the form: ldap://hostname.company.com/
contextName.

 Data type String

Default Null

Version 5 JMS server collection:

On a WebSphere Application Server Version 5 node, a JMS server provides the functions of the JMS

provider. Use this panel to list JMS servers on WebSphere Application Server Version 5 nodes within the

administration domain, or to select a JMS server to view or change its configuration properties.

 There can be at most one JMS server on each Version 5 node in the administration domain, and any

application server within the domain can access JMS resources served by any JMS server on any node in

the domain.

To view this page, use the administrative console to complete the following step:

1. In the navigation pane, select Servers → Version 5 JMS Servers.

To browse or change the properties of a JMS server, select its name in the list displayed.

To act on one or more of the JMS servers listed, click the check box next to the server name, then use the

buttons provided.

Version 5 JMS server settings:

The JMS functions on a Version 5 node in a deployment manager cell are served by a JMS server. Use

this panel to view or change the configuration properties of the selected JMS server.

 JMS servers are supported only to aid migration of WebSphere Application Server Version 5 nodes to

WebSphere Application Server Version 6.

You can use this panel to configure a general set of JMS server properties, which add to the default

values of properties configured automatically for the Version 5 default messaging provider.

Note: JMS servers make use of WebSphere MQ properties and, in general, the default values of those

properties are adequate. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, properties for log file locations, file pages,

and buffer pages. For more information about configuring WebSphere MQ properties, see the

WebSphere MQ System Administration book, SC33-1873, which is available from the IBM

Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

Name:

Chapter 8. Messaging resources 1851

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The name by which the JMS server is known for administrative purposes within IBM WebSphere

Application Server.

 This name should not be changed.

 Data type String

Units Not applicable

Default WebSphere Internal JMS Server

Range Not applicable

Description:

A description of the JMS server, for administrative purposes within IBM WebSphere Application Server.

 This string should not be changed.

 Data type String

Default WebSphere Internal JMS Server

Number of threads:

The number of concurrent threads to be used by the publish/subscribe matching engine

 The number of concurrent threads should only be set to a small number.

 Data type Integer

Units Threads

Default 1

Range Greater than or equal to 1.

Queue Names:

The names of the queues hosted by this JMS server. Each queue name must be added on a separate

line.

 Each queue listed in this field must have a separate queue administrative object with the same

administrative name. To make a queue available to applications, define a WebSphere queue and add its

name to this field on the JMS Server panel for the host on which you want the queue to be hosted.

 Data type String

Units Queue name

Range Each entry in this field is a queue name of up to 45

characters, which must match exactly (including use of

upper- and lowercase characters) the WebSphere queue

administrative object defined for the queue.

Initial State:

The state that you want the JMS server to have when it is next restarted.

 Data type Enum

Default Started

1852 Administering WebSphere applications

Range Started

The JMS server is started automatically.

Stopped

The JMS server is not started automatically. If

any deployed enterprise applications are to use

JMS server functions provided by the JMS

server, the system administrator must start the

JMS server manually or select the Started value

of this property then restart the JMS server.

To restart a JMS server on a Version 5 node, stop then

restart that JMS server.

Version 5 WebSphere queue connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server Version 5 applications.

 A WebSphere queue connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server Version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Queue connection factories. This displays a list of any existing

JMS queue connection factories.

5. Click the name of the JMS queue connection factory that you want to work with.

A queue connection factory for the embedded WebSphere JMS provider has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

Chapter 8. Messaging resources 1853

JNDI name:

The JNDI name that is used to bind the JMS connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of Version 5 nodes in the WebSphere

administrative domain.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the

messaging provider. The use of this alias depends on the resource authentication (res-auth) setting

declared in the connection factory resource reference of an application component’s deployment

descriptors.

1854 Administering WebSphere applications

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere queue

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 The specification of a login configuration and associated properties on the component resource reference

determines the container-managed authentication strategy when the res-auth value is Container. If the

’DefaultPrincipalMapping’ login configuration is used, the associated property is a container-managed

authentication alias. This field is used only in the absence of a loginConfiguration on the component

resource reference. To define a new alias, see the related item J2EE Connector Architecture (J2C)

authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the

messaging provider. The use of this alias depends on the resource authentication (res-auth) setting

declared in the connection factory resource reference of an application component’s deployment

descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. This field is used only in the absence of a loginConfiguration on the

component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Chapter 8. Messaging resources 1855

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are used in the same transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

WebSphere topic connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS topic connection

factory for publish/subscribe messaging by WebSphere Application Server Version 5 applications.

1856 Administering WebSphere applications

A WebSphere topic connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server Version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Topic connection factories. This displays a list of any existing JMS

topic connection factories.

5. Click the name of the JMS topic connection factory that you want to work with.

A JMS topic connection factory for use with the Version 5 default messaging provider has the following

properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the topic connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

Chapter 8. Messaging resources 1857

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic connection factory, for your IBM WebSphere Application

Server administrative records.

 Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of nodes in the WebSphere administrative

domain.

Port:

Which of the two ports that connections use to connect to the JMS server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for non-persistent, non-transactional,

non-durable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish/subscribe support. Therefore,

any topic connection factory configured with Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Units Not applicable

Default QUEUED

Range QUEUED

The listener port used for full-function

JMS-compliant, publish/subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (non-transactional, non-persistent,

and non-durable subscriptions only) for

publish/subscribe support.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

1858 Administering WebSphere applications

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the

messaging provider. The use of this alias depends on the resource authentication (res-auth) setting

declared in the connection factory resource reference of an application component’s deployment

descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 The specification of a login configuration and associated properties on the component resource reference

determines the container-managed authentication strategy when the res-auth value is Container. If the

’DefaultPrincipalMapping’ login configuration is used, the associated property is a container-managed

authentication alias. This field is used only in the absence of a loginConfiguration on the component

resource reference. To define a new alias, see the related item J2EE Connector Architecture (J2C)

authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that

specifies the user ID and password used to authenticate the creation of a new connection to the JMS

provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the

connection factory resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the embedded

WebSphere JMS provider. For example, the default Windows NT user ID, Administrator, is not

valid for use with embedded WebSphere messaging, because it contains 13 characters. Therefore,

an authentication alias for a WebSphere JMS provider connection factory must specify a user ID no

longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 The specification of a login configuration and associated properties on the component resource reference

determines the container-managed authentication strategy when the res-auth value is Container. This field

is used only in the absence of a loginConfiguration on the component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Chapter 8. Messaging resources 1859

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Clone Support:

Select this checkbox to enable clone support to allow the same durable subscription across topic clones.

 Data type Enum

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Client ID:

The JMS client identifier used for connections to the queue manager.

 Data type String

Range A valid JMS client ID

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are used in the same transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

1860 Administering WebSphere applications

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance. You

need to configure the connection and session pool properties appropriately for your applications, otherwise

you may not get the connection and session behavior that you want.

Version 5 WebSphere queue destination settings:

Use this panel to view or change the configuration properties of the selected JMS queue destination for

point-to-point messaging by WebSphere Application Server Version 5 applications.

 A queue destination is used to configure a JMS queue of the default messaging provider for use by

WebSphere Application Server Version 5 applications. Connections to the queue are created by the

associated V5 Default Messaging WebSphere queue connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Queues. This displays a list of any existing JMS queue destinations.

5. Click the name of the JMS queue destination that you want to work with.

A JMS queue for use with the internal WebSphere JMS provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

Chapter 8. Messaging resources 1861

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 To enable applications to use this queue, you must add the queue name to the Queue Names field on the

panel for the JMS server that hosts the queue.

 Data type String

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Default Null

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

1862 Administering WebSphere applications

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

When a persistent message is put to a queue, all

of the message data is written to the messaging

log (under the embedded_messaging_install\log

directory) to make recovery of the message

possible.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Chapter 8. Messaging resources 1863

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property.If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Version 5 WebSphere topic destination settings:

Use this panel to browse or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging by WebSphere application server Version 5 applications.

 A WebSphere topic destination is used to configure the properties of a JMS topic for the default

messaging provider on a Version 5 node in a deployment manager cell. Connections to the topic are

created by the associated topic connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS → JMS providers.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. In the content pane, click the name of the V5 default messaging provider that you want to support the

JMS destination.

4. Under Additional Resources, click Topics. This displays a list of any existing JMS topic destinations.

5. Click the name of the JMS topic destination that you want to work with.

A JMS topic destination for use with the Version 5 default messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

1864 Administering WebSphere applications

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the topic, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic, for your IBM WebSphere Application Server administrative

records.

 Data type String

Topic:

The name of the topic as defined to the JMS provider.

 Data type String

Default Null

Range The topic value can be dot notation and include wildcard

characters.

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

Chapter 8. Messaging resources 1865

Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON-PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Units Not applicable

Default APPLICATION DEFINED

1866 Administering WebSphere applications

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Configuring Version 5 default JMS resources

Use the following tasks to configure the JMS connection factories and destinations WebSphere Application

Server Version 5 applications.

About this task

You only need to complete these tasks if you have WebSphere application server Version 5 applications

that need to use JMS resources provided by the default messaging provider. Such JMS resources are

maintained as V5 Default Messaging resources.

In a deployment manager cell, you can use V5 Default Messaging resources to maintain Version 5 default

messaging resources for both Version 6 and Version 5 nodes in the cell.

v Configuring a connection for Version 5 default messaging

v Configuring a Version 5 default JMS queue connection factory

v Configuring a Version 5 default JMS topic connection factory

v Configuring a Version 5 default JMS queue destination

v Configuring a Version 5 default JMS topic destination

Configuring a connection for Version 5 default messaging:

Use this task to configure a connection to Version 5 default messaging. This task is provided to help you

manually migrate nodes from v5 to v6. If you use the supplied tools to migrate existing v5 nodes to v6, the

jmsserver, appserver and port that you create with this task are defined automatically.

 About this task

To configure a connection for Version 5 default messaging, use the administrative console to complete the

following steps:

Chapter 8. Messaging resources 1867

1. Create an application server with the name jmsserver (only one of these can exist on each node). In

the navigation pane, expand Servers → Application servers.

 2. On the new server, define a new JMSSERVER_QUEUED_ADDRESS port with the host set to the v6

server host, and the port set to the same as the SIB_MQ_ENDPOINT_ADDRESS of the server which

is a member of your bus. The appserver called jmsserver does not actually have to be started; it is

only used for looking up the port address.

 3. Define a queue connection factory and queue at the Node or Cell scope. In the navigation pane,

expand Resources → JMS → JMS providers.

 4. In the content pane, click the name of the V5 default messaging provider.

 5. Define a queue destination on your bus with the same name as your queue defined under v5 default

messaging.

 6. Define an alias destination on your bus with the same name as your queue defined under v5 default

messaging but with WQ_ appended to the front the name. For example, if your queue has the name

MyV5Queue, your alias should have the name WQ_MyV5Queue.

 7. Point the alias at your queue destination with the correct name. The migration process targets the

queue with the WQ_ prefix; defining the alias to point to the real queue helps migration.

 8. Define the WebSphere MQ Client Link on your messaging engine on the bus. Keep the WebSphere

MQ channel name WAS.JMS.SVRCONN and set the queue manager name so that it contains your

node name. For example, if your node name is MyNode, you would set the queue manager name to

WAS_<MyNode>_jmsserver. Now set the queue manager name to the same; in this example it would

be WAS_MyNode_jmsserver. The WebSphere MQ Client Link will show a status of inactive, this is

normal.

 9. Restart your server so that the new JNDI definitions bind correctly. Your v5 client should now be able

to connect to v6 using the host and bootstrap address of the v6 system in the provider url component

of the initial context. Your client should now also be able to send messages to the destination on the

bus.

10. If you open the Client connections view and click the refresh icon, the hostname of the connecting

system is visible whilst the client is connected. In the navigation pane, expandBuses → [bus name] →

Messaging engines → [messaging engine name] → WebSphere MQ client links → [client link

name] → Runtime → Client connections view.

11. Click OK.

12. Save any changes to the master configuration.

13. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 queue connection factory:

Use this task to browse or change the properties of a JMS queue connection factory for point-to-point

messaging with the default messaging provider on a Version 5 node in a deployment manager cell. This

task contains an optional step for you to create a new JMS queue connection factory.

 About this task

To configure a JMS queue connection factory for use by WebSphere application server Version 5

applications, use the administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS providers.

2. Select the Version 5 provider for which you want to configure a queue connection factory.

3. Optional: Change the Scope setting to the level at which the JMS queue connection factory is visible

to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

4. In the content pane, under Additional Properties, click Queue connection factories This displays any

existing JMS queue connection factories for the Version 5 messaging provider in the content pane.

1868 Administering WebSphere applications

5. To browse or change an existing JMS queue connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS queue connection factory is known for administrative

purposes within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS queue connection factory into the name

space.

c. Click Apply. This defines the JMS queue connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the queue connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 JMS topic connection factory:

Use this task to browse or change a JMS topic connection factory for publish/subscribe messaging by

WebSphere Application Server Version 5 applications.

 About this task

To configure a JMS topic connection factory for use by WebSphere application server Version 5

applications, use the administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS providers.

2. Select the Version 5 provider for which you want to configure a topic connection factory.

3. Optional: Change the Scope setting to the level at which the JMS topic connection factory is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

4. In the content pane, under Additional Properties, click Topic connection factories This displays any

existing JMS topic connection factories for the Version 5 messaging provider in the content pane.

5. To browse or change an existing JMS topic connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS topic connection factory is known for administrative purposes

within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS topic connection factory into the name space.

c. Click Apply. This defines the JMS topic connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the topic connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Chapter 8. Messaging resources 1869

Configuring a Version 5 WebSphere queue destination:

Use this task to browse or change the properties of a JMS queue destination for point-to-point messaging

by WebSphere Application Server Version 5 applications. This task contains an optional step for you to

create a new topic destination.

 About this task

To configure a JMS queue destination for use by WebSphere Application Server Version 5 applications,

use the administrative console to complete the following steps:

 1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS

→ JMS providers.

 2. Optional: Change the Scope setting to the level at which the JMS destination is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

 3. Select the Version 5 provider for which you want to configure a queue destination.

 4. In the content pane, under Additional Properties, click Queues This displays any existing queue

destinations for the Version 5 default messaging provider in the content pane.

 5. To browse or change an existing JMS queue destination, click its name in the list. Otherwise, to

create a new queue destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within

IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the queue destination into the name space.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables

you to browse or change additional properties.

 6. Optional: Change properties for the queue destination, according to your needs.

 7. Click OK.

 8. Save any changes to the master configuration.

 9. To make a queue destination available to applications, host the queue on a JMS server. To add a

new queue to a JMS server or to change an existing queue on a JMS server, you define the

administrative name of the queue to the JMS server.

To define the administrative name of the queue to the JMS server, see Managing Version 5 JMS

servers in a deployment manager cell.

10. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 WebSphere topic destination:

Use this task to browse or change the properties of a JMS topic destination for publish/subscribe

messaging by WebSphere application server Version 5 applications.. This task contains an optional step

for you to create a new topic destination.

 About this task

To configure a JMS topic destination for use WebSphere Application Server Version 5 applications, use the

administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS providers.

1870 Administering WebSphere applications

2. Select the Version 5 provider for which you want to configure a topic destination.

3. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can look up and

use that JMS resource.

4. In the content pane, under Additional Properties, click Topics This displays any existing JMS topic

destinations for the Version 5 default messaging provider in the content pane.

5. To browse or change an existing JMS topic destination, click its name in the list. Otherwise, to create a

new topic destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this topic destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the topic destination into the name space.

Topic The name of the topic in the default messaging provider, to which messages are sent.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

6. Optional: Change properties for the topic destination, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Managing Version 5 JMS servers in a deployment manager cell

Use this task to manage JMS servers on WebSphere Application Server Version 5 nodes in a deployment

manager cell.

About this task

The use of JMS servers is only intended to support migration from WebSphere Application Server Version

5 nodes to WebSphere Application Server Version 6.

In a WebSphere Application Server deployment manager cell, each Version 5 node can have at most one

JMS server, and any Version 5 application server within the cell can use JMS resources served by any of

those JMS servers. Applications on WebSphere Application Server Version 6 can also use JMS resources

served by any of those JMS servers.

You can use the WebSphere administrative console to display a list of all Version 5 JMS servers, to show

and control their runtime status. You can also configure a general set of JMS server properties, which add

to the default values of properties configured automatically for the Version 5 default messaging provider.

Note: In general, the default values of properties for the Version 5 default messaging provider are

adequate for JMS servers. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, WebSphere MQ properties for log file

locations, file pages, and buffer pages. For more information about configuring WebSphere MQ

properties, see the WebSphere MQ System Administration book, SC33-1873, which is available

from the IBM Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

To manage a Version 5 JMS server, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers → JMS Servers This displays a table of the JMS servers,

showing their runtime status.

2. Optional: If you want to change the runtime status of a JMS server, complete the following steps:

Chapter 8. Messaging resources 1871

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

a. In the table of JMS servers, select the JMS servers that you want to act on.

v To act on one or more specific JMS servers, select the check box next to the JMS server name.

v To act on all JMS servers, select the check box next to the JMS servers title of the table.

b. Click one of the actions displayed to change the status of the JMS servers; for example, click Stop

to stop a JMS server.

The status of the JMS servers that you have acted on is updated to show the result of your actions.

3. Optional: If you want to change the properties of a JMS server, complete the following steps:

a. Click the name of the server

b. Set one or more of the following configuration properties:

Initial state

If you want the JMS server to be started automatically when the application server is next

started, set this property to Started.

Number of threads

Set the number of concurrent threads to be used by the publish/subscribe matching

engine. The number of concurrent threads should only be set to a small number.

4. Optional: If you want the JMS server to host a new JMS queue, add the queue name to the Queue

Names field.

The name must match the name of a JMS Queue administrative object, including the use of upper-

and lowercase.

5. Optional: If you want to stop the JMS server hosting a JMS queue, remove the queue name from the

Queue Names field.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the JMS server.

Configuring authorization security for a Version 5 default messaging provider

Use this task to configure authorization security for the default messaging provider on a WebSphere

Application Server Version 5 node in a deployment manager cell.

About this task

To configure authorization security for the Version 5 default messaging provider complete the following

steps.

Note: Security for the Version 5 default messaging provider is enabled when you enable WebSphere

Application Server security on the Version 5 node. For more information about enabling security,

see Enabling security.

1. Configure authorization settings to access JMS resources owned by the embedded messaging

subsystem.

Authorization to access JMS resources owned by the embedded messaging subsystem is controlled by

settings in the profile_root\config\cells\your_cell_name\integral-jms-authorizations.xml file.

The settings grant or deny authenticated users access to messaging resources (queues or topics). As

supplied, the integral-jms-authorisations.xml file grants the following permissions:

v Read and write permissions to all queues.

v Pub, sub, and persist to all topics.

To configure authorization settings, edit the integral-jms-authorisations.xml file according to the

information in this topic and in that file. Please note the file is in Unicode, which requires a binary FTP

to the host from a workstation.

2. Edit the queue-admin-userids element to create a list of userids with administrative access to all

queues. Administrative access is needed to create queues and perform other administrative activities

on queues. For example, consider the following queue-admin-userids section:

1872 Administering WebSphere applications

<queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

</queue-admin-userids>

In this example the userids adminid1 and adminid2 are defined to have administrative access to all

queues.

3. Edit the queue-default-permissions element to define the default queue access permissions. These

permissions are used for queues for which you do not define specific permissions (in queue sections).

If this section is not specified, then access permissions exist only for those queues for which you have

specifically created queue elements.

For example, consider the following queue-default-permissions element:

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

In this example the default access permission for all queues is write. This can be overridden for a

specific queue by creating a queue element that sets its access permission to read.

4. If you want to define specific access permissions for a queue, create a queue element, then define the

following elements:

For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

In this example for the queue q1, the userid useridr has read permission, the userid useridw has write

permission, the userid useridrw has both read and write permissions, and all other userids have no

access permissions (<public></public>).

5. Edit topic elements to define the access permissions for publish/subscribe topic destinations.

For topics, you can grant and deny access permissions. Full permission inheritance is supported on

topics. If you do not define specific access permissions for a userid on a specific topic then

permissions are inherited first from the public permissions on that topic then from the parent topic. The

inheritance of access permissions continues until the root topic from which the root permissions are

assumed.

a. If you want to define default access permissions for the root topic, edit a topic element with an

empty name element. If you omit such a topic section, topics have no default topic permissions

other than those defined by specific topic elements. For example, consider the following topic

element for the root topic:

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

Chapter 8. Messaging resources 1873

In this example, the default access permission for all topics is set to publish. This can be

overridden by other topic elements for specific topic names.

b. If you want to define access permissions for a specific topic, create a topic element with the name

for the topic then define the access permissions in the public and authorize elements of the topic

element. For example, consider the following topic section:

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

In this example, the subscribe permission is granted to anyone accessing any topic whose name

starts with a/b/c. Also, the userid useridpub is granted publish permission for any topic whose

name starts with a/b/c.

6. Save the integral-jms-authorizations.xml file.

Results

If the dynamic update setting is selected, changes to the integral-jms-authorizations.xml file become active

when the changed file is saved, so there is no need to stop and restarted the JMS server. If the dynamic

update setting is not selected, you need to stop and restart the JMS server to make changes active.

Authorization settings for Version 5 default JMS resources:

Use the integral-jms-authorisations.xml file to view or change the authorization settings for Java Message

Service (JMS) resources owned by the default messaging provider on WebSphere Application Server

Version 5 nodes.

 Authorization to access default JMS resources owned by the default messaging provider on WebSphere

Application Server nodes is controlled by the following settings in the was_install\config\cells\
your_cell_name\integral-jms-authorisations.xml file.

This structure of the settings in integral-jms-authorisations.xml is shown in the following example.

Descriptions of these settings are provided after the example. To configure authorization settings, follow

the instructions provided in Configuring authorization security for the Version 5 JMS providers

<integral-jms-authorizations>

 <dynamic-update>true</dynamic-update>

 <queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

 </queue-admin-userids>

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

1874 Administering WebSphere applications

<authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 </queue>

 <queue>

 <name>q2</name>

 <public>

 <permission>write</permission>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 </queue>

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

</integral-jms-authorizations>

dynamic-update: Controls whether or not the JMS Server checks dynamically for updates to this file.

true (Default) Enables dynamic update support.

false Disables dynamic update checking and improves authorization performance.

queue-admin-userids: This element lists those userids with administrative access to all Version 5 default

queue destinations. Administrative access is needed to create queues and perform other administrative

activities on queues. You define each userid within a separate userid sub element:

<userid>adminid</userid>

Where adminid is a user ID that can be authenticated by IBM WebSphere Application Server.

queue-default-permissions: This element defines the default queue access permissions that are assumed

if no permissions are specified for a specific queue name. These permissions are used for queues for

which you do not define specific permissions (in queue elements). If this element is not specified, then no

access permissions exist unless explicitly authorized for individual queues.

You define the default permission within a separate permission sub element:

<permission>read-write</permission>

Where read-write is one of the following keywords:

read By default, userids have read access to Version 5 default queue destinations.

write By default, userids have write access to Version 5 default queue destinations.

queue: This element contains the following authorization settings for a single queue destination:

name The name of the queue.

public The default public access permissions for the queue. This is used only for those userids that have

Chapter 8. Messaging resources 1875

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the queue.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain the keyword read or write to define the access permission.

 For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

topic: This element contains the following authorization settings for a single topic destination:

Each topic element has the following sub elements:

name The name of the topic, without wildcards or other substitution characters.

public The default public access permissions for the topic. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the topic.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain one of the following keywords to define the access permission:

+pub Grant publish permission

+sub Grant subscribe permission

+persist

Grant persist permission

-pub Deny publish permission

-sub Deny subscribe permission

-persist

Deny persist permission

1876 Administering WebSphere applications

JMS components on Version 5 nodes

To provide messaging support on a WebSphere Application Server Version 5 node, there is at most one

JMS server and some number of JMS resources configured for the default messaging JMS provider on

that node.

A JMS server on a Version 5 node serves the JMS resources (connection factories and destinations) for

that node. The JMS server is managed as a separate process to application servers on the same node.

Any application server within the domain can access JMS resources served by any JMS server on any

node in the domain.

A connection factory encapsulates the configuration properties used to create connections with the JMS

provider, to enable applications to access JMS destinations.

The main components of JMS support on a Version 5 node are shown in the figure The main components

of WebSphere JMS support.

Administering listener ports and activation specifications for

message-driven beans

Use these tasks to manage the listener ports and activation specifications used by message-driven beans

(MDBs). If the JMS provider is implemented as a J2EE Connector Architecture (JCA) resource adapter use

an activation specification, otherwise use a listener port. These tasks are supplementary to the tasks of

administering resource adapters, and JMS provider resources.

About this task

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

M1

Message

JMS destinations

M2
Business logic beans (Enterprise JavaBeans)

M3 M4

D1 D2 D3

CF1 CF2

JMS Provider

Connection
factories

Connections

Destinations

Your_application_server

JMS server

Figure 22. The main JMS components on a version 5 node. This figure shows the main JMS components on a version

5 node, from JMS provider through a connection to a destination, then to a WebSphere enterprise application (acting

as a JMS client) that processes the message retrieved from the destination. For more information, see the text that

accompanies this figure.

Chapter 8. Messaging resources 1877

Use the WebSphere Application Server administrative console to configure the following resources for

message-driven beans:

v J2C activation specifications for JCA 1.5-compliant message-driven beans. Activation specifications

must be provided when the application’s resources are configured using the default messaging provider

or any generic J2C Resource Adapter that supports inbound messaging.

v The message listener service, listener ports, and listeners for EJB 2.0 message-driven beans deployed

against listener ports. Listener ports must be provided when using the following JMS providers: V5

Default Messaging, or Generic.

Listener port or activation specification?

WebSphere Application Server Version 6 or later supports the enhancements made to the EJB 2.1 and

Java EE specifications that allow any resource that has a JCA 1.5 adapter to trigger an MDB (formerly

only JMS resources could trigger MDBs). WebSphere Application Server Version 5 and EJB 2.0 used the

listener port which specified a JMS connection factory and a destination. This allowed a pool of MDB

instances to connect to the messaging system and listen to the designated destination. EJB 2.1 specifies

an additional requirement of an MDB working with a JCA adapter using an activation specification.

If you are developing WebSphere Application Server Version 6 or later applications, you should consider

the following questions:

v Should I use a listener port or an activation specification?

v Should I convert my existing listener ports to activation specifications?

v Will listener ports eventually not be supported anymore?

Here are some guidelines to help you decide:

v If you are using J2EE 1.2 and EJB 1.1 with WebSphere Application Server v4, MDBs are not used, so

you do not have to make a decision. WebSphere Application Server Version 4 uses message beans,

but these are not MDBs or EJBs.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server Version 5, you must use

listener ports. The MDBs are JMS MDBs that implement MessageListener, and there is no JCA support.

WebSphere Application Server Version 5 uses listener ports to associate MDB classes with their JMS

destinations.

v If you are using Java EE and EJB 2.1 with WebSphere Application Server Version 6 or later and not

using JMS, you must use activation specifications. A connector MDB uses JCA to access its resources,

so the connector must therefore be configured with an activation specification. This is for new bean

development, and does not affect the conversion of MDBs from EJB 2.0 to EJB 2.1.

v If you are using Java EE and EJB 2.1 with WebSphere Application Server Version 6 or later, the

decision depends on whether your JMS provider API is implemented with JCA. In Java EE, the JMS 1.1

API can now be implemented with the JCA 1.5 API. If so, your MDB is a JMS MDB that is implemented

as a connector MDB, and must therefore be configured with an activation specification. If not, this is the

same JMS situation as for J2EE 1.3, and you must configure this EJB 2.1 MDB in the same way as you

would configure an EJB 2.0 MDB, which in WebSphere Application Server is to use a listener port.

To summarize: in WebSphere Application Server Version 6 or later, the decision on whether or not to use a

listener port or an activation specification depends on the following scenarios:

v whether you upgrade your EJB 2.0 MDBs to EJB 2.1

v whether you want your EJB 2.1 MDB to use a JCA adapter

v whether you access your JMS provider via a JCA adapter.

If you have JMS API implementations that do not use JCA, WebSphere Application Server requires listener

ports; if all JMS API implementations use JCA, listener ports are no longer required.

You can update the configuration data at any time, but some updates only take effect when the

appropriate server is next started.

1878 Administering WebSphere applications

For additional information about administering support for message-driven beans, see the following topics:

v Configuring a JMS activation specification for MDBs used by the default messaging provider

v “Configuring a J2C activation specification” on page 1810

v “Configuring a J2C administered object” on page 1815

v Configuring message listener resources for EJB 2.0 message-driven beans

Configuring a J2C activation specification

Use this task to configure a J2EE Connector (J2C) activation specification used to deploy message-driven

beans with an external resource adapter.

About this task

Use this task if you want to use a message-driven bean as a listener on a Java Connector Architecture

(JCA) 1.5 resource adapter other than the default messaging JMS provider.

You can create or modify a J2C activation specification under an installed resource adapter at the cell,

node, or server scope. You can select the message listener type from those provided by the given

resource adapter.

Configuring a J2C activation specification offers two distinct advantages:

v The activation specification configuration information can be shared among multiple message-driven

beans across multiple applications.

v Updates to the configuration properties can be made without the need to redeploy the application.

The following guidelines show which scenarios use activation specifications or listener ports:

v If you are using J2EE 1.2 and Enterprise JavaBeans (EJB) 1.1 with WebSphere Application Server

Version 4, message-driven beans are not used so you do not need listener ports or activation

specifications. WebSphere Application Server Version 4 uses message beans, but these are not

message-driven beans or enterprise beans.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server Version 5, you must use

listener ports. The message-driven beans are JMS message-driven beans that implement

MessageListener, and there is no JCA support. WebSphere Application Server Version 5 uses listener

ports to associate message-driven bean classes with their JMS destinations.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server Version 6, you must use

activation specifications. A connector message-driven bean uses JCA to access its resources, so the

connector must therefore be configured with an activation specification. This is for new bean

development, and does not affect the conversion of message-driven beans from EJB 2.0 to EJB 2.1.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server Version 6, the decision

depends on whether your JMS provider API is implemented with JCA. In J2EE 1.4, the JMS 1.1 API can

now be implemented with the JCA 1.5 API. If so, your message-driven bean is a JMS message-driven

bean that is implemented as a connector message-driven bean, and must therefore be configured with

an activation specification. If not, this is the same JMS situation as for J2EE 1.3, and you must

configure this EJB 2.1 message-driven bean in the same way as you would configure an EJB 2.0

message-driven bean, which in WebSphere Application Server is to use a listener port.

To configure a J2C activation specification for an external resource adapter, use the administrative console

to complete the following steps. This task contains an optional step for you to create a new activation

specification.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

Chapter 8. Messaging resources 1879

friend.sib/tasks/tjn0025_.dita

3. In the content pane, under the Activation specifications heading, click J2C Activation Specifications.

This lists any existing J2C activation specifications for the external resource adapter in the content

pane.

4. Display the properties of the J2C activation specification. If you want to display an existing J2C

activation specification, click one of the names listed.

Alternatively, if you want to create a new J2C activation specification, click New, then specify the

following required properties:

Name Type the name by which the activation specification is known for administrative purposes. The

JNDI name is automatically generated based on the value for the Name property.

Message listener type

Select the message listener type that this activation specification instance should support. This

list is based on the deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

activation specification, you may need to click Apply before this custom property selection is available.

5. Specify properties for the activation specification, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Activation Specifications collection:

This page contains a list of J2C activation specifications for a resource adapter configuration and is used

to create new J2C activation specifications, to select J2C activation specifications for configuration

changes, or to delete J2C activation specifications.

 Activation specification definitions and classes are provided by a resource adapter when it is installed.

Using this information, the administrator can create and configure J2C activation specifications with JNDI

names that are then available for applications to use. The resource adapter uses a J2C activation

specification to configure a specific endpoint instance. Each application configuring one or more endpoints

must specify the resource adapter that sends messages to the endpoint. The application must use the

activation specification to provide the configuration properties related to the processing of the inbound

messages.

The following guidelines show which scenarios use activation specifications or listener ports:

v If you are using Java 2 Platform, Enterprise Edition (J2EE) 1.2 and EJB 1.1 with WebSphere Application

Server v4, MDBs are not used so you do not need listener ports or activation specifications. WebSphere

Application Server v4 uses message beans, but these are not MDbs or EJBs.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server v5, you must use listener

ports. The MDBs are JMS MDBs that implement MessageListener, and there is no JCA support.

WebSphere Application Server v5 uses listener ;ports to associate MDB classes with their JMS

destinations.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server v6, you must use activation

specifications. A connector MDB uses JCA to access its resources, so the connector must therefore be

configured with an activation specification. This is for new bean development, and does not affect the

conversion of MDBs from EJB 2.0 to EJB 2.1.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server v6, the decision depends on

whether your JMS provider API is implemented with JCA. In J2EE 1.4, the JMS 1.1 API can now be

implemented with the JCA 1.5 API. If so, your MDB is a JMS MDB that is implemented as a connector

MDB, and must therefore be configured with an activation specification. If not, this is the same JMS

situation as for J2EE 1.3, and you must configure this EJB 2.1 MDB in the same way as you would

configure an EJB 2.0 MDB, which in WebSphere Application Server is to use a listener port.

You can access this administrative console page in one of two ways:

1880 Administering WebSphere applications

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C activation

specifications.

v Resources → Resource Adapters → J2C activation specifications.

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this activation specification. Only applications

that are installed within this scope can use this activation specification.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Message Listener Type:

The Message Listener Type that is used by this activation specification.

 The list of available classes is provided by the resource adapter.

 Data type String

J2C Activation Specifications settings:

Use this page to specify the settings for a J2C activation specification.

 The resource adapter uses a J2C activation specification to configure a specific endpoint instance. Each

application configuring one or more endpoints must specify the resource adapter that sends messages to

the endpoint. The application must use the activation specification to provide the configuration properties

related to the processing of the inbound messages.

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C activation

specifications → activation_specification.

Chapter 8. Messaging resources 1881

v Resources → Resource Adapters → J2C activation specifications → activation_specification.

Scope:

Specifies the scope of the resource adapter that supports this activation specification. Only applications

that are installed within this scope can use this activation specification.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification. Name

is required

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Authentication alias:

This optional field is used to bind the J2C activation specification to an authentication alias (configured

through the security JAAS screens).

 This alias is used to access a user name and password that are set on the configured J2C activation

specification. This field is only meaningful if the J2C activation specification you are configuring has a

UserName and Password field.

If you have defined security domains in the application server, you can click Browse... to select a J2C

authentication alias for the resource that you are configuring. Security domains allow you to isolate J2C

authentication aliases between servers. The tree view is useful in determining the security domain to which

an alias belongs, and the tree view can help you determine the servers that will be able to access each

authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when

you cannot use them.

 Data type Text

1882 Administering WebSphere applications

Message Listener Type:

The Message Listener Type used by this activation specification.

 For new objects, the list of available classes is provided by the resource adapter in a drop-down list. After

you create the activation specification, the field is a read only text field.

 Data type Drop-down list or text

Destination JNDIName:

The destination JNDIName field only appears when a message of type javax.jms.Destination with name

Destination is received.

Configuring a J2C administered object

Use this task to configure a J2C administered object used to configure objects with an external resource

adapter.

About this task

To configure a J2C administered object for an external resource adapter, use the administrative console to

complete the following steps. This task contains an optional step for you to create a new administered

object.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Additional Properties heading, click J2C Administered Objects. This

lists any existing J2C administered objects for the external resource adapter in the content pane.

4. Display the properties of the J2C administered object. If you want to display an existing J2C

administered object, click one of the names listed.

Alternatively, if you want to create a new J2C administered object, click New, then specify the following

required properties:

Name Type the name by which the J2C administered object is known for administrative purposes.

The JNDI name is automatically generated based on the value for the Name property.

Administered object class

Select the administered object class that this instance should support. This list is based on the

deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

administered object, you may need to click Apply before this custom property selection is available.

5. Specify properties for the administered object, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Administered Objects collection:

Use this page to specify administered object settings for a Resource Adapter.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

Chapter 8. Messaging resources 1883

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C administered

objects

v Resources → Resource Adapters → Resource adapters → J2C administered objects

Name:

Specifies display name assigned to this administered object.

 Data type String

JNDI Name:

Specifies the JNDI name of the administered object.

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this administered object. Only applications that

are installed within this scope can use this object.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

Description:

Specifies a description for the administered object.

 Data type String

Administered object class:

Specifies the Administered Object class that is associated with this J2C administered object. This class

must be one that is provided by the resource adapter.

 Data type String

J2C Administered Object settings:

Use this page to specify the settings for an administered object.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

1884 Administering WebSphere applications

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources → Resource Adapters → Resource adapters → resource_adapter → J2C administered

objects → J2C_administered_object

v Resources → Resource Adapters → Resource adapters → J2C administered objects →

J2C_administered_object

Scope:

Specifies the scope of the resource adapter that supports this administered object. Only applications that

are installed within this scope can use this object.

 Data type String

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

 Data type String

Name:

Specifies the name of the J2C administered object instance.

 A string with no spaces meant to be a meaningful text identifier for the administered object. This name is

required.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name that this administered object is bound

under.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Description:

Specifies a text description of the J2C administered object instance.

 Data type String

Administered object class:

For new objects, the list of available classes is provided by the resource adapter in a drop-down list. You

can only select classes from this list.

Chapter 8. Messaging resources 1885

After you create the administered object, you cannot modify the administered object class; it is read only.

 Data type Class name

Configuring message listener resources for message-driven beans

Use the following tasks to configure resources needed by the message listener service to support

message-driven beans for use with a JMS provider that does not have a J2EE Connector Architecture

(JCA) 1.5 resource adapter.

About this task

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

such as the default messaging provider that is part of WebSphere Application Server Version 6. With a

JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA resources to use a J2C

activation specification. If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5

Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a listener

port (as in WebSphere Application Server Version 5).

Here are some guidelines on which scenarios use listener ports or activation specifications:

v If you are using J2EE 1.2 and EJB 1.1 with WebSphere Application Server v4, MDBs are not used, so

you do not used listener ports or activation specifications because WebSphere Application Server v4

uses message beans, but these are not MDbs or EJBs.

v If you are using J2EE 1.3 and EJB 2.0 with WebSphere Application Server v5, you must use listener

ports. The MDBs are JMS MDBs that implement MessageListener, and there is no JCA support.

WebSphere Application Server v5 uses listener ports to associate MDB classes with their JMS

destinations.

v If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server v6, the decision depends on

whether your JMS provider API is implemented with JCA. In J2EE 1.4, the JMS 1.1 API can be

implemented with the JCA 1.5 API.

– If your JMS provider API is implemented with JCA, your MDB is a JMS MDB that is implemented as

a connector MDB. A connector MDB uses JCA to access its resources, and so the connector must

be configured with an activation specification. This is for new bean development, and does not affect

the conversion of MDBs from EJB 2.0 to EJB 2.1.

– If your JMS provider API is not implemented with JCA, you have the same JMS situation as for Java

EE 1.3, and you must configure this EJB 2.1 MDB in the same way as you would configure an EJB

2.0 MDB, which in WebSphere Application Server is to use a listener port.

If you want to deploy an enterprise application to use JMS message-driven beans with a JMS provider that

does not have a JCA 1.5 resource adapter, refer to the following subtopics:

v “Configuring the message listener service” on page 1818

v “Creating a new listener port” on page 1825

v “Configuring a listener port” on page 1826

v “Deleting a listener port” on page 1827

v “Administering listener ports” on page 1827

Configuring the message listener service:

Use this task to configure the properties of the message listener service for an application server, to

support message-driven beans deployed against listener ports.

1886 Administering WebSphere applications

About this task

If the JMS provider does not have a J2EE Connector Architecture (JCA) 1.5 resource adapter, such as the

V5 Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a

listener port (as in WebSphere Application Server Version 5).

If you want to deploy an enterprise application to use message-driven beans with listener ports, you can

use this task to browse or change the configuration of the message listener service for an application

server.

To configure the message listener service for an application server, use the administrative console to

complete the following steps:

1. Display the listener service settings page:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

2. Optional: Browse or change the value of properties for the message-driven bean thread pool.

a. Click Thread Pool

b. Change the following properties, to suit your needs:

Minimum size

The minimum number of threads to allow in the pool.

Maximum size

The maximum number of threads to allow in the pool.

Thread inactivity timeout

The number of milliseconds of inactivity that should elapse before a thread is reclaimed. A

value of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a

negative number. To do this you must modify the value directly in the config.xml file.

Allow thread allocation beyond maximum thread size

Select this check box to enable the number of threads to increase beyond the maximum

size configured for the thread pool.

c. Click OK.

3. Optional: Specify any of the following optional properties that you need, as Custom properties of the

message listener service:

NON.ASF.RECEIVE.TIMEOUT, MQJMS.POOLING.TIMEOUT, MQJMS.POOLING.THRESHOLD,

MAX.RECOVERY.RETRIES, and RECOVERY.RETRY.INTERVAL.

For more information about these custom properties, see Custom Properties.

To browse or change the properties, complete the following steps:

a. Click Custom properties

b. For each custom property, specify a value to suit your needs.

If you have not specified a property before:

1) Click New.

2) Type the name of the property.

3) Type the value of the property.

4) Click OK.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the Application Server.

Chapter 8. Messaging resources 1887

Message listener service:

The message listener service is an extension to the JMS functions of the JMS provider. It provides a

listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS

destination on behalf of a deployed message-driven bean.

 To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service

Custom Properties:

An optional set of name and value pairs for custom properties of the message listener service.

 You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

v “DYNAMIC.CONFIGURATION.ENABLED” on page 1825

Message listener port collection:

The message listener ports configured in the administrative domain

 This panel displays a list of the message listener ports configured in the administrative domain. Each

listener port is used with a message-driven bean to automatically receive messages from an associated

JMS destination. You can use this panel to add new listener ports or to change the properties of existing

listener ports.

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

To view this administrative console panel, click Servers → Application Servers → application_server →

[Messaging] Message Listener Service → Listener Ports

To manage a listener port, enable the Select check box beside the listener port name in the list and click a

button:

 Button Resulting action

Convert to activation

specification

Opens a wizard that helps you convert the selected listener port to an activation

specification.

New Accesses the panel to configure a new listener port.

Delete Deletes the selected listener port or ports.

Start Starts the selected listener port or ports.

Stop Stops the selected listener port or ports.

For more information about asynchronous messaging, see “Asynchronous messaging in WebSphere

Application Server using JMS” on page 290.

1888 Administering WebSphere applications

Listener port settings:

A listener port is used to simplify administration of the association between a connection factory,

destination, and deployed message-driven bean.

 Use this panel to view or change the configuration properties of the selected listener port.

To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

Name:

The name by which the listener port is known for administrative purposes.

 Data type String

Default Null

Initial state:

The state that you want the listener port to have when the application server is next restarted

 Data type Enum

Units Not applicable

Default Started

Range Started

When the application server is next started, the

listener port is started automatically.

Stopped

When the application server is next started, the

listener port is not started automatically. If

message-driven beans are to use this listener

port on the application server, the system

administrator must start the port manually or

select the Started value of this property then

restart the application server.

Description:

A description of the listener port, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Connection factory JNDI name:

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1.

 Data type String

Default Null

Destination JNDI name:

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

Chapter 8. Messaging resources 1889

You cannot use a temporary destination for late responses.

 Data type String

Default Null

Maximum sessions:

Specifies the maximum number of concurrent sessions that a listener can have with the JMS server to

process messages.

 Each session corresponds to a separate listener thread and therefore controls the number of concurrently

processed messages. Adjust this parameter when the server does not fully use the available capacity of

the machine and if you do not need to process messages in a specific message order.

 Data type Integer

Units Sessions

Default 1

Range 1 through 2147483647

Recommended v If you want to process messages in a strict message

order, set the value to 1, so only one thread is ever

processing messages.

v If you want to process multiple messages

simultaneously (known as “message concurrency”), set

this property to a value greater than 1. Keep this value

as low as possible to prevent overloading client

applications. A good starting point for a 100% JMS

workload with short transaction times is 2 to 4 sessions

per processor. If longer running transactions exist, you

may need more sessions, which should be determined

by experimentation.

Maximum retries:

The maximum number of times that the listener tries to deliver a message to a message-driven bean

instance before the listener is stopped, in the range 0 through 2147483647.

Note: A WebSphere MQ queue has a similar property called the BackoutThreshold property. If your

listener port is reading from a WebSphere MQ queue, then the retry limit and the behavior when

the limit is reached is determined by whichever of these two properties is set to the lower limit:

v If you exceed the WebSphere MQ queue BackoutThreshold limit, the message that cannot be

delivered is moved to somewhere else by WebSphere MQ (for example, to the WebSphere MQ

backout requeue queue or the WebSphere MQ dead letter queue) and the listener port services

the next message on the queue. In this case, WebSphere Application Server might not know that

the message has not been delivered successfully.

v If you exceed the listener port maximum retries limit, the listener port stops. You then manually

intervene to investigate the problem, possibly to remove the message from the WebSphere MQ

queue then restart the listener port.

 Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

Maximum messages:

1890 Administering WebSphere applications

The maximum number of messages that the listener can process in one transaction.

 If the queue is empty, the listener processes each message when it arrives. Each message is processed

within a separate transaction.

For the WebSphere V5 default messaging provider or WebSphere MQ as the JMS provider, if messages

start accumulating on the queue then the listener can start processing messages in batches. For

third-party messaging providers, this property value is passed to the JMS provider but the effect depends

on the JMS provider.

 Data type Integer

Units Number of messages

Default 1

Range 1 through 2147483647

Recommended For the WebSphere default messaging providers or

WebSphere MQ as the JMS provider, if you want to

process multiple messages in a single transaction, then

set this value to more than 1. If messages start

accumulating on the queue, then a value greater than 1

enables multiple messages to be batch-processed into a

single transaction, and eliminates much of the overhead of

transactions on JMS messages.

Note:

v If one message in the batch fails processing with an

exception, the entire batch of messages is put back on

the queue for processing.

v Any resource lock held by any of the interactions for the

individual messages are held for the duration of the

entire batch.

v Depending on the amount of processing that messages

need, and if XA transactions are being used, setting a

value greater than 1 can cause the transaction to time

out. If an XA transaction does time out routinely

because processing multiple messages exceeds the

transaction timeout, reduce this property to 1 (to limit

processing to one message per transaction) or increase

your transaction timeout.

Message listener service custom properties:

Use this panel to view or change an optional set of name and value pairs for custom properties of the

message listener service.

 To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Custom Properties

You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

v DYNAMIC.CONFIGURATION.ENABLED

Chapter 8. Messaging resources 1891

NON.ASF.RECEIVE.TIMEOUT:

The timeout in milliseconds for synchronous message receives performed by message-driven bean listener

sessions in the non-ASF mode of operation.

 You should set this property to a non-zero value only if you want to enable the non-ASF mode of operation

for all message-driven bean listeners on the application server.

The message listener service has two modes of operation, Application Server Facilities (ASF) and

non-Application Server Facilities (non-ASF).

v The ASF mode is meant to provide concurrency and transactional support for applications. For

publish/subscribe message-drive beans, the ASF mode provides better throughput and concurrency,

because in the non-ASF mode the listener is single-threaded.

v The non-ASF mode is mainly for use with third-party messaging providers that do not support JMS ASF,

which is an optional extension to the JMS specification. The non-ASF mode is also transactional but,

because the path length is shorter than the ASF mode, usually provides improved performance.

Use non-ASF if:

– Your third-party messaging provider does not provide JMS ASF support

– You are using message-driven beans with WebSphere topic connections with the DIRECT port,

because the embedded publish/subscribe broker using that port does not support XA transactions or

JMS ASF.

– Message order is a strict requirement

 Data type Integer

Units Milliseconds

Default ASF mode (custom property not created)

Range 0 or greater milliseconds

0 non-ASF mode is disabled

1 or more

The timeout in milliseconds for non-ASF

message-driven bean listener synchronous

session receives

Recommended If a transaction timeout occurs, the message must recycle

causing extra work. If you want to use the non-ASF mode,

set this property to lower than the transaction timeout, but

leave spare at least the maximum duration of your

message-driven bean’s onMessage() method. For

example, if your message-driven bean’s onMessage()

method typically takes a maximum of 10 seconds, and the

transaction timeout is set to 120 seconds, you might set

the NON.ASF.RECEIVE.TIMEOUT property to no more

than 110000 (110000 milliseconds, that is 110 seconds).

MQJMS.POOLING.TIMEOUT:

The number of milliseconds after which a connection in the pool is destroyed if it has not been used.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used

for five minutes.

 Data type Integer

Units Milliseconds

Default 5 minutes

Range

1892 Administering WebSphere applications

MQJMS.POOLING.THRESHOLD:

The maximum number of unused connections in the pool.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if there are more than

ten unused connections in the pool.

 Data type Integer

Units Number of connections

Default 10

Range

MAX.RECOVERY.RETRIES:

The maximum number of times that a listener port managed by this service tries to recover from a failure

before giving up and stopping. When stopped the associated listener port is changed to the stop state.

The interval between retry attempts is defined by the RECOVERY.RETRY.INTERVAL custom property.

 A failure can be one of two things:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a

network error.

 Data type Integer

Units Retry attempts

Default 5

Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL:

The time in seconds between retry attempts by a listener port to recover from a failure. The maximum

number of retry attempts is defined by the MAX.RECOVERY.RETRIES custom property.

 A failure can be one of two things:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a

network error.

 Data type Integer

Units Seconds

Default 60

Range 1 through 2147483647

DYNAMIC.CONFIGURATION.ENABLED:

This property controls whether the application server on which a listener port is created requires to be

restarted. Set this property to true to enable dynamic configuration.

 Data type Boolean

Default False (not selected)

Chapter 8. Messaging resources 1893

Creating a new listener port:

Use this task to create a new listener port for the message listener service, so that message-driven beans

can be associated with the port to retrieve messages.

 About this task

Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server Version 5), you are recommended to deploy such beans as J2EE

Connector Architecture (JCA) 1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven

beans.

If you want to deploy an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to create a new listener port for a message-driven bean to retrieve messages from.

To create a new listener port, use the administrative console to complete the following steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Click New.

3. Specify the following required properties:

Name The name by which the listener port is known for administrative purposes.

Connection factory JNDI name

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1

Destination JNDI name

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

4. Optional: Change other properties for the listener port, according to your needs.

5. Click OK.

6. Save your changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

Results

If enabled, the listener port is started automatically when a message-driven bean associated with that port

is installed.

Configuring a listener port:

Use this task to browse or change the properties of an existing listener port, used by message-driven

beans associated with the port to retrieve messages.

 About this task

Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server Version 5), you are recommended to deploy such beans as J2EE

Connector Architecture (JCA) 1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven

beans.

1894 Administering WebSphere applications

If you have deployed an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to browse or change the configuration of a listener port that a message-driven bean retrieves

messages from.

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

To configure the properties of a listener port, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Click the name of the listener port that you want to work with. This displays the properties of the

listener port in the content pane.

3. Optional: Change properties for the listener port, according to your needs.

4. Click OK.

5. Save any changes to the master configuration.

6. To have a changed configuration take effect, stop then restart the application server.

Deleting a listener port:

Use this task to delete a listener port from the message listener service, to prevent message-driven beans

associated with the port from retrieving messages.

 About this task

To delete a listener port, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers-> Application Servers This displays a table of the application

servers in the administrative domain.

2. In the content pane, click the name of the application server. This displays the properties of the

application server in the content pane.

3. Under Communications, click Messaging → Message Listener Service This displays the Message

Listener Service properties in the content pane.

4. In the content pane, click Listener Ports. This displays a list of the listener ports.

5. In the content pane, select the check box for the listener port that you want to delete.

6. Click Delete. This action stops the port (needed to allow the port to be deleted) then deletes the port.

7. To save your configuration, click Save on the task bar of the Administrative console window.

8. To have the changed configuration take effect, stop then restart the application server.

Administering listener ports:

Use the following tasks to administer listener ports, which each define the association between a

connection factory, a destination, and a message-driven bean.

 About this task

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provider, refer to related tasks.

Chapter 8. Messaging resources 1895

You can use the WebSphere Application Server administrative console to administer listener ports, as

described in the following tasks.

Note: If configured as enabled, a listener port is started automatically when a message-driven bean

associated with that port is installed. You do not normally need to start or stop a listener port

manually.

v Adding a new listener port Use this task to create a new listener port, to specify a new association

between a connection factory, a destination, and a message-driven bean. This enables deployed

message-driven beans associated with the port to retrieve messages from the destination.

v Configuring a listener port Use this task to browse or change the configuration properties of a listener

port.

v Starting a listener port Use this task to start a listener port manually.

v Stopping a listener port Use this task to stop a listener port manually.

Starting a listener port:

Use this task to start a listener port on an application server, to enable the listeners for message-driven

beans associated with the port to retrieve messages.

 About this task

A listener is active, that is able to receive messages from a destination, if the deployed message-driven

bean, listener port, and message listener service are all started. Although you can start these components

in any order, they must all be in a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a message-driven bean associated

with that port is installed. However, you can start a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for each message-driven

bean associated with the port. If a message-driven bean is stopped, the port is started but the listener is

not started, and remains stopped. If you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to complete the following

steps:

1. If you want the listener for a deployed message-driven bean to be able to receive messages at the

port, check that the message-driven bean has been started.

2. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

3. Select the check box for the listener port that you want to start.

4. Click Start.

5. Save your changes to the master configuration.

Stopping a listener port:

Use this task to stop a listener port on an application server, to prevent the listeners for message-driven

beans associated with the port from retrieving messages.

1896 Administering WebSphere applications

About this task

When you stop a listener port as described in this topic, the listener manager stops the listeners for all

message-driven beans associated with the port.

To stop a listener port on an application server, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Select the check box for the listener port that you want to stop.

3. Click Stop.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

Message-driven beans - listener port components:

The WebSphere Application Server support for message-driven beans deployed against listener ports is

based on JMS message listeners and the message listener service, and builds on the base support for

JMS.

Note: From WebSphere Application Server Version 7 listener ports are deprecated. For information about

the facilities available to aid migration of configuration information from a listener port to an

activation specification for use with the Websphere MQ messaging provided, refer to related tasks.

The main components of WebSphere Application Server support for message-driven beans are shown in

the following figure and described after the figure:

Chapter 8. Messaging resources 1897

The message listener service is an extension to the JMS functions of the JMS provider and provides a

listener manager, which controls and monitors one or more JMS listeners.

Each listener monitors either a JMS queue destination (for point-to-point messaging) or a JMS topic

destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic

destination. Each connection factory encapsulates the configuration parameters needed to create a

connection to a JMS destination.

A listener port defines the association between a connection factory, a destination, and a deployed

message-driven bean. Listener ports are used to simplify the administration of the associations between

these resources.

When a deployed message-driven bean is installed, it is associated with a listener port and the listener for

a destination. When a message arrives on the destination, the listener passes the message to a new

instance of a message-driven bean for processing.

When an application server is started, it initializes the listener manager based on the configuration data.

The listener manager creates a dynamic session thread pool for use by listeners, creates and starts

MDB1

Message

Listeners

JMS destinations

MDB2Message-driven beans MDB3 MDB4

LP3

LP2

LP1

D1 D2 D3

Listener
manager

JMS server

CF1

CF2

JMS Provider

Connection
factories

Listener
ports

Connections

Destinations

WebSphere Application Server

Listener service

Figure 23. The main components for message-driven beans. This figure shows the main components of WebSphere

support for message-driven beans, from JMS provider through a connection to a destination, listener port, then

deployed message-driven bean that processes the message retrieved from the destination. Each listener port defines

the association between a connection factory, destination, and a deployed message-driven bean. The other main

components are the message listener service, which comprises a listener for each listener port, all controlled by the

same listener manager. For more information, see the text that accompanies this figure.

1898 Administering WebSphere applications

listeners, and during server termination controls the cleanup of listener message service resources. Each

listener completes several steps for the JMS destination that it is to monitor, including:

v Creating a JMS server session pool, and allocating JMS server sessions and session threads for

incoming messages.

v Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.

v If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB

method has completed.

v Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

Important file for message-driven beans

The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is important for the

operation of the WebSphere Application Server messaging service, so should not be deleted.

If you do need to delete the WAS_HOME/temp directory or other files in it, ensure that you preserve the

following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Learning about messaging with WebSphere Application Server

Use this topic to learn about the use of asynchronous messaging for enterprise applications with

WebSphere Application Server.

About this task

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) and J2EE Connector Architecture (JCA) programming interfaces.

These interfaces provide a common way for Java programs (clients and Java EE applications) to create,

send, receive, and read asynchronous requests, as messages. For additional information about messaging

resources, see: Messaging resources.

v “Types of messaging providers”

v “Styles of messaging in applications” on page 1904

v “JMS interfaces - explicit polling for messages” on page 1904

v “Message-driven beans - automatic message retrieval” on page 1906

v “Configuring JMS resources for the WebSphere MQ messaging provider” on page 1941

v “Message-driven beans - JCA components” on page 1907

v “WebSphere Application Server cloning and WebSphere MQ clustering” on page 1911

v “Asynchronous messaging - security considerations” on page 1913

Types of messaging providers

You can configure any of three main types of Java Message Service (JMS) providers in WebSphere

Application Server: The WebSphere Application Server default messaging provider (which uses service

integration as the provider), the WebSphere MQ messaging provider (which uses your WebSphere MQ

system as the provider) and third-party messaging providers (which use another company’s product as the

provider).

Overview

WebSphere Application Server supports JMS messaging through the following providers:

v “Default messaging provider” on page 1900

v “WebSphere MQ messaging provider” on page 1901

Chapter 8. Messaging resources 1899

v “Third-party messaging provider” on page 1901

Your applications can use messaging resources from any of these JMS providers. The choice of provider

is most often dictated by requirements to use or integrate with an existing messaging system. For

example, you might already have a messaging infrastructure based on WebSphere MQ. In this case, you

can either connect directly using the WebSphere MQ messaging provider, or configure a service

integration bus with links to a WebSphere MQ network and then access the bus through the default

messaging provider.

Note: For backwards compatibility with earlier releases, WebSphere Application Server Version 7 also

includes support for the Version 5 default messaging provider and the Version 6 WebSphere MQ

messaging provider. This support enables your applications that still use these resources to

communicate with Version 5 and Version 6 nodes in Version 7 mixed cells.

Default messaging provider

If you mainly want to use messaging between applications in WebSphere Application Server, perhaps with

some interaction with a WebSphere MQ system, the default messaging provider is the natural choice. This

provider is based on service integration technologies and is fully integrated with the WebSphere

Application Server runtime environment. To use the default messaging provider, you configure the following

resources:

v Configure a connection factory or activation specification to connect your application to a service

integration bus.

v Assign a queue or topic to a bus destination on the bus. This topic or queue is then available to any

application that can access the bus destination.

A service integration bus comprises messaging engines that run in WebSphere Application Server

processes and dynamically connect to one another using dynamic discovery. A messaging application

connects to the bus through a messaging engine. Messaging engines use WebSphere Application Server

clustering to provide high availability and scalability, and they use the same management framework as

the rest of WebSphere Application Server. Bus client applications can run from within WebSphere

Application Server (JMS), or run as stand-alone Java clients (using the J2SE Client for JMS) or run as

non-Java clients (XMS).

In a pure WebSphere Application Server environment, service integration provides the following benefits:

v An all-Java implementation for JMS within a single server process, yielding good performance for local

JMS traffic.

v Direct delivery of messages to a consumer application that is ready to receive them, without first writing

the messages to disk.

v Avoidance of copying and serialization of message payloads, if the application is written in accordance

with the typical pattern of a messaging application. For more information, see Why and when to pass

the JMS message payload by reference.

v Full integration of the administration model with WebSphere Application Server, providing management

of single and federated nodes within a cell.

v Full use of the provided WebSphere Application Server infrastructure for tracing and threading, and for a

range of communications protocols with a single point of administration.

v Extensive interoperation with WebSphere MQ networks.

There are two ways in which you can connect to a WebSphere MQ system through the default messaging

provider:

v Connect a bus to a WebSphere MQ network, using a WebSphere MQ link. The WebSphere MQ

network appears to the service integration bus as a foreign bus, and the service integration bus appears

to WebSphere MQ as another queue manager.

1900 Administering WebSphere applications

friend.sib/concepts/cjn_passbyref.dita
friend.sib/concepts/cjn_passbyref.dita

v Connect directly to WebSphere MQ queues located on WebSphere MQ queue managers or (for

WebSphere MQ for z/OS) queue-sharing groups, using a WebSphere MQ server bus member. Each

WebSphere MQ queue is made available at a queue-type destination on the bus.

For more information about these two approaches, see Overview of interoperation with WebSphere MQ.

To configure and manage messaging with the default messaging provider, see Managing messaging with

the default messaging provider.

WebSphere MQ messaging provider

If your business also uses WebSphere MQ, and you want to integrate WebSphere Application Server

messaging applications into a predominately WebSphere MQ network, choose the WebSphere MQ

messaging provider, which allows you to define resources for connecting to any queue manager on the

WebSphere MQ network.

WebSphere MQ is characterized as follows:

v Messaging is handled by a network of queue managers, each running in its own set of processes and

having its own administration.

v Features such as shared queues (on WebSphere MQ for z/OS) and WebSphere MQ clustering simplify

administration and provide dynamic discovery.

v Many IBM and partner products support WebSphere MQ with (for example) monitoring and control, high

availability and clustering.

v WebSphere MQ clients can run within WebSphere Application Server (JMS), or almost any other

messaging environment using a variety of APIs.

For more information about the WebSphere MQ messaging provider, see “Enhanced features of the

WebSphere MQ messaging provider.” To configure and manage messaging with this provider, see

“Managing messaging with the WebSphere MQ messaging provider” on page 1940. For more information

about scenarios and considerations for using WebSphere MQ with WebSphere Application Server, see the

white papers and IBM Redbooks publications provided by WebSphere MQ; for example, through the

WebSphere MQ library Web page at http://www.ibm.com/software/ts/mqseries/library/.

Third-party messaging provider

You can configure any third-party messaging provider that supports the JMS Version 1.1 unified

connection factory. You might want to do this, for example, because of existing investments.

To administer a third-party messaging provider, use the resource adaptor or client supplied by the third

party. You can still use the WebSphere Application Server administrative console to administer the JMS

connection factories and destinations that are within WebSphere Application Server, but you cannot use

the administrative console to administer the JMS provider itself, or any of its resources that are outside of

WebSphere Application Server.

To use message-driven beans (MDBs), third-party messaging providers must include Application Server

Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification, or use an inbound

resource adapter that conforms to the Java EE Connector Architecture (JCA) Version 1.5 specification.

To work with a third-party provider, see “Managing messaging with a third-party messaging provider” on

page 1769.

Enhanced features of the WebSphere MQ messaging provider

The WebSphere MQ messaging provider enables WebSphere Application Server applications and clients

to connect to and use WebSphere MQ resources in a JMS-compliant manner. For WebSphere Application

Server Version 7.0, this provider includes the enhanced features described in this topic.

Chapter 8. Messaging resources 1901

friend.sib/concepts/cjc1003_.dita
friend.sib/tasks/tjn9999_.dita
friend.sib/tasks/tjn9999_.dita
http://www.ibm.com/software/ts/mqseries/library/

Overview

For WebSphere Application Server Version 7.0, the WebSphere MQ messaging provider has enhanced

administrative options supporting the following functions:

v “WebSphere MQ channel compression”

v “WebSphere MQ client channel definition table”

v “Client channel exits” on page 1903

v “Transport-level encryption using SSL” on page 1903

v “Automatic selection of the WebSphere MQ transport type” on page 1903

WebSphere MQ channel compression

Data sent over the network between WebSphere Application Server and WebSphere MQ can be

compressed, reducing the amount of data that is transferred. Channel compression can be beneficial in

the following situations:

v If a cost is incurred that is proportional to the amount of data transferred over a network. For example,

nodes in a network might span a leased line for which a utilization charge is applied.

v If the rate at which messaging data can be transferred across a network is the limiting factor in the

performance of an application.

v If compressing the data might reduce the cost of its encryption and decryption.

To use WebSphere MQ channel compression, configure the message compression properties of an

existing connection factory or activation specification. For more information, see the appropriate step within

“Configuring JMS resources for the WebSphere MQ messaging provider” on page 1941.

For more information, see the WebSphere MQ topic Channel compression.

WebSphere MQ client channel definition table

The client channel definition table reduces the effort required to configure a connection to a queue

manager. Your WebSphere MQ administrator can create a single table of all the WebSphere MQ channels

supported by queue managers in the enterprise, then in WebSphere Application Server you configure a

connection to a queue manager by pointing to a table entry and providing any additional information not

already contained within the table.

You can also use the client channel definition table to provide a basic failover capability, by specifying that

a connection is attempted against several entries in the table. Each specified entry is tried in turn until a

queue manager connection is successfully established.

You can use the client channel definition table, with WebSphere MQ messaging provider activation

specifications and connection factories, to select the client channel definition to use when establishing a

connection to WebSphere MQ. The table can be configured to select from a number of queue managers,

depending on their availability.

When you use a client channel definition table, you must bear in mind the following considerations:

v If your client channel definition table can select from more than one queue manager, you might not be

able to recover global transactions. Activation specifications and connection factories that specify a

client channel definition table must either do so without ambiguity as to the target queue manager, or

must avoid using the resources with applications that enlist in global transactions.

v If your client channel definition table contains entries that reference native WebSphere MQ channel

exits, the use of these entries is not supported in the WebSphere Application Server environment.

1902 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj25050_.htm

For more information about client channel definition tables, see the developerWorks article WebSphere

MQ V6 Java and JMS clients and the client channel definition table, and the WebSphere MQ topic Client

channel definition table.

To use a client channel definition table, point to it when you create a new activation specification or

connection factory.

Client channel exits

Client channel exits are pieces of Java code that you develop, and that are executed in the application

server at key points during the life cycle of a WebSphere MQ channel. Your code can change the runtime

characteristics of the communications link between the WebSphere MQ messaging provider and the

WebSphere MQ queue manager.

Note: Only client channel exits written in Java are supported for use within the WebSphere Application

Server environment.

For more information about client channel exits, see the WebSphere MQ topic Channel exit programs. For

a list of the channel exits that work with the WebSphere MQ messaging provider, see the client connection

channel row of the table in the WebSphere MQ topic What are channel exit programs?.

To use client channel exits, configure the client transport properties of an existing connection factory or

activation specification.

Transport-level encryption using SSL

Transport-level encryption using SSL is the supported way to configure SSL for JMS resources associated

with the WebSphere MQ messaging provider. The SSL configuration is associated with the communication

link for the connection factory or activation specification. You either define the SSL information in the

connection factory, or your WebSphere MQ administrator defines the SSL information in an associated

client channel definition table.

Automatic selection of the WebSphere MQ transport type

The WebSphere MQ messaging provider supports the following ways to connect to a WebSphere MQ

queue manager:

v Bindings mode (or call attach)

Bindings mode attachment is only possible if the queue manager is located on the same physical

machine as the WebSphere Application Server. Bindings mode attachment, where available, typically

offers better performance.

v Client mode (or socket attach)

Client mode attachment can be used wherever the WebSphere MQ queue manager and WebSphere

Application Server can establish a network connection to one another.

v Bindings mode, then client mode (automatic selection)

This method tries a bindings mode connection first and, if that fails, a client mode connection is tried.

Every node in a WebSphere Application Server cluster shares identical configuration information. With

automatic selection of the WebSphere MQ transport type, all the servers in a cluster can be configured to

automatically select their transport. This has the effect that any clustered server that is co-located with a

queue manager establishes a bindings mode connection to the queue manager, whereas other servers in

the cluster establish client mode connection to the queue manager.

Chapter 8. Messaging resources 1903

http://www.ibm.com/developerworks/websphere/library/techarticles/0506_barrago/0506_barrago.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0506_barrago/0506_barrago.html
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs12100_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs12100_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic17440_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic17450_.htm

Styles of messaging in applications

This topic describes the ways that applications can use point-to-point and publish/subscribe messaging.

Applications can use the following styles of asynchronous messaging:

Point-to-Point

Point-to-point applications use queues to pass messages between each other. The applications

are called point-to-point, because a client sends a message to a specific queue and the message

is picked up and processed by a server listening to that queue. It is common for a client to have

all its messages delivered to one queue. Like any generic mailbox, a queue can contain a mixture

of messages of different types.

Publish/subscribe

Publish/subscribe systems provide named collection points for messages, called topics. To send

messages, applications publish messages to topics. To receive messages, applications subscribe

to topics; when a message is published to a topic, it is automatically sent to all the applications

that are subscribers of that topic. By using a topic as an intermediary, message publishers are

kept independent of subscribers.

Both styles of messaging can be used in the same application.

Applications can use asynchronous messaging in the following ways:

One-way

An application sends a message, and does not want a response. This pattern of use is often

referred to as a datagram.

Request and response

An application sends a request to another application and expects to receive a response in return.

One-way and forward

An application sends a request to another application, which sends a message to yet another

application.

These messaging techniques can be combined to produce a variety of asynchronous messaging

scenarios.

For more information about how such messaging scenarios are used by WebSphere enterprise

applications, see the following topics:

v “JMS interfaces - explicit polling for messages”

v “Message-driven beans - automatic message retrieval” on page 1906

For more information about these messaging techniques and the Java Message Service (JMS), see Sun’s

Java Message Service (JMS) specification documentation (http://developer.java.sun.com/developer/
technicalArticles/Networking/messaging/).

For more information about message-driven bean and inbound messaging support, see Sun’s Enterprise

JavaBeans specification (http://java.sun.com/products/ejb/docs.html).

For information about JCA inbound messaging processing, see Sun’s J2EE Connector Architecture

specification (http://java.sun.com/j2ee/connector/download.html).

JMS interfaces - explicit polling for messages

This topic provides an overview of applications that use JMS interfaces to explicitly poll for messages on a

destination then retrieve messages for processing by business logic beans (enterprise beans).

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interfaces. JMS provides a common way for Java

programs (clients and Java EE applications) to create, send, receive, and read asynchronous requests, as

JMS messages.

1904 Administering WebSphere applications

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

The base support for asynchronous messaging using JMS, shown in the following figure, provides the

common set of JMS interfaces and associated semantics that define how a JMS client can access the

facilities of a JMS provider. This enables WebSphere J2EE applications, as JMS clients, to exchange

messages asynchronously with other JMS clients by using JMS destinations (queues or topics).

Applications can use both point-to-point and publish/subscribe messaging (referred to as “messaging

domains” in the JMS specification), while supporting the different semantics of each domain.

WebSphere Application Server supports applications that use JMS 1.1 domain-independent interfaces

(referred to as the “common interfaces” in the JMS specification). With JMS 1.1, the preferred approach for

implementing applications is to use the common interfaces. The JMS 1.1 common interfaces provide a

simpler programming model than domain-specific interfaces. Also, applications can create both queues

and topics in the same session and coordinate their use in the same transaction.

The common interfaces are also parents of domain-specific interfaces. These domain-specific interfaces

(provided for JMS 1.0.2 in WebSphere Application Server Version 5) are supported only to provide

inter-operation and backward compatibility with applications that have already been implemented to use

those interfaces.

A WebSphere application can use the JMS interfaces to explicitly poll a JMS destination to retrieve an

incoming message, then pass the message to a business logic bean. The business logic bean uses

standard JMS calls to process the message; for example, to extract data or to send the message on to

another JMS destination.

 WebSphere applications can use standard JMS calls to process messages, including any responses or

outbound messaging. Responses can be handled by an enterprise bean acting as a sender bean, or

handled in the enterprise bean that receives the incoming messages. Optionally, this process can use

two-phase commit within the scope of a transaction.

WebSphere applications can also use message-driven beans, as described in related topics.

JMS destination

Business logic
bean

EJB
client

JDBC

JMS destination

Enterprise
application

MessageJMS
client

Figure 24. Asynchronous messaging using JMS. This figure shows an enterprise application polling a JMS destination

to retrieve an incoming message, which it processes with a business logic bean. The business logic bean uses

standard JMS calls to process the message; for example, to extract data or to send the message on to another JMS

destination. For more information, see the text that accompanies this figure.

Chapter 8. Messaging resources 1905

For more details about JMS, see Sun’s Java Message Service (JMS) specification documentation.

Message-driven beans - automatic message retrieval

WebSphere Application Server supports the use of message-driven beans as asynchronous message

consumers.

Messaging with message-driven beans is shown in the figure Figure 25 on page 1907.

A client sends messages to the destination (or endpoint) for which the message-driven bean is deployed

as the message listener. When a message arrives at the destination, the EJB container invokes the

message-driven bean automatically without an application having to explicitly poll the destination. The

message-driven bean implements some business logic to process incoming messages on the destination.

Message-driven beans can be configured as listeners on a Java EE Connector Architecture (JCA) 1.5

resource adapter or against a listener port (as in WebSphere Application Server Version 5). With a JCA

1.5 resource adapter, message-driven beans can handle generic message types, not just JMS messages.

This makes message-driven beans suitable for handling generic requests inbound to WebSphere

Application Server from enterprise information systems through the resource adapter. In the JCA 1.5

specification, such message-driven beans are commonly called message endpoints or simply endpoints.

All message-driven beans must implement the MessageDrivenBean interface. For JMS messaging, a

message-driven bean must also implement the message listener interface, javax.jms.MessageListener.

You are recommended to develop a message-driven bean to delegate the business processing of

incoming messages to another enterprise bean, to provide clear separation of message handling and

business processing. This also enables the business processing to be invoked by either the arrival of

incoming messages or, for example, from a WebSphere J2EE client.

Messages arriving at a destination being processed by a message-driven bean have no client credentials

associated with them; the messages are anonymous. Security depends on the role specified by the RunAs

Identity for the message-driven bean as an EJB component. For more information about EJB security, see

Securing enterprise bean applications.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

for example the default messaging provider that is part of WebSphere Application Server or the

WebSphere MQ messaging provider. With a JCA 1.5 resource adapter, you deploy EJB 2.1

message-driven beans as JCA 1.5-compliant resources, to use a J2C activation specification. If the JMS

provider does not have a JCA 1.5 resource adapter, for example the V5 default messaging provider, you

must configure JMS message-driven beans against a listener port.

1906 Administering WebSphere applications

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

Message-driven beans - JCA components

This topic provides an overview of the administrative components that you configure for message-driven

beans (MDBs) as listeners on a Java EE Connector Architecture (JCA) 1.5 resource adapter.

Components for a JCA resource adapter

When a resource adapter is installed, it provides definitions and classes for administered objects such as

activation specifications. The administrator creates and configures activation specifications with Java™

Naming and Directory Interface (JNDI) names that are then available for applications to use.

The JCA resource adapter uses an activation specification to configure a specific endpoint. Each

application that configures one or more endpoints must specify the resource adapter that sends messages

to the endpoint

The application uses the activation specification to provide the configuration properties related to the

processing of inbound messages.

JMS components used with a JCA messaging provider

MDBs that implement the javax.jms.MessageListener interface can be used for JMS messaging.

An application that uses JMS messaging needs access at runtime to configured objects such as

connection factories and destinations.

When the JMS provider is the default JMS provider or the WebSphere MQ messaging provider, the

administrator configures these objects for the JMS provider. For example, to configure a JMS activation

Message
Listener

JMS destination Message-driven
bean

Business logic
bean

EJB
client

JDBC

JMS destination

Enterprise
application

JMS
client

Figure 25. Messaging with message-driven beans. This figure shows an incoming message being passed

automatically to the onMessage() method of a message-driven bean that is deployed as a listener for the destination.

The message-driven bean processes the message, in this case passing the message on to a business logic bean for

business processing. For more information, see the text that accompanies this figure.

Chapter 8. Messaging resources 1907

specification for the WebSphere MQ messaging provider, in the WebSphere Application Server

administrative console navigate to Resources → JMS → Activation specifications.

Otherwise the administrator configures these objects for the JMS resource adapter, which connects the

application to a JMS provider, by navigating to Resources → Resource Adaptors.

If the application contains one or more MDBs, the administrator must configure either a JMS activation

specification or a message listener port. For JCA-compliant messaging providers, the administrator usually

configures an activation specification. But for the WebSphere MQ messaging provider there is a choice;

the administrator can configure an activation specification or, for compatibility with previous versions of

WebSphere Application Server, the administrator can configure a message listener port.

The JMS activation specification provides the deployer with information about the configuration properties

of an MDB related to the processing of the inbound messages. For example, a JMS activation

specification specifies the name of the service integration bus to connect to, information about the

message acknowledgement modes, message selectors, destination types, and whether or not durable

subscriptions are shared across connections with members of a server cluster.

The activation specification identifies a JMS destination by specifying its JNDI name. The MDB acts as a

listener on a specific JMS destination.

The JMS destination refers to a service integration bus destination (or WebSphere MQ destination) which

the administrator must also configure. For more information about JMS resources and service integration,

see Learning about the default messaging provider.

J2C activation specification configuration and use

This topic provides an overview about the configuration and use of J2C activation specifications, used in

the deployment of message-driven beans for JCA 1.5 resources.

J2C activation specifications are part of the configuration of inbound messaging support that can be part of

a JCA 1.5 resource adapter. Each JCA 1.5 resource adapter that supports inbound messaging defines one

or more types of message listener in its deployment descriptor (messagelistener in the ra.xml). The

message listener is the interface that the resource adapter uses to communicate inbound messages to the

message endpoint. A message-driven bean (MDB) is a message endpoint and implements one of the

message listener interfaces provided by the resource adapter. By allowing multiple types of message

listener, a resource adapter can support a variety of different protocols. For example, the interface

javax.jms.MessageListener, is a type of message listener that supports JMS messaging. For each type of

message listener that a resource adapter implements, the resource adapter defines an associated

activation specification (activationspec in the ra.xml). The activation specification is used to set

configuration properties for a particular use of the inbound support for the receiving endpoint.

When an application containing a message-driven bean is deployed, the deployer must select a resource

adapter that supports the same type of message listener that the message-driven bean implements. As

part of the message-driven bean deployment, the deployer needs to specify the properties to set on the

J2C activation specification. Later, during application startup, a J2C activation specification instance is

created, and these properties are set and used to activate the endpoint (that is, to configure the resource

adapter’s inbound support for the specific message-driven bean).

Applications with message-driven beans can also specify all, some, or none of the configuration properties

needed by the ActivationSpec class, to override those defined by the resource adapter-scoped definition.

These properties, specified as activation-config properties in the application’s deployment descriptor, are

configured when the application is assembled. To change any of these properties requires redeploying the

application. These properties are unique to this applications use and are not shared with other

message-driven beans. Any properties defined in the application’s deployment descriptor take precedence

over those defined by the resource adapter-scoped definition. This allows application developers to choose

the best defaults for their applications.

1908 Administering WebSphere applications

friend.sib/tasks/tjn0004_.dita

WebSphere Application Server activation specification optional binding properties

Binding properties that you can specify for activation specifications to be deployed on WebSphere

Application Server.

J2C authentication alias

If you provide values for user name and password as custom properties on an activation

specification, you may not want to have those values exposed in clear text for security reasons.

WebSphere security allows you to securely define an authentication alias for such cases.

Configuration of activation specifications, both as an administrative object and during application

deployment, enable you to use the authentication alias instead of providing the user name and

password.

 If you set the authentication alias field, then you should not set the user name and password

custom properties fields. Also, authentication alias properties set as part of application deployment

take precedence over properties set on an activation specification administrative object.

Only the authentication alias is ever written to file in an unencrypted form, even for purposes of

transaction recovery logging. The security service is used to protect the real user name and

password.

During application startup, when the activation specification is being initialized as part of endpoint

activation, the server uses the authentication alias to retrieve the real user name and password

from security then set it on the activation specification instance.

Destination JNDI name

For resource adapters that support JMS you need to associate javax.jms.Destinations with an

activation specification, such that the resource adapter can service messages from the JMS

destination. In this case, the administrator configures a J2C Administered Object which implements

the javax.jms.Destination interface and binds it into JNDI.

 You can configure a J2C Administered Object to use an ActivationSpec class that implements a

setDestination(javax.jms.Destination) method. In this case, you can specify the destination JNDI

name (that is, the JNDI name for the J2C Administered object that implements the

javax.jms.Destination).

A destination JNDI name set as part of application deployment take precedence over properties

set on an activation specification administrative object.

During application startup, when the activation specification is being initialized as part of endpoint

activation, the server uses the destination JNDI name to look up the destination administered

object then set it on the activation specification instance.

Message-driven beans - transaction support

Message-driven beans can handle messages on destinations (or endpoints) within the scope of a

transaction.

Transaction handling when using the Message Listener Service with WebSphere MQ JMS

There are three possible cases, based on the MDB deployment descriptor setting you choose:

container-managed transaction (required), container-managed transaction (not supported), and

bean-managed transaction. For related information see Message-driven bean deployment descriptor

properties.

Container-managed transaction (required)

 In this situation, the application server starts a global transaction before it reads any incoming

message from the destination, and before the onMessage() method of the MDB is invoked by the

application server. This means that other EJBs that are invoked in turn by the message, and

interactions with resources such as databases can all be scoped inside this single global

transaction, within which the incoming message was obtained.

Chapter 8. Messaging resources 1909

If this application flow completes successfully, the global transaction is committed. If the flow does

not complete successfully, (if the transaction is marked for rollback or if a runtime exception

occurs), the transaction is rolled back, and the incoming message is rolled back onto the MDB

destination.

Container-managed transaction (not supported)

 In this situation there is obviously no global transaction, however the JMS provider can still deliver

a message from an MDB destination to the application server in a unit of work. You can consider

this as a local transaction, because it does not involve other resources in its transactional scope.

The application server acknowledges message delivery on successful completion of the

onMessage() dispatch of the MDB (using the acknowledgement mode specified by the assembler

of the MDB).

However, the application server does not perform an acknowledge, if an unchecked runtime

exception is thrown from the onMessage() method. So, does the message roll back onto the MDB

destination (or is it acknowledged and deleted)?

The answer depends on whether or not a syncpoint is used by the WebSphere MQ JMS provider

and can vary depending on the operating platform (in particular the z/OS operating platform can

impart different behavior here).

If WebSphere MQ establishes a syncpoint around the MDB message consumption in this

container-managed transaction (not supported) case, the message is rolled back onto the

destination after an unchecked exception.

If a syncpoint is not used, then the message is deleted from the destination after an unchecked

exception.

For related information, see the technote ’MDB behavior is different on z/OS than on distributed

when getting nonpersistent messages within syncpoint’ at http://www.ibm.com/support/
docview.wss?uid=swg21231549.

Bean-managed transaction

 This situation is similar to the container-managed transaction (not supported) case. Even though

there might be a user transaction in this case, any user transaction started within the onMessage

dispatch of the MDB does not include consumption of the message from the message-driven bean

destination within the transaction scope. To do this, use the container-managed transaction

(required) scenario.

Message redelivery

In each of the previous three cases, a message that is rolled back onto the MDB destination is eventually

re-dispatched. If the original rollback was due to a temporary system problem, you would expect the

re-dispatch of the MDB with this message to succeed on re-dispatch. If, however, the rollback was due to

a specific message-related problem, the message would repeatedly be rolled back and re-dispatched. This

would be an inefficient use of processing resources.

The application server handles this scenario which is known as a poison message scenario, by tracking

the frequency with which a message is dispatched, and by stopping the associated listener port after a

specified number of redeliveries has occurred. This is a configurable value on the Maximum Retries

property on a listener port. For more information, see “Listener port settings” on page 1820.

Note: A Maximum Retries value of zero stops the listener port after a single failure to successfully

complete an onMessage().

Because stopping the listener port stops the processing for all MDBs mapped to that listener port, this

solution is rather unspecific. Instead of relying on the WebSphere Application Server message listener

service to stop the listener port if a poison message scenario occurs, the other solution is to set up a

1910 Administering WebSphere applications

http://www.ibm.com/support/docview.wss?uid=swg21231549
http://www.ibm.com/support/docview.wss?uid=swg21231549

backout queue (BOQUEUE), and a backout threshold value (BOTHRESH). If you do this, WebSphere MQ

handles the poison message. For more information on handling poison messages, see the WebSphere

MQ Using Java book, which is available from the WebSphere MQ library page at http://www.ibm.com/
software/integration/wmq/library/.

Inbound resource adapter transaction handling

An MDB can be configured for bean or container transaction handling. The owner of the resource adapter

owner must tell the MDB developer how to set up the MDB for transaction handling.

WebSphere Application Server cloning and WebSphere MQ clustering

Here is a summary of information about using WebSphere Application Server horizontal cloning with

WebSphere MQ server clustering support. It describes a scenario that shows how the message listener

service can be configured to take advantage of WebSphere MQ server clustering and provides some

information about how to resolve potential runtime failures in the clustering scenario.

The information in this topic is based on the scenario shown in the figure Figure 26 on page 1912.

Note: WebSphere MQ server clustering is only available with the full WebSphere MQ product installed as

a JMS provider.

Each JMS listener is used to retrieve messages from a destination defined to the server. In the following

information the listener configurations are the same for each WebSphere application server. Each

application server host contains a WebSphere application server and a WebSphere MQ server. If a host is

only used to distribute messages, it only contains a WebSphere MQ server. There can be many servers

defined in the configuration, although for simplicity the information in this topic is based on a scenario

containing only three servers as shown in the following figure:

Chapter 8. Messaging resources 1911

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

The scenario shown in the previous figure comprises the following three hosts:

v Server host S1 contains the following servers:

WebSphere MQ server.

The server is defined to have a queue manager, QM1, and a local queue, Q1. The queue

manager belongs to a cluster. The queue is populated by the WebSphere MQ server located on

host M3. Applications can add messages directly to the queue, Q1, but would not be subjected

to the control of the WebSphere MQ cluster.

WebSphere Application Server

This contains a cloned application server, WAS1, which is configured with a JMS listener. The

listener is configured to retrieve messages from JMS destination Q1.
v Server host S2 contains the following servers:

WebSphere MQ server.

The server is defined to have a queue manager, QM2, and a local queue, Q1. The queue

manager belongs to the same cluster as QM1 on host S1. As with QM1, the queue is populated

by the WebSphere MQ server located on host M3. Applications can add messages directly to

the queue, Q1, but would not be subjected to the control of the MQ cluster.

WebSphere Application Server

This contains a cloned application server, WAS2 (identical to WAS1 on host S1), which is

configured with a JMS listener. The listener is configured to retrieve messages from JMS

destination Q1.
v Messaging host M3 contains the following servers:

WebSphere MQ server.

The server is defined to have a queue manager, QM3, which also belongs to the same cluster

as QM1 and QM2. Applications add messages to the queue manager and queue Q1. The

cluster to which this queue manager belongs causes messages to be distributed to all other

queue managers in the cluster which have queue Q1 defined.

JMS
listener

WAS1

Queue
Q1

QM1

Server host S1

JMS
listener

WAS2

Queue
Q1

QM2

Server host S2

QM3

Messaging host M3 Application
Put to

queue Q1

Application
Put to

queue Q1

Figure 26. WebSphere Application Server horizontal cloning with WebSphere MQ clustered queues. This figure shows

two WebSphere Application Server hosts, with horizontal clustering, and a messaging host used to distribute

messages for WebSphere MQ server clustering. For more information, see the text that accompanies this figure.

1912 Administering WebSphere applications

Note: Queue Q1 is not defined as a local queue on this host. If the queue was defined locally,

then messages would remain on the server for local processing; messages would not be

distributed by the queue manager cluster control to the other queue managers in the

cluster that do have the queue defined.

This host does not have a WebSphere application server defined. All message retrieval processing is

performed by the other two application servers on hosts S1 and S2.

Recovery scenarios

There are several failure scenarios that could occur with the clustering configuration; for example:

v WAS server failures.

In this scenario the failure of any single WebSphere application server results in the messages for the

specified destination remaining on the queue, until the server is restarted.

v WebSphere MQ Queue Manager failures.

There are two different failures to consider:

1. Failure of a queue manager on the same host as a WebSphere application server (for example,

failure of QM2 on host S2). In this case messages are delivered to the other available application

servers, until the WebSphere MQ server is back online, when messages are processed as

expected.

2. Failure of the messaging host M3 and its queue manager, QM3. In this case, the result of an outage

is more significant because no messages are delivered to the other queue managers in the cluster.

In a fully-deployed and scaled production system, host M3 would not be designed to be a single

point of failure, and additional messaging servers would be added to the cluster configuration.

Asynchronous messaging - security considerations

This topic describes considerations that you should be aware of if you want to use security for

asynchronous messaging with WebSphere Application Server.

Security for messaging is enabled only when WebSphere Application Server administrative security is

enabled. In this case:

v JMS connections made to the JMS provider are authenticated.

v Access to JMS resources owned by the JMS provider is controlled by access authorizations.

v Requests to create new connections to the JMS provider must provide a user ID and password for

authentication.

v The user ID and password do not need to be provided by the application.

If authentication is successful, then the JMS connection is created; if the authentication fails then the

connection request is ended.

Standard J2C authentication is used for a request to create a new connection to the JMS provider. If your

resource authentication (res-auth) is set to Application, set the alias in the Component-managed

Authentication Alias. If the application that tries to create a connection to the JMS provider specifies a user

ID and password, those values are used to authenticate the creation request. If the application does not

specify a user ID and password, the values defined by the Component-managed Authentication Alias are

used. If the connection factory is not configured with a Component-managed Authentication Alias, then you

receive a runtime JMS exception when an attempt is made to connect to the JMS provider.

Note:

1. User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider or WebSphere MQ. For example, the default Windows NT user ID,

Administrator, is not valid for use because it contains 13 characters. Therefore, an

authentication alias for a WebSphere JMS provider or WebSphere MQ connection factory must

specify a user ID no longer than 12 characters.

Chapter 8. Messaging resources 1913

2. If you want to use Bindings transport mode for JMS connections to WebSphere MQ, you set the

property Transport type=BINDINGS on the WebSphere MQ Queue Connection Factory. You

must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on user for

the WebSphere Application Server process. If the user specified is not the current logged on

user for the WebSphere Application Server process, then the WebSphere MQ JMS Bindings

authentication throws the error MQJMS2013 invalid security authentication supplied for

MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory, ensure that

both the Component-managed Authentication Alias and the Container-managed

Authentication Alias properties are not set.

Authorization to access messages stored by the default messaging provider is controlled by authorization

to access the service integration bus destinations on which the messages are stored. For information

about authorizing permissions for individual bus destinations, see Administering destination roles.

Messaging: Resources for learning

Use the following links to find relevant supplementary information about messaging. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

v Sun’s Java Message Service (JMS) specification documentation.

Provides details about the Java Message Service (JMS).

v Sun’s J2EE Connector Architecture specification (http://java.sun.com/j2ee/connector/download.html).

Provides details about inbound messaging processing using the J2EE Connector architecture.

v J2EE specification

Provides details about the J2EE specification, including messaging considerations.

v WebSphere MQ Using Java.

Provides information about using JMS with WebSphere MQ as a messaging provider.

v WebSphere MQ library at http://www.ibm.com/software/integration/wmq/library/

Provides WebSphere MQ information.

v WebSphere Event Broker library at http://www.ibm.com/software/integration/wbieventbroker/library/

Provides information about WebSphere MQ Event Broker as a publish/subscribe messaging broker.

v WebSphere Message Broker library at http://www.ibm.com/software/integration/wbimessagebroker/
library/

Provides information about WebSphere Message Broker as a publish/subscribe messaging broker.

v IBM Publications Center

This Web site provides a wide range of IBM publications, including publications about messaging

products.

Configuring messaging with scripting

Use these topics to learn about configuring messaging with the wsadmin tool. You can configure the

message listener service, Java Messaging Service settings, queue and connection factories, and

WebSphere MQ settings.

About this task

You can use the wsadmin tool to configure various messaging connections and settings.

v Configure the message listener service.

1914 Administering WebSphere applications

friend.sib/tasks/tjr0110_.dita
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw11tfrm.htm
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wbieventbroker/library/
http://www.ibm.com/software/integration/wbimessagebroker/library/
http://www.ibm.com/software/integration/wbimessagebroker/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The message listener service is an extension to the JMS functions of the JMS provider. It provides a

listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS

destination on behalf of a deployed message-driven bean.

v Configure Java Messaging Service (JMS) providers, destinations, and connections.

The application server supports asynchronous messaging through the use of a JMS provider and its

related messaging system. You can use the wsadmin tool to configure new JMS providers, destinations,

and connections.

A JMS destination is used to configure the properties for the associated messaging provider.

Connections to the JMS destination are created by the associated JMS connection factory. A JMS

connection factory is used to create connections to the associated JMS provider of JMS destinations,

for both point-to-point and publish/subscribe messaging.

v Configure queue and topic connection factories for the application server. Use queue and topic

connection factories to create connections between providers and destinations. A queue connection

factory creats a connection to the associated JMS provider of the JMS queue destinations, for

point-to-point messaging. A topic connection factory creates a connection to the associated JMS

provider of JMS topic destinations, for publish and subscribe messaging.

v Configure WebSphere MQ settings. A WebSphere MQ server represents either a WebSphere MQ

queue manager or a WebSphere MQ queue sharing group. It is used by Service Integration Bus

messaging to define properties used for connecting to WebSphere MQ. Setting up a WebSphere MQ

server involves using the administrative console to create the server definition, add it to a service

integration bus, and create a WebSphere MQ queue type destination.

Configuring the message listener service using scripting

Use scripting to configure the message listener service.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure the message listener service for an application server:

1. Identify the application server and assign it to the server variable:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the message listener service belonging to the server and assign it to the mls variable:

v Using Jacl:

set mls [$AdminConfig list MessageListenerService $server]

v Using Jython:

mls = AdminConfig.list(’MessageListenerService’, server)

print mls

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)

3. Modify various attributes with one of the following examples:

v This example command changes the thread pool attributes:

Chapter 8. Messaging resources 1915

– Using Jacl:

$AdminConfig modify $mls {{threadPool {{inactivityTimeout 4000}

{isGrowable true} {maximumSize 100} {minimumSize 25}}}}

– Using Jython:

AdminConfig.modify(mls, [[’threadPool’, [[’inactivityTimeout’, 4000],

[’isGrowable’, ’true’], [’maximumSize’, 100], [’minimumSize’, 25]]]])

v This example modifies the property of the first listener port:

– Using Jacl:

set lports [$AdminConfig showAttribute $mls listenerPorts]

set lport [lindex $lports 0]

$AdminConfig modify $lport {{maxRetries 2}}

– Using Jython:

lports = AdminConfig.showAttribute(mls, ’listenerPorts’)

cleanLports = lports[1:len(lports)-1]

lport = cleanLports.split(" ")[0]

AdminConfig.modify(lport, [[’maxRetries’, 2]])

v This example adds a listener port:

– Using Jacl:

set new [$AdminConfig create ListenerPort $mls {{name my}

{destinationJNDIName di} {connectionFactoryJNDIName jndi/fs}}]

$AdminConfig create StateManageable $new {{initialState START}}

– Using Jython:

new = AdminConfig.create(’ListenerPort’, mls, [[’name’, ’my’],

[’destinationJNDIName’, ’di’], [’connectionFactoryJNDIName’, ’jndi/fsi’]])

print new

print AdminConfig.create(’StateManageable’, new, [[’initialState’, ’START’]])

Example output:

my(cells/mycell/nodes/mynode/servers/server1:server.xml#ListenerPort_1079471940692)

(cells/mycell/nodes/mynode/servers/server1:server.xml#StateManageable_107947182623)

4. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

5. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new JMS providers using scripting

You can use the wsadmin tool and scripting to configure a new JMS provider.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new JMS provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

1916 Administering WebSphere applications

2. Get required attributes:

v Using Jacl:

$AdminConfig required JMSProvider

v Using Jython:

print AdminConfig.required(’JMSProvider’)

Example output:

Attribute Type

name String

externalInitialContextFactory String

externalProviderURL String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSP1]

set extICF [list externalInitialContextFactory

"Put the external initial context factory here"]

set extPURL [list externalProviderURL "Put the external provider URL here"]

set jmspAttrs [list $name $extICF $extPURL]

v Using Jython:

name = [’name’, ’JMSP1’]

extICF = [’externalInitialContextFactory’,

"Put the external initial context factory here"]

extPURL = [’externalProviderURL’, "Put the external provider URL here"]

jmspAttrs = [name, extICF, extPURL]

print jmspAttrs

Example output:

{name JMSP1} {externalInitialContextFactory {Put the external

initial context factory here }} {externalProviderURL

{Put the external provider URL here}}

4. Create the JMS provider:

v Using Jacl:

set newjmsp [$AdminConfig create JMSProvider $node $jmspAttrs]

v Using Jython:

newjmsp = AdminConfig.create(’JMSProvider’, node, jmspAttrs)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new JMS destinations using scripting

You can use scripting and the wsadmin tool to configure a new JMS destination.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new JMS destination:

1. Identify the parent ID:

Chapter 8. Messaging resources 1917

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required GenericJMSDestination

v Using Jython:

print AdminConfig.required(’GenericJMSDestination’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSD1]

set jndi [list jndiName jms/JMSDestination1]

set extJndi [list externalJNDIName jms/extJMSD1]

set jmsdAttrs [list $name $jndi $extJndi]

v Using Jython:

name = [’name’, ’JMSD1’]

jndi = [’jndiName’, ’jms/JMSDestination1’]

extJndi = [’externalJNDIName’, ’jms/extJMSD1’]

jmsdAttrs = [name, jndi, extJndi]

print jmsdAttrs

Example output:

{name JMSD1} {jndiName jms/JMSDestination1} {externalJNDIName jms/extJMSD1}

4. Create generic JMS destination:

v Using Jacl:

$AdminConfig create GenericJMSDestination $newjmsp $jmsdAttrs

v Using Jython:

print AdminConfig.create(’GenericJMSDestination’, newjmsp, jmsdAttrs)

Example output:

JMSD1(cells/mycell/nodes/mynode|resources.xml#GenericJMSDestination_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new JMS connections using scripting

Use scripting and the wsadmin tool to configure a new JMS connection.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

1918 Administering WebSphere applications

About this task

Perform the following steps to configure a new JMS connection:

1. Configure a connection pool for your generic connection factories.

Because Java 2 Connector (J2C) manages the generic connection factories, you must configure a

connection pool to indicate the policy for connection management by J2C. The following example

commands configure a connection pool in your environment:

v Using Jacl:

set connectionPool [$AdminConfig create ConnectionPool $yourGenericCF {} connectionPool]

set sessionPool [$AdminConfig create ConnectionPool $yourGenericCF {} sessionPool]

v Using Jython:

connectionPool = AdminConfig.create(’ConnectionPool’, ’[yourGenericCF {}, connectionPool]’)

sessionPool = AdminConfig.create(’ConnectionPool’, ’[yourGenericCF {}, sessionPool]’)

2. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

3. Get required attributes:

v Using Jacl:

$AdminConfig required GenericJMSConnectionFactory

v Using Jython:

print AdminConfig.required(’GenericJMSConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

4. Set up required attributes:

v Using Jacl:

set name [list name JMSCF1]

set jndi [list jndiName jms/JMSConnFact1]

set extJndi [list externalJNDIName jms/extJMSCF1]

set jmscfAttrs [list $name $jndi $extJndi]

Example output:

{name JMSCF1} {jndiName jms/JMSConnFact1} {externalJNDIName jms/extJMSCF1}

v Using Jython:

name = [’name’, ’JMSCF1’]

jndi = [’jndiName’, ’jms/JMSConnFact1’]

extJndi = [’externalJNDIName’, ’jms/extJMSCF1’]

jmscfAttrs = [name, jndi, extJndi]

print jmscfAttrs

Example output:

[[name, JMSCF1], [jndiName, jms/JMSConnFact1], [externalJNDIName, jms/extJMSCF1]]

5. Create generic JMS connection factory:

v Using Jacl:

$AdminConfig create GenericJMSConnectionFactory $newjmsp $jmscfAttrs

v Using Jython:

Chapter 8. Messaging resources 1919

print AdminConfig.create(’GenericJMSConnectionFactory’, newjmsp, jmscfAttrs)

Example output:

JMSCF1(cells/mycell/nodes/mynode|resources.xml#GenericJMSConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere queue connection factories using

scripting

You can use scripting and the wsadmin tool to configure new queue connection factories in WebSphere

Application Server.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new WebSphere queue connection factory:

1. Identify the parent ID:

v Using Jacl:

set v5jmsp [$AdminConfig getid "/Cell:mycell/Node:mynode/JMSProvider:WebSphere JMS Provider/"]

v Using Jython:

v5jmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:WebSphere JMS Provider/’)

print v5jmsp

Example output:

"WebSphere JMS Provider(cells/mycell/nodes/mynode|resources.xml#builtin_jmsprovider)"

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’WASQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQCF]

set jndi [list jndiName jms/WASQCF]

set mqcfAttrs [list $name $jndi]

Example output:

{name WASQCF} {jndiName jms/WASQCF}

v Using Jython:

name = [’name’, ’WASQCF’]

jndi = [’jndiName’, ’jms/WASQCF’]

mqcfAttrs = [name, jndi]

print mqcfAttrs

Example output:

1920 Administering WebSphere applications

[[name, WASQCF], [jndiName, jms/WASQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates WASQueueConnectionFactory] 0]

v Using Jython:

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’WASQueueConnectionFactory’).split(lineseparator)[0]

print template

5. Create was queue connection factories:

v Using Jacl:

$AdminConfig createUsingTemplate WASQueueConnectionFactory $v5jmsp $mqcfAttrs $template

v Using Jython:

AdminConfig.createUsingTemplate(’WASQueueConnectionFactory’, v5jmsp, mqqcfAttrs, template)

Example output:

WASQCF(cells/mycell/nodes/mynode|resources.xml#WASQueueConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere topic connection factories using scripting

Use scripting and the wsadmin tool to configure new WebSphere topic connection factories.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new WebSphere topic connection factory:

1. Identify the parent ID:

v Using Jacl:

set v5jmsp [$AdminConfig getid "/Cell:mycell/Node:mynode/JMSProvider:WebSphere JMS Provider/"]

v Using Jython:

v5jmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:WebSphere JMS Provider/’)

print v5jmsp

Example output:

"WebSphere JMS Provider(cells/mycell/nodes/mynode|resources.xml#builtin_jmsprovider)"

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’WASTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

port ENUM(DIRECT, QUEUED)

3. Set up required attributes:

Chapter 8. Messaging resources 1921

v Using Jacl:

set name [list name WASTCF]

set jndi [list jndiName jms/WASTCF]

set port [list port QUEUED]

set mtcfAttrs [list $name $jndi $port]

Example output:

{name WASTCF} {jndiName jms/WASTCF} {port QUEUED}

v Using Jython:

name = [’name’, ’WASTCF’]

jndi = [’jndiName’, ’jms/WASTCF’]

port = [’port’, ’QUEUED’]

mtcfAttrs = [name, jndi, port]

print mtcfAttrs

Example output:

[[name, WASTCF], [jndiName, jms/WASTCF], [port, QUEUED]]

4. Create was topic connection factories:

v Using Jacl:

$AdminConfig create WASTopicConnectionFactory $v5jmsp $mtcfAttrs

v Using Jython:

print AdminConfig.create(’WASTopicConnectionFactory’, v5jmsp, mtcfAttrs)

Example output:

WASTCF(cells/mycell/nodes/mynode|resources.xml#WASTopicConnectionFactory_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere queues using scripting

You can use scripting to configure a new WebSphere queue.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new WebSphere queue:

1. Identify the parent ID:

v Using Jacl:

set v5jmsp [$AdminConfig getid "/Cell:mycell/Node:mynode/JMSProvider:WebSphere JMS Provider/"]

v Using Jython:

v5jmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:WebSphere JMS Provider/’)

print v5jmsp

Example output:

"WebSphere JMS Provider(cells/mycell/nodes/mynode|resources.xml#builtin_jmsprovider)"

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueue

v Using Jython:

print AdminConfig.required(’WASQueue’)

1922 Administering WebSphere applications

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQ1]

set jndi [list jndiName jms/WASQ1]

set wqAttrs [list $name $jndi]

Example output:

{name WASQ1} {jndiName jms/WASQ1}

v Using Jython:

name = [’name’, ’WASQ1’]

jndi = [’jndiName’, ’jms/WASQ1’]

wqAttrs = [name, jndi]

print wqAttrs

Example output:

[[name, WASQ1], [jndiName, jms/WASQ1]]

4. Create was queue:

v Using Jacl:

$AdminConfig create WASQueue $v5jmsp $wqAttrs

v Using Jython:

print AdminConfig.create(’WASQueue’, v5jmsp, wqAttrs)

Example output:

WASQ1(cells/mycell/nodes/mynode|resources.xml#WASQueue_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere topics using scripting

You can configure new WebSphere topics using the wsadmin tool and scripting.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new WebSphere topic:

1. Identify the parent ID:

v Using Jacl:

set v5jmsp [$AdminConfig getid "/Cell:mycell/Node:mynode/JMSProvider:WebSphere JMS Provider/"]

v Using Jython:

v5jmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:WebSphere JMS Provider/’)

print v5jmsp

Example output:

"WebSphere JMS Provider(cells/mycell/nodes/mynode|resources.xml#builtin_jmsprovider)"

2. Get required attributes:

v Using Jacl:

Chapter 8. Messaging resources 1923

$AdminConfig required WASTopic

v Using Jython:

print AdminConfig.required(’WASTopic’)

Example output:

Attribute Type

name String

jndiName String

topic String

3. Set up required attributes:

v Using Jacl:

set name [list name WAST1]

set jndi [list jndiName jms/WAST1]

set topic [list topic "Put your topic here"]

set wtAttrs [list $name $jndi $topic]

Example output:

{name WAST1} {jndiName jms/WAST1} {topic {Put your topic here}}

v Using Jython:

name = [’name’, ’WAST1’]

jndi = [’jndiName’, ’jms/WAST1’]

topic = [’topic’, "Put your topic here"]

wtAttrs = [name, jndi, topic]

print wtAttrs

Example output:

[[name, WAST1], [jndiName, jms/WAST1], [topic, "Put your topic here"]]

4. Create was topic:

v Using Jacl:

$AdminConfig create WASTopic $v5jmsp $wtAttrs

v Using Jython:

print AdminConfig.create(’WASTopic’, v5jmsp, wtAttrs)

Example output:

WAST1(cells/mycell/nodes/mynode|resources.xml#WASTopic_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring a new connection factory for the WebSphere MQ

messaging provider using scripting

You can use scripting to configure a new connection factory for the WebSphere MQ messaging provider.

Before you begin

You can also use the “createWMQConnectionFactory command” on page 2058 to create a connection

factory for the WebSphere MQ messaging provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a connection factory for the WebSphere MQ messaging provider:

1. Identify the parent ID:

1924 Administering WebSphere applications

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/

JMSProvider:WebSphere MQ JMS Provider/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/

JMSProvider:WebSphere MQ JMS Provider’)

print newjmsp

Example output:

WebSphere MQ JMS Provider(cells/mycell/nodes/mynode|

resources.xml#builtin_mqprovider)

2. Get the required attributes:

v Using Jacl:

$AdminConfig required MQConnectionFactory

v Using Jython:

print AdminConfig.required(’MQConnectionFactory’)

Example output:

attribute Type

name String

jndiName String

3. Set up the required attributes:

v Using Jacl:

set name [list name MQCF]

set jndi [list jndiName jms/MQCF]

set mqcfAttrs [list $name $jndi]

Example output:

{name MQCF} {jndiName jms/MQCF}

v Using Jython:

name = [’name’, ’MQCF’]

jndi = [’jndiName’, ’jms/MQCF’]

mqcfAttrs = [name, jndi]

print mqcfAttrs

Example output:

[[name, MQCF], [jndiName, jms/MQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template =

AdminConfig.listTemplates(’MQConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ ConnectionFactory(templates/

system:JMS-resource-provider-templates.xml

#MQConnectionFactory_3)

5. Create a connection factory for the WebSphere MQ messaging provider:

v Using Jacl:

$AdminConfig createUsingTemplate MQConnectionFactory

$newjmsp $mqcfAttrs $template

v Using Jython:

Chapter 8. Messaging resources 1925

print AdminConfig.createUsingTemplate(’MQConnectionFactory’,

newjmsp, mqcfAttrs, template)

Example output:

MQCF(cells/mycell/nodes/mynode:resources.xml#MQConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Defining a connection factory for the WebSphere MQ messaging provider by

supplying custom connection data

The following example creates a connection factory, specifying custom connection data. Due to the default

values assumed for the unspecified parameters, applications using this connection factory expect to be

co-located with a queue manager installed on the same node.

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name cf1 –jndiName "jms/cf/cf1" –type CF}

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1205322636000)

The following example creates an connection factory for which the user must specify and maintain all the

parameters used for establishing a connection to WebSphere MQ.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQConnectionFactory("9994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)", ["-name cf2

 –jndiName ’jms/cf/cf2’ –type CF –description ’Must remember to keep each

of these connection factories in sync with the WebSphere MQ queue manager

to which they refer’ –qmgrName QM1 –qmgrHostname 192.168.0.22 –qmgrPort 1415

 –qmgrSvrconnChannel QM1.SVRCONN"])

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_120532263601)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name cf2 –jndiName “jms/cf/cf2” –type CF –description “Must remember to

keep each of these connection factories in sync with the WebSphere MQ queue

manager to which they refer” –qmgrName QM1 –qmgrHostname 192.168.0.22

–qmgrPort 1415 –qmgrSvrconnChannel QM1.SVRCONN}

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_120532263601)

Configuring a new queue connection factory for the WebSphere MQ

messaging provider using scripting

You can use scripting to configure a new queue connection factory for the WebSphere MQ messaging

provider.

1926 Administering WebSphere applications

Before you begin

You can also use the “createWMQConnectionFactory command” on page 2058 to create a queue

connection factory for the WebSphere MQ messaging provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new queue connection factory for the WebSphere MQ

messaging provider:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get the required attributes:

v Using Jacl:

$AdminConfig required MQQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’MQQueueConnectionFactory’)

Example output:

attribute Type

name String

jndiName String

3. Set up the required attributes:

v Using Jacl:

set name [list name MQQCF]

set jndi [list jndiName jms/MQQCF]

set mqqcfAttrs [list $name $jndi]

Example output:

{name MQQCF} {jndiName jms/MQQCF}

v Using Jython:

name = [’name’, ’MQQCF’]

jndi = [’jndiName’, ’jms/MQQCF’]

mqqcfAttrs = [name, jndi]

print mqqcfAttrs

Example output:

[[name, MQQCF], [jndiName, jms/MQQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueueConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueueConnectionFactory’).

split(lineseparator)[0]

print template

Chapter 8. Messaging resources 1927

Example output:

Example non-XA WMQ QueueConnectionFactory(templates/

system:JMS-resource-provider-templates.xml

#MQQueueConnectionFactory_3)

5. Create a queue connection factory for the WebSphere MQ messaging provider:

v Using Jacl:

$AdminConfig createUsingTemplate MQQueueConnectionFactory

$newjmsp $mqqcfAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQQueueConnectionFactory’,

newjmsp, mqqcfAttrs, template)

Example output:

MQQCF(cells/mycell/nodes/mynode:resources.xml#MQQueueConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Defining a queue connection factory for the WebSphere MQ messaging provider

by supplying custom connection data

The following example creates a queue connection factory, specifying custom connection data.

wsadmin>AdminTask.createWMQConnectionFactory(’"WebSphere MQ JMS Provider

(cells/EXAMPLECell01|resources.xml#builtin_mqprovider)"’, ’

[-type QCF -name MQQueueConnectionFactory1 -jndiName

jms/MQQueueConnectionFactory1 -description -qmgrName

QueueManagerName -wmqTransportType BINDINGS_THEN_CLIENT

-qmgrHostname HostName -qmgrSvrconnChannel ServerConnectionChannel]’)

The following example creates a queue connection factory, specifying CCDT connection data.

wsadmin>AdminTask.createWMQConnectionFactory(’"WebSphere MQ JMS Provider

(cells/EXAMPLECell01|resources.xml#builtin_mqprovider)"’, ’

[-type QCF -name MQQueueConnectionFactory2 -jndiName

jms/MQQueueConnectionFactory2 -description -ccdtUrl

http://ClientChannelDefinitionTableURL -ccdtQmgrName QueueManager]’)

Configuring a new topic connection factor for the WebSphere MQ

messaging provider using scripting

You can use scripting to configure a new topic connection factory for the WebSphere MQ messaging

provider.

Before you begin

You can also use the “createWMQConnectionFactory command” on page 2058 to create a topic

connection factory for the WebSphere MQ messaging provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a topic connection factory for the WebSphere MQ messaging

provider:

1. Identify the parent ID:

v Using Jacl:

1928 Administering WebSphere applications

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/

JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/

JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode:resources.xml#JMSProvider_1)

2. Get the required attributes:

v Using Jacl:

$AdminConfig required MQTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’MQTopicConnectionFactory’)

Example output:

attribute Type

name String

jndiName String

3. Set up the required attributes:

v Using Jacl:

set name [list name MQTCF]

set jndi [list jndiName jms/MQTCF]

set mqtcfAttrs [list $name $jndi]

Example output:

{name MQTCF} {jndiName jms/MQTCF}

v Using Jython:

name = [’name’, ’MQTCF’]

jndi = [’jndiName’, ’jms/MQTCF’]

mqtcfAttrs = [name, jndi]

print mqtcfAttrs

Example output:

[[name, MQTCF], [jndiName, jms/MQTCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQTopicConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQTopicConnectionFactory’).

split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ TopicConnectionFactory(templates/

system: JMS-resource-provider-templates.xml

#MQTopicConnectionFactory_5)

5. Create a topic connection factory for the WebSphere MQ messaging provider:

v Using Jacl:

$AdminConfig createUsingTemplate MQTopicConnectionFactory

$mqjmsp $mqtcfAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQTopicConnectionFactory’,

mqjmsp, mqtcfAttrs, template)

Example output:

Chapter 8. Messaging resources 1929

MQTCF(cells/mycell/nodes/mynode:resources.xml#MQTopicConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Defining a topic connection factory for the WebSphere MQ messaging provider by

supplying custom connection data

The following example creates a topic connection factory, specifying custom connection data.

Using Jython:

wsadmin>AdminTask.createWMQConnectionFactory(’"WebSphere MQ JMS Provider

(cells/EXAMPLECell01|resources.xml#builtin_mqprovider)"’, ’

[-type TCF -name MQTopicConnectionFactory1 -jndiName

 jms/MQTopicConnectionFactory1 -description -qmgrName

QueueManagerName -wmqTransportType BINDINGS_THEN_CLIENT

-qmgrHostname HostName -qmgrSvrconnChannel ServerConnectionChannel]’)

The following example creates a topic connection factory, specifying CCDT connection data.

Using Jython:

wsadmin>AdminTask.createWMQConnectionFactory(’"WebSphere MQ JMS Provider

(cells/EXAMPLECell01|resources.xml#builtin_mqprovider)"’, ’

[-type TCF -name MQTopicConnectionFactory2 -jndiName

jms/MQTopicConnectionFactory2 -description -ccdtUrl

http://ClientChannelDefinitionTableURL -ccdtQmgrName QueueManager]’)

Configuring a new queue for the WebSphere MQ messaging provider

using scripting

You can use scripting to configure a new queue for the WebSphere MQ messaging provider.

Before you begin

You can also use the “createWMQQueue command” on page 2084 to create a queue for the WebSphere

MQ messaging provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new queue for the WebSphere MQ messaging provider:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’) print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get the required attributes:

v Using Jacl:

$AdminConfig required MQQueue

v Using Jython:

1930 Administering WebSphere applications

print AdminConfig.required(’MQQueue’)

Example output:

Attribute Type name String jndiName String baseQueueName String

3. Set up the required attributes:

v Using Jacl:

set name [list name MQQ] set jndi [list jndiName jms/MQQ] set baseQN [list baseQueueName "Put the

 base queue name here"] set mqqAttrs [list $name $jndi $baseQN]

Example output:

{name MQQ} {jndiName jms/MQQ} {baseQueueName {Put the base queue name here}}

v Using Jython:

name = [’name’, ’MQQ’] jndi = [’jndiName’, ’jms/MQQ’] baseQN = [’baseQueueName’, "Put the base

 queue name here"] mqqAttrs = [name, jndi, baseQN] print mqqAttrs

Example output:

[[name, MQQ], [jndiName, jms/MQQ], [baseQueueName, "Put the base queue name here"]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueue] 0]

v Using Jython:

import java lineseparator = java.lang.System.getProperty(’line.separator’) template =

 AdminConfig.listTemplates(’MQQueue’).split(lineseparator)[0] print template

Example output:

Example.JMS.WMQ.Q1(templates/system:JMS-resource-provider- templates.xml#MQQueue_1)

5. Create a queue for the WebSphere MQ messaging provider:

v Using Jacl:

$AdminConfig createUsingTemplate MQQueue $newjmsp $mqqAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQQueue’, newjmsp, mqqAttrs, template)

Example output:

MQQ(cells/mycell/nodes/mynode|resources.xml#MQQueue_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Defining a queue for the WebSphere MQ messaging provider

AdminTask.createWMQQueue(’EXAMPLECell01(cells/EXAMPLECell01|cell.xml)’, ’[-name MQQueue

 -jndiName jms/MQQueue -queueName QueueName -qmgr QueueManager -description]’)

Configuring a new topic for the WebSphere MQ messaging provider

using scripting

You can use scripting to configure a new topic for the WebSphere MQ messaging provider.

Before you begin

You can also use the “createWMQTopic command” on page 2073 to create a queue for the WebSphere

MQ messaging provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Chapter 8. Messaging resources 1931

About this task

Perform the following steps to configure a new topic for the WebSphere MQ messaging provider:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’) print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get the required attributes:

v Using Jacl:

$AdminConfig required MQTopic

v Using Jython:

print AdminConfig.required(’MQTopic’)

Example output:

Attribute Type name String jndiName String baseTopicName

 String

3. Set up the required attributes:

v Using Jacl:

set name [list name MQT] set jndi [list jndiName jms/MQT] set baseTN [list baseTopicName "Put the

 base topic name here"] set mqtAttrs [list $name $jndi $baseTN]

Example output:

{name MQT} {jndiName jms/MQT} {baseTopicName {Put the base topic name here}}

v Using Jython:

name = [’name’, ’MQT’] jndi = [’jndiName’, ’jms/MQT’] baseTN = [’baseTopicName’, "Put the base

 topic name here"] mqtAttrs = [name, jndi, baseTN] print mqtAttrs

Example output:

[[name, MQT], [jndiName, jms/MQT], [baseTopicName, "Put the base topic name here"]]

4. Create a topic for the WebSphere MQ messaging provider:

v Using Jacl:

$AdminConfig create MQTopic $newjmsp $mqtAttrs

v Using Jython:

print AdminConfig.create(’MQTopic’, newjmsp, mqtAttrs)

Example output:

MQT(cells/mycell/nodes/mynode|resources.xml#MQTopic_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Defining a topic for the WebSphere MQ messaging provider

AdminTask.createWMQTopic(’DRAPERDCell01(cells/DRAPERDCell01|cell.xml)’, ’[-name MQQueue

 -jndiName jms/MQQueue -topicName TopicName -qmgr QueueManager -description]’)

JCAManagement command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure messaging with scripting. The commands

and parameters in the JCA management group can be used to create and manage resource adapters,

Java EE Connector Architecture (J2C) activation specifications, administrative objects, connection

factories, administrative object interfaces, and message listener types.

The JCAManagement command group for the AdminTask object includes the following commands:

1932 Administering WebSphere applications

v “copyResourceAdapter”

v “createJ2CActivationSpec”

v “createJ2CAdminObject” on page 1934

v “createJ2CConnectionFactory” on page 1935

v “listAdminObjectInterfaces” on page 1936

v “listConnectionFactoryInterfaces” on page 1936

v “listJ2CActivationSpecs” on page 1937

v “listJ2CAdminObjects” on page 1938

v “listJ2CConnectionFactories” on page 1938

v “listMessageListenerTypes” on page 1939

copyResourceAdapter

Use the copyResourceAdapter command to create a Java 2 Connector (J2C) resource adapter under the

scope that you specify.

Target object

J2C Resource Adapter object ID

Parameters and return values

-name

Indicates the name of the new J2C resource adapter. This parameter is required.

-scope

Indicates the scope object ID. This parameter is required.

-useDeepCopy

If you set this parameter to true, all of the J2C connection factory, J2C activation specification, and

J2C administrative objects will be copied to the new J2C resource adapter (deep copy). If you set this

parameter to false, the objects are not created (shallow copy). The default is false.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask copyResourceAdapter $ra [subst {-name newRA -scope $scope}]

v Using Jython string:

AdminTask.copyResourceAdapter(ra, ’[-name newRA -scope scope]’)

v Using Jython list:

AdminTask.copyResourceAdapter(ra, [’-name’, ’newRA’, ’-scope’, ’scope’])

Interactive mode example usage:

v Using Jacl:

$AdminTask copyResourceAdapter {-interactive}

v Using Jython:

AdminTask.copyResourceAdapter(’-interactive’)

createJ2CActivationSpec

Use the createJ2CActivationSpec command to create a Java 2 Connector (J2C) activation specification

under a J2C resource adapter and the attributes that you specify. Use the messageListenerType

parameter to indicate the activation specification that is defined for the J2C resource adapter.

Chapter 8. Messaging resources 1933

Target object

J2C Resource Adapter object ID

Parameters and return values

- messageListenerType

Identifies the activation specification for the J2C activation specification to be created. Use this

parameter to identify the activation specification template for the J2C resource adapter that you

specify.

-name

Indicates the name of the J2C activation specification that you are creating.

-jndiName

Indicates the name of the Java Naming and Directory Interface (JNDI).

-destinationJndiName

Indicates the name of the Java Naming and Directory Interface (JNDI) of corresponding destination.

-authenticationAlias

Indicates the authentication alias of the J2C activation specification that you are creating.

-description

Description of the created J2C activation specification.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createJ2CActivationSpec $ra {-name J2CAct Spec -jndiName eis/ActSpec1

 -messageListenerType javax.jms.MessageListener }

v Using Jython string:

AdminTask.createJ2CActivationSpec(ra, ’[-name J2CActSpec -jndiName eis/ActSpec1

 -messageListenerType javax.jms.MessageListener]’)

v Using Jython list:

AdminTask.createJ2CActivationSpec(ra, [’-name’, ’J2CActSpec’, ’-jndiName’, ’eis/ActSpec1’,

 ’-messageListenerType’, ’javax.jms.MessageListener’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJ2CActivationSpec {-interactive}

v Using Jython:

AdminTask.createJ2CActivationSpec(’-interactive’)

createJ2CAdminObject

Use the createJ2CAdminObject command to create an administrative object under a resource adapter with

attributes that you specify. Use the administrative object interface to indicate the administrative object that

is defined in the resource adapter.

Target object

J2C Resource Adapter object ID

Parameters and return values

1934 Administering WebSphere applications

-adminObjectInterface

Specifies the administrative object interface to identify the administrative object for the resource

adapter that you specify. This parameter is required.

-name

Indicates the name of the administrative object.

-jndiName

Specifies the name of the Java Naming and Directory Interface (JNDI).

-description

Description of the created J2C admin object.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createJ2CAdminObject $ra {-adminObjectInterface fvt.adapter.message.FVTMessageProvider

 -name J2CA01 -jndiName eis/J2CA01}

v Using Jython string:

AdminTask.createJ2CAdminObject(ra, ’[-adminObjectInterface fvt.adapter.message.FVTMessageProvider

 -name J2CA01 -jndiName eis/J2CA01]’)

v Using Jython list:

AdminTask.createJ2CAdminObject(ra, [’-adminObjectInterface’,

 ’fvt.adapter.message.FVTMessageProvider’, ’-name’, ’J2CA01’, ’-jndiName’, ’eis/J2CA01’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJ2CAdminObject {-interactive}

v Using Jython:

AdminTask.createJ2CAdminObject(’-interactive’)

createJ2CConnectionFactory

Use the createJ2CConnectionFactory command to create a Java 2 connection factory under a Java 2

resource adapter and the attributes that you specify. Use the connection factory interfaces to indicate the

connection definitions that are defined for the Java 2 resource adapter.

Target object

J2C Resource Adapter object ID

Parameters and return values

-connectionFactoryInterface

Identifies the connection definition for the Java 2 resource adapter that you specify. This parameter is

required.

-name

Indicates the name of the connection factory.

-jndiName

Indicates the name of the Java Naming and Directory Interface (JNDI).

-description

Description of the created J2C connection factory.

Examples

Chapter 8. Messaging resources 1935

Batch mode example usage:

v Using Jacl:

$AdminTask createJ2CConnectionFactory $ra {-connectionFactoryInterfaces javax.sql.DataSource

-name J2CCF1 -jndiName eis/J2CCF1}

v Using Jython string:

AdminTask.createJ2CConnectionFactory(ra, ’[-connectionFactoryInterfaces javax.sql.DataSource

-name J2CCF1 -jndi Name eis/J2CCF1]’)

v Using Jython list:

AdminTask.createJ2CConnectionFactory(ra, [’-connectionFactoryInterfaces’,

 ’javax.sql.DataSource’, ’-name’, ’J2CCF1’, ’-jndiName’, ’eis/J2CCF1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJ2CConnectionFactory {-interactive}

v Using Jython:

AdminTask.createJ2CConnectionFactory(’-interactive’)

listAdminObjectInterfaces

Use the listAdminObjectInterfaces command to list the administrative object interfaces that are defined

under the resource adapter that you specify.

Target object

J2C Resource Adapter object ID

Parameters and return values

v Parameters: None

v Returns: A list of administrative object interfaces.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listAdminObjectInterfaces $ra

v Using Jython string:

AdminTask.listAdminObjectInterfaces(ra)

v Using Jython list:

AdminTask.listAdminObjectInterfaces(ra)

Interactive mode example usage:

v Using Jacl:

$AdminTask listAdminObjectInterfaces {-interactive}

v Using Jython:

AdminTask.listAdminObjectInterfaces(’-interactive’)

listConnectionFactoryInterfaces

Use the listConnectionFactoryInterfaces command to list all of the connection factory interfaces that are

defined under the Java 2 connector resource adapter that you specify.

Target object

J2C Resource Adapter object ID

1936 Administering WebSphere applications

Parameters and return values

v Parameters: None

v Returns: A list of connection factory interfaces.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listConnectionFactoryInterfaces $ra

v Using Jython string:

AdminTask.listConnectionFactoryInterfaces(ra)

v Using Jython list:

AdminTask.listConnectionFactoryInterfaces(ra)

Interactive mode example usage:

v Using Jacl:

$AdminTask listConnectionFactoryInterfaces {-interactive}

v Using Jython:

AdminTask.listConnectionFactoryInterfaces(’-interactive’)

listJ2CActivationSpecs

Use the listJ2CActivationSpecs command to list the activation specifications that are contained under the

resource adapter and message listener type that you specify.

Target object

J2C Resource Adapter object ID

Parameters and return values

-messageListenerType

Specifies the message listener type for the resource adapter for which you are making a list. This

parameter is required.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listJ2CActivationSpecs $ra {-messageListener Type javax.jms.MessageListener}

v Using Jython string:

AdminTask.listJ2CActivationSpecs(ra, ’[-messageListener Type javax.jms.MessageListener]’)

v Using Jython list:

AdminTask.listJ2CActivation Specs(ra, [’-messageListener Type’, ’javax.jms.MessageListener’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listJ2CActivationSpecs {-interactive}

v Using Jython:

AdminTask.listJ2CActivationSpecs(’-interactive’)

Chapter 8. Messaging resources 1937

listJ2CAdminObjects

Use the listJ2CAdminObjects command to list administrative objects that contain the administrative object

interface that you specify.

Target object

J2C Resource Adapter object ID

Parameters and return values

-adminObjectInterface

Specifies the administrative object interface for which you want to list. This parameter is required.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listJ2CAdminObjects $ra {-adminObjectInterface

 fvt.adaptor.message.FVTMessageProvider}

v Using Jython string:

AdminTask.listJ2CAdminObjects(ra, ’[-adminObjectInterface

 fvt.adaptor.message.FVTMessageProvider]’)

Interactive mode example usage:

v Using Jacl:

$AdminTask listJ2CAdminObjects {-interactive}

v Using Jython:

AdminTask.listJ2CAdminObjects(’-interactive’)

listJ2CConnectionFactories

Use the listJ2CConnectionFactories command to list the Java 2 connector connection factories under the

resource adapter and connection factory interface that you specify.

Target object

J2C Resource Adapter object ID

Parameters and return values

-connectionFactoryInterface

Indicates the name of the connection factory that you want to list. This parameter is required.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listJ2CConnectionFactories $ra {-connectionFactoryInterface javax.sql.DataSource}

v Using Jython string:

AdminTask.listJ2CConnectionFactories(ra, ’[-connectionFactoryInterface javax.sql.DataSource]’)

v Using Jython list:

AdminTask.listJ2CConnectionFactories(ra, [’-connectionFactoryInterface’,

 ’javax.sql.DataSource’])

Interactive mode example usage:

1938 Administering WebSphere applications

v Using Jacl:

$AdminTask listJ2CConnectionFactories {-interactive}

v Using Jython:

AdminTask.listJ2CConnectionFactories(’-interactive’)

listMessageListenerTypes

Use the listMessageListenerTypes command to list the message listener types that are defined under the

resource adapter that you specify.

Target object

J2C Resource Adapter object ID

Parameters and return values

v Parameters: None

v Returns: A list of message listener types.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listMessageListenerTypes $ra

v Using Jython string:

AdminTask.listMessageListenerTypes(ra)

v Using Jython list:

AdminTask.listMessageListenerTypes(ra)

Interactive mode example usage:

v Using Jacl:

$AdminTask listMessageListenerTypes {-interactive}

v Using Jython:

AdminTask.listMessageListenerTypes(’-interactive’)

Chapter 8. Messaging resources 1939

Related tasks

“Configuring new J2C administrative objects using scripting” on page 1434
You can use scripting and the wsadmin tool to configure new J2C administrative objects.

“Configuring new J2C activation specifications using scripting” on page 1432
You can configure new J2C activation specifications using scripting and the wsadmin tool.

“Configuring new J2C resource adapters using scripting” on page 1428
Use the wsadmin tool to configure resource adapters with Resource Adapter Archive (RAR) files. A RAR

file provides the classes and other code to support a resource adapter for access to a specific enterprise

information system (EIS), such as the Customer Information Control System (CICS). Configure resource

adapters for an EIS only after you install the appropriate RAR file.

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

Managing messaging with the WebSphere MQ messaging provider

Through this messaging provider, Java Message Service (JMS) messaging applications can use your

WebSphere MQ system as an external provider of JMS messaging resources.

Before you begin

If your business uses WebSphere MQ, and you want to integrate WebSphere Application Server

messaging applications into a predominantly WebSphere MQ network, the WebSphere MQ messaging

provider is the natural choice. However, there can be benefits in using another provider. If you are not sure

which provider combination is best suited to your needs, see “Choosing messaging providers for a mixed

environment” on page 1763.

About this task

The WebSphere MQ messaging provider supports JMS 1.1 domain-independent interfaces (sometimes

referred to as “unified” or “common” interfaces). This enables applications to use the same interfaces for

both point-to-point and publish/subscribe messaging, and also enables both point-to-point and

publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is recommended

for new applications. The domain-specific interfaces are supported for backwards compatibility for

applications developed to use domain-specific queue interfaces, as described in section 1.5 of the JMS 1.1

specification.

The WebSphere MQ messaging provider also supports the J2EE Connector Architecture (JCA) 1.5

activation specification mechanism for message-driven beans (MDBs) across all platforms supported by

WebSphere Application Server.

You can use WebSphere Application Server to configure WebSphere MQ resources for applications (for

example queue connection factories) and to manage messages and subscriptions associated with JMS

destinations. You administer security through WebSphere MQ.

In a mixed-version WebSphere Application Server cell, you can administer WebSphere MQ resources on

nodes of all versions. However, some properties are not available on all versions. In this situation, the

administrative console displays only the properties of that particular node.

The preferred solution for publish and subscribe messaging with WebSphere MQ as an external JMS

messaging provider is to use a message broker such as WebSphere MQ Event Broker.

1940 Administering WebSphere applications

To use WebSphere MQ as a messaging provider for WebSphere Application Server, complete one or more

of the following steps.

v Learn about interoperating with a WebSphere MQ network.

v Configure JMS resources for the WebSphere MQ messaging provider.

You can do this through the WebSphere Application Server administrative console, or through the

WebSphere Application Server set of WebSphere MQ administrative commands.

v List JMS resources for the WebSphere MQ messaging provider..

Related tasks

Learning about interoperating with a WebSphere MQ network

Configuring JMS resources for the WebSphere MQ messaging

provider

Use the WebSphere Application Server administrative console to configure activation specifications,

connection factories and destinations for the WebSphere MQ JMS provider.

Before you begin

This task assumes that you are working in a mixed WebSphere Application Server and WebSphere MQ

environment, and that you have decided to use the WebSphere MQ messaging provider to handle JMS

messaging between the two systems. If your business uses WebSphere MQ, and you want to integrate

WebSphere Application Server messaging applications into a predominately WebSphere MQ network, the

WebSphere MQ messaging provider is the natural choice. However, there can be benefits in using another

provider. If you are not sure which provider combination is best suited to your needs, see “Choosing

messaging providers for a mixed environment” on page 1763.

You can configure JMS resources for the WebSphere MQ messaging provider through the administrative

console as described in this task, or you can configure JMS resources for the WebSphere MQ messaging

provider through the WebSphere MQ administrative commands.

About this task

Note: The set of WebSphere Application Server administrative console panels used to configure JMS

resources for the WebSphere MQ messaging provider has been redesigned to simplify the

configuration process, and new panels have been introduced. A corresponding set of WebSphere

MQ administrative commands has been introduced. There are new wizards for creating activation

specifications and connection factories for the WebSphere MQ messaging provider and for

converting listeners ports to activation specifications.

Using the administrative console, if you set the scope of the WebSphere MQ messaging provider to a

scope which contains only WebSphere Application Server Version 6 or 7 nodes, you can configure JMS

1.1 resources and properties. This includes unified JMS connection factories for use by both point-to-point

and publish/subscribe JMS 1.1 applications. With JMS 1.1, this approach is preferred to the

domain-specific queue connection factory and topic connection factory.

If you set the scope of the WebSphere MQ messaging provider to a scope which contains only

WebSphere Application Server Version 7 nodes, you can also configure JMS activations specifications.

If you set the scope to a WebSphere Application Server Version 5 node, you can only configure

domain-specific JMS resources, and the subset of properties that apply to WebSphere Application Server

Version 5.

For more information about configuring JMS resources for the WebSphere MQ messaging provider, see

the following topics. These topics include optional steps for you to create a new JMS resource.

Chapter 8. Messaging resources 1941

friend.sib/tasks/tjc000C_.dita
friend.sib/tasks/tjc000C_.dita

v “Creating an activation specification for the WebSphere MQ messaging provider using the Create

Activation Specification wizard”

v “Configuring an existing activation specification for the WebSphere MQ messaging provider” on page

1943

v “Configuring a listener port to an activation specification for use with the WebSphere MQ messaging

provider” on page 1944

v “Creating a connection factory for the WebSphere MQ messaging provider using the Create JMS

Resource wizard” on page 1944

v “Configuring a JMS connection factory for the WebSphere MQ messaging provider” on page 1949

v “Configuring an existing JMS queue connection factory for the WebSphere MQ messaging provider” on

page 1950

v “Configuring an existing JMS topic connection factory for the WebSphere MQ messaging provider” on

page 1951

v “Configuring a JMS queue destination for the WebSphere MQ messaging provider” on page 1951

v “Configuring a JMS topic destination for the WebSphere MQ messaging provider” on page 1952

Creating an activation specification for the WebSphere MQ messaging provider

using the Create Activation Specification wizard

Use this task create an activation specification for use with the WebSphere MQ messaging provider.

About this task

To modify an existing activation specification, see the related tasks.

To create an activation specification for use with the WebSphere MQ messaging provider, use the

administrative console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Activation specifications to create an

activation specification.

 2. Change the Scope setting to the level at which you want to create the activation specification.

 3. Click New in the content pane to start the Create WebSphere MQ activation specification wizard.

a. Select the WebSphere MQ messaging provider and click OK.

b. In the Configure basic attributes panel, specify the following properties:

Name The name by which this activation specification is known for administrative purposes

within WebSphere Application Server.

JNDI name

The name that is used to bind this activation specification into the JNDI name space.

Description

Optional. A description of this activation specification for administrative purposes within

WebSphere Application Server.

Click Cancel to cancel all actions and leave the wizard or click Next to continue.

 4. In the Select connection method panel, specify how to connect to the WebSphere MQ messaging

provider by selecting one of the following radio buttons:

Enter all the required information into this wizard

Click Next to proceed to the Supply queue connection details panel.

Use a client channel definition table

Click Next to proceed to the Specify client channel definition table panel.

 5. In the Specify client channel definition table panel, enter information about the client channel

definition table (CCDT) that is used to establish a connection to the WebSphere MQ messaging

1942 Administering WebSphere applications

provider. Optionally, in the Queue manager field, enter the name of the queue manager to identify

one or more entries to use from the CCDT. Click Next to continue to the Test connection panel.

 6. In the Supply queue connection details panel, enter the name of the queue manager or queue

sharing group that you want to connect to. Click Next to continue to the Enter connection details

panel.

 7. In the Enter connection details panel, specify the following properties:

Transport

Optional. The WebSphere MQ transport type for the connection. This is used to determine the

exact mechanisms used to connect to WebSphere MQ. For more information about

configuring a transport type of bindings then client or bindings, refer to “Configuring the

WebSphere MQ messaging provider with native libraries information” on page 1945and

“Sizing the thread pools used by the WebSphere MQ messaging provider” on page 1946.

Hostname

The hostname, IPv4 or IPv6 address of the WebSphere MQ queue manager to connect to.

Port Optional. The port number on which WebSphere MQ is listening.

Server connection channel

Optional. The WebSphere MQ server connection channel name used when connecting to

WebSphere MQ queue manager or queue sharing group.

Click Cancel to cancel all actions and leave the wizard or click Next to continue.

 8. Optional: In the Test connection panel, if you want to test establishing the connection, click Test

connection. This test can take several seconds to perform.

 9. In the Summary panel, click Cancel to cancel all actions and leave the wizard, or Previous to return

to the previous panel, or Finish to complete the creation of the new activation specification.

10. Stop then restart the application server.

Configuring an existing activation specification for the WebSphere MQ messaging

provider

Use this task to browse or change an activation specification for use with the WebSphere MQ messaging

provider.

About this task

To browse or change an activation specification for use with WebSphere MQ, use the administrative

console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Activation specifications to view existing

activation specifications, with a summary of their properties.

 2. Change the Scope setting to the level at which the activation specification is visible to applications.

 3. Click the name of the activation specification that you want to work with.

 4. Under General Properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

activation specification.

 7. Optional: Click Broker properties to display or change the list of broker properties of your activation

specification.

 8. Optional: Click Custom properties to display or change the list of custom properties of your

activation specification.

Chapter 8. Messaging resources 1943

9. Optional: Click Client transport properties to display or change the list of client transport properties

of your activation specification. This link is only present on the explicitly-defined variation of this

panel, where you enter all information required to connect to WebSphere MQ. This link does not

appear for the CCDT-based variation.

10. Click OK.

11. Save any changes to the master configuration.

12. To have the changed configuration take effect, stop then restart the application server.

Configuring a listener port to an activation specification for use with the

WebSphere MQ messaging provider

Use this task to configure a listener port to an activation specification for use with the WebSphere MQ

messaging provider.

About this task

Note: From WebSphere Application Server Version 7 listener ports are deprecated.

To migrate information from an deprecated listener port to an activation specification for use the

WebSphere MQ messaging provider, use the administrative console to complete the following steps:

1. In the navigation pane, expand Servers → Application Servers → application_server.

2. Under Communications, expand Messaging → Message listener service and click Listener Ports to

view existing listener ports, with a summary of their properties.

3. Select the listener port that you want to work with by selecting the check box to its left.

4. Click Convert to activation specification to start the Convert listener port to activation

specification wizard.

5. In the Step1: Supply activation specification name panel, enter the name of the new activation

specification to be created, the JNDI name of the new activation specification, and the scope of the

new activation specification (Server, Node, Cluster, Cell). Note that Cluster only appears when the

server is in a cluster. Click Next to continue.

6. In the Step2: Summary panel, click Finish to complete the creation of the new activation specification.

7. Stop then restart the application server.

8. To complete the configuration of the activation specification, refer to Related tasks.

Creating a connection factory for the WebSphere MQ messaging provider using

the Create JMS Resource wizard

Use this task create a connection factory, a queue connection factory, or a topic connection factory for use

with the WebSphere MQ messaging provider.

About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection

factories and topic connection factories.

To modify an existing connection factory, see the related tasks.

To create a connection factory, a queue connection factory, or a topic connection factory for use with the

WebSphere MQ messaging provider, use the administrative console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Connection factories, → Queue connection

factories or → Topic connection factories. to create a connection factory, a queue connection

factory or a topic connection factory.

 2. Change the Scope setting to the level at which you want to create the connection factory.

 3. Click New in the content pane to start the Create JMS resource wizard.

1944 Administering WebSphere applications

a. Select the WebSphere MQ messaging provider and click OK.

b. In the Configure basic attributes panel, specify the following properties:

Name The name by which this connection factory is known for administrative purposes within

WebSphere Application Server.

JNDI name

The name that is used to bind this connection factory into the JNDI name space.

Description

Optional. A description of this connection factory for administrative purposes within

WebSphere Application Server.

Click Cancel to cancel all actions and leave the wizard or click Next to continue.

 4. In the Select connection method panel, specify how to connect to the WebSphere MQ messaging

provider by selecting one of the following radio buttons:

Enter all the required information into this wizard

Click Next to proceed to the Supply queue connection details panel.

Use a client channel definition table

Click Next to proceed to the Specify client channel definition table panel.

 5. In the Specify client channel definition table panel, enter information about the client channel

definition table (CCDT) that is used to establish a connection to the WebSphere MQ messaging

provider. Optionally, in the Queue manager field, enter the name of the queue manager to identify

one or more entries to use from the CCDT. Click Next to continue to the Test connection panel.

 6. In the Supply queue connection details panel, enter the name of the queue manager or queue

sharing group that you want to connect to. Click Next to continue to the Enter connection details

panel.

 7. In the Enter connection details panel, specify the following properties:

Transport

Optional. The WebSphere MQ transport type for the connection. This is used to determine the

exact mechanisms used to connect to WebSphere MQ. For more information about

configuring a transport type of bindings then client or bindings, refer to “Configuring the

WebSphere MQ messaging provider with native libraries information”and “Sizing the thread

pools used by the WebSphere MQ messaging provider” on page 1946.

Hostname

The hostname, IPv4 or IPv6 address of the WebSphere MQ queue manager to connect to.

Port Optional. The port number on which WebSphere MQ is listening.

Server connection channel

Optional. The WebSphere MQ server connection channel name used when connecting to

WebSphere MQ queue manager or queue sharing group.

Click Cancel to cancel all actions and leave the wizard or click Next to continue.

 8. Optional: In the Test connection panel, if you want to test establishing the connection, click Test

connection. This test can take several seconds to perform.

 9. In the Summary panel, click Cancel to cancel all actions and leave the wizard, or Previous to return

to the previous panel, or Finish to complete the creation of the new connection factory.

10. Stop then restart the application server.

Configuring the WebSphere MQ messaging provider with native libraries information:

To connect to a WebSphere MQ queue manager or queue sharing group in bindings mode, the

WebSphere MQ messaging provider needs to know where to load native libraries from. This information is

known as native path information. The way native path information is set depends on whether the

Chapter 8. Messaging resources 1945

connection is established in an application client or in an application server environment. Use this task to

configure the WebSphere MQ messaging provider with native path information.

 About this task

If you are running in a client environment, use launchClient to start a client application. In the system

property MQ_INSTALL_ROOT enter the name of a directory which contains the WebSphere MQ native

libraries, in a subdirectory of java/lib or java/lib64 depending on whether you are using 32 bit or 64 bit

native libraries. For example, on Linux specify ./launchClient.sh myappclient.ear

-CCDMQ_INSTALL_ROOT=/opt/mqm/.

If you are running in an application server environment, you can configure the WebSphere MQ messaging

provider with native path information using the command line, as described in “WMQAdminCommands

command group for the AdminTask object” on page 2043, or you can use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. Select the WebSphere MQ messaging provider that is at the correct Scope for the connection factory

or activation specification that will create the bindings mode connection. Note that native path

information at Server scope is used in preference to native path information at higher scopes, and

native path information at Node scope is used in preference to native path information at Cell scope

3. Under General Properties, in the Native library path property, enter the full name of the directory that

contains the WebSphere MQ native libraries. For example, on Linux enter /opt/mqm/java/lib. Enter

only one directory name.

4. Click OK.

5. Save any changes to the master configuration.

6. To have the changed configuration take effect, stop then restart the application server.

Sizing the thread pools used by the WebSphere MQ messaging provider:

Use this task to calculate the number of thread pools required by the WebSphere MQ messaging provider.

 Before you begin

In IBM® WebSphere® Application Server, almost all of the work that is done by the WebSphere MQ

messaging provider uses threads from the WMQCommonServices thread pool. By default, this thread pool

has a maximum size of 40 threads in an application server environment and 10 threads in a client

environment. If the number of threads is exceeded, work that is submitted by the WebSphere MQ

messaging provider might not complete and errors might be output to the log files.

About this task

To prevent the thread pool from becoming exhausted, use the following guidelines to size the thread pool

correctly for the application environment.

1. Application server environment If you are using a WebSphere MQ messaging provider connection

factory, topic connection factory or queue connection factory, and all the following conditions apply:

v The connection factory is enabled for two-phase commit

v The transport mode is bindings or bindings, then client

v The bindings leg is used

then:

v You require one thread for each connection. Allow enough threads to fill up the connection pool,

which has a default maximum size of 10.

1946 Administering WebSphere applications

v You require one thread for each session. Allow enough threads to fill up the session pool, which has

a default maximum size of 10. There is one session pool for every connection in the connection

pool.

For example, each WebSphere MQ messaging provider connection factory with a bindings transport

mode, and that is enabled for two-phase commit, requires 110 threads.

Note: The previous information does not apply with WebSphere Application Server for z/OS®, even

when you use a connection factory that is enabled for two-phase commit.

If you use a WebSphere MQ messaging provider connection factory, topic connection factory or queue

connection factory and both the following conditions apply:

v The transport mode is client or bindings, then client

v The client leg is used

then:

v You require one thread for each connection. Allow enough threads to fill up the connection pool,

which has a default maximum size of 10.

v You require one thread for each session. Allow enough threads to fill up the session pool, which has

a default maximum size of 10. There is one session pool for every connection in the connection

pool.

For example, each WebSphere MQ messaging provider connection factory with a transport mode of

bindings, then client, and that uses the client leg, requires 110 threads.

If you use WebSphere MQ messaging provider activation specifications in either of the following

circumstances:

v To deliver messages to message-driven beans inside a transaction with any transport type

v You are using a transport mode of client or bindings, then client, the client leg is used, and a

transaction does not exist

then:

v You require one thread for each running message-driven bean (MDB) instance. The number of

instances is determined by the maximum server sessions setting on a WebSphere MQ messaging

provider activation specification. By default this value is 10.

v You require one thread for each five MDB installations, if they all connect to the same queue

manager. The default value for the WebSphere MQ messaging provider connectionConcurrency

setting is 5. For more information on how to set the connectionConcurrency setting, refer to the

Information Center for WebSphere MQ.

v You require one extra thread to perform the dispatching of messages if the transport mode is client

or bindings, then client and the client leg is used.

For example, each WebSphere MQ messaging provider activation specification with a client transport

mode, and that is enabled for two-phase commit, requires 12 threads.

If you use message listener ports that use WebSphere MQ messaging provider resources to deliver

messages to MDBs, you need to take account of the thread pool considerations for the connections

and sessions that are used by the message listener port instances.

The message listener port uses one session for each server session. By default, there is one server

session for each message listener port instance.

Then:

v You require one thread for each connection that is used by a message listener port instance. This

thread is for the exception listener with which it is registered.

v You require one thread for each connection that is used by a message listener port instance. This

thread is for the exception listener with which it is registered.

– The message listener port is using a WebSphere MQ messaging provider connection factory that

is enabled for two-phase commit

– The transport mode is bindings, or bindings, then client

Chapter 8. Messaging resources 1947

– Uses the bindings leg

If the WebSphere MQ messaging provider connection factory has a transport mode of client or

bindings, then client, and uses the client leg, one thread is required regardless of whether the

connection factory is enabled for two-phase commit.

You require one thread for each message listener port instance for the dispatch thread that is used by

the connection consumer object, if the message listener port conditions are true:

v Uses a WebSphere MQ messaging provider connection factory

v Has a transport mode of client or bindings, then client

v Uses the client leg

Note: For each installed MDB that is configured to use a particular message listener port, there is a

single message listener port instance. For example, if three MDBs are configured to use the

same message listener port, there are three message listener port instances.

If you install a single MDB using a message listener port which uses a WebSphere MQ messaging

provider connection factory in bindings mode, and that is enabled for two-phase commit, you require at

least four threads:

v One thread for the connection

v One thread for the session that is used inside the server session, which is used by the message

listener port

v One thread for the exception listener

v One thread for the connection consumer

However, if the MDB is stopped and started, a different connection and therefore a different set of

sessions might be retrieved from the pool. You need to allow 112 threads: 10 for the connection pool,

100 for the session pools, one for the exception listener, and one for the connection consumer.

2. Application server environment In the application client environment, the rules for thread requirements

are similar to those rules in the application server environment. However, the rules are simplified

because connection and session pooling is not used, and connection factories cannot take part inside

a transaction. For most application clients, the default maximum thread pool size of 10 should be

sufficient.

If you use a WebSphere MQ messaging provider connection factory, topic connection factory or queue

connection factory and both the following conditions apply:

v The transport mode is client or bindings, then client

v The client leg is used

then:

v You require one thread for each connection

v You require one thread for each session

If you are registering a message listener implementation with a session for asynchronous delivery of

messages, you require an extra thread if the WebSphere MQ messaging provider connection factory

that created the session has a transport mode of client, or bindings, then client, and the client leg is

used.

If you register an exception listener implementation with a connection, you need an extra thread.

Consider the following scenario:

An IBM AIX® application server installation has a single MDB installed. The MDB has transactions

managed by the Enterprise JavaBeans (EJB) container and has a transaction attribute of required, so

messages are delivered to the MDB under an XA transaction. The MDB is configured to use a

WebSphere MQ messaging provider activation specification with transport mode of bindings. When a

message is received, the MDB performs some processing and then sends a reply message using

WebSphere MQ messaging provider connection factory with a transport mode of bindings. The

connection factory has the default connection and session pool settings.

The number of threads that are used by this scenario is 121 and consists of the following threads:

1948 Administering WebSphere applications

v 10 (one thread * default maximum number of MDB instances)

v 1 (the thread that is shared across deployments)

v 10 (the thread used by pooled connection * default pool size of 10)

v 100 (the thread used by pooled session * default connection pool size(10) * default session pool

size (10))

3. Configuring WMQCommonServices thread pool size in an application server You need to configure

every application server that uses WebSphere MQ messaging provider resources and the default

WMQCommonServices thread pool size is not enough. For example, if the MDB that is used in the

previous example is deployed in a clustered environment with two servers, perform the following

procedure on both application servers to set the size of the WMQCommonServices thread pool to at

least 121.

To configure the maximum size of the WMQCommonServices thread pool in the application server,

perform the following steps using the administrative console:

a. Click Servers → Server Types → WebSphere application serversserver name.

b. Under Additional Properties, click Thread pools → WMQCommonServices .

c. Update the value of the Maximum size field to the relevant value and click OK.

d. Click Save and restart the application server.

4. Configuring WMQCommonServices thread pool size in an application client To configure the maximum

size of the WMQCommonServices thread pool in the application client container, complete the

following steps:

a. Create a file called wmq.client.props, and put it in the application client class path.

b. Edit the wmq.client.props file and add the following text to the file:

com.ibm.ws.wmqcsi.threadPoolMaximumSize=<desired size of thread pool>

For example: com.ibm.ws.wmqcsi.threadPoolMaximumSize=15

c. Save the changes.

Configuring a JMS connection factory for the WebSphere MQ messaging provider

Use this tasks to browse or configure an existing domain-independent connection factory for the

WebSphere MQ messaging provider on an Application Server Version 7 node.

About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection

factories and topic connection factories. If you want to browse or configure a queue connection factory or

topic connection factory, see the related tasks.

To create a connection factory, see the related tasks.

To browse or configure an existing connection factory for use with WebSphere MQ, use the administrative

console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Connection factories to view existing

connection factories, with a summary of their properties.

 2. Change the Scope setting to the level at which the connection factory is visible to applications.

 3. Click the name of the connection factory that you want to work with.

 4. Under General Properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

connection factory.

 7. Optional: Click Broker properties to display or change the list of broker properties of your connection

factory.

Chapter 8. Messaging resources 1949

8. Optional: Click Custom properties to display or change the list of custom properties of your

connection factory.

 9. Optional: Click Client transport properties to display or change the list of client transport properties

of your connection factory. This link is only present on the explicitly-defined variation of this panel,

where you enter all information required to connect to WebSphere MQ. This link does not appear for

the CCDT-based variation.

10. Optional: Click Connection pools to display or change the connection pools detail of your connection

factory.

11. Optional: Click Session pools to display or change the session pools detail of your connection

factory.

12. Click OK.

13. Save any changes to the master configuration.

14. To have the changed configuration take effect, stop then restart the application server.

Configuring an existing JMS queue connection factory for the WebSphere MQ

messaging provider

Use this task to browse or change an existing JMS queue connection factory for point-to-point messaging

with the WebSphere MQ messaging provider.

About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection

factories and topic connection factories.

If you want to browse or change a connection factory, see the related tasks.

To browse or change a queue connection factory for use with the WebSphere MQ messaging provider,

use the administrative console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Queue connection factories to view existing

queue connection factories, with a summary of their properties.

 2. Change the Scope setting to the level at which the queue connection factory is visible to applications.

 3. Click the name of the queue connection factory that you want to work with.

 4. Under General Properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

queue connection factory.

 7. Optional: Click Custom properties to display or change the list of custom properties of your queue

connection factory.

 8. Optional: Click Client transport properties to display or change the list of client transport properties

of your queue connection factory. This link is only present on the explicitly-defined variation of this

panel, where you enter all information required to connect to WebSphere MQ. This link does not

appear for the CCDT-based variation.

 9. Optional: Click Connection pools to display or change the connection pools detail of your queue

connection factory.

10. Optional: Click Session pools to display or change the session pools detail of your queue connection

factory.

11. Click OK.

12. Save any changes to the master configuration.

13. To have the changed configuration take effect, stop then restart the application server.

1950 Administering WebSphere applications

Configuring an existing JMS topic connection factory for the WebSphere MQ

messaging provider

Use this task to browse or change an existing JMS topic connection factory for publish/subscribe

messaging with the WebSphere MQ messaging provider.

About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection

factories and topic connection factories. If you want to browse or configure a connection factory, see the

related tasks.

To browse or configure a topic connection factory for use with the WebSphere MQ messaging provider,

use the administrative console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Topic connection factories to view existing

topic connection factories, with a summary of their properties.

 2. Change the Scope setting to the level at which the topic connection factory is visible to applications.

 3. Click the name of the topic connection factory that you want to work with.

 4. Under General properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

topic connection factory.

 7. Optional: Click Broker properties to display or change the list of broker properties of your topic

connection factory.

 8. Optional: Click Custom properties to display or change the list of custom properties of your topic

connection factory.

 9. Optional: Click Client transport properties to display or change the list of client transport properties

of your topic connection factory. This link is only present on the explicitly-defined variation of this

panel, where you enter all information required to connect to WebSphere MQ. This link does not

appear for the CCDT-based variation.

10. Optional: Click Connection pools to display or change the connection pools detail of your topic

connection factory.

11. Optional: Click Session pools to display or change the session pools detail of your topic connection

factory.

12. Click OK.

13. Save any changes to the master configuration.

14. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS queue destination for the WebSphere MQ messaging provider

Use this task to browse or change a JMS queue destination for point-to-point messaging with the

WebSphere MQ messaging provider. This task contains an optional step for you to create a new JMS

queue destination.

About this task

To browse or change a queue destination for use with WebSphere MQ, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Queues to view existing queue destinations, with

a summary of their properties.

2. Change the Scope setting to the level at which the queue destination is visible to applications.

3. To browse or change the properties of an existing queue destination, click its name in the list.

Otherwise, to create a new queue, complete the following steps:

Chapter 8. Messaging resources 1951

a. Click New in the content pane. Select the WebSphere MQ messaging provider radio button and

click OK.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within

WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the queue destination into the name space.

Queue name

The name of the WebSphere MQ queue to which messages are sent.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables you

to browse or change additional properties.

4. Optional: Change WebSphere MQ queue settings, according to your needs.

5. Click OK.

6. Save any changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS topic destination for the WebSphere MQ messaging provider

Use this task to browse or change a JMS topic destination for publish/subscribe messaging with the

WebSphere MQ messaging provider. This task contains an optional step for you to create a new JMS

topic destination.

About this task

To browse or change a topic destination for use with the WebSphere MQ messaging provider, use the

administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → Topics to view existing topic destinations, with a

summary of their properties.

2. Change the Scope setting to the level at which the topic destination is visible to applications.

3. To browse or change the properties of an existing topic destination, click its name in the list.

Otherwise, to create a new topic destination, complete the following steps:

a. Click New in the content pane. Select the WebSphere MQ messaging provider radio button and

click OK.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this topic destination is known for administrative purposes within

WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the topic destination into the name space.

Topic name

The name of the WebSphere MQ topic to which messages are sent.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

4. Optional: Change WebSphere MQ topics settings according to your needs.

5. Click OK.

6. Save any changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

1952 Administering WebSphere applications

Configuring WebSphere MQ connection pooling

Browse or change properties of WebSphere MQ connection pooling for JMS connections from an

application server to WebSphere MQ as a JMS provider.

About this task

Support for connection pooling does not affect the performance of a message listener, because it retains

its connections while listening on a destination, but does affect the overall JMS system performance.

When a connection is no longer required, WebSphere MQ can pool the connection then reuse it later

instead of destroying it.

Note: This support is only available for use with WebSphere MQ as a JMS provider.

To enable WebSphere MQ connection pooling for an application server, use the administrative console to

complete the following steps:

1. Display the Message Listener Service properties for the application server

a. In the navigation pane, click Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service properties.

2. Select Custom Properties, to enable WebSphere MQ connection pooling, add the following custom

properties:

mqjms.pooling.threshold

The maximum number of unused connections in the pool.

mqjms.pooling.timeout

The timeout in milliseconds for unused connections in the pool.

3. Click OK.

4. Save any changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

What to do next

For additional information, see the books in the WebSphere MQ library.

Configuring custom properties for the WebSphere MQ messaging provider

You can use WebSphere MQ as a messaging provider for WebSphere Application Server. Many of the

properties for a WebSphere MQ messaging provider can be selected from panels in the WebSphere

Application Server administration console, but there are further properties that you can configure as

custom properties. Use this task to create custom properties for destinations and connection factories

when using WebSphere MQ as a messaging provider.

About this task

To create a new custom property for a destination or for a connection factory when using WebSphere MQ

as a messaging provider, use the administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS.

2. Select the type of JMS resource for which you want create custom properties.

3. Optional: Change the Scope setting to the level at which the resource definition is visible to

applications.

4. In the contents pane, select the specific JMS resource name. This displays information about the

resource.

5. To create custom properties, under Additional Properties, select Custom properties .

a. Click New in the content pane.

Chapter 8. Messaging resources 1953

b. Specify the following properties.

Name The name of the custom property. This property is required.

Value The value for the custom property.

Type The type of the custom property. Select the custom property type from the list.

c. Click Apply. This defines the custom property to WebSphere Application Server, and enables you

to browse or change additional properties.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

WebSphere MQ custom properties:

WebSphere Application Server supports the use of custom properties to define WebSphere MQ properties.

This is useful because it enables WebSphere Application Server to work with later versions of WebSphere

MQ which might have properties that are not exposed in the WebSphere Application Server administrative

console.

 For instructions on how to create a new custom property, see “Configuring custom properties for the

WebSphere MQ messaging provider” on page 1953.

In WebSphere Application Server Version 6.1, the custom properties that you define are validated by the

WebSphere MQ client jar files contained in WebSphere Application Server. In previous versions, this was

done within WebSphere Application Server itself, and then by the WebSphere MQ client jar files. If you

have defined a property that is not valid for WebSphere MQ, the WebSphere MQ client jar files create an

exception, which is caught by WebSphere Application Server, and logged in the Systemout.log and

SystemErr.log. Examples of error messages are given at the end of this topic.

When a later version of WebSphere MQ is available that is supported by the WebSphere Application

Server installation, new MQ properties might be created that are not known to WebSphere Application

Server. You can configure these as custom properties through WebSphere Application Server so that they

are recognized by the WebSphere MQ client jars. You can also configure WebSphere Application Server to

point to the WebSphere MQ client jars in the external JMS provider, as described in “Configuring the

WebSphere MQ messaging provider with native libraries information” on page 1945.

For information on valid values for WebSphere MQ properties, refer to WebSphere MQ Using Java or

WebSphere MQ System Administration, which are available from the IBM Publications Center.

The following scenarios illustrate how different cell configurations might be affected.

Mixed node scenario

In this scenario, a cell consists of a WebSphere Application Server, Version 6.1 deployment manager and

four nodes. Two of the nodes are WebSphere Application Server, Version 6.1 and two are WebSphere

Application Server, Version 6.0. If a WebSphere MQ connection factory is defined at cell level and has

custom properties defined which exploit the new fields available in WebSphere MQ, Version 6, then the

connection factory is only bound into the WebSphere Application Server cells that are at Version 6.1 level.

The WebSphere Application Server, Version 6.0 nodes do not know about the new WebSphere MQ

properties and do not bind into the JNDI. The enhancements made to WebSphere Application Server,

Version 6.1 allow validation of the properties to be deferred to the WebSphere MQ client jars.

1954 Administering WebSphere applications

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

Future version of WebSphere MQ scenario

In this scenario a cell consists of WebSphere Application Server, Version 6.1 deployment manager and

nodes. The WebSphere MQ messaging provider is running at a level later than Version 6. WebSphere

Application Server is using the default WebSphere MQ client jars shipped with WebSphere Application

Server, which are Version 6. In this scenario the WebSphere MQ client jars are not aware of the new

WebSphere MQ properties so the validation fails and the connection factory does not bind into the JNDI.

WebSphere
Application Server

cell6.0

WebSphere
Application Server

cell6.0

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application
Server 6.1

deployment
manager

WebSphere MQ
connection factory
defined at cell level
using WebSphere
MQ 6 (or higher)

custom properties

WebSphere MQ 6
(or higher)

JMS provider

JNDI Lookup fails as
connection factory is
not bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup works as
connection factory is

bound into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will bind
into JNDI

Will bind
into JNDI

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

Figure 27. Mixed node scenario

Chapter 8. Messaging resources 1955

Correctly configured scenario

In this scenario, which is similar to the previous one, a cell consists of WebSphere Application Server,

Version 6.1 deployment manager and nodes. The WebSphere MQ messaging provider is running at a

level later than Version 6. To successfully use the new WebSphere MQ properties it is necessary to

configure the WebSphere Application Server to point to the WebSphere MQ client jars associated with the

future version of WebSphere MQ.

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application
Server 6.1

deployment
manager

WebSphere MQ
connection factory
defined at cell level

using custom properties
for a future version of

WebSphere MQ

WebSphere MQ
(future version)
JMS provider

JNDI Lookup fails as
connection factory is
not bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup fails as
connection factory is
not bound into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

Figure 28. Future version of WebSphere MQ scenario

1956 Administering WebSphere applications

Error message example

The following example shows the type of text that the exception created by the client jars contains:

[09/02/06 15:40:06:377 GMT] 0000000a ContainerImpl E WSVR0501E: Error creating

component null [class com.ibm.ws.runtime.component.ApplicationServerImpl]

com.ibm.ws.exception.RuntimeWarning: com.ibm.ws.runtime.component.binder.

ResourceBindingException: invalid configuration passed to resource binding logic.

REASON: Failed to create connection factory: Error raised constructing AdminObject,

error code: XAQCF PropertyName : XAQCF PropertyName

where PropertyName is the name of the invalid property.

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application
Server 6.1

deployment
manager

WebSphere MQ
(future version)
JMS provider

JNDI Lookup works as
connection factory is

bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup works as
connection factory is

bound into JNDI

Will bind
into JNDI

Will bind
into JNDI

Will bind
into JNDI

Will bind
into JNDI

WebSphere MQ
(future version)

client jars

WebSphere MQ
connection factory
defined at cell level

using custom properties
for a future version of

WebSphere MQ

Figure 29. Correctly configured scenario

Chapter 8. Messaging resources 1957

Listing JMS resources for the WebSphere MQ messaging provider

Use the WebSphere Application Server administrative console to list JMS resources for the WebSphere

MQ provider, for administrative purposes.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to

view, modify or delete any of the following resources:

v Connection factory (unified)

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

When you use the Administrative Console to locate these resources, two different navigation pathways are

available:

v Provider-centric navigation. This lets you view all providers (or just those for a specified scope if

required), then navigate to a specific resource for a specific provider. This is the traditional way of

navigating to a resource when you know which provider owns it. Any navigation that starts with

Resources → JMS → JMS providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a resource.

This is useful if you want to find a resource, but you do not know which provider owns it (you can list all

resources of a given type across all scopes, for all providers, in a single panel). Any navigation that

follows the pattern Resources → JMS → [resource], where [resource] is one of the resource types listed

above is resource-centric.

You can use either of these navigation pathways to locate resources of any type.

v Use provider-centric navigation, for example to navigate to a specified connection factory

1. Start the WebSphere Application Server administrative console.

2. In the navigation pane, expand Resources → JMS → JMS providers. This opens the providers

collection which lists all currently configured providers across all scopes (you can modify the scope

if required).

3. From the providers collection, select the required provider. This opens the configuration tab for that

provider. The configuration tab contains a set of links to all the resources owned by that provider.

4. From the configuration tab, click the link for a resource type, for example the connection factories

link. This opens the connection factories collection which lists all the connection factories for that

provider.

5. From the connection factories collection, select the required connection factory. You can now view

and work with the connection factory’s properties

v Use resource-centric navigation, for example to navigate to a specified connection factory

1. Start the WebSphere Application Server administrative console.

2. In the navigation pane, expand Resources → JMS → Connection factories. This opens the

connection factories collection which lists all the connection factories across all providers.

3. From the connection factories collection, select the required connection factory. You can now view

and work with the connection factory’s properties.

WebSphere MQ messaging provider activation specification collection

Use this panel to select an activation specification to view or change its configuration properties. The

activation specification is configured for the WebSphere MQ messaging provider for both point-to-point and

publish/subscribe messaging.

1958 Administering WebSphere applications

This panel shows a list of the WebSphere MQ activation specifications with a summary of their

configuration properties. In a mixed release cell, these activation specifications are not available for

Version 5, 6.0 or 6.1 nodes.

To view a list of WebSphere MQ activation specifications, use the administrative console to complete the

following steps:

1. In the navigation pane, expand Resources → JMS → Activation specifications to display existing

activation specifications.

2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.

3. Optional: To define a new activation specification, click New to start the Create Activation Specification

wizard.

4. Optional: To view or change the properties of an activation specification, click its name in the list

displayed.

Configuring an existing activation specification for the WebSphere MQ messaging provider:

Use this task to browse or change an activation specification for use with the WebSphere MQ messaging

provider.

 About this task

To browse or change an activation specification for use with WebSphere MQ, use the administrative

console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Activation specifications to view existing

activation specifications, with a summary of their properties.

 2. Change the Scope setting to the level at which the activation specification is visible to applications.

 3. Click the name of the activation specification that you want to work with.

 4. Under General Properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

activation specification.

 7. Optional: Click Broker properties to display or change the list of broker properties of your activation

specification.

 8. Optional: Click Custom properties to display or change the list of custom properties of your

activation specification.

 9. Optional: Click Client transport properties to display or change the list of client transport properties

of your activation specification. This link is only present on the explicitly-defined variation of this

panel, where you enter all information required to connect to WebSphere MQ. This link does not

appear for the CCDT-based variation.

10. Click OK.

11. Save any changes to the master configuration.

12. To have the changed configuration take effect, stop then restart the application server.

WebSphere MQ messaging provider activation specification settings:

Use this panel to view or change the configuration properties of the selected activation specification for

use with the WebSphere MQ messaging provider. These configuration properties control how connections

are created to associated queues and topics.

 To view WebSphere MQ activation specification settings, use the administrative console to complete the

following steps:

Chapter 8. Messaging resources 1959

1. In the navigation pane, expand Resources → JMS → Activation specifications to display existing

activation specifications.

2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.

3. Click the name of the activation specification that you want to work with.

Under General Properties there are four groups of properties:

v Administration

v Connection

v Destination

v Advanced

There are two variations of the Connection group:

v CCDT Connection settings group: A WebSphere MQ administrator can create a single Client Channel

Definition Table (CCDT) of all the WebSphere MQ channels supported by queue managers in their

enterprise. Additional WebSphere MQ configuration information can be associated with the entries in a

CCDT. If the selected activation specification was created using a CCDT, only the following information

is required to configure a connection:

– Client channel definition table URL: The URL that specifies the location of the CCDT.

– Queue manager: The queue manager name that specifies the CCDT entry, or entries, to use.

– SSL configuration

v Explicitly-defined Connection settings group: If the selected activation specification was not created

using a CCDT, the following information must be entered explicitly to configure a connection:

– Queue manager

– Transport

– Hostname

– Port

– Server connection channel

– Use SSL to secure communication with Websphere MQ: If you clear this property, the following

properties cannot be used.

- Centrally managed

- Specific configuration

- SSL configuration

Make any required changes to the Administration, Connection, Destination and Advanced groups of

properties and then click Apply to save the configuration before, in the content pane under Additional

Properties, you click any of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ activation

specification

v Broker properties to display or change the broker properties of your WebSphere MQ activation

specification

v Custom properties to display or change the custom properties of your WebSphere MQ activation

specification

v Client transport properties to display or change the client transport properties of your WebSphere MQ

activation specification. This link is only present on the explicitly-defined variation of this panel, where

you enter all information required to connect to WebSphere MQ. This link does not appear for the

CCDT-based variation.

Under Related items, click JAAS - J2C authentication data to configure authentication information for

use with the activation specification.

1960 Administering WebSphere applications

You can also specify the localAddress property using WebSphere MQ administrative commands. For

more information about this property, refer to the “createWMQActivationSpec command” on page 2044.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at the IBM Publications Center, or from the WebSphere MQ

collection kit, SK2T-0730.

A WebSphere MQ activation specification has the following properties.

For more information about setting the SSL properties for WebSphere MQ, see the section SSL properties

in the WebSphere MQ Using Java book.

Scope:

The scope specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the WebSphere

MQ activation specification collection panel, then click Apply, before clicking the link for the type of

resource.

 Data type String

Provider:

The JMS provider assigned when the activation specification is created.

 For all activation specifications created using this panel, the provider is the WebSphere MQ messaging

provider.

The provider is displayed for information only.

 Data type String

Name:

The name by which this activation specification is known for administrative purposes within WebSphere

Application Server.

 Data type String

Range The name must be unique within the set of activation

specifications defined to the cell.

JNDI name:

Chapter 8. Messaging resources 1961

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

The JNDI name that is used to bind the activation specification into the JNDI name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

 Data type String

Description:

A description of this activation specification for administrative purposes within WebSphere Application

Server.

 Data type String

Client channel definition table URL:

A URL that points to a WebSphere MQ CCDT.

 Data type String

Queue manager:

If this activation specification is based on a CCDT, this property is used to select an entry in the CCDT.

Otherwise, it is the name of the queue manager or queue sharing group to connect to. A connection is

established to this WebSphere MQ resource to receive messages.

 Data type String

Range If this activation specification is based on a CCDT, the

value must be one of the following:

v a valid queue manager name

v a valid queue manager name with the last character an

asterisk

v an asterisk

v blank

If this connection factory is based on a CCDT, the value

must be a valid queue manager name.

Transport:

The WebSphere MQ transport type for the connection. This is used to determine the exact mechanisms

used to connect to WebSphere MQ.

 Data type Drop-down list

Default bindings then client

1962 Administering WebSphere applications

Range client Use a TCP/IP based network connection to

communicate with the WebSphere MQ queue

manager.

bindings then client

Attempt a bindings mode connection to the

queue manager. If this is not possible, revert to

the client transport.

bindings

Establish a cross memory connection to a queue

manager running on the same node. The

following Client Transport Mode properties are

disabled:

v Hostname

v Port

v Server connection channel

For more information about configuring a transport type of

bindings then client or bindings, refer to “Configuring the

WebSphere MQ messaging provider with native libraries

information” on page 1945and “Sizing the thread pools

used by the WebSphere MQ messaging provider” on page

1946.

Hostname:

The hostname, IPv4 or IPv6 address of the WebSphere MQ queue manager to connect to.

 Data type String

Port:

The port number on which WebSphere MQ is listening.

 Data type Integer

Default 1414

Range The value must be in the range 1 to 65536 (inclusive).

Server connection channel:

The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

 Data type String

Default SYSTEM.DEF.SVRCONN

Range The value must be a server connection channel defined to

the WebSphere MQ queue manager being connected to.

Use SSL to secure communications with WebSphere MQ:

This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network

communications with the WebSphere MQ queue manager or queue sharing group.

 When using a WebSphere MQ messaging provider activation specification in the application server

environment, the application server manages SSL configuration. To change SSL configuration parameters,

use the administrative console to navigate to the Security → SSL certificate and key management panel.

Chapter 8. Messaging resources 1963

WebSphere MQ messaging provider activation specifications can only be configured with a single SSL

cipher suite. If you specify more than one cipher suite in the SSL configuration for a WebSphere MQ

messaging provider activation specification, only the first one is used.

 Data type Checkbox. If this checkbox is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed:

When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify

that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL

configuration.

 When you select this radio button, the hostname and port attributes from the WebSphere MQ messaging

provider activation specification are used to select an appropriate SSL configuration. To provide the SSL

configuration which will be matched to the activation specification, see the Dynamic outbound endpoint

SSL configuration settings topic listed under related reference.

 Data type Radio button

Specific configuration:

Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be

used to secure network communications with the WebSphere MQ queue manager or queue sharing group.

 Data type Radio button

SSL configuration:

The specific SSL configuration to use when SSL is to be used to secure network communications with the

WebSphere MQ queue manager or queue sharing group.

 This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ

messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if

the relevant entries in the CCDT have been configured to use SSL.

Additionally, if a SSL configuration of none is selected, the default centrally managed WebSphere

Application Server SSL configuration for the WebSphere MQ messaging provider is used.

 Data type Drop-down list

Destination JNDI name:

The JNDI name for the JMS destination from which messages are consumed for delivery to an MDB that

is configured to use this activation specification.

1964 Administering WebSphere applications

Data type String

Message selector:

A message selector expression specifying which messages are to be delivered.

 Data type String

Destination type:

The type of destination (queue or topic) from which to consume messages.

 Data type Drop-down list

Range Queue The Destination JNDI name refers to a JMS

destination that is a queue.

Topic The Destination JNDI name refers to a JMS

destination that is a topic.

Durable subscription:

Whether a durable or nondurable subscription is used to deliver messages to an MDB subscribing to the

topic.

 Data type Checkbox

Default Cleared (nondurable)

Subscription name:

The name of a durable subscription. This is available only when the Durable subscription checkbox is

selected.

 Data type String

Authentication alias:

The authentication alias which specifies the user name and password to use when connecting to

WebSphere MQ.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ.

Client identifier:

The client identifier to specify when connecting to the WebSphere MQ messaging provider.

 Data type String

Allow cloned durable subscriptions:

Chapter 8. Messaging resources 1965

Determines whether multiple instances of a durable subscription can be accessed concurrently by different

servers.

 Data type Checkbox

Default Cleared

Range Selected

Multiple instances of a durable subscription can

be accessed concurrently by different servers.

Cleared

Multiple instances of a durable subscription can

not be accessed concurrently by different

servers.

Provider version:

The WebSphere MQ messaging provider version. This is used to determine whether to connect to a

particular version of a queue manager. It is also used to determine the type of functionality required by the

client.

 Data type String

Range The value entered must be either the empty string or be

must be in one of the following formats: n.n.n.n or n.n.n or

n.n or n, where n is a numeric value greater than or equal

to zero.

WebSphere MQ messaging provider activation specification advanced properties:

Use this panel to view or change the advanced properties of the selected activation specification for use

with the WebSphere MQ messaging provider. These advanced properties control the behavior of

connections made to WebSphere MQ messaging provider destinations.

 To view WebSphere MQ activation specification advanced properties, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Activation specifications to display existing

activation specifications.

2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.

3. Click the name of the activation specification that you want to work with.

4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ activation specification.

Under General Properties there are four groups of properties:

v Message compression

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the activation specification.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

1966 Administering WebSphere applications

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ activation specification has the following advanced properties.

Compress message headers:

Enables the compression of message headers.

 Data type Checkbox

Default Cleared

Range Cleared

Do not compress message headers.

Selected

Compress message headers.

Compression algorithm for message payloads:

The compression algorithm to use to compress message payloads.

 Data type Drop-down list

Default NONE

Range RLE

ZLIBFAST

ZLIBHIGH

NONE

Retain messages, even if no matching consumer is available:

Determines whether messages for which there is no matching consumer are retained on the input queue

or dealt with according with their disposition options.

 Data type Checkbox

Default Selected

Range Cleared

Do not retain messages.

Selected

Retain messages.

Rescan interval:

When using a WebSphere MQ version 6 queue manager (or WebSphere MQ version 5.3 for z/OS) this

setting configures the mechanism used to dispatch messages to JMS asynchronous consumers. It is used

when the set of WebSphere MQ queues being asynchronously consumed from exceeds the number of

threads available internally to synchronously get messages from the WebSphere MQ queue. The setting

determines how long a thread retrieves messages from a WebSphere MQ queue before switching to

consume messages from another WebSphere MQ queue in the set, which is being asynchronously

consumed from.

 Data type Integer

Units Milliseconds

Default 5000

Range A value greater than zero.

Chapter 8. Messaging resources 1967

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

Maximum server sessions:

The maximum number of server sessions in the server session pool used by the connection consumer.

 Data type Integer

Default 10

Range A value greater than zero.

Server session pool timeout:

The period of time, in milliseconds, that an unused server session is held open in the server session pool

before being closed due to inactivity.

 Data type Integer

Units Milliseconds

Default 300,000

Range A value greater than zero.

Start timeout:

The period of time, in milliseconds, within which delivery of a message to an MDB must start after the

work to deliver the message has been scheduled. If this period of time elapses, the message is rolled

back onto the queue.

 Data type Integer

Units Milliseconds

Default 10,000

Range A value greater than zero.

Coded character set identifier:

The character set to use when encoding strings in the message.

 Data type Integer

Default 819

Range A value greater than zero. Must be one of the CCSIDs

supported by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www.ibm.com/software/
integration/wmq/library, the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

Fail JMS method calls if the WebSphere MQ queue manager is quiescing:

Selected JMS operations fail when the queue manager is put into a quiescing state. This enables the

queue manager to quiesce successfully and shutdown.

 Data type Checkbox

Default Selected

1968 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Range Cleared

Do not fail JMS operations if the queue manager

is quiescing.

Selected

Fail JMS operations if the queue manager is

quiescing.

Stop endpoint if message delivery fails:

Determines whether message delivery is suspended to a failing endpoint.

 Data type Checkbox

Default Selected

Range Cleared

Message delivery is not suspended to a failing

endpoint.

Selected

Message delivery is suspended to a failing

endpoint when the Number of sequential

delivery failures before suspending endpoint

is exceeded.

Number of sequential delivery failures before suspending endpoint:

Sets the number of sequential message delivery failures to an endpoint that are allowed before message

delivery to that endpoint is suspended. This property is enabled only when Suspend message delivery to

failing endpoints is selected.

 Data type Integer

Default 0

Range A value greater than or equal to zero.

WebSphere MQ messaging provider activation specification broker properties:

Use this panel to view or change the broker settings of the selected activation specification for use with

the WebSphere MQ messaging provider. These broker settings determine how the WebSphere MQ

messaging provider interacts with a broker for the purposes of publishing messages and subscribing to

topics. Updates to the settings take effect when the server is restarted.

 To view WebSphere MQ activation specification broker properties, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Activation specifications to display existing

activation specifications.

2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.

3. Click the name of the activation specification that you want to work with.

4. In the content pane under Additional properties, click Broker properties to view a list of the broker

properties of the WebSphere MQ activation specification.

Under General Properties there are four groups of properties:

v Queues

v Capabilities

v Tuning

v Additional

Chapter 8. Messaging resources 1969

Make any required changes to these groups and then click Apply to return to the activation specification.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ activation specification has the following broker properties.

Broker control queue:

The queue to which broker control messages are sent.

 Data type String

Default SYSTEM.BROKER.CONTROL.QUEUE

Broker subscriber queue:

The queue from which subscription messages are received.

 Data type String

Default SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

Broker connection consumer subscription queue:

The queue to receive subscription messages for connection consumers from.

 Data type String

Default SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

Broker connection consumer durable subscription queue:

The queue to receive subscription messages for durable connection consumers from.

 Data type String

Default SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

Version:

This determines some of the capabilities the broker is assumed to have. For example, whether to use a

RFH version 1 or version 2 header in publications.

 Data type Radio button

Default Version 1 broker

Range

Version 1 broker

Message selection can not be specified.

Version 2 broker

Message selection can be specified. If you select

this option, you must also complete Specify

where message selection occurs.

1970 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

Specify where message selection occurs:

This determines where message selection is performed. This property is enabled only if Version 2 broker

was selected.

 Data type Drop-down list

Default CLIENT

Range

CLIENT

Message selection is performed in the application

server process.

BROKER

Message selection is performed in the broker

process.

Subscription store:

This determines how subscriptions are tracked.

 Data type Drop-down list

Default MIGRATE

Range

MIGRATE

Any information that is held using queues is

migrated to the broker mechanism for persisting

subscription information. If subscription

information is already persisted using the broker

mechanism then specifying a value of Migrate is

equivalent to specifying a value of Broker.

BROKER

Internal broker mechanisms are used to track

subscription information.

QUEUE

A designated WebSphere MQ queue is used to

record information about current subscriptions.

Durable subscription state refresh interval:

This setting determines how often to recreate a long running transaction used to clean up durable

subscriptions, for some versions of the queue manager.

 Data type Integer

Default 60000

Range Any positive integer

Subscription cleanup level:

This setting determines how aggressively messages are cleaned up if the subscriber that is expected to

consume the messages terminates unexpectedly.

 Data type Drop-down list

Default SAFE

Chapter 8. Messaging resources 1971

Range

SAFE A conservative algorithm is used to clean up

subscriptions.

ASPROP

The cleanup algorithm is determined by a system

property.

NONE No cleanup of subscriptions is performed.

STRONG

An aggressive algorithm is used to clean up

subscriptions.

Subscription cleanup interval:

This setting determines how often to check for orphaned subscriptions and clean up messages.

 Data type Integer

Default 3600000

Range Any positive integer

Subscription wildcard format:

This setting determines the wildcard format used for subscribing to more than one topic in a topic

hierarchy.

 Data type Drop-down list

Default character wildcards

Range

character wildcards

The following characters can stand for

characters, or strings of characters in a topic

name: ’*’ and ’?’

 ’*’ is interpreted as matching many characters

’?’ is interpreted as matching a single character.

topic level wildcards

The following characters can stand for topics in a

multilevel topic hierarchy: ’+’ and ’#’

 ’+’ is interpreted as matching a single topic name

’#’ is interpreted as matching many topics in the

hierarchy. ’/’ is used to delimit topics.

Optimize for sparse subscription patterns:

Specifies whether this activation specification is anticipated to receive a high proportion of messages that

match its selection criteria. This information can be used to optimize message delivery.

 Data type Checkbox

Default Cleared

Range Cleared

Subscriptions frequently receive matching

messages.

Selected

Subscriptions do not frequently receive matching

messages.

1972 Administering WebSphere applications

Broker queue manager:

The name of the queue manager that is running the broker, if it is not the same as the queue manager to

which the activation specification connects.

 Data type String

Default The same queue manager name as specified in the

activation specification.

WebSphere MQ messaging provider activation specification client transport properties:

Use this panel to view or change the client transport properties of an activation specification for use with

the WebSphere MQ messaging provider. These properties affect how a client connection is established

with a WebSphere MQ queue manager or queue sharing group. Updates to the properties take effect

when the server is restarted.

 To view WebSphere MQ activation specification client transport properties, use the administrative console

to complete the following steps:

1. In the navigation pane, expand Resources → JMS → Activation specifications to display existing

activation specifications.

2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.

3. Click the name of the activation specification that you want to work with.

4. In the content pane, under Additional properties, click Client transport properties to display a list of

the client transport properties of the WebSphere MQ activation specification.

Under General Properties there are two groups of properties:

v Additional SSL settings

v Channel exits

Make any required changes to these groups and then click Apply to return to the activation specification.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ activation specification has the following client transport properties:

For more information about setting the SSL properties for WebSphere MQ, see the section SSL properties

in the WebSphere MQ Using Java book.

Certificate revocation list:

A list of LDAP URLs pointing to LDAP repositories of SSL certificates that might have been revoked.

 Data type String

Default No certificate revocation list

Range The value must be a space-separated list of LDAP URLs.

Chapter 8. Messaging resources 1973

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

Reset count:

The total number of bytes to transfer over an SSL connection before renegotiating the symmetric

encryption keys used to secure the connection.

 Data type Integer

Default 0 (do not renegotiate)

Range The value must be in the range 0 through 999,999,999

(inclusive).

Peer name:

A name (possibly including wildcards) that must match the distinguished name of the peer’s SSL certificate

for a connection to be established.

 Data type String

Default Do not check the distinguished name of the peer’s

certificate.

Range Validated using the rules for a WebSphere MQ SSLPEER

channel parameter.

Receive exit or exits:

A comma-separated list of Java class names corresponding to receive exits to load.

 Data type String

Receive exit initialization data:

Initialization data to be passed to the receive exit.

 Data type String

Send exit or exits:

A comma-separated list of Java class names corresponding to send exits to load.

 Data type String

Send exit initialization data:

Initialization data to be passed to the send exit.

 Data type String

Security exit:

A Java class name corresponding to the security exit to load.

 Data type String

Security exit initialization data:

1974 Administering WebSphere applications

Initialization data to be passed to the security exit.

 Data type String

WebSphere MQ connection factory collection

Use this task to select a connection factory to view or change its configuration properties. The unified JMS

connection factory is configured for the WebSphere MQ messaging provider for both point-to-point and

publish/subscribe messaging.

This panel shows a list of the WebSphere MQ connection factories with a summary of their configuration

properties. In a mixed release cell, these connection factories are not available for Version 5, 6.0 or 6.1

nodes.

To view a list of the WebSphere MQ connection factories, use the administrative console to complete the

following steps:

1. In the navigation pane, expand Resources → JMS → Connection factories to display existing

connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the connection

factories are defined. This restricts the set of connection factories displayed.

3. Optional: To define a new connection factory, click New to start the Create Connection Factory wizard.

4. Optional: To view or change the properties of a connection factory, click its name in the list displayed.

Configuring a JMS connection factory for the WebSphere MQ messaging provider:

Use this tasks to browse or configure an existing domain-independent connection factory for the

WebSphere MQ messaging provider on an Application Server Version 7 node.

 About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection

factories and topic connection factories. If you want to browse or configure a queue connection factory or

topic connection factory, see the related tasks.

To create a connection factory, see the related tasks.

To browse or configure an existing connection factory for use with WebSphere MQ, use the administrative

console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Connection factories to view existing

connection factories, with a summary of their properties.

 2. Change the Scope setting to the level at which the connection factory is visible to applications.

 3. Click the name of the connection factory that you want to work with.

 4. Under General Properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

connection factory.

 7. Optional: Click Broker properties to display or change the list of broker properties of your connection

factory.

 8. Optional: Click Custom properties to display or change the list of custom properties of your

connection factory.

Chapter 8. Messaging resources 1975

9. Optional: Click Client transport properties to display or change the list of client transport properties

of your connection factory. This link is only present on the explicitly-defined variation of this panel,

where you enter all information required to connect to WebSphere MQ. This link does not appear for

the CCDT-based variation.

10. Optional: Click Connection pools to display or change the connection pools detail of your connection

factory.

11. Optional: Click Session pools to display or change the session pools detail of your connection

factory.

12. Click OK.

13. Save any changes to the master configuration.

14. To have the changed configuration take effect, stop then restart the application server.

WebSphere MQ messaging provider connection factory settings:

Use this panel to view or change the configuration properties of the selected connection factory for use

with the WebSphere MQ messaging provider. These configuration properties control how connections are

created to associated JMS queues and topics.

 The WebSphere MQ messaging provider supports JMS 1.1 domain-independent interfaces, such as the

unified JMS connection factory. A domain-independent application can use the same interface for both

point-to-point and publish/subscribe messaging, and can support both point-to-point and publish/subscribe

messaging within the same transaction. With JMS 1.1, you are recommended to use domain-independent

unified JMS connection factories for new applications. A domain-specific interface extends the

domain-independent equivalent, so an application using domain-specific queue and topic connection

factories can choose to use either interface.

To view WebSphere MQ connection factory settings, use the administrative console to complete the

following steps:

1. In the navigation pane, expand Resources → JMS → Connection factories to display existing

connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the connection

factories are defined. This restricts the set of connection factories displayed.

3. Click the name of the connection factory that you want to work with.

Under General Properties there are three groups of properties:

v Administration

v Connection

v Advanced

There are two variations of the Connection group:

v CCDT Connection settings group: A WebSphere MQ administrator can create a single Client Channel

Definition Table (CCDT) of all the WebSphere MQ channels supported by queue managers in their

enterprise. Additional WebSphere MQ configuration information can be associated with the entries in a

CCDT. If the selected connection factory was created using a CCDT, only the following information is

required to configure a connection:

– Client channel definition table URL: The URL that specifies the location of the CCDT.

– Queue manager: The queue manager name that specifies the CCDT entry, or entries, to use.

– SSL configuration

v Explicitly-defined Connection settings group: If the selected connection factory was not created using a

CCDT, the following information must be entered explicitly to configure a connection:

– Queue manager

– Transport

1976 Administering WebSphere applications

– Hostname

– Port

– Server connection channel

– Use SSL to secure communication with Websphere MQ: If you clear this property, the following

properties cannot be used.

- Centrally managed

- Specific configuration

- SSL configuration

Make any required changes to the Administration, Connection and Advanced groups of properties and then

click Apply to save the configuration before, in the content pane under Additional Properties, you click any

of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ connection

factory

v Broker properties to display or change the broker properties of your WebSphere MQ connection

factory

v Custom properties to display or change the custom properties of your WebSphere MQ connection

factory

v Client transport properties to display or change the client transport properties of your WebSphere MQ

connection factory. This link is only present on the explicitly-defined variation of this panel, where you

enter all the information required to connect to WebSphere MQ. This link does not appear for the

CCDT-based variation.

v Connection pools to display or change the connection pools detail of your WebSphere MQ connection

factory

v Session pools to display or change the session pools detail of your WebSphere MQ connection factory

Under Related items, click JAAS - J2C authentication data to configure authentication information for

use with the connection factory.

You can specify the following additional properties using WebSphere MQ administrative commands:

v localAddress

v clonedSubs

v containerAuthAlias

For more information about these properties, refer to the “createWMQConnectionFactory command” on

page 2058.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at the IBM Publications Center, or from the WebSphere MQ

collection kit, SK2T-0730.

A WebSphere MQ unified connection factory has the following properties:

For more information about setting the SSL properties for WebSphere MQ, see the section SSL properties

in the WebSphere MQ Using Java book.

Chapter 8. Messaging resources 1977

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

Scope:

Specifies the level at which this connection factory definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change other resources at a different scope, change the scope on the WebSphere MQ connection

factory collection panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Provider:

The JMS provider assigned when the queue connection factory is created.

 For all connection factories using this panel, the provider is the WebSphere MQ messaging provider.

The provider is displayed for information only.

 Data type String

Name:

The name by which this connection factory is known for administrative purposes within WebSphere

Application Server.

 Data type String

Range The name must be unique within the set of connection

factories defined to the cell.

JNDI name:

The JNDI name that is used to bind the connection factory into the JNDI name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

 Data type String

Description:

A description of this connection factory for administrative purposes within WebSphere Application Server.

 Data type String

Client channel definition table URL:

A URL that points to a WebSphere MQ CCDT.

 Data type String

1978 Administering WebSphere applications

Queue manager:

If this connection factory is based on a CCDT, this property is used to select an entry in the CCDT.

Otherwise, it is the name of the queue manager or queue sharing group to connect to. A connection is

established to this WebSphere MQ resource to send or receive messages.

 Data type String

Range If this connection factory is based on a CCDT, the value

must be one of the following:

v a valid queue manager name

v a valid queue manager name with the last character an

asterisk

v an asterisk

v blank

If this connection factory is not based on a CCDT, the

value must be a valid queue manager name.

Transport:

The WebSphere MQ transport type for the connection. This is used to determine the exact mechanisms

used to connect to WebSphere MQ.

 Data type Drop-down list

Default bindings then client

Range client Use a TCP/IP based network connection to

communicate with the WebSphere MQ queue

manager

bindings then client

Attempt a bindings mode connection to the

queue manager. If this is not possible, revert to

the client transport.

bindings

Establish a cross memory connection to a queue

manager running on the same node. The

following Client Transport Mode properties are

disabled:

v Hostname

v Port

v Server connection channel

For more information about configuring a transport type of

bindings then client or bindings, refer to “Configuring the

WebSphere MQ messaging provider with native libraries

information” on page 1945 and “Sizing the thread pools

used by the WebSphere MQ messaging provider” on page

1946.

Hostname:

The hostname, IPv4 or IPv6 address of the WebSphere MQ queue manager to connect to.

 Data type String

Port:

Chapter 8. Messaging resources 1979

The port number on which WebSphere MQ is listening.

 Data type Integer

Default 1414

Range The value must be in the range 1 to 65536 (inclusive).

Server connection channel:

The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

 Data type String

Default SYSTEM.DEF.SVRCONN

Range The value must be a server connection channel defined to

the WebSphere MQ queue manager being connected to.

Use SSL to secure communications with WebSphere MQ:

This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network

communications with the WebSphere MQ queue manager or queue sharing group.

 When using a WebSphere MQ messaging provider connection factory in the application server

environment, the application server manages SSL configuration. To change SSL configuration parameters,

use the administrative console to navigate to the Security → SSL certificate and key management panel.

When using a WebSphere MQ messaging provider connection factory in the client environment, the client

takes SSL configuration information from the ssl.client.props file. Use of this file is detailed in the related

reference information for this topic.

A WebSphere MQ messaging provider connection factory can only be configured with a single SSL cipher

suite in the SSL configuration. If you specify more than one cipher suite in the SSL configuration for a

WebSphere MQ messaging provider connection factory, only the first one is used.

 Data type Checkbox. If this checkbox is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed:

When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify

that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL

configuration.

 When you select this radio button, the hostname and port attributes from the WebSphere MQ messaging

provider connection factory are used to select an appropriate SSL configuration. To provide the SSL

configuration which will be matched to the connection factory, see the Dynamic outbound endpoint SSL

configuration settings topic listed under related reference.

 Data type Radio button

Specific configuration:

1980 Administering WebSphere applications

Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be

used to secure network communications with the WebSphere MQ queue manager or queue sharing group.

 Data type Drop-down list

SSL configuration:

The specific SSL configuration to use when SSL is to be used to secure network communications with the

WebSphere MQ queue manager or queue sharing group.

 This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ

messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if

the relevant entries in the CCDT have been configured to use SSL.

Additionally, if a SSL configuration of none is selected, the default centrally managed WebSphere

Application Server SSL configuration for the WebSphere MQ messaging provider is used.

 Data type Drop-down list

Component-managed authentication alias:

The authentication alias which specifies the user name and password to use when connecting to

WebSphere MQ.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ.

Client identifier:

The client identifier to specify when connecting to the WebSphere MQ messaging provider.

 Data type String

Allow cloned durable subscriptions:

Determines whether multiple instances of a durable subscription can be accessed concurrently by different

servers.

 Data type Checkbox

Default Cleared

Range Selected

Multiple instances of a durable subscription can

be accessed concurrently by different servers.

Cleared

Multiple instances of a durable subscription can

not be accessed concurrently by different

servers.

Chapter 8. Messaging resources 1981

Provider version:

The WebSphere MQ messaging provider version. This is used to determine whether to connect to a

particular version of a queue manager. It is also used to determine the type of functionality required by the

client.

 Data type String

Range The value entered must be either the empty string or be

must be in one of the following formats: n.n.n.n or n.n.n or

n.n or n, where n is a numeric value greater than or equal

to zero.

Support distributed two phase commit protocol:

Specifies whether the connection factory supports XA coordination of messaging transactions. Enable this

option if multiple resources, including this connection factory, are to be used in the same transaction.

 If you clear this property, you disable support for distributed two phase commit protocol. The JMS session

can still be enlisted in a transaction, but it uses the resource manager local transaction calls

(session.commit and session.rollback) instead of XA calls. This can lead to an improvement in

performance. However, only a single resource can be enlisted in a transaction in WebSphere Application

Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The connection factory supports the use of

distributed two phase commit protocols for the

coordination of transacted work.

Cleared

The connection factory does not support the use

of distributed two phase commit protocols for the

coordination of transacted work.

Recommendation Keep this option selected if transactions involve other

resources, including other queues or topics. Clear this

option only when you are certain that the queue manager

connected to using this queue connection is the only

resource in the transaction.

Authentication alias for XA recovery:

The authentication alias which specifies the user name and password to use when connecting to

WebSphere MQ during XA recovery.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ during XA recovery.

Mapping-configuration alias:

This field if used only in the absence of a login configuration on the component resource reference.

1982 Administering WebSphere applications

When the resource authority value is ″container″, the preferred way to define the authentication strategy is

by specifying a login configuration and associated properties on the component resource reference.

If the DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS -

J2C authentication data entry alias. To configure authentication information for use with the connection

factory, under Related items, click JAAS - J2C authentication data .

 Data type Drop-down list

Default (none)

Range ClientContainer

WSLogin
WSKRB5Login
DefaultPrincipalMapping
TrustedConnectionMapping
KerberosMapping

WebSphere MQ messaging provider connection factory advanced properties:

Use this panel to view or change the advanced properties of the selected connection factory for use with

the WebSphere MQ messaging provider. These advanced properties control the behavior of connections

made to WebSphere MQ messaging provider destinations.

 To view WebSphere MQ connection factory advanced properties, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Connection factories to display existing

connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the connection

factories are defined. This restricts the set of connection factories displayed.

3. Click the name of the connection factory that you want to work with.

4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ connection factory.

Under General Properties there are five groups of properties:

v Message compression

v Temporary destinations

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the connection factory.

Note:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ connection factory has the following advanced properties:

Compress message headers:

Enables the compression of message headers.

Chapter 8. Messaging resources 1983

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

Data type Checkbox

Default Cleared

Range Cleared

Do not compress message headers.

Selected

Compress message headers.

Compression algorithm for message payloads:

The compression algorithm to use to compress message payloads.

 Data type Drop-down list

Default NONE

Range RLE

ZLIBFAST

ZLIBHIGH
NONE

WebSphere MQ model queue name:

The model queue that is used as a basis for temporary queue creation.

 Data type String

Default SYSTEM.DEFAULT.MODEL.QUEUE

Temporary queue prefix:

The prefix to append to the beginning of the names generated for temporary queues.

 Data type String

Temporary topic prefix:

The prefix to append to the beginning of the names generated for temporary topics.

 Data type String

Retain messages, even if no matching consumer is available:

Determines whether messages for which there is no matching consumer are retained on the input queue

or dealt with according with their disposition options.

 Data type Checkbox

Default Selected

Range Cleared

Do not retain messages.

Selected

Retain messages.

Polling interval:

This setting is applicable in the client container only. When using a WebSphere MQ version 6 queue

manager (or WebSphere MQ version 5.3 for z/OS) this setting configures the mechanism used to dispatch

1984 Administering WebSphere applications

messages to JMS asynchronous consumers. It is used when the set of WebSphere MQ queues being

asynchronously consumed from exceeds the number of threads available internally to synchronously get

messages from the WebSphere MQ queue. The setting determines how long a thread waits for a message

to arrive at a WebSphere MQ queue before polling another WebSphere MQ queue in the set from which it

is being asynchronously consumed.

 Data type Integer

Units Milliseconds

Default 5000

Range A value greater than zero.

Rescan interval:

When using a WebSphere MQ version 6 queue manager (or WebSphere MQ version 5.3 for z/OS) this

setting configures the mechanism used to dispatch messages to JMS asynchronous consumers. It is used

when the set of WebSphere MQ queues being asynchronously consumed from exceeds the number of

threads available internally to synchronously get messages from the WebSphere MQ queue. The setting

determines how long a thread retrieves messages from a WebSphere MQ queue before switching to

consume messages from another WebSphere MQ queue in the set which is being asynchronously

consumed from.

 Data type Integer

Units Milliseconds

Default 5000

Range A value greater than zero.

Maximum batch size:

The maximum number of messages to remove from a queue before at least one must be delivered to an

asynchronous consumer.

 Data type Integer

Default 10

Range A value greater than zero.

Coded character set identifier:

The character set to use when encoding strings in the message.

 Data type Integer

Default 819

Range A value greater than zero. The coded character set

identifier (CCSID) must be one of the CCSIDs supported

by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www.ibm.com/software/
integration/wmq/library, the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

Append an RFH version 2 header to reply messages:

The action to take when replying to a message without an RFH version 2 header.

Chapter 8. Messaging resources 1985

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type Checkbox

Default Selected

Range

Selected

Append an RFH version 2 header to reply

messages.

Cleared

Do not append an RFH version 2 header to reply

messages.

Fail JMS method calls if the WebSphere MQ queue manager is quiescing:

Selected JMS operations fail when the queue manager is put into a quiescing state. This enables the

queue manager to quiesce successfully and shutdown.

 Data type Checkbox

Default Selected

Range Cleared

Do not fail JMS operations if the queue manager

is quiescing.

Selected

Fail JMS operations if the queue manager is

quiescing.

WebSphere MQ messaging provider connection factory broker properties:

Use this panel to view or change the broker settings of the selected connection factory or topic connection

factory, for use with the WebSphere MQ messaging provider. These broker settings determine how the

WebSphere MQ messaging provider interacts with a broker for the purposes of publishing messages and

subscribing to topics. Updates to the settings take effect when the server is restarted.

 To view WebSphere MQ connection factory or topic connection factory, broker properties, use the

administrative console to complete the following steps:

1. In the navigation pane, either expand Resources → JMS → Connection factories to display existing

connection factories or expand Resources → JMS → Topic connection factories to display existing

topic connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the connection

factories are defined. This restricts the set of connection factories displayed.

3. Click the name of the connection factory or topic connection factory that you want to work with.

4. In the content pane, under Additional Properties, click Broker properties to display the broker

properties of the WebSphere MQ connection factory or topic connection factory.

Under General Properties there are four groups of properties:

v Queues

v Capabilities

v Tuning

v Additional

Make any required changes to these groups and then click Apply to return to the connection factory or

topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

1986 Administering WebSphere applications

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ connection factory or topic connection factory has the following broker properties:

Broker control queue:

The queue to which broker control messages are sent.

 Data type String

Default SYSTEM.BROKER.CONTROL.QUEUE

Broker publication queue:

The queue to which publication messages are sent.

 Data type String

Default SYSTEM.BROKER.DEFAULT.STREAM

Broker subscriber queue:

The queue to which subscription messages are sent.

 Data type String

Default SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

Broker connection consumer subscription queue:

The queue to which subscription messages that are destined for a connection consumer are sent.

 Data type String

Default SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

Version:

This determines some of the capabilities the broker is assumed to have. For example, whether to use a

RFH version 1 or version 2 header in publications.

 Data type Radio button

Default Version 1 broker

Range

Version 1 broker

Message selection can not be specified.

Version 2 broker

Message selection can be specified. If you select

this option, you must also complete Specify

where message selection occurs.

Specify where message selection occurs:

This determines where message selection is performed. This property is enabled only if Version 2 broker

was selected.

Chapter 8. Messaging resources 1987

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

Data type Drop-down list

Default CLIENT

Range

CLIENT

Message selection is performed in the application

server process.

BROKER

Message selection is performed in the broker

process.

Subscription store:

This setting determines how subscriptions are tracked.

 Data type Drop-down list

Default MIGRATE

Range

MIGRATE

Any information that is held using queues is

migrated to the broker mechanism for persisting

subscription information. If subscription

information is already persisted using the broker

mechanism then specifying a value of Migrate is

equivalent to specifying a value of Broker.

BROKER

Internal broker mechanisms are used to track

subscription information.

QUEUE

A designated WebSphere MQ queue is used to

record information about current subscriptions.

Durable subscription state refresh interval:

This setting determines how often to recreate a long running transaction used to clean up durable

subscriptions, for some versions of the queue manager.

 Data type Integer

Default 60000

Range Any positive integer

Subscription cleanup level:

This setting determines how aggressively messages are cleaned up if the subscriber that is expected to

consume the messages terminates unexpectedly.

 Data type Drop-down list

Default SAFE

1988 Administering WebSphere applications

Range

SAFE A conservative algorithm is used to clean up

subscriptions.

ASPROP

The cleanup algorithm is determined by a system

property.

NONE No cleanup of subscriptions is performed.

STRONG

An aggressive algorithm is used to clean up

subscriptions.

Subscription cleanup interval:

This setting determines how often to check for orphaned subscriptions and clean up messages.

 Data type Integer

Default 3600000

Range Any positive integer

Subscription wildcard format:

This setting determines the wildcard format used for subscribing to more than one topic in a topic

hierarchy.

 Data type Drop-down list

Default character wildcards

Range

character wildcards

The following characters can stand for

characters, or strings of characters in a topic

name: ’*’ and ’?’

 ’*’ is interpreted as matching many characters

’?’ is interpreted as matching a single character.

topic level wildcards

The following characters can stand for topics in a

multilevel topic hierarchy: ’+’ and ’#’

 ’+’ is interpreted as matching a single topic name

’#’ is interpreted as matching many topics in the

hierarchy. ’/’ is used to delimit topics.

Publish acknowledgement window:

Specifies the number of messages to publish before publishing a message which requires broker

acknowledgement

 Data type Integer

Default 25

Range Any positive integer

Optimize for sparse subscription patterns:

Chapter 8. Messaging resources 1989

Specifies whether this connection factory is anticipated to receive a high proportion of messages that

match its selection criteria. This information can be used to optimize message delivery.

 Data type Checkbox

Default Cleared

Range Cleared

Subscriptions frequently receive matching

messages.

Selected

Subscriptions do not frequently receive matching

messages.

Broker queue manager:

The name of the queue manager that is running the broker, if it is not the same as the queue manager to

which the connection factory connects.

 Data type String

Default The same queue manager name as specified in the

connection factory.

WebSphere MQ resource custom properties settings:

Use this page to specify custom properties that your enterprise information system (EIS) requires for the

resource providers and resource factories that you configure. For example, most database vendors require

additional custom properties for data sources that access the database.

 To view this administrative console page, complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If

Scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, click the WebSphere MQ messaging provider that you want to support the JMS

destination.

4. In the content pane, under Additional Properties, click the type of resource that you want to change, for

example Queues.

5. Click the name of the resource that you want to work with.

6. In the content pane, under General Properties, complete the groups of fields, for example

Administration and WebSphere MQ Queue.

7. In the content pane, under Additional Properties, click Custom properties to display a list of the

custom properties of a WebSphere MQ resource.

A resource for use with the WebSphere MQ messaging provider has the following custom properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Name:

The name by which the resource is known for administrative purposes within IBM WebSphere Application

Server.

1990 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

Data type String

Value:

The value of the resource.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the resource, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Required:

Whether or not the resource is required, for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

WebSphere MQ messaging provider connection factory client transport settings:

Use this panel to view or change the client transport settings of a connection factory, queue connection

factory or topic connection factory for use with the WebSphere MQ messaging provider. Client transport

properties affect how a client connection is established with a WebSphere MQ queue manager or queue

sharing group. Updates to the settings take effect when the server is restarted.

 To view WebSphere MQ connection factory, queue connection factory or topic connection factory, client

transport settings, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS.

2. Click Connection factories, Queue connection factories or Topic connection factories to display

existing connection factories, queue connection factories or topic connection factories.

3. Click the name of the connection factory, queue connection factory or topic connection factory that you

want to work with.

4. In the content pane under Additional Properties, click Client transport properties to view a list of the

client transport settings of the WebSphere MQ connection factory, queue connection factory or topic

connection factory.

Under General Properties there are two groups of properties:

v Additional SSL settings

v Channel exits

Chapter 8. Messaging resources 1991

Make any required changes to these groups and then click Apply to return to the connection factory,

queue connection factory or topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ connection factory, queue connection factory or topic connection factory has the

following client transport settings properties:

For more information about setting the SSL properties for WebSphere MQ, see the section SSL properties

in the WebSphere MQ Using Java book.

Certificate revocation list:

A list of LDAP URLs pointing to LDAP repositories of SSL certificates that might have been revoked.

 Data type String

Default No certificate revocation list

Range The value must be a space-separated list of LDAP URLs.

Peer name:

A name (possibly including wildcards) that must match the distinguished name of the peer’s SSL certificate

for a connection to be established.

 Data type String

Default Do not check the distinguished name of the peer’s

certificate.

Range Validated using the rules for a WebSphere MQ SSLPEER

channel parameter.

Reset count:

The total number of bytes to transfer over an SSL connection before renegotiating the symmetric

encryption keys used to secure the connection.

 Data type Integer

Default 0 (do not renegotiate)

Range The value must be in the range 0 through 999,999,999

(inclusive).

Receive exits:

A comma-separated list of Java class names corresponding to receive exits to load.

 Data type String

Receive exit initialization data:

1992 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

Initialization data to be passed to the receive exit.

 Data type String

Send exits:

A comma-separated list of Java class names corresponding to send exits to load.

 Data type String

Send exit initialization data:

Initialization data to be passed to the send exit.

 Data type String

Security exit:

A Java class name corresponding to the security exit to load.

 Data type String

Security exit initialization data:

Initialization data to be passed to the security exit.

 Data type String

Connection pool settings:

Use this page to configure connection pool settings.

 This administrative console page is common to a range of resource types, like JDBC data sources and

JMS queue connection factories. To view this page, the path depends on the type of resource, but

generally you select an instance of the resource provider, then an instance of the resource type, then click

Connection Pool.

Note: Connection pooling is not supported in an application client. The application client calls the

database directly and does not go through a data source. If you want to use the getConnection()

request from the application client, configure the JDBC provider in the application client deployment

descriptors, using Rational Application Developer or an assembly tool. The connection is

established between application client and the database. Application clients do not have a

connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

For example: click Resources → JDBC → JDBC Providers → JDBC_provider → Data Sources →

data_source → Connection pool properties

The path for JMS queue connection factories is:Resources → JMS → Queue connection factories →

JMS_queue_connection_factory → [Additional properties] Connection pool properties.

Connection timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

Chapter 8. Messaging resources 1993

This value indicates the number of seconds that a connection request waits when there are no

connections available in the free pool and no new connections can be created. This usually occurs

because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection Timeout is set to 300, and the maximum number of connections are all in use,

the pool manager waits for 300 seconds for a physical connection to become available. If a physical

connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.

In most cases you should not retry the getConnection() method; if a longer wait time is required you

should increase the Connection Timeout setting value. If a ConnectionWaitTimeout exception is caught by

the application, review the expected connection pool usage of the application and tune the connection pool

and database accordingly.

If the Connection Timeout is set to 0, the pool manager waits as long as necessary until a connection

becomes available. This happens when the application completes a transaction and returns a connection

to the pool, or when the number of connections falls below the value of Maximum Connections, allowing a

new physical connection to be created.

If Maximum Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Maximum connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown. For example: If the Max

Connections value is set to 5, and there are five physical connections in use, the pool manager waits for

the amount of time specified in Connection Timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend (such

as a DB2 database or a CICS server) helps you determine a value for the Maximum Connections property.

For multiple standalone application servers that use the same data source configuration, or J2C

connection factory configuration, a separate physical connection pool exists for each server. If you clone

these same application servers, WebSphere Application Server implements a separate connection pool for

each clone.

All of these connection pools correspond to the same data source or connection factory configuration.

Therefore all of these connection pools can potentially request connections from the same backend

resource, at the same time. The single Maximum Connections value that you set on this console panel

applies to every one of these connection pools. Consequently, setting a high Maximum Connections value

can result in a load of connection requests that overwhelms your backend resource.

 Data type Integer

Default 10

Range 0 to maximum integer

If Max Connections is set to 0, the Connection Timeout

value is ignored.

1994 Administering WebSphere applications

Note: For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform

better than higher settings, such as 100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If

the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider

increasing the connection pool size. If the Percent Used value is consistently low under normal

workload, consider decreasing the number of connections in the pool.

Minimum connections:

Specifies the minimum number of physical connections to maintain.

 If the size of the connection pool is at or below the minimum connection pool size, the Unused Timeout

thread does not discard physical connections. However, the pool does not create connections solely to

ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged Timeout,

connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the

Unused Timeout thread does not discard that connection. By the same token, the thread does not

automatically create two additional physical connections to reach the Minimum Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Minimum Connections. The pool maintenance

thread also discards any connections that remain active longer than the time value specified in Aged

Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused timeout:

Chapter 8. Messaging resources 1995

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections exceeds the Minimum

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance.

For example, if the Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical

connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only

exception is if the connection is involved in a transaction when the aged timeout is reached, the

application server will not discard the connection until after the transaction is completed and the

connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly.

 Data type String

1996 Administering WebSphere applications

Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you

create through the administrative console

v EntirePool for current version data sources that you

script through wsadmin AdminConfig commands,

invoking JDBC templates that are built into WebSphere

Application Server (For information on the command

createUsingTemplate, see the information center

article ″Commands for the AdminConfig object.″)

v FailingConnectionOnly for data sources that you script

in wsadmin without invoking JDBC templates

:

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and issues a stale

connection Exception during the next operation

on that connection. Subsequent getConnection()

requests from the application result in new

connections to the database opening. When

using this purge policy, there is a slight possibility

that some connections in the pool are closed

unnecessarily when they are not stale. However,

this is a rare occurrence. In most cases, a purge

policy of EntirePool is the best choice.

FailingConnectionOnly

Only the connection that caused the stale

connection exception is closed. Although this

setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection() request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

 The connection pretest function attempts to

insulate an application from pooled connections

that are not valid. When a backend resource,

such as a database, goes down, pooled

connections that are not valid might exist in the

free pool. This is especially true when the purge

policy is failingConnectionOnly; in this case, the

failing connection is removed from the pool.

Depending on the failure, the remaining

connections in the pool might not be valid.

Session pool settings:

Use this page to configure session pool settings.

 This administrative console page is common to a range of resource types; for example, JMS queue

connection factories. To view this page, the path depends on the type of resource, but generally you select

Chapter 8. Messaging resources 1997

an instance of the resource provider, then an instance of the resource type, then click Session pools. For

example: click Resources → JMS → JMS providers->default messaging provider->Queue connection

factories->connection_factory->Session pools.

Connection Timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 The wait is necessary when the maximum value of connections (Max Connections) to a particular

connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number

of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If

a physical connection is not available within this time, the Pool Manager throws a

ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,

because if a longer wait time is required, you should set the Connection Timeout setting to a higher

value. Therefore, if this exception is caught by the application, the administrator should review the

expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is

allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Max Connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the

pool manager waits for the amount of time specified in Connection Timeout for a physical connection to

become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform better than

higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important

when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the

number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider increasing

the connection pool size. If the Percent Used value is consistently low under normal workload, consider

decreasing the number of connections in the pool.

1998 Administering WebSphere applications

Data type Integer

Default 10

Range 0 to max int

Min Connections:

Specifies the minimum number of physical connections to maintain.

 Until this number is reached, the pool maintenance thread does not discard physical connections.

However, no attempt is made to bring the number of connections up to this number. If you set a value for

Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused

Timeout thread does not discard that connection. By the same token, the thread does not automatically

create two additional physical connections to reach the Min Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap Time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Min Connections. The pool maintenance thread

also discards any connections that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused Timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections not in use exceeds the Min

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

Chapter 8. Messaging resources 1999

discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.

For more information, see Reap Time.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged Timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the

Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that

remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this

timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap

Time.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge Policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly. Java EE Connector Architecture (JCA) data

sources can have either option. WebSphere Version 4.0 data sources always have a purge policy of

EntirePool.

 Data type String

Default FailingConnectionOnly

2000 Administering WebSphere applications

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and throws a

StaleConnectionException during the next

operation on that connection. Subsequent

getConnection requests from the application

result in new connections to the database

opening. When using this purge policy, there is a

slight possibility that some connections in the

pool are closed unnecessarily when they are not

stale. However, this is a rare occurrence. In most

cases, a purge policy of EntirePool is the best

choice.

FailingConnectionOnly

Only the connection that caused the

StaleConnectionException is closed. Although

this setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

WebSphere MQ queue connection factory collection

Use this panel to select a queue connection factory to view or change its configuration properties. The

queue connection factory is configured for the WebSphere MQ messaging provider for point-to-point

messaging with JMS queues.

This panel shows a list of WebSphere MQ queue connection factories with a summary of their

configuration properties.

To view the WebSphere MQ queue connection factory collection, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Queue connection factories to display existing

queue connection factories.

2. If appropriate, in the content pane, change the Scope to restrict the set of queue connection factories

displayed. If Scope is set to node or server scope for a Version 5 node, the administrative console

presents the subset of resources and properties that are applicable to WebSphere Application Server

Version 5.

3. Optional: To define a new queue connection factory, click New.

4. Optional: Optional: To view or change the properties of a queue connection factory, click its name in

the list displayed.

Configuring an existing JMS queue connection factory for the WebSphere MQ messaging

provider:

Use this task to browse or change an existing JMS queue connection factory for point-to-point messaging

with the WebSphere MQ messaging provider.

Chapter 8. Messaging resources 2001

About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection

factories and topic connection factories.

If you want to browse or change a connection factory, see the related tasks.

To browse or change a queue connection factory for use with the WebSphere MQ messaging provider,

use the administrative console to complete the following steps:

 1. In the navigation pane, expand Resources → JMS → Queue connection factories to view existing

queue connection factories, with a summary of their properties.

 2. Change the Scope setting to the level at which the queue connection factory is visible to applications.

 3. Click the name of the queue connection factory that you want to work with.

 4. Under General Properties make modifications as necessary. Use the administrative console help for

information about each of the available fields.

 5. Click Apply to save the configuration.

 6. Optional: Click Advanced properties to display or change the list of advanced properties of your

queue connection factory.

 7. Optional: Click Custom properties to display or change the list of custom properties of your queue

connection factory.

 8. Optional: Click Client transport properties to display or change the list of client transport properties

of your queue connection factory. This link is only present on the explicitly-defined variation of this

panel, where you enter all information required to connect to WebSphere MQ. This link does not

appear for the CCDT-based variation.

 9. Optional: Click Connection pools to display or change the connection pools detail of your queue

connection factory.

10. Optional: Click Session pools to display or change the session pools detail of your queue connection

factory.

11. Click OK.

12. Save any changes to the master configuration.

13. To have the changed configuration take effect, stop then restart the application server.

WebSphere MQ messaging provider queue connection factory settings:

Use this panel to view or change the configuration properties of the selected queue connection factory for

use with the WebSphere MQ messaging provider. These configuration properties control how connections

are created to associated JMS queue destinations.

 A WebSphere MQ queue connection factory is used to create JMS connections to queues provided by

WebSphere MQ for point-to-point messaging.

To view WebSphere MQ queue connection factory settings, use the administrative console to complete the

following steps:

1. In the navigation pane, expand Resources → JMS → Queue connection factories to display existing

queue connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the queue

connection factories are defined. This restricts the set of queue connection factories displayed.

3. Click the name of the queue connection factory that you want to work with.

Under General Properties there are three groups of properties:

v Administration

v Connection

2002 Administering WebSphere applications

v Advanced

There are two variations of the Connection group:

v CCDT Connection settings group: A WebSphere MQ administrator can create a single Client Channel

Definition Table (CCDT) of all the WebSphere MQ channels supported by queue managers in their

enterprise. Additional WebSphere MQ configuration information can be associated with the entries in a

CCDT. If the selected connection factory was created using a CCDT, only the following information is

required to configure a connection:

– Client channel definition table URL: The URL that specifies the location of the CCDT.

– Queue manager: The queue manager name that specifies the CCDT entry, or entries, to use.

– SSL configuration

v Explicitly-defined Connection settings group: If the selected connection factory was not created using a

CCDT, the following information must be entered explicitly to configure a connection:

– Queue manager

– Transport

– Hostname

– Port

– Server connection channel

– Use SSL to secure communication with Websphere MQ: If you clear this property, the following

properties do not appear on the panel.

- Centrally managed

- Specific configuration

- SSL configuration

Make any required changes to the Administration, Connection and Advanced groups of properties and then

click Apply before, in the content pane under Additional Properties, you click any of the following links:

v Advanced properties to display the advanced properties of your WebSphere MQ queue connection

factory

v Custom properties to display the custom properties of your WebSphere MQ queue connection factory

v Client transport properties to display the client transport properties of your WebSphere MQ queue

connection factory. This link is only present on the explicitly-specified variation of this panel, where you

enter all information required to connect to WebSphere MQ. This link does not appear for the

CCDT-based variation.

v Connection pools to display the connection pool detail of your WebSphere MQ queue connection

factory

v Session pools to display the session pools detail of your WebSphere MQ queue connection factory

Under Related items, click JAAS - J2C authentication data to configure authentication information for

use with the connection factory.

You can specify the following additional properties using WebSphere MQ administrative commands:

v localAddress

v containerAuthAlias

For more information about these properties, refer to the “createWMQConnectionFactory command” on

page 2058.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a maximum

of 20 characters.

Chapter 8. Messaging resources 2003

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book and the WebSphere MQ System Administration

book, SC33-1873, which are available from the WebSphere MQ messaging platform-specific books Web

page at the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

A WebSphere MQ queue connection factory has the following properties:

For more information about setting the SSL properties for WebSphere MQ, see the section SSL properties

in the WebSphere MQ Using Java book

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the WebSphere

MQ queue connection factory collection panel, then click Apply, before clicking the link for the type of

resource.

 Data type String

Provider:

The JMS provider assigned when the queue connection factory is created.

 For all queue connection factories created using this panel, the provider is the WebSphere MQ messaging

provider.

The provider is displayed for information only.

 Data type String

Name:

The name by which this queue connection factory is known for administrative purposes within WebSphere

Application Server.

 Data type String

Range The name must be unique within the set of queue

connection factories defined to the cell.

JNDI name:

The JNDI name that is used to bind the queue connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

 Data type String

2004 Administering WebSphere applications

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

Description:

A description of this queue connection factory for administrative purposes within WebSphere Application

Server.

 Data type String

Default Null

Client channel definition table URL:

A URL that points to a WebSphere MQ CCDT.

 Data type String

Queue manager:

If this queue connection factory is based on a CCDT, this property is used to select an entry in the CCDT.

Otherwise, it is the name of the queue manager or queue sharing group to connect to. A connection is

established to this WebSphere MQ resource to send or receive messages.

 Data type String

Range If this queue connection factory is based on a CCDT, the

value must be one of the following:

v a valid queue manager name

v a valid queue manager name with the last character an

asterisk

v an asterisk

v blank

If this connection factory is not based on a CCDT, the

value must be a valid queue manager name.

Transport:

The WebSphere MQ transport type for the connection. This is used to determine the exact mechanisms

used to connect to WebSphere MQ.

 Data type Drop-down list

Default bindings then client

Chapter 8. Messaging resources 2005

Range client Use a TCP/IP based network connection to

communicate with the WebSphere MQ queue

manager

bindings then client

Attempt a bindings mode connection to the

queue manager. If this is not possible, revert to

the client transport.

bindings

Establish a cross memory connection to a queue

manager running on the same node. The

following Client Transport Mode properties are

disabled:

v Hostname

v Port

v Server connection channel

For more information about configuring a transport type of

bindings then client or bindings, refer to “Configuring the

WebSphere MQ messaging provider with native libraries

information” on page 1945 and “Sizing the thread pools

used by the WebSphere MQ messaging provider” on page

1946.

Hostname:

The hostname, IPv4 or IPv6 address of the WebSphere MQ queue manager to connect to.

 Data type String

Port:

The port number on which WebSphere MQ is listening.

 Data type Integer

Default 1414

Range The value must be in the range 1 to 65536 (inclusive).

Server connection channel:

The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

 Data type String

Default SYSTEM.DEF.SVRCONN

Range The value must be a server connection channel defined to

the WebSphere MQ queue manager being connected to.

Use SSL to secure communications with WebSphere MQ:

This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network

communications with the WebSphere MQ queue manager or queue sharing group.

 When using a WebSphere MQ messaging provider queue connection factory in the application server

environment, the application server manages SSL configuration. To change SSL configuration parameters,

use the administrative console to navigate to the Security → SSL certificate and key management panel.

2006 Administering WebSphere applications

When using a WebSphere MQ messaging provider queue connection factory in the client environment, the

client takes SSL configuration information from the ssl.client.props file. Use of this file is detailed in the

related reference information for this topic.

You can only use one cipher suite in the SSL configuration for a WebSphere MQ messaging provider

queue connection factory. If you specify more than one cipher suite, only the first one is used.

 Data type Checkbox. If this checkbox is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed:

When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify

that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL

configuration.

 When you select this radio button, the hostname and port attributes from the WebSphere MQ messaging

provider queue connection factory are used to select an appropriate SSL configuration. To provide the SSL

configuration which will be matched to the queue connection factory, see the Dynamic outbound endpoint

SSL configuration settings topic listed under related reference.

 Data type Radio button

Specific configuration:

Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be

used to secure network communications with the WebSphere MQ queue manager or queue sharing group.

 Data type Radio button

SSL configuration:

The specific SSL configuration to use when SSL is to be used to secure network communications with the

WebSphere queue manager or queue sharing group.

 This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ

messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if

the relevant entries in the CCDT have been configured to use SSL.

Additionally, if a SSL configuration of none is selected, the default centrally managed WebSphere

Application Server SSL configuration for the WebSphere MQ messaging provider is used.

 Data type Drop-down list

Component-managed authentication alias:

Chapter 8. Messaging resources 2007

The authentication alias which specifies the user name and password to use when connecting to the

WebSphere MQ messaging provider.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ.

Client identifier:

The client identifier to specify when connecting to WebSphere MQ messaging provider.

 Data type String

Provider version:

The WebSphere MQ messaging provider version. This is used to determine whether to connect to a

particular version of a queue manager. It is also used to determine the type of functionality required by the

client.

 Data type String

Range The value entered must be either the empty string or be

must be in one of the following formats: n.n.n.n or n.n.n or

n.n or n, where n is a numeric value greater than or equal

to zero.

Support distributed two phase commit protocol:

Specifies whether the connection factory supports XA coordination of messaging transactions. Enable this

option if multiple resources, including this connection factory, are to be used in the same transaction.

 If you clear this property, you disable support for distributed two phase commit protocol. The JMS session

can still be enlisted in a transaction, but it uses the resource manager local transaction calls

(session.commit and session.rollback) instead of XA calls. This can lead to an improvement in

performance. However, only a single resource can be enlisted in a transaction in WebSphere Application

Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The queue connection factory supports the use

of distributed two phase commit protocols for the

coordination of transacted work.

Cleared

The queue connection factory does not support

the use of distributed two phase commit protocols

for the coordination of transacted work.

Recommended Keep this option selected if transactions involve other

resources, including other queues or topics. Clear this

option only when you are certain that the queue manager

connected to using this queue connection factory is the

only resource in the transaction.

2008 Administering WebSphere applications

Authentication alias for XA recovery:

The authentication alias which specifies the user name and password to use when connecting to

WebSphere MQ during XA recovery.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ during XA recovery.

Mapping-configuration alias:

This field if used only in the absence of a login configuration on the component resource reference.

 When the resource authority value is ″container″, the preferred way to define the authentication strategy is

by specifying a login configuration and associated properties on the component resource reference.

If the DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS -

J2C authentication data entry alias. To configure authentication information for use with the connection

factory, under Related items, click JAAS - J2C authentication data .

 Data type Drop-down list

Default (none)

Range ClientContainer

WSLogin
WSKRB5Login
DefaultPrincipalMapping
TrustedConnectionMapping
KerberosMapping

Container-managed authentication alias:

The authentication alias which specifies the user name and password to use when connecting to the

WebSphere MQ messaging provider.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ.

WebSphere MQ messaging provider queue connection factory advanced properties:

Use this panel to view or change the advanced properties of the selected queue connection factory for use

with the WebSphere MQ messaging provider. These advanced properties control the behavior of

connections made to WebSphere MQ messaging provider destinations.

 To view WebSphere MQ queue connection factory advanced properties, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Queue connection factories to display existing

queue connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the queue

connection factories are defined. This restricts the set of queue connection factories displayed.

Chapter 8. Messaging resources 2009

3. Click the name of the queue connection factory that you want to work with.

4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ queue connection factory.

Under General Properties there are five groups of properties:

v Message compression

v Temporary destinations

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the queue connection

factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A WebSphere MQ queue connection factory has the following advanced properties.

Compress message headers:

Enables the compression of message headers.

 Data type Checkbox

Default Cleared

Range Cleared

Do not compress message headers.

Selected

Compress message headers.

Compression algorithm for message payloads:

The compression algorithm to use to compress message payloads.

 Data type Drop-down list

Default NONE

Range RLE

ZLIBFAST

ZLIBHIGH
NONE

WebSphere MQ model queue name:

The model queue that is used as a basis for temporary queue definitions.

 Data type String

Default SYSTEM.DEFAULT.MODEL.QUEUE

Temporary queue prefix:

2010 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

The prefix to append to the beginning of the names generated for temporary queues.

 Data type String

Retain messages, even if no matching consumer is available:

Determines whether messages for which there is no matching consumer are retained on the input queue

or dealt with according with their disposition options.

 Data type Checkbox

Default Selected

Range Cleared

Do not retain messages.

Selected

Retain messages.

Polling interval:

This setting is applicable in the client container only. When using a WebSphere MQ version 6 queue

manager (or WebSphere MQ version 5.3 for z/OS), this setting configures the mechanism used to dispatch

messages to JMS asynchronous consumers. It is used when the set of WebSphere MQ queues being

asynchronously consumed from exceeds the number of threads available internally to synchronously get

messages from the WebSphere MQ queue. The setting determines how long a thread waits for a message

to arrive at a WebSphere MQ queue before polling another WebSphere MQ queue in the set from which is

being asynchronously consumed.

 Data type Integer

Units Milliseconds

Default 5000

Range A value greater than zero.

Rescan interval:

When using a WebSphere MQ version 6 queue manager (or WebSphere MQ version 5.3 for z/OS) this

setting configures the mechanism used to dispatch messages to JMS asynchronous consumers. It is used

when the set of WebSphere MQ queues being asynchronously consumed from exceeds the number of

threads available internally to synchronously get messages from the WebSphere MQ queue. The setting

determines how long a thread retrieves messages from a WebSphere MQ queue before switching to

consume messages from another WebSphere MQ queue in the set which is being asynchronously

consumed from.

 Data type Integer

Units Milliseconds

Default 5000

Range A value greater than zero.

Maximum batch size:

The maximum number of messages to remove from a queue before at least one must be delivered to an

asynchronous consumer.

 Data type Integer

Default 10

Range A value greater than zero.

Chapter 8. Messaging resources 2011

Coded character set identifier:

The character set to use when encoding strings in the message.

 Data type Integer

Default 819

Range A value greater than zero. The coded character set

identifier (CCSID) must be one of the CCSIDs supported

by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www.ibm.com/software/
integration/wmq/library, the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

Append an RFH version 2 header to reply messages:

The action to take when replying to a message without an RFH version 2 header.

 Data type Checkbox

Default Selected

Range

Selected

Append an RFH version 2 header to reply

messages.

Cleared

Do not append an RFH version 2 header to reply

messages.

Fail JMS method calls if the WebSphere MQ queue manager is quiescing:

Selected JMS operations fail when the queue manager is put into a quiescing state. This enables the

queue manager to quiesce successfully and shutdown

 Data type Checkbox

Default Selected

Range Cleared

Do not fail JMS operations if the queue manager

is quiescing.

Selected

Fail JMS operations if the queue manager is

quiescing.

Connection pool settings:

Use this page to configure connection pool settings.

 This administrative console page is common to a range of resource types, like JDBC data sources and

JMS queue connection factories. To view this page, the path depends on the type of resource, but

generally you select an instance of the resource provider, then an instance of the resource type, then click

Connection Pool.

Note: Connection pooling is not supported in an application client. The application client calls the

database directly and does not go through a data source. If you want to use the getConnection()

2012 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

request from the application client, configure the JDBC provider in the application client deployment

descriptors, using Rational Application Developer or an assembly tool. The connection is

established between application client and the database. Application clients do not have a

connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

For example: click Resources → JDBC → JDBC Providers → JDBC_provider → Data Sources →

data_source → Connection pool properties

The path for JMS queue connection factories is:Resources → JMS → Queue connection factories →

JMS_queue_connection_factory → [Additional properties] Connection pool properties.

Connection timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 This value indicates the number of seconds that a connection request waits when there are no

connections available in the free pool and no new connections can be created. This usually occurs

because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection Timeout is set to 300, and the maximum number of connections are all in use,

the pool manager waits for 300 seconds for a physical connection to become available. If a physical

connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.

In most cases you should not retry the getConnection() method; if a longer wait time is required you

should increase the Connection Timeout setting value. If a ConnectionWaitTimeout exception is caught by

the application, review the expected connection pool usage of the application and tune the connection pool

and database accordingly.

If the Connection Timeout is set to 0, the pool manager waits as long as necessary until a connection

becomes available. This happens when the application completes a transaction and returns a connection

to the pool, or when the number of connections falls below the value of Maximum Connections, allowing a

new physical connection to be created.

If Maximum Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Maximum connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown. For example: If the Max

Connections value is set to 5, and there are five physical connections in use, the pool manager waits for

the amount of time specified in Connection Timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend (such

as a DB2 database or a CICS server) helps you determine a value for the Maximum Connections property.

Chapter 8. Messaging resources 2013

For multiple standalone application servers that use the same data source configuration, or J2C

connection factory configuration, a separate physical connection pool exists for each server. If you clone

these same application servers, WebSphere Application Server implements a separate connection pool for

each clone.

All of these connection pools correspond to the same data source or connection factory configuration.

Therefore all of these connection pools can potentially request connections from the same backend

resource, at the same time. The single Maximum Connections value that you set on this console panel

applies to every one of these connection pools. Consequently, setting a high Maximum Connections value

can result in a load of connection requests that overwhelms your backend resource.

 Data type Integer

Default 10

Range 0 to maximum integer

If Max Connections is set to 0, the Connection Timeout

value is ignored.

Note: For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform

better than higher settings, such as 100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If

the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider

increasing the connection pool size. If the Percent Used value is consistently low under normal

workload, consider decreasing the number of connections in the pool.

Minimum connections:

Specifies the minimum number of physical connections to maintain.

 If the size of the connection pool is at or below the minimum connection pool size, the Unused Timeout

thread does not discard physical connections. However, the pool does not create connections solely to

ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged Timeout,

connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the

Unused Timeout thread does not discard that connection. By the same token, the thread does not

automatically create two additional physical connections to reach the Minimum Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

2014 Administering WebSphere applications

until it reaches the number of connections specified in Minimum Connections. The pool maintenance

thread also discards any connections that remain active longer than the time value specified in Aged

Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections exceeds the Minimum

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance.

For example, if the Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical

connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only

exception is if the connection is involved in a transaction when the aged timeout is reached, the

application server will not discard the connection until after the transaction is completed and the

connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 0

Chapter 8. Messaging resources 2015

Range 0 to max int

Purge policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly.

 Data type String

Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you

create through the administrative console

v EntirePool for current version data sources that you

script through wsadmin AdminConfig commands,

invoking JDBC templates that are built into WebSphere

Application Server (For information on the command

createUsingTemplate, see the information center

article ″Commands for the AdminConfig object.″)

v FailingConnectionOnly for data sources that you script

in wsadmin without invoking JDBC templates

:

2016 Administering WebSphere applications

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and issues a stale

connection Exception during the next operation

on that connection. Subsequent getConnection()

requests from the application result in new

connections to the database opening. When

using this purge policy, there is a slight possibility

that some connections in the pool are closed

unnecessarily when they are not stale. However,

this is a rare occurrence. In most cases, a purge

policy of EntirePool is the best choice.

FailingConnectionOnly

Only the connection that caused the stale

connection exception is closed. Although this

setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection() request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

 The connection pretest function attempts to

insulate an application from pooled connections

that are not valid. When a backend resource,

such as a database, goes down, pooled

connections that are not valid might exist in the

free pool. This is especially true when the purge

policy is failingConnectionOnly; in this case, the

failing connection is removed from the pool.

Depending on the failure, the remaining

connections in the pool might not be valid.

WebSphere MQ topic connection factory collection

Use this panel to select a topic connection factory to view or change its configuration properties. The topic

connection factory is configured for the WebSphere MQ messaging provider for publish/subscribe

messaging with JMS topics.

This panel shows a list of WebSphere MQ topic connection factories with a summary of their configuration

properties.

To view the WebSphere MQ topic connection factory collection, use the administrative console to complete

the following steps:

1. In the navigation pane, expand Resources → JMS → Topic connection factories to display existing

topic connection factories.

2. If appropriate, in the content pane, change the Scope to restrict the set of topic connection factories

displayed. IfScope is set to node or server scope for a Version 5 node, the administrative console

presents the subset of resources and properties that are applicable to WebSphere Application Server

Version 5.

3. Optional: To define a new connection factory, click New to start the Create Connection Factory wizard.

4. Optional: To view or change the properties of a connection factory, click its name in the list displayed.

WebSphere MQ messaging provider topic connection factory settings:

Chapter 8. Messaging resources 2017

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the WebSphere MQ messaging provider. These configuration properties control how connections

are created to the associated JMS topic destination.

 A WebSphere MQ topic connection factory is used to create JMS connections to topic destinations

provided by WebSphere MQ for publish/subscribe messaging.

To view WebSphere MQ topic connection factory settings, use the administrative console to complete the

following steps:

1. In the navigation pane, expand Resources → JMS → Topic connection factories to display existing

topic connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the topic connection

factories are defined. This restricts the set of topic connection factories displayed.

3. Click the name of the topic connection factory that you want to work with.

Under General Properties there are three groups of properties:

v Administration

v Connection

v Advanced

There are two variations of the Connection group:

v CCDT Connection settings group: A WebSphere MQ administrator can create a single Client Channel

Definition Table (CCDT) of all the WebSphere MQ channels supported by queue managers in their

enterprise. Additional WebSphere MQ configuration information can be associated with the entries in a

CCDT. If the selected connection factory was created using a CCDT, only the following information is

required to configure a connection:

– Client channel definition table URL: The URL that specifies the location of the CCDT.

– Queue manager: The queue manager name that specifies the CCDT entry, or entries, to use.

– SSL configuration

v Explicitly-defined Connection settings group: If the selected connection factory was not created using a

CCDT, the following information must be entered explicitly to configure a connection:

– Queue manager

– Transport

– Hostname

– Port

– Server connection channel

– Use SSL to secure communication with Websphere MQ: If you clear this property, the following

properties cannot be used.

- Centrally managed

- Specific configuration

- SSL configuration

Make any required changes to the Administration, Connection and Advanced groups of properties and then

click Apply before, in the content pane under Additional Properties, you click any of the following links:

v Advanced properties to display the advanced properties of your WebSphere MQ topic connection

factory

v Broker properties to display the broker properties of your WebSphere MQ topic connection factory

v Custom properties to display the custom properties of your WebSphere MQ topic connection factory

2018 Administering WebSphere applications

v Client transport properties to display the client transport properties of your WebSphere MQ topic

connection factory. This link is only present on the explicitly-specified variation of this panel, where you

enter all information required to connect to WebSphere MQ. This link does not appear for the

CCDT-based variation.

v Connection pools to display the connection pools detail of your WebSphere MQ topic connection

factory

v Session pools to display the session pools detail of your WebSphere MQ topic connection factory

Under Related items, click JAAS - J2C authentication data to configure authentication information for

use with the connection factory.

You can specify the following additional properties using WebSphere MQ administrative commands:

v localAddress

v clonedSubs

v containerAuthAlias

For more information about these properties, refer to the “createWMQConnectionFactory command” on

page 2058.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at the IBM Publications Center, or from the WebSphere MQ

collection kit, SK2T-0730.

A WebSphere MQ topic connection factory has the following properties.

For more information about setting the SSL properties for WebSphere MQ, see the section SSL properties

in the WebSphere MQ Using Java book.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource at a different scope, change the scope on the WebSphere MQ topic connection

factory collection panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Provider:

The JMS provider assigned when the topic connection factory is created.

 For all topic connection factories using this panel, the provider is the WebSphere MQ messaging provider.

Chapter 8. Messaging resources 2019

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

The provider is displayed for information only.

 Data type String

Name:

The name by which this topic connection factory is known for administrative purposes within WebSphere

Application Server.

 Data type String

Range The name must be unique within the set of JMS topic

connection factories defined to the cell.

JNDI name:

The JNDI name that is used to bind the topic connection factory into the JNDI name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within WebSphere Application

Server.

 Data type String

Default Null

Client channel definition table URL:

A URL that points to a WebSphere MQ CCDT.

 Data type String

Queue manager:

If this topic connection factory is based on a CCDT, this property is used to select an entry in the CCDT.

Otherwise, it is the name of the queue manager or queue sharing group to connect to. A connection is

established to this WebSphere MQ resource to send or receive messages.

 Data type String

Range If this topic connection factory is based on a CCDT, the

value must be one of the following:

v A valid queue manager name

v A valid queue manager name with the last character an

asterisk

v An asterisk

v Blank

If this topic connection factory is not based on a CCDT,

the value must be a valid queue manager name.

2020 Administering WebSphere applications

Transport:

The WebSphere MQ transport type for the connection. This is used to determine the exact mechanisms

used to connect to WebSphere MQ.

 Data type Drop-down list

Default bindings then client

Range client Use a TCP/IP based network connection to

communicate with the WebSphere MQ queue

manager

bindings then client

Attempt a bindings mode connection to the

queue manager. If this is not possible, revert to

the client transport.

bindings

Establish a cross memory connection to a queue

manager running on the same node. The

following Client Transport Mode properties are

disabled:

v Hostname

v Port

v Server connection channel

For more information about configuring a transport type of

bindings then client or bindings, refer to “Configuring the

WebSphere MQ messaging provider with native libraries

information” on page 1945 and “Sizing the thread pools

used by the WebSphere MQ messaging provider” on page

1946.

Hostname:

The hostname, IPv4 or IPv6 address of the WebSphere MQ queue manager to connect to.

 Data type String

Port:

The port number on which WebSphere MQ is listening.

 Data type Integer

Default 1414

Range The value must be in the range 1 to 65536 (inclusive).

Server connection channel:

The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

 Data type String

Default SYSTEM.DEF.SVRCONN

Range The value must be a server connection channel defined to

the WebSphere MQ queue manager being connected to.

Use SSL to secure communications with WebSphere MQ:

Chapter 8. Messaging resources 2021

This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network

communications with the WebSphere MQ queue manager or queue sharing group.

 When using a WebSphere MQ messaging provider topic connection factory in the application server

environment, the application server manages SSL configuration. To change SSL configuration parameters,

use the administrative console to navigate to the Security → SSL certificate and key management panel.

When using a WebSphere MQ messaging provider topic connection factory in the client environment, the

client takes SSL configuration information from the ssl.client.props file. Use of this file is detailed in the

related reference information for this topic.

You can only use one cipher suite in the SSL configuration for a WebSphere MQ messaging provider topic

connection factory. If you specify more than one cipher suite, only the first one is used.

 Data type Checkbox. If this checkbox is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed:

When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify

that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL

configuration.

 When you select this radio button, the hostname and port attributes from the WebSphere MQ messaging

provider topic connection factory are used to select an appropriate SSL configuration. To provide the SSL

configuration which will be matched to the topic connection factory, see the Dynamic outbound endpoint

SSL configuration settings topic listed under related reference.

 Data type Radio button

Specific configuration:

Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be

used to secure network communications with the WebSphere MQ queue manager or queue sharing group.

 Data type Radio button

SSL configuration:

The specific SSL configuration to use when SSL is to be used to secure network communications with the

WebSphere MQ queue manager or queue sharing group.

 This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ

messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if

the relevant entries in the CCDT have been configured to use SSL.

2022 Administering WebSphere applications

Additionally, if a SSL configuration of none is selected, the default centrally managed WebSphere

Application Server SSL configuration for the WebSphere MQ messaging provider is used.

 Data type Drop-down list

Component-managed authentication alias:

The authentication alias which specifies the user name and password to use when connecting to

WebSphere MQ.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ.

Client identifier:

The client identifier to specify when connecting to WebSphere MQ messaging provider.

 Data type String

Allow cloned durable subscriptions:

Determines whether multiple instances of a durable subscription can be accessed concurrently by different

servers.

 Data type Checkbox

Default Cleared

Range Selected

Multiple instances of a durable subscription can

be accessed concurrently by different servers.

Cleared

Multiple instances of a durable subscription can

not be accessed concurrently by different

servers.

Provider version:

The WebSphere MQ messaging provider version. This is used to determine whether to connect to a

particular version of a queue manager. It is also used to determine the type of functionality required by the

client.

 Data type String

Range The value entered must be either the empty string or be

must be in one of the following formats: n.n.n.n or n.n.n or

n.n or n, where n is a numeric value greater than or equal

to zero.

Support distributed two phase commit protocol:

Specifies whether the connection factory supports XA coordination of messaging transactions. Enable this

option if multiple resources, including this connection factory, are to be used in the same transaction.

Chapter 8. Messaging resources 2023

If you clear this property, you disable support for distributed two phase commit protocol. The JMS session

can still be enlisted in a transaction, but it uses the resource manager local transaction calls

(session.commit and session.rollback) instead of XA calls. This can lead to an improvement in

performance. However, only a single resource can be enlisted in a transaction in WebSphere Application

Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The connection factory supports the use of

distributed two phase commit protocols for the

coordination of transacted work.

Cleared

The connection factory does not support the use

of distributed two phase commit protocols for the

coordination of transacted work.

Recommended Do not enable XA when the queue manager specified by

the topic connection factory is the only resource in the

transaction. Enable XA if transactions involve other

resources, including other queues or topics.

Authentication alias for XA recovery:

The authentication alias which specifies the user name and password to use when connecting to

WebSphere MQ during XA recovery.

 Data type Drop-down list

Default (none)

Range All authentication aliases defined to the cell and the value

″(none)″, which specifies that no credentials are passed to

WebSphere MQ during XA recovery.

Mapping-configuration alias:

This field if used only in the absence of a login configuration on the component resource reference.

 When the resource authority value is ″container″, the preferred way to define the authentication strategy is

by specifying a login configuration and associated properties on the component resource reference.

If the DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS -

J2C authentication data entry alias. To configure authentication information for use with the connection

factory, under Related items, click JAAS - J2C authentication data .

 Data type Drop-down list

Default (none)

Range ClientContainer

WSLogin
WSKRB5Login
DefaultPrincipalMapping
TrustedConnectionMapping
KerberosMapping

WebSphere MQ messaging provider topic connection factory advanced properties:

2024 Administering WebSphere applications

Use this panel to view or change the advanced properties of the selected topic connection factory for use

with the WebSphere MQ messaging provider. These advanced properties control the behavior of

connections made to WebSphere MQ messaging provider destinations.

 To view WebSphere MQ topic connection factory advanced properties, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS → Topic connection factories to display existing

topic connection factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the topic connection

factories are defined. This restricts the set of topic connection factories displayed.

3. Click the name of the topic connection factory that you want to work with.

4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ topic connection factory.

Under General Properties there are five groups of properties:

v Message compression

v Temporary destinations

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the topic connection factory.

A WebSphere MQ topic connection factory has the following advanced properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book which is available from the

WebSphere MQ library page at http://www.ibm.com/software/integration/wmq/library/.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Compress message headers:

Enables the compression of message headers.

 Data type Checkbox

Default Cleared

Range Cleared

Do not compress message headers.

Selected

Compress message headers.

Compression algorithm for message payloads:

The compression algorithm to use to compress message payloads.

 Data type Drop-down list

Default NONE

Range RLE

ZLIBFAST

ZLIBHIGH
NONE

Chapter 8. Messaging resources 2025

http://www.ibm.com/software/integration/wmq/library/

Temporary topic prefix:

The prefix to append to the beginning of the names generated for temporary topics.

 Data type String

Polling interval:

This setting is applicable in the client container only. When using a WebSphere MQ version 6 queue

manager (or WebSphere MQ version 5.3 for z/OS), this setting configures the mechanism used to dispatch

messages to JMS asynchronous consumers. It is used when the set of WebSphere MQ queues being

asynchronously consumed from exceeds the number of threads available internally to synchronously get

messages from the WebSphere MQ queue. The setting determines how long a thread waits for a message

to arrive at a WebSphere MQ queue before polling another WebSphere MQ queue in the set from which is

being asynchronously consumed.

 Data type Integer

Units Milliseconds

Default 5000

Range A value greater than zero.

Maximum batch size:

The maximum number of messages to remove from a queue before at least one must be delivered to an

asynchronous consumer.

 Data type Integer

Default 10

Range A value greater than zero.

Coded character set identifier:

The character set to use when encoding strings in the message.

 Data type Integer

Default 819

Range A value greater than zero. The coded character set

identifier (CCSID) must be one of the CCSIDs supported

by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ library page at

http://www.ibm.com/software/integration/wmq/library, or the IBM Publications Center, or from the

WebSphere MQ collection kit, SK2T-0730.

Fail JMS method calls if the WebSphere MQ messaging provider queue manager is quiescing:

Selected JMS operations fail when the queue manager is put into a quiescing state. This enables the

queue manager to quiesce successfully and shutdown.

 Data type Checkbox

Default Selected

2026 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Range Cleared

Do not fail JMS operations if the queue manager

is quiescing.

Selected

Fail JMS operations if the queue manager is

quiescing.

Connection pool settings:

Use this page to configure connection pool settings.

 This administrative console page is common to a range of resource types, like JDBC data sources and

JMS queue connection factories. To view this page, the path depends on the type of resource, but

generally you select an instance of the resource provider, then an instance of the resource type, then click

Connection Pool.

Note: Connection pooling is not supported in an application client. The application client calls the

database directly and does not go through a data source. If you want to use the getConnection()

request from the application client, configure the JDBC provider in the application client deployment

descriptors, using Rational Application Developer or an assembly tool. The connection is

established between application client and the database. Application clients do not have a

connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

For example: click Resources → JDBC → JDBC Providers → JDBC_provider → Data Sources →

data_source → Connection pool properties

The path for JMS queue connection factories is:Resources → JMS → Queue connection factories →

JMS_queue_connection_factory → [Additional properties] Connection pool properties.

Connection timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 This value indicates the number of seconds that a connection request waits when there are no

connections available in the free pool and no new connections can be created. This usually occurs

because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection Timeout is set to 300, and the maximum number of connections are all in use,

the pool manager waits for 300 seconds for a physical connection to become available. If a physical

connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.

In most cases you should not retry the getConnection() method; if a longer wait time is required you

should increase the Connection Timeout setting value. If a ConnectionWaitTimeout exception is caught by

the application, review the expected connection pool usage of the application and tune the connection pool

and database accordingly.

If the Connection Timeout is set to 0, the pool manager waits as long as necessary until a connection

becomes available. This happens when the application completes a transaction and returns a connection

to the pool, or when the number of connections falls below the value of Maximum Connections, allowing a

new physical connection to be created.

If Maximum Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Chapter 8. Messaging resources 2027

Units Seconds

Default 180

Range 0 to max int

Maximum connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown. For example: If the Max

Connections value is set to 5, and there are five physical connections in use, the pool manager waits for

the amount of time specified in Connection Timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend (such

as a DB2 database or a CICS server) helps you determine a value for the Maximum Connections property.

For multiple standalone application servers that use the same data source configuration, or J2C

connection factory configuration, a separate physical connection pool exists for each server. If you clone

these same application servers, WebSphere Application Server implements a separate connection pool for

each clone.

All of these connection pools correspond to the same data source or connection factory configuration.

Therefore all of these connection pools can potentially request connections from the same backend

resource, at the same time. The single Maximum Connections value that you set on this console panel

applies to every one of these connection pools. Consequently, setting a high Maximum Connections value

can result in a load of connection requests that overwhelms your backend resource.

 Data type Integer

Default 10

Range 0 to maximum integer

If Max Connections is set to 0, the Connection Timeout

value is ignored.

Note: For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform

better than higher settings, such as 100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If

the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider

increasing the connection pool size. If the Percent Used value is consistently low under normal

workload, consider decreasing the number of connections in the pool.

Minimum connections:

Specifies the minimum number of physical connections to maintain.

 If the size of the connection pool is at or below the minimum connection pool size, the Unused Timeout

thread does not discard physical connections. However, the pool does not create connections solely to

ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged Timeout,

connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the

Unused Timeout thread does not discard that connection. By the same token, the thread does not

2028 Administering WebSphere applications

automatically create two additional physical connections to reach the Minimum Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Minimum Connections. The pool maintenance

thread also discards any connections that remain active longer than the time value specified in Aged

Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections exceeds the Minimum

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged timeout:

Specifies the interval in seconds before a physical connection is discarded.

Chapter 8. Messaging resources 2029

Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance.

For example, if the Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical

connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only

exception is if the connection is involved in a transaction when the aged timeout is reached, the

application server will not discard the connection until after the transaction is completed and the

connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on

page 1477 for more information.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly.

 Data type String

Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you

create through the administrative console

v EntirePool for current version data sources that you

script through wsadmin AdminConfig commands,

invoking JDBC templates that are built into WebSphere

Application Server (For information on the command

createUsingTemplate, see the information center

article ″Commands for the AdminConfig object.″)

v FailingConnectionOnly for data sources that you script

in wsadmin without invoking JDBC templates

:

2030 Administering WebSphere applications

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and issues a stale

connection Exception during the next operation

on that connection. Subsequent getConnection()

requests from the application result in new

connections to the database opening. When

using this purge policy, there is a slight possibility

that some connections in the pool are closed

unnecessarily when they are not stale. However,

this is a rare occurrence. In most cases, a purge

policy of EntirePool is the best choice.

FailingConnectionOnly

Only the connection that caused the stale

connection exception is closed. Although this

setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection() request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

 The connection pretest function attempts to

insulate an application from pooled connections

that are not valid. When a backend resource,

such as a database, goes down, pooled

connections that are not valid might exist in the

free pool. This is especially true when the purge

policy is failingConnectionOnly; in this case, the

failing connection is removed from the pool.

Depending on the failure, the remaining

connections in the pool might not be valid.

WebSphere MQ queue destination collection

The JMS queue destinations configured in the WebSphere MQ messaging provider for point-to-point

messaging with JMS queues. Use this panel to create or delete queue destinations, or to select a queue

destination to view or change its configuration properties.

This panel shows a list of JMS queue destinations with a summary of their configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If

Scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, click the WebSphere MQ messaging provider that you want to support the JMS

destination.

4. In the content pane, under Additional Properties, click Queues. This displays a list of any existing JMS

queue destinations.

To create a new queue destination, click New.

To view or change the properties of a queue destination, select its name in the list displayed.

Chapter 8. Messaging resources 2031

To act on one or more of the queue destinations listed, click the check box next to the name of the queue,

then use the buttons provided.

WebSphere MQ messaging provider queue settings:

Use this panel to view or change the configuration properties of the selected queue destination for

point-to-point messaging with WebSphere MQ as a messaging provider.

 A WebSphere MQ queue destination is used to configure the properties of a queue for the WebSphere

MQ messaging provider. Connections to the queue are created using an associated WebSphere MQ

queue connection factory or connection factory.

To view WebSphere MQ queue settings, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → Queues to display existing queue destinations.

2. Click the name of the queue destination that you want to work with.

3. Optional: To create a new queue destination, click New.

4. Optional: To view or change the queue destination settings, click its name in the list displayed.

Under General Properties there are two groups of properties:

v Administration

v WebSphere MQ Queue

Make any required changes to the Administration and WebSphere MQ Queue groups of properties and

then click Apply before, in the content pane under Additional Properties, you click one of the following

links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ queue

destination

v WebSphere MQ queue connection properties to display or change the connection properties of your

WebSphere MQ queue destination

v Custom properties to display or change the custom properties of your WebSphere MQ queue

destination

Under Related items, click JAAS - J2C authentication data to configure authentication information for

use with the queue destination.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at the IBM Publications Center, or from the WebSphere MQ

collection kit, SK2T-0730.

A queue destination for use with the WebSphere MQ messaging provider has the following properties.

Scope:

The scope assigned to the queue when it is created. The scope specifies the level to which this queue

definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

2032 Administering WebSphere applications

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource at a different scope, change the scope on WebSphere MQ queue destination

collection panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Provider:

The JMS provider assigned when the queue is created.

 For all queues created using this panel, the provider is the WebSphere MQ messaging provider.

The provider is displayed for information only.

 Data type String

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

JNDI name:

The name that is used to bind the queue into the JNDI name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

 Data type String

Description:

A description of the queue, for administrative purposes within WebSphere Application Server.

 Data type String

Default Null

Queue name:

The WebSphere MQ name for the queue that holds the messages for the JMS destination.

 Data type String

Queue manager or queue sharing group name:

The name of the WebSphere MQ queue manager or queue sharing group where the queue resides.

 Data type String

WebSphere MQ queue connection properties:

Chapter 8. Messaging resources 2033

Use this panel to specify how to connect to the queue manager that hosts the queue.

 The system uses these connection properties to retrieve, display and update the queue configuration

details that are shown on the WebSphere MQ queue settings panel.

To set of change the queue connection properties, use the administrative console to complete the following

steps:

1. In the navigation pane, expand Resources → JMS → Queues to display existing queue destinations.

2. Click the name of the queue destination that you want to work with.

3. To view or change the queue destination settings, click its name in the list displayed.

Under General Properties there are two groups of properties:

v Administration

v WebSphere MQ Queue

Make any required changes to the Administration and WebSphere MQ Queue groups of properties and

then click Apply before, in the content pane under Additional Properties, you click the WebSphere MQ

queue connection properties link to display or change the connection properties of your WebSphere MQ

queue destination.

Make any required changes to the General properties and then click Apply before, in the content pane

under Additional Properties, you click WebSphere MQ configuration to return to the WebSphere MQ

queue settings panel.

A queue destination for use with the WebSphere MQ messaging provider has the following WebSphere

MQ queue connection properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Queue Manager Host:

The name of host for the queue manager on which the queue destination is created.

 Data type String

Queue Manager Port:

The number of the port used by the queue manager on which this queue is defined.

 Data type Integer

Range A valid TCP/IP port number. This port must be configured

on the WebSphere MQ queue manager.

Server Connection Channel Name:

The name of the channel used for connection to the WebSphere MQ queue manager.

 Data type String

Range 1 through 20 ASCII characters

2034 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

User ID:

The user ID used, with the Password property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Password:

The password, used with the User ID property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

WebSphere MQ topic destination collection

The JMS topic destinations configured in the WebSphere MQ messaging provider for point-to-point

messaging with JMS topics. Use this panel to create or delete topic destinations, or to select a topic

destination to view or change its configuration properties.

This panel shows a list of JMS topic destinations with a summary of their configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → JMS providers.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If

Scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, click the name of the WebSphere MQ messaging provider that you want to

support the JMS destination.

4. In the content pane, under Additional Properties, click Topics. This displays a list of any existing JMS

topic destinations.

To create a new topic destination, click New.

To view or change the properties of a topic destination, select its name in the list displayed.

To act on one or more of the topic destinations listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ messaging provider topic settings:

Use this panel to view or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging with WebSphere MQ as a messaging provider.

 A WebSphere MQ topic destination is used to configure the properties of a topic for the WebSphere MQ

messaging provider. Connections to the topic are created using an associated WebSphere MQ topic

connection factory or connection factory.

To view WebSphere MQ topic settings, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS → Topics to display existing topic destinations.

Chapter 8. Messaging resources 2035

2. Click the name of the topic destination that you want to work with.

3. Optional: To create a new topic destination, click New.

4. Optional: To view or change the topic destination settings, click its name in the list displayed.

Under General Properties there are two groups of properties:

v Administration

v WebSphere MQ topic

Make any required changes to the Administration and WebSphere MQ topic groups of properties and then

click Apply before, in the content pane under Additional Properties, you click either of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ topic

v Custom properties to display or change the custom properties of your WebSphere MQ topic

Under Related items, click JAAS - J2C authentication data to configure authentication information for

use with the topic.

You can specify the following additional properties using WebSphere MQ administrative commands:

v wildcardFormat

v brokerVersion

For more information about these properties, refer to the “createWMQTopic command” on page 2073.

A topic for use with the WebSphere MQ messaging provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at the IBM Publications Center, or from the WebSphere MQ

collection kit, SK2T-0730.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Scope:

The scope assigned to the topic when it is created. The scope specifies the level to which this topic

definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource at a different scope, change the scope on the WebSphere MQ topic destination

collection panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Provider:

The JMS provider assigned when the topic is created.

 For all topics created using this panel, the provider is the WebSphere MQ messaging provider.

2036 Administering WebSphere applications

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The provider is displayed for information only.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The name that is used to bind the topic into the JNDI name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

 Data type String

Description:

A description of the topic for administrative purposes within IBM WebSphere Application Server.

 Data type String

Topic name:

The WebSphere MQ name for the topic.

 Data type String

Broker durable subscriber queue:

The queue to use for durable subscribers.

 Data type Drop-down list

Default As connection

Range As connection

The connection factory values are used.

Override connection

Enter the name of a queue in the associated text

box.

Broker durable subscription connection consumer queue:

The queue to use for durable subscribers that use a connection consumer.

 Data type Drop-down list

Default As connection

Chapter 8. Messaging resources 2037

Range As connection

The connection factory values are used.

Override connection

Enter the name of a queue in the associated text

box.

Broker publication queue:

The queue to use for publishing messages.

 Data type Drop-down list

Default As connection

Range As connection

The connection factory values are used.

Override connection

Enter the name of a queue in the associated text

box.

Broker publication queue manager:

The queue manager that hosts the topic.

 Data type Drop-down list

Default As connection

Range As connection

The connection factory values are used.

Override connection

Enter the name of a queue manager in the

associated text box.

WebSphere MQ messaging provider queue and topic advanced properties settings:

Use this panel to view or change the advanced properties for the selected queue or topic destination for

messaging with the WebSphere MQ messaging provider.

 To view WebSphere MQ queue or topic advanced properties settings, use the administrative console to

complete the following steps:

1. In the navigation pane, expand Resources → JMS.

2. Click Queues or Topics to display existing queue or topic destinations.

3. If appropriate, in the content pane, change the Scope setting to the level at which the queue or topic

destinations are defined. This restricts the set of queue or topic destinations displayed.

4. Click the name of the queue or topic destination that you want to work with.

5. In the content pane, under Additional properties, click Advanced properties to display a list of the

advanced properties of the WebSphere MQ queue or topic destination.

Under General Properties there are three groups of properties:

v Delivery

v Message format

v Optimizations

Make any required changes to these groups and then click Apply to return to the queue or topic.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

2038 Administering WebSphere applications

v Names can have a maximum of 48 characters, with the exception of channels which have a

maximum of 20 characters.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book at http://www.ibm.com/software/
integration/wmq/library/.

A queue or topic for use with the WebSphere MQ messaging provider has the following advanced

properties.

Persistence:

The level of persistence used to store messages sent to this destination.

 Data type Drop-down list

Default As set by application

Range As set by application

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

As for WebSphere MQ queue definition

Messages on the destination have their

persistence defined by the WebSphere MQ

queue definition properties.

WebSphere MQ Persistent

Messages on the destination are persistent.

WebSphere MQ Non-persistent

Messages on the destination are not persistent.

WebSphere MQ High

Permit persistent messages to be sent as

non-persistent messages when using an

underlying WebSphere MQ queue with a

NPMCLASS of ’HIGH’.

Priority:

The priority assigned to messages sent to this destination.

 Data type Drop-down list

Default As set by application

Range As set by application

The priority of messages on this destination is

defined by the application that put them onto the

destination.

As for WebSphere MQ queue definition

Messages on the destination have their

persistence defined by the WebSphere MQ

destination definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

Chapter 8. Messaging resources 2039

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

If the Priority property was set to Specified, select the priority assigned to messages sent to this queue

type destination.

 Data type Drop-down list

Units Message priority level

Default As set by application

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this destination is defined by the application or the Specified expiry

property, or messages on the destination never expire.

 Data type Drop-down list

Default As set by application

Range As set by application

The expiry timeout for messages on this

destination is defined by the application that put

them onto the destination.

Specified

The expiry timeout for messages on this

destination is defined by the Specified expiry

property. If you select this option, you must

define a timeout on the Specified expiry

property.

Unlimited

Messages on this destination have no expiry

timeout, so those messages never expire.

Specified expiry:

If the Expiry property is set to Specified, enter the number of milliseconds after which messages expire

and are removed from this destination.

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Coded character set identifier:

The character set to use when encoding strings in the message.

 Data type Integer

Default 1208

Range 1 through 65535. The coded character set identifier

(CCSID) must be one of the CCSIDs supported by

WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

2040 Administering WebSphere applications

multiplatform and platform-specific books Web pages; for example, at http://www.ibm.com/software/
integration/wmq/library, the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

Use native encoding:

Whether or not the destination should use native encoding to provided appropriate encoding values for the

Java platform.

 Data type Checkbox

Default Selected

Range Selected

Native encoding is used.

Cleared

Native encoding is not used, so specify the

properties for Integer encoding, Decimal

encoding, and Floating point encoding.

Integer encoding:

If the Use native encoding checkbox is cleared, select the type of integer encoding to be used.

 Data type Drop-down list

Default Normal

Range Normal

Normal integer encoding is used.

Reversed

Reversed integer encoding is used.

Decimal encoding:

If the Use native encoding is cleared, select the type of decimal encoding to be used.

 Data type Drop-down list

Units Not applicable

Default Normal

Range Normal

Normal decimal encoding is used.

Reversed

Reversed decimal encoding is used.

Floating point encoding:

If the Use native encoding is cleared, select the type of floating point encoding to be used.

 Data type Drop-down list

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

z/OS z/OS floating point encoding is used.

Append RFH version 2 headers to messages sent to this destination:

Whether RFH version 2 headers should be appended to messages sent to this destination.

Chapter 8. Messaging resources 2041

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type Checkbox

Default Selected

Range Cleared

Do not append RFH version 2 headers to

messages sent to this destination.

Selected

Append RFH version 2 headers to messages

sent to this destination.

Asynchronously send messages to the queue manager:

Whether the queue manager acknowledges receipt of messages sent to it. Asynchronously sending

messages to the queue manager is faster, but messages can be lost if the messaging infrastructure fails.

 Data type Drop-down list

Default The default value depends on whether you are working

with a queue or topic destination.

As for queue definition

This is the default value if you are working with a

queue destination.

As for topic definition

This is the default value if you are working with a

topic destination.

Range As for queue definition

Messages are acknowledged according to the

WebSphere MQ queue definition properties.

As for topic definition

Messages are acknowledged according to the

WebSphere MQ topic definition properties.

Yes The queue manager acknowledges receipt of

messages sent to it.

No The queue manager does not acknowledge

receipt of messages sent to it.

Read ahead and cache non-persistent messages for consumers:

Whether messages for non-persistent consumers are sent to the client speculatively. This results in faster

message delivery but messages can be lost in the event of a failure in the messaging infrastructure.

 Data type Drop-down list

Default The default value depends on whether you are working

with a queue or topic destination.

As for queue definition

This is the default value if you are working with a

queue destination.

As for topic definition

This is the default value if you are working with a

topic destination.

Range As for queue definition

Messages are sent to the client according to the

WebSphere MQ queue definition properties.

As for topic definition

Messages are sent to the client according to the

WebSphere MQ topic definition properties.

Yes Messages are sent to the client speculatively.

No Messages are not sent to the client speculatively.

2042 Administering WebSphere applications

Read ahead consumer close method:

If Read ahead and cache non-persistent messages for consumers is set to Yes or As for queue

definition this property is enabled. Determines what happens to messages in the internal read ahead

buffer when the message consumer is closed.

 Data type Drop-down list

Default Close method waits for all cached messages to be

delivered

Range Wait for all cached messages to be delivered

All messages in the internal read ahead buffer

are delivered to the application’s message

listener before returning.

Wait for the current message to be delivered

Only the current message listener invocation

completes before returning, potentially leaving

messages in the internal read ahead buffer,

which are then discarded.

WMQAdminCommands command group for the AdminTask object

You can use the WebSphere MQ administrative commands to manage JMS resources for the WebSphere

MQ messaging provider.

You can configure JMS resources for the WebSphere MQ messaging provider through the WebSphere MQ

administrative commands, or you can configure JMS resources for the WebSphere MQ messaging

provider through the administrative console.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts

on multiple objects in one operation. The commands are provided to allow you to make the most

commonly-required types of update in a consistent manner, where modifying the underlying objects directly

would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

These commands are valid only when they are used with WebSphere Application Server Version 7 and

later application servers. Do not use them with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using these commands, save your changes to the master configuration. For example, use the

following command:

AdminConfig.save()

The following commands are available for the WMQAdminCommands group of the AdminTask object:

v createWMQActivationSpec command

Chapter 8. Messaging resources 2043

v deleteWMQActivationSpec command

v listWMQActivationSpec command

v modifyWMQActivationSpec command

v showWMQActivationSpec command

v createWMQConnectionFactory command

v deleteWMQConnectionFactory command

v listWMQConnectionFactory command

v modifyWMQConnectionFactory command

v showWMQConnectionFactory command

v createWMQTopic command

v deleteWMQTopic command

v listWMQTopic command

v modifyWMQTopic command

v showWMQTopic command

v manageWMQ command

v migrateWMQMLP command

v createWMQQueue command

v deleteWMQQueue command

v listWMQQueue command

v modifyWMQQueue command

v showWMQQueue command

createWMQActivationSpec command

Use the createWMQActivationSpec command to create an activation specification for the WebSphere MQ

messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

2044 Administering WebSphere applications

Purpose

Use the createWMQActivationSpec command to create a WebSphere MQ messaging provider activation

specification at a specific scope.

You cannot create a WebSphere MQ messaging provider activation specification under either of the

following conditions:

v A WebSphere MQ messaging provider activation specification already exists with the same name, at the

same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

You create a CCDT based activation specification by specifying any of the following parameters:

v -ccdtUrl

v -ccdtQmgrName

If you do not specify any of the following parameters, you create a generic activation specification :

v -ccdtUrl

v -ccdtQmgrName

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider

activation specification is to be created.

Required parameters

-name

The administrative name assigned to this WebSphere MQ messaging provider activation specification.

-jndiName

The name and location used to bind this object into WebSphere Application Server JNDI.

-destinationJndiName

The JNDI name of a WebSphere MQ messaging provider queue or topic type destination. When an

MDB is deployed with this activation specification, messages for the MDB are consumed from this

destination.

-destinationType

The type of the destination specified using the -destinationJndiName parameter.

 Enter one of the following values:

v javax.jms.Queue

v javax.jms.Topic

There is no default value.

Optional parameters

-description

An administrative description assigned to the activation specification.

-ccdtUrl

A URL to a client channel definition table to use, for this activation specification, when contacting

WebSphere MQ.

 Use this parameter to create ccdtURL activation specifications

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrType,

-qmgrHostname, -qmgrPortNumber, -qmgrSvrconnChannel, or -localAddress.

Chapter 8. Messaging resources 2045

-ccdtQmgrName

A queue manager name, used to select one or more entries from a client channel definition table.

 You must specify this parameter if the -transportType has been specified as client or

bindingsThenClient.

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrType,

-qmgrHostname, -qmgrPortNumber, -qmgrSvrconnChannel, or -localAddress.

-qmgrName

The name of the queue manager to use, for this activation specification, when contacting WebSphere

MQ.

 Use this parameter to create generic activation specifications.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-wmqTransportType

This parameter determines the way in which a connection is established to WebSphere MQ for this

activation specification.

 Use this parameter to create generic activation specifications.

Enter one of the following case-sensitive values:

v BINDINGS

v BINDINGS_THEN_CLIENT

v CLIENT

BINDINGS_THEN_CLIENT is the default value.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

For more information about configuring a transport type of bindings then client or bindings, refer to

“Configuring the WebSphere MQ messaging provider with native libraries information” on page

1945and “Sizing the thread pools used by the WebSphere MQ messaging provider” on page 1946.

-qmgrHostname

The host name to use, for this activation specification, when attempting a client mode connection to

WebSphere MQ. It must be a valid TCP/IP hostname or IPv4 or IPv6 address.

 The default value is the local host.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-qmgrPortNumber

The port number to use, for this activation specification, when attempting a client mode connection to

WebSphere MQ.

 Enter an integer value in the range 1 – 65536 (inclusive).

The default value is 1414.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-authAlias

The authentication alias used to obtain the credentials specified when this activation specification

needs to establish a connection to WebSphere MQ.

-clientId

The client identifier used for connections started using this activation specification.

2046 Administering WebSphere applications

-providerVersion

This parameter determines the minimum version, and capabilities of the queue manager.

 Enter values in one of the following formats:

v n

v n.n

v n.n.n

v n.n.n.n

where n is an integer greater than or equal to zero.

-sslCrl

This parameter specifies a list of LDAP servers that are used to provide certificate revocation

information if this activation specification establishes an SSL based connection to WebSphere MQ.

-sslResetCount

This parameter is used when the activation specification establishes an SSL connection to the queue

manager. This parameter determines how many bytes to transfer before resetting the symmetric

encryption key that is used for the SSL session.

 Enter a value in the range 0 through 999,999,999.

The default value is 0.

-sslPeerName

This parameter is used when the activation specification establishes an SSL connection to the queue

manager. The value is compared with the distinguished name present in the peer’s certificate.

-rcvExit

A comma-separated list of receive exit class names.

-rcvExitInitData

Initialization data to pass to the receive exit.

 Do not specify this parameter unless you specify the -rcvExit parameter.

-sendExit

A comma-separated list of send exit class names.

-sendExitInitData

Initialization data to pass to the send exit.

 Do not specify this parameter unless you specify the -sendExit parameter.

-secExit

A security exit class name.

-secExitInitData

Initialization data to pass to the security exit.

 Do not specify this parameter unless you specify the -secExit parameter.

-compressHeaders

This parameter determines if message headers are compressed.

 Enter one of the following values:

v NONE

v SYSTEM

The default value is NONE.

-compressPayload

This parameter determines if message payloads are compressed.

 Enter one of the following values:

Chapter 8. Messaging resources 2047

v NONE

v RLE

v ZLIBFAST

v ZLIBHIGH

The default value is NONE.

-msgRetention

This parameter determines if the connection consumer keeps unwanted messages on the input queue.

 Enter one of the following values:

v YES

v NO

where YES specifies that the connection consumer keeps unwanted messages on the input queue.

and NO specifies that the messages are disposed of according to their disposition options.

The default value is YES.

-rescanInterval

When a message consumer in the point-to-point domain uses a message selector to select which

messages it wants to receive, the JMS client searches the WebSphere MQ queue for suitable

messages in the sequence determined by the MsgDeliverySequence attribute of the queue. When the

client finds a suitable message and delivers it to the consumer, the client resumes the search for the

next suitable message from its current position in the queue. The client continues to search the queue

in this way until it reaches the end of the queue, or until the interval of time in milliseconds, as

determined by the value of this -rescanInterval parameter has expired. In each case, the client

returns to the beginning of the queue to continue its search, and a new time interval commences.

 This parameter must be a positive integer value.

The default value is 5000.

-ccsid

The coded character set identifier to be used on connections.

 The value of this parameter must be a positive integer.

The default value is 819.

-failIfQuiescing

This parameter determines the behavior of certain calls to the queue manager when the queue

manager is put into quiescing state.

 The value of this parameter must be True or False.

True specifies that calls to certain methods fail if the queue manager is in a quiescing state. If an

application detects that the queue manager is quiescing, the application can complete its immediate

task and close the connection, allowing the queue manager to stop.

False specifies that no methods fail if the queue manager is in a quiescing state. If you specify this

value, an application cannot detect that the queue manager is quiescing. The application might

continue to perform operations against the queue manager, and therefore prevent the queue manager

from stopping.

The default value is True.

-brokerCtrlQueue

The name of the broker control queue to use if this activation specification is to subscribe to a topic.

 The default value is SYSTEM.BROKER.CONTROL.QUEUE.

2048 Administering WebSphere applications

-brokerSubQueue

The name of the queue to use for obtaining subscription messages if this activation specification is to

subscribe to a topic.

 The default value is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE.

-brokerCCSubQueue

The name of the queue from which non-durable subscription messages are retrieved for a

ConnectionConsumer.

 The default value is SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE.

-brokerVersion

The value of this parameter determines the level of functionality required for publish/subscribe

operations.

 Valid values are 1 and 2.

The default value is 1.

-msgSelection

This parameter determines where message selection occurs.

 Valid values are CLIENT and BROKER.

The default value is CLIENT.

-subStore

This parameter determines where WebSphere MQ messaging provider stores persistent data relating

to active subscriptions.

 Valid values are MIGRATE, QUEUE and BROKER.

The default value is MIGRATE.

-stateRefreshHint

The interval, in milliseconds, between refreshes of the long running transaction that detects when a

subscriber loses its connection to the queue manager. This parameter is relevant only if -subStore

parameter has the value QUEUE.

 The value of this parameter must be a positive integer.

The default value is 60,000.

-cleanupLevel

The cleanup level for BROKER or MIGRATE subscription stores.

 Valid values are SAFE, ASPROP, NONE and STRONG.

The default value is SAFE.

-cleanupInterval

The interval between background executions of the publish/subscribe cleanup utility.

 The value of this parameter must be a positive integer.

The default value is 3,600,000.

-wildcardFormat

This parameter determines which sets of characters are interpreted as topic wildcards.

 Valid values are Topic or Char.

Char is the default value.

-sparseSubs

This parameter controls the message retrieval policy of a TopicSubscriber object.

 The value of this parameter must be True or False

Chapter 8. Messaging resources 2049

The default value is False.

-brokerQmgr

The name of the queue manager on which the broker is running.

-clonedSubs

This parameter determines whether two or more instances of the same durable topic subscriber can

run simultaneously.

 The value of this parameter must be ENABLED or DISABLED

The default value is ENABLED.

-qmgrSvrconChannel

The SVRCONN channel to use when connecting to WebSphere MQ.

 Use this parameter to create explicitly defined activation specifications.

The default value is SYSTEM.DEF.SVRCONN.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-brokerCCDurSubQueue

The name of the queue from which a connection consumer receives durable subscription messages.

 The default value is SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE.

-maxPoolSize

The maximum number of server sessions in the server session pool used by the connection

consumer.

 The value of this parameter must be a positive integer.

The default value is 10.

-messageSelector

A message selector expression specifying which messages are to be delivered.

 The value of this parameter must be either the empty string or a valid SQL 92 statement.

-poolTimeout

The period of time, in milliseconds, that an unused server session is held open in the server session

pool before being closed due to inactivity.

 The value of this parameter must be a positive integer.

The default value is 300,000.

-startTimeout

The period of time, in milliseconds, within which delivery of a message to an MDB must start after the

work to deliver the message has been scheduled. If this period of time elapses, the message is rolled

back onto the queue.

 The value of this parameter must be a positive integer.

The default value is 10,000.

-subscriptionDurability

This parameter determines whether a durable or nondurable subscription is used to deliver messages

to an MDB that is subscribing to the topic.

 The value of this parameter must be Durable or NonDurable

The default value is NonDurable.

-subscriptionName

The name of the durable subscription.

2050 Administering WebSphere applications

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

activation specification implementation. Typically, custom properties are used to set attributes of the

activation specification which are not directly supported through the WebSphere administration

interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

-localAddress

This parameter specifies either or both of the following:

v the local network interface

v the local port, or range of local ports

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-sslType

This parameter determines the configuration, if any, to use when applying SSL encryption to the

network connection to the queue manager.

 The value of this parameter must be CENTRAL, SPECIFIC or NONE

The -sslConfiguration parameter is not valid unless this parameter is set to SPECIFIC.

The default value is NONE.

-sslConfiguration

The name of the SSL configuration to use when using SSL to secure network connections to the

queue manager.

 Do not specify this parameter unless the parameter -sslType is assigned the value SPECIFIC.

The value of this parameter must correspond to an SSL configuration.

There is no default value.

-stopEndpointIfDeliveryFails

This parameter indicates whether the endpoint should be stopped if message delivery fails the number

of times specified by the failureDeliveryCount property.

 The value of this parameter must be true or false.

The default value is true.

-failureDeliveryCount

This parameter specifies the number of sequential delivery failures that are allowed before the

endpoint is suspended. This value is only used if stopEndpointIfDeliveryFails is true.

 The value of this parameter must be a non-negative integer.

The default value is 0, which means that the endpoint is stopped the first time it fails.

Minimal activation specification definition

The following example creates an activation specification, specifying the minimum number of parameters.

Due to the default values assumed for the unspecified parameters, MDBs deployed using this activation

specification are co-located with a generic queue manager installed on the same node.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQActivationSpec("9994GKCNode01(cells/9994GKCNode01Cell/

Chapter 8. Messaging resources 2051

nodes/9994GKCNode01|node.xml#Node_1)", ["-name spec1 –jndiName jms/as/spec1

 –destinationJndiName jms/queues/q1 –destinationType javax.jms.Queue"])

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQActivationSpec

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name spec1 –jndiName jms/as/spec1 –destinationJndiName jms/queues/q1

–destinationType javax.jms.Queue}

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

Explicit activation specification definition

The following example creates an activation specification for which the user must specify and maintain all

the parameters used for establishing a connection to WebSphere MQ.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQActivationSpec("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)", ["-name spec2 –jndiName ’jms/as/spec2’

 –destinationJndiName ’jms/topics/t2’ –destinationType javax.jms.Topic

 –description ’Must remember to keep each of these activation specifications in

 sync with the WebSphere MQ queue manager to which they refer’ –qmgrName QM1

 –qmgrHostname 192.168.0.22 –qmgrPort 1415 –qmgrSvrconnChannel QM1.SVRCONN"])

spec2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234987)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQActivationSpec

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name spec2 –jndiName “jms/as/spec2” –destinationJndiName “jms/topics/t2”

–destinationType javax.jms.Topic –description “Must remember to keep each

of these activation specifications in sync with the WebSphere MQ queue manager

to which they refer” –qmgrName QM1 –qmgrHostname 192.168.0.22 –qmgrPort 1415

–qmgrSvrconnChannel QM1.SVRCONN}

spec2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234987)

Activation specification definition specifying a CCDT

The following example creates an activation specification that uses a CCDT to locate the queue manager

to connect to.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode019994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")

wsadmin>AdminTask.createWMQActivationSpec("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)", ["-name spec3 –jndiName ’jms/as/spec3’

 –destinationJndiName ’jms/queue/q3’ –destinationType javax.jms.Queue

 –ccdtUrl ’http://gorillaaction:9080/ccdt/amqclchl.tab’ –ccdtQmgrName QM3"])

spec3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234988)

v Using Jacl:

2052 Administering WebSphere applications

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQActivationSpec

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name spec3 –jndiName “jms/as/spec3” –destinationJndiName “jms/queue/q3”

–destinationType javax.jms.Queue –ccdtUrl “http://gorillaaction:9080/ccdt/

amqclchl.tab” –ccdtQmgrName QM3}

spec3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234988)

deleteWMQActivationSpec command

Use this command to delete a WebSphere MQ messaging provider activation specification at a specific

scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the deleteWMQActivationSpec command to delete a WebSphere MQ messaging provider activation

specification defined at the scope at which the command is issued.

Target object

A WebSphere MQ messaging provider activation specification at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

Chapter 8. Messaging resources 2053

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

unwantedSpec(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

wsadmin>AdminTask.deleteWMQActivationSpec("unwantedSpec(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|resources.xml#J2CActivationSpec_1098737234986)")

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

unwantedSpec(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

wsadmin>$AdminTask deleteWMQActivationSpec

unwantedSpec(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

listWMQActivationSpecs command

Use the listWMQActivationSpecs command to list WebSphere MQ messaging provider activation

specifications.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the listWMQActivationSpecs command to list all of the WebSphere MQ messaging provider activation

specifications defined at the scope at which the command is issued.

Target object

WebSphere MQ messaging provider activation specifications at the specific scope.

Required parameters

None.

2054 Administering WebSphere applications

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

modifyWMQActivationSpec command

Use the modifyWMQActivationSpec command to change certain parameters of a WebSphere MQ

messaging provider activation specification.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the modifyWMQActivationSpec command to modify a WebSphere MQ messaging provider activation

specification defined at the scope at which the command is issued.

Note: You cannot change the type of an activation specification. For example, you cannot create an

activation specification where you enter all the configuration information manually and then modify it

to use a CCDT.

Chapter 8. Messaging resources 2055

For a CCDT based activation specification, you cannot modify of the following parameters:

v qmgrName

v qmgrHostname

v qmgrPortNumber

v qmgrSrvconnChannel

v transportChain

v wmqTransportType

For a generic activation specification, you cannot modify any of the following parameters:

v ccdtUrl

v ccdtQmgrName

Target object

A WebSphere MQ messaging provider activation specification at the specific scope.

Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider activation specification.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider activation specification.

Note the behavior of this command on the -customProperties parameter.

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

activation specification implementation. Typically, custom properties are used to set attributes of the

activation specification which are not directly supported through the WebSphere administration

interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as

part of a modify command, the supplied property is added to the set of custom properties, unless

the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, and the modify command also specifies a value for the property, the existing

value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, but the modify command does not specify a value for the property, the property

with the same name is deleted from the existing set of custom properties.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

2056 Administering WebSphere applications

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

wsadmin>AdminTask.modifyWMQActivationSpec("spec1(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|resources.xml#J2CActivationSpec_1098737234986)",

["-destinationJndiName jms/topics/t5 –destinationType javax.jms.Topic"])

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

wsadmin>$AdminTask modifyWMQActivationSpec

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

{-destinationJndiName jms/topics/t5 –destinationType javax.jms.Topic}

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

showWMQActivationSpec command

Use the showWMQActivationSpec command to display information about a specific WebSphere MQ

messaging provider activation specification.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the showWMQActivationSpec command to display all the parameters, and their values, associated

with a particular WebSphere MQ messaging provider activation specification.

Target object

A WebSphere MQ messaging provider activation specification at the specific scope.

Required parameters

None.

Chapter 8. Messaging resources 2057

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

wsadmin>AdminTask.showWMQActivationSpec("spec1(cells/9994GKCNode01Cell/nodes/

9994GKCNode01|resources.xml#J2CActivationSpec_1098737234986)")

{cleanupLevel=SAFE, useConnectionPooling=true, port=1414, maxPoolDepth=10,

channel=channel1, transportType=CLIENT, subscriptionStore=MIGRATE,

messageSelection=CLIENT, cleanupInterval=3600000,

brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE, name=spec1, CCSID=819,

useJNDI=true, hostName=localhost, rescanInterval=5000, headerCompression=NONE,

brokerCCDurSubQueue=SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE, queueManager=QMGR1,

messageCompression=NONE, startTimeout=10000, destinationJndiName=jms/q1,

poolTimeout=300000, sslType=NONE,

destinationType=javax.jms.Queue, brokerSubQueue=SYSTEM.JMS.ND.SUBSCRIBER.QUEUE,

sslResetCount=0, brokerControlQueue=SYSTEM.BROKER.CONTROL.QUEUE,

statusRefreshInterval=60000, cloneSupport=DISABLED, jndiName=jms/as1,

sparseSubscriptions=FALSE, authenticationAlias=null, failIfQuiesce=true,

description=, brokerVersion=1}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

wsadmin>$AdminTask showWMQActivationSpec

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

J2CActivationSpec_1098737234986)

{cleanupLevel=SAFE, useConnectionPooling=true, port=1414, maxPoolDepth=10,

channel=channel1, transportType=CLIENT, subscriptionStore=MIGRATE,

messageSelection=CLIENT, cleanupInterval=3600000,

brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE, name=spec1, CCSID=819,

useJNDI=true, hostName=localhost, rescanInterval=5000, headerCompression=NONE,

brokerCCDurSubQueue=SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE, queueManager=QMGR1,

messageCompression=NONE, startTimeout=10000, destinationJndiName=jms/q1,

poolTimeout=300000, sslType=NONE,

destinationType=javax.jms.Queue, brokerSubQueue=SYSTEM.JMS.ND.SUBSCRIBER.QUEUE,

sslResetCount=0, brokerControlQueue=SYSTEM.BROKER.CONTROL.QUEUE,

statusRefreshInterval=60000, cloneSupport=DISABLED, jndiName=jms/as1,

sparseSubscriptions=FALSE, authenticationAlias=null, failIfQuiesce=true,

description=, brokerVersion=1}

createWMQConnectionFactory command

Use the createWMQConnectionFactory command to create a connection factory for the WebSphere MQ

messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

2058 Administering WebSphere applications

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the createWMQConnectionFactory command to create a WebSphere MQ messaging provider

connection factory at a specific scope.

You cannot create a WebSphere MQ messaging provider connection factory under either of the following

conditions:

v A WebSphere MQ messaging provider connection factory already exists with the same name, at the

same scope

v The JNDI name clashes with another entry in WebSphere Application Server JNDI

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider

connection factory is to be created.

Required parameters

-name

The administrative name assigned to this WebSphere MQ messaging provider connection factory.

-jndiName

The name and location used to bind this object into WebSphere Application Server JNDI.

-type

Use this parameter to determine whether a unified connection factory, a queue connection factory or a

topic connection factory is to be created.

 Enter one of the following values:

v CF

v QCF

v TCF

CF is the default value.

If you specify QCF, you cannot specify any of the following parameters:

v -brokerCtrlQueue

v -brokerSubQueue

v -brokerCCSubQueue

v -brokerVersion

Chapter 8. Messaging resources 2059

v -brokerPubQueue

v -tempTopicPrefix

v -pubAckWindow

v -subStore

v -stateRefreshHint

v -cleanupLevel

v -sparesSubs

v -wildcardFormat

v -brokerQmgr

v -clonedSubs

v -msgSelection

If you specify TCF, you cannot specify any of the following parameters:

v -msgRetention

v -rescanInterval

v -tempQueuePrefix

v -modelQueue

v -replyWithRFH2

Optional parameters

-description

An administrative description assigned to the connection factory.

-ccdtUrl

A URL to a client channel definition table to use, for this connection factory, when contacting

WebSphere MQ.

 Use this parameter to create a ccdtURL connection factory

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrType,

-qmgrHostname, -qmgrPortNumber, -qmgrSvrconnChannel, -transportChain or -localAddress.

-ccdtQmgrName

A queue manager name, used to select one or more entries from a client channel definition table.

 Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrType,

-qmgrHostname, -qmgrPortNumber, -qmgrSvrconnChannel, -transportChain, or -localAddress.

-qmgrName

The name of the queue manager to use, for this connection factory, when contacting WebSphere MQ.

 Use this parameter to create a generic connection factory.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-wmqTransportType

This parameter determines the way in which a connection is established to WebSphere MQ for this

connection factory.

 Use this parameter to create a generic connection factory.

Enter one of the following values:

v BINDINGS

v BINDINGS_THEN_CLIENT

v CLIENT

2060 Administering WebSphere applications

BINDINGS_THEN_CLIENT is the default value.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

For more information about configuring a transport type of bindings then client or bindings, refer to

“Configuring the WebSphere MQ messaging provider with native libraries information” on page

1945and “Sizing the thread pools used by the WebSphere MQ messaging provider” on page 1946.

-qmgrHostname

The host name to use, for this connection factory, when attempting a client mode connection to

WebSphere MQ. It must be a valid TCP/IP hostname or IPv4 or IPv6 address.

 The default value is the local host.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-qmgrPortNumber

The port number to use, for this connection factory, when attempting a client mode connection to

WebSphere MQ.

 Enter an integer value in the range 1 – 65536 (inclusive).

The default value is 1414.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-containerAuthAlias

The container-managed authentication alias, defined to the cell, from which security credentials are

used to establish a connection to WebSphere MQ.

-componentAuthAlias

The component-managed authentication alias, defined to the cell, from which security credentials are

used to establish a connection to WebSphere MQ.

-clientId

The client identifier used for connections started using this connection factory.

-providerVersion

This parameter determines the minimum version, and capabilities of the queue manager.

 Enter values in one of the following formats:

v n

v n.n

v n.n.n

v n.n.n.n

where n is an integer greater than or equal to zero.

-sslCrl

This parameter specifies a list of LDAP servers that are used to provide certificate revocation

information if this connection factory establishes an SSL based connection to WebSphere MQ.

-sslResetCount

This parameter is used when the connection factory establishes an SSL connection to the queue

manager. This parameter determines how many bytes to transfer before resetting the symmetric

encryption key that is used for the SSL session.

 Enter a value in the range 0 through 999,999,999.

The default value is 0.

Chapter 8. Messaging resources 2061

-sslPeerName

This parameter is used when the connection factory establishes an SSL connection to the queue

manager. The value is compared with the distinguished name present in the peer’s certificate.

-rcvExit

A comma-separated list of receive exit class names.

-rcvExitInitData

Initialization data to pass to the receive exit.

 Do not specify this parameter unless you specify the -rcvExit parameter.

-sendExit

A comma-separated list of send exit class names.

-sendExitInitData

Initialization data to pass to the send exit.

 Do not specify this parameter unless you specify the -sendExit parameter.

-secExit

A security exit class name.

-secExitInitData

Initialization data to pass to the security exit.

 Do not specify this parameter unless you specify the -secExit parameter.

-compressHeaders

This parameter determines if message headers are compressed.

 Enter one of the following values:

v NONE

v SYSTEM

The default value is NONE.

-compressPayload

This parameter determines if message payloads are compressed.

 Enter one of the following values:

v NONE

v RLE

v ZLIBFAST

v ZLIBHIGH

The default value is NONE.

-msgRetention

This parameter determines if the connection consumer keeps unwanted messages on the input queue.

 Enter one of the following values:

v YES

v NO

where YES specifies that the connection consumer keeps unwanted messages on the input queue.

and NO specifies that the messages are disposed of according to their disposition options.

The default value is YES.

-pollingInterval

This property is applicable in the client container only.

2062 Administering WebSphere applications

If each message listener within a session has no suitable message on its queue, this parameter is the

maximum interval, in milliseconds, that elapses before each message listener tries again to get a

message from its queue. If it frequently happens that no suitable message is available for any of the

message listeners in a session, consider increasing the value of this parameter.
The default value is 5000.

-rescanInterval

When a message consumer in the point-to-point domain uses a message selector to select which

messages it wants to receive, the JMS client searches the WebSphere MQ queue for suitable

messages in the sequence determined by the MsgDeliverySequence attribute of the queue. When the

client finds a suitable message and delivers it to the consumer, the client resumes the search for the

next suitable message from its current position in the queue. The client continues to search the queue

in this way until it reaches the end of the queue, or until the interval of time in milliseconds, as

determined by the value of this -rescanInterval parameter has expired. In each case, the client

returns to the beginning of the queue to continue its search, and a new time interval commences

 This parameter must be a positive integer value.

The default value is 5000.

-ccsid

The coded character set identifier to be used on connections.

 The value of this parameter must be a positive integer.

The default value is 819.

-failIfQuiescing

This parameter determines the behavior of certain calls to the queue manager when the queue

manager is put into quiescing state.

 The value of this parameter must be True or False.

True specifies that calls to certain methods fail if the queue manager is in a quiescing state. If an

application detects that the queue manager is quiescing, the application can complete its immediate

task and close the connection, allowing the queue manager to stop.

False specifies that no methods fail if the queue manager is in a quiescing state. If you specify this

value, an application cannot detect that the queue manager is quiescing. The application might

continue to perform operations against the queue manager, and therefore prevent the queue manager

from stopping.

The default value is True.

-brokerCtrlQueue

The name of the broker control queue to use if this connection factory is to subscribe to a topic.

 The default value is SYSTEM.BROKER.CONTROL.QUEUE.

-brokerSubQueue

The name of the queue to use for obtaining subscription messages if this connection factory is to

subscribe to a topic.

 The default value is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE.

-brokerCCSubQueue

The name of the queue from which non-durable subscription messages are retrieved for a

ConnectionConsumer.

 The default value is SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE.

-brokerVersion

The value of this parameter determines the level of functionality required for publish/subscribe

operations.

Chapter 8. Messaging resources 2063

Valid values are 1 and 2.

The default value is 1.

-msgSelection

This parameter determines where message selection occurs.

 Valid values are CLIENT and BROKER.

The default value is CLIENT.

-subStore

This parameter determines where WebSphere MQ messaging provider stores persistent data relating

to active subscriptions.

 Valid values are MIGRATE, QUEUE and BROKER.

The default value is MIGRATE.

-stateRefreshHint

The interval, in milliseconds, between refreshes of the long running transaction that detects when a

subscriber loses its connection to the queue manager. This parameter is relevant only if -subStore

parameter has the value QUEUE.

 The value of this parameter must be a positive integer.

The default value is 60,000.

-cleanupLevel

The cleanup level for BROKER or MIGRATE subscription stores

 Valid values are SAFE, ASPROP, NONE and STRONG.

The default value is SAFE.

-cleanupInterval

The interval between background executions of the publish/subscribe cleanup utility.

 The value of this parameter must be a positive integer.

The default value is 3,600,000.

-wildcardFormat

This parameter determines which sets of characters are interpreted as topic wildcards.

 Valid values are Topic or Char.

The default value is Char.

-sparseSubs

This parameter controls the message retrieval policy of a TopicSubscriber object.

 The value of this parameter must be True or False

The default value is False.

-brokerQmgr

The name of the queue manager that is running the broker, if it is not the same as the queue manager

to which the connection factory connects.

 There is no default value.

-clonedSubs

This parameter determines whether two or more instances of the same durable topic subscriber can

run simultaneously

 The value of this parameter must be ENABLED or DISABLED

The default value is ENABLED.

2064 Administering WebSphere applications

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

connection factory implementation. Typically, custom properties are used to set attributes of the

connection factory which are not directly supported through the WebSphere administration interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

-qmgrSvrconChannel

The SVRCONN channel to use when connecting to WebSphere MQ.

 Use this parameter to create an explicitly defined connection factory.

The default value is SYSTEM.DEF.SVRCONN.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-support2PCProtocol

This parameter determines if the connection factory acts as a resource that is capable of participation

in distributed two phase commit processing.

 The value of this parameter must be True or False.

The default value True specifies that the connection factory acts as a resource that is capable of

participation in distributed two phase commit processing.

-modelQueue

The name of the WebSphere MQ model queue whose definition is used as a basis when creating JMS

temporary destinations.

 The default value is SYSTEM.DEFAULT.MODEL.QUEUE.

-tempQueuePrefix

The prefix to apply to WebSphere MQ temporary queues that are used to represent JMS temporary

queue type destinations.

 There is no default value.

-tempTopicPrefix

The prefix to apply to the names generated for temporary topics. This parameter is only valid for

connection factories or topic connection factories.

 There is no default value.

-replyWithRFH2

This parameter determines whether, when replying to a message, a RFH version 2 header is included

in the reply message.

 The value of this parameter must be ALWAYS or AS_REPLY_DEST

The default value is AS_REPLY_DEST.

-brokerPubQueue

The name of the queue to send publication messages to when using queue based brokering.

 The default value is SYSTEM.BROKER.DEFAULT.STREAM.

-pubAckInterval

The number of publications to send to a queue based broker before sending a publication that solicits

an acknowledgement.

 The value of this parameter must be a positive integer greater than zero.

The default value is 25.

Chapter 8. Messaging resources 2065

-sslType

This parameter determines the configuration, if any, to use when applying SSL encryption to the

network connection to the queue manager.

 The value of this parameter must be CENTRAL, SPECIFIC or NONE

The -sslConfiguration parameter is not valid unless this parameter is set to SPECIFIC.

The default value is NONE.

The sslConfiguration parameter is not valid unless this parameter is set to the value SPECIFIC.

-sslConfiguration

The name of the SSL configuration to use when using SSL to secure network connections to the

queue manager.

 Do not specify this parameter unless the parameter -sslType is assigned the value SPECIFIC.

The value of this parameter must correspond to an SSL configuration.

-localAddress

This parameter specifies either or both of the following:

v the local network interface

v the local port, or range of local ports

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or

-ccdtQmgrName.

-mappingAlias

The JAAS mapping alias used when determining which security credentials to use when establishing a

connection to WebSphere MQ.

 The default value is DefaultPrincipleMapping.

-xaRecoveryAuthAlias

The authentication alias from which credentials are taken and used to connect to WebSphere MQ for

XA recovery.

 There is no default value.

Minimal connection factory definition

The following example creates an connection factory, specifying the minimum number of parameters. Due

to the default values assumed for the unspecified parameters, applications using this connection factory

expect to be co-located with a queue manager installed on the same node.

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name cf1 –jndiName "jms/cf/cf1" –type CF}

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1205322636000)

Explicitly defined connection factory

The following example creates an connection factory for which the user must specify and maintain all the

parameters used for establishing a connection to WebSphere MQ.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQConnectionFactory("9994GKCNode01(cells/

2066 Administering WebSphere applications

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)", ["-name cf2

 –jndiName ’jms/cf/cf2’ –type CF –description ’Must remember to keep each

of these connection factories in sync with the WebSphere MQ queue manager

to which they refer’ –qmgrName QM1 –qmgrHostname 192.168.0.22 –qmgrPort 1415

 –qmgrSvrconnChannel QM1.SVRCONN"])

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_120532263601)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name cf2 –jndiName “jms/cf/cf2” –type CF –description “Must remember to

keep each of these connection factories in sync with the WebSphere MQ queue

manager to which they refer” –qmgrName QM1 –qmgrHostname 192.168.0.22

–qmgrPort 1415 –qmgrSvrconnChannel QM1.SVRCONN}

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_120532263601)

Connection factory definition specifying a CCDT

The following example creates an connection factory that uses a CCDT to locate the queue manager to

connect to.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQConnectionFactory("9994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)", ["-name cf3 –jndiName

 ’jms/cf/cf3’ –type CF –ccdtUrl ’http://gorillaaction:9080/ccdt/amqclchl.tab’

 –ccdtQmgrName QM3"])

cf3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_120532263606)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name cf3 –jndiName “jms/cf/cf3” –type CF –ccdtUrl

“http://gorillaaction:9080/ccdt/amqclchl.tab” –ccdtQmgrName QM3}

cf3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_120532263606)

deleteWMQConnectionFactory command

Use the deleteWMQConnectionFactory command to delete a WebSphere MQ messaging provider

connection factory at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

Chapter 8. Messaging resources 2067

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the deleteWMQConnectionFactory command to delete a WebSphere MQ messaging provider

connection factory defined at the scope at which the command is issued.

Target object

A WebSphere MQ messaging provider connection factory at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")

unwantedCF(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

wsadmin>AdminTask.deleteWMQConnectionFactory("unwantedCF(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|resources.xml#MQConnectionFactory_1098737234986)")

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

unwantedCF(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

wsadmin>$AdminTask deleteWMQConnectionFactory

unwantedCF(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

listWMQConnectionFactories command

Use the listWMQConnectionFactories command to list WebSphere MQ messaging provider connection

factories.

To run the command, use the AdminTask object of the wsadmin scripting client.

2068 Administering WebSphere applications

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the listWMQConnectionFactories command to list all of the WebSphere MQ messaging provider

connection factories defined at the scope at which the command is issued.

Target object

WebSphere MQ messaging provider connection factories at the specific scope.

Required parameters

None.

Optional parameters

-type

Use this parameter to determine which type of connection factory is listed. If it is omitted all connection

factories are shown at the appropriate scope.

 Valid values are:

v CF to list only common connection factories

v QCF to list only queue connection factories

v TCF to list only topic connection factories

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

Chapter 8. Messaging resources 2069

modifyWMQConnectionFactory command

Use the modifyWMQConnectionFactory command to change certain parameters of a WebSphere MQ

messaging provider connection factory.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the modifyWMQConnectionFactory command to modify a WebSphere MQ messaging provider

connection factory defined at the scope at which the command is issued.

Note: When modifying a WebSphere MQ messaging provider connection factory, there is an interaction

between the mappingAlias and containerAuthAlias parameters. This interaction occurs if the

containerAuthAlias parameter is specified but the mappingAlias is not specified. In this situation,

the mappingAlias parameter is automatically set to the value DefaultPrincipleMapping.

Target object

A WebSphere MQ messaging provider connection factory at the specific scope.

Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider connection factory.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider connection factory.

Note the behavior of this command on the -customProperties parameter.

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

connection factory implementation. Typically, custom properties are used to set attributes of the

connection factory which are not directly supported through the WebSphere administration interfaces.

2070 Administering WebSphere applications

-customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as

part of a modify command, the supplied property is added to the set of custom properties, unless

the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, and the modify command also specifies a value for the property, the existing

value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command but the modify command does not specify a value for the property, the property

with the same name is deleted from the existing set of custom properties.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

wsadmin>AdminTask.modifyWMQConnectionFactory("cf1(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|resources.xml#MQConnectionFactory_1098737234986)", ["-description

 ’My new description’"])

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

wsadmin>$AdminTask modifyWMQConnectionFactory

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986) {-description "My new description"}

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

showWMQConnectionFactory command

Use the showWMQConnectionFactory command to display information about a specific WebSphere MQ

messaging provider connection factory.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

Chapter 8. Messaging resources 2071

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the showWMQConnectionFactory command to display all the parameters, and their values,

associated with a particular WebSphere MQ messaging provider connection factory.

Target object

A WebSphere MQ messaging provider connection factory at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/

9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

wsadmin>AdminTask.showWMQConnectionFactory("cf1(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|resources.xml#MQConnectionFactory_1098737234986)")

{ name=cf1 jndiName=jms/cf/cf1 description= qmgrName=QMGR1

qmgrSvrconnChannel=TO.QMGR1 qmgrHostname=localhost qmgrPortNumber=1414

wmqTransportType=bindingsThenClient authAlias= clientId=”Bob’s Magic Client”

providerVersion= sslCrl= sslResetCount= sslPeerName= rcvExit=

rcvExitInitData= sendExit= sendExitInitData= secExit= secExitInitData=

compressHeaders=NONE compressPayload=NONE msgRetention=true

pollingInterval=5000 rescanInterval=5000 maxBatchSize=10 ccsid=819

failIfQuiescing=true brokerCtrlQueue=

brokerSubQueue=SYSTEM.BROKER.CONTROL.QUEUE

brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

brokerVersion=1 msgSelection=CLIENT subStore=MIGRATE stateRefreshHint=60000

cleanupInterval=360000000 cleanupLevel=SAFE wildcardFormat=CHAR

sparseSubs=false brokerQmgr= clonedSubs=true}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

wsadmin>$AdminTask showWMQConnectionFactory

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQConnectionFactory_1098737234986)

{ name=cf1 jndiName=jms/cf/cf1 description= qmgrName=QMGR1

2072 Administering WebSphere applications

qmgrSvrconnChannel=TO.QMGR1 qmgrHostname=localhost qmgrPortNumber=1414

wmqTransportType=bindingsThenClient authAlias= clientId=”Bob’s Magic Client”

providerVersion= sslCrl= sslResetCount= sslPeerName= rcvExit=

rcvExitInitData= sendExit= sendExitInitData= secExit= secExitInitData=

compressHeaders=NONE compressPayload=NONE msgRetention=true

pollingInterval=5000 rescanInterval=5000 maxBatchSize=10 ccsid=819

failIfQuiescing=true brokerCtrlQueue=

brokerSubQueue=SYSTEM.BROKER.CONTROL.QUEUE

brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

brokerVersion=1 msgSelection=CLIENT subStore=MIGRATE stateRefreshHint=60000

cleanupInterval=360000000 cleanupLevel=SAFE wildcardFormat=CHAR

sparseSubs=false brokerQmgr= clonedSubs=true}

createWMQTopic command

Use the createWMQTopic command to create a JMS topic destination for the WebSphere MQ messaging

provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the createWMQTopic command to create a WebSphere MQ messaging provider topic type destination

at a specific scope.

You cannot create a WebSphere MQ messaging provider topic type destination under either of the

following conditions:

v A WebSphere MQ messaging provider topic type destination already exists with the same name, at the

same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider

topic type destination is to be created.

Chapter 8. Messaging resources 2073

Required parameters

-name

The administrative name assigned to this WebSphere MQ messaging provider topic type destination.

-jndiName

The name used to bind this object into WebSphere Application Server JNDI.

-topicName

The name of the WebSphere MQ topic where publications are received from, or sent to, when this

destination definition is used.

Optional parameters

-description

An administrative description assigned to the topic type destination.

-persistence

This parameter determines the level of persistence used to store messages sent to this destination.

 Enter one of the following case-sensitive values:

v APP

v TDEF

v PERS

v NON

v HIGHT

APP is the default value.

-priority

The priority level to assign to messages sent to this destination.

 Enter one of the following case-sensitive values:

v APP

v TDEF

or enter a positive integer in the range 0 to 9 (inclusive).

APP is the default value.

-expiry

The length of time after which messages that are sent to this destination expire and are dealt with

according to their disposition options.

 Enter one of the following case-sensitive values:

v APP

v UNLIM

or enter any positive integer.

APP is the default value.

-ccsid

The coded character set identifier.

 The value of this parameter must be a positive integer.

The default value is 1208.

-useNativeEncoding

This parameter specifies whether to use native encoding or not. It can take a value true or false.

 If it is set to true, the values of the -integerEncoding, -decimalEncoding and

-floatingPointEncoding attributes are ignored.

2074 Administering WebSphere applications

If it is set to false, the encoding is specified by the -integerEncoding, -decimalEncoding and

-floatingPointEncoding attributes.

-integerEncoding

The integer encoding setting for this queue.

 Enter one of the following case-sensitive values: Normal, Reversed.

Normal is the default value.

-decimalEncoding

The decimal encoding setting for this queue.

 Enter one of the following case-sensitive values: Normal, Reversed.

Normal is the default value.

-floatingPointEncoding

The floating point encoding setting for this queue.

 Enter one of the following case-sensitive values: IEEENormal, IEEEReversed, z/OS

IEEENormal is the default value.

-useRFH2

This parameter determines whether an RFH version 2 header is appended to messages sent to this

destination.

 Enter one of the following case-sensitive values: true or false.

true is the default value.

-sendAsync

This parameter determines whether messages can be sent to this destination without queue manager

acknowledging that they have arrived.

 Enter one of the following case-sensitive values: YES, NO or TDEF.

YES is the default value.

-readAhead

This parameter determines whether messages for non-persistent consumers can be read ahead and

cached.

 Enter one of the following case-sensitive values: YES, NO or TDEF.

YES is the default value.

-readAheadClose

This property determines the behavior that occurs when closing a message consumer that is receiving

messages asynchronously using a message listener from a destination that has the readAhead

parameter set to True.

 When a value of deliverAll is specified, all read-ahead messages are delivered before closing the

consumer.

When a value of deliverCurrent is specified, only in-progress messages are delivered before closing

the consumer.

deliverCurrent is the default value.

-wildcardFormat

This parameter determines which sets of characters are interpreted as topic wildcards.

 Valid values are Topic or Char.

Char is the default value.

Chapter 8. Messaging resources 2075

-brokerDurSubQueue

The name of the queue, defined to the queue manager, from which a connection consumer receives

non-durable subscription messages.

 The value of this parameter must be a valid queue name or left blank

The default value is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

-brokerCCDurSubQueue

The name of the queue, defined to the queue manager, from which a connection consumer receives

durable subscription messages.

 The value of this parameter must be a valid queue name or left blank

The default value is SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE.

-brokerPubQueue

The name of the queue, defined to the queue manager, to which publication messages are sent.

 The value of this parameter must be a valid queue name or left blank

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

-brokerPubQmgr

The name of the queue manager on which the broker is running.

 The value of this parameter must be a valid queue manager name or left blank

There is no default value.

-brokerVersion

This parameter determines the level of functionality required for publish/subscribe operations.

 The value of this parameter must V1 or V2.

The default value is V1.

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

topic type destination implementation. Typically, custom properties are used to set attributes of the

topic type destination that are not directly supported through the WebSphere administration interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

The following example creates a topic definition by specifying the minimum number of parameters.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

 9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQTopic("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)", ["-name T1 –jndiName jms/topic/t1

 –topicName woodland/creatures/badger"])

T1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

 9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQTopic

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name T1 –jndiName jms/topic/t1 –topicName woodland/creatures/badger}

T1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

2076 Administering WebSphere applications

deleteWMQTopic command

Use this command to delete a WebSphere MQ messaging provider topic at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the deleteWMQTopic command to delete a WebSphere MQ messaging provider topic defined at the

scope at which the command is issued.

Target object

A WebSphere MQ messaging provider topic at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQTopics("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

wsadmin>$AdminTask deleteWMQTopic

unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

v Using Jacl:

Chapter 8. Messaging resources 2077

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQTopics

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

wsadmin>$AdminTask deleteWMQTopic

unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

listWMQTopics command

Use the listWMQTopics command to list WebSphere MQ messaging provider topics.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the listWMQTopics command to list all of the WebSphere MQ messaging provider topics defined at

the scope at which the command is issued.

Target object

WebSphere MQ messaging provider topics at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQTopics("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

aaaTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

2078 Administering WebSphere applications

bbbTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234987)

cccTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234988)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQTopics

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

aaaTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

bbbTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234987)

cccTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234988)

modifyWMQTopic command

Use the modifyWMQTopic command to change certain parameters of a WebSphere MQ messaging

provider topic.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the modifyWMQTopic command to modify a WebSphere MQ messaging provider topic defined at the

scope at which the command is issued.

Note: You cannot change the name of an topic.

Target object

A WebSphere MQ messaging provider topic at the specific scope.

Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider topic.

Chapter 8. Messaging resources 2079

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider topic.

Note the behavior of this command on the -customProperties parameter.

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

topic implementation. Typically, custom properties are used to set attributes of the topic which are not

directly supported through the WebSphere administration interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as

part of a modify command, the supplied property is added to the set of custom properties, unless

the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, and the modify command also specifies a value for the property, the existing

value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, but the modify command does not specify a value for the property, the property

with the same name is deleted from the existing set of custom properties.

Example

v Using Jython:

wsadmin>AdminTask.modifyWMQTopic("t1(cells/L3A3316Node04Cell/

nodes/L3A3316Node05|resources.xml#MQTopic_1204538835312)", ["-priority 7"])

t1(cells/L3A3316Node04Cell/nodes/L3A3316Node05|resources.xml#

MQTopic_1204538835312)

v Using Jacl:

wsadmin>$AdminTask modifyWMQTopic

t1(cells/L3A3316Node04Cell/nodes/L3A3316Node05|resources.xml#

MQTopic_1204538835312) {-priority 7}

t1(cells/L3A3316Node04Cell/nodes/L3A3316Node05|resources.xml#

MQTopic_1204538835312)

showWMQTopic command

Use the showWMQTopic command to display information about a specific WebSphere MQ messaging

provider topic.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

2080 Administering WebSphere applications

print AdminTask.help(’command_name’)

Purpose

Use the showWMQTopic command to display all the parameters, and their values, associated with a

particular WebSphere MQ messaging provider topic.

Target object

A WebSphere MQ messaging provider topic at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQTopics("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

wsadmin>AdminTask.showWMQTopic("topic1(cells/9994GKCNode01Cell/nodes/

9994GKCNode01|resources.xml#MQTopic_1098737234986)")

{specifiedExpiry=0, priority=APPLICATION_DEFINED, decimalEncoding=Normal,

baseTopicName=topic1, name=topic1, readAhead=NO, brokerPubQmgr=null,

readAheadClose=DELIVERCURRENT, brokerPubQueue=SYSTEM.BROKER.DEFAULT.STREAM,

ccsid=1208, integerEncoding=Normal, useNativeEncoding=true,

wildcardFormat=charWildcards, expiry=APP, specifiedPriority=0,

jndiName=jms/t1, sendAsync=NO,

brokerDurSubQueue=SYSTEM.JMS.D.SUBSCRIBER.QUEUE, brokerCCDurSubQueue=null,

description=null, targetClient=JMS, floatingPointEncoding=IEEENormal,

persistence=APP, brokerVersion=V1}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQTopics

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

wsadmin>$AdminTask showWMQTopic

topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQTopic_1098737234986)

{specifiedExpiry=0, priority=APPLICATION_DEFINED, decimalEncoding=Normal,

baseTopicName=topic1, name=topic1, readAhead=NO, brokerPubQmgr=null,

readAheadClose=DELIVERCURRENT, brokerPubQueue=SYSTEM.BROKER.DEFAULT.STREAM,

ccsid=1208, integerEncoding=Normal, useNativeEncoding=true,

wildcardFormat=charWildcards, expiry=APP, specifiedPriority=0,

jndiName=jms/t1, sendAsync=NO,

brokerDurSubQueue=SYSTEM.JMS.D.SUBSCRIBER.QUEUE, brokerCCDurSubQueue=null,

description=null, targetClient=JMS, floatingPointEncoding=IEEENormal,

persistence=APP, brokerVersion=V1}

Chapter 8. Messaging resources 2081

manageWMQ command

Use the manageWMQ command to manage the settings of the WebSphere MQ resource adapter installed

in a node.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the manageWMQ command to manage the settings associated with the WebSphere MQ resource

adapter installed in a node.

The manageWMQ command allows you to manage the native library and query the meta-data of the

WebSphere MQ resource adapter on each node.

Target object

A WebSphere MQ resource adapter on a specific node.

Required parameters

None.

Optional parameters

-nativePath

This parameter specifies the path to the WebSphere MQ messaging provider native libraries that are

used by the WebSphere MQ resource adapter to establish a bindings mode connection to the queue

manager.

-query

This parameter provides information about the WebSphere MQ messaging provider. This can be either

the WebSphere MQ resource adapter installed into WebSphere Application Server or a WebSphere

MQ resource adapter present on the file system of the node.

2082 Administering WebSphere applications

Example

The following example shows how to enable inbound JCA message delivery on the z/OS platform.

v Using Jython:

wsadmin>AdminTask.manageWMQ("WebSphere MQ Resource Adapter

(cells/L3A3316Node04Cell/nodes/L3A3316Node05/servers/server1|resources.xml#

J2CResourceAdapter_1201601803796)", ["-enableInbound true"])

v Using Jacl:

wsadmin>$AdminTask manageWMQ "WebSphere MQ Resource Adapter

(cells/L3A3316Node04Cell/nodes/L3A3316Node05/servers/server1|resources.xml#

J2CResourceAdapter_1201601803796)" {-enableInbound true}

migrateWMQMLP command

Use the migrateWMQMLP command to migrate a WebSphere MQ message listener port definition to an

activation specification definition.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the migrateWMQMLP command to migrate a WebSphere MQ message listener port definition to an

activation specification definition. After the activation specification has been created, you can delete the

listener port.

Target object

The message listener port to be migrated.

Required parameters

-asName

The name of the activation specification to be created.

-asJNDIName

The JNDI name of the activation specification to be created.

Chapter 8. Messaging resources 2083

-asScope

The type of scope at which to create the activation specification (server, node, cluster or cell). Note

that the cluster option is only supported when the server that contains the message listener port is part

of a cluster. If not specified this defaults to server. The scopes specified are relative to the message

listener port, so node is the node of the server that contains the message listener port.

Optional parameters

None.

Example

The following example shows how to migrate a message listener port to an activation specification.

v Using Jython:

wsadmin>AdminConfig.list("ListenerPort")

lp1(cells/L3A3316Node09Cell/nodes/L3A3316Node10/servers/server1|

server.xml#ListenerPort_1211265363796)

wsadmin>AdminTask.migrateWMQMLP("lp1(cells/L3A3316Node09Cell/nodes/

L3A3316Node10/servers/server1|server.xml#ListenerPort_1211265363796)",

 ["-asName migratedFromLP -asJNDIName jms/as1 -asScope node"])

migratedFromLP(cells/L3A3316Node09Cell/nodes/L3A3316Node10|

resources.xml#J2CActivationSpec_1211265679078)

v Using Jacl:

wsadmin>$AdminConfig list ListenerPort

lp1(cells/L3A3316Node09Cell/nodes/L3A3316Node10/servers/server1|

server.xml#ListenerPort_1211265363796)

wsadmin>$AdminTask migrateWMQMLP

lp1(cells/L3A3316Node09Cell/nodes/L3A3316Node10/servers/server1|

server.xml#ListenerPort_1211265363796)

{-asName migratedFromLP -asJNDIName jms/as1 -asScope node}

migratedFromLP(cells/L3A3316Node09Cell/nodes/L3A3316Node10|

resources.xml#J2CActivationSpec_1211265679078)

createWMQQueue command

Use the createWMQQueue command to create a queue type destination for the WebSphere MQ

messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

2084 Administering WebSphere applications

AdminConfig.save()

Purpose

Use the createWMQQueue command to create a WebSphere MQ messaging provider queue type

destination at a specific scope.

You cannot create a WebSphere MQ messaging provider queue type destination under either of the

following conditions:

v A WebSphere MQ messaging provider queue type destination already exists with the same name, at

the same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider

queue type destination is to be created.

Required parameters

-name

The administrative name assigned to this WebSphere MQ messaging provider queue type destination.

-jndiName

The name used to bind this object into WebSphere Application Server JNDI.

Optional parameters

-description

An administrative description assigned to the queue type destination.

-queueName

The name of the WebSphere MQ queue to use to store messages for the WebSphere MQ messaging

provider queue type destination definition.

-qmgr

The queue manager on which the WebSphere MQ queue resides

-persistence

This parameter determines the level of persistence used to store messages sent to this destination.

 Enter one of the following case-sensitive values:

v APP

v QDEF

v PERS

v NON

v HIGH

APP is the default value.

-priority

The priority level to assign to messages sent to this destination.

 Enter one of the following case-sensitive values:

v APP

v QDEF

or enter a positive integer in the range 0 to 9 (inclusive).

APP is the default value.

Chapter 8. Messaging resources 2085

-expiry

The length of time after which messages, sent to this destination, expire and are dealt with according

to their disposition options.

 Enter one of the following case-sensitive values:

v APP

v UNLIM

or enter any positive integer.

APP is the default value.

-ccsid

The coded character set identifier.

 The value of this parameter must be a positive integer.

The default value is 1208.

-useNativeEncoding

This parameter specifies whether to use native encoding or not. It can take a value true or false.

 If it is set to true, the values of the -integerEncoding, -decimalEncoding and

-floatingPointEncoding attributes are ignored.

If it is set to false, the encoding is specified by the -integerEncoding, -decimalEncoding and

-floatingPointEncoding attributes.

-integerEncoding

The integer encoding setting for this queue.

 Enter one of the following case-sensitive values: Normal, Reversed.

Normal is the default value.

-decimalEncoding

The decimal encoding setting for this queue.

 Enter one of the following case-sensitive values: Normal, Reversed.

Normal is the default value.

-floatingPointEncoding

The floating point encoding setting for this queue.

 Enter one of the following case-sensitive values: IEEENormal, IEEEReversed, z/OS

IEEENormal is the default value.

-useRFH2

This parameter determines whether an RFH version 2 header is appended to messages sent to this

destination.

 Enter one of the following case-sensitive values: true or false.

true is the default value.

-sendAsync

This parameter determines whether messages can be sent to this destination without queue manager

acknowledging that they have arrived.

 Enter one of the following case-sensitive values: YES, NO or QDEF.

YES is the default value.

-readAhead

This parameter determines whether messages for non-persistent consumers can be read ahead and

cached.

2086 Administering WebSphere applications

Enter one of the following case-sensitive values: YES, NO or QDEF.

YES is the default value.

-readAheadClose

 Enter one of the following case-sensitive values: YES, NO or QDEF.

YES is the default value.

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

queue type destination implementation. Typically, custom properties are used to set attributes of the

queue type destination that are not directly supported through the WebSphere administration

interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

Example

The following example creates a WebSphere MQ messaging provider queue type destination.

v Using Jython:

wsadmin>AdminTask.createWMQQueue("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)", ["-name queue1 –jndiName jms/queues/Q1

 –queueName APP1.QUEUE1"])

queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

v Using Jacl:

wsadmin>$AdminTask createWMQQueue

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

{-name queue1 –jndiName jms/queues/Q1 –queueName APP1.QUEUE1}

queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

deleteWMQQueue command

Use this command to delete a WebSphere MQ messaging provider queue type destination at a specific

scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Chapter 8. Messaging resources 2087

Purpose

Use the deleteWMQQueue command to delete a WebSphere MQ messaging provider queue type

destination defined at the scope at which the command is issued.

Note: The WebSphere MQ messaging provider queue type destination definition is deleted from

WebSphere Application Server JNDI at the specific scope. Any messages present on the underlying

WebSphere MQ queue are not affected.

Target object

A WebSphere MQ messaging provider queue type destination at the specific scope.

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

unwantedQueue(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

wsadmin>AdminTask.deleteWMQQueue("unwantedQueue(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|resources.xml#MQQueue_1098737234986)")

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

unwantedQueue(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

wsadmin>$AdminTask deleteWMQQueue

unwantedQueue(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

listWMQQueues command

Use the listWMQQueues command to list WebSphere MQ messaging provider queue type destinations.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

2088 Administering WebSphere applications

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the listWMQQueues command to list all of the WebSphere MQ messaging provider queue type

destinations defined at the scope at which the command is issued.

Target object

WebSphere MQ messaging provider queue type destinations at the specific scope.

Required parameters

None.

Optional parameters

-type

If this parameter it is omitted all connection factories are shown at the appropriate scope.

 Enter one of the following case-sensitive values: CF, QCF or TCF.Enter CF to list only common

connection factories, QCF to list only queue connection factories or TCF to list only topic connection

factories.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

modifyWMQQueue command

Use the modifyWMQQueue command to change certain parameters of a WebSphere MQ messaging

provider queue type destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

Chapter 8. Messaging resources 2089

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

After using the command, save your changes to the master configuration. For example, use the following

command:

AdminConfig.save()

Purpose

Use the modifyWMQQueue command to modify a WebSphere MQ messaging provider queue type

destination defined at the scope at which the command is issued.

Target object

A WebSphere MQ messaging provider queue type destination at the specific scope.

Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider queue type destination.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging

provider queue type destination.

Note the behavior of this command on the -customProperties parameter.

-customProperties

This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

queue type destination implementation. Typically, custom properties are used to set attributes of the

queue type destination which are not directly supported through the WebSphere administration

interfaces.

 -customProperties are multi-step command parameters, consisting of tuples of -name and -value

parameters.

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as

part of a modify command, the supplied property is added to the set of custom properties, unless

the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, and the modify command also specifies a value for the property, the existing

value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a

modify command, but the modify command does not specify a value for the property, the property

with the same name is deleted from the existing set of custom properties.

2090 Administering WebSphere applications

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

wsadmin>AdminTask.modifyWMQQueue("jmsq2(cells/9994GKCNode01Cell/nodes/

9994GKCNode01|resources.xml#

MQQueue_1098737234986)", ["-ccsid 500"])

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

wsadmin>$AdminTask modifyWMQQueue

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986) {-ccsid 500}

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

showWMQQueue command

Use the showWMQQueue command to display information about a specific WebSphere MQ messaging

provider queue type destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure Qshell to

run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later

application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief

description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help(’WMQAdminCommands’)

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help(’command_name’)

Purpose

Use the showWMQQueue command to display all the parameters, and their values, associated with a

particular WebSphere MQ messaging provider queue type destination.

Target object

A WebSphere MQ messaging provider queue type destination at the specific scope.

Chapter 8. Messaging resources 2091

Required parameters

None.

Optional parameters

None.

Example

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/

nodes/9994GKCNode01|node.xml#Node_1)")

ncq1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

wsadmin>AdminTask.showWMQQueue("ncq1(cells/9994GKCNode01Cell/nodes/

9994GKCNode01|resources.xml#MQQueue_1098737234986)")

{expiry=0, priority=9, decimalEncoding=Normal, queueName=TARGETQ, name=q1,

readAhead=YES, readAheadClose=DELIVERALL, ccsid=1208,

useNativeEncoding=true, integerEncoding=Normal, specifiedPriority=0,

jndiName=jms/q1, sendAsync=YES, qmgr=null, description=null,

targetClient=JMS, floatingPointEncoding=IEEENormal, persistence=APP}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

ncq1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

wsadmin>$AdminTask showWMQQueue

ncq1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

MQQueue_1098737234986)

{expiry=0, priority=9, decimalEncoding=Normal, queueName=TARGETQ, name=q1,

readAhead=YES, readAheadClose=DELIVERALL, ccsid=1208,

useNativeEncoding=true, integerEncoding=Normal, specifiedPriority=0,

jndiName=jms/q1, sendAsync=YES, qmgr=null, description=null,

targetClient=JMS, floatingPointEncoding=IEEENormal, persistence=APP}

Mapping of administrative console panel names to command names

and WebSphere MQ names

Use this table to relate the names used in the administrative console panels to the names on the

commands and the names used by WebSphere MQ.

The following tables list property mappings. Not every property WebSphere Application Server command

or panel property maps to a WebSphere MQ property.

Use these tables in conjunction with the WebSphere MQ information center to get more information on a

particular property.

WebSphere MQ Activation Specification property mappings:

 Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Basic panel

2092 Administering WebSphere applications

Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Description description DESC

Queue manager qmgrName QMGR

Queue manager (when used with CCDT) ccdtQmgrName QMGR

Transport wmqTransportType TRAN

Hostname qmgrHostname HOST

Port qmgrPortNumber PORT

Server connection channel qmgrSvrconnChannel CHAN

Client ID clientID CID

Provider version providerVersion PVER

Client channel definition table URL ccdtUrl CCDT

Allow cloned durable subscriptions clonedSubs CLS

Advanced properties panel

Compress message headers compressHeaders HC

Compression algorithm for message

payloads

compressPayload MC

Retain messages, even if no matching

consumer is available

msgRetention MRET

Rescan interval rescanInterval RINT

Maximum batch size maxBatchSize MBS

Coded character set identifier ccsid CCS

Append an RFH version 2 header to

reply messages

replyWithRFH2 TCM

Fail JMS method calls if the queue

manager is quiescing

failIfQuiescing FIQ

Broker properties panel

Broker control queue brokerCtrlQueue BCON

Broker durable subscriber connection

consumer queue

brokerCCDurSubQueue CCDSUB

Broker subscriber queue brokerSubQueue BSUB

Broker connection consumer subscription

queue

brokerCCSubQueue CCSUB

Version brokerVersion BVER

Specify where message selection occurs msgSelection MSEL

Subscription store subStore SS

Durable subscription state refresh

interval

stateRefreshInt SRI

Subscription cleanup level cleanupLevel CL

Subscription cleanup interval cleanupInterval CLINT

Subscription wildcard format wildcardFormat WCFMT

Publish acknowledgement window pubAckInterval PAI

Optimize for sparse subscription

patterns

sparseSubs SSUBS

Chapter 8. Messaging resources 2093

Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Broker queue manager brokerQmgr BQM

Client transport properties panel

Certificate revocation list sslCrl CRL

Peer name sslPeerName SPEER

Reset count sslResetCount SRC

Receive exits rcvExit RCX

Receive exit initialization data rcvExitInitData RCXI

Send exits sendExit SDX

Send exit initialization data sendExitInitData SDXI

Security exit secExit SCX

Security exit initialization data secExitInitData SCXI

Other properties which are only on commands

localAddress LA

WebSphere MQ Connection Factory property mappings:

 Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Basic panel

Description description DESC

Queue manager qmgrName QMGR

Queue manager (when used with CCDT) ccdtQmgrName QMGR

Transport wmqTransportType TRAN

Hostname qmgrHostname HOST

Port qmgrPortNumber PORT

Server connection channel qmgrSvrconnChannel CHAN

Client ID clientID CID

Provider version providerVersion PVER

Client channel definition table URL ccdtUrl CCDT

Advanced properties panel

Compress message headers compressHeaders HC

Compression algorithm for message

payloads

compressPayload MC

WebSphere MQ model queue name modelQueue TM

Temporary queue prefix tempQueuePrefix TQP

Temporary topic prefix tempTopicPrefix TTP

Retain messages, even if no matching

consumer is available

msgRetention MRET

Polling interval pollingInterval PINT

Rescan interval rescanInterval RINT

Maximum batch size maxBatchSize MBS

2094 Administering WebSphere applications

Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Coded character set identifier ccsid CCS

Append an RFH version 2 header to

reply messages

replyWithRFH2 TCM

Fail JMS method calls if the queue

manager is quiescing

failIfQuiescing FIQ

Broker properties panel

Broker control queue brokerCtrlQueue BCON

Broker publication queue brokerPubQueue BPUB

Broker subscriber queue brokerSubQueue BSUB

Broker connection consumer

subscription queue

brokerCCSubQueue CCSUB

Version brokerVersion BVER

Specify where message selection occurs msgSelection MSEL

Subscription store subStore SS

Durable subscription state refresh

interval

stateRefreshInt SRI

Subscription cleanup level cleanupLevel CL

Subscription cleanup interval cleanupInterval CLINT

Subscription wildcard format wildcardFormat WCFMT

Publish acknowledgement window pubAckInterval PAI

Optimize for sparse subscription

patterns

sparseSubs SSUBS

Broker queue manager brokerQmgr BQM

Client transport properties panel

Certificate revocation list sslCrl CRL

Peer name sslPeerName SPEER

Reset count sslResetCount SRC

Receive exits rcvExit RCX

Receive exit initialization data rcvExitInitData RCXI

Send exits sendExit SDX

Send exit initialization data sendExitInitData SDXI

Security exit secExit SCX

Security exit initialization data secExitInitData SCXI

Other properties which are only on commands

clonedSubs CLS

localAddress LA

WebSphere MQ Queue property mappings:

 Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Basic panel

Chapter 8. Messaging resources 2095

Name on WebSphere Application

Server administrative console panel

WebSphere Application Server

command name

WebSphere MQ JMS Admin

short name

Description description DESC

Queue name queueName QU

Queue manager or Queue sharing group

name

qmgr QMGR

Advanced properties panel

Persistence persistence PER

Priority priority PRI

Expiry expiry EXP

Coded character set identifier ccsid CCS

Native encoding/Integer

encoding/Decimal encoding/Floating

point encoding

useNativeEncoding/integerEncoding/
decimalEncoding/floatingPointEncoding

ENC

Append RFH version 2 headers to

messages sent to this destination

useRFH2 TC

Asynchronously send messages to the

queue manager

sendAsync PAALD

Read ahead, and cache, non-persistent

messages for consumers

readAhead RAALD

Read ahead consumer close method readAheadClose RACP

WebSphere MQ Topic property mappings

 Name on WebSphere Application

Server administrative console panel

WebSphereApplication Server

command name

WebSphere MQ JMS Admin

short name

Basic panel

Description description DESC

Topic name topicName TOP

Queue manager or Queue sharing group

name

qmgr QMGR

Broker durable subscription queue brokerDurSubQueue BDSUB

Broker durable subscriber connection

consumer queue

brokerCCDurSubQueue CCDSUB

Broker publication queue brokerPubQueue BROKERPUBQ

Broker publication queue manager brokerPubQmgr BQM

Advanced properties panel

Persistence persistence PER

Priority priority PRI

Expiry expiry EXP

Coded character set identifier ccsid CCS

Native encoding/Integer

encoding/Decimal encoding/Floating

point encoding

useNativeEncoding/integerEncoding/
decimalEncoding/floatingPointEncoding

ENC

Append RFH version 2 headers to

messages sent to this destination

useRFH2 TC

2096 Administering WebSphere applications

Name on WebSphere Application

Server administrative console panel

WebSphereApplication Server

command name

WebSphere MQ JMS Admin

short name

Asynchronously send messages to the

queue manager

sendAsync PAALD

Read ahead, and cache, non-persistent

messages for consumers

readAhead RAALD

Read ahead consumer close method readAheadClose RACP

Other properties which are only on commands

wildcardFormat WCFMT

brokerVersion BVER

Chapter 8. Messaging resources 2097

2098 Administering WebSphere applications

Chapter 9. Mail, URLs, and other J2EE resources

Using mail

You can enable your Java Platform, Enterprise Edition (Java EE) applications to use mail resources with

the JavaMail API.

Before you begin

Using the JavaMail API, a code segment can be embedded in any Java EE application component, such

as an EJB or a servlet, allowing the application to send a message and save a copy of the mail to the

Sent folder.

The following is a code sample that you would embed in a Java EE application:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 javax.mail.Session mail_session = (javax.mail.Session) ctx.lookup("java:comp/env/mail/MailSession3");

 MimeMessage msg = new MimeMessage(mail_session);

 msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse("bob@coldmail.net"));

 msg.setFrom(new InternetAddress("alice@mail.eedge.com"));

 msg.setSubject("Important message from eEdge.com");

 msg.setText(msg_text);

 Transport.send(msg);

 Store store = mail_session.getStore();

 store.connect();

 Folder f = store.getFolder("Sent");

 if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);

 f.appendMessages(new Message[] {msg});

About this task

Java EE applications can use JavaMail APIs by looking up references to logically named mail connection

factories through the java:comp/env/mail subcontext that is declared in the application deployment

descriptor and mapped to installation specific mail session resources. As in the case of other Java EE

resources, this can be done in order to eliminate the need for the application to hard code references to

external resources.

1. Locate a resource through Java Naming and Directory Interface (JNDI). The Java EE specification

considers a mail session instance as a resource, or a factory from which mail transport and store

connections can be obtained. Do not hard code mail sessions (namely, fill up a Properties object, then

use it to create a javax.mail.Session object). Instead, you must follow the Java EE programming model

of configuring resources through the system facilities and then locating them through JNDI lookups.

In the previous sample code, the line javax.mail.Session mail_session = (javax.mail.Session)

ctx.lookup("java:comp/env/mail/MailSession3"); is an example of not hard coding a mail session

and using a resource name located through JNDI. You can consider the lookup name,

mail/MailSession3, as an indirect reference to the real resource.

© Copyright IBM Corp. 2008 2099

2. Define resource references while assembling your application. You must define a resource reference

for the mail resource in the deployment descriptor of the component, because a mail session is

referenced in the JNDI lookup. Typically, you can use an assembly tool that shipped with the

application server.

When you create this reference, be sure that the name of the reference matches the name used in the

code. For example, the previous code uses java:comp/env/mail/MailSession3 in its lookup. Therefore

the name of this reference must be mail/Session3, and the type of the resource must be

javax.mail.Session. After configuration, the deployment descriptor contains the following entry for the

mail resource reference:

<resource-reference>

 <description>description</description>

 <res-ref-name>mail/MailSession3</res-ref-name>

 <res-type>javax.mail.Session</res-type>

 <res-auth>Container</res-auth>

</resource-reference>

3. Configure mail providers and sessions. The sample code references a mail resource, the deployment

descriptor declares the reference, but the resource itself does not exist yet. Now you need to configure

the mail resource that is referenced by your application component. Notice that the mail session you

configure must have both its transport and mail access portions defined; the former required because

the code is sending a message, the latter because it also saves a copy to the local mail store. When

you configure the mail session, you need to specify a JNDI name. This is an important name for

installing your application and linking up the resource references in your application with the real

resources that you configure.

4. Install your application. You can install your application using either the administrative console or the

scripting tool. During installation, the application server inspects all resource references and requires

you to supply a JNDI name for each of them. This is not an arbitrary JNDI name, but the JNDI name

given to a particular, configured resource that is the target of the reference.

5. Manage existing mail providers and sessions. You can update and remove mail providers and

sessions.

To update mail providers and sessions:

a. Open the administrative console.

b. Click Resources → Mail in the console navigation tree.

c. Select the appropriate Java Mail resource to modify by clicking either Mail Providers or Mail

Sessions.

d. Select the specific resource to modify. To remove a mail provider or mail session, select the check

box next to the appropriate resource and click Delete.

e. Click Apply or OK.

f. Save the configuration.

6. Optional: Debug a mail session.

What to do next

If your application has a client, you can update mail providers and mail sessions using the Application

Client Resource Configuration Tool (ACRCT).

JavaMail API

The JavaMail APIs provide a framework that is platform and protocol independent for building mail client

applications that are based on Java. The JavaMail APIs are generic for sending and reading mail. They

require service providers, known in the application server as protocol providers, to interact with mail

servers that run on pertaining protocols. For example, Simple Mail Transfer Protocol (SMTP) is a popular

transport protocol for sending mail. Mail applications can connect to an SMTP server and send mail

through it by using this SMTP protocol provider.

2100 Administering WebSphere applications

The application server supports the JavaMail API, Version 1.4. In the application server, the JavaMail API

is supported in all Web application components, namely:

v servlets

v JavaServer Pages (JSP) files

v enterprise beans

v application clients

In addition to service providers, the JavaMail API requires the JavaBeans Application Framework (JAF) to

handle mail content that is not plain text, including Multipurpose Internet Mail Extensions (MIME), URL

pages, and file attachments.

The JavaMail APIs, the JAF, the service providers, and the protocols are shipped as part of the application

server. The API and related specifications are repackaged from materials that are licensed to Sun

Microsystems.

Note: If you are using Java 5 to run your code, you will need the JAF 1.1 package. For Java 6 and later,

the JAF package is part of the run time environment.

Mail providers and mail sessions

A mail service provider is a driver that supports mail interaction with mail servers that use a particular mail

protocol. The application server includes service providers, which are also known as protocol providers, for

mail protocols.

A mail provider encapsulates a collection of protocol providers. For example, the application server has a

built-in mail provider that encompasses the most common protocol providers. These protocol providers are

installed as the default and suffice for most applications. If you have a particular application that requires

custom protocol providers, follow the steps that are outlined in the chapter on mail sessions in the

JavaMail API Design Specification to install your own protocol providers.

Mail sessions are represented by the javax.mail.Session class. A mail session object authenticates users

and controls access to messaging systems.

To create mail applications that are platform independent, use a resource factory reference to create a

mail session. A resource factory is an object that provides access to resources in the deployed

environment of a program. Resource factories use the naming conventions that are defined by the Java

Naming and Directory Interface (JNDI).

Note: Ensure that every mail session is defined under a parent mail provider. Select a mail provider first

and then create your new mail session.

JavaMail security permissions best practices

In many of its activities, the JavaMail API needs to access certain configuration files. The JavaMail and

JavaBeans Activation Framework binary packages themselves already contain the necessary configuration

files. However, the JavaMail API allows the user to define user-specific and installation-specific

configuration files to meet special requirements.

The two locations where you can place these configuration files are the <user.home> and <java.home>/lib

directories. For example, if the JavaMail API needs to access a file named mailcap when it sends a

message, the API:

1. Tries to access <user.home>/mailcap.

2. If the first attempt fails due to a lack of security permission or a nonexistent file, the API searches in

<java.home>/lib/mailcap.

Chapter 9. Mail, URLs, and other J2EE resources 2101

3. If the second attempt also fails, the API searches in the META-INF/mailcap location in the class path.

This location actually leads to the configuration files contained in the mail-impl.jar and

activation-impl.jar files.

Application Server uses JavaMail API configuration files that are contained in the mail-impl.jar and

activation-impl.jar files, and there are no mail configuration files in <user.home> and <java.home>/lib

directories. To ensure proper functioning of the JavaMail API, Application Server grants file read

permission for both the mail-impl.jar and activation-impl.jar files to all of the installed applications.

JavaMail code attempts to access configuration files at <user.home> and <java.home>/lib, which can

cause an access control exception to be thrown, since the default configuration does not grant file read

permission for those two locations by default. This activity does not affect the proper functioning of the

JavaMail API, but you might see a large amount of mail-related security exceptions reported in the system

log, and these errors could overshadow harmful errors for which you are looking. This is a sample of the

security message, SECJ0314W:

[02/31/08 12:55:38:188 PDT] 00000058 SecurityManag W SECJ0314W: Current Java 2 Security policy reported a

potential violation of Java 2 Security Permission.

Please refer to Problem Determination Guide for further information.

Permission:

 D:\o063919\java\jre\lib\javamail.providers : access denied (java.io.FilePermission

D:\o063919\java\jre\lib\javamail.providers read)

Code:

 com.ibm.ws.mail.SessionFactory in {file:/D:/o063919/lib/runtime.jar}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission D:\o063919\java\jre\lib\javamail.providers read)

 at java.security.AccessControlContext.checkPermission(AccessControlContext.java(Compiled Code))

 at java.security.AccessController.checkPermission(AccessController.java(Compiled Code))

 at java.lang.SecurityManager.checkPermission(SecurityManager.java(Compiled Code))

 at com.ibm.ws.security.core.SecurityManager.checkPermission(SecurityManager.java(Compiled Code))

 at java.lang.SecurityManager.checkRead(SecurityManager.java(Compiled Code))

 at java.io.FileInputStream.<init>(FileInputStream.java(Compiled Code))

 at java.io.FileInputStream.<init>(FileInputStream.java:89)

 at javax.mail.Session.loadFile(Session.java:1004)

 at javax.mail.Session.loadProviders(Session.java:861)

 at javax.mail.Session.<init>(Session.java:191)

 at javax.mail.Session.getInstance(Session.java:213)

 at com.ibm.ws.mail.SessionFactory.getObjectInstance(SessionFactory.java:67)

 at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:314)

 at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookupExt(Helpers.java:894)

 at com.ibm.ws.naming.util.Helpers.processSerializedObjectForLookup(Helpers.java:701)

 at com.ibm.ws.naming.jndicos.CNContextImpl.processResolveResults(CNContextImpl.java:1937)

 at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1792)

 at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1707)

 at com.ibm.ws.naming.jndicos.CNContextImpl.lookupExt(CNContextImpl.java:1412)

 at com.ibm.ws.naming.jndicos.CNContextImpl.lookup(CNContextImpl.java:1290)

 at com.ibm.ws.naming.util.WsnInitCtx.lookup(WsnInitCtx.java:145)

 at javax.naming.InitialContext.lookup(InitialContext.java:361)

 at emailservice.com.onlinebank.bpel.EmailService20060907T224337EntityAbstractBase$JSE_6.

execute(EmailService20060907T224337EntityAbstractBase.java:32)

 at com.ibm.bpe.framework.ProcessBase6.executeJavaSnippet(ProcessBase6.java:256)

 at emailservice.com.onlinebank.bpel.EmailService20060907T224337EntityBase.invokeSnippet

(EmailService20060907T224337EntityBase.java:40)

Note: If this situation is a problem, consider adding more read access permissions for more locations.

This should eliminate most, if not all, JavaMail-related harmless security exceptions from the log

file.

The permissions required by JavaMail are as follows:

grant codeBase "file:${application}" {

 // Allow access to default configuration files

 permission java.io.FilePermission "${java.home}${/}jre${/}lib${/}javamail.address.map", "read";

2102 Administering WebSphere applications

permission java.io.FilePermission "${java.home}${/}jre${/}lib${/}javamail.providers", "read";

 permission java.io.FilePermission "${java.home}${/}jre${/}lib${/}mailcap", "read";

 permission java.io.FilePermission "${java.home}${/}lib${/}javamail.address.map", "read";

 permission java.io.FilePermission "${java.home}${/}lib${/}javamail.providers", "read";

 permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";

 permission java.io.FilePermission "${user.home}${/}.mailcap", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}plugins${/}com.ibm.ws.prereq.javamail.jar", "read";

 // If using an isolated mail provider,

 // add additional file read permissions for each jar defined

 // for the isolated mail provider

 // permission java.io.FilePermission "path${/}mail.jar, "read";

 // Allow connection to mail server using SMTP

 permission java.net.SocketPermission "*:25", "connect,resolve";

 // Allow connection to mail server using SMTPS

 permission java.net.SocketPermission "*:465", "connect,resolve";

 // Allow connection to mail server using IMAP

 permission java.net.SocketPermission "*:143", "connect,resolve";

 // Allow connection to mail server using IMAPS

 permission java.net.SocketPermission "*:993", "connect,resolve";

 // Allow connection to mail server using POP3

 permission java.net.SocketPermission "*:110", "connect,resolve";

 // Allow connection to mail server using POP3S

 permission java.net.SocketPermission "*:995", "connect,resolve";

 // Allow System.getProperties() to be used

 // permission java.util.PropertyPermission "*", "read,write";

 // Otherwise use the following to allow system properties to be read

 permission java.util.PropertyPermission "*", "read";

};

Mail: Resources for learning

Use the following links to find relevant supplemental information about the JavaMail API. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming model and decisions

v JavaMail documentation

Programming specifications

v JavaMail 1.3 API documentation (Sun Java specifications)

JavaMail support for IPv6

WebSphere Application Server and its JavaMail component support Internet Protocol Version 6.0 (IPv6),

meaning that:

v Both can run on a pure IPv4 network, a pure IPv6 network, or a mixed IPv4 and IPv6 network.

v On either the pure IPv6 network or the mixed network, the JavaMail component works with mail servers

(such as the SMTP mail transfer agent, and the IMAP and POP3 mail stores) that are also IPv6

compatible. Additionally, a JavaMail component that is run on the mixed IPv4 and IPv6 network can

communicate with mail servers using IPv4.

Use of brackets with IPv6 addresses

Chapter 9. Mail, URLs, and other J2EE resources 2103

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/javamail/javadocs/index.html

When you configure a mail session, you can specify the mail server hosts (also known as mail transport

and mail store hosts) with domain-qualified host names or numerical IP addresses. Using host names is

generally the preferred method. If you use IP addresses, however, consider enclosing IPv6 addresses in

square brackets to prevent parsing inaccuracies. See the following example:

[fe80::202:57ff:fec4:2334]

The JavaMail API requires a combination of many host names or IP addresses with a port number, using

the host:port number syntax . This extra colon can cause the port number to be read as part of an IPv6

address. Using brackets prevents your JavaMail implementation from processing the extra characters

erroneously.

Using URL resources within an application

Java Platform, Enterprise Edition (Java EE) applications can use Uniform Resource Locators (URLs) by

looking up references to logically named URL connection factories through the java:comp/env/url

subcontext, which is declared in the application deployment descriptor and mapped to installation specific

URL resources.

About this task

As in the case of other Java EE resources, this can be done in order to eliminate the need for the

application to hard code references to external resources. The process is the same used with other Java

EE resources, such as JDBC objects and JavaMail sessions.

1. Develop an application that relies on naming features.

2. Define resource references while assembling your application. A URL resource that uses a built-in

protocol, such as HTTP, FTP, or file, can use the default URL provider. URL resources that use other

protocols need to use a custom URL provider.

3. Configure your URL resources within an application.

a. Open the administrative console.

b. Click Resources>URL in the console navigation tree.

c. Click either URL Providers or URLs to modify the appropriate resource.

4. Optional: Configure URL providers and URLs within an application client using the Application Client

Resource Configuration Tool (ACRCT).

5. Manage URL providers and URL resources used by the deployed application. To update or remove

existing URL configurations:

a. Open the administrative console.

b. Click Resources > URL in the console navigation tree.

c. Click either URL Providers or URLs to modify the appropriate resource.

d. Select the URL to modify.

e. Modify the URL properties.

f. Click Apply or OK.

To remove URL providers and URLs, after step 2, click URL_provider > URLs. Select the URL you

want to remove and click Delete. Then, click Apply or OK.

URLs

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such

as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

2104 Administering WebSphere applications

You can represent a scheme as HTTP, FTP, file, or another term that identifies the type of resource and

the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available using HyperText Transfer

Protocol (HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer

Protocol (FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path

to that resource, and the resource name. The scheme_information for HTTP, FTP and file generally starts

with two slashes (//), then provides the Internet address separated from the resource path name with one

slash (/). For example,

http://www.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the

server generally returns the default index for the directory.

URL provider collection

Use this page to view existing URL providers, which supply the implementation classes that are necessary

for WebSphere Application Server to access a URL through a specific protocol. The default URL provider

provides connectivity through protocols that are supported by the IBM Developer Kit for the Java™

Platform, compatible with the Java 2 Standard Edition Platform 1.3.1. These protocols include HyperText

Transfer Protocol (HTTP) and File Transfer Protocol (FTP), which work for must URLs.

To view this administrative console page, click Resources > URL > URL Providers.

Name

Specifies the administrative name for the URL provider.

Scope

Specifies the scope of this URL provider, which can support multiple URL configurations. All of the URL

configurations that are supported by this provider inherit this scope.

Description

Describes the URL provider for your administrative records.

URL provider settings

Use this page to configure URL providers, which support WebSphere Application Server connections to a

URL over a specific protocol.

To view this administrative console page, click Resources > URL > URL Providers > URL_provider.

Scope

Specifies the scope of this URL provider, which can support multiple URL configurations. All of the URL

configurations that are supported by this provider inherit this scope.

Name

Specifies the administrative name for the URL provider.

Description

Describes the URL provider, for your administrative records.

Class path

Specifies paths or JAR file names which together form the location for the resource provider classes.

Chapter 9. Mail, URLs, and other J2EE resources 2105

Stream handler class name

Specifies fully qualified name of a user-defined Java class that extends the java.net.URLStreamHandler

class for a particular URL protocol, such as FTP.

Protocol

Specifies the protocol supported by this stream handler. For example, NNTP, SMTP, FTP.

URL collection

Use this page to view existing Uniform Resource Locator (URL) configurations, which are sets of

properties that define WebSphere Application Server connections to URLs. URLs are location names that

represent electronically accessible resources, such as a directory file on a machine in a network or a

document stored in a database.

You can access this administrative console page in one of two ways:

v Resources > URL Providers > URL_provider > URLs

v Resources > URL > URLs

Name

Specifies the display name for the resource.

JNDI Name

Specifies the JNDI name.

Scope

Specifies the scope of the URL provider that supports this URL configuration. Only applications that are

installed within this scope can use this URL configuration to access URL resources.

Provider

Specifies the URL provider that supplies the implementation classes for using a specific protocol to access

this URL.

Description

Specifies the description of the resource.

Category

Specifies the category string, which you can use to classify or group the resource.

URL configuration settings

Use this page to define connections to Uniform Resource Locators (URLs), which are location names that

represent electronically accessible resources. A collection of URL connection properties is often called a

URL configuration in the WebSphere Application Server environment. The targeted resources are remote

to your Application Server installation.

You can access this administrative console page in one of two ways:

v Resources > URL > URLs > URL

v Resources > URL > URL Providers > URL_provider > URLs > URL

Scope

Specifies the scope of the URL provider that supports this URL configuration. Only applications that are

installed within this scope can use this URL configuration to access URL resources.

Provider

Specifies the URL provider that WebSphere Application Server uses for this URL configuration.

2106 Administering WebSphere applications

Note: If you previously defined one or more URL providers at the relevant scope, you see a list from

which you can select an existing URL provider for your new URL configuration.

Create New Provider

Provides the option of configuring a new URL provider for the new URL configuration.

Create New Provider is displayed only when you create a new URL from the Resources > URL > URLs

path. In this flow, you can create a new URL provider if needed. The URL provider can not be changed

during an edit.

Clicking Create New Provider triggers the console to display the URL provider configuration page, where

you create a new provider. After you click OK to save your settings, you see the URL collection page.

Click New to define a new URL configuration for use with the new provider; the console now displays a

configuration page that lists the new provider as the URL configuration Provider.

Name

Specifies the display name for the resource.

JNDI Name

Specifies the JNDI name.

Note: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as mail sessions

versus URL configurations).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same scope.

Description

Specifies the description of the resource.

Category

Specifies the category string, which you can use to classify or group the resource.

Specification

Specifies the string from which to form a URL.

URLs: Resources for learning

Use the following links to find relevant supplemental information about URLs. The information resides on

IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming specifications

v W3C Architecture - Naming and Addressing: URIs, URLs

v URL API documentation

Mapping logical names of environment resources to their physical

names

This topic provides instructions on configuring new resource environment entries, which define

environment resources that are the binding targets for resource-environment-references in an application’s

deployment descriptor.

Chapter 9. Mail, URLs, and other J2EE resources 2107

http://www.w3.org/addressing/
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

1. Configure a resource environment provider, which is a library that provides the implementation for an

environment resource factory. In the administration console, begin by clicking Resources > Resource

Environment > Resource Environment Providers > New. (See the New Resource Environment

Provider topic for more information.)

2. After saving your resource environment provider, go to the Additional Properties heading and click

Resource environment entries. Click New to define a new resource environment entry. Refer to the

“Resource environment entry settings” on page 2110 topic for descriptions of the required fields.

3. You also might need to create a referenceable, which specifies the factory class name that converts

information in the name space into a class instance for your resource. To view the appropriate

administrative console page for referenceables, click Resources > Resource Environment >

Resource Environment Providers > your_resource_environment_provider > Referenceables. Click

New to begin the configuration process. See the “Referenceables settings” on page 2112 topic for

descriptions of the required fields.

Resource environment providers and resource environment entries

A resource environment reference maps a logical name used by the client application to the physical name

of an object.

Not all objects bound into the server JNDI namespace are intended for use by an application client. For

example, the WebSphere Application Server client run time does not support the use of Java 2 Connector

(J2C) objects on the client. The object needs to be remotable, and the client-side implementations must be

made available on the application client run-time classpath.

Resource environment references are different than resource references. Resource environment

references allow your application client to use a logical name to look up a resource bound into the server

JNDI namespace. A resource reference allows your application to use a logical name to look up a local

J2EE resource. The J2EE specification does not specify a particular implementation of a resource.

Resource environment provider collection

Use this page to view resource environment providers, which encapsulate the referenceables that convert

resource environment entry data into resource objects.

To view this administrative console page, click Resources > Resource Environment > Resource

Environment Providers.

Name

Specifies a text identifier for the resource environment provider.

 Data type String

Scope

Specifies the scope of this resource environment provider, which automatically becomes the scope of the

resource environment entries that you define with this provider.

Description

Specifies a text string describing the resource environment provider.

 Data type String

Resource environment provider settings

Use this page to create settings for a resource environment provider.

To view this administrative console page, click Resources > Resource environment > Resource

environment providers > resource environment provider.

2108 Administering WebSphere applications

Scope:

Specifies the scope of this resource environment provider, which automatically becomes the scope of the

resource environment entries that you define with this provider.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a text description for the resource provider.

 Data type String

New Resource environment provider

Use this page to define the configuration for a library that provides the implementation for a environment

resource factory.

To view this administrative console page, click Resources > Resource Environment > Resource

Environment Providers > New.

Scope:

Specifies the scope of this resource environment provider, which automatically becomes the scope of the

resource environment entries that you define with this provider.

Name:

Specifies a text identifier for the resource environment provider.

 Data type String

Description:

Specifies a text string describing the resource environment provider.

 Data type String

Resource environment entries collection

Use this page to view configured resource environment entries. Within an application server name space,

the data contained in a resource environment entry is converted into an object that represents a physical

resource. This resource is frequently called an environment resource.

An environment resource can be of any arbitrary type. See the latest EJB specification for more

information about resource environment references and environment resources.

You can access this administrative console page in one of two ways:

v Resources > Resource Environment > Resource environment entries

v Resources >Resource Environment > Resource Environment Providers >

resource_environment_provider > Resource Environment Entries

Chapter 9. Mail, URLs, and other J2EE resources 2109

Name

Specifies a text identifier that helps distinguish this resource environment entry from others.

For example, you can use My Resource for the name.

 Data type String

JNDI Name

Specifies the string to be used when looking up this environment resource using JNDI.

This is the string to which you bind resource environment reference deployment descriptors.

 Data type String

Scope

Specifies the resource environment entry scope, which is inherited from the resource environment

provider.

Provider

Specifies the resource environment provider for this entry. The provider encapsulates the classes that,

when implemented, convert resource environment entry data into resource objects.

Description

Specifies text for information to help further identify and distinguish this resource

 Data type String

Category

Specifies a category you can use to group environment resources according to some common feature.

It is strictly an organizational property and has no effect on the function of the environment resource.

 Data type String

Resource environment entry settings

Use this page to configure resource environment entries. Within an application server name space, the

data contained in a resource environment entry is converted into an object that represents a physical

resource. Rather than represent a connection factory, which provides connections to a resource, this

object directly represents a resource. This design can make the resource available to application modules

that do not run entirely on the application server. Examples include some application clients and Web

modules.

You can access this administrative console page in one of two ways:

v Resources > Resource Environment > Resource environment entries >

resource_environment_entry

v Resources >Resource Environment > Resource Environment Providers >

resource_environment_provider > Resource Environment Entries > resource_environment_entry

Scope:

Specifies the scope of the resource environment provider, which is a library that supplies the

implementation class for a resource environment factory. Within a JNDI name space, WebSphere

Application Server uses the factory to transform your resource environment entry into an object that

directly represents a physical resource.

2110 Administering WebSphere applications

Provider:

Specifies the resource environment provider.

 Provider shows all of the existing resource environment providers that are defined at the relevant scope.

Select one from the list if you want to use an existing resource environment provider as Provider.

Name:

Specifies a display name for the resource.

 Data type String

JNDI name:

Specifies the JNDI name for the resource, including any naming subcontexts.

 This name is used as the linkage between the platform’s binding information for resources defined by a

module’s deployment descriptor and actual resources bound into JNDI by the platform.

 Data type String

Note: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as resource

environment entries versus J2C connection factories).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same scope.

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

 Data type String

Referenceables:

Specifies the referenceable, which encapsulates the class name of the factory that converts resource

environment entry data into a class instance for a physical resource.

 Data type Drop-down menu

Referenceables collection

Use this page to view configured referenceables, which encapsulate the class name of the factory that

converts information in the name space into a class instance for a physical resource.

To view this administrative console page, click Resources > Resource environment > Resource

Environment Providers > resource_environment_provider > Referenceables.

Chapter 9. Mail, URLs, and other J2EE resources 2111

Factory Class name

Specifies a javax.naming.spi.ObjectFactory implementation name

 Data type String

Class name

Specifies the package name of the referenceable, for example: javax.naming.Referenceable

 Data type String

Referenceables settings

Use this page to set the class name of the factory that converts information in the name space into a class

instance of a physical resource.

To view this administrative console page, click Resources > Resource Environment > Resource

Environment Providers > resource_environment_provider > Referenceables > referenceable.

Factory class name:

Specifies a javax.naming.ObjectFactory implementation class name

 Data type String

Class name:

Specifies the Java type to which a Referenceable provides access, for binding validation and to create the

reference.

 Data type String

Resource environment references

Use this page to designate how the resource environment references of application modules map to

remote resources, which are represented in the product as resource environment entries.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Resource environment references.

Each row of the table depicts a resource environment reference within a specific module of your

application. If you bound any references to resource environment entries during application assembly, you

see the JNDI names of those resource environment entries in the applicable rows.

To set the mapping relationships between your resource environment references and resource

environment entries:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target that

you select in step 2 applies to all of those references.

2. Click Browse to select a resource environment entry from the new page that is displayed, the

Available Resources page. The Available Resources page shows all resource environment entries that

are available mapping targets for your application references.

3. Click Apply. The console displays the Resource environment references page again. In the rows that

you previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

2112 Administering WebSphere applications

Table column heading descriptions:

Select

Select the check boxes of the rows that you want to edit.

Module

The name of a module in the application.

EJB

The name of an enterprise bean that is accessed by the module.

URI

Specifies location of the module relative to the root of the application EAR file.

Reference binding

The name of a resource environment reference that is declared in the deployment descriptor of the

application module. The reference corresponds to a resource that is bound as a resource environment

entry into the JNDI name space of the application server.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource environment entry that is the

mapping target of the resource environment reference.

 Data type String

Configuring mail providers and sessions

Configure your own mail providers and sessions to customize how mail is handled in the application

server. A mail provider encapsulates a collection of protocol providers, like SMTP, IMAP and POP3, and

others. Mail sessions authenticate users and control access to messaging systems.

About this task

The application server includes a default mail provider that is called the built-in provider. If you use the

default mail provider, you only have to configure the mail session.

To use a customized mail provider, you must create the mail session and provider.

v Create the mail session.

1. In the administrative console, click Resources → Mail → Mail sessions.

2. Select the scope for the new mail session.

3. Click New.

4. Type the mail session name in the Name field.

5. Type the JNDI name in the JNDI Name field.

6. Optional: Enable strict Internet address parsing. This option specifies whether the recipient

addresses must be parsed in strict compliance with RFC 822, which is a specifications document

that is issued by the Internet Architecture Board. This setting is not generally used for most mail

applications, and by default this setting is not enabled.

RFC 822 syntax for parsing addresses effectively enforces a strict definition of a valid e-mail

address. If you select this setting, your mail component adheres to RFC 822 syntax and rejects

recipient addresses that do not parse into valid e-mail addresses as defined by the specification. If

you do not select this setting, your mail component does not adhere to RFC 822 syntax and accepts

recipient addresses that do not comply with the specification. You can view the RFC 822

specification at the web site for the World Wide Web Consortium.

Chapter 9. Mail, URLs, and other J2EE resources 2113

7. Optional: Enable debug mode. Select this option to print interaction between the mail application

and the mail servers and the properties of this mail session to the SystemOut.log file.

8. Provide information for the incoming mail service, outgoing service, or both. Enter the following

information in the fields that are provided:

– Server

– Protocol

– User

– Password

– Return e-mail address. This field is available for outgoing mail properties.

9. Click Apply or OK.

v Create the mail provider, and optionally define one or more protocol providers. In the administrative

console, click Resources → Mail → Mail Providers.

1. Select the scope for the new mail provider.

2. Click New.

3. Type the name of the mail provider in the name field.

4. Optional: Isolate the mail provider.

Note: You can isolate a mail provider to allow different versions of the same provider to be loaded

in the same Java Virtual Machine (JVM). For example, you might want to deploy multiple

applications on a single server, but each application requires different versions or

implementations of the mail provider. You can now isolate each version or implementation of

the provider, and the provider will be loaded in its own class loader and will not interfere with

other implementations. There are some general considerations for isolating any type of

resource provider; refer to the topic on considerations for isolated resource providers for

more information.

a. Select Isolate this mail provider.

b. Give the mail provider a unique class path that is appropriate for that version or implementation.

5. Click Apply or OK.

6. Optional: Define one or more protocol providers for the mail provider.

a. Click mail_provider.

b. Click Protocol Providers.

c. Click New.

d. Type the protocol name in the Protocol field.

e. Type the class name in the Class name field.

f. Select the type of mail server that this protocol provider supports. Select TRANSPORT or

STORE. TRANSPORT corresponds to outgoing mail services, and STORE corresponds to

incoming mail services.

g. Click Apply or OK.

Ensure that every mail session is defined under a parent mail provider. Select a mail provider first

and then create your new mail session.

v Optional: Configure the mail session.

1. Click mail_provider.

2. Click Mail Sessions.

3. Click mail_session.

4. Make changes to appropriate fields.

5. Click Apply or OK.

2114 Administering WebSphere applications

What to do next

If your application has a client, you can configure mail providers and sessions using the Application Client

Resource Configuration Tool.

Mail provider collection

Use this page to view available JavaMail service providers, also known as mail providers. The mail

provider encapsulates a collection of protocol providers, which implement the protocols for communication

between your mail application and mail servers.

To view this administrative console page, click Resources > Mail > Mail Providers.

The built-in mail provider made available by WebSphere Application Server encompasses three protocol

providers: Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP) and Post

Office Protocol (POP3). Select the built-in provider if these protocols provide the right support for your mail

system. If you have installed or plan to install different protocol providers, you must assign them a mail

provider; select the scope at which you want the new mail provider to implement the protocols, then select

New.

Name

Specifies the name of the JavaMail resource provider.

Scope

Specifies the scope in which the mail provider supports installed mail applications.

Description

Specifies the resource provider description.

Mail provider settings

Use this page to edit mail provider properties or configure a new mail provider. The mail provider

encapsulates a collection of protocol providers, which implement the protocols for communication between

your mail application and mail servers.

To view this administrative console page, click Resources → Mail → Mail Providers → mail_provider, or

create a new mail provider by clicking Resources → Mail → Mail Providers → New.

Scope

Specifies the scope in which the mail provider supports installed mail applications.

Name

Specifies the name of the mail provider.

Description

Specifies the resource provider description.

Isolate this mail provider

Specifies that this mail provider will be loaded in its own class loader. This allows the application server to

load different versions or implementations of the same mail provider in the same Java Virtual Machine.

Give each version or implementation of the mail provider a unique class path that is appropriate for that

version or implementation.

Class path

Specifies the class path to a Java archive (JAR) file that contains the implementation classes for this mail

provider. If more than one JAR file provides the complete implementation, add an entry for each JAR file

that the mail provider requires. Enter one class path per line; do not use class path separator information.

Chapter 9. Mail, URLs, and other J2EE resources 2115

Protocol providers collection

Use this page to select or add a protocol provider that supports interaction between your mail application

and mail servers. For example, your application might require the Simple Mail Transfer Protocol (SMTP),

which is a popular transport protocol for sending mail. Selecting that protocol provider allows your mail

application to connect and send mail through the server.

To view this administrative console page, click Resources → Mail → Mail Providers → mail_provider →

Protocol Providers.

Protocol

Specifies the configuration of the protocol provider for a given protocol.

Class name

Specifies the implementation class for the specific protocol provider, which is also known as the mail

service provider.

Type

Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Protocol providers settings

Use this page to set properties of a protocol provider, which provides the implementation class for a

specific protocol to support communication between your mail application and mail servers.

Note: The application server contains protocol providers for various types of protocols, including SMTP,

IMAP and POP3. If you require custom providers for protocols that are not provided by the

application server, install them in your application serving environment before configuring the

providers. See the JavaMail API design specification for guidelines. After configuring your protocol

providers, return to the mail provider page to find the link for configuring mail sessions.

To view this administrative console page, click Resources → Mail → Mail Providers → mail_provider →

Protocol Providers → protocol_provider.

Scope

Specifies the scope at which this protocol provider was created. Only applications that are installed within

this scope can use a protocol that is configured according to the settings of this protocol provider.

Protocol

Specifies the configuration of the protocol provider for a given protocol.

Class name

Specifies the implementation class of this protocol provider.

Type

Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Mail session collection

Use this page to view mail sessions that are defined under the parent mail provider.

You can access this administrative console page in one of two ways:

v Resources > Mail > Mail Sessions

v Resources > Mail > Mail Providers > mail_provider > Mail Sessions

Name

Specifies the administrative name of the JavaMail session object.

2116 Administering WebSphere applications

Scope

Specifies the scope at which the mail session was created. Only JavaMail applications that are installed in

this scope can use this mail session.

Provider

Specifies the mail provider that WebSphere Application Server uses for this mail session.

JNDI Name

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

This name provides the link between the platform binding information for resources defined in the client

application deployment descriptor and the actual resources bound into JNDI by the platform.

Description

Specifies an optional description for your administrative records.

Category

Specifies an optional collection for classifying or grouping sessions.

Mail session settings

Use this page to configure mail sessions.

You can access this administrative console page in one of two ways:

v Resources → Mail → Mail sessions → mail_session

v Resources → Mail → Mail Providers → mail_provider → Mail sessions → mail_session

Scope

Specifies the scope of the mail provider that implements the JavaMail API for this mail session. Only

applications that you installed within this scope can use this mail session.

Provider

Specifies the mail provider that the application server uses for this mail session.

When you create a mail session, if you previously defined one or more mail providers at the relevant

scope, you will see a list from which you can select an existing mail provider for the new mail session.

Create New Provider

Provides the option of configuring a new mail provider for the new mail session.

Create New Provider is displayed only when you click Resources → Mail → Mail sessions → New to

create a new mail session.

Clicking Create New Provider triggers the console to display the mail provider configuration page, where

you create a new provider. After you click OK to save your settings, you see the mail session collection

page. Click New to define a new mail session for use with the new provider; the console now displays a

configuration page that lists the new mail provider as the mail session Provider.

Note: After you create a mail session, you cannot change the provider of that mail session.

Name

Specifies the administrative name of the JavaMail session object.

JNDI name

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

Chapter 9. Mail, URLs, and other J2EE resources 2117

This name provides the link between the platform binding information for resources that are defined in the

client application deployment descriptor and the actual resources bound into JNDI by the platform.

Note: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as mail sessions

versus data sources).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same scope.

Description

Specifies an optional description for your administrative records.

Category

Specifies an optional collection for classifying or grouping sessions.

Enable debug mode

Toggles debug mode on and off for this mail session.

Enable strict Internet address parsing

Specifies whether the recipient addresses must be parsed in strict compliance with RFC 822, which is a

specifications document issued by the Internet Architecture Board.

This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses

effectively enforces a strict definition of a valid e-mail address. If you select this setting, your mail

component adheres to RFC 822 syntax and rejects recipient addresses that do not parse into valid e-mail

addresses (as defined by the specification). If you do not select this setting, the mail component does not

adhere to RFC 822 syntax and accepts recipient addresses that do not comply with the specification. By

default, this setting is not selected. You can view the RFC 822 specification at the World Wide Web

Consortium web site.

Outgoing Mail Properties

Server:

Specifies the server that is accessed when sending mail.

Protocol:

Specifies the protocol to use when sending mail. Actual protocol values are defined in the protocol

providers that you configured for the current mail provider.

User:

Specifies the user of the mail account when the outgoing mail server requires authentication.

 This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Password:

Specifies the password to use when the outgoing mail server requires authentication.

 This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Verify Password:

2118 Administering WebSphere applications

Verify the password.

Return e-mail address:

Specifies the Internet e-mail address that is displayed in messages as the mail originator.

 This value represents the Internet e-mail address that, by default, displays in the received message in the

From or the Reply-To address. The recipient’s reply will come to this address.

Incoming Mail Properties

Server:

Specifies the server that is accessed when receiving mail.

Protocol:

Specifies the protocol to use when receiving mail. Actual protocol values are defined in the protocol

providers that you configured for the current mail provider.

User:

Specifies the user of the mail account when the incoming mail server requires authentication.

 This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Password:

Specifies the password to use when the incoming mail server requires authentication.

 This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Verify Password:

Verify the password.

JavaMail system properties

Use this information to set custom Java virtual machine (JVM) system properties that provide additional

character encoding options for your JavaMail implementation.

To view the appropriate administrative console page for setting these properties, click Servers >

Application Servers > server_name > Process Definition > Java Virtual Machine > Custom

Properties > New.

To specify a custom property:

1. On the settings page, enter the property you want to configure in the Name field and the value you

want to set it to in the Value field.

2. In the Description field, enter identifying information about the name-value pair.

3. Click Apply or OK.

4. Click Save on the console taskbar to save your configuration changes.

The following list contains the JVM system properties that you can use to customize your JavaMail

application:

Chapter 9. Mail, URLs, and other J2EE resources 2119

mail.mime.charset

Changes the default character set for the text of JavaMail messages. Generally the character set for

sending messages is the same character set that is used by the system file schema. You can use this

property to specify a different character set for JavaMail messages.

 Data type String

For more information, see the latest JavaMail specification.

mail.mime.decodetext.strict

Specifies whether or not your JavaMail application attempts to decode mail message text that does not

adhere to the encoding standards set by the Internet Architecture Board in the specification document RFC

2047. (In particular, Japanese mailers might not adhere to the specification, resulting in the disruption of

words by encoded text.) Set this property to false if you want your JavaMail component to decode

message text that does not comply with RFC 2047.

 Data type Boolean

Default true

For more information, see the latest JavaMail specification.

mail.mime.encodeeol.strict

Specifies whether or not your JavaMail application interprets the character pairs CR and LF as line

terminators when they are displayed in the part of a mail message that is not of MIME text type. Set this

property to true if you want the JavaMail component to interpret the character pairs as line terminators,

and to encode the entire portion of the message in which the characters appear.

 Data type Boolean

Default false

For more information, see the latest JavaMail specification.

Configuring mail, URLs, and resource environment entries with

scripting

Use scripting to configure mail, URLs, and resource environment entries.

About this task

This topic contains the following tasks:

v “Configuring new mail providers using scripting” on page 2121

v “Configuring new mail sessions using scripting” on page 2122

v “Configuring new protocols using scripting” on page 2123

v “Configuring new custom properties using scripting” on page 2124

v “Configuring new resource environment providers using scripting” on page 2125

v “Configuring custom properties for resource environment providers using scripting” on page 2126

v “Configuring new referenceables using scripting” on page 2127

v “Configuring new resource environment entries using scripting” on page 2128

v “Configuring custom properties for resource environment entries using scripting” on page 2129

v “Configuring new URL providers using scripting” on page 2130

v “Configuring custom properties for URL providers using scripting” on page 2132

2120 Administering WebSphere applications

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/

v “Configuring new URLs using scripting” on page 2133

v “Configuring custom properties for URLs using scripting” on page 2134

Configuring new mail providers using scripting

You can use scripting and the wsadmin tool to configure new mail providers.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new mail provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailProvider

v Using Jython:

print AdminConfig.required(’MailProvider’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name MP1]

set mpAttrs [list $name]

v Using Jython:

name = [’name’, ’MP1’]

mpAttrs = [name]

4. Create the mail provider:

v Using Jacl:

set newmp [$AdminConfig create MailProvider $node $mpAttrs]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Chapter 9. Mail, URLs, and other J2EE resources 2121

Configuring new mail sessions using scripting

You can use scripting and the wsadmin tool to configure new mail sessions.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new mail session:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.getid(’/Cell:mycell/Node:mynode/MailProvider:MP1/’)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailSession

v Using Jython:

print AdminConfig.required(’MailSession’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MS1]

set jndi [list jndiName mail/MS1]

set msAttrs [list $name $jndi]

Example output:

{name MS1} {jndiName mail/MS1}

v Using Jython:

name = [’name’, ’MS1’]

jndi = [’jndiName’, ’mail/MS1’]

msAttrs = [name, jndi]

print msAttrs

Example output:

[[name, MS1], [jndiName, mail/MS1]]

4. Create the mail session:

v Using Jacl:

$AdminConfig create MailSession $newmp $msAttrs

v Using Jython:

print AdminConfig.create(’MailSession’, newmp, msAttrs)

Example output:

MS1(cells/mycell/nodes/mynode|resources.xml#MailSession_1)

2122 Administering WebSphere applications

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new protocols using scripting

You can configure new protocols with scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new protocol:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required ProtocolProvider

v Using Jython:

print AdminConfig.required(’ProtocolProvider’)

Example output:

Attribute Type

protocol String

classname String

3. Set up required attributes:

v Using Jacl:

set protocol [list protocol "Put the protocol here"]

set classname [list classname "Put the class name here"]

set ppAttrs [list $protocol $classname]

Example output:

{protocol protocol1} {classname classname1}

v Using Jython:

protocol = [’protocol’, "Put the protocol here"]

classname = [’classname’, "Put the class name here"]

ppAttrs = [protocol, classname]

print ppAttrs

Example output:

[[protocol, protocol1], [classname, classname1]]

4. Create the protocol provider:

v Using Jacl:

$AdminConfig create ProtocolProvider $newmp $ppAttrs

v Using Jython:

Chapter 9. Mail, URLs, and other J2EE resources 2123

print AdminConfig.create(’ProtocolProvider’, newmp, ppAttrs)

Example output:

(cells/mycell/nodes/mynode|resources.xml#ProtocolProvider_4)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new custom properties using scripting

You can use scripting and the wsadmin tool to configure new custom properties.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new custom property:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newmp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newmp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_2)

3. Get required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name CP1]

set cpAttrs [list $name]

Example output:

{name CP1}

2124 Administering WebSphere applications

v Using Jython:

name = [’name’, ’CP1’]

cpAttrs = [name]

print cpAttrs

Example output:

[[name, CP1]]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $cpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, cpAttrs)

Example output:

CP1(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_2)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new resource environment providers using scripting

You can use the wsadmin tool and scripting to configure new resources environment providers.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new resource environment provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvironmentProvider

v Using Jython:

print AdminConfig.required(’ResourceEnvironmentProvider’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set n1 [list name REP1]

set repAttrs [list $name]

v Using Jython:

Chapter 9. Mail, URLs, and other J2EE resources 2125

n1 = [’name’, ’REP1’]

repAttrs = [n1]

4. Create a new resource environment provider:

v Using Jacl:

set newrep [$AdminConfig create ResourceEnvironmentProvider $node $repAttrs]

v Using Jython:

newrep = AdminConfig.create(’ResourceEnvironmentProvider’, node, repAttrs)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for resource environment providers

using scripting

You can use scripting to configure custom properties for a resource environment provider.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new custom property for a resource environment provider:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set name [list name RP]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP’]

rpAttrs = [name]

2126 Administering WebSphere applications

4. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newrep propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newrep, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_1)

If the command returns None as the value for the propSet variable, create a new property set. The

command returns None if the property set does not exist in your environment. Use the following

examples to create a new property set:

Using Jacl:

set newPropSet [$AdminConfig create $newrep {}]

Using Jython:

newPropSet = AdminConfig.create(’J2EEResourcePropertySet’,newrep,[])

After setting the newPropSet variable, retry the command to get the J2EE resource property set before

going to the next step.

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes.

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new referenceables using scripting

You can use scripting and the wsadmin tool to configure new referenceables.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new referenceable:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/

ResourceEnvironmentProvider:REP1/]

v Using Jython:

Chapter 9. Mail, URLs, and other J2EE resources 2127

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/

ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required Referenceable

v Using Jython:

print AdminConfig.required(’Referenceable’)

Example output:

Attribute Type

factoryClassname String

classname String

3. Set up the required attributes:

v Using Jacl:

set fcn [list factoryClassname REP1]

set cn [list classname NM1]

set refAttrs [list $fcn $cn]

v Using Jython:

fcn = [’factoryClassname’, ’REP1’]

cn = [’classname’, ’NM1’]

refAttrs = [fcn, cn]

print refAttrs

Example output:

{factoryClassname {REP1}} {classname {NM1}}

4. Create a new referenceable:

v Using Jacl:

set newref [$AdminConfig create Referenceable $newrep $refAttrs]

v Using Jython:

newref = AdminConfig.create(’Referenceable’, newrep, refAttrs)

print newref

Example output:

(cells/mycell/nodes/mynode|resources.xml#Referenceable_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new resource environment entries using scripting

You can use scripting and the wsadmin tool to configure a new resource environment entry.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new resource environment entry:

1. Identify the parent ID and assign it to the newrep variable.

2128 Administering WebSphere applications

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvEntry

v Using Jython:

print AdminConfig.required(’ResourceEnvEntry’)

Example output:

Attribute Type

name String

jndiName String

referenceable Referenceable@

3. Set up the required attributes:

v Using Jacl:

set name [list name REE1]

set jndiName [list jndiName myjndi]

set newref [$AdminConfig getid /Cell:mycell/Node:mynode/Referenceable:/]

set ref [list referenceable $newref]

set reeAttrs [list $name $jndiName $ref]

v Using Jython:

name = [’name’, ’REE1’]

jndiName = [’jndiName’, ’myjndi’]

newref = AdminConfig.getid(’/Cell:mycell/Node:mynode/Referenceable:/’)

ref = [’referenceable’, newref]

reeAttrs = [name, jndiName, ref]

4. Create the resource environment entry:

v Using Jacl:

$AdminConfig create ResourceEnvEntry $newrep $reeAttrs

v Using Jython:

print AdminConfig.create(’ResourceEnvEntry’, newrep, reeAttrs)

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for resource environment entries using

scripting

You can use scripting to configure a new custom property for a resource environment entry.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Chapter 9. Mail, URLs, and other J2EE resources 2129

About this task

Perform the following steps to configure a new custom property for a resource environment entry:

1. Identify the parent ID and assign it to the newree variable.

v Using Jacl:

set newree [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/]

v Using Jython:

newree = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/’)

print newree

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

2. Create the J2EE custom property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newree propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newree, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_5)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP1]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP1’]

rpAttrs = [name]

5. Create the J2EE custom property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RPI(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new URL providers using scripting

You can use scripting and the wsadmin tool to configure new URL providers.

2130 Administering WebSphere applications

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new URL provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URLProvider

v Using Jython:

print AdminConfig.required(’URLProvider’)

Example output:

Attribute Type

streamHandlerClassName String

protocol String

name String

3. Set up the required attributes:

v Using Jacl:

set name [list name URLP1]

set shcn [list streamHandlerClassName "Put the stream handler classname here"]

set protocol [list protocol "Put the protocol here"]

set urlpAttrs [list $name $shcn $protocol]

Example output:

{name URLP1} {streamHandlerClassName {Put the stream handler classname here}}

{protocol {Put the protocol here}}

v Using Jython:

name = [’name’, ’URLP1’]

shcn = [’streamHandlerClassName’, "Put the stream handler classname here"]

protocol = [’protocol’, "Put the protocol here"]

urlpAttrs = [name, shcn, protocol]

print urlpAttrs

Example output:

[[name, URLP1], [streamHandlerClassName, "Put the stream handler classname here"],

[protocol, "Put the protocol here"]]

4. Create a URL provider:

v Using Jacl:

$AdminConfig create URLProvider $node $urlpAttrs

v Using Jython:

print AdminConfig.create(’URLProvider’, node, urlpAttrs)

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

Chapter 9. Mail, URLs, and other J2EE resources 2131

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for URL providers using scripting

You can use scripting to configure custom properties for URL providers.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure custom properties for URL providers:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newurlp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurlp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP2]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP2’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

2132 Administering WebSphere applications

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP2(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Related tasks

“Configuring custom properties for URLs using scripting” on page 2134
Use the wsadmin tool and scripting to set custom properties for URLs.

Configuring new URLs using scripting

You can use scripting and the wsadmin tool to configure new URLs.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following example to configure a new URL:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URL

v Using Jython:

print AdminConfig.required(’URL’)

Example output:

Attribute Type

name String

spec String

3. Set up the required attributes:

v Using Jacl:

set name [list name URL1]

set spec [list spec "Put the spec here"]

set urlAttrs [list $name $spec]

Example output:

{name URL1} {spec {Put the spec here}}

v Using Jython:

name = [’name’, ’URL1’]

spec = [’spec’, "Put the spec here"]

urlAttrs = [name, spec]

Chapter 9. Mail, URLs, and other J2EE resources 2133

Example output:

[[name, URL1], [spec, "Put the spec here"]]

4. Create a URL:

v Using Jacl:

$AdminConfig create URL $newurlp $urlAttrs

v Using Jython:

print AdminConfig.create(’URL’, newurlp, urlAttrs)

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for URLs using scripting

Use the wsadmin tool and scripting to set custom properties for URLs.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

Perform the following steps to configure a new custom property for a URL:

1. Identify the parent ID and assign it to the newurl variable.

v Using Jacl:

set newurl [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/]

v Using Jython:

newurl = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/’)

print newurl

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

2. Create a J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newurl propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurl, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

2134 Administering WebSphere applications

4. Set up the required attributes:

v Using Jacl:

set name [list name RP3]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP3’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP3(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_7)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Provider command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure mail settings with the wsadmin tool. The

commands and parameters in the provider group can be used to create, delete, and manage providers.

The Provider command group for the AdminTask object includes the following commands:

v “deleteProvider”

v “getProviderInfo” on page 2136

v “getProviderInstance” on page 2136

v “getProviders” on page 2136

deleteProvider

The deleteProvider command deletes a provider from the model given the providerName.

Target object

None

Parameters and return values

v Parameters: None

v Returns: true if the provider was deleted, false if not.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteProvider {-interactive}

v Using Jython string:

AdminTask.deleteProvider (’[-interactive]’)

v Using Jython list:

AdminTask.deleteProvider ([’-interactive’])

Chapter 9. Mail, URLs, and other J2EE resources 2135

getProviderInfo

The getProviderInfo command returns a ProviderInfo object defined in the model given the

providerName.

Target object

None

Parameters and return values

v Parameters: None

v Returns: A ProviderInfo object defined in the model given the providerName.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask getProviderInfo {-interactive}

v Using Jython string:

AdminTask.getProviderInfo (’[-interactive]’)

v Using Jython list:

AdminTask.getProviderInfo ([’-interactive’])

getProviderInstance

The getProviderInstance command returns a java.security.Provider for the providerName specified.

Target object

None

Parameters and return values

v Parameters: None

v Returns: A java.security.Provider for the providerName specified.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask getProviderInsta nce {-interactive}

v Using Jython string:

AdminTask.getProviderIns tance (’[-interactive]’)

v Using Jython list:

AdminTask.getProviderInst ance ([’-interactive’])

getProviders

The getProviders command returns a List of ProviderInfo objects from the model.

Target object

None

2136 Administering WebSphere applications

Parameters and return values

v Parameters: None

v Returns: A list of ProviderInfo objects from the model.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask getProviders {-interactive}

v Using Jython string:

AdminTask.getProviders (’[-interactive]’)

v Using Jython list:

AdminTask.getProviders ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

Chapter 9. Mail, URLs, and other J2EE resources 2137

2138 Administering WebSphere applications

Chapter 10. Security (omitted)

This PDF book corresponds closely to the Administering WebSphere applications section of the online

information center. However, the security chapter of this book has been omitted, because the security

information is available in the PDF book for Securing WebSphere applications and their environment.

© Copyright IBM Corp. 2008 2139

2140 Administering WebSphere applications

Chapter 11. Naming and directory

Using naming

Naming is used by clients of WebSphere Application Server applications most commonly to obtain

references to objects related to those applications, such as Enterprise JavaBeans (EJB) homes.

About this task

The Naming service is based on the Java Naming and Directory Interface (JNDI) Specification and the

Object Management Group (OMG) Interoperable Naming (CosNaming) specifications Naming Service

Specification, Interoperable Naming Service revised chapters and Common Object Request Broker:

Architecture and Specification (CORBA).

1. Develop your application using either JNDI or CORBA CosNaming interfaces. Use these interfaces to

look up server application objects that are bound into the namespace and obtain references to them.

Most Java developers use the JNDI interface. However, the CORBA CosNaming interface is also

available for performing Naming operations on WebSphere Application Server name servers or other

CosNaming name servers.

2. Assemble your application using an assembly tool. Application assembly is a packaging and

configuration step that is a prerequisite to application deployment. If the application you are assembling

is a client to an application running in another process, you should qualify the jndiName values in the

deployment descriptors for the objects related to the other application. Otherwise, you might need to

override the names with qualified names during application deployment. If the objects have fixed

qualified names configured for them, you should use them so that the jndiName values do not depend

on the other application’s location within the topology of the cell.

3. Optional: Verify that your application is assigned the appropriate security role if administrative security

is enabled. For more information on the security roles, see “Naming roles” on page 2151.

4. Deploy your application. Put your assembled application onto the application server. If the application

you are assembling is a client to an application running in another server process, be sure to qualify

the jndiName values for the other application’s server objects if they are not already qualified. For

more information on qualified names, refer to “Lookup names support in deployment descriptors and

thin clients” on page 2145.

5. Optional: If your application must access applications in other cells, configure foreign cell bindings for

the other cells.

6. Configure namespace bindings. This step is necessary in these cases:

v Your deployed application is to be accessed by legacy client applications running on previous

versions of the product. In this case, you must configure additional name bindings for application

objects relative to the default initial context for legacy clients. (Version 5 clients have a different

initial context from legacy clients.)

v The application requires qualified name bindings for such reasons as:

– It will be accessed by Java Platform, Enterprise Edition (Java EE) client applications or server

applications running in another server process.

– It will be accessed by thin client applications.

In this case, you can configure name bindings as additional bindings for application objects. The

qualified names for the configured bindings are fixed, meaning they do not contain elements of the

cell topology that can change if the application is moved to another server. Objects as bound into

the namespace by the system can always be qualified with a topology-based name. You must

explicitly configure a name binding to use as a fixed qualified name.

For more information on qualified names, refer to “Lookup names support in deployment descriptors

and thin clients” on page 2145. For more information on configured name bindings, refer to

“Configured name bindings” on page 2148.

© Copyright IBM Corp. 2008 2141

7. Troubleshoot any problems that develop. If a Naming operation is failing and you need to verify

whether certain name bindings exist, use the dumpNameSpace tool to generate a dump of the

namespace.

Naming

Naming is used by clients of WebSphere Application Server applications to obtain references to objects

related to those applications, such as enterprise bean (EJB) homes.

These objects are bound into a mostly hierarchical structure, referred to as a namespace. In this structure,

all non-leaf objects are called contexts. Leaf objects can be contexts and other types of objects. Naming

operations, such as lookups and binds, are performed on contexts. All naming operations begin with

obtaining an initial context. You can view the initial context as a starting point in the namespace.

The namespace structure consists of a set of name bindings, each consisting of a name relative to a

specific context and the object bound with that name. For example, the name myApp/myEJB consists of one

non-leaf binding with the name myApp, which is a context. The name also includes one leaf binding with the

name myEJB, relative to myApp. The object bound with the name myEJB in this example happens to be an

EJB home reference. The whole name myApp/myEJB is relative to the initial context, which you can view as

a starting place when performing naming operations.

You can access and manipulate the namespace through a name server. Users of a name server are

referred to as naming clients. Naming clients typically use the Java Naming and Directory Interface (JNDI)

to perform naming operations. Naming clients can also use the Common Object Request Broker

Architecture (CORBA) CosNaming interface.

You can use security to control access to the namespace. For more information, see Naming roles.

Typically, objects bound to the namespace are resources and objects associated with installed

applications. These objects are bound by the system, and client applications perform lookup operations to

obtain references to them. Occasionally, server and client applications bind objects to the namespace. An

application can bind objects to transient or persistent partitions, depending on requirements.

In Java Platform, Enterprise Edition (Java EE) or Java Platform, Standard Edition (Java SE) environments,

some JNDI operations are performed with java: URL names. Names bound under these names are

bound to a completely different namespace which is local to the calling process. However, some lookups

on the java: namespace may trigger indirect lookups to the name server.

Namespace logical view

The namespace for the entire cell is federated among all servers in the cell. Every server process contains

a name server. All name servers provide the same logical view of the cell namespace.

The various server roots and persistent partitions of the namespace are interconnected by a system

namespace. You can use the system namespace structure to traverse to any context in a cell’s

namespace.

A logical view of the namespace in a multiple-server installation is shown in the following diagram.

2142 Administering WebSphere applications

The bindings in the preceding diagram appear with solid arrows, labeled in bold, and dashed arrows,

labeled in gray. Solid arrows represent primary bindings. A primary binding is formed when the associated

subcontext is created. Dashed arrows show linked bindings. A linked binding is formed when an existing

context is bound under an additional name. Linked bindings are added for convenience or interoperability

with previous WebSphere Application Server versions.

A cell namespace is composed of contexts which reside in servers throughout the cell. All name servers in

the cell provide the same logical view of the cell namespace. A name server constructs this view at startup

by reading configuration information. Each name server has its own local in-memory copy of the

namespace and does not require another running server to function. There are, however, a few

exceptions. Server roots for other servers are not replicated among all the servers. The respective server

for a server root must be running to access that server root context.

In WebSphere Application Server Network Deployment cells, the cell and node persistent areas can be

read even if the deployment manager and respective node agent are not running. However, the

deployment manager must be running to update the cell persistent segment, and a node agent must be

running to update its respective node persistent segment.

Namespace partitions

There are four major partitions in a cell namespace:

v System namespace partition

v Server roots partition

v Cell persistent partition

v Node persistent partition

System namespace partition

The system namespace contains a structure of contexts based on the cell topology. The system

structure supports traversal to all parts of a cell namespace and to the cell root of other cells,

which are configured as foreign cells. The root of this structure is the cell root. In addition to the

System Namespace

(Read Only)

Cell Persistent

(Read/Write)

Server Roots

(Read/Write Transient)

Node Persistent

(Read/Write)

X

Y

Z

X

Y

Z

L

M
N

A

B
C

A

B

C

nodes

cell root
of foreign cell

foreign cells

cell clusters

BS

user persistent
sub-ctxs & objs

user persistent
sub-ctxs & objs

node persistent
root

user transient
sub-ctxs & objs

A

B

C

system artifact
sub-ctxs & objs

BS

Server root

<user-created-bindings>

<physical-server-name>
<cluster-name>

<user-created-bindings>

<user-created-bindings> <system-artifacts>

<foreign-cell-names>

<node-name>

cell
domain nodeAgent

clusters

deploymentManager

legacyRoot

cells

domain

cell

nodes

Logical View of a Cell's Namespace

persistent

cell

X

Y
Z

node physical
servers

persistent

servers

cell

X
Y

Z

Node root
BS

cell persistent
root

BS

Cell root
BS

Chapter 11. Naming and directory 2143

cell root, the system structure contains a node root for each node in the cell. You can access other

contexts of interest specific to a node from the node root, such as the node persistent root and

server roots for servers configured in that node.

 All contexts in the system namespace are read-only. You cannot add, update, or remove any

bindings.

Server roots partition

Each server in a cell has a server root context. A server root is specific to a particular server. You

can view the server roots for all servers in a cell as being in a transient read/write partition of the

cell namespace. System artifacts, such as enterprise bean (EJB) homes for server applications

and resources, are bound under the server root context of the associated server. A server

application can also add bindings under its server root. These bindings are transient. Therefore,

the server application creates all required bindings at application startup, so they exist anytime the

application is running.

 A server cluster is composed of many servers that are logically equivalent. Each member of the

cluster has its own server root. These server roots are not replicated across the cluster. In other

words, adding a binding to the server root of one member does not propagate it to the server roots

of the other cluster members. To maintain the same view across the cluster, you should create all

user bindings under the server root by the server application at application startup so that the

bindings are present under the server root of each cluster member. Because of Workload

Management (WLM) behavior, a JNDI client outside a cluster has no control over which cluster

member’s server root context becomes the target of the JNDI operation. Therefore, you should

execute bind operations to the server root of a cluster member from within that cluster member

process only.

Server-scoped configured name bindings are relative to a server’s server root.

The name of a cluster member must be unique within a cell and must be different from the cell

name.

Cell persistent partition

The root context of the cell persistent partition is the cell persistent root. A binding created under

the cell persistent root is saved as part of the cell configuration and continues to exist until it is

explicitly removed. Applications that need to create additional persistent bindings of objects

generally associated with the cell can bind these objects under the cell persistent root.

 It is important to note that the cell persistent area is not designed for transient, rapidly changing

bindings. The bindings are more static in nature, such as part of an application setup or

configuration, and are not created at run time.

The cell persistent area can be read even if the deployment manager is not running. However, the

deployment manager must be running to update the cell persistent segment. Because every server

contains its own copy of the cell persistent partition, any server can look up locally objects bound

in the cell persistent partition.

Cell-scoped configured name bindings are relative to a cell’s cell persistent root.

Node persistent partition

The node persistent partition is similar to the cell partition except that each node has its own node

persistent root. A binding created under a node persistent root is saved as part of that node

configuration and continues to exist until it is explicitly removed.

 Applications that need to create additional persistent bindings of objects associated with a specific

node can bind those objects under that particular node’s node persistent root. As with the cell

persistent area, it is important to note that the node persistent area is not designed for transient,

rapidly changing bindings. These bindings are more static in nature, such as part of an application

setup or configuration, and are not created at run time.

The node persistent area for a node can be read from any server in the node even if the

respective node agent is not running. However, the node agent must be running to update the

2144 Administering WebSphere applications

node persistent area, or for any server outside the node to read from that node persistent partition.

Because every server in a node contains its own copy of the node persistent partition for its node,

any server in the node can look up locally objects bound in that node persistent partition.

Node-scoped configured name bindings are relative to a node’s node persistent root.

Initial context support

All naming operations begin with obtaining an initial context. You can view the initial context as a starting

point in the namespace. Use the initial context to perform naming operations, such as looking up and

binding objects in the namespace.

Initial contexts registered with the ORB as initial references

The server root, cell persistent root, cell root, and node root are registered with the name server’s ORB

and can be used as an initial context. An initial context is used by CORBA and enterprise bean

applications as a starting point for namespace lookups. The keys for these roots as recognized by the

ORB are shown in the following table:

 Root Context Initial Reference Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot, NameService

Node Root NameServiceNodeRoot

A server root initial context is the server root context for the specific server you are accessing. Similarly, a

node root initial context is the node root for the server being accessed.

You can use the previously mentioned keys in CORBA INS object URLs (corbaloc and corbaname) and as

an argument to an ORB resolve_initial_references call. For examples, see CORBA and JNDI

programming examples, which show how to get an initial context.

Default initial contexts

The default initial context depends on the type of client. Different categories of clients and the

corresponding default initial context follow.

v WebSphere Application Server V5 and later JNDI interface implementation

The JNDI interface is used by EJB applications to perform namespace lookups. WebSphere Application

Server clients by default use the WebSphere Application Server CosNaming JNDI plug-in

implementation. The default initial context for clients of this type is the server root of the server specified

by the provider URL. For more details, refer to the JNDI programming examples on getting initial

contexts.

v Other JNDI implementation

Some applications can perform namespace lookups with a non-product CosNaming JNDI plug-in

implementation. Assuming the key NameService is used to obtain the initial context, the default initial

context for clients of this type is the cell root.

v CORBA

The standard CORBA client obtains an initial org.omg.CosNaming.NamingContext reference with the

key NameService. The initial context in this case is the cell root.

Lookup names support in deployment descriptors and thin clients

Server application objects, such as enterprise bean (EJB) homes, are bound relative to the server root

context for the server in which the application is installed. Other objects, such as resources, can also be

Chapter 11. Naming and directory 2145

bound to a specific server root. The names used to look up these objects must be qualified so as to select

the correct server root. This topic discusses what relative and qualified names are, when they can be

used, and how you can construct them.

Relative names

All names are relative to a context. Therefore, a name that can be resolved from one context in the

namespace cannot necessarily be resolved from another context in the namespace. This point is

significant because the system binds objects with names relative to the server root context of the server in

which the application is installed. Each server has its own server root context. The initial Java Naming and

Directory Interface (JNDI) context is by default the server root context for the server identified by the

provider URL used to obtain the initial context. (Typically, the URL consists of a host and port.) For

applications running in a server process, the default initial JNDI context is the server root for that server. A

relative name will resolve successfully when the initial context is obtained from the server which contains

the target object, but it will not resolve successfully from an initial context obtained from another server.

If all clients of a server application run in the same server process as the application, all objects

associated with that application are bound to the same initial context as the clients’ initial context. In this

case, only names relative to the server’s server root context are required to access these server objects.

Frequently, however, a server application has clients that run outside the application’s server process. The

initial context for these clients can be different from the server application’s initial context, and lookups on

the relative names for server objects may fail. These clients need to use the qualified name for the server

objects. This point must be considered when setting up the jndiName values in a Java Platform, Enterprise

Edition (Java EE) client application deployment descriptors and when constructing lookup names in thin

clients. Qualified names resolve successfully from any initial context in the cell.

Qualified names

All names are relative to a context. Here, the term qualified name refers to names that can be resolved

from any initial context in a cell. This action is accomplished by using names that navigate to the same

context, the cell root. The rest of the qualified name is then relative to the cell root and uniquely identifies

an object throughout the cell. All initial contexts in a server (that is, all naming contexts in a server

registered with the ORB as an initial reference) contain a binding with the name cell, which links back to

the cell root context. All qualified names begin with the string cell/ to navigate from the current initial

context back to the cell root context.

A qualified name for an object is the same throughout the cell. The name can be topology-based, or some

fixed name bound under the cell persistent root. Topology-based names, described in more detail below,

navigate through the system namespace to reach the target object. A fixed name bound under the cell

persistent root has the same qualified name throughout the cell and is independent of the topology.

Creating a fixed name under the cell persistent root for a server application object requires an extra step

when the server application is installed, but this step eliminates impacts to clients when the application is

moved to a different location in the cell topology. The process for creating a fixed name is described later

in this section.

Generally, you must use qualified names for EJB jndiName values in a Java EE client application

deployment descriptors and for EJB lookup names in thin clients. The only exception is when the initial

context is obtained from the server in which the target object resides. For example, a session bean which

is a client to an entity bean can use a relative name if the two beans run in the same server. If the session

bean and entity beans run in different servers, the jndiName for the entity bean must be qualified in the

session bean’s deployment descriptors. The same requirement may be true for resources as well,

depending on the scope of the resource.

v Topology-based names

2146 Administering WebSphere applications

The system namespace partition in a cell’s namespace reflects the cell’s topology. This structure can be

navigated to reach any object bound into the cell’s namespace. Topology-based qualified names include

elements from the topology which reflect the object’s location within the cell.

For a system-bound object, such as an EJB home, the form for a topology-based qualified name

depends on whether the object is bound to a single server or cluster. Both forms are described below.

Single server

An object bound in a single server has a topology-based qualified name of the following form:

cell/nodes/nodeName/servers/serverName/relativeJndiName

where nodeName and serverName are the node name and server name for the server where

the object is bound, and relativeJndiName is the unqualified name of the object; that is, the

object’s name relative to its server’s server root context.

Server cluster

An object bound in a server cluster has a topology-based qualified name of the following form:

cell/clusters/clusterName/relativeJndiName

where clusterName is the name of the server cluster where the object is bound, and

relativeJndiName is the unqualified name of the object; that is, the object’s name relative to a

cluster member’s server root context.

v Fixed names

It is possible to create a fixed name for a server object so that the qualified name is independent of the

cell topology. This quality is desirable when clients of the application run in other server processes or as

pure clients. Fixed names have the advantage of not changing if the object is moved to another server.

The jndiName values in deployment descriptors for a Java EE client application can reference the

qualified fixed name for a server object regardless of the cell topology on which the client or server

application is being installed.

Defining a cell-wide fixed name for a server application object requires an extra step after the server

application is installed. That is, a binding for the object must be created under the cell persistent root. A

fixed name bound under the cell persistent root can be any name, but all names under the cell

persistent root must be unique within the cell because the cell persistent root is global to the entire cell.

A qualified fixed name has the form:

cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

The binding can be created programmatically (for example, using JNDI). However, it is probably more

convenient to configure a cell-scoped binding for the server object.

You must keep the programmatic or configured binding up-to-date. Configured EJB bindings are based

on the location of the enterprise bean within the cell topology, and moving the EJB application to

another server, for example, requires the configured binding to be updated. Similar changes affect an

EJB home reference programmatically bound so that the fixed name would need to be rebound with a

current reference. However, for Java EE clients, the jndiName value for the object, and for thin clients,

the lookup name for the object, remains the same. In other words, clients that access objects by fixed

names are not affected by changes to the configuration of server applications they access.

Using lookup names in deployment descriptor bindings

Java EE applications can contain deployment descriptors, such as ejb-ref, resource-ref, and

resource-env-ref, that are used to declare various types of references. These reference declarations define

java:comp/env lookup names that are available to corresponding Java EE components. Each

java:comp/env lookup name must be mapped to a lookup name in the global name space, relative to the

server root context, which is the default initial JNDI context.

If a reference maps to an object that is bound under the server root context for the same server as the

component that is executing the lookup, you can use a relative lookup name. If a reference maps to an

Chapter 11. Naming and directory 2147

object that is bound under the server root context of another server, you must qualify the lookup name. For

example, you must qualify a lookup name if a servlet, that is running on one server, declares an ejb-ref for

an EJB that is running on another server. Similarly, if the reference maps to an object that is bound into a

persistent partition of the name space, or to an object that is bound through a cell-scoped or node-scoped

configured name space binding, you must use a qualified name.

You can specify deployment descriptor reference binding values when you install the application, and edit

them after the application is installed. If you need to change the JNDI lookup name a reference maps to,

in the administrative console, click Applications > Enterprise Applications > application_name. In the

References section, there are links that correspond to the various reference types, such as EJB references

and Resource environment entry references, that are declared by this application. Click on the link for the

reference type that you need to change, and then specify a new value in the Target Resource JNDI

Name field.

JNDI support in WebSphere Application Server

The product includes a name server to provide shared access to Java components, and an

implementation of the javax.naming JNDI package which supports user access to the name server through

the Java Naming and Directory Interface (JNDI) naming interface.

WebSphere Application Server does not provide implementations for:

v javax.naming.directory or

v javax.naming.ldap packages

Also, WebSphere Application Server does not support interfaces defined in the javax.naming.event

package.

However, to provide access to LDAP servers, the development kit shipped with WebSphere Application

Server supports the Sun Microsystems implementation of:

v javax.naming.ldap and

v com.sun.jndi.ldap.LdapCtxFactory

The WebSphere Application Server JNDI implementation is based on the JNDI interface, and was tested

with the Sun Microsystems JNDI Service Provider Interface (SPI).

The default behavior of this JNDI implementation is adequate for most users. However, users with specific

requirements can control certain aspects of JNDI behavior.

Configured name bindings

Administrators can configure bindings into the namespace. A configured binding is different from a

programmatic binding in that the system creates the binding every time a server is started, even if the

target context is in a transient partition.

Administrators can add name bindings to the namespace through the configuration. Name servers add

these configured bindings to the namespace view, by reading the configuration data for the bindings.

Configuring bindings is an alternative to creating the bindings from a program. Configured bindings have

the advantage of being created each time a server starts, even when the binding is created in a transient

partition of the namespace. Cell-scoped configured bindings provide a fixed qualified name for server

application objects.

Scope

You can configure a binding at one of the following four scopes: cell, node, server, or cluster. Cell-scoped

bindings are created under the cell persistent root context. Node-scoped bindings are created under the

2148 Administering WebSphere applications

node persistent root context for the specified node. Server-scoped bindings are created under the server

root context for the selected server. Cluster-scoped bindings are created under the server root context in

each member of the selected cluster.

The scope you select for new bindings depends on how the binding is to be used. For example, if the

binding is not specific to any particular node, cluster, or server, or if you do not want the binding to be

associated with any specific node, cluster, or server, a cell-scoped binding is a suitable scope. Defining

fixed names for enterprise beans to create fixed qualified names is just such an application. If a binding is

to be used only by clients of an application running on a particular server (or cluster), or if you want to

configure a binding with the same name on different servers (or clusters) which resolve to different objects,

a server-scoped (or cluster-scoped) binding would be appropriate. Note that two servers or clusters can

have configured bindings with the same name but resolve to different objects. At the cell scope, only one

binding with a given name can exist.

Intermediate contexts

Intermediate contexts created with configured bindings are read-only. For example, if an EJB home binding

is configured with the name some/compound/name/ejbHome, the intermediate contexts some, some/compound,

and some/compound/name will be created as read-only contexts. You cannot add, update, or remove any

read-only bindings.

The configured binding name cannot conflict with existing bindings. However, configured bindings can use

the same intermediate context names. Therefore, a configured binding with the name

some/compound/name2/ejbHome2 does not conflict with the previous example name.

Configured binding types

Types of objects that you can bind follow:

EJB: EJB home installed in some server in the cell

The following data is required to configure an EJB home binding:

v JNDI name of the EJB server or server cluster where the enterprise bean is deployed

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root.

A cell-scoped EJB binding is useful for creating a fixed lookup name for an enterprise bean so that

the qualified name is not dependent on the topology.

Note: In standalone servers, an EJB binding resolving to another server cannot be configured

because the name server does not read configuration data for other servers. That data is

required to construct the binding.

CORBA: CORBA object available from some CosNaming name server

You can identify any CORBA object bound into some INS compliant CosNaming server with a

corbaname URL. The referenced object does not have to be available until the binding is actually

referenced by some application.

 The following data is required in order to configure a CORBA object binding:

v The corbaname URL of the CORBA object

v An indicator if the bound object is a context or leaf node object (to set the correct CORBA

binding type of context or object)

v Target root for the configured binding

v The name of the configured binding, relative to the target root

Indirect: Any object bound in WebSphere Application Server namespace accessible with JNDI

Besides CORBA objects, this includes javax.naming.Referenceable, javax.naming.Reference, and

java.io.Serializable objects. The target object itself is not bound to the namespace. Only the

information required to look up the object is bound. Therefore, the referenced name server does

Chapter 11. Naming and directory 2149

not have to be running until the binding is actually referenced by some application. The following

data is required in order to configure an indirect JNDI lookup binding:

v JNDI provider URL of name server where object resides

v JNDI lookup name of object

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root.

A cell-scoped indirect binding is useful when creating a fixed lookup name for a resource so that

the qualified name is not dependent on the topology. You can also achieve this topology by

widening the scope of the resource definition.

String: String constant

You can configure a binding of a string constant. The following data is required to configure a

string constant binding:

v String constant value

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root

Namespace federation

Federating namespaces involves binding contexts from one namespace into another namespace.

For example, assume that a namespace, Namespace 1, contains a context under the name a/b. Also

assume that a second namespace, Namespace 2, contains a context under the name x/y. (See the

following illustration.) If context x/y in Namespace 2 is bound into context a/b in Namespace 1 under the

name f2, the two namespaces are federated. Binding f2 is a federated binding because the context

associated with that binding comes from another namespace. From Namespace 1, a lookup of the name

a/b/f2 returns the context bound under the name x/y in Namespace 2. Furthermore, if context x/y

contains an enterprise bean (EJB) home bound under the name ejb1, the EJB home can be looked up

from Namespace 1 with the lookup name a/b/f2/ejb1. Notice that the name crosses namespaces. This

fact is transparent to the naming client.

Initial Context

a

Local Context

Local Context

Federated

Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

2150 Administering WebSphere applications

In a product namespace, you can create federated bindings with the following restrictions:

v Federation is limited to CosNaming name servers. A product name server is a Common Object Request

Broker Architecture (CORBA) CosNaming implementation. You can create federated bindings to other

CosNaming contexts. You cannot, for example, bind contexts from an LDAP name server

implementation.

v If you use JNDI to federate the namespace, you must use a WebSphere Application Server initial

context factory to obtain the reference to the federated context. If you use some other initial context

factory implementation, you might not be able to create the binding or the level of transparency might

be reduced.

v A federated binding to a non-product naming context has the following functional limitations:

– JNDI operations are restricted to the use of CORBA objects. For example, you can look up EJB

homes, but you cannot look up non-CORBA objects such as data sources.

– JNDI caching is not supported for non-product namespaces. This restriction affects the performance

of lookup operations only.

– If security is enabled, the producr does not support federated bindings to non-product namespaces.

v Do not federate two product standalone server namespaces. Incorrect behavior might result. If you want

to federate product namespaces, use servers running under the Network Deployment package of

WebSphere Application Server.

v When federating the namespaces of two cells running a Network Deployment package of WebSphere

Application Server, the names of the cells must be different. Otherwise, incorrect behavior can result.

Naming roles

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the

CosNaming service.

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. They affect the

content of the name space. Generally two ways are acceptable in which client programs result in

CosNaming calls. The first is through the Java Naming and Directory Interface (JNDI) methods. The

second is CORBA clients invoking CosNaming methods directly.

The following security roles exist. However, the roles have an authority level from low to high as shown in

the following list. The list also provides the security-related interface methods for each role. The interface

methods that are not listed are either not supported or not relevant to security.

v CosNamingRead. Users who are assigned the CosNamingRead role can do queries of the name

space, such as through the JNDI lookup method. The Everyone special-subject is the default policy for

this role.

 Table 36. CosNamingRead role packages and interface methods

Package Interface methods

javax.naming v Context.list

v Context.listBindings

v Context.lookup

v NamingEnumeration.hasMore

v NamingEnumeration.next

org.omg.CosNaming v NamingContext.list

v NamingContext.resolve

v BindingIterator.next_one

v BindingIterator.next_n

v BindingIterator.destroy

v CosNamingWrite. Users who are assigned the CosNamingWrite role can do write operations (such as

JNDI bind, rebind, or unbind) plus CosNamingRead operations. As a default policy, Subjects are not

assigned this role.

Chapter 11. Naming and directory 2151

Table 37. CosNamingWrite role packages and interface methods

Package Interface methods

javax.naming v Context.bind

v Context.rebind

v Context.rename

v Context.unbind

org.omg.CosNaming v NamingContext.bind

v NamingContext.bind_context

v NamingContext.rebind

v NamingContext.rebind_context

v NamingContext.unbind

v CosNamingCreate. Users who are assigned the CosNamingCreate role are allowed to create new

objects in the name space through JNDI createSubcontext operations plus CosNamingWrite operations.

As a default policy, Subjects are not assigned this role.

 Table 38. CosNamingCreate role packages, interface methods

Package Interface methods

javax.naming Context.createSubcontext

org.omg.CosNaming NamingContext.bind_new_context

v CosNamingDelete. Users who are assigned the CosNamingDelete role can destroy objects in the

name space, for example byusing the JNDI destroySubcontext method and CosNamingCreate

operations. As a default policy, Subjects are not assigned this role.

 Table 39. CosNamingDelete role packages and interface methods

Package Interface methods

javax.naming Context.destroySubcontext

org.omg.CosNaming NamingContext.destroy

Note: The javax.naming package applies to the CosNaming JNDI service provider only. All of the variants

of a JNDI interface method have the same role mapping.

If the caller is not authorized, the packages listed in the previous tables exhibit the following behavior:

javax.naming

This package creates the javax.naming.NoPermissionException exception, which maps

NO_PERMISSION from the CosNaming method invocation to NoPermissionException.

org.omg.CosNaming

This package creates the org.omg.CORBA.NO_PERMISSION exception.

Users, groups, or the AllAuthenticated and Everyone special subjects can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, you

must restart the server for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to Naming roles because it is more flexible and easier to

administer in the long run. By mapping a group to a naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

If a user is assigned a particular naming role and that user is a member of a group that is assigned a

different naming role, the user is granted the most permissive access between the role that is assigned

and the role the group is assigned. For example, assume that the MyUser user is assigned the

CosNamingRead role. Also, assume that the MyGroup group is assigned the CosNamingCreate role. If the

2152 Administering WebSphere applications

MyUser user is a member of the MyGroup group, the MyUser user is assigned the CosNamingCreate role

because the user is a member of the MyGroup group. If the MyUser user is not a member of the MyGroup

group, is assigned the CosNamingRead role.

The CosNaming authorization policy is only enforced when administrative security is enabled. When

administrative security is enabled, attempts to do CosNaming operations without the proper role

assignment result in a org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

In WebSphere Application Server, each CosNaming function is assigned to one role only. Therefore, users

who are assigned the CosNamingCreate role cannot query the name space unless they also are assigned

the CosNamingRead role. In most cases, a creator needs three roles assigned: CosNamingRead,

CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for

the creator example in above have been included in CosNamingCreate role. In most cases, WebSphere

Application Server administrators do not have to change the roles assignment for every user or group

when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

doing so might result in unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime. Typically,

J2EE applications access the name space and the identity is that of the user that authenticated to

WebSphere Application Server when he J2EE application is accessed. Unless the J2EE application

provider clearly communicates the expected naming roles, fully consider changing the default naming

authorization policy.

Foreign cell bindings

If you have applications in a cell that access other applications in another cell, you can configure a foreign

cell name binding for the other cell. A foreign cell name binding is a context binding that resolves to the

Cell Root context of the other cell. All applications in the local cell can look up objects in the foreign cell

through the foreign cell binding.

Foreign cell bindings limit bootstrap address information for a foreign cell to a single location, instead of

placing in the local cell’s application deployment data the bootstrap address information contained in every

foreign cell reference. If the bootstrap address for the foreign cell changes, you only need to update the

foreign cell binding. You do not need to update the deployment data for any application in the local cell

that looks up application objects in the foreign cell through the foreign cell binding.

For example, assume the foreign cell CellB has a cell-scoped EJB namespace binding configured with a

name in the namespace of ejb/AccountHome. Applications running in CellB would look up the home with a

JNDI name of cell/persistent/ejb/AccountHome. (J2EE applications would actually use a java:comp/env

name that maps to that JNDI name through deployment descriptor data.) If you configure a foreign cell

binding to CellB in the local cell, applications running in the local cell can look up AccountHome with a

JNDI name of cell/cells/CellB/persistent/ejb/AccountHome. In both lookup names, the suffix

persistent/ejb/AccountHome is relative to the Cell Root context in CellB.

The foreign cell and the local cell must have different names.

Naming and directories: Resources for learning

Additional information and guidance on naming and directories is available on various Internet sites.

Use the following links to find relevant supplemental information about naming and directories. The

information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

The naming service provided with WebSphere Application Server Versions 6.x and 7.0 is the same as that

provided for Version 5, thus information on the Version 5.0 naming and directories applies to Versions 6.x

and 7.0.

Chapter 11. Naming and directory 2153

The following links are provided for convenience. Often, the information is not specific to the IBM

WebSphere Application Server product, but is useful all or in part for understanding the product. When

possible, links are provided to technical papers and Redbooks that supplement the broad coverage of the

release documentation with in-depth examinations of particular product areas.

Programming instructions and examples

v Naming in WebSphere Application Server V5: Impact on Migration and Interoperability,

http://www.ibm.com/developerworks/websphere/library/techarticles/0305_weiner/weiner.html

v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,

http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications,

http://www.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

Programming specifications

v Specifications and API documentation

Configuring name servers

Name servers add configured name space bindings to the name space view by reading the configuration

data for the bindings. If you use configured bindings, you do not need to create name space bindings from

a program.

About this task

You can configure a name server to provide a display name and initial state for an application server, as

well as specify custom properties for the name server. Configure a name server using the administrative

console.

1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name → Administration → Server components → Name server.

2. Edit the fields as desired.

All of the fields are mandatory.

3. To make other changes, click Custom properties and configure a custom property.

4. Click OK to register your changes.

Name server settings

Use this page to configure Naming Service Provider settings for the application server. On multiple-server

products, you also can configure Naming Service Provider settings for a deployment manager or node

agent.

To view this administrative console page, click one of the following paths:

v Servers → Server Types → WebSphere application servers → server_name → Administration →

Server components → Name server

v Servers → Server Types → Version 5 JMS servers → server_name → Administration → Server

components → Name server

v System administration → Deployment manager → Administration → Server components → Name

server

v System administration → Node agents → node_agent_name → Administration → Server components

→ Name server

Name

Specifies the display name for the server component.

2154 Administering WebSphere applications

Data type String

Initial state

Specifies the execution state. The options are: Started and Stopped.

 Data type String

Default Started

Configuring namespace bindings

Instead of creating namespace bindings from a program, you can configure namespace bindings using the

administrative console. Name servers add these configured bindings to the namespace view by reading

the configuration data for the bindings. Configured bindings are created each time a server starts, even

when the binding is created in a transient partition of the namespace. One major use of configured

bindings is to provide fixed qualified names for server application objects.

Before you begin

Assemble and deploy your application onto an application server. If the application is a client to an

application running in another server process, specify qualified jndiName values for the server objects of

the other application during assembly or deployment. For more information on qualified names, refer to

“Lookup names support in deployment descriptors and thin clients” on page 2145.

About this task

A deployed application requires qualified fixed names if the application is accessed by thin client

applications or by Java Platform, Enterprise Edition (Java EE) client applications or server applications

running in another server process.

When you configure a namespace binding, you create a qualified fixed name for a server object. A fixed

name does not change if the object is moved to another server. A qualified fixed name with a cell scope

has the following form:

cell/persistent/fixedName

The fixedName is an arbitrary fixed name.

You can configure namespace bindings, and thus qualified fixed names, for the following objects:

v A string constant value

v An enterprise bean (EJB) home installed on a server in the cell

v A CORBA object available from a CosNaming name server

v An object bound in a WebSphere Application Server namespace that is accessible using a Java Naming

and Directory Interface (JNDI) indirect lookup

To view or configure a namespace binding for an object of a deployed application, complete the following:

1. Go to the Name space bindings page.

In the administrative console, click Environment → Naming → Name space bindings.

2. Select the desired scope.

The scope determines where in the namespace binding is created. It also affects which name servers

contain the binding in the namespace that they manage. Regardless of the scope, a namespace

binding is accessible from all name servers in the cell. However, the scope can affect whether the

lookup can be resolved locally by a name server or whether the name server must make a remote call

to another name server to resolve the binding.

Chapter 11. Naming and directory 2155

Only namespace bindings created with the selected scope are visible in the collection table on the

page. By changing the scope, you can see and create bindings in other scopes.

a. Select a scope.

If you are creating a new namespace binding, refer to the table below as a guide in selecting a

scope:

 Scope Description

Cell Cell-scoped bindings are created under the cell persistent root context. Select Cell if the namespace

binding is not specific to any particular node or server, or if you do not want the binding to be associated

with any specific node, cluster or server. For example, you can use cell-scoped bindings to create fixed

qualified names for enterprise beans. Fixed qualified names do not have any node, cluster or server

names embedded within them.

Cell-scoped bindings are created in all processes in the cell that contain a name server, specifically in

administrative agent, deployment manager, node agent, and application server processes. Therefore all

name servers in the cell can resolve those bindings locally. No remote invocations to other name servers

are necessary to resolve the bindings.

Node Node-scoped bindings are created under the node persistent root context for the selected node. Select

Node if the namespace binding is specific to a particular node, or if you want the binding to be associated

with a specific node.

Node-scoped bindings are created in the node agent and all application server processes in the selected

node. Therefore, all name servers in the node can resolve those bindings locally. No remote invocations

to other name servers are necessary to resolve the bindings. However, name servers in other nodes must

make remote calls to the node agent in the selected node in order to resolve the bindings. For example,

in order for a name server running in node node1 to resolve the name cell/nodes/node2/persistent/
nodeScopedConfiguredBinding, the name server must make a remote call to the node agent running in

node2. Any name server running in node2 can resolve that name without invoking any other name

servers.

Server Server-scoped bindings are created under the server root context for the selected server. Select Server if

a binding is to be used only by clients of an application running on a particular server, or if you want to

configure a binding with the same name on different servers which resolve to different objects. Note that

two servers can have configured bindings with the same name but resolve to different objects.

Server-scoped bindings are created in the process of the selected application server. Therefore, the name

server running in the selected application server can resolve those bindings locally. No remote invocations

to other name servers are necessary to resolve the bindings. However, all other name servers in the cell

must make remote calls to the selected server in order to resolve the bindings. For example, in order for

the name server running in server1 in node node1 to resolve the name cell/nodes/node1/servers/
server2/serverScopedConfiguredBinding, it must make a remote call to server2 in node1. Only the name

server in server2 in node1 can resolve that name without invoking any other name servers.

Cluster Cluster-scoped bindings are created under the server root context for all members in the selected cluster.

Select Cluster if the namespace binding is specific to a particular cluster, or if you want the binding to be

associated with a specific cluster.

Cluster-scoped bindings are created in all member processes of the selected cluster. Therefore, the name

server running in each member of the selected cluster can resolve those bindings locally. No remote

invocations to other name servers are necessary to resolve the bindings. However, all other name servers

in the cell must make remote calls to the node agent in the selected node in order to resolve the

bindings. For example, in order for a name server running in any member of cluster1 to resolve the name

cell/clusters/cluster2/clusterScopedConfiguredBinding, it must make a remote call to some member

in cluster2. Only the name servers in cluster2 members can resolve that name without invoking any other

name servers.

Server-scoped bindings in cluster members override cluster-scoped bindings with the same binding name.

However, cluster members generally should all be configured identically, and server-scoped bindings

should not be required for individual cluster members.

b. Click Apply.

2156 Administering WebSphere applications

3. Create a new namespace binding.

a. Open the New Name Space Binding wizard.

On the Name space bindings page, click New.

b. On the Specify binding type panel, select the binding type.

The namespace binding can be for a constant string value, an EJB home, a CORBA CosNaming

NamingContext or CORBA leaf node object, or an object that you can look up indirectly using

JNDI.

c. On the Specify basic properties panel, specify the binding identifier and other properties for the

binding.

For property descriptions, refer to the following:

v “String binding settings” on page 2160

v “EJB binding settings” on page 2161

v “CORBA object binding settings” on page 2162

v “Indirect lookup binding settings” on page 2163

d. Optional: On the Other context properties panel, specify new properties to be passed to the

javax.naming.InitialContext constructor.

This step applies to indirect lookup bindings only.

e. On the Summary panel, verify the settings and click Finish.

The name of the new binding is displayed in the collection table on the Name space bindings page.

4. Optional: Edit a previously created binding.

a. From the collection table on the Name space bindings page, click the name of the binding that you

want to edit.

b. Edit the binding properties as desired. Step 3(c) provides links to property descriptions.

c. Click OK.

Results

Cell-scoped bindings are created under the cell persistent root context. Node-scoped bindings are created

under the node persistent root context for the specified node. Server-scoped bindings are created under

the server root context for the selected server. Cluster-scoped bindings are created under the server root

context for each member of the selected cluster.

Name space binding collection

Use this page to configure a name binding of an EJB, a CORBA CosNaming NamingContext, a CORBA

leaf node object, an object that you can look up using Java Naming and Directory Interface (JNDI), or a

constant string value.

Binding information for configured bindings is stored in the configuration and applied upon startup of the

name server for each server within the scope of the binding.

To view the Name space bindings page, click Environment → Naming → Name space bindings.

Click the check boxes to select one or more of the bindings in your collection. Use the buttons to control

the selected bindings.

When creating a new binding, select a scope before clicking New. The Scope setting filters what bindings

are listed in the collection as well as sets the scope of the new binding.

Name

Shows the names given to uniquely identify these configured bindings.

Chapter 11. Naming and directory 2157

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

On multiple-server installations, the configured binding can also be cluster-scoped. For cluster-scoped

bindings, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Valid values are String, EJB, CORBA, and Indirect. This field is for

information purposes only and cannot be updated.

Specify binding type settings

Use this panel to select the type of namespace binding that you want.

To view this administrative console panel, click Environment → Naming → Name space bindings → New.

You can configure a namespace binding for any of the following objects:

v A string constant value

v An enterprise bean (EJB) home installed on a server in the cell

v A CORBA object available from a CosNaming name server

v An object bound in a WebSphere Application Server namespace that is accessible using a Java Naming

and Directory Interface (JNDI) indirect lookup

On this panel, select a binding type and then click Next.

Binding type

Specifies the type of binding configured.

2158 Administering WebSphere applications

String Select String to configure a namespace binding for a string constant value.

To configure a String binding, you need the following information:

v The string constant value

v The target root context for the configured binding (scope)

v The name of the configured binding, relative to the target root context

You can create a file that maps multiple variable names to values and specify the file name for the

String value. By default, a name server performs variable substitution on the string value of a String

namespace binding. Thus, by default, the com.ibm.websphere.naming.expandStringBindings property is

set to true and a name server expands the value of String bindings.

Note: Variable substitution can result in errors or unexpected changes to a string. For example, with

variable substitution, a $$ string is expanded as $. You can disable variable substitution and cause the

name server to treat the String value as a literal or constant. Create a custom property with Name set

to com.ibm.websphere.naming.expandStringBindings and Value set to false. You can define a custom

property at the cell, node, server, or name server scope. Create the custom property on a console page

for the appropriate scope:

Cell scope

Click System administration → Cell → Custom properties → New.

Node scope

Click System administration → Nodes → node_name → Custom properties → New.

Server scope

Click Application servers → server_name → Administration → Custom properties → New.

Name server scope

Click Application servers → server_name → Administration → Server components → Name

server → Custom properties → New.

All name servers within the specified custom property scope apply the setting. Settings at a narrower

scope override settings at a wider scope. For example, on multiple-server products, settings at the node

scope override settings at the cell scope. Select a custom property scope that is at least as wide as the

namespace binding scope. Thus, to prevent variable expansion in a cell-scoped String namespace

binding, define the custom property at the cell scope. If the custom property has a scope narrower than

the namespace binding, only name servers within the scope prevent variable expansion in the String

namespace binding. Name servers outside of the scope expand the variable reference and handle the

reference differently.

EJB Select EJB to configure a namespace binding for an EJB home installed on a server in the cell. Use a

cell-scoped EJB binding to create a fixed qualified lookup name for an enterprise bean. A fixed qualified

lookup name is not dependent on the cell topology.

To configure an EJB home binding, you need the following information:

v The JNDI name of the EJB server or server cluster where the enterprise bean is deployed

v The target root context for the configured binding (scope)

v The name of the configured binding, relative to the target root context

On stand-alone servers, do not configure an EJB binding that resolves to another server. The name

server cannot read configuration data for other servers. That data is required to construct the binding.

CORBA Select CORBA to configure a namespace binding for a Common Object Request Broker: Architecture

and Specification (CORBA) object available from a Object Management Group (OMG) Interoperable

Naming (CosNaming) name server. Identify a CORBA object bound into an INS compliant CosNaming

server with a corbaname URL. The referenced object does not have to be available until the binding is

actually referenced by an application.

To configure a CORBA binding, you need the following information:

v The corbaname URL of the CORBA object

v An indicator if the bound object is a context or leaf node object (to set the correct CORBA binding

type of context or object)

v The target root context for the configured binding

v The name of the configured binding, relative to the target root context

Chapter 11. Naming and directory 2159

Indirect Select Indirect to configure a namespace binding for an object bound in a WebSphere Application

Server namespace that is accessible using a JNDI indirect lookup. You can select Indirect for CORBA

objects as well as for javax.naming.Referenceable, javax.naming.Reference, and java.io.Serializable

objects.

The target object itself is not bound to the namespace. Only the information required to look up the

object is bound. Therefore, the referenced name server does not have to be running until the binding is

actually referenced by some application.

To configure an indirect JNDI lookup binding, you need the following information:

v The JNDI provider URL of the name server where the object resides

v The JNDI lookup name of the object

v The target root context for the configured binding (scope)

v The name of the configured binding, relative to the target root context

The following information is optional:

v The JNDI initial context factory class name. The default is the WebSphere Application Server initial

context factory, com.ibm.websphere.naming.WsnInitialContextFactory.

v Additional properties to pass to the javax.naming.InitialContext constructor.

A cell-scoped indirect binding is useful when creating a fixed qualified lookup name for a bound object

so that the qualified lookup name is not dependent on the cell topology.

String binding settings

Use this page to view or configure a string binding.

To view this console page, click Environment → Naming → Name space bindings →

string_namespace_binding. The settings on this page are similar to those on the Specify basic

properties panel of the New name space binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

On multiple-server installations, the configured binding can also be cluster-scoped. For cluster-scoped

bindings, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

Name in name space

Specifies the name used for this binding in the namespace. This name can be a simple or compound

name depending on the portion of the namespace where this binding is configured.

2160 Administering WebSphere applications

String value

Specifies the string to be bound into the namespace.

You can create a file that maps multiple variable names to values and specify the file name for the String

value. By default, a name server performs variable substitution on the string value of a String namespace

binding. Thus, by default, the com.ibm.websphere.naming.expandStringBindings property is set to true

and a name server expands the value of String bindings.

Note: Variable substitution can result in errors or unexpected changes to a string. For example, with

variable substitution, a $$ string is expanded as $. You can disable variable substitution and cause

the name server to treat the String value as a literal or constant. Create a custom property with

Name set to com.ibm.websphere.naming.expandStringBindings and Value set to false. You can

define a custom property at the cell, node, server, or name server scope. Create the custom

property on a console page for the appropriate scope:

Cell scope

Click System administration → Cell → Custom properties → New.

Node scope

Click System administration → Nodes → node_name → Custom properties → New.

Server scope

Click Application servers → server_name → Administration → Custom properties → New.

Name server scope

Click Application servers → server_name → Administration → Server components →

Name server → Custom properties → New.

All name servers within the specified custom property scope apply the setting. Settings at a

narrower scope override settings at a wider scope. For example, on multiple-server products,

settings at the node scope override settings at the cell scope. Select a custom property scope that

is at least as wide as the namespace binding scope. Thus, to prevent variable expansion in a

cell-scoped String namespace binding, define the custom property at the cell scope. If the custom

property has a scope narrower than the namespace binding, only name servers within the scope

prevent variable expansion in the String namespace binding. Name servers outside of the scope

expand the variable reference and handle the reference differently.

EJB binding settings

Use this page to configure a new enterprise bean (EJB) binding, or to view or edit an existing EJB binding.

To view this console page, click Environment → Naming → Name space bindings →

EJB_namespace_binding. The settings on this page are similar to those on the Specify basic

properties panel of the New name space binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

On multiple-server installations, the configured binding can also be cluster-scoped. For cluster-scoped

bindings, the starting context is the server’s server root context.

Chapter 11. Naming and directory 2161

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

Name in name space

Specifies the name used for this binding in the namespace. This name can be a simple or compound

name depending on the portion of the namespace where this binding is configured.

Enterprise bean location

Specifies whether the enterprise bean is running in a single server. If Single server is specified, type the

node name.

On multiple-server installations, the enterprise bean can run in a single server or a server cluster.

Server

Specifies the name of the server in which the enterprise bean is configured.

On multiple-server installations, the server can be a cluster or non-clustered server in which the enterprise

bean is configured.

JNDI name

Specifies the Java Naming and Directory Interface (JNDI) name of the deployed enterprise bean. It is the

bean’s JNDI name that is in the enterprise bean bindings, not the java:comp name.

CORBA object binding settings

Use this page to configure a new name binding of a CORBA object binding, or to view or edit an existing

CORBA object binding.

To view this console page, click Environment → Naming → Name space bindings →

CORBA_namespace_binding. The settings on this page are similar to those on the Specify basic

properties panel of the New name space binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is for information purposes and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

On multiple-server installations, the configured binding can also be cluster-scoped. If the configured

binding is cluster-scoped, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

2162 Administering WebSphere applications

Name in name space

Specifies the name used for this binding in the namespace. This name can be a simple or compound

name depending on the portion of the namespace where this binding is configured.

Corbaname URL

Specifies the CORBA name URL string identifying where the object is bound in a CosNaming server.

Federated context

Specifies whether the target is a CosNaming context (true) or a leaf node object (false).

 true The target object is bound with a context CORBA binding

type. If the corbaname URL does not resolve to a

NamingContext, an error occurs when the binding is first

used (which is when the URL is first resolved).

false The target object is bound with an object CORBA binding

type.

Indirect lookup binding settings

Use this page to configure a new indirect lookup name binding, or to view or edit an existing indirect

lookup binding.

To view this console page, click Environment → Naming → Name space bindings →

indirect_lookup_namespace_binding. The settings on this page are similar to those on the Specify

basic properties panel of the New name space binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

On multiple-server installations, the configured binding can also be cluster-scoped. For cluster-scoped

bindings, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

Name in name space

Specifies the name used for this binding in the namespace. This name can be a simple or compound

name depending on the portion of the namespace where this binding is configured.

Provider URL

Specifies the provider URL string needed to obtain a Java Naming and Directory Interface (JNDI) initial

context.

Chapter 11. Naming and directory 2163

JNDI name

Specifies the name used to look up the target object from the initial context.

Initial context factory name

Specifies the class name of the initial context factory used to obtain a JNDI initial context.

This field is optional. If no factory is specified, the WebSphere Application Server initial context factory is

used.

If the scope of the indirect lookup binding includes servers or nodes previous to Version 6.1, the initial

context factory name and other context factory properties are not shown on the console page.

Other context properties settings

Use this page to specify properties to be passed to the javax.naming.InitialContext constructor for an

indirect Java Naming and Directory Interface (JNDI) lookup name binding. Completion of this page is

optional. The properties are in addition to the basic properties specified for an indirect namespace binding.

To specify new context properties and view this page, click Environment → Naming → Name space

bindings → New → Indirect → indirect_binding_basic_properties → Specify additional context

properties.

Only Version 6.1 and later nodes use these properties. The page is not shown for Version 5.x or 6.0.x

nodes.

To add a property to be passed to the javax.naming.InitialContext constructor when obtaining the initial

JNDI context, specify a name and value pair to be passed to the constructor and click Apply. You can add

multiple name-value properties. The specified properties are displayed in the collection table.

To view existing context properties, click Environment → Naming → Name space bindings →

indirect_binding_name → Other context properties.

If the scope of the indirect lookup binding includes servers or nodes previous to Version 6.1, the initial

context factory name and other context factory properties are not shown on the console page.

Name

Specifies the name (or key) for the property.

Each property name must be unique. If the same name is specified for multiple properties, the value used

is undefined.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in the product.

Value

Specifies the value paired with the specified name.

Description

Specifies information about the name-value pair.

Configuring foreign cell bindings

Configure foreign cell name bindings to enable your applications to access other applications in other cells.

A foreign cell is a cell other than the one in which an application resides. A foreign cell name binding is a

context binding that resolves to the Cell Root context of a foreign cell. All applications in the local cell can

look up objects in the foreign cell through the foreign cell binding.

2164 Administering WebSphere applications

Before you begin

Configure server clusters for failover support as needed.

Migrate any Version 5.x or 6.0.x bootstrap addresses to use Version 6.1 or later foreign cell bindings.

Version 6.1 or later foreign cell bindings enable you to specify more than one bootstrap address and

enhance failover support.

About this task

If applications in the local cell access applications in one or more foreign cells, configure a foreign cell

binding for each foreign cell.

Administrators typically configure a foreign cell binding before they configure any applications with Java

Naming and Directory Interface (JNDI) names that resolve through the binding. However, you can create a

foreign cell binding any time before you start an application that uses the binding.

The foreign cell and the local cell must have different names.

To view or configure a foreign cell binding, use the administrative console.

1. Go to the Foreign cell bindings page.

In the administrative console, click Environment → Naming → Foreign cell bindings.

2. Create a new foreign cell binding.

a. Open the New Foreign Cell Binding wizard.

On the Foreign cell bindings page, click New.

b. On the Specify foreign cell name panel, specify the name of the cell that applications in the local

cell will access.

c. On the Specify bootstrap addresses panel, specify a host name and port for a new bootstrap

address, and then click Apply.

Repeat this step for each bootstrap address that you need. The name of each new bootstrap

address is displayed in the collection table on the Bootstrap addresses page.

d. On the Summary panel, verify the settings and click Finish.

The name of the new binding is displayed in the collection table on the Foreign Cell Bindings page.

3. Optional: Edit a previously created foreign cell binding.

a. From the collection table on the Foreign cell bindings page, click the name of the binding that you

want to edit.

b. On the foreign cell binding settings page, edit the foreign cell name as desired.

c. Edit the list of bootstrap addresses used for the foreign cell binding.

1) From the collection table on the Foreign cell bindings page, click foreign_cell_binding_name

→ Bootstrap addresses.

2) On the foreign cell binding settings page, click Bootstrap addresses. The Bootstrap addresses

page opens.

To add a new bootstrap address, click New and specify the host and port.

To delete a bootstrap address, click the check box next to the cell name and click Delete.

To edit an existing bootstrap address, click the address you want to edit. On the bootstrap

address settings page, edit the host and port as desired and click OK to register the change.

Results

Configurations for foreign cell bindings are created or changed as specified.

Chapter 11. Naming and directory 2165

What to do next

Save changes to your administrative configuration. Configure namespace bindings for your applications as

needed.

Migrating bootstrap addresses

WebSphere Application Server Versions 5 and 6.0.x support foreign cell bindings, but support is limited to

a single bootstrap address and you cannot configure foreign cell bindings in the console. The single

bootstrap address used in Versions 5.x and 6.0.x has been deprecated, replaced in Version 6.1 and later

by a list of bootstrap addresses.

Before you begin

Configure server clusters for failover support as needed.

About this task

When a Version 5.x or 6.0.x cell is migrated to Version 6.1 or later, foreign cell binding configurations

initially are left unchanged to maintain compatibility with existing wsadmin scripts. All nodes in the migrated

cell, including those later than Version 6.0.x, continue to use the single bootstrap address setting to create

bindings in the namespace.

This topic describes how to migrate any Version 5.x or 6.0.x bootstrap addresses to use Version 6.1 or

later foreign cell bindings. Version 6.1 and later foreign cell bindings enable you to specify more than one

bootstrap address and enhance failover support.

1. Edit your Version 5.x or 6.0.x foreign cell binding scripts, replacing bootstrapAddress with

bootstrapAddresses, the list property in Version 6.1 and later.

The bootstrap address properties are in the context of the ForeignCell class. The fully qualified name

for the Version 5.x or 6.0.x property now deprecated is the following:

topology.cell:Cell/foreignCells/bootstrapAddress

The fully qualified name for the bootstrap address list property in Version 6.1 and later is the following:

topology.cell:Cell/foreignCells/bootstrapAddresses

Version 6.1 and later foreign cell binding scripts should use the bootstrap address list property,

bootstrapAddresses.

2. Run the convertScriptCompatibility command to convert each single bootstrap address configuration to

a new bootstrap address list configuration containing that single bootstrap address.

Results

In the migrated cell, nodes still running Version 5 or 6.0.x will use one of the addresses in the bootstrap

address list configuration, but no particular one, to create a foreign cell binding in the namespace.

Nodes running at a version later than Version 6.0.x ignore the old single bootstrap address setting in

preference for the bootstrap address list. If the convertScriptCompatibility command encounters a foreign

cell binding configuration with the old single bootstrap address and the newer bootstrap address list both

set, the old single bootstrap address is removed and the bootstrap address list is left unchanged.

What to do next

Click Environment → Naming → Foreign cell bindings → foreign_cell_binding_name → Bootstrap

addresses in the console and examine the collection on the Bootstrap addresses page to see if single

bootstrap addresses migrated to the bootstrap address list.

2166 Administering WebSphere applications

Console foreign cell binding panels in Version 6.1 and later only display and update the bootstrap address

list. They do not change the single bootstrap address configuration setting. If you use the console to edit a

foreign cell binding configuration that existed when the cell was initially migrated, and you have not yet run

the convertScriptCompatibility command, the updated binding configuration contains both the original

single bootstrap address and whatever list of bootstrap addresses you configure in the console. In the

migrated cell, nodes still running at Version 5.x or 6.0.x continue to use the single bootstrap address

configuration setting to bind foreign cell bindings in the namespace.

Foreign cell binding collection

Use this page to manage foreign cell bindings.

If you have applications in a cell that access other applications in another cell, you can configure a foreign

cell name binding for the other cell. A foreign cell name binding is a context binding that resolves to the

Cell Root context of the other cell. All applications in the local cell can look up objects in the foreign cell

through the foreign cell binding.

Foreign cell bindings limit bootstrap address information for a foreign cell to a single location, instead of

placing in the local cell’s application deployment data the bootstrap address information contained in every

foreign cell reference. If the bootstrap address for the foreign cell changes, you only need to update the

foreign cell binding. You do not need to update the deployment data for any application in the local cell

that looks up application objects in the foreign cell through the foreign cell binding.

For example, assume the foreign cell CellB has a cell-scoped EJB namespace binding configured with a

name in the namespace of ejb/AccountHome. Applications running in CellB would look up the home with a

JNDI name of cell/persistent/ejb/AccountHome. (Java EE applications use a java:comp/env name that

maps to that JNDI name through deployment descriptor data.) If you configure a foreign cell binding to

CellB in the local cell, applications running in the local cell can look up AccountHome with a JNDI name of

cell/cells/CellB/persistent/ejb/AccountHome. In both lookup names, the suffix persistent/ejb/
AccountHome is relative to the Cell Root context in CellB.

To view the Foreign cell bindings page, click Environment → Naming → Foreign cell bindings.

Click the check boxes to select one or more of the bindings in your collection. Use the buttons to control

the selected bindings.

Foreign cell name

Shows the names given to uniquely identify these foreign cell bindings.

The foreign cell and the local cell must have different names.

Foreign cell binding settings

Use this page to configure a foreign cell binding.

To view this administrative console page, click Environment → Naming → Foreign cell bindings →

foreign_cell_binding. The setting on this page is similar to that on the Specify foreign cell name panel

of the New foreign cell binding wizard.

Foreign cell name

Specifies the name of the foreign cell. The foreign cell name must be different from the cell that contains

the foreign cell binding. Otherwise, incorrect behavior might result.

Bootstrap address collection

Use this page to manage bootstrap addresses for a foreign cell binding. Multiple bootstrap addresses can

enhance the failover support provided by clusters.

Chapter 11. Naming and directory 2167

To view this administrative console panel, click Environment → Naming → Foreign cell bindings →

foreign_cell_binding_name → Bootstrap addresses.

Click the check boxes to select one or more of the bootstrap addresses in your collection. Use the buttons

to control the selected bootstrap addresses.

Host name

Specifies the host name of the administrative agent, deployment manager, node agent, server or cluster

member in the foreign cell that is used for bootstrapping.

Port

Specifies the bootstrap port number for the administrative agent, deployment manager, node agent, server

or cluster member running on the specified host.

Bootstrap address settings

Use this page to specify one or more bootstrap addresses for a foreign cell binding. Multiple bootstrap

addresses can enhance the failover support provided by clusters.

To view this administrative console page, click Environment → Naming → Foreign cell bindings →

foreign_cell_binding_name → Bootstrap addresses → bootstrap_address_host_name. This page is

similar to the Specify bootstrap addresses panel on the new foreign cell binding wizard.

Host name:

Specifies the host name of the administrative agent, deployment manager, node agent, server or cluster

member in the foreign cell that is used for bootstrapping.

 Specify the IP address, domain name server (DNS) host name with domain name suffix, or just the DNS

host name, of the bootstrap host for the deployment manager of the backup cluster.

For example, if the host name is myhost, the fully qualified DNS name can be myhost.myco.com and the IP

address can be 155.123.88.201.

For high availability, specify the bootstrap addresses for all of the cluster members. Otherwise, enter a

single bootstrap address.

Port:

Specifies the bootstrap port number for the administrative agent, deployment manager, node agent, server

or cluster member running on the specified host. The port value is used in conjunction with the host name.

Developing applications that use JNDI

References to enterprise bean (EJB) homes and other artifacts such as data sources are bound to the

WebSphere Application Server name space. These objects can be obtained through Java Naming and

Directory Interface (JNDI). Before you can perform any JNDI operations, you need to get an initial context.

You can use the initial context to look up objects bound to the name space.

About this task

The following examples describe how to get an initial context and how to perform lookup operations.

v Getting the default initial context

v Getting an initial context by setting the provider URL property

v Setting the provider URL property to select a different root context as the initial context

v Looking up an EJB home with JNDI

2168 Administering WebSphere applications

In these examples, the default behavior of features specific to the WebSphere Application Server JNDI

Context implementation is used.

The WebSphere Application Server JNDI context implementation includes special features. JNDI caching

enhances performance of repeated lookup operations on the same objects. Name syntax options offer a

choice of a name syntaxes, one optimized for typical JNDI clients, and one optimized for interoperability

with CosNaming applications. Most of the time, the default behavior of these features is the preferred

behavior. However, sometimes you should modify the behavior for specific situations.

JNDI caching and name syntax options are associated with a javax.naming.InitialContext instance. To

select options for these features, set properties that are recognized by the WebSphere Application Server

initial context factory. To set JNDI caching or name syntax properties which will be visible to the initial

context factory, do the following:

1. Optional: Configure JNDI caches

JNDI caching can greatly increase performance of JNDI lookup operations. By default, JNDI caching is

enabled. In most situations, this default is the desired behavior. However, in specific situations, use the

other JNDI cache options.

Objects are cached locally as they are looked up. Subsequent lookups on cached objects are resolved

locally. However, cache contents can become stale. This situation is not usually a problem, since most

objects you look up do not change frequently. If you need to look up objects which change relatively

frequently, change your JNDI cache options.

JNDI clients can use several properties to control cache behavior.

You can set properties:

v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v In a jndi.properties file by creating a file named jndi.properties as a text file with the desired

properties settings. For example:

...

com.ibm.websphere.naming.jndicache.cacheobject=none

...

Include the file as the beginning of the classpath, so that the class loader loads your copy of

jndi.properties before any other copies.

v Within a Java program by using the PROPS.JNDI_CACHE* Java constants, defined in the

com.ibm.websphere.naming.PROPS file. The constant definitions follow:

public static final String JNDI_CACHE_OBJECT =

 "com.ibm.websphere.naming.jndicache.cacheobject";

public static final String JNDI_CACHE_OBJECT_NONE = "none";

public static final String JNDI_CACHE_OBJECT_POPULATED = "populated";

public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared";

public static final String JNDI_CACHE_OBJECT_DEFAULT =

 JNDI_CACHE_OBJECT_POPULATED;

public static final String JNDI_CACHE_NAME =

 "com.ibm.websphere.naming.jndicache.cachename";

public static final String JNDI_CACHE_NAME_DEFAULT = "providerURL";

public static final String JNDI_CACHE_MAX_LIFE =

 "com.ibm.websphere.naming.jndicache.maxcachelife";

public static final int JNDI_CACHE_MAX_LIFE_DEFAULT = 0;

public static final String JNDI_CACHE_MAX_ENTRY_LIFE =

 "com.ibm.websphere.naming.jndicache.maxentrylife";

public static final int JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To use the previous properties in a Java program, add the property setting to a hashtable and pass

it to the InitialContext constructor as follows:

Chapter 11. Naming and directory 2169

java.util.Hashtable env = new java.util.Hashtable();

...

// Disable caching

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE); ...

javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Example: Controlling JNDI cache behavior from a program

Following are examples that illustrate how you can use JNDI cache properties to achieve the desired

cache behavior. Cache properties take effect when an InitialContext object is constructed.

import java.util.Hashtable;

import javax.naming.InitialContext;

import javax.naming.Context;

import com.ibm.websphere.naming.PROPS;

/*****

 Caching discussed in this section pertains to the WebSphere Application

 Server initial context factory. Assume the property,

 java.naming.factory.initial, is set to

 "com.ibm.websphere.naming.WsnInitialContextFactory" as a

 java.lang.System property.

*****/

Hashtable env;

Context ctx;

// To clear a cache:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_CLEARED);

ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");

ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);

ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);

ctx = new InitialContext(env);

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);

Context noCacheCtx = new InitialContext(env);

Object o;

// Use caching to look up home, since the home should rarely change.

o = ctx.lookup("com/mycom/MyEJBHome");

// Narrow, etc. ...

// Do not use cache if data is volatile.

o = noCacheCtx.lookup("com/mycom/VolatileObject");

// ...

Example: Looking up a JavaMail session with JNDI

The following example shows a lookup of a JavaMail resource:

2170 Administering WebSphere applications

// Get the initial context as shown above

...

Session session =

 (Session) initialContext.lookup("java:comp/env/mail/MailSession");

2. Optional: Specify the name syntax

INS syntax is designed for JNDI clients that need to interoperate with CORBA applications. This syntax

allows a JNDI client to make the proper mapping to and from a CORBA name. INS syntax is very

similar to the JNDI syntax with the additional special character, dot (.). Dots are used to delimit the id

and kind fields in a name component. A dot is interpreted literally when it is escaped. Only one

unescaped dot is allowed in a name component. A name component with a non-empty id field and

empty kind field is represented with only the id field value and must not end with an unescaped dot. An

empty name component (empty id and empty kind field) is represented with a single unescaped dot.

An empty string is not a valid name component representation.

JNDI name syntax is the default syntax and is suitable for typical JNDI clients. This syntax includes the

following special characters: forward slash (/) and backslash (\). Components in a name are delimited

by a forward slash. The backslash is used as the escape character. A forward slash is interpreted

literally if it is escaped, that is, preceded by a backslash. Similarly, a backslash is interpreted literally if

it is escaped.

Most WebSphere applications use JNDI to look up EJB objects and do not need to look up objects

bound by CORBA applications. Therefore, the default name syntax used for JNDI names is the most

convenient. If your application needs to look up objects bound by CORBA applications, you may need

to change your name syntax so that all CORBA CosNaming names can be represented.

JNDI clients can set the name syntax by setting a property. The property setting is applied by the initial

context factory when you instantiate a new java.naming.InitialContext object. Names specified in JNDI

operations on the initial context are parsed according to the specified name syntax.

You can set the property:

v From a command line, enter the actual string value. For example:

java -Dcom.ibm.websphere.naming.name.syntax=ins

v Create a file named jndi.properties as a text file with the desired properties settings. For example:

...

com.ibm.websphere.naming.name.syntax=ins

...

Include the file at the beginning of the classpath, so that the class loader loads your copy of

jndi.properties before any other copies.

v Use the PROPS.NAME_SYNTAX* Java constants, defined in the

com.ibm.websphere.naming.PROPS file, in a Java program. The constant definitions follow:

public static final String NAME_SYNTAX =

 "com.ibm.websphere.naming.name.syntax";

public static final String NAME_SYNTAX_JNDI = "jndi";

public static final String NAME_SYNTAX_INS = "ins";

To use the previous properties in a Java program, add the property setting to a hashtable and pass

it to the InitialContext constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();

...

env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS); // Set name syntax to INS

...

javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Example: Setting the syntax used to parse name strings

The name syntax property can be passed to the InitialContext constructor through its parameter, in the

System properties, or in a jndi.properties file. The initial context and any contexts looked up from that

initial context parse name strings based on the specified syntax.

The following example shows how to set the name syntax to make the initial context parse name

strings according to INS syntax.

Chapter 11. Naming and directory 2171

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.ibm.websphere.naming.PROPS; // WebSphere naming constants

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, ...);

env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);

Context initialContext = new InitialContext(env);

// The following name maps to a CORBA name component as follows:

// id = "a.name", kind = "in.INS.format"

// The unescaped dot is used as the delimiter.

// Escaped dots are interpreted literally.

java.lang.Object o = initialContext.lookup("a\\.name.in\\.INS\\.format");

...

INS name syntax requires that embedded periods (.) in a name such as in.INS.format be escaped

using a backslash character (\). In a Java String literal, a backslash character (\) must be escaped with

another backslash character (\\).

Example: Getting the default initial context

There are various ways for a program to get the default initial context.

The following example gets the default initial context. Note that no provider URL is passed to the

javax.naming.InitialContext constructor.

...

import javax.naming.Context;

import javax.naming.InitialContext;

...

Context initialContext = new InitialContext();

...

The default initial context returned depends the runtime environment of the Java Naming and Directory

Interface (JNDI) client. Following are the initial contexts returned in the various environments:

Thin client

The initial context is the server root context of the server running on the local host at port 2809.

Pure client

The initial context is the context specified by the java.naming.provider.url property passed to

launchClient command with the -CCD command line parameter. The context usually is the server

root context of the server at the address specified in the URL, although it is possible to construct a

corbaname or corbaloc URL which resolves to some other context.

 If no provider URL is specified, it is the server root context of the server running on the host and

port specified by the -CCproviderURL, or -CCBootstrapHost and -CCBootstrapPort command line

parameters. The default host is the local host, and the default port is 2809.

Server process

The initial context is the server root context for that process.

 Even though no provider URL is explicitly specified in the above example, the InitialContext constructor

might find a provider URL defined in other places that it searches for property settings.

Users of properties which affect ORB initialization should read the rest of this section for a deeper

understanding of exactly how initial contexts are obtained.

2172 Administering WebSphere applications

Determining which server is used to obtain the initial context

WebSphere Application Server name servers are CORBA CosNaming name servers, and the product

provides a CosNaming JNDI plug-in implementation for JNDI clients to perform naming operations on

product namespaces. The CosNaming plug-in implementation is selected through a JNDI property that is

passed to the InitialContext constructor. This property is java.naming.factory.initial, and it specifies the

initial context factory implementation to use to obtain an initial context. The factory returns a

javax.naming.Context instance, which is part of its implementation.

The initial context factory, com.ibm.websphere.naming.WsnInitialContextFactory, is typically used by

applications to perform JNDI operations. The WebSphere Application Server runtime environment is set up

to use this initial context factory if one is not specified explicitly by the JNDI client. When the initial context

factory is invoked, an initial context is obtained. The following paragraphs explain how the initial context

factory obtains the initial context in client and server environments.

v Registration of initial references in server processes

Every WebSphere Application Server has an ORB used to receive and dispatch invocations on objects

running in that server. Services running in the server process can register initial references with the

ORB. Each initial reference is registered under a key, which is a string value. An initial reference can be

any CORBA object. WebSphere Application Server name servers register several initial contexts as

initial references under predefined keys. Each name server initial reference is an instance of the

interface org.omg.CosNaming.NamingContext.

v Obtaining initial references in pure client processes

Pure JNDI clients, that is, JNDI clients which are not running in a WebSphere Application Server

process, also have an ORB instance. This client ORB instance can be passed to the InitialContext

constructor, but typically the initial context factory creates and initializes the client ORB instance

transparently. A client ORB can be initialized with initial references, but the initial references most likely

resolve to objects running in some server. The initial context factory does not define any default initial

references when it initializes an ORB. If the resolve_initial_references method is invoked on the

client ORB when no initial references have been configured, the method invocation fails. This condition

is typical for pure client processes. To obtain an initial NamingContext reference, the initial context

factory must invoke string_to_object with an IIOP type CORBA object URL, such as

corbaloc:iiop:myhost:2809. The URL specifies the address of the server from which to obtain the initial

context. The host and port information is extracted from the provider URL passed to the InitialContext

constructor.

If no provider URL is defined, the WebSphere Application Server initial context factory uses the default

provider URL of corbaloc:iiop:your.server.name:2809.

The string_to_object ORB method resolves the URL and communicates with the target server ORB to

obtain the initial reference.

v Obtaining initial references in server processes

If the JNDI client is running in a WebSphere Application Server process, the initial context factory

obtains a reference to the server ORB instance if the JNDI client does not provide an ORB instance.

Typically, JNDI clients running in server processes use the server ORB instance; that is, they do not

pass an ORB instance to the InitialContext constructor. The name server which is running in the server

process sets a provider URL as a java.lang.System property to serve as the default provider URL for all

JNDI clients in the process. This default provider URL is corbaloc:rir:/NameServiceServerRoot. This

URL resolves to the server root context for that server. (The URL is equivalent to invoking

resolve_initial_references on the ORB with a key of NameServiceServerRoot. The name server

registers the server root context as an initial reference under that key.)

v Understanding the legacy ORB protocol

Releases previous to WebSphere Application Server Version 5 used a different ORB implementation,

which used a legacy protocol in contrast with the Interoperable Name Service (INS) protocol now used.

This change has affected the implementation of the initial context factory. Certain types of pure clients

Chapter 11. Naming and directory 2173

can experience different behavior when getting initial JNDI contexts as compared to previous

releases of WebSphere Application Server. This behavior is discussed in more detail below.

The following ORB properties are used with the legacy ORB protocol for ORB initialization and are now

deprecated:

– com.ibm.CORBA.BootstrapHost

– com.ibm.CORBA.BootstrapPort

The new INS ORB is different in a major respect, in that it exhibits no default behavior if no initial

references are defined.

In the legacy ORB, the bootstrap host and port values defaulted to your.server.name and 900.

All initial references were obtained from the server running on the bootstrap host and port. So, if the

ORB user provided no bootstrap host and port, all initial references are resolved from the server running

on the local host at port 900. The INS ORB has no concept of bootstrap host or bootstrap port. All initial

references are defined independently. That is, different initial references could resolve to different

servers. If ORB.resolve_initial_references is invoked with a key such that the ORB is not initialized

with an initial reference having that key, the call fails.

In releases previous to Version 5, the initial context factory invoked resolve_initial_references on the

ORB in the absence of any provider URL. This action succeeded if a name server at the default

bootstrap host and port was running. In the current release, with the INS ORB, this would fail. (Actually,

the ORB would fall back to the legacy protocol during the deprecation period, but when the legacy

protocol is no longer supported, the operation would fail.)

The initial context factory now uses a default provider URL of corbaloc:iiop:your.server.name:2809,

and invokes string_to_object with the provider URL.

This operation preserves the behavior that pure clients in previous releases experienced when they set

no ORB bootstrap properties or provider URL. However, this different initial context factory

implementation changes the behavior experienced by certain legacy pure clients, which do not

specify a provider URL:

– Clients which set the ORB bootstrap properties listed above when getting an initial context.

– Clients which supply their own ORB instance to the InitialContext constructor.

There are two ways to circumvent this change of behavior:

– Always specify an IIOP type provider URL. This approach does not depend on the bootstrap host

and port properties and continues to work when support for the bootstrap host and port properties is

removed. For example, you can express bootstrap host and port property values of myHost and 2809,

respectively, as corbaloc:iiop:myHost:2809.

– Use an rir type provider URL:

- Specify corbaloc:rir:/NameServiceServerRoot if the ORB is initialized to use a Version 5 server

as the bootstrap server.

- Specify corbaname:rir:/NameService#domain/legacyRoot if the ORB is initialized to use a Version

4.0.x server as the bootstrap server.

- Specify corbaloc:rir:/NameService if the ORB is initialized to use a server other than a Version 5

or 4.0.x server as the bootstrap server.

URLs of this type are equivalent to invoking resolve_initial_references on the ORB with the

specified key. If the bootstrap host and port properties are being used to initialize the ORB, this

approach will not work when the bootstrap and host properties are no longer supported.

v The InitialContext constructor search order for JNDI properties

If the code snippet shown at the beginning of this section is executed by an application, the bootstrap

server depends on the value of the property, java.naming.provider.url.

If the property is not set (in server processes the default value is set as a system property), the default

host of your.server.name and default port of 2809 are used as the address of the server from which to

obtain the initial context.

The JNDI specification describes where the InitialContext constructor looks for java.naming.provider.url

property settings, but briefly, the property is picked up from the following places in the order shown:

2174 Administering WebSphere applications

InitialContext constructor

This does not apply to the above example because the example uses the empty InitalContext

constructor.

System environment

You can add JNDI properties to the system environment as an option on the Java command

invocation and by program code. The recommended way to set the provider URL in the system

environment is as an option supplied to the Java command invocation. Setting the provider URL

in this manner is not temporal, so that getting a default initial context will always yield the same

result. It is generally recommended that program code not set the provider URL property in the

system environment because as a side-effect, this could adversely affect other, possibly

unrelated, code running elsewhere in the same process.

jndi.properties file

There may be many jndi.properties files that are within the scope of the class loader in effect.

All jndi.properties files are used for setting JNDI properties, but the provider URL setting is

determined by the first jndi.properties file returned by the class loader.

Example: Getting an initial context by setting the provider URL

property

In general, Java Naming and Directory Interface (JNDI) clients should assume the correct environment is

already configured so there is no need to explicitly set property values and pass them to the

InitialContext constructor. However, a JNDI client might need to access a namespace other than the

one identified in its environment. In this case, it is necessary to explicitly set the java.naming.provider.url

(provider URL) property used by the InitialContext constructor. A provider URL contains bootstrap server

information that the initial context factory can use to obtain an initial context. Any property values passed

in directly to the InitialContext constructor take precedence over settings of those same properties found

elsewhere in the environment.

You can use two different provider URL forms with theWebSphere Application Server initial context factory:

v A CORBA object URL

v An IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the recommended URL format to use.

CORBA object URLs are part of the OMG CosNaming Interoperable Naming Specification. A corbaname

URL, for example, can include initial context and lookup name information and can be used as a lookup

name without the need to explicitly obtain another initial context. The IIOP URLs are the legacy JNDI

format, but are still supported by the WebSphere Application Server initial context factory.

The following examples illustrate the use of these URLs.

v “Using a CORBA object URL”

v “Using a CORBA object URL with multiple name server addresses” on page 2176

v “Using a CORBA object URL from a non-WebSphere Application Server JNDI implementation” on page

2176

v “Using an IIOP URL” on page 2177

Using a CORBA object URL

This example shows a CORBA object URL.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

Chapter 11. Naming and directory 2175

"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

...

Using a CORBA object URL with multiple name server addresses

CORBA object URLs can contain more than one bootstrap address. You can use this feature when

attempting to obtain an initial context from a server cluster. You can specify the bootstrap addresses for all

servers in the cluster in the URL. The operation succeeds if at least one of the servers is running,

eliminating a single point of failure. There is no guarantee of any particular order in which the address list

will be processed. For example, the second bootstrap address may be used to obtain the initial context

even though the server at the first bootstrap address in the list is available.

Multiple-address provider URLs resolving to servers on non-z/OS systems cannot contain bootstrap

addresses for node agent processes. The URLs should only contain the bootstrap addresses of members

of the same cluster. Otherwise, incorrect behavior might occur. When resolving to servers running on the

z/OS operating system, the URL can contain bootstrap addresses for node agent processes.

An example of a corbaloc URL with multiple addresses follows.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

// All of the servers in the provider URL below are members of

// the same cluster.

env.put(Context.PROVIDER_URL,

 "corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");

Context initialContext = new InitialContext(env);

...

Using a CORBA object URL from a non-WebSphere Application Server JNDI

implementation

Initial context factories for CosNaming JNDI plug-in implementations other than the WebSphere Application

Server initial context factory most likely obtain an initial context using the object key, NameService. When

you use such a context factory to obtain an initial context from a WebSphere Application Server name

server, the initial context is the cell root context. Since system artifacts such as EJB homes associated

with a server are bound under the server’s server root context, names used in JNDI operations must be

qualified. If you want to use relative names, ensure your initial context is the server root context under

which the target object is bound. In order to make the server root context the initial context, specify a

corbaloc provider URL with an object key of NameServiceServerRoot.

This example shows a CORBA object type URL from a non-WebSphere Application Server JNDI

implementation. This example assumes full CORBA object URL support by the non-WebSphere Application

Server JNDI implementation. The object key of NameServiceServerRoot is specified so that the initial

context will be the specified server’s server root context.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.somecompany.naming.TheirInitialContextFactory");

2176 Administering WebSphere applications

env.put(Context.PROVIDER_URL,

 "corbaname:iiop:myhost.mycompany.com:9810/NameServiceServerRoot");

Context initialContext = new InitialContext(env);

...

If qualified names are used, you can use the default key of NameService.

Using an IIOP URL

The IIOP type of URL is a legacy format which is not as flexible as CORBA object URLs. However, URLs

of this type are still supported. The following example shows an IIOP type URL as the provider URL.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

...

Example: Setting the provider URL property to select a different root

context as the initial context

Each server contains its own server root context, and, when bootstrapping to a server, the server root is

the default initial JNDI context. Most of the time, this default is the desired initial context, since system

artifacts such as EJB homes are bound there. However, other root contexts exist, which can contain

bindings of interest. It is possible to specify a provider URL to select other root contexts.

Examples for selecting other root contexts follow:

v Initial root contexts with a CORBA object URL

v Initial root contexts with the namespace root property

Selecting the initial root context with a CORBA object URL

There are several object keys registered with the bootstrap server that you can use to select the root

context for the initial context. To select a particular root context with a CORBA object URL object key, set

the object key to the corresponding value. The default object key is NameService. Using JNDI yields the

server root context. A table that lists the different root contexts and their corresponding object key follows:

 Root Context CORBA Object URL Object Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot

Node Root NameServiceNodeRoot

The following example shows the use of a corbaloc URL with the object key set to select the cell

persistent root context as the initial context.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

Chapter 11. Naming and directory 2177

env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context initialContext = new InitialContext(env);

...

Selecting the initial root context with the namespace root property

You can also select the initial root context by passing a namespace root property setting to the

InitialContext constructor. Generally, the object key setting described above is sufficient. Sometimes a

property setting is preferable. For example, you can set the root context property on the Java invocation to

make which server root is being used as the initial context transparent to the application. The default

server root property setting is defaultroot, which yields the server root context.

 Root Context Namespace Root Property Value

Server Root bootstrapserverroot

Cell Persistent Root cellpersistentroot

Cell Root cellroot

Node Root bootstrapnoderoot

The initial context factory ignores the namespace root property if the provider URL contains an object key

other than NameService.

The following example shows use of the namespace root property to select the cell persistent root context

as the initial context. Note that available constants are used instead of hard-coding the property name and

value.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.ibm.websphere.naming.PROPS;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

Context initialContext = new InitialContext(env);

...

Example: Looking up an EJB home or business interface with JNDI

Most applications that use Java Naming and Directory Interface (JNDI) run in a container. Some do not.

The name used to look up an object depends on whether or not the application is running in a container.

Sometimes it is more convenient for an application to use a corbaname URL as the lookup name.

Container-based JNDI clients and thin Java clients can use a corbaname URL.

The following examples show how to perform JNDI lookups from different types of applications.

v “JNDI lookup from an application running in a container”

v “JNDI lookup from an application that does not run in a container” on page 2179

v “JNDI lookup with a corbaname URL” on page 2181

JNDI lookup from an application running in a container

Applications that run in a container can use java: lookup names. Lookup names of this form provide a

level of indirection such that the lookup name used to look up an object is not dependent on the object’s

name as it is bound in the name server’s namespace. The deployment descriptors for the application

2178 Administering WebSphere applications

provide the mapping from the java: name and the name server lookup name. The container sets up the

java: namespace based on the deployment descriptor information so that the java: name is correctly

mapped to the corresponding object.

The following example shows a lookup of an EJB 3.0 remote business interface. The actual home lookup

name is determined by the interface’s ibm-ejb-jar-bnd.xml binding file, if present, or by the default name

assigned by the EJB container if no binding file is present. For more information, see Default bindings for

business interfaces and homes and User-defined bindings for EJB business interfaces and homes.

// Get the initial context as shown in a previous example.

...

// Look up the business interface using the JNDI name.

try {

 java.lang.Object ejbBusIntf =

 initialContext.lookup(

 "java:comp/env/com/mycompany/accounting/Account");

 accountIntf =

 (Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}

 catch (NamingException e) { // Error getting the business interface

 ...

}

The following example shows a lookup of an EJB 1.x or 2.x EJB home. The actual home lookup name is

determined by the application’s deployment descriptors. The enterprise bean (EJB) resides in an EJB

container, which provides an interface between the bean and the application server on which it resides.

// Get the initial context as shown in a previous example

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome =

 initialContext.lookup(

 "java:comp/env/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

 catch (NamingException e) { // Error getting the home interface

 ...

}

JNDI lookup from an application that does not run in a container

Applications that do not run in a container cannot use java: lookup names because it is the container

which sets the java: namespace up for the application. Instead, an application of this type must look the

object up directly from the name server. Each application server contains a name server. System artifacts

such as EJB homes are bound relative to the server root context in that name server. The various name

servers are federated by means of a system namespace structure. The recommended way to look up

objects on different servers is to qualify the name so that the name resolves from any initial context in the

cell. If a relative name is used, the initial context must be the same server root context as the one under

which the object is bound. The form of the qualified name depends on whether the qualified name is a

topology-based name or a fixed name. Examples of each form of qualified name follow.

v Topology-based qualified names

Topology-based qualified names traverse through the system namespace to the server root context

under which the target object is bound. A topology-based qualified name resolves from any initial

context in the cell.

The topology-based qualified name depends on whether the object resides on a single server or server

cluster. Examples of each lookup follow.

Chapter 11. Naming and directory 2179

Single server

The following example shows a lookup of an EJB business interface that is running in the single

server, MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example.

// Using the form of lookup name below, it does not matter which

// server in the cell is used to obtain the initial context.

...

// Look up the business interface using the JNDI name

try {

 java.lang.Object ejbBusIntf = initialContext.lookup(

 "cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/Account");

 accountIntf =

 (Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}

catch (NamingException e) { // Error getting the business interface

 ...

}

The following example shows a lookup of an EJB home that is running in the single server,

MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

Server cluster

The example below shows a lookup of an EJB business interface which is running in the

cluster, MyCluster. The name can be resolved if any of the cluster members is running.

// Get the initial context as shown in a previous example.

// Using the form of lookup name below, it does not matter which

// server in the cell is used to obtain the initial context.

...

 // Look up the business interface using the JNDI name

try {

 java.lang.Object ejbBusIntf = initialContext.lookup(

 "cell/clusters/MyCluster/com/mycompany/accounting/Account");

 accountIntf =

 (Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}

catch (NamingException e) { // Error getting the business interface

 ...

}

The example below shows a lookup of an EJB home which is running in the cluster, MyCluster.

The name can be resolved if any of the cluster members is running.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it does not matter which

// server in the cell is used to obtain the initial context.

...

 // Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/clusters/MyCluster/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

2180 Administering WebSphere applications

(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

v Fixed qualified names

If the target object has a cell-scoped fixed name defined for it, you can use its qualified form instead of

the topology-based qualified name. Even though the topology-based name works, the fixed name does

not change with the specific cell topology or with the movement of the target object to a different server.

An example lookup of an EJB business interface with a qualified fixed name follows.

// Get the initial context as shown in a previous example.

// Using the form of lookup name below, it does not matter which

// server in the cell is used to obtain the initial context.

...

// Look up the business interface using the JNDI name

try {

 java.lang.Object ejbBusIntf = initialContext.lookup(

 "cell/persistent/com/mycompany/accounting/Account");

 accountIntf =

 (Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

 }

catch (NamingException e) { // Error getting the business interface

...

}

An example lookup with a qualified fixed name is shown below.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/persistent/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

 }

catch (NamingException e) { // Error getting the home interface

...

}

JNDI lookup with a corbaname URL

A corbaname can be useful at times as a lookup name. If, for example, the target object is not a member

of the federated namespace and cannot be located with a qualifiied name, a corbaname can be a

convenient way to look up the object.

A lookup of an EJB business interface with a corbaname URL follows.

// Get the initial context as shown in a previous example.

...

// Look up the business interface using a corbaname URL.

try {

 java.lang.Object ejbBusIntf = initialContext.lookup(

 "corbaname:iiop:someHost:2809#com/mycompany/accounting/Account");

 accountIntf =

 (Account)javax.rmi.PortableRemoteObject.narrow(ejbBusIntf, Account.class);

}

catch (NamingException e) { // Error getting the business interface

 ...

}

A lookup with a corbaname URL follows.

Chapter 11. Naming and directory 2181

// Get the initial context as shown in a previous example

...

// Look up the home interface using a corbaname URL

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "corbaname:iiop:someHost:2809#com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

JNDI interoperability considerations

You must take extra steps to enable your programs to interoperate with non-product JNDI clients and to

bind resources from MQSeries to a namespace.

EJB clients running in an environment other than WebSphere Application Server

accessing EJB applications running on WebSphere Application Server servers

When an enterprise bean (EJB) application running in WebSphere Application Server is accessed by a

non-product EJB client, the JNDI initial context factory is presumed to be a non-product implementation. In

this case, the default initial context is the cell root. If the JNDI service provider being used supports

CORBA object URLs, the corbaname format can be used to look up the EJB home.

The construction of the stringified name depends on whether the object is installed on a single server or

cluster.

Single server

Following is a URL that has the bootstrap host myHost, the port 2809, and the enterprise bean

installed in the server server1 in node node1 and bound in that server under the name myEJB:

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

Server cluster

Following is a URL that has the bootstrap host myHost, the port 2809, and the enterprise bean

installed in a server cluster named myCluster and bound in that cluster under the name myEJB:

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

The lookup works with any name server bootstrap host and port configured in the same cell.

The lookup also works if the bootstrap host and port belong to a member of the cluster itself. To

avoid a single point of failure, the bootstrap server host and port for each cluster member can be

listed in the URL as follows:

initialContext.lookup(

 "corbaname:iiop:host1:9810,:host2:9810#cell/clusters/myCluster/myEJB");

The name prefix cell/clusters/myCluster/ is not necessary if boostrapping to the cluster itself, but

it will work. The prefix is needed, however, when looking up enterprise beans in other clusters.

Name bindings under the clusters context are implemented on the name server to resolve to the

server root of a running cluster member during a lookup; thus avoiding a single point of failure.

Without CORBA object URL support

If the JNDI initial context factory being used does not support CORBA object URLs, the initial

context can be obtained from the server, and the lookup can be performed on the initial context as

follows:

2182 Administering WebSphere applications

Hashtable env = new Hashtable();

env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");

Context ic = new InitialContext(env);

Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2

In releases previous to WebSphere Application Server Version 5.0, the MQSeries jmsadmin tool could be

used to bind resources to the namespace. When used with a WebSphere Application Server namespace,

the resource is bound within a transient partition in the namespace and does not persist past the life of the

server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them from the

administrative console, under Resources in the console navigation tree.

JNDI caching

To increase the performance of Java Naming and Directory Interface (JNDI) operations, the product JNDI

implementation employs caching to reduce the number of remote calls to the name server for lookup

operations. For most cases, use the default cache setting.

When an InitialContext object is instantiated, an association is established between the InitialContext

instance and a cache. The initial context and any contexts returned directly or indirectly from a lookup on

the initial context are all associated with that same cache instance. By default, the association is based on

the provider URL, in particular, the host name and port. The caller can specify the cache name to override

this default behavior. A cache instance of a given name is shared by all instances of InitialContext

configured to use a cache of that name which were created with the same context class loader in effect.

Two enterprise bean (EJB) applications running in the same server will use their own cache instances, if

they are using different context class loaders, even if the cache names are the same.

After an association between an InitialContext instance and cache is established, the association does not

change. A javax.naming.Context object returned from a lookup operation inherits the cache association of

the Context object on which the lookup was performed. Changing cache property values with the

Context.addToEnvironment() or Context.removeFromEnvironment() method does not affect cache

behavior. You can change properties affecting a given cache instance with each InitialContext instantiation.

A cache is restricted to a process and does not persist past the life of that process. A cached object is

returned from lookup operations until either the maximum cache life for the cache is reached, or the

maximum entry life for the object’s cache entry is reached. After this time, a lookup on the object causes

the cache entry for the object to be refreshed. By default, caches and cache entries have unlimited

lifetimes.

Usually, cached objects are relatively static entities, and objects becoming stale is not a problem.

However, you can set timeout values on cache entries or on a cache so that cache contents are

periodically refreshed.

If a bind or rebind operation is executed on an object, the change is not reflected in any caches other than

the one associated with the context from which the bind or rebind was issued. This scenario is most likely

to happen when multiple processes are involved, since different processes do not share the same cache,

and context objects in all threads in a process typically share the same cache instance for a given name

service provider.

JNDI cache settings

Various Java Naming and Directory Interface (JNDI) cache property settings follow. Ensure that all

property values are string values.

com.ibm.websphere.naming.jndicache.cachename

The name of the cache to associate with an initial context instance can be specified with this property.

Chapter 11. Naming and directory 2183

It is possible to create multiple InitialContext instances, each operating on the namespace of a different

name server. By default, objects from each bootstrap address are cached separately, since they each

involve independent namespaces and name collisions could occur if they used the same cache. The

provider URL specified when the initial context is created by default serves as the basis for the cache

name. With this property, a JNDI client can specify a cache name. Valid options for cache names follow:

 Valid options Resulting cache behavior

providerURL (default) Use the value for java.naming.provider.url property as the basis for the cache name.

Cache names are based on the bootstrap host and port specified in the URL. The

boostrap host is normalized to a fully qualfied name, if possible. For example,

″corbaname:iiop:server1:2809#some/starting/context″ and ″corbaloc:iiop://server1″ are

normalized to the same cache name. If no provider URL is specified, a default cache

name is used.

Any string Use the specified string as the cache name. You can use any arbitrary string with a

value other than ″providerURL″ as a cache name.

com.ibm.websphere.naming.jndicache.cacheobject

Turn caching on or off and clear an existing cache with this property.

By default, when an InitialContext is instantiated, it is associated with an existing cache or, if one does not

exist, a new one is created. An existing cache is used with its existing contents. In some circumstances,

this behavior is not desirable. For example, when objects that are looked up change frequently, they can

become stale in the cache. Other options are available. The following table lists these other options along

with the corresponding property value.

 Valid values Resulting cache behavior

populated (default) Use a cache with the specified name. If the cache already exists, leave existing cache

entries in the cache; otherwise, create a new cache.

cleared Use a cache with the specified name. If the cache already exists, clear all cache

entries from the cache; otherwise, create a new cache.

none Do not cache. If this option is specified, the cache name is irrelevant. Therefore, this

option will not disable a cache that is already associated with other InitialContext

instances. The InitialContext that is instantiated is not associated with any cache.

com.ibm.websphere.naming.jndicache.maxcachelife

Impose a limit to the age of a cache with this property.

By default, cached objects remain in the cache for the life of the process or until cleared with the

com.ibm.websphere.naming.jndicache.cacheobject property set to cleared. This property enables a JNDI

client to set the maximum life of a cache. This property differs from the maxentrylife property (below) in

that the entire cache is cleared when the cache lifetime is reached. The table below lists the various

maxcachelife values and their affect on cache behavior:

 Valid options Resulting cache behavior

0 (default) Make the cache lifetime unlimited.

Positive integer Set the maximum lifetime of the entire cache, in minutes, to the specified value. When

the maximum lifetime for the cache is reached, the next attempt to read any entry from

the cache causes the cache to be cleared

com.ibm.websphere.naming.jndicache.maxentrylife

Impose a limit to the age of individual cache entries with this property.

2184 Administering WebSphere applications

By default, cached objects remain in the cache for the life of the process or until cleared with the

com.ibm.websphere.naming.jndicache.cacheobject property set to cleared. This property enables a JNDI

client to set the maximum lifetime of individual cache entries. This property differs from the maxcachelife

property in that individual entries are refreshed individually as their maximum lifetime reached. This might

avoid any noticeable change in performance that might occur if the whole cache is cleared at once. The

table below lists the various maxentrylife values and their effect on cache behavior:

 Valid options Resulting cache behavior

0 (default) Lifetime of cache entries is unlimited.

Positive integer Set the maximum lifetime of individual cache entries, in minutes, to the specified value.

When the maximum lifetime for an entry is reached, the next attempt to read the entry

from the cache causes the individual cache entry to refresh.

JNDI to CORBA name mapping considerations

WebSphere Application Server name servers are an implementation of the CORBA CosNaming interface.

The product provides a Java Naming and Directory Interface (JNDI) implementation which you can use to

access CosNaming name servers through the JNDI interface. Issues can exist when mapping JNDI name

strings to and from CORBA names.

Each component in a CORBA name consists of an id and kind field, but a JNDI name component

consists of no such fields. Each component in a JNDI name is atomic. Typical JNDI clients do not need to

make a distinction between the id and kind fields of a name component, or know how JNDI name strings

map to CORBA names. JNDI clients of this sort can use the JNDI syntax described below. When a name

is parsed according to JNDI syntax, each name component is mapped to the id field of the corresponding

CORBA name component. The kind field always has an empty value. This basic syntax is the least

obtrusive to the JNDI client in that it has the fewest special characters. However, you cannot represent

with this syntax a CORBA name with a non-empty kind field. This restriction can prevent EJB applications

from interoperating with CORBA applications.

Some clients, however must interoperate with CORBA applications which use CORBA names with

non-empty kind fields. These JNDI clients must make a distinction between id and kind so that JNDI

names are correctly mapped to CORBA names, particularly when the CORBA names contain components

with non-empty kind fields. Such JNDI clients can use the INS name syntax. With its additional special

character, you can use INS to represent any CORBA name. Use of this syntax is not recommended unless

it is necessary, because this syntax is more restrictive from the JNDI client’s perspective in that the JNDI

client must be aware that name components with multiple unescaped dots are syntactically invalid. INS

name syntax is part of the OMG CosNaming Interoperable Naming Specification.

Chapter 11. Naming and directory 2185

2186 Administering WebSphere applications

Chapter 12. Object Request Broker

Managing Object Request Brokers

An Object Request Broker (ORB) manages the interaction between clients and servers using the Internet

InterORB Protocol (IIOP). There are several ways to manage an ORB. For example, you can use ORB

custom property settings, or system property settings to configure an ORB, or you can provide objects

during ORB initialization.

About this task

Default ORB property values are set when the product starts and the ORB service initializes. These

properties control the run-time behavior of the ORB and can also affect the behavior of product

components that are tightly integrated with the ORB, such as security. You might have to modify some

ORB settings to fit your system requirements.

After an ORB instance is established in a process, changes to ORB properties do not affect the behavior

of a running ORB instance. You must stop the process and restart it before the modified settings take

effect.

A list of possible tasks for managing an ORB follows.

v Adjust timeout settings to improve handling of network failures. Before making these adjustments,

review the Object Request Broker tuning guidelines.

v Tune the ORB. For example, if most of your initial method invocations are very small, you might want to

set the com.ibm.CORBA.enableLocateRequest custom property to false.

v Adjust the size of General Inter-ORB Protocol (GIOP) fragments that the ORB uses. You might want to

make this adjustment if your applications frequently send large requests.

v Change the port that the ORB listens on.

v Specify an alternative to the default RAS manager of the ORB.

v Change the maximum number of connection requests that can remain unhandled by the product ORB

before the application server starts to reject new incoming connection requests.

v Adjust thread-pool settings used by the ORB for handling Internet InterORB Protocol (IIOP) connections.

v Troubleshoot an ORB problem.

If you experience problems with the ORB, you should review the Object request broker troubleshooting

tips. If necessary, you can then enable ORB tracing, and then review the contents of the ORB

communications trace.

v Adjust the logical pool distribution mechanism settings.

Object Request Brokers

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet

InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a

network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and to call operations on those

objects as if the remote objects are located in the same running process as the client, providing location

transparency. The client calls an operation on a local object, known as a stub. The stub forwards the

request to the remote object, where the operation runs and the results are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the operation and required

parameters, and for sending the request on the network. The server-side ORB receives the IIOP request,

locates the target object, invokes the requested operation, and returns the results to the client. The

© Copyright IBM Corp. 2008 2187

client-side ORB demarshals the returned results and passes the result to the stub, which, in turn, returns

to the client application, as if the operation had been run locally.

This product uses an ORB to manage communication between client applications and server applications

as well as communication among product components. During product installation, default property values

are set when the ORB is initialized. These properties control the run-time behavior of the ORB and can

also affect the behavior of product components that are tightly integrated with the ORB, such as security.

This product does not support the use of multiple ORB instances.

Logical pool distribution

The Logical pool distribution (LPD) thread pool mechanism implements a strategy for improving the

performance of requests that have shorter run times. Do not configure LPD unless you have already

configured it in a previous release of the product.

Note: LPD is a deprecated function and will be removed in a future version of the product.

The need for LPD is indicated by a mixture of Enterprise JavaBeans (EJB) requests where the run times

vary across the request types, and the ORB thread pool must be constrained for performance reasons. In

this case, longer run time requests might tend to prolong the response times for shorter requests by

denying them adequate access to threads in the thread pool. LPD provides a mechanism that allows

shorter requests greater access to the threads.

LPD divides the Object Request Broker (ORB) thread pool into logical pools, as configured by the

administrator using ORB custom properties starting that start with the following:

com.ibm.websphere.threadpool.strategy.*

The size of each pool is a percentage of the maximum number of ORB threads. The sum of the logical

pool percentages must equal 100.

When LPD is active, incoming ORB requests are vectored, or pointed, to a pool based on historical run

time history for the request type. The request type is determined by the method, which is qualified

internally as unique across components. The LPD mechanism adjusts pool targets at runtime to optimize

the distribution of requests across logical pools.

The LPD mechanism can be tuned after it is enabled. Response time, throughput measurements, and

statistics produced by the LPD mechanism drive the tuning process.

Object Request Broker tuning guidelines

Use the guidelines in this document any time the Object Request Broker (ORB) is used in a workload.

The ORB is used whenever enterprise beans are accessed through a remote interface. If you experience

particularly high or low CPU consumption, you might have a problem with the value of one of the following

parameters. Examine these core tuning parameters for every application deployment.

Thread pool adjustments

Size

Tune the size of the ORB thread pool according to your workload. Avoid suspending threads because they

have no work ready to process. If threads do not have work ready to process, CPU time is consumed by

calling the Object.wait method, performing a context switch. Tune the thread pool size such that the length

of time that the threads wait is short enough to prevent them from being destroyed because they are idle

too long.

The thread pool size is dependent on your workload and system. In typical configurations, applications

need 10 or fewer threads per processor.

2188 Administering WebSphere applications

However, if your application is performing a very slow backend request, like a request to a database

system, a server thread blocks waiting for the backend request to complete. With backend requests, CPU

use is fairly low. In this case, increasing the load does not increase CPU use or throughput. Your thread

dumps indicate that nearly all the threads are in a call out to the backend resource. In this case, consider

increasing the number of threads per processor until throughput improves and thread dumps show that the

threads are in other areas of the run time besides the backend call. You should adjust the number of

threads only if your backend resource is tuned correctly.

The Allow thread allocation beyond maximum thread size parameter also affects thread pool size, but

do not use this parameter unless your back end stops for long periods of time, causing the blocking of all

the run-time threads waiting for the backend system instead of processing other work that does not involve

the backend system.

You can adjust the thread pool size settings in the administrative console. Click Servers > Server Types >

Application servers > server_name > Container services > ORB service > Thread pool. You can

adjust the minimum and maximum number of threads.

Fragment size

The ORB separates messages into fragments to send over the ORB connection. You can configure this

fragment size through the com.ibm.CORBA.FragmentSize parameter.

To determine and change the size of the messages that transfer over the ORB and the number of required

fragments, perform the following steps:

1. In the administrative console, enable ORB tracing in the ORB Properties page.

2. Enable ORBRas tracing from the logging and tracing page.

3. Increase the trace file sizes because tracing can generate a lot of data.

4. Restart the server and run at least one iteration (preferably several) of the case that you are

measuring.

5. Look at the traceable file and do a search for Fragment to follow: Yes.

This message indicates that the ORB transmitted a fragment, but it still has at least one remaining

fragment to send before the entire message arrives. A Fragment to follow: No value indicates that the

particular fragment is the last in the entire message. This fragment can also be the first, if the message

fit entirely into one fragment.

If you go to the spot where Fragment to follow: Yes is located, you find a block that looks similar to the

following example:

 Fragment to follow: Yes

Message size: 4988 (0x137C)

--

Request ID: 1411

This example indicates that the amount of data in the fragment is 4988 bytes and the Request ID is

1411. If you search for all occurrences of Request ID: 1411, you can see the number of fragments that

are used to send that particular message. If you add all the associated message sizes, you have the

total size of the message that is being sent through the ORB.

6. You can configure the fragment size by setting the com.ibm.CORBA.FragmentSize ORB custom

property.

Interceptors

Interceptors are ORB extensions that can set up the context before the ORB runs a request. For example,

the context might include transactions or activity sessions to import. If the client creates a transaction, and

then flows the transaction context to the server, then the server imports the transaction context onto the

server request through the interceptors.

Chapter 12. Object Request Broker 2189

Most clients do not start transactions or activity sessions, so most systems can benefit from removing the

interceptors that are not required.

To remove the interceptors, manually edit the server.xml file and remove the interceptor lines that are not

needed from the ORB section.

Connection Cache Adjustments

Depending on an application server’s workload, and throughput or response-time requirements, you might

need to adjust the size of the ORB’s connection cache. Each entry in the connection cache is an object

that represents a distinct TCP/IP socket endpoint, identified by the hostname or TCP/IP address, and the

port number used by the ORB to send a GIOP request or a GIOP reply to the remote target endpoint. The

purpose of the connection cache is to minimize the time required to establish a connection by reusing

ORB connection objects for subsequent requests or replies. (The same TCP/IP socket is used for the

request and corresponding reply.)

For each application server, the number of entries in the connection cache relates directly to the number of

concurrent ORB connections. These connections consist of both the inbound requests made from remote

clients and outbound requests made by the application server. When the server-side ORB receives a

connection request, it uses an existing connection from an entry in the cache, or establishes a new

connection and adds an entry for that connection to the cache.

The ORB Connection cache maximum and Connection cache minimum properties are used to control the

maximum and minimum number of entries in the connection cache at a given time. When the number of

entries reaches the value specified for the Connection cache maximum property, and a new connection is

needed, the ORB creates the requested connection, adds an entry to the cache and searches for and

attempts to remove up to five inactive connection entries from the cache. Because the new connection is

added before inactive entries are removed, it is possible for the number of cache entries to temporarily

exceed the value specified for the Connection cache maximum property.

An ORB connection is considered inactive if the TCP/IP socket stream is not in use and there are no

GIOP replies pending for any requests made on that connection. As the application workload diminishes,

the ORB closes the connections and removes the entries for these connections from the cache. The ORB

continues to remove entries from the cache until the number of remaining entries is at or below the value

specified for the Connection cache maximum property. The number of cache entries is never less then the

value specified for the Connection cache minimum property, which must be at least five connections less

than the value specified for the Connection cache maximum property.

Adjustments to the connection cache in the client-side ORB are usually not necessary because only a

small number of connections are made on that side.

JNI Reader Threads

By default, the ORB uses a Java thread for processing each inbound connection request it receives. As

the number of concurrent requests increases, the storage consumed by a large number of reader threads

increases and can become a bottleneck in resource-constrained environments. Eventually, the number of

Java threads created can cause out-of-memory exceptions if the number of concurrent requests exceeds

the system’s available resources.

To help address this potential problem, you can configure the ORB to use JNI reader threads where a

finite number of reader threads, implemented using native OS threads instead of Java threads, are created

during ORB initialization. JNI reader threads rely on the native OS TCP/IP asynchronous mechanism that

enables a single native OS thread to handle I/O events from multiple sockets at the same time. The ORB

manages the use of the JNI reader threads and assigns one of the available threads to handle the

connection request, using a round-robin algorithm. Ordinarily, JNI reader threads should only be configured

when using Java threads is too memory-intensive for your application environment.

2190 Administering WebSphere applications

The number of JNI reader threads you should allocate for an ORB depends on many factors and varies

significantly from one environment to another, depending on available system resources and workload

requirements. The following potential benefits might be achieved if you use JNI threads:

v Because a fixed number of threads is allocated, memory usage is reduced. This reduction provides

significant benefit in environments with unusually large and sustained client-request workloads.

v The time needed to dynamically create and destroy Java threads is eliminated because a fixed number

of JNI threads is created and allocated during ORB initialization.

v Each JNI thread can handle up to 1024 socket connections and interacts directly with the asynchronous

I/O native OS mechanism, which might provide enhanced performance of network I/O processing.

Object Request Broker service settings

Use this page to configure the Java Object Request Broker (ORB) service.

To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > Container services > ORB service.

Several settings are available for controlling internal Object Request Broker (ORB) processing. You can

use these settings to improve application performance in the case of applications that contain enterprise

beans. You can make changes to these settings for the default server or any application server that is

configured in the administrative domain.

Request timeout

Specifies the number of seconds to wait before timing out on a request message.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.RequestTimeout.

 Data type int

Units Seconds

Default 180

Range 0 - largest integer recognized by Java

Request retries count

Specifies the number of times that the ORB attempts to send a request if a server fails. Retrying

sometimes enables recovery from transient network failures. This field is ignored for z/OS.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.requestRetriesCount.

 Data type int

Default 1

Range 1 to 10

Request retries delay

Specifies the number of milliseconds between request retries. This field is ignored for z/OS.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.requestRetriesDelay.

 Data type int

Units Milliseconds

Default 0

Range 0 to 60,000

Chapter 12. Object Request Broker 2191

Connection cache maximum

Specifies the maximum number of entries that can occupy the ORB connection cache before the ORB

starts to remove inactive connections from the cache. This field is ignored for z/OS.

It is possible that the number of active connections in the cache will temporarily exceed this threshold

value. If necessary, the ORB will continue to add connections as long as resources are available.

For use in command-line scripting, the full name of this system property is

com.ibm.CORBA.MaxOpenConnections.

 Data type Integer

Units Connections

Default 240

Range 10 - largest integer recognized by Java

Connection cache minimum

Specifies the minimum number of entries in the ORB connection cache. This field is ignored for z/OS.

The ORB will not remove inactive connections when the number of entries is below this value.

For use in command-line scripting, the full name of this system property is

com.ibm.CORBA.MinOpenConnections.

 Data type Integer

Units Connections

Default 100

Range Any integer that is at least 5 less than the value specified

for the Connection cache maximum property.

ORB tracing

Enables the tracing of ORB General Inter-ORB Protocol (GIOP) messages.

This setting affects two system properties: com.ibm.CORBA.Debug and com.ibm.CORBA.CommTrace. If

you set these properties through command-line scripting, you must set both properties to true to enable

the tracing of GIOP messages.

 Data type Boolean

Default Not enabled (false)

Locate request timeout

Specifies the number of seconds to wait before timing out on a LocateRequest message. This field is

ignored for z/OS.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.LocateRequestTimeout.

 Data type int

Units Seconds

Default 180

Range 0 to 300

Force tunneling

Controls how the client ORB attempts to use HTTP tunneling. This field is ignored for z/OS.

2192 Administering WebSphere applications

If you use command-line scripting, the full name of this system property is com.ibm.CORBA.ForceTunnel.

 Data type String

Default NEVER

Range Valid values are ALWAYS, NEVER, or WHENREQUIRED.

Considering the following information when choosing the valid value:

ALWAYS

Use HTTP tunneling immediately, without trying TCP connections first.

NEVER

Disable HTTP tunneling. If a TCP connection fails, a CORBA system exception (COMM_FAILURE)

occurs.

WHENREQUIRED

Use HTTP tunneling if TCP connections fail.

Tunnel agent URL

Specifies the Web address of the servlet to use in support of HTTP tunneling. This field is ignored on the

z/OS platform.

This Web address must be a proper format:

http://w3.mycorp.com:81/servlet/com.ibm.CORBA.services.IIOPTunnelServlet

For applets: http://applethost:port/servlet/com.ibm.CORBA.services.IIOPTunnelServlet.

This field is required if HTTP tunneling is set. If you use command-line scripting, the full name of this

system property is com.ibm.CORBA.TunnelAgentURL.

Pass by reference

Specifies how the ORB passes parameters. If enabled, the ORB passes parameters by reference instead

of by value, to avoid making an object copy. If you do not enable the pass by reference option, a copy of

the parameter passes rather than the parameter object itself. This can be expensive because the ORB

must first make a copy of each parameter object.

You can use this option only when the Enterprise JavaBeans (EJB) client and the EJB are on the same

classloader. This requirement means that the EJB client and the EJB must be deployed in the same EAR

file.

If the Enterprise JavaBeans (EJB) client and server are installed in the same instance or the product, and

the client and server use remote interfaces, enabling the pass by reference option can improve

performance up to 50%. The pass by reference option helps performance only where non-primitive object

types are passed as parameters. Therefore, int and floats are always copied, regardless of the call model.

Note: Enable this property with caution because unexpected behavior can occur. If an object reference is

modified by the callee, the caller’s object is modified as well, since they are the same object.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.iiop.noLocalCopies.

 Data type Boolean

Default Not enabled (false)

The use of this option for enterprise beans with remote interfaces violates Enterprise JavaBeans (EJB)

Specification, Version 2.0 (see section 5.4). Object references passed to Enterprise JavaBeans (EJB)

methods or to EJB home methods are not copied and can be subject to corruption.

Chapter 12. Object Request Broker 2193

Consider the following example:

Iterator iterator = collection.iterator();

MyPrimaryKey pk = new MyPrimaryKey();

while (iterator.hasNext()) {

 pk.id = (String) iterator.next();

 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);

}

In this example, a reference to the same MyPrimaryKey object passes into the product with a different ID

value each time. Running this code with pass by reference enabled causes a problem within the

application server because multiple enterprise beans are referencing the same MyPrimaryKey object. To

avoid this problem, set the com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system property to

true when the pass by reference option is enabled. Setting the pass by reference option to true causes

the EJB container to make a local copy of the PrimaryKey object. As a result, however, a small portion of

the performance advantage of setting the pass by reference option is lost.

As a general rule, any application code that passes an object reference as a parameter to an enterprise

bean method or to an EJB home method must be scrutinized to determine if passing that object reference

results in loss of data integrity or in other problems.

After examining your code, you can enable the pass by reference option by setting the

com.ibm.CORBA.iiop.noLocalCopies system property to true. You can also enable the pass by reference

option in the administrative console. Click Servers > Server Types > Application servers > server_name

> Container services > ORB Service and select Pass by reference.

Object Request Broker custom properties

There are several ways to configure an Object Request Broker (ORB). For example, you can use ORB

custom property settings, or system property settings to configure an ORB, or you can provide objects

during ORB initialization. If you use the following ORB custom properties to configure an ORB, remember

that two types of default values exist for some of these properties: the Java SE Development Kit (JDK)

default values and the WebSphere Application Server default values.

The JDK default is the value that the ORB uses for a property if the property is not specified in any way.

The WebSphere Application Server default is the value that the WebSphere Application Server product

sets for a property in one of the following files:

v The orb.properties file when an application server is installed.

v The server.xml file when an application server is configured.

Because WebSphere Application Server explicitly sets its default value, if both a WebSphere Application

Server and a JDK default value are defined for a property, the WebSphere Application Server default takes

precedence over the JDK default.

For more information about the different ways to specify ORB properties and the precedence order, read

the JDK Diagnostic Guide for the version of the JDK that you are using.

The orb.properties file, that is located in the was_home/java/jre/lib directory, contains ORB custom

properties that are initially set to the WebSphere Application Server default values during the product

installation process.

You can use the administrative console to specify new values for these ORB custom properties. Any value

that you specify takes precedence over any JDK or WebSphere Application Server default values for these

properties. The ORB custom properties settings that you specify in the administrative console are stored in

the server.xml system file and are passed to an ORB in a properties object whenever an ORB is

initialized.

2194 Administering WebSphere applications

To use the administrative console to set ORB custom properties, click Servers > Server Types >

Application servers > server_name > Container services > ORB service > Custom properties. You

can then change the setting of one of the listed custom properties or click New to add a new property to

the list. Then, click Apply to save your change. When you finish making changes, click OK and then click

Save to save your changes.

To use the java command on a command line, use the -D option; for example:

java -Dcom.ibm.CORBA.propname1=value1 -Dcom.ibm.CORBA.propname2=value2 ... application name

To use the launchclient command on a command line, prefix the property with -CC; for example:

launchclient yourapp.ear -CCDcom.ibm.CORBA.propname1=value1 -CCDcom.ibm.CORBA.propname2=value2

 ... optional application arguments

The Custom properties page might already include Secure Sockets Layer (SSL) properties that were

added during product installation. A list of the additional properties that are associated with the ORB

service follows. Unless otherwise indicated, the default values that are provided in the descriptions of

these properties are the JDK default values.

com.ibm.CORBA.BootstrapHost

Specifies the domain name service (DNS) host name or IP address of the machine on which initial server

contact for this client resides.

Note: This setting is deprecated.

For a command-line or programmatic alternative, read the topic Client-side programming tips for the Object

Request Broker service.

com.ibm.CORBA.BootstrapPort

Specifies the port that the ORB uses to bootstrap to the machine on which the initial server contact for this

client listens.

Note: This setting is deprecated.

For a command line or programmatic alternative, read the topic Client-side programming tips for the Object

Request Broker service.

 Default 2809

com.ibm.CORBA.ConnectTimeout

The com.ibm.CORBA.ConnectTimeout property specifies the maximum time, in second, that the client

ORB waits before timing out when attempting to establish an IIOP connection with a remote server ORB.

Typically, client applications use this property. By default, this property is not used by the application

server. However, if necessary, you can specify the property for each individual application server through

the administrative console.

Client applications can specify the com.ibm.CORBA.ConnectTimeout property in one of two ways:

v By including it in the orb.properties file

v By using the -CCD option to set the property with the launchclient script. The following example

specifies a maximum timeout value of ten seconds:

launchclient clientapp.ear -CCDcom.ibm.com.CORBA.ConnectTimeout=10...

Begin by setting your timeout value to 20-30 seconds, but consider factors such as network congestion

and application server load and capacity. Lower values can provide better failover performance, but can

result in exceptions if the remote server does not have enough time to complete the connection.

Chapter 12. Object Request Broker 2195

Valid Range 0-300

Default 0, which means that the client ORB waits indefinitely

com.ibm.CORBA.ConnectionInterceptorName

Specifies the connection interceptor class that is used to determine the type of outbound IIOP connection

to use for a request, and if secure, the quality of protection characteristics associated with the request.

 WebSphere Application Server

default

com.ibm.ISecurityLocalObjectBaseL13Impl. SecurityConnectionInterceptor

JDK default None

com.ibm.CORBA.enableLocateRequest

Specifies whether the ORB uses the locate request mechanism to find objects in a WebSphere Application

Server cell. Use this property for performance tuning.

When this property is set to true, the ORB first sends a short message to the server to find the object that

it needs to access. This first contact is called the locate request. If most of your initial method invocations

are small, setting this property to false might improve performance because this setting change can

reduce the GIOP traffic by as much as one-half. If most of your initial method invocations are large, you

should set this property to true. When the property is set to true, the small locate request message is

sent instead of the large locate request message. The large message is then sent to the target after the

desired object is found.

 WebSphere Application Server default true

JDK default false

com.ibm.CORBA.FragmentSize

Specifies the size of GIOP fragments that the ORB uses when it sends requests. If the total size of a

request exceeds the set value, the ORB breaks the request into fragments, and sends each fragment

separately until the entire request is sent. Set this property on the client side with a -D system property if

you use a stand-alone Java application.

Adjust the value specified for the com.ibm.CORBA.FragmentSize property if the amount of data that is

sent over IIOP in most GIOP requests exceeds one kilobyte, or if thread dumps show that most client-side

threads are waiting while sending or receiving data. Most messages should have few or no fragments.

If you want to instruct the ORB not to chunk any of the requests or replies it sends, set this property to 0.

However, setting the value to zero does not prevent the ORB from receiving GIOP fragments in requests

or replies sent by another ORB.

 Units Bytes.

Default 1024

Range From 64 to the largest value of a Java integer type that is

divisible by 8

com.ibm.CORBA.ListenerPort

Specifies the port on which this server listens for incoming requests. This setting only applies for

client-side ORBs.

 Default Next available system-assigned port number

Range 0 to 2147483647

2196 Administering WebSphere applications

com.ibm.CORBA.LocalHost

Specifies the host name or IP address of the system on which the server ORB is running. If you do not

specify a value for this property, during ORB initialization, the product sets this property to the host name

or IP address specified for the BOOTSTRAP_ADDRESS end point in the serverindex.xml file. For client

applications, if no value is specified for this property, the ORB obtains a value at run time by calling

InetAddress.getLocalHost().getHostAddress() method.

com.ibm.CORBA.numJNIReaders

Specifies the number of JNI reader threads to be allocated in the JNI reader thread pool that is used by

the ORB. Each thread can handle up to 1024 connections.

Note: Before you specify this property, verify that a JSSE provider is selected as the provider for the SSL

repertoire that is associated with the port on which the ORB service listens for incoming requests.

You can specify either IBMJSSE2 SSL or IBMJSSE SSL. IBMJSSE2 SSL is the default provider setting for

SSL repertoires.

 Valid Range 1 - 2147483647

Default 4

com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl

Specifies that JNI reader threads are used. The property name specifies the class name of the ORB

component that manages the pool of JNI reader threads and interacts with the native OS library used to

process multiple connections simultaneously.

Note:

v Verify that the library is located in the bin directory for the product.

For an Intel® operating system, the name of the file that contains the library name Selector.dll

For a UNIX-based operating system, the name of the file that contains the library is either

libSelector.a or libSelector.so. If the lib prefix is missing from the file name, rename the file such

that the name includes the lib prefix.

For the UNIX platform,

v When you specify this property using the administrative console, enter

com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl for the

property name and an empty string (″″) for the value.

When you specify this property on the java command, do not include a value:

-Dcom.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl

 Valid Range Not applicable

Default None

com.ibm.CORBA.RasManager

Specifies an alternative to the default RAS manager of the ORB. This property must be set to

com.ibm.websphere.ras.WsOrbRasManager before the ORB can be integrated with the rest of the RAS

processing for the product.

 WebSphere Application Server default com.ibm.websphere.ras.WsOrbRasManager

JDK default None

com.ibm.CORBA.ServerSocketQueueDepth

Specifies the maximum number of connection requests that can be waiting to be handled by the Server

ORB before the product starts to reject new incoming connection requests. This property corresponds to

the backlog argument to a ServerSocket constructor and is handled directly by TCP/IP.

Chapter 12. Object Request Broker 2197

If you see a ″connection refused″ message in a trace log, typically, either the port on the target machine is

not open, or the server is overloaded with queued-up connection requests. Increasing the value specified

for this property can help alleviate this problem if there does not appear to be any other problem in the

system.

 Default 50

Range From 50 to the largest value of the Java int type

com.ibm.CORBA.ShortExceptionDetails

Specifies that the exception detail message that is returned whenever the server ORB encounters a

CORBA system exception contains a short description of the exception as returned by the toString method

of java.lang.Throwable class. Otherwise, the message contains the complete stack trace as returned by

the printStackTrace method of java.lang.Throwable class.

com.ibm.CORBA.WSSSLClientSocketFactoryName

Specifies the class that the ORB uses to create SSL sockets for secure outbound IIOP connections.

 WebSphere Application Server default com.ibm.ws.security.orbssl.WSSSLClientSocketFactoryImpl

JDK default None

com.ibm.CORBA.WSSSLServerSocketFactoryName

Specifies the class that the ORB uses to create SSL sockets for inbound IIOP connections.

 WebSphere Application Server default com.ibm.ws.security.orbssl.WSSSLServerSocketFactoryImpl

JDK default None

com.ibm.websphere.ObjectIDVersionCompatibility

This property applies when you have a mixed release cluster for which you are performing an incremental

cell upgrade, and at least one of the releases is earlier than Version 5.1.1.

In an environment that includes mixed release cells, the migration program automatically sets this property

to 1.

After you upgrade all of the cluster members to the same release, you can remove this property from the

list of ORB custom properties, or you can change the value that is specified for the property to 2. Either

action improves performance.

When this property is set to 1, the ORB runs using version 1 object identities, which are required for mixed

cells that contain application servers with releases prior to V5.1.1. If you do not specify a value for this

property or if you set this property to 2, the ORB runs using version 2 object identities, which cannot be

used with pre-V5.1.1 application servers.

The Migrating, coexisting, and interoperating PDF includes instructions on how to perform an incremental

cell upgrade.

com.ibm.websphere.threadpool.strategy.implementation

Specifies the logical pool distribution (LPD) thread pool strategy that takes affect the next time you start

the application server, and is enabled if set to com.ibm.ws.threadpool.strategy.LogicalPoolDistribution.

Note: The logical pool distribution function is deprecated. Do not configure logical pool distribution unless

you have already configured it for a previous release of the product.

Some requests have shorter start times than others. LPD is a mechanism for providing these shorter

requests more access to start threads. For more information, read the topic Logical pool distribution, that is

included in the product information center.

2198 Administering WebSphere applications

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval

Specifies how often the logical pool distribution (LPD) mechanism readjusts the pool start target times.

This property cannot be turned off after this support is installed.

Note: The logical pool distribution function is deprecated. Do not configure logical pool distribution unless

you have already configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the

com.ibm.websphere.threadpool.strategy.implementation property for more information.

 Data type Integer

Units Milliseconds

Default 30

Range 20,000 milliseconds minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval

Specifies, in milliseconds, how long the logical pool distribution internal data is kept for inactive requests.

This mechanism tracks several statistics for each request type that is received. Consider removing

requests that have been inactive for an unusually long length of time.

Note: This function is deprecated. Do not configure logical pool distribution unless you have already

configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the

com.ibm.websphere.threadpool.strategy.implementation property for more information.

 Data type Integer

Units Milliseconds

Default 300000 (5 minutes)

Range 60000 (1 minute) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues

Specifies how many pools are created and how many threads are allocated to each pool in the logical pool

distribution mechanism.

Note: The logical pool distribution function is deprecated. Do not configure logical pool distribution unless

you have already configured it with a previous release of the product.

The ORB parameter for specifying the maximum number of threads controls the total number of threads.

The outqueues parameter is specified as a comma separated list of percentages that add up to 100. For

example, the list 25,25,25,25 sets up 4 pools, each allocated 25 percent of the available ORB thread pool.

The pools are indexed left to right from 0 to n-1. The calculation mechanism dynamically assigns each

outqueue a target start time. Target start times are assigned to outqueues in increasing order. Therefore,

pool 0 gets the requests with the least start time, and pool n-1 gets requests with the highest start times.

If you specify this property, LPD must be enabled. Read the description of the

com.ibm.websphere.threadpool.strategy.implementation property for more information.

 Data type Integers in comma separated list

Default 25,25,25,25

Range Percentages in list must total 100 percent

Chapter 12. Object Request Broker 2199

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval

Specifies that statistics are dumped to stdout after this interval expires, but only if requests are processed.

This process keeps the mechanism from filling the log files with redundant information. These statistics are

beneficial for tuning the logical pool distribution mechanism.

Note: The logical pool distribution function is deprecated. Do not configure logical pool distribution unless

you have already configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the

com.ibm.websphere.threadpool.strategy.implementation property for more information.

 Data type Integer

Units Milliseconds

Default 0 (off)

Range 30,000 (30 seconds) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue

Specifies the size of a new queue where incoming requests wait for dispatch. Pertains to the logical pool

distribution mechanism.

Note: The logical pool distribution function is deprecated. Do not configure logical pool distribution unless

you have already configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the

com.ibm.websphere.threadpool.strategy.implementation property for more information.

 Data type Integer

Default 96

Range 10 minimum

com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint

Specifies the maximum number of connections that the IIOP Tunnel Servlet maintains in its connection

cache for each target host and port. If the number of concurrent client requests to a single host and port

exceeds the setting for this property, the IIOP Tunnel Servlet opens a temporary connection to the target

server for each extra client request, and then closes the connection after it receives the reply. Connections

that are opened, but not used within five minutes, are removed from the cache for the IIOP Tunnel Servlet.

 WebSphere Application Server default 3

JDK default Not applicable

Range 0 - largest integer recognized by Java

com.ibm.ws.orb.services.redirector.RequestTimeout

Specifies the number of seconds that the IIOP Tunnel Servlet waits for a reply from the target server on

behalf of a client before timing out. If a value is not specified for this property, or is incorrectly specified,

the com.ibm.CORBA.RequestTimeout property setting for the application server, on which the IIOP Tunnel

Servlet is installed, is used as the setting for the com.ibm.ws.orb.services.redirector.RequestTimeout

property.

The value you specify for this property must be at least as high as the highest client setting for the

com.ibm.CORBA.RequestTimeout property; otherwise the IIOP Tunnel Servlet might timeout more quickly

than the client typically times out while waiting for a reply. If this property is set to zero, the IIOP Tunnel

Servlet does not time out.

2200 Administering WebSphere applications

WebSphere Application Server default com.ibm.CORBA.RequestTimeout property setting for the

application server on which the IIOP Tunnel Servlet is

installed.

JDK default Not applicable

Range 0 - largest integer recognized by Java

com.ibm.ws.orb.transport.useMultiHome

Specifies whether the server ORB binds to all network interfaces in the system. If you specify true, the

ORB binds to all network interfaces that are available to it. If you specify false, the ORB only binds to the

network interface that is specified for the com.ibm.CORBA.LocalHost system property.

 WebSphere Application Server default true

JDK default true

javax.rmi.CORBA.UtilClass

Specifies the name of the Java class that the product uses to implement the

javax.rmi.CORBA.UtilDelegate interface.

This property supports delegation for method implementations in the javax.rmi.CORBA.Util class. The

javax.rmi.CORBA.Util class provides utility methods that can be used by stubs and ties to perform

common operations. The delegate is a singleton instance of a class that implements this interface and

provides a replacement implementation for all of the methods of javax.rmi.CORBA.Util. To enable a

delegate, provide the class name of the delegate as the value of the javax.rmi.CORBA.UtilClass system

property. The default value provides support for the com.ibm.CORBA.iiop.noLocalCopies property.

 WebSphere Application Server default com.ibm.ws.orb.WSUtilDelegateImpl

JDK default None

Object Request Broker communications trace

The Object Request Broker (ORB) communications trace, typically referred to as CommTrace, contains the

sequence of General InterORB Protocol (GIOP) messages sent and received by the ORB when the

application is running.

It might be necessary to understand the low-level sequence of client-to-server or server-to-server

interactions during problem determination. This topic uses trace entries from log examples to explain the

contents of the log and help you understand the interaction sequence. It focuses only in the GIOP

messages and does not discuss in detail additional trace information that displays when intervening with

the GIOP-message boundaries.

Location

When ORB tracing is enabled, this information is placed in the profile_root/logs/server_name/trace.log

directory.

About the ORB trace file

The following are properties of the file that is created when ORB tracing is enabled.

v Read-only

v Updated by the administrative function

v Use this file to localize and resolve ORB-related problems.

How to interpret the output

The following sections refer to sample log output found later in this topic.

Chapter 12. Object Request Broker 2201

Identifying information

The start of a GIOP message is identified by a line that contains either OUT GOING: or IN

COMING: depending on whether the message is sent or received by the process.

 Following the identifying line entry is a series of items, formatted for convenience, with information

extracted from the raw message that identifies the endpoints in this particular message interaction.

See lines 3-13 in both examples. The formatted items include the following:

v GIOP message type (line 3)

v Date and time that the message was recorded (line 4)

v Information that is useful to identify the thread that is running when the message records, and

other thread-specific information (line 5)

v Local and remote TCP/IP ports used for the interaction (lines 6 through 9)

v GIOP version, byte order, an indication of whether the message is a fragment, and message

size (lines 10 through 13)
Request ID, response expected and reply status

Following the introductory message information, the request ID is an integer generated by the

ORB. It is used to identify and associate each request with its corresponding reply. This

association is necessary because the ORB can receive requests from multiple clients and must be

able to associate each reply with the corresponding originating request.

v Lines 15-17 in the request example show the request ID, followed by an indication to the

receiving endpoint that a response is expected (CORBA supports sending one-way requests for

which a response is not expected.)

v Line 15 in the Sample Log Entry - GIOP Reply shows the request ID; line 33 shows the reply

status received after completing the previously sent request.
Object Key

Lines 18-20 in the request example show the object key, the internal representation used by the

ORB to identify and locate the target object intended to receive the request message. Object keys

are not standardized.

Operation

Line 21 in the request example shows the name of the operation that the target object starts in the

receiving endpoint. In this example, the specific operation requested is named _get_value.

Service context information

The service contexts in the message are also formatted for convenience. Each GIOP message

might contain a sequence of service contexts sent and received by each endpoint. Service

contexts, identified uniquely with an ID, contain data used in the specific interaction, such as

security, character code set conversion, and ORB version information. The content of some of the

service contexts is standardized and specified by OMG, while other service contexts are

proprietary and specified by each vendor. IBM-specific service contexts are identified with IDs that

begin with 0x4942.

 Lines 22-41 in the request example illustrate typical service context entries. Three service contexts

are in the request message, as shown in line 22. The ID, length of data, and raw data for each

service context is printed next. Lines 23-25 show an IBM-proprietary context, as indicated by the

0x49424D12 ID. Lines 26-41 show two standard service contexts, identified by 0x6 ID (line 26)

and the 0x1 ID (line 39).

Lines 16-32 in the Sample Log Entry - GIOP Reply illustrate two service contexts, one

IBM-proprietary (line 17) and one standardized (line 20).

For the definition of the standardized service contexts, see the CORBA specification. Service

context 0x1 (CORBA::IOP::CodeSets) is used to publish the character code sets supported by the

ORB in order to negotiate and determine the code set used to transmit character data. Service

context 0x6 (CORBA::IOP::SendingContextRunTime) is used by Remote Method Invocation over

the Internet Inter-ORB Protocol (RMI-IIOP) to provide the receiving endpoint with the IOR for the

SendingContextRuntime object. IBM service context 0x49424D12 is used to publish ORB

PartnerVersion information to support release-to-release interoperability between sending and

receiving ORBs.

2202 Administering WebSphere applications

Data offset

Line 42 in the request example shows the offset, relative to the beginning of the GIOP message,

where the remainder body of the request or reply message is located. This portion of the message

is specific to each operation and varies from operation to operation. Therefore, it is not formatted,

as the specific contents are not known by the ORB. The offset is printed as an aid to quickly

locating the operation-specific data in the raw GIOP message dump, which follows the data offset.

Raw GIOP message dump

Starting at line 45 in the request example and line 36 in the Sample Log Entry - GIOP Reply, a

raw dump of the entire GIOP message is printed in hexadecimal format. Request messages

contain the parameters required by the given operation and reply messages contain the return

values and content of output parameters as required by the given operation. For brevity, not all of

the raw data is in the figures.

Sample Log Entry - GIOP Request

1. OUT GOING:

3. Request Message

4. Date: April 17, 2002 10:00:43 PM CDT

5. Thread Info: P=842115:O=1:CT

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 268 (0x10C)

--

15. Request ID: 5

16. Response Flag: WITH_TARGET

17. Target Address: 0

18. Object Key: length = 24 (0x18)

 4B4D4249 00000010 BA4D6D34 000E0008

 00000000 00000000

21. Operation: _get_value

22. Service Context: length = 3 (0x3)

23. Context ID: 1229081874 (0x49424D12)

24. Context data: length = 8 (0x8)

 00000000 13100003

26. Context ID: 6 (0x6)

27. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DC 00000018 4B4D4249 00000010

 BA4D6D69 000E0008 00000000 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

39. Context ID: 1 (0x1)

40. Context data: length = 12 (0xC)

 00000000 00010001 00010100

42. Data Offset: 118

45. 0000: 47494F50 01020000 0000010C 00000005 GIOP............

46. 0010: 03000000 00000000 00000018 4B4D4249 KMBI

47. 0020: [remainder of message body deleted for brevity]

Chapter 12. Object Request Broker 2203

Sample Log Entry - GIOP Reply

1. IN COMING:

3. Reply Message

4. Date: April 17, 2002 10:00:47 PM CDT

5. Thread Info: RT=0:P=842115:O=1:com.ibm.rmi.transport.TCPTransportConnection

5a (line 5 broken for publication). remoteHost=192.168.1.101 remotePort=1242 localPort=1243

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 208 (0xD0)

--

15. Request ID: 5

16. Service Context: length = 2 (0x2)

17. Context ID: 1229081874 (0x49424D12)

18. Context data: length = 8 (0x8)

 00000000 13100003

20. Context ID: 6 (0x6)

21. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DA 00000018 4B4D4249 00000010

 BA4D6D34 000E0008 00000001 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

33. Reply Status: NO_EXCEPTION

36. 0000: 47494F50 01020001 000000D0 00000005 GIOP............

37. 0010: 00000000 00000002 49424D12 00000008 IBM.....

38. 0020: [remainder of message body deleted for brevity]

Client-side programming tips for the Object Request Broker service

Every Internet InterORB Protocol (IIOP) request and response exchange consists of a client-side ORB and

a server-side ORB. It is important that any application that uses IIOP is properly programmed to

communicate with the client-side Object Request Broker (ORB).

The following tips should help you ensure that an application that uses IIOP to handle request and

response exchanges is properly programmed to communicate with the client-side Object Request Broker

(ORB).

Resolution of initial references to services

Client applications can use the ORBInitRef and ORBDefaultInitRef properties to configure the network

location that the ORB service uses to find a service such as naming. When set, these properties are

included in the parameters that are used to initialize the ORB, as illustrated in the following example:

org.omg.CORBA.ORB.init(java.lang.String[] args,

 java.util.Properties props)

You can set these properties in client code or by command-line argument. It is possible to specify more

than one service location by using multiple ORBInitRef property settings (one for each service), but only a

single ORBDefaultInitRef value can be specified.

2204 Administering WebSphere applications

For setting in client code, these properties are com.ibm.CORBA.ORBInitRef.service_name and

com.ibm.CORBA.ORBDefaultInitRef, respectively. For example, to specify that the naming service

(NameService) is located in sample.server.com at port 2809, set the

com.ibm.CORBA.ORBInitRef.NameService property to corbaloc::sample.server.com:2809/NameService.

For setting by command-line argument, these properties are -ORBInitRef and -ORBDefaultInitRef,

respectively. To locate the same naming service specified previously, use the following Java command:

After these properties are set for services that the ORB supports, Java Platform, Enterprise Edition (Java

EE) applications can call the resolve_initial_references function on the ORB, as defined in the

CORBA/IIOP specification, to obtain the initial reference to a given service.

Preferred API for obtaining an ORB instance

For Java EE applications, you can use either of the following approaches. However, it is strongly

recommended that you use the Java Naming and Directory Interface (JNDI) approach to ensure that the

same ORB instance is used throughout the client application; you avoid the unintended inconsistencies

that might occur when different ORB instances are used.

JNDI approach: For Java EE applications (including enterprise beans, Java EE clients and servlets), you

can obtain an ORB instance by creating a JNDI InitialContext object and looking up the ORB under the

java:comp/ORB name, as illustrated in the following example:

javax.naming.Context ctx = new javax.naming.InitialContext();

org.omg.CORBA.ORB orb =

 (org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.lookup("java:comp/ORB"),

 org.omg.CORBA.ORB.class);

The ORB instance obtained using JNDI is a singleton object, shared by all the Java EE components that

are running in the same Java virtual machine process.

CORBA approach: Because thin-client applications do not run in a Java EE container, they cannot use

JNDI interfaces to look up the ORB. In this case, you can obtain an ORB instance by using CORBA

programming interfaces, as follows:

java.util.Properties props = new java.util.Properties();

java.lang.String[] args = new java.lang.String[0];

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

In contrast to the JNDI approach, the CORBA specification requires that a new ORB instance be created

each time the ORB.init method is called. If necessary to change the ORB default settings, you can add

ORB property settings to the Properties object that is passed in the ORB.init method call.

The use of the com.ibm.ejs.oa.EJSORB.getORBinstance method, supported in previous releases of this

product is deprecated.

API restrictions with sharing an ORB instance among Java EE application

components

For performance reasons, it often makes sense to share a single ORB instance among components in a

Java EE application. As required by the Java EE Specification, Version 1.3, all Web and EJB containers

provide an ORB instance in the JNDI namespace as java:comp/ORB. Each container can share this

instance among application components but is not required to. For proper isolation between application

components, application code must comply with the following restrictions:

v Do not call the ORB shutdown or destroy methods

v Do not call org.omg.CORBA_2_3.ORB methods register_value_factory, or unregister_value_factory

In addition, do not share an ORB instance among application components in different Java EE

applications.

Chapter 12. Object Request Broker 2205

Required use of rmic and idlj that ship with the IBM Developer Kit

The Java Runtime Environment (JRE) used by this product includes the rmic and idlj tools. You use the

tools to generate Java language bindings for the CORBA/IIOP protocol.

During product installation, the tools are installed in the app_server_root/java/ibm_bin directory. Versions of

these tools included with Java development kits in the $JAVA_HOME/bin directory other than the IBM

Developer Kit installed with this product are incompatible with this product.

When you install this product, the app_server_root/java/ibm_bin directory is included in the $PATH search

order to enable use of the rmic and idlj scripts provided by IBM. Because the scripts are in the

app_server_root/java/ibm_bin directory instead of the JRE standard app_server_root/java/bin directory, it is

unlikely that you can overwrite them when applying maintenance to a JRE not provided by IBM.

In addition to the rmic and idlj tools, the JRE also includes Interface Definition Language (IDL) files. The

files are based on those defined by the Object Management Group (OMG) and can be used by

applications that need an IDL definition of selected ORB interfaces. The files are placed in the

app_server_root/java/ibm_lib directory.

Before using either the rmic or idlj tool, ensure that the app_server_root/java/ibm_bin directory is included

in the proper PATH variable search order in the environment. If your application uses IDL files in the

app_server_root/java/ibm_lib directory, also ensure that the directory is included in the PATH variable.

Character code set conversion support for the Java Object Request

Broker service

The CORBA/IIOP specification defines a framework for negotiation and conversion of character code sets

used by the Java Object Request Broker (ORB) service.

This product supports the framework and provides the following system properties for modifying the default

settings:

com.ibm.CORBA.ORBCharEncoding

Specifies the name of the native code set that the ORB uses for character data (referred to as

NCS-C in the CORBA/IIOP specification). By default, the ORB uses UTF8. Valid code set values

for this property are shown in the table that follows this list; values that are valid only for

ORBWCharDefault are indicated.

com.ibm.CORBA.ORBWCharDefault

Specifies the default code set that the ORB uses for transmission of wide character data when no

code set for wide character data is found in the tagged component in the Interoperable Object

Reference (IOR) or in the GIOP service context. If no code set for wide character data is found

and this property is not set, the ORB raises an exception, as specified in the CORBA specification.

No default value is set for this property. The only valid code set values for this property are UCS2

or UTF16.

The CORBA code set negotiation and conversion framework specifies the use of code set registry IDs as

defined in the Open Software Foundation (OSF) code set registry. The ORB translates the Java

file.encoding names shown in the following table to the corresponding OSF registry IDs. These IDs are

then used by the ORB in the IOR Code set tagged component and GIOP code set service context as

specified in the CORBA and IIOP specification.

 Java name OSF registry ID Comments

ASCII 0x00010020

ISO8859_1 0x00010001

ISO8859_2 0x00010002

ISO8859_3 0x00010003

2206 Administering WebSphere applications

Java name OSF registry ID Comments

ISO8859_4 0x00010004

ISO8859_5 0x00010005

ISO8859_6 0x00010006

ISO8859_7 0x00010007

ISO8859_8 0x00010008

ISO8859_9 0x00010009

ISO8859_15_FDIS 0x0001000F

Cp1250 0x100204E2

Cp1251 0x100204E3

Cp1252 0x100204E4

Cp1253 0x100204E5

Cp1254 0x100204E6

Cp1255 0x100204E7

Cp1256 0x100204E8

Cp1257 0x100204E9

Cp943C 0x100203AF

Cp943 0x100203AF

Cp949C 0x100203B5

Cp949 0x100203B5

Cp1363C 0x10020553

Cp1363 0x10020553

Cp950 0x100203B6

Cp1381 0x10020565

Cp1386 0x1002056A

EUC_JP 0x00030010

EUC_KR 0x0004000A

EUC_TW 0x00050010

Cp964 0x100203C4

Cp970 0x100203CA

Cp1383 0x10020567

Cp33722C 0x100283BA

Cp33722 0x100283BA

Cp930 0x100203A2

Cp1047 0x10020417

UCS2 0x00010100 Valid only for the ORBWCharDefault

UTF8 0x05010001

UTF16 0x00010109 Valid only for the ORBWCharDefault

Chapter 12. Object Request Broker 2207

Object Request Brokers: Resources for learning

Use the following links to find relevant supplemental information about Object Request Brokers (ORBs).

The information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy

of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

View links to additional information about:

v “Planning, business scenarios, and IT architecture”

v “Administration”

v “Programming specifications”

Planning, business scenarios, and IT architecture

v CORBA FAQ

Getting started with Object Request Brokers and CORBA.

v WebSphere Application Server CORBA Interoperability

This document describes WebSphere CORBA interoperability for WebSphere Application Server

products.

v CORBA Interoperability Samples

These samples demonstrate the general principles by which WebSphere Application Server applications

can interoperate with CORBA applications.

Administration

v IANA Character Set Registry

This document contains a list of all valid character encoding schemes.

v developerWorks WebSphere

Programming specifications

v Catalog Of OMG CORBA/IIOP Specifications

This document provides a catalog of OMG CORBA/IIOP specifications.

Object request broker troubleshooting tips

Use these tips to diagnose problems related to the WebSphere Application Server Object Request Broker

(ORB).

v “Enabling tracing for the Object Request Broker component”

v “Log files and messages associated with Object Request Broker” on page 2209

v “Adjusting object request broker timeout values” on page 2210

v “Java packages containing the Object Request Broker service” on page 2211

v “Tools used with Object Request Broker” on page 2211

v “Object Request Broker properties” on page 2211

v “CORBA minor codes” on page 2211

Enabling tracing for the Object Request Broker component

The object request broker (ORB) service is one of the product run time services. Tracing messages sent

and received by the ORB is a useful starting point for troubleshooting the ORB service. You can selectively

enable or disable tracing of ORB messages for each server in a product installation, and for each

application client.

This tracing is referred to by the product support as a comm trace, and is different from the general

purpose trace facility. The trace facility, which shows the detailed run-time behavior of product

2208 Administering WebSphere applications

http://www.omg.org/gettingstarted/corbafaq.htm
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27005708
http://www-106.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.iana.org/assignments/character-sets
http://www.ibm.com/developer/websphere
http://www.omg.org/technology/documents/corba_spec_catalog.htm

components, may be used alongside comm trace for other product components, or for the ORB

component. The trace string associated with the ORB service is ORBRas=all=enabled.

You can enable and disable comm tracing using the administrative console or by manually editing the

server.xml file for the server be trace. You must stop and restart the server for the configuration change to

take effect.

For example, using the administrative console:

v Click Servers > Server Types > WebSphere application servers > server_name > Container

services > ORB service, and then select the ORB tracing. Click OK, and then click Save to save your

settings. Restart the server for the new settings to take effect. Or,

v Locate the server.xml file for the selected server, for example: profile_root/config/cells/node_name/
nodes/node_name/servers/server_name/server.xml.

v Locate the services entry for the ORB service, xmi:type=orb:ObjectRequestBroker, and set

commTraceEnabled=true.

ORB tracing for client applications requires that both the ORBRas component trace and the ORB comm

trace are enabled. If only the ORB comm trace is enabled, no trace output is generated for client-side

ORB traces. You can use one of the following options to enable both traces in the command line used to

launch the client application:

v If you are using the product launcher, launchClient, use the -CCD option.

v If you are using the java command specify these parameters:

-trace=ORBRas=all=enabled

-tracefile=filename

-Dcom.ibm.CORBA.Debug=true

-Dcom.ibm.CORBA.CommTrace=true

ORB tracing output for thin clients can be directed by setting the com.ibm.CORBA.Debug.Output =

debugOutputFilename parameter in the command line.

Note: When using launchClient on operating systems like AIX or Linux, because ORB tracing is integrated

with the WebSphere Application Server general component trace, both the component and comm

ORB traces are written to the same file as the rest of the WebSphere Application Server traces.

The name of this file is specified on the -CCtracefile=filename parameter.

When using launchClient on a Windows operating systems, you get a separate ORB trace file,

called orbtrc.timestamp.txt. This file is located in the current directory.

Log files and messages associated with Object Request Broker

Messages and trace information for the ORB are saved in the following logs:

v The profile_root/logs/server_name/trace.log file for output from communications tracing and tracing the

behavior of the ORBRas component

v The JVM logs for each application server, for WebSphere Application Server error and warning

messages

The following message in the SystemOut.log file indicates the successful start of the application server

and its ORB service:

WSVR0001I: Server server1 open for e-business

When communications tracing is enabled, a message similar to the following example in the

profile_root/logs/server_name/trace.log file, indicates that the ORB service has started successfully. The

message also shows the start of a listener thread, which is waiting for requests on the specified local port.

Chapter 12. Object Request Broker 2209

com.ibm.ws.orbimpl.transport.WSTransport startListening(ServerConnectionData connectionData)

P=693799:O=0:CT a new ListenerThread has been started for ServerSocket[addr=0.0.0.0/
0.0.0.0,port=0,localport=1360]

When the com.ibm.ejs.oa.*=all=enabled parameter is specified, tracing of the Object Adapter is enabled.

The following message in the trace.log indicates that the ORB service started successfully:

EJSORBImpl < initializeORB

The ORB service is one of the first services started during the WebSphere Application Server initialization

process. If it is not properly configured, other components such as naming, security, and node agent, are

not likely to start successfully. This is obvious in the JVM logs or trace.log of the affected application

server.

The following message in the SystemOut.log file is a warning message that indicates, in a future release,

the ORB might use the thread pool that is defined in the Thread Pool Manager service only. If this

situation occurs, you will not be able to define a thread pool in the Object Request Broker service.

WSVR0626W: The ThreadPool setting on the ObjectRequestBroker service is deprecated.

An action is not required when you receive this warning message. To prevent the warning message from

reoccurring, configure the ORB to use the thread pool that is defined in the Thread Pool Manager service.

Complete the following steps in the administrative console:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. In the Container Settings section, expand Container Services and click ORB Service

3. In the Thread Pool Settings section, select the option Use the ORB.thread.pool settings associated

with the Thread Pool Manager (recommended). .

4. Click OK and Save to save your changes directly to the master configuration.

Adjusting object request broker timeout values

If Web clients that access Java applications running in the product environment are consistently

experiencing problems with their requests, and the problem cannot be traced to other sources and

addressed through other solutions, consider setting an ORB timeout value and adjusting it for your

environment. A list of timeout scenarios follows:

v Web browsers vary in their language for indicating that they have timed out. Usually, the problem is

announced as a connection failure or a no-path-to-server message.

v Set an ORB timeout value to less than the time after which a Web client eventually times out. Because

it can be difficult to tell how long Web clients wait before timing out, setting an ORB timeout value

requires experimentation. The ideal testing environment features some simulated network failures for

testing the proposed setting value.

v Empirical results from limited testing indicate that 30 seconds is a reasonable starting value. Ensure that

this setting is not too low. To fine tune the setting, find a value that is not too low. Gradually decrease

the setting until reaching the threshold at which the value becomes too low. Set the value a little higher

than the threshold.

v When an ORB timeout value is set too low, the symptom is numerous CORBA NO_RESPONSE

exceptions, which occur even for some valid requests. The value is likely to be too low if requests that

should have been successful, for example, the server is not down, are being lost or refused.

Timeout adjustments: Do not adjust an ORB timeout value unless you have a problem. Configuring a

value that is inappropriate for the environment can create a problem. An incorrect value can produce

results worse than the original problem.

You can adjust timeout intervals for the product Java ORB through the following administrative settings:

2210 Administering WebSphere applications

v Request timeout, the number of seconds to wait before timing out on most pending ORB requests if

the network fails

v Locate request timeout, the number of seconds to wait before timing out on a locate-request message

Java packages containing the Object Request Broker service

The ORB service resides in the following Java packages:

v com.ibm.com.CORBA.*

v com.ibm.rmi.*

v com.ibm.ws.orb.*

v com.ibm.ws.orbimpl.*

v org.omg.CORBA.*

v javax.rmi.CORBA.*

JAR files that contain the previously mentioned packages include:

v app_server_root/java/jre/lib/ext/ibmorb.jar

v app_server_root/java/jre/lib/ext/iwsorbutil.jar

v app_server_root/lib/iwsorb.jar

Tools used with Object Request Broker

The tools used to compile Java remote interfaces to generate language bindings used by the ORB at

runtime reside in the following Java packages:

v com.ibm.tools.rmic.*

v com.ibm.idl.*

The JAR file that contains the packages is app_server_root/java/lib/ibmtools.jar.

Object Request Broker properties

The ORB service requires a number of ORB properties for correct operation. It is not necessary for most

users to modify these properties, and it is recommended that only your system administrator modify them

when required.. Consult IBM Support personnel for assistance. The properties reside in the orb.properties

file, located in app_server_root/java/jre/lib/orb.properties.

CORBA minor codes

The CORBA specification defines standard minor exception codes for use by the ORB when a system

exception is thrown. In addition, the object management group (OMG) assigns each vendor a unique prefix

value, called the Vendor Minor code ID (VMCID). This prefix value is used in vendor-proprietary minor

exception codes. The VMCID that is assigned to OMG is 0x4f4d0, and the VMCID that is assigned to IBM

is 0x4942F

Minor code values that are assigned to IBM, and that are used by the ORB in the product follow. The

minor code value is in decimal and hexadecimal formats. The column labeled minor code reason gives a

short description of the condition causing the exception.

Currently there is no documentation for these errors beyond the minor code reason. If you require

technical support from IBM, the minor code helps support engineers determine the source of the problem.

The minor exception codes that are listed in the following table are in the format <VMCID><minor_code>.

For example, the 4942f in the minor exception code 0x4942f102 indicates that this exception is an

IBM-defined exception. The 102 at the end of this minor exception code is the actual minor code.

 Table 40. Decimal minor exception codes 1229066320 to 1229066364

Decimal Hexadecimal Minor code reason

Chapter 12. Object Request Broker 2211

Table 40. Decimal minor exception codes 1229066320 to 1229066364 (continued)

1229066320 0x49421050 HTTP_READER_FAILURE

1229066321 0x49421051 COULD_NOT_INSTANTIATE_CLIENT_SSL_SOCKET_FACTORY

1229066322 0x49421052 COULD_NOT_INSTANTIATE_SERVER_SSL_SOCKET_FACTORY

1229066323 0x49421053 CREATE_LISTENER_FAILED_1

1229066324 0x49421054 CREATE_LISTENER_FAILED_2

1229066325 0x49421055 CREATE_LISTENER_FAILED_3

1229066326 0x49421056 CREATE_LISTENER_FAILED_4

1229066327 0x49421057 CREATE_LISTENER_FAILED_5

1229066328 0x49421058 INVALID_CONNECTION_TYPE

1229066329 0x49421059 HTTPINPUTSTREAM_NO_ACTIVEINPUTSTREAM

1229066330 0x4942105a HTTPOUTPUTSTREAM_NO_OUTPUTSTREAM

1229066331 0x4942105b CONNECTIONINTERCEPTOR_INVALID_CLASSNAME

1229066332 0x4942105c NO_CONNECTIONDATA_IN_CONNECTIONDATACARRIER

1229066333 0x4942105d CLIENT_CONNECTIONDATA_IS_INVALID_TYPE

1229066334 0x4942105e SERVER_CONNECTIONDATA_IS_INVALID_TYPE

1229066335 0x4942105f NO_OVERLAP_OF_ENABLED_AND_DESIRED_CIPHER_SUITES

1229066352 0x49421070 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET

1229066353 0x49421071 GETCONNECTION_KEY_RETURNED_FALSE

1229066354 0x49421072 UNABLE_TO_CREATE_SSL_SOCKET

1229066355 0x49421073 SSLSERVERSOCKET_TARGET_SUPPORTS_LESS_THAN_1

1229066356 0x49421074 SSLSERVERSOCKET_TARGET_REQUIRES_LESS_THAN_1

1229066357 0x49421075 SSLSERVERSOCKET_TARGET_LESS_THAN_TARGET_REQUIRES

1229066358 0x49421076 UNABLE_TO_CREATE_SSL_SERVER_SOCKET

1229066359 0x49421077 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_SERVER_SOCKET

1229066360 0x49421078 INVALID_SERVER_CONNECTION_DATA_TYPE

1229066361 0x49421079 GETSERVERCONNECTIONDATA_RETURNED_NULL

1229066362 0x4942107a GET_SSL_SESSION_RETURNED_NULL

1229066363 0x4942107b GLOBAL_ORB_EXISTS

1229066364 0x4942107c CONNECT_TIME_OUT

 Table 41. Decimal minor exception codes 1229123841 to 1229124249

Decimal Hexadecimal Minor code reason

1229123841 0x4942f101 DSIMETHOD_NOTCALLED

1229123842 0x4942f102 BAD_INV_PARAMS

1229123843 0x4942f103 BAD_INV_RESULT

1229123844 0x4942f104 BAD_INV_CTX

1229123845 0x4942f105 ORB_NOTREADY

1229123879 0x4942f127 PI_NOT_POST_INIT

1229123880 0x4942f128 INVALID_EXTENDED_PI_CALL

1229123969 0x4942f181 BAD_OPERATION_EXTRACT_SHORT

1229123970 0x4942f182 BAD_OPERATION_EXTRACT_LONG

1229123971 0x4942f183 BAD_OPERATION_EXTRACT_USHORT

1229123972 0x4942f184 BAD_OPERATION_EXTRACT_ULONG

1229123973 0x4942f185 BAD_OPERATION_EXTRACT_FLOAT

1229123974 0x4942f186 BAD_OPERATION_EXTRACT_DOUBLE

1229123975 0x4942f187 BAD_OPERATION_EXTRACT_LONGLONG

1229123976 0x4942f188 BAD_OPERATION_EXTRACT_ULONGLONG

1229123977 0x4942f189 BAD_OPERATION_EXTRACT_BOOLEAN

1229123978 0x4942f18a BAD_OPERATION_EXTRACT_CHAR

1229123979 0x4942f18b BAD_OPERATION_EXTRACT_OCTET

1229123980 0x4942f18c BAD_OPERATION_EXTRACT_WCHAR

2212 Administering WebSphere applications

Table 41. Decimal minor exception codes 1229123841 to 1229124249 (continued)

1229123981 0x4942f18d BAD_OPERATION_EXTRACT_STRING

1229123982 0x4942f18e BAD_OPERATION_EXTRACT_WSTRING

1229123983 0x4942f18f BAD_OPERATION_EXTRACT_ANY

1229123984 0x4942f190 BAD_OPERATION_INSERT_OBJECT_1

1229123985 0x4942f191 BAD_OPERATION_INSERT_OBJECT_2

1229123986 0x4942f192 BAD_OPERATION_EXTRACT_OBJECT_1

1229123987 0x4942f193 BAD_OPERATION_EXTRACT_OBJECT_2

1229123988 0x4942f194 BAD_OPERATION_EXTRACT_TYPECODE

1229123989 0x4942f195 BAD_OPERATION_EXTRACT_PRINCIPAL

1229123990 0x4942f196 BAD_OPERATION_EXTRACT_VALUE

1229123991 0x4942f197 BAD_OPERATION_GET_PRIMITIVE_TC_1

1229123992 0x4942f198 BAD_OPERATION_GET_PRIMITIVE_TC_2

1229123993 0x4942f199 BAD_OPERATION_INVOKE_NULL_PARAM_1

1229123994 0x4942f19a BAD_OPERATION_INVOKE_NULL_PARAM_2

1229123995 0x4942f19b BAD_OPERATION_INVOKE_DEFAULT_1

1229123996 0x4942f19c BAD_OPERATION_INVOKE_DEFAULT_2

1229123997 0x4942f19d BAD_OPERATION_UNKNOWN_BOOTSTRAP_METHOD

1229123998 0x4942f19e BAD_OPERATION_EMPTY_ANY

1229123999 0x4942f19f BAD_OPERATION_STUB_DISCONNECTED

1229124000 0x4942f1a0 BAD_OPERATION_TIE_DISCONNECTED

1229124001 0x4942f1a1 BAD_OPERATION_DELEGATE_DISCONNECTED

1229124097 0x4942f201 NULL_PARAM_1

1229124098 0x4942f202 NULL_PARAM_2

1229124099 0x4942f203 NULL_PARAM_3

1229124100 0x4942f204 NULL_PARAM_4

1229124101 0x4942f205 NULL_PARAM_5

1229124102 0x4942f206 NULL_PARAM_6

1229124103 0x4942f207 NULL_PARAM_7

1229124104 0x4942f208 NULL_PARAM_8

1229124105 0x4942f209 NULL_PARAM_9

1229124106 0x4942f20a NULL_PARAM_10

1229124107 0x4942f20b NULL_PARAM_11

1229124108 0x4942f20c NULL_PARAM_12

1229124109 0x4942f20d NULL_PARAM_13

1229124110 0x4942f20e NULL_PARAM_14

1229124111 0x4942f20f NULL_PARAM_15

1229124112 0x4942f210 NULL_PARAM_16

1229124113 0x4942f211 NULL_PARAM_17

1229124114 0x4942f212 NULL_PARAM_18

1229124115 0x4942f213 NULL_PARAM_19

1229124116 0x4942f214 NULL_PARAM_20

1229124117 0x4942f215 NULL_IOR_OBJECT

1229124118 0x4942f216 NULL_PI_NAME

1229124119 0x4942f217 NULL_SC_DATA

1229124126 0x4942f21e BAD_SERVANT_TYPE

1229124127 0x4942f21f BAD_EXCEPTION

1229124128 0x4942f220 BAD_MODIFIER_LIST

1229124129 0x4942f221 NULL_PROP_MGR

1229124130 0x4942f222 INVALID_PROPERTY

1229124131 0x4942f223 ORBINITREF_FORMAT

1229124132 0x4942f224 ORBINITREF_MISSING_OBJECTURL

Chapter 12. Object Request Broker 2213

Table 41. Decimal minor exception codes 1229123841 to 1229124249 (continued)

1229124133 0x4942f225 ORBDEFAULTINITREF_FORMAT

1229124134 0x4942f226 ORBDEFAULTINITREF_VALUE

1229124135 0x4942f227 OBJECTKEY_SERVERUUID_LENGTH

1229124136 0x4942f228 OBJECTKEY_SERVERUUID_NULL

1229124137 0x4942f229 BAD_REPOSITORY_ID

1229124138 0x4942f22a BAD_PARAM_LOCAL_OBJECT

1229124139 0x4942f22b NULL_OBJECT_IOR

1229124140 0x4942f22c WRONG_ORB

1229124141 0x4942f22d NULL_OBJECT_KEY

1229124142 0x4942f22e NULL_OBJECT_URL

1229124143 0x4942f22f NOT_A_NAMING_CONTEXT

1229124225 0x4942f281 TYPECODEIMPL_CTOR_MISUSE_1

1229124226 0x4942f282 TYPECODEIMPL_CTOR_MISUSE_2

1229124227 0x4942f283 TYPECODEIMPL_NULL_INDIRECTTYPE

1229124228 0x4942f284 TYPECODEIMPL_RECURSIVE_TYPECODES

1229124235 0x4942f28b TYPECODEIMPL_KIND_INVALID_1

1229124236 0x4942f28c TYPECODEIMPL_KIND_INVALID_2

1229124237 0x4942f28d TYPECODEIMPL_NATIVE_1

1229124238 0x4942f28e TYPECODEIMPL_NATIVE_2

1229124239 0x4942f28f TYPECODEIMPL_NATIVE_3

1229124240 0x4942f290 TYPECODEIMPL_KIND_INDIRECT_1

1229124241 0x4942f291 TYPECODEIMPL_KIND_INDIRECT_2

1229124242 0x4942f292 TYPECODEIMPL_NULL_TYPECODE

1229124243 0x4942f293 TYPECODEIMPL_BODY_OF_TYPECODE

1229124244 0x4942f294 TYPECODEIMPL_KIND_RECURSIVE_1

1229124245 0x4942f295 TYPECODEIMPL_COMPLEX_DEFAULT_1

1229124246 0x4942f296 TYPECODEIMPL_COMPLEX_DEFAULT_2

1229124247 0x4942f297 TYPECODEIMPL_INDIRECTION

1229124248 0x4942f298 TYPECODEIMPL_SIMPLE_DEFAULT

1229124249 0x4942f299 TYPECODEIMPL_NOT_CDROS

 Table 42. Decimal minor exception codes 1229124250 to 1229125764

Decimal Hexadecimal Minor code reason

1229124250 0x4942f29a TYPECODEIMPL_NO_IMPLEMENT_1

1229124251 0x4942f29b TYPECODEIMPL_NO_IMPLEMENT_2

1229124357 0x4942f305 CONN_PURGE_REBIND

1229124358 0x4942f306 CONN_PURGE_ABORT

1229124359 0x4942f307 CONN_NOT_ESTABLISH

1229124360 0x4942f308 CONN_CLOSE_REBIND

1229124368 0x4942f310 WRITE_ERROR_SEND

1229124376 0x4942f318 GET_PROPERTIES_ERROR

1229124384 0x4942f320 BOOTSTRAP_SERVER_NOT_AVAIL

1229124392 0x4942f328 INVOKE_ERROR

1229124481 0x4942f381 BAD_HEX_DIGIT

1229124482 0x4942f382 BAD_STRINGIFIED_IOR_LEN

1229124483 0x4942f383 BAD_STRINGIFIED_IOR

1229124485 0x4942f385 BAD_MODIFIER_1

1229124486 0x4942f386 BAD_MODIFIER_2

1229124488 0x4942f388 CODESET_INCOMPATIBLE

1229124490 0x4942f38a LONG_DOUBLE_NOT_IMPLEMENTED_1

1229124491 0x4942f38b LONG_DOUBLE_NOT_IMPLEMENTED_2

2214 Administering WebSphere applications

Table 42. Decimal minor exception codes 1229124250 to 1229125764 (continued)

1229124492 0x4942f38c LONG_DOUBLE_NOT_IMPLEMENTED_3

1229124496 0x4942f390 COMPLEX_TYPES_NOT_IMPLEMENTED

1229124497 0x4942f391 VALUE_BOX_NOT_IMPLEMENTED

1229124498 0x4942f392 NULL_STRINGIFIED_IOR

1229124865 0x4942f501 TRANS_NS_CANNOT_CREATE_INITIAL_NC_SYS

1229124866 0x4942f502 TRANS_NS_CANNOT_CREATE_INITIAL_NC

1229124867 0x4942f503 GLOBAL_ORB_EXISTS

1229124868 0x4942f504 PLUGINS_ERROR

1229124869 0x4942f505 INCOMPATIBLE_JDK_VERSION

1229124993 0x4942f581 BAD_REPLYSTATUS

1229124994 0x4942f582 PEEKSTRING_FAILED

1229124995 0x4942f583 GET_LOCAL_HOST_FAILED

1229124996 0x4942f584 CREATE_LISTENER_FAILED

1229124997 0x4942f585 BAD_LOCATE_REQUEST_STATUS

1229124998 0x4942f586 STRINGIFY_WRITE_ERROR

1229125000 0x4942f588 BAD_GIOP_REQUEST_TYPE_1

1229125001 0x4942f589 BAD_GIOP_REQUEST_TYPE_2

1229125002 0x4942f58a BAD_GIOP_REQUEST_TYPE_3

1229125003 0x4942f58b BAD_GIOP_REQUEST_TYPE_4

1229125005 0x4942f58d NULL_ORB_REFERENCE

1229125006 0x4942f58e NULL_NAME_REFERENCE

1229125008 0x4942f590 ERROR_UNMARSHALING_USEREXC

1229125009 0x4942f591 SUBCONTRACTREGISTRY_ERROR

1229125010 0x4942f592 LOCATIONFORWARD_ERROR

1229125011 0x4942f593 BAD_READER_THREAD

1229125013 0x4942f595 BAD_REQUEST_ID

1229125014 0x4942f596 BAD_SYSTEMEXCEPTION

1229125015 0x4942f597 BAD_COMPLETION_STATUS

1229125016 0x4942f598 INITIAL_REF_ERROR

1229125017 0x4942f599 NO_CODEC_FACTORY

1229125018 0x4942f59a BAD_SUBCONTRACT_ID

1229125019 0x4942f59b BAD_SYSTEMEXCEPTION_2

1229125020 0x4942f59c NOT_PRIMITIVE_TYPECODE

1229125021 0x4942f59d BAD_SUBCONTRACT_ID_2

1229125022 0x4942f59e BAD_SUBCONTRACT_TYPE

1229125023 0x4942f59f NAMING_CTX_REBIND_ALREADY_BOUND

1229125024 0x4942f5a0 NAMING_CTX_REBINDCTX_ALREADY_BOUND

1229125025 0x4942f5a1 NAMING_CTX_BAD_BINDINGTYPE

1229125026 0x4942f5a2 NAMING_CTX_RESOLVE_CANNOT_NARROW_TO_CTX

1229125032 0x4942f5a8 TRANS_NC_BIND_ALREADY_BOUND

1229125033 0x4942f5a9 TRANS_NC_LIST_GOT_EXC

1229125034 0x4942f5aa TRANS_NC_NEWCTX_GOT_EXC

1229125035 0x4942f5ab TRANS_NC_DESTROY_GOT_EXC

1229125036 0x4942f5ac TRANS_BI_DESTROY_GOT_EXC

1229125042 0x4942f5b2 INVALID_CHAR_CODESET_1

1229125043 0x4942f5b3 INVALID_CHAR_CODESET_2

1229125044 0x4942f5b4 INVALID_WCHAR_CODESET_1

1229125045 0x4942f5b5 INVALID_WCHAR_CODESET_2

1229125046 0x4942f5b6 GET_HOST_ADDR_FAILED

1229125047 0x4942f5b7 REACHED_UNREACHABLE_PATH

1229125048 0x4942f5b8 PROFILE_CLONE_FAILED

Chapter 12. Object Request Broker 2215

Table 42. Decimal minor exception codes 1229124250 to 1229125764 (continued)

1229125049 0x4942f5b9 INVALID_LOCATE_REQUEST_STATUS

1229125050 0x4942f5ba NO_UNSAFE_CLASS

1229125051 0x4942f5bb REQUEST_WITHOUT_CONNECTION_1

1229125052 0x4942f5bc REQUEST_WITHOUT_CONNECTION_2

1229125053 0x4942f5bd REQUEST_WITHOUT_CONNECTION_3

1229125054 0x4942f5be REQUEST_WITHOUT_CONNECTION_4

1229125055 0x4942f5bf REQUEST_WITHOUT_CONNECTION_5

1229125056 0x4942f5c0 NOT_USED_1

1229125057 0x4942f5c1 NOT_USED_2

1229125058 0x4942f5c2 NOT_USED_3

1229125059 0x4942f5c3 NOT_USED_4

1229125512 0x4942f788 BAD_CODE_SET

1229125520 0x4942f790 INV_RMI_STUB

1229125521 0x4942f791 INV_LOAD_STUB

1229125522 0x4942f792 INV_OBJ_IMPLEMENTATION

1229125523 0x4942f793 OBJECTKEY_NOMAGIC

1229125524 0x4942f794 OBJECTKEY_NOSCID

1229125525 0x4942f795 OBJECTKEY_NOSERVERID

1229125526 0x4942f796 OBJECTKEY_NOSERVERUUID

1229125527 0x4942f797 OBJECTKEY_SERVERUUIDKEY

1229125528 0x4942f798 OBJECTKEY_NOPOANAME

1229125529 0x4942f799 OBJECTKEY_SETSCID

1229125530 0x4942f79a OBJECTKEY_SETSERVERID

1229125531 0x4942f79b OBJECTKEY_NOUSERKEY

1229125532 0x4942f79c OBJECTKEY_SETUSERKEY

1229125533 0x4942f79d INVALID_INDEXED_PROFILE_1

1229125534 0x4942f79e INVALID_INDEXED_PROFILE_2

1229125762 0x4942f882 UNSPECIFIED_MARSHAL_1

1229125763 0x4942f883 UNSPECIFIED_MARSHAL_2

1229125764 0x4942f884 UNSPECIFIED_MARSHAL_3

 Table 43. Decimal minor exception codes 1299125765 to 1229125906

Decimal Hexadecimal Minor code reason

1229125765 0x4942f885 UNSPECIFIED_MARSHAL_4

1229125766 0x4942f886 UNSPECIFIED_MARSHAL_5

1229125767 0x4942f887 UNSPECIFIED_MARSHAL_6

1229125768 0x4942f888 UNSPECIFIED_MARSHAL_7

1229125769 0x4942f889 UNSPECIFIED_MARSHAL_8

1229125770 0x4942f88a UNSPECIFIED_MARSHAL_9

1229125771 0x4942f88b UNSPECIFIED_MARSHAL_10

1229125772 0x4942f88c UNSPECIFIED_MARSHAL_11

1229125773 0x4942f88d UNSPECIFIED_MARSHAL_12

1229125774 0x4942f88e UNSPECIFIED_MARSHAL_13

1229125775 0x4942f88f UNSPECIFIED_MARSHAL_14

1229125776 0x4942f890 UNSPECIFIED_MARSHAL_15

1229125777 0x4942f891 UNSPECIFIED_MARSHAL_16

1229125778 0x4942f892 UNSPECIFIED_MARSHAL_17

1229125779 0x4942f893 UNSPECIFIED_MARSHAL_18

1229125780 0x4942f894 UNSPECIFIED_MARSHAL_19

1229125781 0x4942f895 UNSPECIFIED_MARSHAL_20

1229125782 0x4942f896 UNSPECIFIED_MARSHAL_21

2216 Administering WebSphere applications

Table 43. Decimal minor exception codes 1299125765 to 1229125906 (continued)

1229125783 0x4942f897 UNSPECIFIED_MARSHAL_22

1229125784 0x4942f898 UNSPECIFIED_MARSHAL_23

1229125785 0x4942f899 UNSPECIFIED_MARSHAL_24

1229125786 0x4942f89a UNSPECIFIED_MARSHAL_25

1229125787 0x4942f89b UNSPECIFIED_MARSHAL_26

1229125788 0x4942f89c UNSPECIFIED_MARSHAL_27

1229125789 0x4942f89d UNSPECIFIED_MARSHAL_28

1229125790 0x4942f89e UNSPECIFIED_MARSHAL_29

1229125791 0x4942f89f UNSPECIFIED_MARSHAL_30

1229125792 0x4942f8a0 UNSPECIFIED_MARSHAL_31

1229125793 0x4942f8a1 UNSPECIFIED_MARSHAL_32

1229125794 0x4942f8a2 UNSPECIFIED_MARSHAL_33

1229125795 0x4942f8a3 UNSPECIFIED_MARSHAL_34

1229125796 0x4942f8a4 UNSPECIFIED_MARSHAL_35

1229125797 0x4942f8a5 UNSPECIFIED_MARSHAL_36

1229125798 0x4942f8a6 UNSPECIFIED_MARSHAL_37

1229125799 0x4942f8a7 UNSPECIFIED_MARSHAL_38

1229125800 0x4942f8a8 UNSPECIFIED_MARSHAL_39

1229125801 0x4942f8a9 UNSPECIFIED_MARSHAL_40

1229125802 0x4942f8aa UNSPECIFIED_MARSHAL_41

1229125803 0x4942f8ab UNSPECIFIED_MARSHAL_42

1229125804 0x4942f8ac UNSPECIFIED_MARSHAL_43

1229125805 0x4942f8ad UNSPECIFIED_MARSHAL_44

1229125806 0x4942f8ae UNSPECIFIED_MARSHAL_45

1229125807 0x4942f8af UNSPECIFIED_MARSHAL_46

1229125808 0x4942f8b0 UNSPECIFIED_MARSHAL_47

1229125809 0x4942f8b1 UNSPECIFIED_MARSHAL_48

1229125810 0x4942f8b2 UNSPECIFIED_MARSHAL_49

1229125811 0x4942f8b3 UNSPECIFIED_MARSHAL_50

1229125812 0x4942f8b4 UNSPECIFIED_MARSHAL_51

1229125813 0x4942f8b5 UNSPECIFIED_MARSHAL_52

1229125814 0x4942f8b6 UNSPECIFIED_MARSHAL_53

1229125815 0x4942f8b7 UNSPECIFIED_MARSHAL_54

1229125816 0x4942f8b8 UNSPECIFIED_MARSHAL_55

1229125817 0x4942f8b9 UNSPECIFIED_MARSHAL_56

1229125818 0x4942f8ba UNSPECIFIED_MARSHAL_57

1229125819 0x4942f8bb UNSPECIFIED_MARSHAL_58

1229125820 0x4942f8bc UNSPECIFIED_MARSHAL_59

1229125821 0x4942f8bd UNSPECIFIED_MARSHAL_60

1229125822 0x4942f8be UNSPECIFIED_MARSHAL_61

1229125823 0x4942f8bf UNSPECIFIED_MARSHAL_62

1229125824 0x4942f8c0 UNSPECIFIED_MARSHAL_63

1229125825 0x4942f8c1 UNSPECIFIED_MARSHAL_64

1229125826 0x4942f8c2 UNSPECIFIED_MARSHAL_65

1229125827 0x4942f8c3 UNSPECIFIED_MARSHAL_66

1229125828 0x4942f8c4 READ_OBJECT_EXCEPTION_2

1229125841 0x4942f8d1 UNSUPPORTED_IDLTYPE

1229125842 0x4942f8d2 DSI_RESULT_EXCEPTION

1229125844 0x4942f8d4 IIOPINPUTSTREAM_GROW

1229125847 0x4942f8d7 NO_CHAR_CONVERTER_1

1229125848 0x4942f8d8 NO_CHAR_CONVERTER_2

Chapter 12. Object Request Broker 2217

Table 43. Decimal minor exception codes 1299125765 to 1229125906 (continued)

1229125849 0x4942f8d9 CHARACTER_MALFORMED_1

1229125850 0x4942f8da CHARACTER_MALFORMED_2

1229125851 0x4942f8db CHARACTER_MALFORMED_3

1229125852 0x4942f8dc CHARACTER_MALFORMED_4

1229125854 0x4942f8de INCORRECT_CHUNK_LENGTH

1229125856 0x4942f8e0 CHUNK_OVERFLOW

1229125858 0x4942f8e2 CANNOT_GROW

1229125859 0x4942f8e3 CODESET_ALREADY_SET

1229125860 0x4942f8e4 REQUEST_CANCELLED

1229125861 0x4942f8e5 WRITE_TO_STREAM_1

1229125862 0x4942f8e6 WRITE_TO_STREAM_2

1229125863 0x4942f8e7 WRITE_TO_STREAM_3

1229125864 0x4942f8e8 WRITE_TO_STREAM_4

1229125865 0x4942f8e9 PROXY_MARSHAL_FAILURE

1229125866 0x4942f8ea PROXY_UNMARSHAL_FAILURE

1229125867 0x4942f8eb INVALID_START_VALUE

1229125868 0x4942f8ec INVALID_CHUNK_STATE

1229125869 0x4942f8ed NULL_CODEBASE_IOR

1229125889 0x4942f901 DSI_NOT_IMPLEMENTED

1229125890 0x4942f902 GETINTERFACE_NOT_IMPLEMENTED

1229125891 0x4942f903 SEND_DEFERRED_NOTIMPLEMENTED

1229125893 0x4942f905 ARGUMENTS_NOTIMPLEMENTED

1229125894 0x4942f906 RESULT_NOTIMPLEMENTED

1229125895 0x4942f907 EXCEPTIONS_NOTIMPLEMENTED

1229125896 0x4942f908 CONTEXTLIST_NOTIMPLEMENTED

1229125902 0x4942f90e CREATE_OBJ_REF_BYTE_NOTIMPLEMENTED

1229125903 0x4942f90f CREATE_OBJ_REF_IOR_NOTIMPLEMENTED

1229125904 0x4942f910 GET_KEY_NOTIMPLEMENTED

1229125905 0x4942f911 GET_IMPL_ID_NOTIMPLEMENTED

1229125906 0x4942f912 GET_SERVANT_NOTIMPLEMENTED

 Table 44. Decimal minor exception codes 1229125907 to 1229126567

Decimal Hexadecimal Minor code reason

1229125907 0x4942f913 SET_ORB_NOTIMPLEMENTED

1229125908 0x4942f914 SET_ID_NOTIMPLEMENTED

1229125909 0x4942f915 GET_CLIENT_SUBCONTRACT_NOTIMPLEMENTED

1229125913 0x4942f919 CONTEXTIMPL_NOTIMPLEMENTED

1229125914 0x4942f91a CONTEXT_NAME_NOTIMPLEMENTED

1229125915 0x4942f91b PARENT_NOTIMPLEMENTED

1229125916 0x4942f91c CREATE_CHILD_NOTIMPLEMENTED

1229125917 0x4942f91d SET_ONE_VALUE_NOTIMPLEMENTED

1229125918 0x4942f91e SET_VALUES_NOTIMPLEMENTED

1229125919 0x4942f91f DELETE_VALUES_NOTIMPLEMENTED

1229125920 0x4942f920 GET_VALUES_NOTIMPLEMENTED

1229125922 0x4942f922 GET_CURRENT_NOTIMPLEMENTED_1

1229125923 0x4942f923 GET_CURRENT_NOTIMPLEMENTED_2

1229125924 0x4942f924 CREATE_OPERATION_LIST_NOTIMPLEMENTED_1

1229125925 0x4942f925 CREATE_OPERATION_LIST_NOTIMPLEMENTED_2

1229125926 0x4942f926 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_1

1229125927 0x4942f927 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_2

1229125928 0x4942f928 SHUTDOWN_NOTIMPLEMENTED

2218 Administering WebSphere applications

Table 44. Decimal minor exception codes 1229125907 to 1229126567 (continued)

1229125929 0x4942f929 WORK_PENDING_NOTIMPLEMENTED

1229125930 0x4942f92a PERFORM_WORK_NOTIMPLEMENTED

1229125931 0x4942f92b COPY_TK_ABSTRACT_NOTIMPLEMENTED

1229125932 0x4942f92c PI_CLIENT_GET_POLICY_NOTIMPLEMENTED

1229125933 0x4942f92d PI_SERVER_GET_POLICY_NOTIMPLEMENTED

1229125934 0x4942f92e ADDRESSING_MODE_NOTIMPLEMENTED_1

1229125935 0x4942f92f ADDRESSING_MODE_NOTIMPLEMENTED_2

1229125936 0x4942f930 SET_OBJECT_RESOLVER_NOTIMPLEMENTED

1229125937 0x4942f931 DISCONNECTED_SERVANT_1

1229125938 0x4942f932 DISCONNECTED_SERVANT_2

1229125939 0x4942f933 DISCONNECTED_SERVANT_3

1229125940 0x4942f934 DISCONNECTED_SERVANT_4

1229125941 0x4942f935 DISCONNECTED_SERVANT_5

1229125942 0x4942f936 DISCONNECTED_SERVANT_6

1229125943 0x4942f937 DISCONNECTED_SERVANT_7

1229125944 0x4942f938 GET_INTERFACE_DEF_NOT_IMPLEMENTED

1229126017 0x4942f981 MARSHAL_NO_MEMORY_1

1229126018 0x4942f982 MARSHAL_NO_MEMORY_2

1229126019 0x4942f983 MARSHAL_NO_MEMORY_3

1229126020 0x4942f984 MARSHAL_NO_MEMORY_4

1229126021 0x4942f985 MARSHAL_NO_MEMORY_5

1229126022 0x4942f986 MARSHAL_NO_MEMORY_6

1229126023 0x4942f987 MARSHAL_NO_MEMORY_7

1229126024 0x4942f988 MARSHAL_NO_MEMORY_8

1229126025 0x4942f989 MARSHAL_NO_MEMORY_9

1229126026 0x4942f98a MARSHAL_NO_MEMORY_10

1229126027 0x4942f98b MARSHAL_NO_MEMORY_11

1229126028 0x4942f98c MARSHAL_NO_MEMORY_12

1229126029 0x4942f98d MARSHAL_NO_MEMORY_13

1229126030 0x4942f98e MARSHAL_NO_MEMORY_14

1229126031 0x4942f98f MARSHAL_NO_MEMORY_15

1229126032 0x4942f990 MARSHAL_NO_MEMORY_16

1229126033 0x4942f991 MARSHAL_NO_MEMORY_17

1229126034 0x4942f992 MARSHAL_NO_MEMORY_18

1229126035 0x4942f993 MARSHAL_NO_MEMORY_19

1229126036 0x4942f994 MARSHAL_NO_MEMORY_20

1229126037 0x4942f995 MARSHAL_NO_MEMORY_21

1229126038 0x4942f996 MARSHAL_NO_MEMORY_22

1229126039 0x4942f997 MARSHAL_NO_MEMORY_23

1229126040 0x4942f998 MARSHAL_NO_MEMORY_24

1229126041 0x4942f999 MARSHAL_NO_MEMORY_25

1229126042 0x4942f99a MARSHAL_NO_MEMORY_26

1229126043 0x4942f99b MARSHAL_NO_MEMORY_27

1229126044 0x4942f99c MARSHAL_NO_MEMORY_28

1229126045 0x4942f99d MARSHAL_NO_MEMORY_29

1229126046 0x4942f99e MARSHAL_NO_MEMORY_30

1229126047 0x4942f99f MARSHAL_NO_MEMORY_31

1229126401 0x4942fb01 RESPONSE_TIMED_OUT

1229126402 0x4942fb02 FRAGMENT_TIMED_OUT

1229126529 0x4942fb81 NO_SERVER_SC_IN_DISPATCH

1229126530 0x4942fb82 NO_SERVER_SC_IN_LOOKUP

Chapter 12. Object Request Broker 2219

Table 44. Decimal minor exception codes 1229125907 to 1229126567 (continued)

1229126531 0x4942fb83 NO_SERVER_SC_IN_CREATE_DEFAULT_SERVER

1229126532 0x4942fb84 NO_SERVER_SC_IN_SETUP

1229126533 0x4942fb85 NO_SERVER_SC_IN_LOCATE

1229126534 0x4942fb86 NO_SERVER_SC_IN_DISCONNECT

1229126539 0x4942fb8b ORB_CONNECT_ERROR_1

1229126540 0x4942fb8c ORB_CONNECT_ERROR_2

1229126541 0x4942fb8d ORB_CONNECT_ERROR_3

1229126542 0x4942fb8e ORB_CONNECT_ERROR_4

1229126543 0x4942fb8f ORB_CONNECT_ERROR_5

1229126544 0x4942fb90 ORB_CONNECT_ERROR_6

1229126545 0x4942fb91 ORB_CONNECT_ERROR_7

1229126546 0x4942fb92 ORB_CONNECT_ERROR_8

1229126547 0x4942fb93 ORB_CONNECT_ERROR_9

1229126548 0x4942fb94 ORB_REGISTER_1

1229126549 0x4942fb95 ORB_REGISTER_2

1229126553 0x4942fb99 ORB_REGISTER_LOCAL_1

1229126554 0x4942fb9a ORB_REGISTER_LOCAL_2

1229126555 0x4942fb9b LOCAL_SERVANT_LOOKUP

1229126556 0x4942fb9c POA_LOOKUP_ERROR

1229126557 0x4942fb9d POA_INACTIVE

1229126558 0x4942fb9e POA_NO_SERVANT_MANAGER

1229126559 0x4942fb9f POA_NO_DEFAULT_SERVANT

1229126560 0x4942fba0 POA_WRONG_POLICY

1229126561 0x4942fba1 FINDPOA_ERROR

1229126562 0x4942fba2 ADAPTER_ACTIVATOR_EXCEPTION

1229126563 0x4942fba3 POA_SERVANT_ACTIVATOR_LOOKUP_FAILED

1229126564 0x4942fba4 POA_BAD_SERVANT_MANAGER

1229126565 0x4942fba5 POA_SERVANT_LOCATOR_LOOKUP_FAILED

1229126566 0x4942fba6 POA_UNKNOWN_POLICY

1229126567 0x4942fba7 POA_NOT_FOUND

 Table 45. Decimal minor exception codes 1229126568 to 1330446377

Decimal Hexadecimal Minor code reason

1229126568 0x4942fba8 SERVANT_LOOKUP

1229126569 0x4942fba9 SERVANT_IS_ACTIVE

1229126570 0x4942fbaa SERVANT_DISPATCH

1229126571 0x4942fbab WRONG_CLIENTSC

1229126572 0x4942fbac WRONG_SERVERSC

1229126573 0x4942fbad SERVANT_IS_NOT_ACTIVE

1229126574 0x4942fbae POA_WRONG_POLICY_1

1229126575 0x4942fbaf POA_NOCONTEXT_1

1229126576 0x4942fbb0 POA_NOCONTEXT_2

1229126577 0x4942fbb1 POA_INVALID_NAME_1

1229126578 0x4942fbb2 POA_INVALID_NAME_2

1229126579 0x4942fbb3 POA_INVALID_NAME_3

1229126580 0x4942fbb4 POA_NOCONTEXT_FOR_PREINVOKE

1229126581 0x4942fbb5 POA_NOCONTEXT_FOR_CHECKING_PREINVOKE

1229126582 0x4942fbb6 POA_NOCONTEXT_FOR_POSTINVOKE

1229126657 0x4942fc01 LOCATE_UNKNOWN_OBJECT

1229126658 0x4942fc02 BAD_SERVER_ID_1

1229126659 0x4942fc03 BAD_SERVER_ID_2

2220 Administering WebSphere applications

Table 45. Decimal minor exception codes 1229126568 to 1330446377 (continued)

1229126660 0x4942fc04 BAD_IMPLID

1229126665 0x4942fc09 BAD_SKELETON_1

1229126666 0x4942fc0a BAD_SKELETON_2

1229126673 0x4942fc11 SERVANT_NOT_FOUND_1

1229126674 0x4942fc12 SERVANT_NOT_FOUND_2

1229126675 0x4942fc13 SERVANT_NOT_FOUND_3

1229126676 0x4942fc14 SERVANT_NOT_FOUND_4

1229126677 0x4942fc15 SERVANT_NOT_FOUND_5

1229126678 0x4942fc16 SERVANT_NOT_FOUND_6

1229126679 0x4942fc17 SERVANT_NOT_FOUND_7

1229126687 0x4942fc1f SERVANT_DISCONNECTED_1

1229126688 0x4942fc20 SERVANT_DISCONNECTED_2

1229126689 0x4942fc21 NULL_SERVANT

1229126690 0x4942fc22 ADAPTER_ACTIVATOR_FAILED

1229126692 0x4942fc24 ORB_DESTROYED

1229126693 0x4942fc25 DYNANY_DESTROYED

1229127170 0x4942fe02 CONNECT_FAILURE_1

1229127171 0x4942fe03 CONNECT_FAILURE_2

1229127172 0x4942fe04 CONNECT_FAILURE_3

1229127173 0x4942fe05 CONNECT_FAILURE_4

1229127297 0x4942fe81 UNKNOWN_CORBA_EXC

1229127298 0x4942fe82 RUNTIMEEXCEPTION

1229127299 0x4942fe83 UNKNOWN_SERVER_ERROR

1229127300 0x4942fe84 UNKNOWN_DSI_SYSEX

1229127301 0x4942fe85 UNEXPECTED_CHECKED_EXCEPTION

1229127302 0x4942fe86 UNKNOWN_CREATE_EXCEPTION_RESPONSE

1229127312 0x4942fe90 UNKNOWN_PI_EXC

1229127313 0x4942fe91 UNKNOWN_PI_EXC_2

1229127314 0x4942fe92 PI_ARGS_FAILURE

1229127315 0x4942fe93 PI_EXCEPTS_FAILURE

1229127316 0x4942fe94 PI_CONTEXTS_FAILURE

1229127317 0x4942fe95 PI_OP_CONTEXT_FAILURE

1229127326 0x4942fe9e USER_DEFINED_ERROR

1229127327 0x4942fe9f UNKNOWN_RUNTIME_IN_BOOTSTRAP

1229127328 0x4942fea0 UNKNOWN_THROWABLE_IN_BOOTSTRAP

1229127329 0x4942fea1 UNKNOWN_RUNTIME_IN_INSAGENT

1229127330 0x4942fea2 UNKNOWN_THROWABLE_IN_INSAGENT

1229127331 0x4942fea3 UNEXPECTED_IN_PROCESSING_CLIENTSIDE_INTERCEPTOR

1229127332 0x4942fea4 UNEXPECTED_IN_PROCESSING_SERVERSIDE_INTERCEPTOR

1229127333 0x4942fea5 UNEXPECTED_PI_LOCAL_REQUEST

1229127334 0x4942fea6 UNEXPECTED_PI_LOCAL_RESPONSE

1330446336 0x4f4d0000 OMGVMCID

1330446337 0x4f4d0001 FAILURE_TO_REGISTER_OR_LOOKUP_VALUE_FACTORY

1330446338 0x4f4d0002 RID_ALREADY_DEFINED_IN_IFR

1330446339 0x4f4d0003 IN_INVOCATION_CONTEXT

1330446340 0x4f4d0004 ORB_SHUTDOWN

1330446341 0x4f4d0005 NAME_CLASH_IN_INHERITED_CONTEXT

1330446342 0x4f4d0006 SERVANT_MANAGER_EXISTS

1330446343 0x4f4d0007 INS_BAD_SCHEME_NAME

1330446344 0x4f4d0008 INS_BAD_ADDRESS

1330446345 0x4f4d0009 INS_BAD_SCHEME_SPECIFIC_PART

Chapter 12. Object Request Broker 2221

Table 45. Decimal minor exception codes 1229126568 to 1330446377 (continued)

1330446346 0x4f4d000a INS_OTHER

1330446348 0x4f4d000c POLICY_FACTORY_EXISTS

1330446350 0x4f4d000e INVALID_PI_CALL

1330446351 0x4f4d000f SERVICE_CONTEXT_ID_EXISTS

1330446353 0x4f4d0011 POA_DESTROYED

1330446359 0x4f4d0017 NO_TRANSMISSION_CODE

1330446362 0x4f4d001a INVALID_SERVICE_CONTEXT

1330446363 0x4f4d001b NULL_OBJECT_ON_REGISTER

1330446364 0x4f4d001c INVALID_COMPONENT_ID

1330446365 0x4f4d001d INVALID_IOR_PROFILE

1330446375 0x4f4d0027 INVALID_STREAM_FORMAT_1

1330446376 0x4f4d0028 NOT_VALUE_OUTPUT_STREAM

1330446377 0x4f4d0029 NOT_VALUE_INPUT_STREAM

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes).

For current information available from IBM Support on known problems and their resolution, see the i5/OS

software page. You should also refer to this page before opening a PMR because it contains information

about the documents that you have to gather and send to IBM to receive help with a problem.

Enabling HTTP tunneling

HTTP tunneling enables clients, that reside outside of a firewall, to bundle all of the information, that the

client-side Object Request Broker (ORB) needs to send to the server-side ORB, into a normal HTTP

request. This request can then be sent to the server on port 80, just like any other HTTP request.

Before you begin

Make sure that the client-side ORB is an IBM ORB. Tunneling does not work if you are using a non-IBM

ORB on the client.

Also, if Secure Sockets Layer (SSL) security is required for the tunneling, make sure that the required

certificates and key files are configured.

About this task

Sometimes clients residing outside of a firewall need to communicate with modules, such as EJB modules,

that reside on a server inside of the firewall. The client-side and server-side ORBs manage this interaction

between the client and the server. However, firewalls normally block the ports that a client, uses to talk to

the server-side ORB. Therefore if your installation uses a firewall that blocks the ports a client uses to talk

to the server-side ORB, you should set up HTTP tunneling.

The IIOPTunnelServlet, which is shipped with the product as class file

com.ibm.CORBA.services.IIOPTunnelServlet.class, allows an HTTP client, such as a Java client, that is

embedded with RMI-IIOP, to communicate with a server that resides inside of a firewall. This class file,

along with the following three class files, are bundled within the WAS_HOME/plugins/
com.ibm.ws.runtime_6.1.0.jar file. These additional class files enhance the servlet’s capabilities.

 com.ibm.CORBA.services.redirector.ConnectionStream.class

com.ibm.CORBA.services.redirector.Redirector.class

com.ibm.CORBA.services.redirector.RedirectorController.class

2222 Administering WebSphere applications

http://www-1.ibm.com/servers/eserver/support/iseries/software/v5r3/index.html
http://www-1.ibm.com/servers/eserver/support/iseries/software/v5r3/index.html

When tunneling is enabled, the IIOPTunnelServlet servlet on the server receives the HTTP request and

unpacks all of the ORB information. The servlet then calls the server-side ORB on the client’s behalf. The

server-side ORB treats the request as it would treat any normal ORB request and responds to the servlet.

The servlet packs the ORB response into an HTTP response and sends the response back to the

client-side ORB, through the firewall. The client-side ORB unpacks the HTTP response and pulls out the

response.

Tunneling can operate over HTTPS as well as over HTTP. Therefore, you can use Secure Sockets Layer

(SSL) security to secure your tunneling clients if your security procedures require that all communication to

your servers is SSL secured.

1. Create an installable IIOPTunnel.ear file that includes the IIOPTunnelServlet servlet.

Before you can run the IIOPTunnelServlet servlet on the server, you must make it part of an

application that you can install on the server. You can use an application assembly tool to create an

installable IIOPTunnel.ear file that includes this servlet. For example, if you use the assembly tool that

is shipped with the product:

a. Start the tool.

b. Open the WEB perspective.

c. In the Project Explorer view, right click in an empty pane and select New > Dynamic Web Project.

d. In the Create Dynamic Web Project wizard, change the project Name to IIOPTunnel, or another

name that is meaningful to you. By default, the Add Module to an EAR project option is selected,

the EAR project name is set to IIOPTunnelEAR, and the Context Root is set to IIOPTunnel.

e. Keep these default settings and click Finish.

f. Add the com.ibm.ws.runtime_7.0.0.jar file to the Web Project Build Path.

Before you can register the new servlet in the Web Deployment Descriptor, you must add the

IIOPTunnelServlet servlet, that resides in the WAS_HOME/lib/plugins/com.ibm.ws.runtime_7.0.0.jar

file, to your build path.

1) Right click the IIOPTunnel Web Project, and select Properties > Java Build Path.

2) Select the Libraries tab and press the Add external JARs button.

3) Add the com.ibm.ws.runtime_7.0.0.jar file, and then click OK.

2. Export your EAR file.

a. Right click on the IIOPTunnelEAR project.

b. Click Export > EAR File, browse to your selected destination directory and specify the EAR file

name as IIOPTunnel.ear, or the file name that you specified in Step 1d.

c. Click Finish.

You get your IIOPTunnel.ear file, which is ready for you to deploy.

3. Install the IIOPTunnel.ear file on your target application server. You can accept all default values during

installation.

Remember to adjust the tunnelAgentURL in the client to reflect the actual location of the

IIOPTunnelServlet on your server.

Note:

http(s)://host_name:port/context_root/Servlet_URLmapping

Thehost_name:port are the host name and port that is assigned to teh server on which the

IIOPTunnelServlet resides. The port can be either an HTTP or an HTTPS port, depending on your

security requirements.

The context_root and Servlet_URLmapping values must match the values that are defined for the

context-root and servlet-URLmapping elements in the servlet web.xml file.

For example, if the servlet is installed on the default server, and context-root=iioptunnel, and

Servlet-URLmapping=tunnel, the following URL must be specified for tunnelAgentURL in the client:

http://localhost:9080/IIOPTunnel/IIOPTunnelServlet

Chapter 12. Object Request Broker 2223

To verify that the servlet is deployed and running successfully, you can open a browser and point to

http:// hostname:9080/iioptunnel/tunnel. If the servlet is working, the browser tries to download the

servlet as if it were just a normal file. You can then cancel the download.

4. Verify that the servlet is deployed and running successfully

To verify that the servlet is deployed and running successfully, you can open a browser and point to

http:// hostname:9080/IIOPTunnel/IIOPTunnelServlet. If the servlet is working, the browser tries o

download the servlet as if it were just a normal file. Simply cancel the download.

Specify the following parameters if you encounter a problem deploying and running the servlet.

-Dcom.ibm.CORBA.TunnelAgentURL=https://localhost:9080/IIOPTunnel/IIOPTunnelServlet?debug=true

5. Configure the ORB Service for the client-side ORB to enable tunneling

The client determines whether standard IIOP and HTTP tunneling should be used for communication

with the server-side ORB. Therefore you must set the following ORB properties on the client.

com.ibm.CORBA.ForceTunnel=ALWAYS

com.ibm.CORBA.TunnelAgentURL=http://host_name:9080/IIOPTunnel/IIOPTunnelServlet com.ibm.CORBA.FragmentSize=0

To enabled tunneling on the client ORB, the com.ibm.CORBA.ForceTunnel property must be set to

ALWAYS. This setting indicates that this client is always going to tunnel. Other values that can be

specified for the com.ibm.CORBA.ForceTunnel property are:

 NEVER, which indicates that you want to disable HTTP tunneling. If a TCP connection fails, a

CORBA system exception (COMM_FAILURE) occurs.

 WHENREQUIRED, which indicates that you want to use HTTP tunneling if TCP connections fail.

The second property specifies the fully qualified URL at which the tunneling servlet is reached. The

port 9080 is the WC_defaulthost port for the server. The port number you specify must match the port

number that is specified in the configuration file, serverindex.xml, for the server on which the

IIOPTunnelServlet servlet resides.

The third property turns off ORB fragmenting. Normally, the ORB breaks up communications into

fragments, to improve performance, but tunneling will not work if the ORB is fragmenting.

You can also set these properties by adding them as parameters to the JVM command line:

-Dcom.ibm.CORBA.ForceTunnel=always

-Dcom.ibm.CORBA.TunnelAgentURL=http://host_name:9080/iioptunnel/tunnel

-Dcom.ibm.CORBA.FragmentSize=0

Optionally, you can also set the following property if you want to specify client-side security settings:

-Dcom.ibm.CORBA.ConfigURL=file:PROFILE_ROOT/properties/sas.client.props

6. Turn off fragmenting on the server-side ORB. The only property that you must configure for the

server-side ORB to enable tunneling is the com.ibm.CORBA.FragmentSize property. This property

must be set to 0 to turn off fragmenting.

a. In the administrative console, click Servers > Server Types > WebSphere application servers,

and click the server where the tunneling servlet is installed.

b. Click ORB Service, then click Custom properties.

c. Click New and then specify com.ibm.CORBA.FragmentSize in the Name field and 0 in the Value

field.

d. Click OK, and then save the changes.

7. Stop and then restart the application server.

What to do next

The client can start to sent requests through the firewall to the server that is configured for HTTP

tunneling.

2224 Administering WebSphere applications

Enabling HTTP tunneling

HTTP tunneling enables clients, that reside outside of a firewall, to bundle all of the information, that the

client-side Object Request Broker (ORB) needs to send to the server-side ORB, into a normal HTTP

request. This request can then be sent to the server on port 80, just like any other HTTP request.

Before you begin

Make sure that the client-side ORB is an IBM ORB. Tunneling does not work if you are using a non-IBM

ORB on the client.

Also, if Secure Sockets Layer (SSL) security is required for the tunneling, make sure that the required

certificates and key files are configured.

About this task

Sometimes clients residing outside of a firewall need to communicate with modules, such as EJB modules,

that reside on a server inside of the firewall. The client-side and server-side ORBs manage this interaction

between the client and the server. However, firewalls normally block the ports that a client, uses to talk to

the server-side ORB. Therefore if your installation uses a firewall that blocks the ports a client uses to talk

to the server-side ORB, you should set up HTTP tunneling.

The IIOPTunnelServlet, which is shipped with the product as class file

com.ibm.CORBA.services.IIOPTunnelServlet.class, allows an HTTP client, such as a Java client, that is

embedded with RMI-IIOP, to communicate with a server that resides inside of a firewall. This class file,

along with the following three class files, are bundled within the WAS_HOME/plugins/
com.ibm.ws.runtime_6.1.0.jar file. These additional class files enhance the servlet’s capabilities.

 com.ibm.CORBA.services.redirector.ConnectionStream.class

com.ibm.CORBA.services.redirector.Redirector.class

com.ibm.CORBA.services.redirector.RedirectorController.class

When tunneling is enabled, the IIOPTunnelServlet servlet on the server receives the HTTP request and

unpacks all of the ORB information. The servlet then calls the server-side ORB on the client’s behalf. The

server-side ORB treats the request as it would treat any normal ORB request and responds to the servlet.

The servlet packs the ORB response into an HTTP response and sends the response back to the

client-side ORB, through the firewall. The client-side ORB unpacks the HTTP response and pulls out the

response.

Tunneling can operate over HTTPS as well as over HTTP. Therefore, you can use Secure Sockets Layer

(SSL) security to secure your tunneling clients if your security procedures require that all communication to

your servers is SSL secured.

1. Create an installable IIOPTunnel.ear file that includes the IIOPTunnelServlet servlet.

Before you can run the IIOPTunnelServlet servlet on the server, you must make it part of an

application that you can install on the server. You can use an application assembly tool to create an

installable IIOPTunnel.ear file that includes this servlet. For example, if you use the assembly tool that

is shipped with the product:

a. Start the tool.

b. Open the WEB perspective.

c. In the Project Explorer view, right click in an empty pane and select New > Dynamic Web Project.

d. In the Create Dynamic Web Project wizard, change the project Name to IIOPTunnel, or another

name that is meaningful to you. By default, the Add Module to an EAR project option is selected,

the EAR project name is set to IIOPTunnelEAR, and the Context Root is set to IIOPTunnel.

e. Keep these default settings and click Finish.

f. Add the com.ibm.ws.runtime_7.0.0.jar file to the Web Project Build Path.

Chapter 12. Object Request Broker 2225

Before you can register the new servlet in the Web Deployment Descriptor, you must add the

IIOPTunnelServlet servlet, that resides in the WAS_HOME/lib/plugins/com.ibm.ws.runtime_7.0.0.jar

file, to your build path.

1) Right click the IIOPTunnel Web Project, and select Properties > Java Build Path.

2) Select the Libraries tab and press the Add external JARs button.

3) Add the com.ibm.ws.runtime_7.0.0.jar file, and then click OK.

2. Export your EAR file.

a. Right click on the IIOPTunnelEAR project.

b. Click Export > EAR File, browse to your selected destination directory and specify the EAR file

name as IIOPTunnel.ear, or the file name that you specified in Step 1d.

c. Click Finish.

You get your IIOPTunnel.ear file, which is ready for you to deploy.

3. Install the IIOPTunnel.ear file on your target application server. You can accept all default values during

installation.

Remember to adjust the tunnelAgentURL in the client to reflect the actual location of the

IIOPTunnelServlet on your server.

Note:

http(s)://host_name:port/context_root/Servlet_URLmapping

Thehost_name:port are the host name and port that is assigned to teh server on which the

IIOPTunnelServlet resides. The port can be either an HTTP or an HTTPS port, depending on your

security requirements.

The context_root and Servlet_URLmapping values must match the values that are defined for the

context-root and servlet-URLmapping elements in the servlet web.xml file.

For example, if the servlet is installed on the default server, and context-root=iioptunnel, and

Servlet-URLmapping=tunnel, the following URL must be specified for tunnelAgentURL in the client:

http://localhost:9080/IIOPTunnel/IIOPTunnelServlet

To verify that the servlet is deployed and running successfully, you can open a browser and point to

http:// hostname:9080/iioptunnel/tunnel. If the servlet is working, the browser tries to download the

servlet as if it were just a normal file. You can then cancel the download.

4. Verify that the servlet is deployed and running successfully

To verify that the servlet is deployed and running successfully, you can open a browser and point to

http:// hostname:9080/IIOPTunnel/IIOPTunnelServlet. If the servlet is working, the browser tries o

download the servlet as if it were just a normal file. Simply cancel the download.

Specify the following parameters if you encounter a problem deploying and running the servlet.

-Dcom.ibm.CORBA.TunnelAgentURL=https://localhost:9080/IIOPTunnel/IIOPTunnelServlet?debug=true

5. Configure the ORB Service for the client-side ORB to enable tunneling

The client determines whether standard IIOP and HTTP tunneling should be used for communication

with the server-side ORB. Therefore you must set the following ORB properties on the client.

com.ibm.CORBA.ForceTunnel=ALWAYS

com.ibm.CORBA.TunnelAgentURL=http://host_name:9080/IIOPTunnel/IIOPTunnelServlet com.ibm.CORBA.FragmentSize=0

To enabled tunneling on the client ORB, the com.ibm.CORBA.ForceTunnel property must be set to

ALWAYS. This setting indicates that this client is always going to tunnel. Other values that can be

specified for the com.ibm.CORBA.ForceTunnel property are:

 NEVER, which indicates that you want to disable HTTP tunneling. If a TCP connection fails, a

CORBA system exception (COMM_FAILURE) occurs.

 WHENREQUIRED, which indicates that you want to use HTTP tunneling if TCP connections fail.

2226 Administering WebSphere applications

The second property specifies the fully qualified URL at which the tunneling servlet is reached. The

port 9080 is the WC_defaulthost port for the server. The port number you specify must match the port

number that is specified in the configuration file, serverindex.xml, for the server on which the

IIOPTunnelServlet servlet resides.

The third property turns off ORB fragmenting. Normally, the ORB breaks up communications into

fragments, to improve performance, but tunneling will not work if the ORB is fragmenting.

You can also set these properties by adding them as parameters to the JVM command line:

-Dcom.ibm.CORBA.ForceTunnel=always

-Dcom.ibm.CORBA.TunnelAgentURL=http://host_name:9080/iioptunnel/tunnel

-Dcom.ibm.CORBA.FragmentSize=0

Optionally, you can also set the following property if you want to specify client-side security settings:

-Dcom.ibm.CORBA.ConfigURL=file:PROFILE_ROOT/properties/sas.client.props

6. Turn off fragmenting on the server-side ORB. The only property that you must configure for the

server-side ORB to enable tunneling is the com.ibm.CORBA.FragmentSize property. This property

must be set to 0 to turn off fragmenting.

a. In the administrative console, click Servers > Server Types > WebSphere application servers,

and click the server where the tunneling servlet is installed.

b. Click ORB Service, then click Custom properties.

c. Click New and then specify com.ibm.CORBA.FragmentSize in the Name field and 0 in the Value

field.

d. Click OK, and then save the changes.

7. Stop and then restart the application server.

What to do next

The client can start to sent requests through the firewall to the server that is configured for HTTP

tunneling.

Chapter 12. Object Request Broker 2227

2228 Administering WebSphere applications

Chapter 13. Transactions

Using the transaction service

WebSphere Application Server applications can use transactions to coordinate multiple updates to

resources as atomic units (as indivisible units of work) such that all or none of the updates are made

permanent.

About this task

In WebSphere Application Server, transactions are managed by three main components:

v A transaction manager. The transaction manager supports the enlistment of recoverable XAResources

and ensures that each resource of this type is driven to a consistent outcome either at the end of a

transaction or after a failure and restart of the application server.

v A container in which the enterprise application runs. The container manages the enlistment of

XAResources on behalf of the application when the application performs updates to transactional

resource managers (for example, databases). Optionally, the container can control the demarcation of

transactions for enterprise beans configured for container-managed transactions.

v An application programming interface, UserTransaction, that is available to bean-managed enterprise

beans and servlets. These application components can use the UserTransaction interface to control the

demarcation of their own transactions.

For details about the methods available with the UserTransaction interface, see the Additional

Application Programming Interfaces (APIs) or the Java Transaction API (JTA) 1.1 Specification.

Also, Java Transaction API (JTA) support includes additional application programming interfaces so that

application frameworks can manipulate the unit of work (UOW) context of a thread, and components

can register with a JTA transaction (for example, a persistence manager can be notified of transaction

completion).

Use the following tasks to work with transactions in WebSphere Application Server applications:

v Developing components to use transactions

v “Configuring transaction properties for an application server” on page 2254

v “Configuring transaction properties for peer recovery” on page 2266

v “Managing manual peer recovery of the transaction service” on page 2271

v “Managing active and prepared transactions” on page 2272

v “Managing active and prepared transactions using scripting” on page 2273

v “Managing transaction logging for optimum server availability” on page 2276

v “Interoperating transactionally between application servers” on page 2280

v “Using WS-Transaction policy to coordinate transactions or business activities for Web services” on

page 712

v Troubleshooting transactions

v Using one-phase and two-phase commit resources in the same transaction

v Using the ActivitySession service

Transaction support in WebSphere Application Server

This topic provides conceptual information about the support for transactions provided by the Transaction

Service of WebSphere Application Server.

A transaction is unit of activity, within which multiple updates to resources can be made atomic (as an

indivisible unit of work) such that all or none of the updates are made permanent. For example, during the

processing of an SQL COMMIT statement, the database manager atomically commits multiple SQL

statements to a relational database. In this case, the transaction is contained entirely within the database

© Copyright IBM Corp. 2008 2229

http://java.sun.com/products/jta/

manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a

transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource

managers, for example multiple database managers, an external transaction manager is required to

coordinate the individual resource managers. A transaction that spans multiple resource managers is

referred to as a global transaction. WebSphere Application Server is a transaction manager that can

coordinate global transactions, can be a participant in a received global transaction, and can also provide

an environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:

v A session bean can use either container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions

where the bean manages transactions itself).

v Entity beans use container-managed transactions.

v Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource

managers through their XAResource interface, and participates in distributed global transactions with

transaction managers that support the CORBA Object Transaction Service (OTS) protocol or Web Service

Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere Application Server also participates in

transactions imported through Java EE Connector 1.5 resource adapters. You can also configure

WebSphere applications to interact with databases, JMS queues, and JCA connectors through their local

transaction support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase

coordination (by offering an XAResource interface) and those that support only one-phase coordination (for

example through a LocalTransaction interface). The WebSphere Application Server transaction support

provides coordination, within a transaction, for any number of two-phase capable resource managers. It

also enables a single one-phase capable resource manager to be used within a transaction in the absence

of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources and two-phase commit

capable resources in the same global transaction, because one-phase commit resources cannot support

the prepare phase of two-phase commit. There are some special circumstances where it is possible to

include mixed-capability resources in the same global transaction:

v In scenarios where there is only a single one-phase commit resource provider that participates in the

transaction and where all the two-phase commit resource-providers that participate in the transaction

are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during

the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only

provider to actually perform any updates, the one-phase commit resource does not need to be

prepared.

v In scenarios where there is only a single one-phase commit resource provider that participates in the

transaction with one or more two-phase commit resource providers and where last participant support is

enabled. Last participant support enables the use of a single one-phase commit capable resource with

any number of two-phase commit capable resources in the same global transaction. For more

information about last participant support, see Using one-phase and two-phase commit resources in the

same transaction.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource

managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an

extension to the Java EE programming model. Enterprise beans can be deployed with lifecycles that are

influenced by ActivitySession context, as an alternative to transaction context. An application can then

interact with a resource manager for the period of a client-scoped ActivitySession, rather than only the

duration of an EJB method, and have the resource manager’s local transaction outcome directed by the

ActivitySession. For more information about ActivitySessions, see Using the ActivitySession service.

2230 Administering WebSphere applications

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/

Resource manager local transaction (RMLT)

A resource manager local transaction (RMLT) is a resource manager’s view of a local transaction; that is, it

represents a unit of recovery on a single connection that is managed by the resource manager.

Resource managers include:

v Enterprise Information Systems that are accessed through a resource adapter, as described in the Java

EE Connector Architecture.

v Relational databases that are accessed through a JDBC datasource.

v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. Resource adapter

components of the Java EE connector architecture that include support for local transactions provide a

LocalTransaction interface. The LocalTransaction interface enables applications to request that the

resource adapter commits or rolls back RMLTs. JDBC datasources provide a Connection interface for the

same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a local

transaction containment (LTC).

Global transactions

If an application uses two or more resources, an external transaction manager is needed to coordinate the

updates to all the resource managers in a global transaction.

Global transaction support is available to Web and enterprise bean components and, with some limitations,

to application client components. Enterprise bean components can be subdivided into two categories:

beans that use container-managed transactions (CMT) and beans that use bean-managed transactions

(BMT).

BMT enterprise beans, application client components, and Web components can use the Java Transaction

API (JTA) UserTransaction interface to define the demarcation of a global transaction. To obtain the

UserTransaction interface, use a Java Naming and Directory Interface (JNDI) lookup of

java:comp/UserTransaction, or use the getUserTransaction method from the SessionContext object.

The UserTransaction interface is not available to CMT enterprise beans. If CMT enterprise beans attempt

to obtain this interface, an exception is thrown, in accordance with the Enterprise JavaBeans (EJB)

specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface use an InitialContext

that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI

location that is appropriate for the EJB version.

WebSphere Application Server Version 4 and later releases bind the UserTransaction interface at the JNDI

location that is specified in the EJB Version 1.1 specification. This location is java:comp/UserTransaction.

A Web component or enterprise bean (CMT or BMT) can use additional interfaces that provide JTA

support. These interfaces provide the transaction identity and a mechanism to receive notification of

transaction completion. The interfaces include the TransactionSynchronizationRegistry interface, the

ExtendedJTATransaction interface, and the UOWSynchronizationRegistry interface.

Local transaction containment (LTC)

A local transaction containment (LTC) is used to define the application server behavior in an unspecified

transaction context.

Unspecified transaction context is defined in the Enterprise JavaBeans specification, Version 2.0 and later.

For example, see Enterprise JavaBeans Specification.

Chapter 13. Transactions 2231

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/products/ejb/docs.html

An LTC is a bounded unit-of-work scope, within which zero, one, or more resource manager local

transactions (RMLT) can be accessed. The LTC defines the boundary at which all RMLTs must be

complete; any incomplete RMLTs are resolved, according to policy, by the container. By default, an LTC is

local to a bean instance; it is not shared across beans, even if those beans are managed by the same

container. LTCs are started by the container before dispatching a method on an enterprise application

component (such as an enterprise bean or servlet) whenever the dispatch occurs in the absence of a

global transaction context. LTCs are completed by the container depending on the application-configured

LTC boundary, for example, at the end of the method dispatch. There is no programmatic interface to the

LTC support; LTCs are managed exclusively by the container. The application deployer configures LTCs on

individual application components (Web application or EJB) by using transaction attributes in the

application deployment descriptor.

Note: In this release, a local transaction containment (LTC) is shareable, that is, a single LTC can span

multiple application components, including Web application components and enterprise beans that

use container-managed transactions, so that those components can share connections without

using a global transaction. Sharing a single resource manager between application components

improves performance, increases scalability, and reduces lock contention for resources.

LTCs can be shared across multiple components, including Web application components and enterprise

beans that use container-managed transactions. This is useful in situations such as when there is frequent

use of Web module include calls, where a thread can have several connections blocked by LTCs in

different Web modules. In this situation, the application might encounter code deadlocks under load, when

threads start to wait for themselves to free connections. To overcome this issue without using a global

transaction, specify that application components can share LTCs by setting the Shareable attribute in the

deployment descriptor of each component. You must use a deployment descriptor; you cannot specify this

attribute if annotation has been used.

When you set the Shareable attribute, the extended deployment descriptor XML file includes the following

line:

<local-transaction boundary="BEAN_METHOD" resolver="CONTAINER_AT_BOUNDARY"

unresolved-action="COMMIT" shareable="true"/>

To obtain the full benefits of a shared LTC, also ensure that the resource reference for each component

defaults to shareable connections.

In the following diagram, components 1, 2 and 3 are deployed with the Shareable attribute and component

4 is not. If components 2 and 3 both obtain connections to data source B, and their resource references

for data source B default to shareable connections, they share the connection, but component 4 does not.

2232 Administering WebSphere applications

Applications that use shareable LTCs cannot explicitly commit or roll back resource manager connections

that are used in a shareable LTC (although they can use connections that have an autoCommit capability).

This ensures proper encapsulation of connection usage by each component and protects one component

from having to make any assumptions about the behavior of other components that share the connection.

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is set to

Application and the Shareable attribute is set to true, an exception is thrown at run time. For example, on

a JDBC Connection, non-autocommit work is work that the application performs after using the

setAutoCommit(false) method to switch off the autocommit option on the connection. Enterprise beans that

use bean managed transactions (BMT) cannot be assembled with the Shareable attribute set on the LTC

configuration.

A local transaction containment cannot exist concurrently with a global transaction. If application

component dispatch occurs in the absence of a global transaction, the container always establishes an

LTC for enterprise application components at J2EE 1.3 or later. The only exceptions to this are as follows:

v Application component dispatch occurs without container interposition, for example, for a stateless

session bean create or a servlet-initiated thread.

v J2EE 1.2 Web components.

v J2EE 1.2 bean-managed transaction (BMT) enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that exists longer than the

enterprise bean method in which it is started, as described in ActivitySessions and transaction contexts.

Local and global transaction considerations

Applications use resources, such as Java Database Connectivity (JDBC) data sources or connection

factories, that are configured through the Resources view of the administrative console. How these

resources participate in a global transaction depends on the underlying transaction support of the resource

provider.

Web or EJB
component

1

Connection-sharing
boundary

Connection-sharing
boundary

Data
source

A

Data
source

B

Web or EJB
component

3

Web or EJB
component

2

forward/include
or EJB call

forward/include
or EJB call

Web or EJB
component

4

Chapter 13. Transactions 2233

For example, most JDBC providers can provide either XA or non-XA versions of a data source. A non-XA

data source can support only resource manager local transactions (RMLT), but an XA data source can

support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, atomicity cannot be

assured because of the one-phase nature of these resources. To ensure atomic behavior, the application

must use resources that support XA coordination and must access those resources in a global transaction.

If an application uses only one RMLT, atomic behavior can be guaranteed by the resource manager, which

can be accessed in a local transaction containment (LTC) context.

An application can also access a single resource manager in a global transaction context, even if that

resource manager does not support the XA coordination. An application can do this because the

application server performs an “only resource optimization” and interacts with the resource manager in a

RMLT. In a global transaction context, any attempt to use more than one resource provider that supports

only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction

context or a local transaction containment context, but not both. An instance of an enterprise bean can

change from running in one type of context to the other (in either direction), if all outstanding work in the

original context is complete. Any violation of this principle causes an exception to be thrown when the

enterprise bean tries to start the new context.

Client support for transactions

This topic describes the support of application clients for the use of transactions.

Application clients running in an enterprise application client container can explicitly demarcate transaction

boundaries, as described in Using component-managed transactions. Application clients cannot perform,

directly in the client container, transactional work in the context of any global transaction that they start,

because the client container is not a recoverable process.

Application clients can make requests to remote objects, such as enterprise beans, in the context of a

client-initiated transaction. Any transactional work performed in a remote, recoverable, server process is

coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first

server process to which the client-initiated transaction is propagated.

A client can begin a transaction, then, for example, access a JDBC data source directly in the client

process. In such cases, any work performed through the JDBC provider is not coordinated as part of the

global transaction. Instead, the work runs under a resource manager local transaction. The client container

process is non-recoverable and contains no transaction coordinator with which a resource manager can be

enlisted.

A client can begin a transaction, then call a remote application component such as an enterprise bean. In

such cases, the client-initiated transaction context is implicitly propagated to the remote application server,

where a transaction coordinator is created. Any resource managers accessed on the recoverable

application server (or any other application server hosting application components invoked by the client)

are enlisted in the global transaction.

Client application components need to be aware that locally-accessed resource managers are not

coordinated by client-initiated transactions. Client applications acknowledge this through a deployment

option that enables access to the UserTransaction interface in the client container. By default, access to

the UserTransaction interface in the client container is not enabled. To enable UserTransaction

demarcation for an application client component, set the Allow JTA Demarcation extension property in

the client deployment descriptor. For information about editing the client deployment descriptor, refer to the

Rational Application Developer information.

2234 Administering WebSphere applications

Commit priority for transactional resources

You can specify the order in which transactional resources are processed during two-phase commit

processing.

Note: This release introduces resource commit ordering, where you control the order in which

transactional resources are processed during two-phase commit processing. Resource commit

ordering can increase the occurrence of one-phase commits and therefore improve performance,

and reduce problems caused by transaction isolation.

If you control the order in which transactional resources are processed during two-phase commit

processing, there are two main benefits:

v One-phase commit optimization occurs more often.

v Potential problems caused by transaction isolation are resolved.

To control the order in which transactional resources are processed during two-phase commit processing,

you specify the commit priority of a resource by setting the commit priority attribute on a resource

reference. The larger the commit priority, the earlier the resource is processed. For example, if a resource

has a commit priority of 10, it is processed before a resource with a commit priority of 1. The commit

priority value is of type int and can be between -2147483648 and 2147483647.

If you do not specify a commit priority value, a default value of zero is assigned to the resource and is

used when ordering resources at run time. If two or more resources are configured with the same priority,

including the default priority, they are processed in an unspecified order with respect to each other.

You can specify the commit priority attribute on a resource reference by using Rational Application

Developer tools. For detailed information, see the Rational Application Developer information center. The

application component must have a deployment descriptor; you cannot specify this attribute if annotation

has been used.

One-phase commit optimization

In a transaction with a two-phase commit, if every resource except the last one enlisted in the transaction

votes read-only, indicating that those resources are not interested in the outcome of the transaction, a

one-phase commit can occur. This means that the transaction service does not need to store resource and

transaction information that it would need to roll back a two-phase commit, and therefore performance is

improved.

You can control the order in which transactional resources are processed during two-phase commit, so

you can process the resources that are most likely to vote read-only first. Therefore, you increase the

chance that a one-phase commit might occur.

Typically, for a given transactional resource, you know the work that is performed at run time, so if you can

control the order in which the resources in a transaction are processed, you can increase the likelihood of

a one-phase commit optimization occurring.

Transaction isolation

When resources are involved in a global transaction, updates that are made as part of a transaction are

not visible outside the transaction until the transaction commits, that is, those resources are isolated. This

isolation can cause problems with other application components that act on the updates after they are

committed. For example, further processing can fail, or can fail intermittently, because updates are order

and time dependent. This problem does not occur with service integration bus messaging work in

WebSphere Application Server, but can be a problem for other messaging providers, for example

WebSphere MQ.

Chapter 13. Transactions 2235

If you specify the order in which transactional resources are committed, problems caused by isolation are

resolved for all transactional systems, not just messaging providers and service integration bus in

particular.

The following example describes how problems might occur when you cannot specify the order in which

transactional resources are committed. An application updates a row in a database table, then sends a

JMS message that triggers additional processing of the row. Both of these actions are performed in the

same global transaction, so they are isolated until their respective resources are committed. If the update

to the row is committed before the message is sent, the processing that is triggered by the message can

access the updated row and process it. If the action to send the message is committed first, this action

might trigger the additional processing of the row before the database has committed the update to the

row. In this situation, the updated row is still isolated and is not visible, so the additional processing of the

row fails.

This problem can be more complicated because it is ordering and timing dependent. If the database is

committed first, the problem does not occur. If the action to send the message is committed first, the

problem might occur, but it depends whether the database work is committed before the message triggers

the further processing of the row. Therefore, the problem can be intermittent, so it is harder to identify its

cause.

Considerations with earlier versions of WebSphere Application Server

If you specify the commit priority of a resource, that is, specify any value other than the default value 0,

the commit priority is added to the partner log in a recoverable unit section. If you use WebSphere

Application Server with versions earlier than WebSphere Application Server Version 7.0, you need to install

the appropriate fix pack to the earlier version to ensure that the new section in the log file is recognized.

However, commit priority has no effect on the transaction service in versions of WebSphere Application

Server that are earlier than Version 7.0.

For general information about different versions of the product, see the topic “Overview of migration,

coexistence, and interoperability”.

Transactional high availability

The high availability of the transaction service enables any server in a cluster to recover the transactional

work for any other server in the same cluster. This facility forms part of the overall WebSphere Application

Server high availability (HA) strategy.

As a vital part of providing recovery for transactions, the transaction service logs information about active

transactional work in the transaction recovery log. The transaction recovery log stores the information in a

persistent form, which means that any transactional work in progress at the time of a server failure can be

resolved when the server is restarted. This activity is known as transaction recovery processing. In

addition to completing outstanding transactions, this processing also ensures that any locks held in the

associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to

retrieve and process the logged transaction information, recover transactional work and complete in-doubt

transactions. Completion of the transactional work (and hence the release of any database locks held by

the transactions) takes place after the server successfully restarts and processes its transaction logs. If the

server is slow to recover or requires manual intervention, the transactional work cannot be completed and

access to associated databases is disrupted.

To minimize such disruption to transactional work and the associated databases, WebSphere Application

Server provides a high availability strategy known as transaction peer recovery.

2236 Administering WebSphere applications

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the

recovery logs of a failed server while the peer continues to manage its own transactional workload. You do

not have to wait for the failed server to restart, or start a new application server specifically to recover the

failed server.

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a

complete restart of the failed server within the peer server. The peer recovery process provides an

opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No

forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server

cluster. After such failures, the management system of the cluster dispatches new work onto the remaining

servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is

required is to complete work that was active on the failed server and redirect requests to an alternate

server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster

configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere

Application Server supports two styles for the initiation of transaction peer recovery: automated and

manual. You determine which style is more appropriate, based on your deployment considerations, and

specify that style by configuring the appropriate high availability policy. This high availability policy is

referred to elsewhere in these topics as the policy for the transaction service.

Automated peer recovery

This style is the default for peer recovery initiation. If an application server fails, WebSphere

Application Server automatically selects a server to perform peer recovery processing on its

behalf, and passes recovery back to the failed server when it restarts. To use this model, all you

have to do is enable transaction log recovery and configure the recovery log location for each

cluster member.

Manual peer recovery

You must explicitly configure this style of peer recovery. If an application server fails, you use the

administrative console to select a server to perform recovery processing on its behalf.

Peer recovery example

The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure

2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced

Application server
server 1

Normal
runtime
activity

Before peer recovery

Application server
server 1

Normal
runtime
activity

During peer recovery

Recovery
process for

server2

Recovery
process for

server3

Log
server2

Log
server3

Log
server1

Log
server1

Figure 30. Peer recovery

Chapter 13. Transactions 2237

between these servers, which results in locks held by the back-end database on behalf of each server.

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.

Servers 2 and 3 can run their existing transactions to completion and release existing locks in the

back-end database, but further access might be impaired because of the locks still held on behalf of server

1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured

lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and

become blocked.

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service

portion of the recovery process retrieves the information that is persisted by server 1, and uses that

information to complete any in-doubt transactions. In this figure, the peer recovery process is partially

complete as some locks are still held by the database on behalf of server 1.

1 2 3

1 3 1 2

server1 server2 server3

Server
cluster

Figure 31. Server cluster up and running, just before server failure

1 1

server1 server2 server3

Server
cluster

Figure 32. Server 1 fails. Servers 2 and 3 become blocked as a result.

2238 Administering WebSphere applications

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is

in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,

and will have no recovery processing of its own to perform.

Deployment considerations for transactional high availability:

Before you use the high availability (HA) function, you must consider deployment issues such as your file

system type, or where you plan to store the transaction recovery logs. In particular, your file system type

can have important consequences for your recovery configuration.

 Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the

participating server members to perform peer recovery between servers. Therefore, peer recovery

processing can only take place between members of the same server cluster. Although a cluster can

contain servers that are at different versions of WebSphere Application Server, peer recovery can only be

performed between servers in the cluster that are at Version 6 or later.

Physical storage

For application servers to perform transaction peer recovery for each other, they must be able to access

the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on

a medium that is accessible by all members of the cluster, and that each cluster member has a unique log

file location on this medium. This medium, and access to it, for example through a local area network

12 3

1 3 1 2

server2 server3

Server
cluster

Recovery
process
(server1)

Figure 33. Peer recovery process started in server 3

2 3

2 3 2 2

server2 server3

Server
cluster

Figure 34. Server cluster stable again with just two servers: server 2 and server 3.

Chapter 13. Transactions 2239

(LAN), must support the file-based force operation that is used by the recovery log service to force data to

disk. After the force operation is complete, information must be persistently stored on physical disk media.

For example, you can store the logs on another i5/OS server by using the NetClient file system (QNTC),

which provides access to data on a remote system using the Server Message Block (SMB) protocol.

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault

tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard

mounting the remote directory containing the log files using the -o hard option of the NFS mount

command, the NFS client will retry a failed operation until the NFS server becomes available again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally

do not affect other application servers directly. Even servers on the same physical hardware can perform

peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed

hardware become unavailable. Servers on other hardware are required to handle peer recovery

processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware

systems.

File system

The file system type is an important deployment consideration as it is the main factor in deciding whether

to use automated or manual peer recovery. For more information, see “How to choose between automated

and manual transaction peer recovery.”

How to choose between automated and manual transaction peer recovery:

Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.

Different file systems have different behaviors, and the file locking behavior in particular is important when

choosing between automated and manual peer recovery.

 WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine

whether servers are still running. Servers are considered failed if they stop responding to heartbeat

Server 1

Server 3

Server 2

Server 4

File Server
for recovery

logs

File Server (SMB-based)

Figure 35. Recovery logs on SMB-based file server are available to all servers

2240 Administering WebSphere applications

requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in

this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.

WebSphere Application Server uses file locking technology to prevent such events from causing

concurrent access to transaction recovery logs, because access to a recovery log by more than one server

can lead to loss of data integrity.

However, not all file systems provide the necessary file locking semantics, specifically that file locks are

released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release

behavior, whereas Network File System Version 3 (NFSv3) does not.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur

automatically without the need to restart the failed hardware. Therefore, this version of NFS is better suited

for use with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the

physical machine running the application server that requested the lock and it is the restart of the host, not

the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:

 1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.

 2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

 3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are

granted to server H on its behalf.

 4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

 5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it

is held on behalf of server H. The peer recovery process is blocked.

 6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

 7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are

needed to perform peer recovery.

 8. Peer recovery takes place in server P for server H.

 9. Server H is restarted.

10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs

back to server H.

12. Server H obtains the exclusive lock and can now perform standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.

Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your

system from system overloading and network partitioning first. Alternatively, you can configure manual peer

recovery, where you prevent concurrent access by manually triggering peer recovery processing only for

servers that have actually failed.

System overloading

System overloading occurs when a machine becomes very heavily loaded such that response

times are extremely poor and requests begin to time out. Several potential causes exist for such

overloading, including:

v The server is underpowered and cannot handle the workload.

v The server received a temporary surge of requests.

v Insufficient physical memory is available. As a result, the operating system is too busy paging to

give the application server the required CPU time.

Chapter 13. Transactions 2241

Network partitioning

Network partitioning occurs when a communications failure in a network results in two smaller

networks that are independent and cannot contact each other.

High availability policies for the transaction service:

WebSphere Application Server provides integrated high availability (HA) support in which system

subcomponents, such as the transaction service, are made highly available. An HA policy provides the

logic that governs the manner in which each WebSphere Application Server HA component behaves within

the overall HA framework. In the case of the transaction service, the transaction HA policy provides the

logic to determine which servers own a recovery log at any time.

 Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the

home server) and that server can then use the recovery log for both recovery and normal transactional

activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to

perform recovery processing.

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy

configuration.

Server 1

Server 1

Server 1

Server 2

Server 2

Server 2

Network

Normal running

Hearbeat operations
time out

Hearbeat operations
unable to cross

partition boundry

Network

Network partition 1 Network partition 2

During normal running, two servers on the network exchange heartbeats. During system overloading,

heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each

server is in a separate network and heartbeats cannot pass between them, also giving the appearance of

a server failure.
Figure 36. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of

system overloading and network partitioning

2242 Administering WebSphere applications

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially

provides the logic for determining updated recovery log ownership in the event of a server failure. The

following WebSphere Application Server policy types are used for transaction peer recovery (other HA

policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run

time, the static policy assigns ownership accordingly. Any changes to ownership require a change

to the static configuration and therefore this policy type is used for manually initiated peer

recovery.

One-of-N

Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA

framework and assigned to exactly one of the N cluster members. This policy type is used for

automated peer recovery.

Transaction compensation and business activity support

A business activity is a collection of tasks that are linked together so that they have an agreed outcome.

Unlike atomic transactions, activities such as sending an e-mail can be difficult or impossible to roll back

atomically, and therefore require a compensation process in the event of an error. The WebSphere

Application Server business activity support provides this compensation ability through business activity

scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application

requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because

of one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have

Requires new as the setting for the Transaction field in the container transaction deployment

descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple Web service application that uses the business activity support. The

Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application Server

environments. The Retailer service calls the Supplier service, running on WebSphere Application Server,

which delegates tasks to the Warehouse and Manufacturing services. The implementation of the Supplier

service contains a stateless session bean, which calls other stateless session beans that are associated

with the Warehouse and Manufacturing services, and that perform work that can be compensated. These

other session beans each have a compensation handler; a piece of logic that is associated with an

application component at run time, and performs compensation activity such as resending an e-mail.

Chapter 13. Transactions 2243

Application design considerations

Business activity contexts are propagated with application messages, and can therefore be distributed

between application components that are not co-located in the same server. Unlike atomic transaction

contexts, business activity contexts are propagated on both synchronous (blocking) call-response

messages and asynchronous one-way messages. An application component that runs under a business

activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the

component’s own processing is complete. An application that initiates asynchronous work using a

fire-and-forget message pattern must not use business activity scopes, because such applications have no

means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity

functionality. Enterprise beans that exploit business activity scopes can offer Web service interfaces, but

can also offer standard enterprise bean local or remote Java interfaces. Business activity context is

propagated in Web service messages using a standard, interoperable Web Services Business Activity

(WS-BA) CoordinationContext element. WebSphere Application Server can also propagate business

activity context on RMI calls to enterprise beans when Web services are not being used, but this form of

the context is not interoperable with non-WebSphere Application Server environments. You might want to

use this homogeneous scenario if you require compensation for an application that is internal to your

business. If you want to use business activity compensation in a heterogeneous environment, expose your

application components as Web services.

Supplier
Web service

Warehouse
service

Retailer
service

Manufacturing
service

WebSphere Application
Server

TX_Required

TX_Required

TX_NotSupported

Stateless
session bean

Stateless
session bean

Stateless
session bean

Business
activity scope Compensation

handler

Compensation
handler

2244 Administering WebSphere applications

Business activity contexts can be propagated across firewalls and outside the WebSphere Application

Server domain. The topology that you use to achieve this propagation can affect the high availability and

affinity behavior of the business activity transaction.

Application development and deployment considerations

WebSphere Application Server provides a programming model for creating business activity scopes, and

for associating compensation handlers with those business activity scopes. WebSphere Application Server

also provides an application programming interface to specify compensation data, and check or alter the

status of a business activity. To use the business activity support you must set certain application

deployment descriptors appropriately, provide a compensation handler class if required, and enable

business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere

Application Server at Version 6.1 or later. Applications cannot use the business activity support if

you deploy them to a cluster that includes WebSphere Application Server Version 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a core WebSphere Application Server unit of work: a global

transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a

new unit of work (UOW); it is an attribute of an existing core UOW. Therefore, a one-to-one relationship

exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

v The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global

transaction.

v The UOW can be a local transaction containment (LTC) where the container is responsible for initiating

and ending resource manager local transactions (RMLTs). That is, in the transactional deployment

descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To

use WS-BA, you must not set the Resolver attribute to Application.

Any core UOW can have a business activity scope associated with it. If a component running under a

UOW that is associated with a business activity scope calls another component, that request propagates

the business activity scope; any work done by the new component is associated with the same business

activity scope as the calling component. The called component can create a new UOW, for example if an

enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling

component. If a new UOW is started then a new business activity scope is created and associated with

the new UOW. The newly created business activity scope is a child of the business activity scope

associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two

components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The

enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.

Because each new UOW is created by a calling component whose UOW already has an association with

business activity scope BAScope1, the newly created UOWs are associated with new inner business

activity scopes, BAScope2 and BAScope3.

Chapter 13. Transactions 2245

Inner business activity scopes must complete before the outer business activity scope completes. Inner

business activity scopes, for example BAScope2, have an association with the outer business activity

scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW

completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,

any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are

directed in the same way as the completion direction of BAScope1: either compensate or close. If

BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved

to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW

failing, an application server exception is thrown to the to calling application component, running in the

outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the

calling application can handle the exception, for example by retrying the called component or by calling

another component, then the calling UOW, and its associated business activity scope, can complete

successfully even though the inner business activity scope failed. If the application design requires the

calling UOW to fail, and for its associated business activity scope to be compensated, then the calling

application component must cause its UOW to fail, for example by allowing any system exception from the

UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion

direction (close or compensate) of any active compensation handlers that are owned by the outer business

activity scope, including those promoted by the successful completion of inner business activity scopes. If

the outer business activity scope completes successfully, it drives all active compensation handlers to

close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

BAScope1

BAScope2 BAScope3

UOW2 UOW3

EJB2
Transaction=
Requires new

EJB3
LTC

UOW1

EJB1a
Transaction=
Requires new

EJB1b
Transaction=

Supports

2246 Administering WebSphere applications

Table 46. Compensation behavior for a single business activity scope

Inner

business

activity scope

Outer

business

activity scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the

outer UOW to complete. When the outer UOW succeeds, the outer business activity scope

drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are

compensated. An exception is thrown to the outer UOW; if this exception is caught, when the

outer UOW succeeds, the outer business activity scope drives all remaining active compensation

handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are

compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer

business activity scope fails. When the outer business activity scope fails, either because of the

unhandled exception or for some other reason, all remaining active compensation handlers are

compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the

outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all

compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always

completes in the same direction as the UOW that it is associated with. The only way that you can

influence the direction of the business activity scope is to influence the UOW that it is associated with,

which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending

on the method invoked from the business activity API. Inactive handlers in this situation become active

when the UOW in which that handler is declared completes successfully. A compensation handler that is

registered outside a transactional UOW always becomes active immediately. For more information, see

“Business activity API” on page 728.

Each business activity scope in the diagram represents a business activity. For example, the outer

business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a

flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall

holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want

your application to try booking a flight using another component that represents a different airline. If the

overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels

that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere

Application Server assembly tools to specify the use of a business activity scope and to identify any

compensation handler class for the component:

Default configuration

If a business activity context is present on a request received by a component with no business

activity scope configuration, the context is stored by the container but never used during the

method scope of the target component. A new business activity scope is not created. If the target

component invokes another component, the stored business activity context is propagated and can

be used by other compensating components.

Run enterprise bean methods under a business activity scope

Any business activity context present on the incoming request is received by the container and

made available to the target component. If a new UOW is created for the target method, for

example because the enterprise bean method has a Transaction setting of Requires new, the

received business activity scope becomes an outer business activity scope to a newly created

business activity. If the UOW is propagated from the calling component and used by the method,

Chapter 13. Transactions 2247

then the received business activity scope is used by the method. If a business activity scope does

not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise

bean to run enterprise bean methods under a business activity scope. You must also configure the

deployment descriptors for the method being invoked, to specify the creation of a new UOW upon

invocation. For instructions on how to perform these actions, see “Creating an application that uses the

Web Services Business Activity support” on page 739.

JTA support

Java Transaction API (JTA) support provides application programming interfaces (APIs) in addition to the

UserTransaction interface that is defined in the JTA 1.1 specification.

These interfaces include the TransactionSynchronizationRegistry interface, which is defined in the JTA 1.1

specification, and the following API extensions:

v SynchronizationCallback interface

v ExtendedJTATransaction interface

v UOWSynchronizationRegistry interface

v UOWManager interface

Note: This release features additional Java Transaction API (JTA) support. JTA 1.1 is supported through

the introduction of the TransactionSynchronizationRegistry interface. System-level application

components, such as persistence managers, resource adapters, enterprise beans, and Web

application components, can use the TransactionSynchronizationRegistry interface to register with a

JTA transaction. Also, the UOWSynchronizationRegistry interface and the UOWManager interface

are introduced so that all types of units of work (UOWs) that the product supports can register with

a JTA transaction and can be manipulated.

The APIs provide the following functionality:

v Access to global and local transaction identifiers associated with the thread.

The global identifier is based on the transaction identifier in the CosTransactions::PropagationContext:

object and the local identifier identifies the transaction uniquely in the local Java virtual machine (JVM).

v A transaction synchronization callback that any enterprise application component can use to register an

interest in transaction completion.

Advanced applications can use this callback to flush updates before transaction completion and clear up

state after transaction completion. Java EE (and related) specifications position this function typically as

the domain of the enterprise application containers.

Components such as persistence managers, resource adapters, enterprise beans, and Web application

components can register with a JTA transaction.

The following information is an overview of the interfaces that the JTA support provides. For more detailed

information, see the generated API documentation.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and

receives notification of transaction completion.

Although an object implementing this interface can run on a Java platform for enterprise applications

server, there is no specific enterprise application component active when this object is called. So, the

object has limited direct access to any enterprise application resources. Specifically, the object has no

access to the java: namespace or to any container-mediated resource. Such an object can cache a

reference to an enterprise application component (for example, a stateless session bean) that it delegates

to. The object would then have all the normal access to enterprise application resources. For example, you

2248 Administering WebSphere applications

could use the object to acquire a Java Database Connectivity (JDBC) connection and flush updates to a

database during the beforeCompletion method.

ExtendedJTATransaction interface

This interface is a WebSphere programming model extension to the Java EE JTA support. An object

implementing this interface is bound, by enterprise application containers in WebSphere Application Server

that support this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this object, when

called from an Enterprise JavaBeans (EJB) container, is not restricted to component-managed

transactions.

An application uses a Java Naming and Directory Interface (JNDI) lookup of java:comp/websphere/
ExtendedJTATransaction to get an ExtendedJTATransaction object, which the application uses as shown in

the following example:

ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("

 java:comp/websphere/ExtendedJTATransaction");

SynchronizationCallback sync = new SynchronizationCallback();

exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided

SynchronizationCallback objects. Depending on how the callback is registered, each registered callback is

called at one of the following points:

v At the end of every transaction that runs on the application server, whether the transaction is started

locally or imported

v At the end of the transaction for which the callback was registered

Note: In this release, the registerSynchronizationCallbackForCurrentTran method is deprecated. Use the

registerInterposedSynchronization method of the TransactionSynchronizationRegistry interface

instead.

TransactionSynchronizationRegistry interface

This interface is defined in the JTA 1.1 specification. System-level application components, such as

persistence managers, resource adapters, enterprise beans, and Web application components, can use

this interface to register with a JTA transaction. Then, for example, the component can flush a cache when

a transaction completes.

To obtain the TransactionSynchronizationRegistry interface, use a JNDI lookup of java:comp/
TransactionSynchronizationRegistry.

Note: Use the registerInterposedSynchronization method to register a synchronization instance, rather

than the registerSynchronizationCallbackForCurrentTran method of the ExtendedJTATransaction

interface, which is deprecated in this release.

UOWSynchronizationRegistry interface

This interface provides the same functionality as the TransactionSynchronizationRegistry interface, but

applies to all types of units of work (UOWs) that WebSphere Application Server supports:

v JTA transactions

v local transaction containments (LTCs)

v ActivitySession contexts

System-level application server components such as persistence managers, resource adapters, enterprise

beans, and Web application components can use this interface to register with a JTA transaction. The

component can do the following:

v Register synchronization objects with special ordering semantics.

Chapter 13. Transactions 2249

v Associate resource objects with the UOW.

v Get the context of the current UOW.

v Get the current UOW status.

v Mark the current UOW for rollback.

To obtain the UOWSynchronizationRegistry interface, use a JNDI lookup of java:comp/websphere/
UOWSynchronizationRegistry. This interface is available only in a server environment.

The following example registers an interposed synchronization with the current UOW:

// Retrieve an instance of the UOWSynchronizationRegistry interface from JNDI.

final InitialContext initialContext = new InitialContext();

final UOWSynchronizationRegistry uowSyncRegistry =

 (UOWSynchronizationRegistry)initialContext.lookup(“java:comp/websphere/UOWSynchronizationRegistry”);

// Instantiate a class that implements the javax.transaction.Synchronization interface

final Synchronization sync = new SynchronizationImpl();

// Register the Synchronization object with the current UOW.

uowSynchronizationRegistry.registerInterposedSynchronization(sync);

UOWManager interface

The UOWManager interface is equivalent to the JTA TransactionManager interface, which defines the

methods that allow an application server to manage transaction boundaries. Applications can use the

UOWManager interface to manipulate UOW contexts in the product. The UOWManager interface applies

to all types of UOWs that WebSphere Application Server supports; that is, JTA transactions, local

transaction containments (LTCs), and ActivitySession contexts. Application code can run in a particular

type of UOW without needing to use an appropriately configured enterprise bean. Typically, the logic that

is performed in the scope of the UOW is encapsulated in an anonymous inner class. System-level

application server components such as persistence managers, resource adapters, enterprise beans, and

Web application components can use this interface.

WebSphere Application Server does not provide a TransactionManager interface in the API or the system

programming interface (SPI). The UOWManager interface provides equivalent functionality, but WebSphere

Application Server maintains control and integrity of the UOW contexts.

To obtain the UOWManager interface in a container-managed environment, use a JNDI lookup of

java:comp/websphere/UOWManager. To obtain the UOWManager interface outside a container-managed

environment, use the UOWManagerFactory class. This interface is available only in a server environment.

You can use the UOWManager interface to migrate a Web application to use Web components rather than

enterprise beans, but maintain control over the UOWs. For example, a Web application currently uses the

UserTransaction interface to begin a global transaction, makes a call to a method on a session enterprise

bean that is configured as not supported to perform some non-transactional work, and then completes the

global transaction. You can move the logic that is encapsulated in the session EJB method to the run

method of a UOWAction implementation. Then, you replace the code in the Web component that calls the

session enterprise bean with a call to the runUnderUOW method of a UOWManager interface to request

that this logic is run in a local transaction. In this way, you maintain the same level of control over the

UOWs as you had with the original application.

The following example performs some transactional work in the scope of a new global transaction. The

transactional work is performed in an anonymous inner-class that implements the run method of the

UOWAction interface. Any checked exceptions that the run method creates do not affect the outcome of

the transaction.

// Retrieve an instance of the UOWManager interface from JNDI.

final InitialContext initialContext = new InitialContext();

final UOWManager uowManager = (UOWManager)initialContext.lookup(“java:comp/websphere/UOWManager”);

try

2250 Administering WebSphere applications

{

 // Invoke the runUnderUOW method, indicating that the logic should be run in a global

 // transaction, and that any existing global transaction should not be joined, that is,

 // the work must be performed in the scope of a new global transaction.

 uowManager.runUnderUOW(UOWSynchronizationRegistry.UOW_TYPE_GLOBAL_TRANSACTION, false, new UOWAction()

 {

 public void run() throws Exception

 {

 // Perform transactional work here.

 }

 });

}

catch (UOWActionException uowae)

{

 // Transactional work resulted in a checked exception being thrown.

}

catch (UOWException uowe)

{

 // The completion of the UOW failed unexpectedly. Use the getCause method of the

 // UOWException to retrieve the cause of the failure.

}

Local transaction containment considerations

IBM WebSphere Application Server supports local transaction containment (LTC), which you can configure

using local transaction extended deployment descriptors. This topic describes the advantages that this

support provides to application programmers, and the relevant settings to use. It also lists points to

consider when deciding the best way to configure transaction support for local transactions.

The following sections describe the advantages that LTC support provides, and how to set the local

transaction extended deployment descriptors in each situation.

You can develop an enterprise bean or servlet that accesses one or more databases that are

independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often more efficient to deploy

the bean with the deployment descriptor for the container transaction type set to NotSupported

instead of Required.

 With the extended local transaction support of the application server, applications can perform the

same business logic in an unspecific transaction context as they can in a global transaction. An

enterprise bean, for example, runs in an unspecified transaction context if it is deployed with a

container transaction type of NotSupported or Never.

The extended local transaction support provides a container-managed, implicit local transaction

boundary, within which the container commits application updates and cleans up their connections.

You can design applications with more independence from deployment concerns. This makes

using a container transaction type of Supports much simpler, for example, when the business logic

might be called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage, regardless of whether the

application runs in a transaction. The application can depend on the close action behaving in the

same way in all situations, that is, the close action does not cause a rollback to occur on the

connection if there is no global transaction.

There are many scenarios where ACID coordination of multiple resource managers is not needed.

In such scenarios, running business logic in a Transaction policy of NotSupported performs better

than in a policy of Required. This benefit is applied through setting the deployment descriptor, in

the Local Transactions section, of the Resolver attribute to ContainerAtBoundary. With this setting,

application interactions with resource providers, such as databases, are managed within implicit

resource manager local transactions (RMLT) that the container both starts and ends. The

container commits RMLTs at the containment boundary that is specified by the Boundary attribute

in the Local Transactions section; for example, at the end of a method. If the application returns

control to the container by an exception, the container rolls back any RMLTs that it has started.

Chapter 13. Transactions 2251

This usage applies to both servlets and enterprise beans.

You can use local transactions in a managed environment that guarantees cleanup.

Applications that want to control RMLTs, by starting and ending them explicitly, can use the default

setting of Application for the Resolver extended deployment descriptor in the Local Transactions

section. In this situation, the container ensures connection cleanup at the boundary of the local

transaction context.

 Java platform for enterprise applications specifications that describe application use of local

transactions do so in the manner provided by the default settings of Application for the Resolver

extended deployment descriptor, and Rollback for the Unresolved action extended deployment

descriptor, in the Local Transactions section. When the Unresolved action extended deployment

descriptor in the Local Transactions section is set to Commit, the container commits any RMLTs

that the application starts but that do not complete when the local transaction containment ends

(for example, when the method ends). This usage applies to both servlets and enterprise beans.

You can extend the duration of a local transaction beyond the duration of an EJB component

method.

The Enterprise JavaBeans (EJB) specifications restrict the use of RMLTs to single EJB methods.

This restriction is because the specifications have no scoping device, beyond a container-imposed

method boundary, to which an RMLT can be extended. You can use the Boundary extended

deployment setting in the Local Transactions section to give the following advantages:

v Significantly extend the use cases of RMLTs.

v Make conversational interactions with one-phase resource managers possible through

ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than

a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,

which a client can control. The ActivitySession boundary reduces the need to use distributed

transactions where ACID operations on multiple resources are not needed. This benefit is applied

through the Boundary extended deployment setting, in the Local transactions section, of

ActivitySession. Such extended RMLTs can remain under the control of the application, or be

managed by the container, depending on the setting of the Resolver deployment descriptor in the

Local Transactions section.

You can coordinate multiple one-phase resource managers.

For resource managers that do not support XA transaction coordination, a client can use

ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to

control the completion direction of the resource updates by the resource managers as the client

has for transactional resource managers. A client can start an ActivitySession and call its entity

beans in that context. Those beans can perform their RMLTs within the scope of that

ActivitySession and return without completing the RMLTs. The client can later complete the

ActivitySession in a commit or rollback direction and cause the container to drive the

ActivitySession-bounded RMLTs in that coordinated direction.

You can use shareable LTCs to reduce the number of connections you require.

Application components can share LTCs. If components obtain connections to the same resource

manager, they can share that connection if they run under the same global transaction or

shareable LTC. To configure two components to run under the same shareable LTC, set the

Shareable attribute of the Local Transactions section in the deployment descriptor of each

component. Make sure that the resource reference in the deployment descriptor for each

component uses the default value of Shareable for the res-sharing-scope element, if this element

is specified. A shareable LTC can reduce the numbers of RMLTs an application uses. For example,

an application that makes frequent use of Web module include calls can share resource manager

connections between those Web modules, exploiting either shareable LTCs, or a global

transaction, reducing lock contention for resources.

 Examples of local transaction support configurations

The following list gives scenarios that use local transactions, and points to consider when deciding the

best way to configure the transaction support for an application.

2252 Administering WebSphere applications

v You want to start and end global transactions explicitly in the application (bean-managed transaction

session beans and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in the

deployment descriptor of the component. You do not need to do this for servlets.

v You want to access only one XA or non-XA resource in a method.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver

attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction

type to Supports.

v You want to access several XA resources atomically across one or more bean methods.

In the deployment descriptor of the component, in the Container Transactions section, set the container

transaction type to Required, RequiresNew, or Mandatory.

v You want to access several non-XA resources in a method without needing to manage your own local

transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver

attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction

type to NotSupported.

v You want to access several non-XA resources in a method and want to manage them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver

attribute to Application and set the Unresolved action attribute to Rollback. In the Container Transactions

section, set the container transaction type to NotSupported.

v You want to access one or more non-XA resources across multiple EJB method calls without needing to

manage your own local transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver

attribute to ContainerAtBoundary and set the Boundary attribute to ActivitySession. In the Bean Cache

section, set the Activate at attribute to ActivitySession. In the Container Transactions section, set the

container transaction type to NotSupported and set the ActivitySession kind attribute to Required,

RequiresNew, or Mandatory.

v You want to access several non-XA resources across multiple EJB method calls and want to manage

them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver

attribute to Application and set the Boundary attribute to ActivitySession. In the Bean Cache section, set

the Activate at attribute to ActivitySession. In the Container Transactions section, set the container

transaction type to NotSupported and set the ActivitySession kind attribute to Required, RequiresNew,

or Mandatory.

Transaction service exceptions

The exceptions that the WebSphere Application Server transaction service can throw are listed with a

summary of each exception.

The exceptions are grouped as follows:

v Standard exceptions

v Heuristic exceptions

If the EJB container catches a system exception from the business method of an enterprise bean, and the

method is running within a container-managed transaction, the container rolls back the transaction before

passing the exception on to the client. For more information about how the container handles the

exceptions thrown by the business methods for beans with container-managed transaction demarcation,

see the section Exception handling in the Enterprise JavaBeans 2.0 specification. That section specifies

the container’s action as a function of the condition under which the business method executes and the

exception thrown by the business method. It also illustrates the exception that the client receives and how

the client can recover from the exception.

Chapter 13. Transactions 2253

http://java.sun.com/products/ejb/docs.html

Standard exceptions

The standard exceptions such as TransactionRequiredException, TransactionRolledbackException, and

InvalidTransactionException are defined in the Java Transaction API (JTA) 1.1 specification.

InvalidTransactionException

This exception indicates that the request carried an invalid transaction context.

TransactionRequiredException exception

This exception indicates that a request carried a null transaction context, but the target object

requires an active transaction.

TransactionRolledbackException exception

This exception indicates that the transaction associated with processing of the request has been

rolled back, or marked for roll back. Thus the requested operation either could not be performed or

was not performed because further computation on behalf of the transaction would be fruitless.

Heuristic exceptions

A heuristic decision is a unilateral decision made by one or more participants in a transaction to commit or

rollback updates without first obtaining the consensus outcome determined by the Transaction Service.

Heuristic decisions are an issue only after the participant has been prepared and the second phase of

commit processing is underway. Heuristic decisions are normally made only in unusual circumstances,

such as repeated failures by the transaction manager to communicate with a resource manage during

two-phase commit. If a heuristic decision is taken, there is a risk that the decision differs from the

consensus outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail, see the Java

Transaction API (JTA) 1.1 specification.

HeuristicRollback exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that all relevant updates have been rolled back.

HeuristicMixed exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that some relevant updates have been committed and others have been rolled back.

Configuring transaction properties for an application server

You can view or change settings for the transaction service. For example, you can change the location or

default file size of the transaction log files, change transaction timeout properties, or change

heuristic-related properties.

About this task

The transaction service is a server runtime component that can coordinate updates to multiple resource

managers to ensure atomic updates of data. Transactions are started and ended by applications or the

container in which the applications are deployed.

You might perform this task when you want to move the transaction logs to a different storage device, or

when you need to change the transaction service settings. You must restart the application server to make

configuration changes take effect.

Note: In this release, both the WS-Transaction 1.1 and the WS-Transaction 1.0 specifications are

supported. You can set the default WS-Transaction specification level for a server to use for

outbound requests that include a Web Services Atomic Transaction (WS-AT) or Web Services

Business Activity (WS-BA) coordination context.

 1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name. The properties of the application server, server_name, are displayed in the content

pane.

2254 Administering WebSphere applications

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

2. Click [Container Settings] Container Services → Transaction Service. The Transaction Service

settings page is displayed.

 3. Ensure that the Configuration tab is displayed.

 4. Optional: To change the directory in which transaction logs are written, type the full path name of the

directory in the Transaction log directory field. You can check the current runtime value of

Transaction log directory by clicking the Runtime tab.

When using WebSphere Application Server without high availability support, you do not need to set

the recovery log configuration for persistent services, such as the transactions service. The

application server assumes a default location in the appropriate profile directory. When high

availability support is enabled, this default might not be visible from all servers in the cluster (for

example, if they are in different profiles or physical nodes.) Because of this behavior, configure the

recovery log location for each server in the cluster before enabling high availability. You must also

ensure that each server in the cluster has a unique log directory, to avoid attempts by multiple

servers to access the same log file.

Note: If you change the transaction log directory, apply the change and restart the application server

as soon as possible, to minimize the risk of problems occurring before the application server is

restarted. For example, if a problem causes the server to fail (with in-flight transactions), the

server starts again with the new log directory and cannot automatically resolve in-flight

transactions that were recorded in the previous log directory.

You can also specify a size for the transaction logs, as described in the following step.

 5. Optional: To change the default file size of transaction log files, modify the Transaction log directory

field to include a file size setting. Use the following format, where directory_name is the name of the

transaction log directory and file_size is the new default size specified in KB (nK) or MB (nM). If you

do not specify a value for the file size, the default value of 1M is used.

directory_name;file_size

In a non-production environment, you can turn transaction logging off by entering ;0 in the

Transaction log directory field (do not enter a directory name). Do not turn transaction logging off in

a production environment because this prevents recovery after a system failure, and therefore data

integrity cannot be guaranteed.

For more information about transaction log sizes, see “Managing transaction logging for optimum

server availability” on page 2276.

 6. Optional: Review or change the value of transaction timeout properties:

Total transaction lifetime timeout

The number of seconds to allow for a transaction that is started on this server, before the

transaction service initiates timeout completion. If a transaction does not begin completion

processing before this timeout occurs, it is rolled back. A value of 0 (zero) indicates that this

timeout does not apply, and therefore the maximum transaction timeout is used instead.

Application components can override the total transaction lifetime timeout for their

transactions by setting their own timeout value.

Maximum transaction timeout

The number of seconds a transaction that is propagated into this application server can

remain inactive before it is ended by the transaction service. This value also applies to

transactions that are started in this server, if their associated applications do not set a

transaction timeout and the total transaction lifetime timeout is set to 0.

 This value must be equal to, or greater than, the total transaction lifetime timeout. A value of

0 (zero) indicates that this timeout does not apply. In this situation, transactions that are

affected by this timeout never time out.

Client inactivity timeout

The number of seconds after which a client is considered inactive and the transaction service

ends any transactions associated with that client. A value of 0 (zero) indicates that there is no

timeout limit.

Chapter 13. Transactions 2255

7. Optional: Review or change heuristic-related properties:

Heuristic retry limit

The number of times that the application server retries a completion signal, such as commit

or rollback. Retries occur after a transient exception from a resource manager or remote

partner, or if the configured asynchronous response timeout expires before all Web Services

Atomic Transaction (WS-AT) partners have responded.

Heuristic retry wait

The number of seconds that the application server waits before retrying a completion signal,

such as commit or rollback, after a transient exception from a resource manager or remote

partner.

Enable logging for heuristic reporting

Select this option to enable the application server to log ″about to commit one-phase

resource″ events from transactions that involve a one-phase commit resource and two-phase

commit resources.

Heuristic completion direction

Select the direction used to complete a transaction that has a heuristic outcome; either the

application server commits or rolls back the transaction, or depends on manual completion by

the administrator.

Accept heuristic hazard

Select this option to specify that all applications on this server accept the possibility of a

heuristic hazard occurring in a two-phase transaction that contains a one-phase resource.

This setting configures last participant support (LPS) for the server. If you do not select this

option, you must configure applications individually to accept the heuristic hazard.

 8. Optional: To change the default WS-Transaction specification level to use for outbound requests that

include a Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA)

coordination context, select the specification level from the Default WS-Transaction specification

level list.

 9. Review or change other configuration properties, to suit your requirements. For more information

about the properties of the transaction service, see “Transaction service settings.”

10. Click OK, then save your changes to the master configuration.

11. Stop, then restart, the application server.

What to do next

If you change the transaction log directory configuration property to an incorrect directory name, the

application server restarts, but cannot open the transaction logs. Change the configuration property to a

valid directory name, then restart the application server.

If you are running the application server as non-root, modify the permissions on the new transaction log

location. To use peer recovery of transactions on a shared device with non-root users, make sure that your

non-root users and groups have matching identification numbers across machines.

Transaction service settings

Use this page to specify settings for the transaction service. The transaction service is a server runtime

component that can coordinate updates to multiple resource managers to ensure atomic updates of data.

Transactions are started and ended by applications or the container in which the applications are

deployed.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → [Container Settings] Container Services → Transaction Service.

2256 Administering WebSphere applications

Transaction log directory

Specifies the name of a directory for this server where the transaction service stores log files for recovery.

Optionally, you can specify the size of transaction log files.

Set this property to change the log file directory for an application server in one of the following situations:

v If the applications use distributed resources or XA transactions; for example, multiple databases and

resources are accessed in a single transaction.

v If you configure the system for high availability of transactions. In this situation, all servers in the cluster

must be able to access the transaction log directory, and the transaction log directory must be unique in

the cluster.

If you do not specify this directory during server configuration, the transaction service uses a default

directory that is based on the installation directory: app_server_root/ tranlog/cell_ name/node_

name/server_ name.

When an application that runs on the application server accesses more than one resource, the application

server stores transaction information in the product directory so that it can coordinate and manage the

distributed transaction correctly. When there is a higher transaction load, storing persistent information in

this way can slow the performance of the application server because it depends on the operating system

and the underlying storage systems. To achieve better performance, designate a new directory for the log

files on a separate, physically larger, storage system.

If your application server demonstrates one or more of the following symptoms, change the transaction log

directory:

v CPU use remains low despite an increase in transactions

v Transactions fail with several timeouts

v Transaction rollbacks occur with the exception “Unable to enlist transaction”

v The application server stops in the middle of a run and must be restarted

v The disk that the application server is running on shows higher use

There are the following recommendations for a storage system for the log files:

v Store log files on a redundant array of independent disks (RAID)

In RAID configurations, the task of writing data to the physical media is shared across the multiple

drives. This technique yields more concurrent access to storage for persisting transaction information,

and faster access to that data from the logs. Depending on the design of the application and storage

subsystem, performance gains can range from 10% to 100%, or more in some cases.

v Do not store log files with the operation system I/O mode set to concurrent I/O (CIO)

When you designate a transaction log directory, ensure that the file system uses only synchronous

write-through and write serialization operations. Some operating systems, such as AIX JFS2, support an

optional concurrent I/O (CIO) mode, where the file system does not enforce serialization of write

operations. On these systems, do not use CIO mode for application server transaction recovery log

files.

To specify the size of transaction log files, include a file size setting. Use the following format, where

directory_name is the name of the transaction log directory and file_size is the new disk space allocation

for the transaction log files, specified in KB (nK) or MB (nM). The minimum transaction log file size that

you can specify is 64K. If you specify a value that is less than 64K, or you do not specify a value for the

file size, the default value of 1M is used.

directory_name;file_size

For more information about transaction log sizes, see “Managing transaction logging for optimum server

availability” on page 2276.

 Data type String

Chapter 13. Transactions 2257

Default Directory name: app_server_root/tranlog/cell_name/
node_name/server_name

File size: 1MB

Recommended Create a file system with at least three to four disk drives

raided together in a RAID-0 configuration. Then, create

the transaction log on this file system with the default size.

When the server is running under load, check the disk

input and output. If disk input and output time is more then

5%, consider adding more physical disks to lower the

value.

If you migrate a WebSphere Application Server Version 5 node to Version 6, the stored location of this

configuration property is moved from the server level to the node (server index) level. If you specified a

non-default log directory for a Version 5 application server, you are prompted to save the transaction

service settings again, to confirm that you want the log directory saved to the node level.

Total transaction lifetime timeout

The default maximum time, in seconds, allowed for a transaction that is started on this server before the

transaction service initiates timeout completion. Any transaction that does not begin completion processing

before this timeout occurs is rolled back.

This timeout is used only if the application component does not set its own transaction timeout.

The upper limit of this timeout is constrained by the maximum transaction timeout. For example, if you set

a value of 500 for the total transaction lifetime timeout, and a value of 300 for the maximum transaction

timeout, transactions will time out after 300 seconds.

If you set this timeout to 0, the timeout does not apply and the value of the maximum transaction timeout

is used instead.

 Data type Integer

Units Seconds

Default 120

Range 0 to 2 147 483 647

Asynchronous response timeout

Specifies the amount of time, in seconds, that the server waits for an inbound Web Services Atomic

Transaction (WS-AT) protocol response before resending the previous WS-AT protocol message.

 Data type Integer

Units Seconds

Default 30

Range 0 to 2 147 483 647

Client inactivity timeout

Specifies the maximum duration, in seconds, between transactional requests from a remote client. Any

period of client inactivity that exceeds this timeout results in the transaction being rolled back in this

application server.

If you set this value to 0, there is no timeout limit.

 Data type Integer

Units Seconds

Default 60

2258 Administering WebSphere applications

Range 0 to 2 147 483 647

Maximum transaction timeout

Specifies, in seconds, the upper limit of the transaction timeout for transactions that run in this server. This

value should be greater than or equal to the value specified for the total transaction timeout.

This timeout constrains the upper limit of all other transaction timeouts. The following table shows how the

different timeout settings apply to transactions running in the server.

 Table 47. Transaction timeout settings.

Timeout setting Transactions affected

Maximum transaction timeout All transactions running in this server that are not affected by the total transaction lifetime timeout or

an application component timeout. These transactions include transactions imported from outside

this server, such as those imported from a client.

Total transaction lifetime

timeout

All transactions that originated in this server that are not affected by an application component

timeout, in other words, the associated application component does not set its own timeout.

Application component

timeout

Transactions that are specific to an application component. If the component is a

container-managed bean, set this timeout in the deployment descriptor for the component. If the

component is a bean-managed bean, set this timeout programmatically using the

UserTransaction.setTransactionTimeout method.

If you set a timeout to 0, that timeout does not apply, and is effectively disabled. If you set all timeouts to

0, transactions never time out.

For example, consider the following timeout values:

 Table 48. Example timeout values

Timeout setting Value

Maximum transaction timeout 360

Total transaction lifetime timeout 240

Application component timeout 60

In this example, transactions that are specific to the application component time out after 60 seconds.

Other local transactions time out after 240 seconds, and any transactions that are imported from outside

this server time out after 360 seconds. If you then change the application component timeout to 500,

application component transactions time out after 360 seconds, the value of the maximum transaction

timeout. If you set the maximum transaction timeout to 0, application component transactions time out after

500 seconds. If you remove the application component timeout, application component transactions time

out after 240 seconds.

To determine the occurrence of a timeout quickly, and to prevent further resource locking, the application

server prevents further transactional work on the transactional path where the timeout condition has taken

place. This applies equally to attempting to perform work under the current transaction context and to

attempting to perform work under a different transactional context.

 Data type Integer

Units Seconds

Default 300

Range 0 to 2 147 483 647

Heuristic retry limit

Specifies the number of times that the application server retries a completion signal, such as commit or

rollback. Retries occur after a transient exception from a resource manager or remote partner, or if the

configured asynchronous response timeout expires before all Web Services Atomic Transaction (WS-AT)

partners have responded.

Chapter 13. Transactions 2259

If the application server abandons the retries, the resource manager or remote partner is responsible for

ensuring that the resource or partner’s branch of the transaction is completed appropriately. The

application server raises (on behalf of the resource or partner) an exception that indicates a heuristic

hazard. If a commit request was made, the transaction originator receives an exception on the commit

operation; if the transaction is container-initiated, the container returns a remote exception or Enterprise

JavaBeans (EJB) exception to the EJB client.

 Data type Integer

Default 0

Range 0 to 2 147 483 647

A value of 0 (the default) means retry indefinitely.

Heuristic retry wait

Specifies the number of seconds that the application server waits before retrying a completion signal, such

as commit or rollback, after a transient exception from a resource manager or remote partner.

 Data type Integer

Default 0

Range 0 to 2 147 483 647

A value of 0 means that the application server determines

the retry wait; the server doubles the retry wait after every

10 failed retries.

Enable logging for heuristic reporting

Specifies whether the application server logs about-to-commit-one-phase-resource events from

transactions that involve both a one-phase commit resource and two-phase commit resources.

This property enables logging for heuristic reporting. If applications are configured to allow one-phase

commit resources to participate in two-phase commit transactions, reporting of heuristic outcomes that

occur at application server failure requires extra information to be written to the transaction log. If enabled,

one additional log write is performed for any transaction that involves both one-phase and two-phase

commit resources. No additional records are written for transactions that do not involve a one-phase

commit resource.

 Data type Check box

Default Cleared

Range

Cleared

The application server does not log ″about to

commit one-phase resource″ events from

transactions that involve a one-phase commit

resource and two-phase commit resources.

Selected

The application server does log ″about to commit

one-phase resource″ events from transactions

that involve a one-phase commit resource and

two-phase commit resources.

Heuristic completion direction

Specifies the direction that is used to complete a transaction that has a heuristic outcome; either the

application server commits or rolls back the transaction, or depends on manual completion by the

administrator.

 Data type Drop-down list

2260 Administering WebSphere applications

Default ROLLBACK

Range

COMMIT

The application server heuristically commits the

transaction.

ROLLBACK

The application server heuristically rolls back the

transaction.

MANUAL

The application server depends on an

administrator to manually complete or roll back

transactions with heuristic outcomes.

Accept heuristic hazard

Specifies whether all applications on this server accept the possibility of a heuristic hazard occurring in a

two-phase transaction that contains a one-phase resource. This setting configures last participant support

(LPS) for the server. Last participant support is an extension to the transaction service that enables a

single one-phase resource to participate in a two-phase transaction with one or more two-phase

resources.

If the Accept heuristic hazard option is not selected, you must configure applications individually to accept

the heuristic hazard. You can configure applications either when they are assembled, or following

deployment by using the Last participant support extension pane.

 Data type Check box

Default Cleared

Range

Selected

All applications deployed on the server accept

the increased risk of an heuristic outcome.

Cleared

Applications must be individually configured to

accept the increased risk of an heuristic outcome.

Enable file locking

Specifies whether the use of file locks is enabled when opening the transaction service recovery log.

If you enable this setting, a file lock will be obtained before accessing the transaction service recovery log

files. File locking is used to ensure that, in a highly available WebSphere Application Server deployment,

only one application server can access a particular transaction service recovery log at any one time. This

setting has no effect in a standard deployment where you have not configured high availability support.

Note: This setting requires a compatible network file system, such as Network File System (NFS) version

4, to operate correctly.

 Data type Check box

Default Selected

Enable transaction coordination authorization

Specifies whether the secure exchange of transaction service protocol messages is enabled.

This setting has no effect unless you enable WebSphere Application Server security on the server.

 Data type Check box

Default Selected

Chapter 13. Transactions 2261

Default WS-Transaction specification level

Specifies the default WS-Transaction specification level to use for outbound requests that include a Web

Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) coordination context.

You can choose from WS-Transaction 1.1 or WS-Transaction 1.0. For details of these specifications, see

“Web Services Atomic Transaction support in the application server” on page 713 and “Web Services

Business Activity support in the application server” on page 717.

The default WS-Transaction specification level is used if the specification level that the server requires

cannot be determined from the provider policy (the WS-Transaction WS-Policy assertion). For example,

the policy assertion is not available, either from the WSDL of the target Web service or from the

WS-Transaction policy type of the client, or the policy assertion is available but both specification levels

are applicable.

 Data type Drop-down list

Default 1.0

External WS-Transaction HTTP(S) URL prefix

Select or specify the external WS-Transaction HTTP(S) URL prefix.

Select or specify one of these fields if you are using an intermediary node, such as an HTTP server or

Proxy Server for WebSphere, to send requests that comply with the Web Services Atomic Transaction

(WS-AT) or Web Services Business Activity (WS-BA) protocols.

If WebSphere Application Server security is enabled and transaction coordination authorization is enabled,

the HTTPS prefix is used. Otherwise, the HTTP prefix is used.

If the intermediary node is not a Proxy Server, the prefix must be unique for each server.

If you are using a Proxy Server, prefixes can be the same for each server in a cluster, because the Proxy

Server determines dynamically which server to forward the request to.

Select prefix

Select this option to select the external endpoint URL information to use for WS-AT and WS-BA service

endpoints from the list.

 Data type Drop-down list

Default None

Specify custom prefix

Select this option to specify the external endpoint URL information to use for WS-AT and WS-BA service

endpoints in the field.

Use one of the following formats for the prefix, where host_name and port represent the intermediary node

that is an HTTP or HTTPS proxy for the server.

http://host_name:port

https://host_name:port

 Data type String

Default None

Manual transactions

Specifies the number of transactions that await manual completion by an administrator.

2262 Administering WebSphere applications

If there are transactions awaiting manual completion, you can click the Review link to display a list of

those transactions on the Transactions needing manual completion panel.

 Data type Integer

Default 0

Retry transactions

Specifies the number of transactions with some resources being retried.

If there are transactions with resources being retried, you can click the Review link to display a list of

those transactions on the Transactions retrying resources panel.

 Data type Integer

Default 0

Heuristic transactions

Specifies the number of transactions that have completed heuristically.

If there are transactions that have completed heuristically, you can click the Review link to display a list of

those transactions on the Transactions with heuristic outcome panel.

 Data type Integer

Default 0

Imported prepared transactions

Specifies the number of transactions that are imported and prepared but not yet committed.

If there are transactions that have been imported and prepared but not yet committed, you can click the

Review link to display a list of those transactions on the Transactions imported and prepared panel.

 Data type Integer

Default 0

Transactions needing manual completion

Use this page to review transactions that need manual completion.

It is unusual for transactions to require manual completion. A transaction needs manual completion in the

following circumstances:

1. An application was exploiting the last participant support to coordinate a single one-phase capable

resource and one or more two-phase capable resources.

2. A failure occurred during the commit of the one-phase capable resource.

3. The transaction service heuristic completion direction is set to Manual, in the transaction service

settings.

An administrator reviewing transactions in this state can review the actual outcome of any one-phase

resources, using facilities provided by the specific resource manager, then use this page to complete the

transaction accordingly.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → [Content pane] server_name → [Container Settings] Container Services → Transaction

Service → Runtime → Manual transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

Chapter 13. Transactions 2263

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Commit

Heuristically commit the selected transactions.

Rollback

Heuristically roll back the selected transactions.

Transactions retrying resources

Use this page to review transactions with resources being retried.

If the transaction manager has prepared resources, but has lost contact with the resource managers

before committing them or aborting them, then the transaction manager retries the commit or rollback

requests to the affected resource managers. The number of times and frequency that the transaction

manager retries such commit or rollback requests is configured on the Heuristic retry limit and Heuristic

retry wait properties of the transaction service settings.

An administrator can use this page to make the transaction service abandon the retries of one or more

transactions. If a resource manager cannot be contacted, WebSphere Application Server relegates that

resource manager to an in-doubt (prepared) state. The administrator then needs to use mechanisms

specific to the resource manager to resolve the in-doubt status.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers > [Content pane] server_name > [Container Settings] Container Services → Transaction

Service → Runtime → Retry transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Status

The status of the transaction, shown as an integer value. The values correspond to the following

status:

0 - active

1 - marked for rollback

2 - prepared

3 - committed

4 - rolled back

5 - unknown

6 - none

7 - preparing

8 - committing

9 - rolling back

Global ID

The global identifier of the transaction.

2264 Administering WebSphere applications

Buttons

Finish Abandon retrying resources for the selected transactions.

Transactions with heuristic outcome

Use this page to review transactions that completed with a heuristic outcome.

The page is provided for information purposes only. After you have reviewed the information in this page,

then the only action required is to remove the transactions from the list. If you do not remove a transaction

from the list, it is kept in the list for three days or until the server is shut down, whichever occurs first.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers [Content pane] server_name [Container Settings] Container Services → Transaction Service →

Runtime → Heuristic transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Heuristic outcome

The outcome of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Clear Remove the selected transactions from the list.

Transactions imported and prepared

Use this page to review transactions that have been imported and prepared but not yet committed.

Under normal circumstances no administrative action is required for any of the transactions listed on this

page. This page lists those transactions that are in a prepared state, but are being directed by an external

transaction manager (for example, another WebSphere application server) from a transaction context that

has been propagated.

Under aberrant circumstances, however, an administrator can configure WebSphere Application Server to

resolve the transactions listed on this page independent of the external transaction manager. (This step

might be necessary if, for example, the external transaction manager has become unavailable for an

unacceptable period of time.)

Note: If the completion direction (commit or rollback) chosen administratively differs from the eventual

direction of the external transaction manager, then the overall outcome of the transaction is not

atomic and data corruption can result.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers [Content pane] server_name → [Container Settings] Container Services → Transaction Service

→ Runtime → Imported prepared transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Chapter 13. Transactions 2265

Local ID

The local identifier of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Commit

Heuristically commit the selected transactions.

Rollback

Heuristically roll back the selected transactions.

Transaction resources

Use this page to review resources used by a transaction.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers [Content pane] server_name → [Container Settings] Container Services → Transaction Service

→ Runtime → transaction_type local_ID.

Where:

v transaction_type is one of:

– Manual transactions - Review

– Retry transactions - Review

– Heuristic transactions - Review

– Imported prepared transactions - Review

v local_ID is the local ID of the transaction (as an active link in the list of transactions).

The details displayed depend on the resource provider.

Configuring transaction properties for peer recovery

Peer recovery for the transaction service enables servers in a cluster to complete outstanding work for a

failed cluster member. Follow the steps in this topic to configure the transaction properties that are

required for peer recovery of failed application servers in a cluster.

Before you begin

Transaction peer recovery requires a common configuration of the resource providers between the

participating server members in order to be able to perform peer recovery between servers. This means

that peer recovery processing can only take place between members of the same server cluster. Although

a cluster can contain servers that are at different versions of WebSphere Application Server, you must

enable and configure high availability only if all servers in the cluster are at Version 6 or later.

About this task

Configuring the transaction properties that are required for peer recovery is part of the overall task for

configuring a cluster to use high availability support.

1. Configure the transaction log directory setting for each server in the cluster. You can configure the

location of the transaction log directory using either the administrative console or commands. The

configuration is stored in the serverindex.xml node-level configuration file.

Each server in the cluster must be able to access the log directories of other servers in the same

cluster. For this reason, do not leave this setting unset. If you do not set a directory, the application

server assumes a default location within the appropriate profile directory, which might not be

accessible to other servers in the cluster.

2266 Administering WebSphere applications

Each server in the cluster must also have a unique transaction log directory, to avoid attempts by

multiple servers to access the same log file. For example, you could use the name of each server as

part of the log directory name for that server.

The storage mechanism that is used to host recovery log files, and access to that mechanism (for

example you can store the logs on another i5/OS server by using the NetClient file system (QNTC),

which provides access to data on a remote system using the Server Message Block (SMB) protocol),

must support the file-based force operation that is used by the recovery log service to force data to

disk..

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault

tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard

mounting the remote directory containing the log files using the -o hard option of the NFS mount

command, the NFS client will retry a failed operation until the NFS server becomes available again.

For more information about configuring transaction log directories, see Configuring transaction

properties for an application server.

Note: If you have migrated from a previous version of WebSphere Application Server, be aware that

previous versions stored the recovery log configuration in the server.xml server-level

configuration file. If you run existing scripting that configures the original recovery log settings,

or migrate Version 5 application servers to a later version of WebSphere Application Server, the

original transaction log directory configuration in the server.xml file is updated. The

administrative console detects this condition and prompts you to save the configuration when

you view the transaction service panel. This save operation saves the changed configuration to

the serverindex.xml file, and resets the older fields to null. Change your existing scripting to

target the serverindex.xml file at the earliest opportunity. New scripting should also target the

serverindex.xml file.

2. Enable the high availability function for the cluster, by completing the following steps on the cluster

configuration panel of the WebSphere Application Server administrative console:

a. In the administrative console, click Servers → Clusters → WebSphere application server clusters

→ cluster_name.

b. Select the Enable failover of transaction log recovery option.

c. Click OK.

For more information about enabling the high availability function for a cluster, see Server cluster

settings.

3. Decide which kind of transaction peer recovery to use by referring to “How to choose between

automated and manual transaction peer recovery” on page 2240.

4. Perform one of the following actions, depending on the configuration that you require.

v If you want to use automated peer recovery, follow the steps in “Configuring automated peer

recovery for the transaction service” on page 2269.

v If you want to use manual peer recovery, configure a policy for the transaction service, as described

in “Configuring manual peer recovery for the transaction service.”

Configuring manual peer recovery for the transaction service

Manual peer recovery processing is not the default setting; you must enable it through configuration.

Administrator intervention is then required to trigger any peer recovery processing.

About this task

Perform this task if you want to use manual peer recovery for the transaction service. A scenario where

you might want to use manual peer recovery is when your file system does not provide the required level

of file locking support, and no constraints are in place to ensure that overloading or network partitioning

does not occur. For more information, see “How to choose between automated and manual transaction

peer recovery” on page 2240.

Chapter 13. Transactions 2267

After you configure manual peer recovery, your intervention is required only when a server fails and cannot

be restarted; in this case, use the administrative console to specify which peer server performs recovery

processing for the failed server.

Manual peer recovery configuration is provided by a group of policies known as static policies, where one

policy definition is provided per application server. Individual definitions are required to define

server-specific configuration within the policy which, in this case, is the identity of the server that initiates a

peer recovery process.

1. Create the required static policy definitions.

a. In the administrative console click Servers → Core groups → Core group settings. All the

members of a cluster reside in a single core group, which by default is the DefaultCoreGroup core

group. Click the core group that contains your cluster. The Core groups configuration panel is

displayed.

b. Under Additional Properties, click Policies. The current set of policies is displayed. You can

identify the current policy that applies to transactional high availability (HA) by the match criteria

type = WAS_TRANSACTIONS. The default policy has a policy type of One of N policy. If this policy

exists, you do not have to remove it because it is overridden by the static policy that you are

creating.

c. Click New to create a new policy.

d. Select Static policy and click Next.

e. Provide a name for the policy. This value is a free-form text string that is used only as a label in

the administrative console. However, to assist readability in the administrative console, use a name

that associates the policy with a particular server, for example, TM-SERVER1 policy.

f. Enter a description if required, and click OK.

g. Set values for the Is alive timer and the Quorum options, if required.

h. Under Additional Properties, click Match criteria to open an empty match criteria panel.

i. Click New to create a new match criterion. Match criteria are key-value pairs that are used to define

the scope of a policy.

j. Enter type in the Name field and WAS_TRANSACTIONS in the Value field. Click OK. This match

criterion is used to associate the policy with the transaction service.

k. Click New to create a second new match criterion.

l. Enter GN_PS in the Name field and cell_name\node_name\server_name in the Value field, where

cell_name, node_name and server_name are the names of your cell, node and server. For

example, dmgrCell\appnode1\server1. Click OK. This match criterion is used to associate the policy

with a particular server.

m. Return to the configuration page for the new policy, and under Additional Properties, click Static

group servers. The Static group servers panel is displayed. This panel lists all the servers in the

core group and classifies them as either core group servers or static group servers.

n. From the Core group servers list, select the server that is associated with the policy and click

Add >> to move it to the Static group servers list. The static group servers list is the set of

servers that attempts to own the recovery logs at the same time. Adding an incorrect server to this

list can compromise data integrity. For normal operation, follow these rules to guarantee data

integrity:

v Add only one server to the list of static group servers. Adding two servers causes recovery log

contention, because both servers attempt to own the associated recovery logs. The exception to

this rule is adding a second server as part of manual peer recovery initiation. For more

information, see “Managing manual peer recovery of the transaction service” on page 2271.

v Add only the server that is associated with the policy to the list. Adding a different server

prevents the home server from owning its recovery logs, and stops the home server from

starting correctly.

2. Repeat the procedure in step 1 for each server in the cluster.

2268 Administering WebSphere applications

3. Save your changes to the master configuration, ensuring that you select the Synchronize changes

with Nodes check box.

4. Stop and restart the cluster members for the changes to take effect.

Results

Manual transaction peer recovery is configured for all the servers in the cluster. Automatic transaction peer

recovery can no longer occur.

What to do next

If a server fails, follow the instructions in “Managing manual peer recovery of the transaction service” on

page 2271, to trigger recovery processing.

Configuring automated peer recovery for the transaction service

Configure automated peer recovery to enable cluster members to automatically complete outstanding work

for a failed cluster member. After you have configured automated peer recovery, recovery processing

occurs without any intervention on your part.

Before you begin

Make sure that you understand the infrastructure requirements for automatic peer recovery. For more

information, see “How to choose between automated and manual transaction peer recovery” on page 2240

and “Disabling file locking” on page 2270.

About this task

Automated peer recovery processing is the default setting when high availability is enabled. Follow the

steps in this topic to ensure that your system is configured correctly. If you configured manual peer

recovery and want to return to automated peer recovery, you must reconfigure the system back to the

default settings.

1. Verify that high availability is enabled, and that the location of the transaction recovery log is specified,

as described in “Configuring transaction properties for peer recovery” on page 2266.

2. Remove any high availability (HA) policies with a policy type of Static. Such policies might exist if you

previously configured the system for manual peer recovery.

a. In the administrative console click Servers → Core groups → Core group settings. All the

members of a cluster reside in a single core group, which by default is the DefaultCoreGroup core

group. Click the core group that contains your cluster. The Core groups configuration panel is

displayed.

b. Under Additional Properties, click Policies. The current set of policies is displayed.

c. Select any policies with a Policy type of Static, and a Match criteria that includes type =

WAS_TRANSACTIONS. Click Delete.

3. Check to see if the required One-of-N transaction HA policy already exists. This policy has a Policy

type of One-of-N, and a Match criteria that includes type = WAS_TRANSACTIONS. If this policy already

exists, you do not need to take any further action. If the policy does not already exist, create it

according to the following substeps.

a. Click New to create a new policy.

b. Select One of N policy and click Next.

c. Provide a name for the policy. This value is a free-form text string that is used only as a label in the

administrative console, however to assist readability in the administrative console, use a name that

associates the policy with the required behavior, for example, Clustered TM policy.

d. Enter a description, if required.

Chapter 13. Transactions 2269

e. Select the Fail back check box to ensure that a failed server reclaims its recovery log when it

restarts, and click OK.

f. Set values for the Is alive timer, Quorum, and Preferred servers only options, if required. See

the contextual help for more information.

g. Under Additional Properties, click Match criteria to open an empty Match criteria panel.

h. Click New to create a new match criterion.

i. Enter type in the Name field and WAS_TRANSACTIONS in the Value field. Click OK.

j. Save your changes to the master configuration, ensuring that you select the Synchronize changes

with Nodes check box.

k. Stop and restart the cluster members for the changes to take effect.

Results

Automated transaction peer recovery is configured for all the servers in the cluster. If a server fails,

another server in the cluster will complete any outstanding work for the failed server.

Disabling file locking

If you use Network File System Version 3 (NFSv3) for storing transaction recovery logs, and you want to

use automated peer recovery, you must first disable file locking.

Before you begin

If you choose to perform this task you must configure your system to prevent system overloading and

network partitioning, as described in “How to choose between automated and manual transaction peer

recovery” on page 2240. These situations can lead to the initiation of a peer recovery process for an active

server.

Note: If you do not take this precautionary step, data corruption can occur.

The following list contains some actions that you can take to prevent system overloading and network

partitioning:

v Modify the core group heartbeat settings to change the amount of time after which WebSphere

Application Server considers a server failed. For more information, see High availability manager.

v Ensure that your network is safe from network partitioning by, for example, installing backup network

adapters.

v Modify the workload management throttling so that the server cannot be overloaded.

About this task

WebSphere Application Server obtains an exclusive lock on the physical recovery log files whenever it is

instructed to perform recovery processing, and releases this lock when it is instructed to pass ownership of

the logs to another server. Access to a recovery log is performed only when the exclusive lock is held.

NFSv3 supports exclusive file locks, but holds them on behalf of a failed host until that host can restart. In

this context, the host is the physical machine running the application server that requests the lock and it is

the restart of the host, not the application server, that eventually triggers the locks to release. See “How to

choose between automated and manual transaction peer recovery” on page 2240 for more information.

To provide a more appropriate failover behavior, you can either use manual failover, and configure the

system as described in “Configuring manual peer recovery for the transaction service” on page 2267, or

you can disable the use of exclusive file locking.

1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name > [Container Settings] Container Services → Transaction Service.

2270 Administering WebSphere applications

2. Clear the Enable file locking check box.

3. Click Apply or OK.

4. Save your change to the master configuration.

5. Repeat the previous steps for every server in the cluster.

6. Restart the servers in the cluster for the changes to take effect.

Results

Exclusive file locking is disabled for all the servers in the cluster.

What to do next

Having taken steps to mitigate the risk to recovery log integrity when locking is disabled, you can tune the

heartbeating parameters of the WebSphere Application Server high availability (HA) framework to change

the conditions under which a server is considered failed. By considering the characteristics of applications,

network, and peak workloads, determine an acceptable period of time after which the likelihood of an

incorrectly diagnosed server failure is acceptably small.

A trade-off exists between reducing the risk of an incorrect diagnosis of server failure and increasing the

time for automated failover and peer recovery to occur. By default, a server is considered failed after 20

heartbeats, with a 10-second frequency, are missed. These defaults are custom properties of the core

group that you can modify.

Managing manual peer recovery of the transaction service

After you configure manual peer recovery, you trigger a recovery process by using the administrative

console; peer recovery can no longer take place automatically. This requirement applies to transaction

peer recovery processing only; standard recovery processing of server recovery logs, driven when the

server starts, still occurs automatically.

Before you begin

Before you initiate the peer recovery process, verify that the problem server actually failed and cannot

restart. To ensure data integrity, you must initiate a manual peer recovery process only for servers that are

not running.

About this task

You usually direct a peer recovery process if an application server becomes unavailable for some reason,

for example, a machine failure. The choice of peer server, within the cluster, is arbitrary.

1. In the administrative console click Servers → Core groups → Core group settings.

2. Click the core group that contains the failed server. The Core groups configuration panel is displayed.

3. Under Additional Properties, click Policies.

4. Click the static policy that is associated with the failed server. The Configuration settings for this policy

are displayed.

5. Under Additional Properties, click Static group servers. The General Properties panel is displayed.

6. During normal running, the static group servers list must contain only the server that is associated with

the policy. However, if you determine that the server failed, you can add a second server to perform

the peer recovery processing. From the Core group servers list, select the server on which you want to

initiate the peer recovery process. Ensure that you select an application server, rather than a system

server such as the node agent or domain manager. Click Add >> to add the server to the static group

servers list. Do not add more than one server.

Chapter 13. Transactions 2271

7. Save your changes to the master configuration, ensuring that you select the Synchronize changes

with Nodes check box. This step causes a recovery process for the failed server to begin on the peer

server.

8. When recovery processing is complete, you must reverse the configuration changes that you made

before restarting the failed server. Return to the Static group servers list, select the peer server that

you added previously and click Remove <<. Click OK.

9. Save your changes to the master configuration, ensuring that you select the Synchronize changes

with Nodes check box.

Results

The server that you selected performed transaction peer recovery, completing any outstanding work for the

failed server.

What to do next

Verify that you have reversed the configuration changes that you made, then restart the failed server if

required.

Managing active and prepared transactions

Use this task to manage active and prepared transactions that might need administrator action.

About this task

Under normal circumstances, transactions should run and complete (commit or roll back) automatically,

without the need for intervention. However, in some circumstances, you might need to resolve a

transaction manually. For example, you might want to roll back a transaction that has become stuck polling

a resource manager that you know will not become available again within the desired timeframe.

Note: If you choose to complete a transaction on an application server, it is recorded as having completed

in the transaction service logs for that server, so will not be eligible for recovery during server start

up. If you complete a transaction, you are responsible for cleaning up any in-doubt transactions on

the resource managers affected.

You can use the administrative console to display a snapshot of all the transactions in an application

server that are in the following states:

Manual transactions

Transactions awaiting administrative completion. For each transaction, the local id or global id is

displayed. You can choose to display information on each resource (specifically, which resource

manager it is associated with) associated with the transaction. You can also choose to commit or

roll back transactions in this state.

Retry transactions

Transactions with some resources being retried. For each transaction, the local id or global id is

displayed, and whether the transaction is committing or rolling back. You can choose to display

information on each resource (specifically, which resource manager it is associated with)

associated with the transaction. You can also choose to finish (abandon retrying) transactions in

this state.

Heuristic transactions

Transactions that have completed heuristically. For each transaction, the local id or global id and

the heuristic outcome is displayed. You can choose to display information on each resource

(specifically, which resource manager it is associated with) associated with the transaction. You

can also choose to clear the transaction from the list.

2272 Administering WebSphere applications

Imported prepared transactions

Transactions that have been imported and prepared but not yet committed. For each transaction,

the local id or global id is displayed. You can choose to display information on each resource

(specifically, which resource manager it is associated with) associated with the transaction. You

can also choose to commit or roll back transactions in this state.

To manage the active and prepared transactions for an application server, use the administrative console

to complete the following steps:

1. Display the Transaction Service runtime page for application server:

a. In the navigation pane, click Servers → Server Types → WebSphere application servers.

b. In the content pane, click the name of the application server.

c. In the content pane, click the Runtime tab.

d. Under Additional Properties, click Transaction Service.

The page displays values for the runtime properties of the transaction service, including the number of

transactions in the active and prepared states.

2. To display a snapshot of the transactions in a specific state, click Review in the field label.

3. Optional: To display information about the resources associated with a transaction, click the name of

the transaction.

4. Optional: To act on a transaction, select the check box provided on the entry for the transaction, then

click one of the buttons provided. Alternatively, to act on all transactions, select the check box in the

header of the transactions table, then click a button.

Managing active and prepared transactions using scripting

You can use scripting to manage active and prepared transactions that might need administrator action.

Before you begin

Before you start this task, the wsadmin tool must be running. See Starting the wsadmin scripting client for

more information.

About this task

In normal circumstances, transactions should run and complete (commit or roll back) automatically, without

the need for intervention. However, in some circumstances, you might need to resolve a transaction

manually. For example, you might want to roll back a transaction that is stuck polling a resource manager

that you know will not become available again in the desired time frame.

Note: If you choose to complete a transaction on an application server, it is recorded as having completed

in the transaction service logs for that server, so it is not eligible for recovery during server start up.

If you complete a transaction, you are responsible for cleaning up any in-doubt transactions on the

resource managers affected.

The TransactionService Managed Bean (MBean), see API documentation - Application programming

interfaces (package: Public MBean Interfaces, class: TransactionService), is used to list transactions in

various states by invoking one of the following methods:

v listOfTransactions: Lists all non-completed transactions. Under no circumstances should you attempt to

alter the state of active transactions (using commit or rollback for example)

v listManualTransactions: Lists transactions awaiting administrative completion. You can choose to commit

or rollback transactions in this state

v listRetryTransactions: Lists transactions with some resources being retried. You can choose to finish

(abandon retrying) transactions in this state

Chapter 13. Transactions 2273

v listHeuristicTransactions: Lists transactions that have completed heuristically. You can choose to clear

the transaction from the list

v listImportedPreparedTransactions: Lists transactions that have been imported and prepared but not yet

committed. You can choose to commit or rollback transactions in this state

Each entry in the returned list contains the following attributes:

v Local Transaction Identifier

v Status, which can be interpreted by calling getPrintableStatus on the Transaction MBean

v Global Transaction Identifier

v Heuristic Outcome, which can take one of the following values:

– 8 (HEURISTIC_COMMIT)

– 9 (HEURISTIC_ROLLBACK)

– 10 (HEURISTIC_MIXED)

– 11 (HEURISTIC_HAZARD)

The TransactionService MBean, see API documentation - Application programming interfaces (package:

Public MBean Interfaces, class: TransactionService), can also used to gather more information about the

properties of the transaction service, by obtaining the following attributes:

v transactionLogDirectory The directory into which the log file(s) used for transaction service are placed

v totalTranLifetimeTimeout The total lifetime of the transaction (in seconds) before the container rolls it

back. This value applies to Container Managed Transaction (CMT) beans only

v asyncResponseTimeout The total lifetime of the transaction (in seconds) before the container rolls it

back

v enableFileLocking Enables the use of file locks when opening the transaction service recovery log

v enableProtocolSecurity Causes transaction service protocol messages to be sent securely

v maximumTransactionTimeout The maximum transaction timeout allowed for imported transactions.

This value applies to Container Managed Transaction (CMT) beans, Bean Managed Transaction (BMT)

beans, and imported transactions

v clientInactivityTimeout The number of seconds a transaction can remain inactive before it is rolled

back

v heuristicRetryLimit The maximum number of times to retry transaction completion

v heuristicRetryWait The number of seconds to wait between retrying transaction completion

v httpProxyPrefix The HTTP prefix for WS-Transaction port SOAP addresses

v httpsProxyPrefix The HTTPS prefix for WS-Transaction port SOAP addresses

v propogatedOrBMTTranLifetimeTimeout The number of seconds a transaction can remain inactive

before it is rolled back

v LPSHeuristicCompletion The transaction completion action to be taken when the outcome is unknown

The Transaction MBean, see API documentation - Application programming interfaces (package: Public

MBean Interfaces, class: Transaction), can be used to commit, rollback, finish or remove from the list of

heuristically completed transactions depending on the transaction’s state, by invoking one of the following

methods:

v commit: Heuristically commits the transaction

v rollback: Heuristically rolls back the transaction

v finish: Abandons retrying resources for the transaction

v removeHeuristic: Clears the transaction from the list

2274 Administering WebSphere applications

The Transaction MBean, see API documentation - Application programming interfaces (package: Public

MBean Interfaces, class: Transaction), can also be used to gather more information about a transaction,

by invoking the following methods:

v getPrintableStatus: Return the transaction status

v getGlobalTranName: Get the global identifier for the transaction

v listResources: List the resources for the transaction

The following script is an example of how to use the TransactionService MBean and Transaction MBean.

The script should be run only against an application server, and not against the deployment manager or

node agent.

Example

Working with manual transactions: example jacl script.

get the TransactionService MBean

set servicembean [$AdminControl queryNames type=TransactionService,*]

get the Transaction MBean

set mbean [$AdminControl queryNames type=Transaction,*]

set input 0

while {$input >= 0} {

 # invoke the listManualTransactions method

 set tranManualList [$AdminControl invoke $servicembean listManualTransactions]

 if {[llength $tranManualList] > 0} {

 puts "----Manual Transaction details---------------"

 set index 0

 foreach tran $tranManualList {

 puts " Index= $index tran= $tran"

 incr index

 }

 puts "----End of Manual Transactions ---------------"

 puts "Select index of transaction to commit/rollback:"

 set input [gets stdin]

 if {$input < 0} {

 puts "No index selected, exiting."

 } else {

 set tran [lindex $tranManualList $input]

 set commaPos [expr [string first "," $tran]-1]

 set localTID [string range $tran 0 $commaPos]

 puts "Enter c to commit or r to rollback Transaction $localTID"

 set input [gets stdin]

 if {$input=="c"} {

 puts "Committing transaction=$localTID"

 $AdminControl invoke $mbean commit $localTID

 }

 if {$input=="r"} {

 puts "Rolling back transaction=$localTID"

 $AdminControl invoke $mbean rollback $localTID

 }

 }

 } else {

 puts "No Manual transactions found, exiting"

 set input -1

 }

 puts " "

}

Working with manual transactions: example Jython script.

import sys

def wsadminToList(inStr):

 outList=[]

 if (len(inStr)>0 and inStr[0]==’[’ and inStr[-1]==’]’):

 tmpList = inStr[1:-1].split(" ")

 else:

 tmpList = inStr.split("\n") #splits for Windows or Linux

 for item in tmpList:

 item = item.rstrip(); #removes any Windows "\r"

Chapter 13. Transactions 2275

if (len(item)>0):

 outList.append(item)

 return outList

#endDef

servicembean = AdminControl.queryNames("type=TransactionService,*")

mbean = AdminControl.queryNames("type=Transaction,*")

input = 0

while (input >= 0):

 tranList = wsadminToList(AdminControl.invoke(servicembean, "listManualTransactions"))

 tranLength = len(tranList)

 if (tranLength > 0):

 print "----Manual Transaction details---------------"

 index = 0

 for tran in tranList:

 print " Index=" , index , " tran=" , tran

 index = index+1

 #endFor

 print "----End of Manual Transactions ---------------"

 print "Select index of transaction to commit/rollback:"

 input = sys.stdin.readline().strip()

 if (input == ""):

 print "No index selected, exiting."

 input = -1

 else:

 tran = tranList[int(input)]

 commaPos = (tran.find(",") -1)

 localTID = tran[0:commaPos+1]

 print "Enter c to commit or r to rollback transaction ", localTID

 input = sys.stdin.readline().strip()

 if (input == "c"):

 print "Committing transaction=", localTID

 AdminControl.invoke(mbean, "commit", localTID)

 #endIf

 elif (input == "r"):

 print "Rolling back transaction=", localTID

 AdminControl.invoke(mbean, "rollback", localTID)

 #endIf

 else:

 input = -1

 #endelse

 #endElse

 else:

 print "No transactions found, exiting"

 input = -1

 #endElse

 print " "

#endWhile

Managing transaction logging for optimum server availability

This topic describes how to manage transaction logging to optimize the availability of your application

servers.

About this task

The transaction service writes information to the transaction log for every global transaction that involves

two or more resources, or that is distributed across multiple servers. The transaction log is stored on disk

and is used by the transaction service for recovery after a system or server crash. The transaction log for

each application server consists of multiple subdirectories and files held in a single directory. To change

the directory that an application server uses to store the transaction log, change the transaction log

directory in the transaction service settings.

When a global transaction is completed, the information in the transaction log is no longer required, and

the information is marked for deletion. The redundant information is garbage collected and intervals, and

the space is reused by new transactions. The log files are created with a fixed size at server startup, so no

further disk space allocation is required during the lifetime of the server.

2276 Administering WebSphere applications

If all the log space is in use when a transaction needs to save information, the transaction is rolled back

and the message CWWTR0083W: The transaction log is full. Transaction rolled back. is reported to

the system error log. No more transactions can commit until more log space is made available when

existing active transactions complete.

The default disk space allocation for the transaction logs is 1M. For global transactions that involve only

XA resources and that are either local to an application server or are distributed between enterprise beans

running in remote application servers, the default disk space allocation is suitable for peak workloads of up

to 4000 concurrent two-phase commit transactions. For global transactions that involve Web Services

Atomic Transaction (WS-AT) transactions or interoperable OTS transactions, the default disk space

allocation is suitable for peak workloads of up to 250 concurrent two-phase commit transactions. For

higher workloads, consider using a larger transaction log. To change the disk space allocation for the

transaction log files, change the transaction log directory in the transaction service settings.

You can monitor the number of concurrent global transactions by using the performance monitoring

counters for transactions. The “Global transaction commit time” counter is a measure of how long a

transaction takes to complete and, therefore, how long the log is in use by a transaction. If this value is

high, then transactions are taking a long time to complete, which can be due to resource manager or

network failures. If you ensure that this value is low, the log is more efficiently used and unlikely to

become full.

Use the following tasks to manage transaction logging to optimize the availability of your application

servers:

v “Configuring transaction aspects of servers for optimum availability.” Use this task to configure the

transaction properties for an application server to help transactions to complete or recover more quickly.

v “Moving a transaction log from one server to another” on page 2279 Use this task if you need to move

a transaction log between servers.

v “Restarting an application server on a different host” on page 2279 Use this task to restart the

application server if you move a transaction log between hosts.

v “Configuring transaction properties for an application server” on page 2254 Use this task to change the

directory or the disk space allocation for the transaction log files.

Configuring transaction aspects of servers for optimum availability

This topic describes some considerations and actions that you can take to configure transaction-related

aspects of application servers, to optimize the availability of those servers.

About this task

This helps your transactions to complete or recover more quickly. After changing transaction-related

properties of an application server, you must restart the server.

To configure transaction-related aspects of application servers for optimum availability, complete the

following steps:

1. Store the transaction log files on a fast disk in a highly-available file system, such as a RAID device.

The transaction log may need to be accessed by every global transaction and be used for transaction

recovery after a crash. Therefore, the disk the log files are being written to should be on a

highly-available file system, such as a RAID device.

The performance of the disk also directly affects the transaction performance. In general, a global

transaction makes two disk writes, one after the prepare phase when the outcome of the transaction is

known (this information is forced to disk) and a further disk write at transaction completion. Therefore,

the transaction logs should be placed on the fastest disks available and not make use of network

mounted devices.

Chapter 13. Transactions 2277

2. Mirror the transaction log files by using hardware disk mirroring or dual-ported disks. If log files have

been mirrored or can be recovered, they can be used when restarting a failed server or moved to an

another machine and another server started there to perform recovery.

Hardware disk mirroring or dual-ported disks can be used by specifying the appropriate file system

directory for the transaction logs using the WebSphere Administrative Console.

3. Specify the optimum location of the transaction log directory for application servers.

By default, an application server places transaction log files in a subdirectory of the installed

WebSphere Application Server, where the subdirectory name is the same as the server name.

For example, the default directory for an application server named server1 is

/QIBM/UserData/WebSphere/AppServer/was_version/ND/profiles/profile_name/tranlog/server1

where was_version indicates the version number for this installation of IBM WebSphere Application

Server. For example V6 for WebSphere Application Server Version 6.

You can define a specific location for the transaction log directory for an application server by setting

the Transaction Log Directory property for the server. If the directory for the transaction logs has not

been created at application server start up, the directory structure is created for you.

Note: If you change the transaction log directory, you should apply the change and restart the

application server as soon as possible, to minimize the risk of problems occurring before the

application server is restarted. For example, if a problem causes the server to fail (with in-flight

transactions), the server next starts with the new log directory and is unable to automatically

resolve in-flight transactions that were recorded in the old log directory.

4. Never allow more than one application server to concurrently use the same set of log files. Because

the transaction logs record the state of global transactions within a server, if the logs become lost or

corrupt, then transactions that are in the prepared state before failure can leave resources in an

in-doubt state and prevent further updates or access to the resources by other users or servers. These

transactions may need to be manually resolved by either committing or rolling back the transactions at

the affected resource managers. The failed server can then be cold-started, which creates new empty

transaction logs.

If log files have been mirrored or can be recovered, they can be used when restarting the failed server

or moved to an alternate server or machine and another server restarted to perform recovery, as

described in the related tasks.

Never allow more than one application server to concurrently use the same set of log files, because

each server will destroy the information recorded by the other, resulting in corrupt log files that are

unusable for future recovery purposes.

5. Configure application servers to always use the same listening port address at each startup. If you are

running distributed transactions between multiple application servers, the remote object references

saved in the transaction log need to be redirected to the originating server on recovery.

On WebSphere Application Server Network Deployment, the node agents automatically redirect these

remote object references to the appropriate application servers on recovery. However, if the distributed

transaction is between application servers that are not on WebSphere Application Server Network

Deployment, you must handle the redirection of remote object references so that transaction recovery

can complete. For example, you must do this if an application server is deployed on WebSphere

Application Server (not the Network Deployment edition) and runs distributed transactions with

non-WebSphere EJB or Corba servers.

In particular, the default restart action of an application server not on Application Server Network

Deployment is to use a different listening port address to the port when the server shuts down. This

prevents transaction recovery from completing. To overcome this, you should always configure

application servers to always use the same listening port address at each startup (see the ORB

property com.ibm.CORBA.ListenerPort in ORB service settings that can be added to the administrative

console). You may need to make similar configuration changes to other application servers involved in

transactions, to be able to access those servers during recovery.

2278 Administering WebSphere applications

Moving a transaction log from one server to another

This topic describes some considerations and actions that you can take to move the transaction logs for

an application server to another server.

About this task

To move transaction logs from one application server to another, consider the following steps:

1. Move all the transaction log files for the application server. The transaction log directory for each

server contains a number of files and subdirectories. When moving transaction logs from one server to

another you must move all of the files and subdirectories together as a single unit; otherwise recovery

may not complete resulting in data inconsistency.

2. For a server configuration where there are no distributed transactions, move the transaction logs to

any server that has access to the same resource managers. For a single server or network-deployed

server configuration where it is known there are no distributed transactions present in the logs, the

transaction logs can be moved to any server (on any node) that has access to the same resource

managers as the original server. For example, the server needs communication and valid security

access to databases or message queues.

If the server is in a different cell from the original server, you need to ensure that there is a JAAS alias

available to the server that was used by the original server for accessing XA resources. In this case

you should use wsadmin to construct the aliases, because if you use the administrative console to

create the alias, then the node name gets prefixed to the alias.

All the transaction log files for the original server need to be moved to a directory accessible by the

new server. This can be accomplished by either renaming the transaction log directory or copying all

the contents to the new server’s transaction log directory before starting the new server.

Note: To complete transaction recovery, the application server uses the resource manager

configuration information in the transaction logs. However, for the application server to continue

to do new work with the same resource managers, the server must have an appropriate

resource manager configuration (as for the original server).

3. For a network-deployed server configuration where there are distributed transactions, move the

transaction logs to a server that has the same name and host IP address, and access to the same

resource managers. For a network-deployed server configuration, when it is known there are

distributed transactions present in the logs, there are more restrictions. Distributed transactions that

access multiple servers log information about each server involved in the transaction. This information

includes the server name and the IP address of the machine on which the server is running. When

recovery is taking place on server restart, the server uses this information to contact the distributed

servers and similarly, the distributed servers try to contact the server with the same original name. So,

if a server fails and the logs need to the recovered on an alternative server, that alternative server

needs to have the same name and host IP address as the original server. The alternative server also

needs to have access to the same resource managers as the original server. For example, the server

needs communication and valid security access to databases or message queues.

Note: All servers within a cell must have unique names.

Note: To complete transaction recovery, the application server uses the resource manager

configuration information in the transaction logs. However, for the application server to continue

to do new work with the same resource managers, the server must have an appropriate

resource manager configuration (as for the original server).

Restarting an application server on a different host

This topic describes some considerations and actions that you can take with transaction logs to restart an

application server on a different host.

Chapter 13. Transactions 2279

About this task

Moving transactions logs to a different host is similar to moving logs from one server to another, as

described in Moving transaction logs from one server to another.

This involves moving an original application server on one host to an alternative server, which has access

to the same resource managers, on another host. For a network-deployed server configuration, the

alternative server must have the same name and host IP address as the original server.

Note: To complete transaction recovery, the application server uses the resource manager configuration

information in the transaction logs. However, for the application server to continue to do new work

with the same resource managers, the server must have an appropriate resource manager

configuration (as for the original server).

To restart an application server on a different host, complete the following steps:

1. Ensure that the alternative application server is stopped.

2. Move all the transaction logs for the original server to the alternative application server, according to

the considerations described in Moving transaction logs from one server to another.

3. Restart the alternative application server.

Interoperating transactionally between application servers

You can configure application servers so that transaction messages are sent and received between

application servers at different versions of WebSphere Application Server. Depending on the version of the

application server, you can set system properties, or use the transaction coordination authorization setting.

About this task

The transaction manager in WebSphere Application Server supports transactional interoperation with other

transaction managers through either the CORBA Object Transaction Service (OTS) protocol, or, for

JSR-109 compliant requests, the Web Services Atomic Transaction (WS-AT) protocol. Also, the transaction

manager can coordinate XA resource managers and be coordinated by Java EE Connector Architecture

1.5 resource adapters.

v To interoperate transactionally, using the OTS protocol, to send requests from application servers that

are WebSphere Application Server Version 5.0.2 or earlier to application servers that are Version 6 or

later, you need to set the following system properties on application servers that are Version 5.0.2 or

earlier.

com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false

com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

For example, to send requests from application servers that are WebSphere Application Server Version

4.0.n to application servers that are WebSphere Application Server Version 6, you need to set the

system properties on the Version 4.0.n application servers.

You do not need to set these properties to receive requests on application servers that are WebSphere

Application Server Version 5.0.2 or earlier from application servers that are Version 6 or later.

v When administrative security is enabled for application servers at WebSphere Application Server

Version 6.0.2 or later, for such servers to interoperate transactionally with application servers at earlier

versions, or with non-WebSphere Application Server servers, you must disable transaction coordination

authorization on the server. The transaction coordination authorization setting controls only the

transaction protocol messages between servers that are used to coordinate the completion of a

transaction. It does not affect application messages or the security of the server. When transaction

coordination authorization is enabled, the server verifies that the sending server is authorized to handle

prepare, commit, rollback, and one-phase commit messages.

To disable transaction coordination authorization on a server, use the following steps.

2280 Administering WebSphere applications

1. In the administrative console, click Servers → Server Types → WebSphere application servers →

server_name → [Container Settings] Container Services → Transaction Service.

2. Clear the Enable transaction coordination authorization check box.

3. Click Apply or OK.

4. Save your changes to the master configuration.

5. Restart the server.

Chapter 13. Transactions 2281

2282 Administering WebSphere applications

Chapter 14. Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See the Developing and deploying applications PDF book for a brief description of each WebSphere

extension.

Your applications can use the Eclipse extension framework. Your applications are extensible as soon as

you define an extension point and provide the extension processing code for the extensible area of the

application. You can also plug an application into another extensible application by defining an extension

that adheres to the target extension point requirements. The extension point can find the newly added

extension dynamically and the new function is seamlessly integrated in the existing application. It works on

a cross Java Platform, Enterprise Edition (Java EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that

build WebSphere application modules can use WebSphere Application Server extensions to implement

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,

and links at predefined extension points in the WebSphere application.

ActivitySessions

Configuring the default ActivitySession timeout for an application

server

Use this task to configure the default ActivitySession timeout for an application server, after which any

started ActivitySessions are completed automatically by the ActivitySession service.

About this task

The ActivitySession timeout is used to reset any ActivitySession whose remote client has failed to

complete the ActivitySession in a timely fashion. The initial default timeout can be configured separately for

each application server, and can be overridden programmatically by the setSessionTimeout method of the

UserActivitySession interface. If an ActivitySession that contains a transaction reaches the timeout, the

transaction’s timeout is accelerated so that it is timed out (and rolled back) immediately before the

ActivitySession is reset.

To configure the default ActivitySession timeout for an application server, use the WebSphere

Administrative console to complete the following steps:

1. Start the WebSphere Administrative console.

2. In the navigation pane, click Servers → Application Servers This displays a list of the application

servers in the content pane.

3. In the Content pane, click the name of the application server that you want to configure. This displays

the properties for the application server in the content pane.

4. Under Container Settings, click Business Process Services → ActivitySession Service This displays

the ActivitySession service properties in the content pane.

5. Ensure that the Enable service at server startup check box is selected. You must enable the service

for the timeout to have an effect.

6. Set the ActivitySession timeout property to the default timeout as an integer number of seconds.

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout, 300 seconds, applies

v Other values are an integer number of seconds

© Copyright IBM Corp. 2008 2283

7. Click OK.

8. Save your changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Related concepts

The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. An ActivitySession context can be longer-lived than a global transaction context and

can encapsulate global transactions.

ActivitySession service settings

Use this page to configure the properties of the ActivitySession service. The ActivitySession service is a

unit-of-work service to coordinate one-phase resources or to extend the activation and passivation of an

enterprise bean.

To view this administrative console page, click Servers → Application servers → server_name →

[Container Settings] Business Process Services → ActivitySession service.

Enable service at server startup:

Specifies whether the application server attempts to start the ActivitySession service when the server next

starts up.

 Default Cleared

Range Cleared

The server does not try to start the

ActivitySession service. If ActivitySessions are to

be used in applications that run on this server,

the system administrator must select this property

then restart the server.

Selected

When the application server starts, it attempts to

start the ActivitySession service automatically.

Default timeout:

Specifies the default timeout for an activity session. A server automatically completes an activity session if

a remote client has failed to complete the activity session within this time period.

 The initial default timeout can be configured separately for each application server, and can be overridden

programmatically by the UserActivitySession interface (setSessionTimeout).

 Data type Integer

Units Seconds

Default 300 (5 minutes)

Range -1 through 1000000000 seconds

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout applies

v Other values are an integer number of seconds

Disabling or enabling the ActivitySession service

Use this task to disable or enable the ActivitySession service for an application server.

2284 Administering WebSphere applications

About this task

You can use the ActivitySession Startup property to specify whether or not the ActivitySession service is

started automatically for an application server.

To disable or enable the ActivitySession service for an application server, use the Administrative console to

configure the ActivitySession Startup property:

1. Start the Administrative console.

2. In the navigation pane, click Servers → Application Servers This displays a list of the application

servers in the content pane.

3. In the Content pane, click the name of the application server that you want to configure. This displays

the properties for the application server in the content pane.

4. Under Container Settings, click Business Process Services → ActivitySession Service This displays

the ActivitySession service properties in the content pane.

5. Select or clear the Startup property as needed:

Selected

The ActivitySession service is started when the application server is started. This enables

applications that specify use of ActivitySessions in their deployment descriptors to run on such

an application server.

Cleared

[Default] The ActivitySession service is not started when the application server is started.

Applications that specify use of ActivitySessions in their deployment descriptors cannot start on

such an application server.

 Any attempt to start an application that uses ActivitySessions is rejected and a message

issued:

WACS0043E: Error found starting an application. application_name specified an ActivitySession

attribute that is not allowed when the ActivitySession service is not enabled

If this happens during server startup, the server continues to start without the application.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Related concepts

The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. An ActivitySession context can be longer-lived than a global transaction context and

can encapsulate global transactions.

Related reference

“ActivitySession service settings” on page 2284
Use this page to configure the properties of the ActivitySession service. The ActivitySession service is a

unit-of-work service to coordinate one-phase resources or to extend the activation and passivation of an

enterprise bean.

Application profiling

Task overview: Application profiling

You can use application profiling to configure multiple access intent policies on the same entity bean.

Chapter 14. Learn about WebSphere programming extensions 2285

About this task

Application profiling reflects the fact that different units of work have different use patterns for enlisted

entities and can require different kinds of support from the server runtime environment. For more

information, see Application Profiling.

1. Assembling applications for application profiles. This topic describes how to configure tasks, create

application profiles, and configure tasks on profiles.

2. Managing application profiles. This topic describes how to add and remove tasks from application

profiles using the administrative console.

3. Using the TaskNameManager API. This topic describes how to programmatically set the current task

name, but you should use this technique sparingly. Wherever possible, use the declarative method

instead, which results in more portable function.

Application profiling

You can use application profiling to identify particular units of work to the product runtime environment.

The run time can tailor its support to the exact requirements of that unit of work.

Application profiling requires accurate knowledge of an application’s transactional configuration and the

interaction of the application with its persistent state during the course of each transaction.

You can execute the analysis in either closed world or open world mode. A closed-world analysis assumes

that all possible clients of the application are included in the analysis and that the resulting analysis is

complete and correct. The results of a closed-world analysis report the set of all transactions that can be

invoked by a web, JMS, or application client. The results exclude many potential transactions that never

execute at run time.

An open-world analysis assumes that not all clients are available for analysis or that the analysis cannot

return complete or accurate results. An open-world analysis returns the complete set of possible

transactions.

The results of an analysis persist as an application profiling configuration. The assembly tool establishes

container managed tasks for servlets, JavaServer Pages (JSP) files, application clients, and Message

Driven Beans (MDBs). Application profiles for the tasks are constructed with the appropriate access intent

for the entities enlisted in the transaction represented by the task. However, in practice, there are many

situations where the tool returns at best incomplete results. Not all applications are amenable to static

analysis. Some factory and command patterns make it impossible to determine the call graphs. The tool

does not support the analysis of ActivitySessions.

You should examine the results of the analysis very carefully. In many cases you must manually modify

them to meet the requirements of the application. However, the tool can be an effective starting place for

most applications and may offer a complete and quick configuration of application profiles for some

applications.

Access intent is the only runtime component that makes use of the application profiling functionality. For

example, you can configure one transaction to load an entity bean with strong update locks and configure

another transaction to load the same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this function: tasks and profiles.

Tasks A task is a configurable name for a unit of work. Unit of work in this case means either a

transaction or an ActivitySession. The task name is typically assigned declaratively on a J2EE

component that can initiate a unit of work. Most commonly, the task is configured on a method of

an Enterprise JavaBeans file that is declared either for container-managed transactions or

bean-managed transactions. Any unit of work that begins in the scope of a configured task is

associated with that task name. A unit of work can only be named when it is initiated, and the

name cannot change for the lifetime of that unit of work. A unit of work ignores any subsequent

2286 Administering WebSphere applications

task name configurations at any point after it has begun. The task is used for the duration of its

unit of work to identify configured policies specific to that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s

console page, then tasks configured on J2EE 1.3 applications are not necessarily

associated with units of work and can arbitrarily be applied and overridden. This is not a

recommended mode of operation and can lead to unexpected deadlocks during database

access. Tasks are not communicated on requests between applications that are running

under the Application Profiling 5.x Compatibility Mode and applications that are not running

under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the

client process. You can do this by specifying the -CCDappprofileCompatibility=true option

when invoking the launchClient command.

Profiles

A profile is simply a mapping of a task to a set of access intent policies that are configured on

entity beans. When an invocation on a bean (whether by a finder method, a CMR getter, or a

dynamic query) requires data to be retrieved from the back end system, the current task

associated with the request is used to determine the exact requirement of the transaction. The

same bean loads and behaves differently in the context of the task-to-profile mapping. Each profile

provides the developer an opportunity to reconfigure the application’s access intent. If a request is

operating in the absence of a task, the runtime environment uses either a method-level access

intent (if any) or a bean-level default access intent.

Note: The application profile configuration is application scope configuration data. If any

Enterprise JavaBean (EJB) module contains an application profile configuration, all other

EJB modules are implicitly regulated by the Application Profiling service even if they do not

contain application profile configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is

registered by a task named task1. This task1 becomes a known-to-application task and is

honored when associated with a unit of work within this application. With the presence of

any known-to-application task, method level access intent configurations are ignored and

only bean level access intent configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not

configured with bean level access intent explicitly, but some methods have method level

access intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work

that is associated with task1, the bean-level access intent configuration is applied and

method level access intent configuration is ignored. Because the bean level access intent is

not set explicitly, the default bean level access intent, which is wsPessimisticUpdate-
WeakestLockAtLoad, is applied.

Tasks and units of work considerations:

The application profiling function works under the unit of work (UOW) concept. UOW in this case means

either a transaction or an ActivitySession.

 The task name on a method is used only when a UOW is begun, because of that method being invoked.

This gives it a more predictable data access pattern based on the active unit of work. To be more specific,

this approach ensures that a bean type with only one configured access intent is loaded within a UOW,

Chapter 14. Learn about WebSphere programming extensions 2287

because a bean is configured with only one access intent within an application profile. This configured

access intent for a bean type is determined at assembly time and is enforced by the Application Profile

service.

A task name is always associated with a unit of work, and that task name does not change for the duration

of that UOW. When a UOW associated with a method is begun because of that method being invoked, if a

task name is associated with the method then that task name is used to name the UOW. A task assigned

to a unit of work is considered a named UOW.

If a task name is not associated with the method that began the UOW, then a default access intent is used

and the UOW is unnamed. A unit of work can only be named when the UOW is begun and that task name

remains for the life of the UOW. Furthermore, the task assigned to a UOW can never be changed for the

life of that UOW. Any task names associated with a method are ignored if that method does not begin a

UOW (either container managed or component managed).

It is not possible to change the task name assigned to a unit of work. However, it is possible that in a call

sequence consisting of many different application calls a different task name might need to be used for

different calls. In this case it is important for the deployer to begin a new UOW and associate with the

UOW the necessary task name. For example, assume you have the following beans: sb1 is a session

bean, eb2 and eb3 are container managed persistence (CMP) entity beans. When sb1 is called, a

transaction is begun and task ’t1’ is associated with it. Further assume that sb1 then calls eb2 and eb3. If

neither eb2 or eb3 create a unit of work, then these beans execute within the UOW context from sb1 and

as such its task name (t1). If eb2 or eb3 need to execute within a task name other than t1, then these

beans must define a unit of work and associate with it the appropriate task name.

Note that if an application deployer does not specifically configure a transaction on a method, WebSphere

Application Server creates a global transaction by default. This is important because if a task is defined on

a method, but a UOW is not specifically configured on that method, the EJB container automatically

creates a global transaction on behalf of that method. As such, this task name is associated with the UOW

and any application profiles mapped to this task are used.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

Application profiles:

An application profile is the set of access intent policies that should be selectively applied for a particular

unit of work (a transaction or ActivitySession).

 Application profiling enables applications to run under different sets of policies depending on the active

task under which the application is operating.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global

transaction, then the task is the name associated with that transaction. If the global transaction was not

named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the

name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then

there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is

a local transaction that is not associated with an ActivitySession, then the task is the name associated with

that local transaction. If the local transaction was not associated with a task when the local transaction

was initiated, then there is no active task for the duration of that local transaction. In other words, the

2288 Administering WebSphere applications

active task is the task associated with the unit of work on the thread that is coordinating database

resources. If the controlling unit of work was not associated with a task when that unit of work was

initiated, then there is no active task in the scope of that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

Consider an application that centralizes the student records for a school district. These records are

frequently accessed by the school district’s central office in order to generate reports. The report

generation process would be optimized if it held no locks with the back end system, and if the records

could be read into memory with as few back end operations as possible. Occasionally, however, the

records are updated by the students’ instructors. Without the ability to distinguish between transactions,

the developer is forced to assume a worst-case scenario and, wishing to use pessimistic concurrency, lock

the records for all transactions.

Using the application profiling service, the developer can configure in as many ways as necessary the

access intent under which the students’ records are loaded. Under one profile, the records can be

configured with an exclusive pessimistic update intent, not only locking-out competing transactions but

ensuring that the student is not removed from the system before the transaction completes. Under another

profile, the records can be configured with an optimistic intent as part of an object graph that is read from

the back end system in a single database operation. The task represented by the pessimistic profile

receives the strong-locking semantics required for certain transactions, while the task represented by the

optimistic profile receives the performance benefits appropriate for other transactions.

Application profiling performance considerations:

Application profiling enables assembly configuration techniques that improve your application run time,

performance and scalability. You can configure tasks that identify incoming requests, identify access

intents determining concurrency and other data access characteristics, and profiles that map the tasks to

the access intents.

 The capability to configure the application server can improve performance, efficiency and scalability, while

reducing development and maintenance costs. The application profiling service has no tuning parameters,

other than a checkbox for disabling the service if the service is not necessary. However, the overhead for

the application profile service is small and should not be disabled, or unpredictable results can occur.

Access intents enable you to specify data access characteristics. The WebSphere runtime environment

uses these hints to optimize the access to the data, by setting the appropriate isolation level and

concurrency. Various access intent hints can be grouped together in an access intent policy.

In the product, it is recommended that you configure bean level access intent for loading a given bean.

Application profiling enables you to configure multiple access intent policies on the entity bean, if desired.

Some callers can load a bean with the intent to read data, while others can load the bean for update. The

capability to configure the application server can improve performance, efficiency, and scalability, while

reducing development and maintenance costs.

Chapter 14. Learn about WebSphere programming extensions 2289

Access intents enable the EJB container to be configured providing optimal performance based on the

specific type of enterprise bean used. Various access intent hints can be specified declaratively at

deployment time to indicate to WebSphere resources, such as the container and persistence manager, to

provide the appropriate access intent services for every EJB request.

The application profiling service improves overall entity bean performance and throughput by fine tuning

the run time behavior. The application profiling service enables EJB optimizations to be customized for

multiple user access patterns without resorting to ″worst case″ choices, such as pessimistic update on a

bean accessed with the findByPrimaryKey method, regardless of whether the client needs it for read or for

an update.

Application profiling provides the capability to define the following hierarchy: Container-Managed Tasks >

Application Profiles > Access Intent Policies > Access Intent Overrides. Container-managed tasks

identify units of work (UOW) and are associated with a method or a set of methods. When a method

associated with the task is invoked, the task name is propagated with the request. For example, a UOW

refers to a unique path within the application that can correspond to a transaction or ActivitySession. The

name of the task is assigned declaratively to a Java EE client or servlet, or to the method of an enterprise

bean. The task name identifies the starting point of a call graph or subgraph; the task name flows from the

starting point of the graph downstream on all subsequent IIOP requests, identifying each subsequent

invocation along the graph as belonging to the configured task. As a best practice, wherever a UOW

starts, for example, a transaction or an ActivitySession, assign a task to that starting point.

The application profile service associates the propagated tasks with access intent policies. When a bean is

loaded and data is retrieved, the characteristics used for the retrieval of the data are dictated by the

application profile. The application profile configures the access intent policy and the overrides that should

be used to access data for a specific task.

Access intent policies determine how beans are loaded for specific tasks and how data is accessed during

the transaction. The access intent policy is a named group of access intent hints. The hints can be used,

depending on the characteristics of the database and resource manager. Various access intent hints

applied to the data access operation govern data integrity. The general rule is, the more data integrity, the

more overhead. More overhead causes lower throughput and the opportunity for simultaneous data access

from multiple clients.

If specified, access intent overrides provide further configuration for the access intent policy.

Best practices

Application profiling is effective in a variety of different scenarios including:

v The same bean is loaded with different data access patterns

The same bean or set of beans can be reused across applications, but each of those applications has

differing requirements for the bean or for beans within the invocation graph. One application can require

that beans be loaded for update, while another application requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

v Different clients have different data access requirements

The same bean or set of beans can be used for different types of client requests. When those clients

have different requirements for the bean, or for beans within the invocation graph, application profiling

can be used to tailor the bean loading characteristics to the requirements of the client. One client can

require beans be loaded for update, while another client requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

2290 Administering WebSphere applications

Monitoring tools

You can use the Tivoli Performance Viewer, database and logs as monitoring tools.

You can use the Tivoli Performance Viewer to monitor various metrics associated with beans in an

application profiling configuration. The following sections describe at a high level the Tivoli Performance

Viewer metrics that reflect changes when access intents and application profiling are used:

v Collection scope

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor this information to determine the difference between using

the ActivitySession scope versus the transaction scope. For the transaction scope, depending on how

the container transactions are defined, activates and passivates can be associated with method

invocations. The application could use the ActivitySession scope to reduce the frequency of activates

and passivates. For more information, see ″Using the ActivitySession service.″

v Collection increment

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular findByPrimaryKey operation. For example, if the collection increment is set to

10, rather than the default 25, the Num Activates value shows 25 for the initial findByPrimaryKey, before

any result set iterator runs. If the number of activates rarely exceeds the collection increment, consider

reducing the collection increment setting.

v Resource manager prefetch increment

The resource manager prefetch increment is a hint acted upon by the database engine to depend upon

the database. The Tivoli Performance Viewer does not have a metric available to show the effect of the

resource manager prefetch increment setting.

v Read ahead hint

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular request. If a read ahead association is not in use, the Num Activates value

shows a lower initial number. If a read ahead association is in use, the Num Activates value represents

the number of activates for the entire call graph.

Database tools are helpful in monitoring the different bean loading characteristics that introduce

contention and concurrency issues. These issues can be solved by application profiling, or can be made

worse by the misapplication of access intent policies.

Database tools are useful for monitoring locking and contention characteristics, such as locks, deadlocks

and connections open. For example, for locks the DB2 Snapshot Monitor can show statistics for lock waits,

lock time-outs and lock escalations. If excessive lock waits and time-outs are occurring, application

profiling can define specific client tasks that require a more string level of locking, and other client tasks

that do not require locking. Or, a different access intent policy with less restrictive locking could be applied.

After applying this configuration change, the snapshot monitor shows less locking behavior. Refer to

information about the database you are using on how to monitor for locking and contention.

The application server logs can be monitored for information about rollbacks, deadlocks, and other data

access or transaction characteristics that can degrade performance or cause the application to fail.

Application profiling tasks

Tasks are named units of work. They are the mechanism by which the runtime environment determines

which access intent policies to apply when an entity bean’s data is loaded from the back end system.

Application profiles enable developers to configure an entity bean with multiple access intent policies; if

there are n instances of profiles in a given application, each bean can be configured with as many as n

access intent policies.

Chapter 14. Learn about WebSphere programming extensions 2291

A task is associated with a transaction or an ActivitySession at the initiation of the unit of work. The task,

which cannot change for the lifetime of the unit of work, is always available anywhere within the scope of

that unit of work to apply the access intent policy configured for that particular unit of work.

If an enterprise application is configured to use application profiling in any part of the application, then

application profiling is active and method-level access intent configurations are ignored when units of

works are associated with known-to-application tasks.

If an entity bean is loaded in a unit of work that is not associated with a task, or is associated with a task

that is unassociated with an application profile, the default bean-level access intent or the method-level

access intent configuration is applied. If a unit of work is associated with a task that is configured with an

application profile, the bean-level access intent configuration within the appropriate application profile is

applied.

Note: The application profile configuration is application scope configuration data. If any enterprise

Javabean (EJB) module contains an application profile configuration, all other EJB modules are

implicitly regulated by the Application Profiling service even if they do not contain application profile

configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is registered by a

task named task1. This task1 becomes a known-to-application task and is honored when

associated with a unit of work within this application. With the presence of any known-to-application

task, method level access intent configurations are ignored and only bean level access intent

configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not

configured with bean level access intent explicitly, but some methods have method level access

intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work that is

associated with task1, the bean-level access intent configuration is applied and method level

access intent configuration is ignored. Because the bean level access intent is not set explicitly, the

default bean level access intent, which is wsPessimisticUpdate-WeakestLockAtLoad, is applied.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global

transaction, then the task is the name associated with that transaction. If the global transaction was not

named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the

name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then

there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is

a local transaction that is not associated with an ActivitySession, then the task is the name associated with

that local transaction. If the local transaction was not associated with a task when the local transaction

was initiated, then there is no active task for the duration of that local transaction. In other words, the

active task is the task associated with the unit of work on the thread that is coordinating database

resources. If the controlling unit of work was not associated with a task when that unit of work was

initiated, then there is no active task in the scope of that unit of work.

For example, consider a school district application that calls through a session bean in order to interact

with student records. One method on the session bean allows administrators to modify the students’

records; another method supports student requests to view their own records. Without application profiling,

the two tasks would operate anonymously and the runtime environment would be unable to distinguish

work operating on behalf of one task or the other. To optimize the application, a developer can configure

one of the methods on the session bean with the task ″updateRecords″ and the other method on the

session bean with the task ″readRecords″. When registered with an application profile that has the student

bean configured with the appropriate locking access intent, the ″updateRecords″ task is assured that it is

2292 Administering WebSphere applications

not unnecessarily blocking transactions that need to only read the records. For more information about the

relationships between tasks and units of work, see “Tasks and units of work considerations” on page 2287.

Tasks can be configured to be managed by the container or to be programmatically established by the

application. Container managed tasks can be configured on servlets, JavaServer Pages (JSP) files,

application clients, and the methods of Enterprise JavaBeans (EJB). Configured container-managed tasks

are only associated with units of work that the container initiates after the task name is set. Application

managed tasks can be configured on all J2EE components. In the case of enterprise beans they must be

bean managed transactions.″

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

Application profiling interoperability

Using application profiling with 5.x compatibility mode or in a clustered environment with mixed product

versions and mixed platforms can affect its behavior in different ways.

The effect of 5.x Compatibility Mode

Application profiling supports forward compatibility. Application profiles created in previous versions of

WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server

Foundation 5.1) can only run in WebSphere Application Server Version 6 or later if the Application Profiling

5.x Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5

application profiles might display unexpected behavior.

Similarly, application profiles that you create using the latest version of WebSphere Application Server are

not compatible with Version 5 or earlier versions. Even applications configured with application profiles run

on Version 6.x servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot

interact with applications configured with profiles run on Version 5 servers.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Considerations for a clustered environment

In a clustered environment with mixed product versions and mixed platforms, applications configured with

application profiles might exhibit unexpected behavior because previous versions of server members

cannot support the application profiling of Version 6.x.

Chapter 14. Learn about WebSphere programming extensions 2293

If a clustered environment contains both Version 5.x and 6.x server members, and if any applications are

configured with application profiles, the Application Profiling 5.x Compatibility Mode attribute must be

turned on in Version 6 server members. Still, this cluster can only support Version 5 application profiling

behavior. To support applications configured with Version 6 application profiles in a cluster environment, all

server members in the cluster must be at the Version 6.x level.

WebSphere Application Server Enterprise Edition Version 5.0.2

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application

Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability.

Managing application profiles

Using the administrative console, you can add tasks to or remove tasks from application profiles.

1. Start the administrative console.

2. Select Applications > Enterprise Applications > application_name > Application Profiles >

profile_name > Tasks.

3. On the Tasks collection page, you can add new tasks to the profile, delete tasks, edit current task

settings, and so on.

Note that, within the scope of an application, no task can be configured on more than one application

profile. In such a situation, your application cannot be restarted until you correct the configuration.

4. Save your configuration.

5. Restart the application in order for your changes to take effect.

Using the TaskNameManager interface

Using the TaskNameManager interface, you can programmatically set the current task name. It enables

both overriding of the current task associated with the thread of execution and resetting of the current task

with the original task.

About this task

Except for J2EE 1.3 applications that are running on a server where the 5.x Compatibility Mode attribute is

selected, this interface cannot be used within Enterprise JavaBeans that are configured for

container-managed transactions or container-managed ActivitySessions because units of work can only be

associated with a task at the exact time that the unit of work is initiated. The call to set the task name

must therefore be invoked before the unit of work is begun. Units of work cannot be named after they are

begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

Application profiling does not support queries of the task that is in operation at run time. Instead,

applications interact with logical task names that are declaratively configured as application managed

tasks. Logical references enable the actual task name to be changed without having to recompile

applications.

Wherever possible, avoid setting tasks programmatically. The declarative method results in more portable

function that can be easily adjusted without requiring redevelopment and recompilation.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

2294 Administering WebSphere applications

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

1. Configure application-managed tasks. Application profiling requires that a task name reference be

declared for any task that is to be set programmatically. Task name references introduce a level of

indirection so that the actual task set at run time can be adjusted by reassembly without requiring

recoding or recompilation. Any attempt to set a task name that is undeclared as a task reference

results in the raising of an exception. If a unit of work has already begun when a task name is set,

then that existing unit of work is not associated with the task name. Only units of work that are begun

after the task name is set are associated with the task.

Configure application-managed tasks as described in the following topics. To complete these tasks see

the assembly tool information center:

v Configure application managed tasks for web components.

v Configure application managed tasks for application clients.

v Configure application managed tasks for Enterprise JavaBeans.

2. Perform a Java Naming and Directory Interface (JNDI) lookup on the TaskNameManager interface:

InitialContext ic = new InitialContext();

TaskNameManager tnManager = ic.lookup

("java:comp/websphere/AppProfile/TaskNameManager");

The TaskNameManager interface is not bound into the namespace if the application profiling service is

disabled.

3. Set the task name:

try {

tnManager.setTaskName("updateAccount");

}

catch (IllegalTaskNameException e) {

// task name reference not configured. Handle error.

}

// . . .

//

The name passed to the setTaskName() method (″updateAccount″ in this example) is actually a task

name reference that you configured in step one.

4. Begin a UserTransaction

Note: If you are using a J2EE 1.3 application with the 5.x Compatibility mode set, the task name set

in step 3 is now the active task name and you can disregard this step.

If you are using a J2EE application and the compatibility mode is not set, or if you are using a J2EE

1.4 application, you must begin a transaction for the task name to become active. A task name can

only be associated with a transaction. Furthermore, it is associated with a transaction when that

transaction is begun, and that task name is associated with the transaction for the life of the

transaction. Therefore, the task name set above is not active at this point. You must begin a

UserTransaction as the following code snippet illustrates:

try{

 InitialContext initCtx = new InitialContext();

 userTran = (UserTransaction) initCtx.lookup("java:comp/UserTransaction");

 userTran.begin();

}

catch(Exception e){

}

// . . .

//

Chapter 14. Learn about WebSphere programming extensions 2295

Notice the resetTaskName() method on the TaskNameManager interface. Resetting the task name has

no effect unless called by a J2EE 1.3 application running on a server for which the 5.x Compatibility

Mode attribute is selected on the Application Profile Service’s console page. This is not a

recommended mode of operation and can lead to unexpected deadlocks during database access. A

call to resetTask() should only be used by J2EE 1.3 applications when the 5.x Compatibility mode is

set to undo the effects of any setTaskName() method operations and reestablish whatever task name

was current when the component began execution. If the setTaskName() method has not been called,

the resetTaskName() method has no effect.

TaskNameManager interface:

The TaskNameManager is the programmatic interface to the application profiling function. Because on rare

occasions it may be necessary to programmatically set the current task name, the TaskNameManager

interface enables both overriding of the current task associated with the thread of execution and resetting

of the current task with the original task.

 Application profiling enables you to identify particular units of work to the WebSphere Application Server

runtime environment. The run time can tailor its support to the exact requirements of that unit of work.

Access intent is currently the only runtime component that makes use of the application profiling

functionality. For example, you can configure one transaction to load an entity bean with strong update

locks and configure another transaction to load the same entity bean without locks.

Application profiling introduces two concepts in order to achieve this function: tasks and profiles.

A task is a configurable name for a unit of work. Unit of work in this case means either a transaction or an

ActivitySession.

A profile is simply a mapping of a task to a set of access intent policies that are configured on entity

beans. When an invocation on a bean (whether by a finder method, a container managed relationship

(CMR) getter, or a dynamic query) requires data to be retrieved from the back end system, the task of the

active unit of work associated with the request is used to determine the exact requirement of the

transaction. The same bean loads and behaves differently in the context of the task-to-profile mapping.

Each profile provides the developer an opportunity to reconfigure the application’s access intent.

Except for J2EE 1.3 applications that are executing on a server where the 5.x Compatibility Mode attribute

is selected, this interface cannot be used within Enterprise JavaBeans that are configured for

container-managed transactions or container-managed ActivitySessions because units of work can only be

associated with a task at the exact time that the unit of work is initiated. The call to set the task name

must therefore be started before the unit of work is begun. Units of work cannot be named after they are

begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

The TaskNameManager interface is available to all J2EE components using the following Java Naming

and Directory Interface (JNDI) lookup:

java:comp/websphere/AppProfile/TaskNameManager

package com.ibm.websphere.appprofile;

/**

* The TaskNameManager is the programmatic interface

* to the application profiling function. Using this interface,

* programmers can set the current task name on the

* thread of execution. The task name must have been

* configured in the deployment descriptors as a task

* reference associated with a task. The set task

* name’s scope is the duration of the method

* invocation in the EJB and Web components and for

* the duration of the client process, or until the

* resetTaskName() method is invoked.

*/

2296 Administering WebSphere applications

public interface TaskNameManager {

/**

* Set the thread’s current task name to the specified

* parameter. The task name must have been configured as

* a task reference with a corresponding task or the

* IllegalTaskName exception is thrown.

*/

public void setTaskName(String taskName) throws IllegalTaskNameException;

/**

* Sets the thread’s task name to the value that was set

* at, or imported into, the beginning of the method

* invocation (for EJB and Web components) or process

* (for J2EE clients).

*/

public void resetTaskName();

}

Application profiling exceptions

The following exceptions are thrown in response to various illegal actions related to application profiling.

com.ibm.ws.exception.RuntimeWarning

This exception is thrown when the application is started, if the application is configured incorrectly.

The startup is consequently terminated. Some examples of bad configurations include:

v A task configured on two different application profiles.

v A method configured with two different task run-as policies .
com.ibm.websphere.appprofile.IllegalTaskNameException

This exception is raised if an application attempts to programmatically set a task when that task

has not been configured as a task name reference.

Asynchronous beans

Using asynchronous beans

The asynchronous beans feature adds a new set of APIs that enable Java 2 Platform Enterprise Edition

J2EE applications to run asynchronously inside an Integration Server.

About this task

This topic provides a brief overview of the tasks involved in using asynchronous beans. For a more

detailed description of the asynchronous beans model, review the conceptual topic Asynchronous beans.

For detailed information on the programming model for supported asynchronous beans interfaces, see the

topic Work managers.

1. Configure work managers.

2. Configure timer managers.

3. Assemble applications that use asynchronous beans work managers.

4. Develop work objects to run code in parallel.

5. Develop event listeners.

6. Develop asynchronous scopes.

Asynchronous beans

An asynchronous bean is a Java object or enterprise bean that can run asynchronously by a Java

Platform, Enterprise Edition (Java EE) application, using the Java EE context of the asynchronous bean

creator.

Asynchronous beans can improve performance by enabling a Java EE program to decompose operations

into parallel tasks. Asynchronous beans support the construction of stateful, active Java EE applications.

Chapter 14. Learn about WebSphere programming extensions 2297

These applications address a segment of the application space that Java EE has not previously addressed

(that is, advanced applications that require application threading, active agents within a server application,

or distributed monitoring capabilities).

Asynchronous beans can run using the Java EE security context of the creator Java EE component.

These beans also can run with copies of other Java EE contexts, such as:

v Internationalization context

v Application profiles, which are not supported for Java EE 1.4 applications and deprecated for Java EE

1.3 applications

v Work areas

Asynchronous bean interfaces

Four types of asynchronous beans exist:

Work object

There are two work interfaces that essentially accomplish the same goal. The legacy

Asynchronous Beans work interface is com.ibm.websphere.asynchbeans.Work, and the CommonJ

work interface is commonj.work.Work. A work object runs parallel to its caller using the work

manager startWork or schedule method (startWork for legacy Asynchronous Beans and schedule

for CommonJ). Applications implement work objects to run code blocks asynchronously. For more

information on the Work interface, see the generated API documentation.

Timer listener

This interface is an object that implements the commonj\timers\TimerListener interface. Timer

listeners are called when a high-speed transient timer expires. For more information on the

TimerListener interface, see the generated API documentation.

Alarm listener

An alarm listener is an object that implements the com.ibm.websphere.asynchbeans.AlarmListener

interface. Alarm listeners are called when a high-speed transient alarm expires. For more

information on the AlarmListener interface, see the generated API documentation.

Event listener

An event listener can implement any interface. An event listener is a lightweight, asynchronous

notification mechanism for asynchronous events within a single Java virtual machine (JVM). An

event listener typically enables Java EE components within a single application to notify each

other about various asynchronous events.

Supporting interfaces

Work manager

Work managers are thread pools that administrators create for Java EE applications. The

administrator specifies the properties of the thread pool and a policy that determines which Java

EE contexts the asynchronous bean inherits.

CommonJ Work manager

The CommonJ work manager is similar to the work manager. The difference between the two is

that the CommonJ work manager contains a subset of the asynchronous beans work manager

methods. Although CommonJ work manager functions in a Java EE 1.4 environment, each JNDI

lookup of a work manager does not return a new instance of the WorkManager. All the JNDI

lookup of work managers within a scope have the same instance.

Timer manager

Timer managers implement the commonj.timers.TimerManager interface, which enables Java EE

applications, including servlets, EJB applications, and JCA Resource Adapters, to schedule future

timer notifications and receive timer notifications. The timer manager for Application Servers

specification provides an application-server supported alternative to using the J2SE

java.util.Timer class, which is inappropriate for managed environments.

Event source

An event source implements the com.ibm.websphere.asynchbeans.EventSource interface. An

event source is a system-provided object that supports a generic, type-safe asynchronous

2298 Administering WebSphere applications

notification server within a single JVM. The event source enables event listener objects, which

implement any interface to be registered. For more information on the EventSource interface, see

the generated API documentation.

Event source events

Every event source can generate its own events, such as listener count changed. An application

can register an event listener object that implements the class

com.ibm.websphere.asynchbeans.EventSourceEvents. This action enables the application to catch

events such as listeners being added or removed, or a listener throwing an unexpected exception.

For more information on the EventSourceEvents class, see the generated API documentation.

Additional interfaces, including alarms and subsystem monitors, are introduced in the topic Developing

Asynchronous scopes, which discusses some of the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed

transactions in typical enterprise beans. It is very similar to the situation when an Enterprise Java Beans

(EJB) method is called with TX_NOT_SUPPORTED. The runtime starts a local transaction before invoking

the method. The asynchronous bean method is free to start its own global transaction if this transaction is

possible for the calling Java EE component. For example, if an enterprise bean creates the component,

the method that creates the asynchronous bean must be TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you must have a global

transactional context available on the current thread. Because asynchronous bean objects start local

transactional contexts, you can encapsulate all entity bean logic in a session bean that has a method

marked as TX_REQUIRES or equivalent. This process establishes a global transactional context from

which you can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are rolled back. If the

method returns normally, any incomplete local transactions are completed according to the unresolved

action policy configured for the bean. EJB methods can configure this policy using their deployment

descriptor. If the asynchronous bean method starts its own global transaction and does not commit this

global transaction, the transaction is rolled back when the method returns.

Access to Java EE component metadata

If an asynchronous bean is a Java EE component, such as a session bean, its own metadata is active

when a method is called. If an asynchronous bean is a simple Java object, the Java EE component

metadata of the creating component is available to the bean. Like its creator, the asynchronous bean can

look up the java:comp namespace. This look up enables the bean to access connection factories and

enterprise beans, just as it would if it were any other Java EE component. The environment properties of

the creating component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating component; the same

restrictions apply. For example, if the enterprise bean or servlet has an EJB reference of

java:comp/env/ejb/MyEJB, this EJB reference is available to the asynchronous bean. In addition, all of the

connection factories use the same resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating Java EE component obtained

using java:comp resource references. (For more information on resource references, see References).

However, the bean method must access those connections using a get, use or close pattern. There is no

connection caching between method calls on an asynchronous bean. The connection factories or

datasources can be cached, but the connections must be retrieved on every method call, used, and then

Chapter 14. Learn about WebSphere programming extensions 2299

closed. While the asynchronous bean method can look up connection factories using a global Java

Naming and Directory Interface (JNDI) name, this is not recommended for the following reasons:

v The JNDI name is hard coded in the application (for example, as a property or string literal).

v The connection factories are not shared because there is no way to specify a sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to access connections from

asynchronous bean methods, see the topic Example: Asynchronous bean connection management.

Deferred start of Asynchronous Beans

Asynchronous beans support deferred start by allowing serialization of Java EE service context

information. The WorkWithExecutionContext createWorkWithExecutionContext(Work r) method on the

WorkManager interface will create a snapshot of the Java EE service contexts enabled on the

WorkManager. The resulting WorkWithExecutionContext object can then be serialized and stored in a

database or file. This is useful when it is necessary to store Java EE service contexts such as the current

security identity or Locale and later inflate them and run some work within this context. The

WorkWithExecutionContext object can run using the startWork() and doWork() methods on the

WorkManager interface.

All WorkWithExecutionContext objects must be deserialized by the same application that serialized it. All

EJBs and classes must be present in order for Java to successfully inflate the objects contained within.

Deferred start and security

The asynchronous beans security service context might require Common Secure Interoperability Version 2

(CSIv2) identity assertion to be enabled. Identity assertion is required when a WorkWithExecutionContext

object is deserialized and run to Java Authentication and Authorization Service (JAAS) subject identity

credential assignment. Review the following topics to better understand if you need to enable identity

assertion, when using a WorkWithExecutionContext object:

v Configuring Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocol

v Identity Assertion

There are also issues with interoperating with WorkWithExecutionContext objects from different versions of

the product. See Interoperating with asynchronous beans .

JPA-related limitations

Use of asynchronous beans within a JPA extended persistence context is not supported.

A JPA extended persistence context is inconsistent with the scheduling and multi-threading capabilities of

asynchronous beans and will not be accessible from an asynchronous bean thread.

Likewise, an asynchronous bean should not be created such that it takes a

javax.persistence.EntityManager (or subclass) as a parameter since EntityManager instances are not

intended to be thread safe.

Work managers:

A work manager is a thread pool created for Java Platform, Enterprise Edition (Java EE) applications that

use asynchronous beans.

 Using the administrative console, an administrator can configure any number of work managers. The

administrator specifies the properties of the work manager, including the Java EE context inheritance

2300 Administering WebSphere applications

policy for any asynchronous beans that use the work manager. The administrator binds each work

manager to a unique place in Java Naming and Directory Interface (JNDI). You can use work manager

objects in any one of the following interfaces:

v Asynchronous beans

v CommonJ work manager (For details, see the CommonJ work manager section in this article.)

The selected type of interface is resolved during the JNDI lookup time. The interface type is the value that

you specify in the ResourceRef, rather than the interface type specified in the configuration object. For

example, you can have one ResourceRef for each interface per configuration object, and each

ResourceRef lookup returns that appropriate type of instance.

The work managers provide a programming model for the Java EE 1.4 applications. For more information,

see the Programming model section in this article.

When writing a Web or Enterprise JavaBeans (EJB) component that uses asynchronous beans, the

developer should include a resource reference in each component that needs access to a work manager.

For more information on resource references, see the article References. The component looks up a work

manager using a logical name in the component, java:comp namespace, just as it looks up a data source,

enterprise bean or connection factory.

The deployer binds physical work managers to logical work managers when the application is deployed.

For example, if a developer needs three thread pools to partition work between bronze, silver, and gold

levels, the developer writes the component to pick a logical pool based on an attribute in the client

application profile. The deployer has the flexibility to decide how to map this request for three thread pools.

The deployer might decide to use a single thread pool on a small machine. In this case, the deployer

binds all three resource references to the same work manager instance (that is, the same JNDI name). A

larger machine might support three thread pools, so the deployer binds each resource reference to a

different work manager. Work managers can be shared between multiple Java EE applications installed on

the same server.

An application developer can use as many logical work managers as necessary. The deployer chooses

whether to map one physical work manager or several to the logical work manager defined in the

application.

All Java EE components that need to share asynchronous scope objects must use the same work

manager. These scope objects have an affinity with a single work manager. An application that uses

asynchronous scopes should verify that all of the components using scope objects use the same work

manager.

When multiple work managers are defined, the underlying thread pools are created in a Java virtual

machine (JVM) only if an application within that JVM looks up the work manager. For example, there might

be ten thread pools (work managers) defined, but none are actually created until an application looks

these pools up.

Note: Asynchronous beans do not support submitting work to remote JVMs.

CommonJ Work Manager

The CommonJ work manager is similar to the work manager. The difference between the two is that the

CommonJ work manager contains a subset of the asynchronous beans work manager methods. Although

CommonJ work manager functions in a Java EE 1.4 environment, the interface does not return a new

instance for each JNDI naming lookup, since this specification is not included in the Java EE specification.

Chapter 14. Learn about WebSphere programming extensions 2301

Remote start of work. The CommonJ Work specification optional feature for work running remotely is not

supported. Even if a unit of work implements the java.io.Serializable interface, the unit of work does

not run remotely.

How to look up a work manager

An application can look up a work manager as follows. Here, the component contains a resource

reference named wm/myWorkManager, which was bound to a physical work manager when the component

was deployed:

InitialContext ic = new InitialContext();

WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

Inheritance Java EE contexts

Asynchronous beans can inherit the following Java EE contexts.

Internationalization context

When this option is selected and the internationalization service is enabled, and the

internationalization context that exists on the scheduling thread is available on the target thread.

Work area

When this option is selected, the work area context for every work area partition that exists on the

scheduling thread is available on the target thread.

Application profile (deprecated)

Application profile context is not supported and not available for Java EE 1.4 applications. For

Java EE 1.3 applications, when this option is selected, the application profile service is enabled,

and the application profile service property, 5.x compatibility mode, is selected. The application

profile task that is associated with the scheduling thread is available on the target thread for Java

EE 1.3 applications. For Java EE 1.4 applications, the application profile task is a property of its

associated unit of work, rather than a thread. This option has no effect on the behavior of the task

in Java EE 1.4 applications. The scheduled work that runs in a Java EE 1.4 application does not

receive the application profiling task of the scheduling thread.

Security

The asynchronous bean can be run as anonymous or as the client authenticated on the thread

that created it. This behavior is useful because the asynchronous bean can do only what the caller

can do. This action is more useful than a RUN_AS mechanism, for example, which prevents this

kind of behavior. When you select the Security option, the JAAS subject that exists on the

scheduling thread is available on the target thread. If not selected, the thread runs anonymously.

Component metadata

Component metadata is relevant only when the asynchronous bean is a simple Java object. If the

bean is a Java EE component, such as an enterprise bean, the component metadata is active.

The contexts that can be inherited depend on the work manager used by the application that creates the

asynchronous bean. Using the administrative console, the administrator defines the sticky context policy of

a work manager by selecting the services on which the work manager is to be made available.

Programming model

Work managers support the following programming models.

v CommonJ Specification. The Application Server Version 6.0 CommonJ programming model uses the

WorkManager and TimerManager to manage threads and timers asynchronously in the Java EE 1.4

environment.

v Asynchronous beans and CommonJ specification extensions. The current asynchronous beans

Event Source, asynchronous scopes, subsystem monitors and Java EE Context interfaces are a part of

the CommonJ extension.

2302 Administering WebSphere applications

The following table describes the method mapping between the CommonJ and Asynchronous beans APIs.

You can change the current asynchronous beans interfaces to use the CommonJ interface, while

maintaining the same functions.

 CommonJ package API Asynchronous beans

package

API

Work manager Work manager

Asynchronous beans Field - IMMEDIATE (long) Field - IMMEDIATE (int)

Field - INDEFINITE Field - INDEFINITE

schedule(Work) throws

WorkException,

IllegalArgumentException

startWork(Work) throws

WorkException,

IllegalArgumentException

schedule(Work,

WorkListener) throws

WorkException,

IllegalArgumentException

Note: Configure the work

manager work timeout

property to the value you

previously specified as

timeout_ms on startWork.

The default timeout value is

INDEFINITE.

startWork(Work, timeout_ms,

WorkListener) throws

WorkException,

IllegalArgumentException

waitForAll(workItems,

timeout_ms)

join(workItems, JOIN_AND,

timeout_ms)

waitForAny(workItems,

timeout_ms)

join(workItems, JOIN_OR,

timeout_ms)

WorkItem WorkItem

getResult getResult

getStatus getStatus

WorkListener WorkListener

workAccepted(WorkEvent) workAccepted(WorkEvent)

workCompleted(WorkEvent) workCompleted(WorkEvent)

workRejected(WorkEvent) workRejected(WorkEvent)

workStarted(WorkEvent) workStarted(WorkEvent)

WorkEvent WorkEvent

Field - WORK_ACCEPTED Field - WORK_ACCEPTED

Field -

WORK_COMPLETED

Field - WORK_COMPLETED

Field - WORK_REJECTED Field - WORK_REJECTED

Field - WORK_STARTED Field - WORK_STARTED

getException getException

getType getType

getWorkItem().getResult()

Note: This API is valid only

after the work is complete.

getWork

Work (extends Runnable) Work (Extends Runnable)

isDaemon *

release release

Chapter 14. Learn about WebSphere programming extensions 2303

RemoteWorkItem Not in this release. Use

Distributed WorkManager in

Extended Deployment or

future release

NA

TimerManager AlarmManager

resume *

schedule(Listener, Date) create(Listener, context, time) **

need to convert the parameters

schedule(Listener, Date,

period)

schedule(Listener, delay,

period)

scheduleAtFixedRate(Listener,

Date, period)

scheduleAtFixedRate(Listener,

delay, period)

stop

suspend

Timer Alarm

cancel cancel

getPeriod

getTimerListener getAlarmListener

scheduledExecutionTime

TimerListener AlarmListener

timerExpired(timer) fired(alarm)

StopTimerListener Not applicable

timerStop(timer)

CancelTimerListener Not applicable

timerCancel(timer)

WorkException (Extends Exception) WorkException (Extends WsException)

WorkCompletedException (Extends WorkException) WorkCompletedException (Extends WorkException)

WorkRejectedException (Extends WorkException) WorkRejectedException (Extends WorkException)

For more information on work manager APIs, refer to the Javadoc.

Work manager examples

 Table 49. Look up work manager

Asynchronous beans CommonJ

InitialContext ctx = new InitialContext();

com.ibm.websphere.asynchbeans.WorkManager wm =

(com.ibm.websphere.asynchbeans.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

InitialContext ctx = new InitialContext();

commonj.work.WorkManager wm =

 (commonj.work.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

 Table 50. Create your work using MyWork

Asynchronous beans CommonJ

2304 Administering WebSphere applications

Table 50. Create your work using MyWork (continued)

public class MyWork implements

com.ibm.websphere.asynchbeans.Work {

public void release() {

 }

 public void run() {

 System.out.println(“Running.....”);

 }

public class MyWork implements

commonj.work.Work{

 public boolean isDaemon() {

 return false;

 }

 public void release () {

 }

 public void run () {

 System.out.println(“Running.....”);

 }

 Table 51. Submit the work

Asynchronous beans CommonJ

 MyWork work1 = new MyWork(new URI =

“http://www.example./com/1”);

 MyWork work2 = new MyWork(new URI =

“http://www.example./com/2”);

 WorkItem item1;

 WorkItem item2;

 Item1=wm.startWork(work1);

 Item2=wm.startWork(work2);

 // case 1: block until all items are done

 ArrayList col1 = new ArrayList();

 Col1.add(item1);

 Col1.add(item2);

 wm.join(col1, WorkManager.JOIN_AND,

 (long)WorkManager.IMMEDIATE);

 // when the works are done

 System.out.println(“work1 data=”+work1.getData());

 System.out.println(“work2 data=”+work2.getData());

 // case 2: wait for any of the items to complete.

 Boolean ret = wm.join(col1,

 WorkManager.JOIN_OR, 1000);

 MyWork work1 = new MyWork(new URI =

“http://www.example./com/1”);

 MyWork work2 = new MyWork(new URI =

“http://www.example./com/2”);

 WorkItem item1;

 WorkItem item2;

 Item1=wm.schedule(work1);

 Item2=wm.schedule(work2);

 // case 1: block until all items are done

 Collection col1 = new ArrayList();

 col1.add(item1);

 col1.add(item2);

 wm.waitForAll(col1, WorkManager.IMMEDIATE);

 // when the works are done

 System.out.println(“work1 data=”+work1.getData());

 System.out.println(“work2 data=”+work2.getData());

 // case 2: wait for any of the items to complete.

 Collection finished = wm.waitForAny(col1, 1000);

 // check the workItems status

 if (finished != null) {

 Iterator I = finished.iterator();

 if (i.hasNext()) {

 WorkItem wi = (WorkItem) i.next();

 if (wi.equals(item1)) {

 System.out.println(“work1 =

 “+ work1.getData());

 } else if (wi.equals(item2)) {

 System.out.println(“work1 =

 “+ work1.getData());

 }

 }

 }

 Table 52. Create a timer manager

Asynchronous beans CommonJ

Chapter 14. Learn about WebSphere programming extensions 2305

Table 52. Create a timer manager (continued)

 InitialContext ctx = new InitialContext();

 com.ibm.websphere.asynchbeans.WorkManager wm =

 (com.ibm.websphere.asynchbeans.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

 AsynchScope ascope;

 Try {

 Ascope = wm.createAsynchScope(“ABScope”);

 } Catch (DuplicateKeyException ex)

 {

 Ascope = wm.findAsynchScope(“ABScope”);

 ex.printStackTrace();

 }

 // get an AlarmManager

 AlarmManager aMgr= ascope.getAlarmManager();

 InitialContext ctx = new InitialContext();

 Commonj.timers.TimerManager tm =

 (commonj.timers.TimerManager)

 ctx.lookup(“java:comp/env/tm/MyTimerManager”);

 Table 53. Fire the timer

Asynchronous beans CommonJ

 // create alarm

 ABAlarmListener listener = new ABAlarmListener();

 Alarm am =

 aMgr.create(listener, “SomeContext”, 1000*60);

 // create Timer

 TimerListener listener =

 new StockQuoteTimerListener(“qqq”,

 “johndoe@example.com”);

 Timer timer = tm.schedule(listener, 1000*60);

 // Fixed-delay: schedule timer to expire in

 // 60 seconds from now and repeat every

 // hour thereafter.

 Timer timer = tm.schedule(listener, 1000*60,

 1000*30);

 // Fixed-rate: schedule timer to expire in

 // 60 seconds from now and repeat every

 // hour thereafter

 Timer timer = tm.scheduleAtFixedRate(listener,

 1000*60, 1000*30);

Timer managers:

The timer manager combines the functions of the asynchronous beans alarm manager and asynchronous

scope. So, when a timer manager is created, it internally uses an asynchronous scope to provide the timer

manager life cycle functions.

 You can look up the timer manager in the Java Naming and Directory Interface (JNDI) name space. This

capability is different from the alarm manager that is retrieved through the asynchronous beans scope.

Each lookup of the timer manager returns a new logical timer manager that can be destroyed

independently of all other timer managers.

A timer manager can be configured with a number of thread pools through the administrative console. For

deployment you can bind this timer manager to a resource reference at assembly time, so the resource

reference can be used by the application to look up the timer manager.

The Java code to look up the timer manager is:

 InitialContext ic = new InitialContext();

 TimerManager tm = (TimerManager)ic.lookup(“java:comp/env/tm/TimerManager”);

The programming model for setting up the alarm listener and the timer listener is different. The following

code example shows that difference.

2306 Administering WebSphere applications

Table 54. Set up the timer listener

Asynchronous beans CommonJ

 public class ABAlarmListener implements

AlarmListener {

 public void fired(Alarm alarm) {

 System.out.println(“Alarm fired.

Context =” + alarm.getContext());

 }

 public class StockQuoteTimerListener implements

 TimerListener {

 String context;

 String url;

 public StockQuoteTimerListener(String context,

 String url){

 this.context = context;

 This.url = url;

 }

 public void timerExpired(Timer timer) {

 System.out.println(“Timer fired. Context =”+

((StockQuoteTimerListener)timer.getTimerListener())

.getContext());

 }

 public String getContext() {

 return context;

 }

 }

Example: Using connections with asynchronous beans:

An asynchronous bean method can use the connections that its creating Java Platform, Enterprise Edition

(Java EE) component obtained using java:comp resource references.

 For more information on resource references, see the topic References. The following is an example of an

asynchronous bean that uses connections correctly:

class GoodAsynchBean

{

 DataSource ds;

 public GoodAsynchBean()

 throws NamingException

 {

 // ok to cache a connection factory or datasource

 // as class instance data.

 InitialContext ic = new InitialContext();

 // it is assumed that the created Java EE component has this

 // resource reference defined in its deployment descriptor.

 ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

 }

 // When the asynchronous bean method is called, get a connection,

 // use it, then close it.

 void anEventListener()

 {

 Connection c = null;

 try

 {

 c = ds.getConnection();

 // use the connection now...

 }

 finally

 {

 if(c != null) c.close();

 }

 }

}

The following example of an asynchronous bean that uses connections incorrectly:

Chapter 14. Learn about WebSphere programming extensions 2307

class BadAsynchBean

{

 DataSource ds;

 // Do not do this. You cannot cache connections across asynch method calls.

 Connection c;

 public BadAsynchBean()

 throws NamingException

 {

 // ok to cache a connection factory or datasource as

 // class instance data.

 InitialContext ic = new InitialContext();

 ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

 // here, you broke the rules...

 c = ds.getConnection();

 }

 // Now when the asynch method is called, illegally use the cached connection

 // and you likely see J2C related exceptions at run time.

 // close it.

 void someAsynchMethod()

 {

 // use the connection now...

 }

}

Work manager service settings

Use this page to enable or disable the work manager service that manages work manager resources used

by the server.

To view this administrative console page, click Servers > Application Servers > server_name > Work

Manager Service .

Startup:

Specifies whether the server attempts to start the work manager service.

 Default Selected

Range Selected

When the application server starts, it attempts to start the work

manager service automatically.

Cleared

The server does not try to start the work manager service. If work

manager resources are to be used on this server, the system

administrator must start the work manager service manually or select

this property then restart the server.

Configuring timer managers

A timer manager acts as a thread pool for application components that use asynchronous beans. Use the

administrative console to configure timer managers. The timer manager service is enabled by default.

Before you begin

If you are not familiar with timer managers, review the conceptual section, Timer managers, in the

Asynchronous beans topic.

About this task

You can define multiple timer managers for each cell. Each timer manager is bound to a unique place in

Java Naming and Directory Interface (JNDI).

2308 Administering WebSphere applications

Note: The timer manager service is only supported from within the Enterprise Java Beans (EJB) container

or Web container. Looking up and using a configured timer manager from a J2EE application client

container is not supported.

1. Start the administrative console.

2. Select Resources > Asynchronous beans > Timer managers.

3. Specify a Scope value and click New.

4. Specify the following required properties:

Scope The scope of the configured resource. This value indicates the location for the configuration

file.

Name The display name for the timer manager.

JNDI Name

The Java Naming and Directory Interface (JNDI) name for the timer manager. This name is

used by asynchronous beans that need to look up the timer manager. Each timer manager

must have a unique JNDI name within the cell.

Number of Timer Threads

The maximum number of threads that are used for timers.

5. [Optional] Specify a Description and a Category for the timer manager.

6. [Optional] Select the Service Names (J2EE contexts) on which you want this timer manager to be

made available. Any asynchronous beans that use this timer manager then inherit the selected J2EE

contexts from the component that creates the bean. The list of selected services also is known as the

″sticky″ context policy for the timer manager. Selecting more services than are actually required might

impede performance.

7. Save your configuration.

Results

The timer manager is now configured and ready for access by application components that need to

manage the start of asynchronous code.

Timer manager collection

Use this page to view the configuration properties of timer managers, which enable applications to

schedule future timer notifications and to receive timer notification callbacks to application-specified

listeners within a Java 2 Platform, Enterprise Edition (J2EE) environment. The timer manager binds to the

Java Naming and Directory Interface (JNDI) name space.

A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans > Timer managers.

Name:

Specifies the name by which the timer manager is known for administrative purposes.

 Data type String

JNDI Name:

Specifies the JNDI name used to look up the timer manager in the name space.

 Data type String

Scope:

Chapter 14. Learn about WebSphere programming extensions 2309

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies a description of this timer manager for administrative purposes.

 Data type String

Category:

Specifies a string that can be used to classify or group this timer manager.

 Data type String

Timer manager settings:

Use this page to modify timer manager settings. Timer managers enable applications to schedule future

timer notifications and to receive timer notification callbacks to application-specified listeners within a Java

Platform, Enterprise Edition (Java EE) environment. The timer manager binds to the Java Naming and

Directory Interface (JNDI) name space.

 A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans > Timer managers

timermanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which the timer manager is known for administrative purposes.

 Data type String

JNDI name:

Specifies the JNDI name used to look up the timer manager in the namespace.

 Data type String

Description:

Specifies a description of this timer manager for administrative purposes.

 Data type String

Category:

Specifies a string that can be used to classify or group this timer manager.

 Data type String

2310 Administering WebSphere applications

Service names:

Specifies a list of services to make available to this timer manager.

 Asynchronous beans can inherit Java EE context information by enabling one or more Java EE service

contexts on the timer manager resource in the product administrative console or by setting the

serviceNames attribute of the TimerManagerInfo configuration object. When specifying the serviceNames

attribute each enabled service should be separated by a semicolon, for example,

security;UserWorkArea;com.ibm.ws.i18n. When a Java EE service context is enabled, it propagates the

context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit

the context of the scheduling thread and a default context is applied. Any related Java EE context that is

already present on the thread is suspended before any new Java EE context is applied.

The context information of each selected service is propagated to each timer that is created using this

timer manager. Selecting services that are not needed can negatively impact performance.

 Work area Use the administrative console or the UserWorkArea

service name to enable work area partitions. When

enabled, the work area context for every work area

partition that exists on the scheduling thread is available

on the target thread. This feature is optional.

Security Use the administrative console or the security service

name to enable the Java Authentication and Authorization

Service (JAAS) subject. When this feature and

administrative security are enabled, the JAAS subject that

is present on the scheduling thread is applied to the target

thread. If not enabled, the target thread is run

anonymously without a JAAS subject on the thread. This

feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n

service name to enable the internationalization context

information. When the internationalization context and the

Internationalization service is enabled, the

internationalization context that exists on the scheduling

thread is available on the target thread. This feature is

optional.

Number of timer threads:

Specifies the maximum number of threads that are used for timers.

 Data type Integer

Configuring work managers

A work manager acts as a thread pool for application components that use asynchronous beans. Use the

administrative console to configure work managers.

Before you begin

If you are not familiar with work managers, review the conceptual topic, Work managers.

Chapter 14. Learn about WebSphere programming extensions 2311

About this task

The work manager service is always enabled. In previous versions of the product, the work manager

service could be disabled using the administration console or configuration service. The work manager

service configuration objects are still present in the configuration service, but the enabled attribute is

ignored.

You can define multiple work managers for each cell. Each work manager is bound to a unique place in

Java Naming and Directory Interface (JNDI).

Note: The work manager service is only supported from within the Enterprise Java Beans (EJB) Container

or Web Container. Looking up and using a configured work manager from a J2EE application client

container is not supported.

1. Start the administrative console.

2. Select Resources > Asynchronous beans > Work managers.

3. Specify a Scope value and click New.

4. Specify the required properties for work manager settings.

Scope The scope of the configured resource. This value indicates the location for the configuration

file.

Name The display name for the work manager.

JNDI Name

The Java Naming and Directory Interface (JNDI) name for the work manager. This name is

used by asynchronous beans that need to look up the work manager. Each work manager

must have a unique JNDI name within the cell.

Number of Alarm Threads

The maximum number of threads to use for processing alarms. A single thread is used to

monitor pending alarms and dispatch them. An additional pool of threads is used for

dispatching the threads. All alarm managers on the asynchronous beans associated with this

work manager share this set of threads. A single alarm thread pool exists for each work

manager, and all of the asynchronous beans associated with the work manager share this pool

of threads.

Minimum Number Of Threads

The number of threads to be kept in the thread pool, created as needed.

Maximum Number Of Threads

The maximum number of threads to be created in the thread pool. The maximum number of

threads can be exceeded temporarily if the Growable check box is selected. These additional

threads are discarded when the work on the thread completes.

Thread Priority

The priority to assign to all threads in the thread pool.

 Every thread has a priority. Threads with higher priority are run before threads with lower

priority. For more information about how thread priorities are used, see the javadoc for the

setPriority method of the java.lang.Thread class in the Java Standard Edition specification.

5. [Optional] Specify a Description and a Category for the work manager.

6. [Optional] Select the Service Names (J2EE contexts) on which you want this work manager to be

made available. Any asynchronous beans that use this work manager then inherit the selected J2EE

contexts from the component that creates the bean. The list of selected services also is known as the

″sticky″ context policy for the work manager. Selecting more services than are actually required might

impede performance.

Other optional fields include:

Work timeout

Specifies the number of milliseconds to wait before a scheduled work object is released. If a

value is not specified, then the timeout is disabled.

2312 Administering WebSphere applications

Work request queue size

Specifies the size of the work request queue. The work request queue is a buffer that holds

scheduled work objects and may be any value 1 or greater. The thread pool pulls work from

this queue. If you do not specify a value or the value is 0, the queue size is managed

automatically. Large values can consume significant system resources.

Work request queue full action

Specifies the action taken when the thread pool is exhausted, and the work request queue is

full. This action starts when you submit non-daemon work to the work manager. If set to FAIL,

the work manager API methods creates an exception instead of blocking.

7. Save your configuration.

Results

The work manager is now configured and ready for access by application components that need to

manage the start of asynchronous code.

Work manager collection

Use this page to view the collection properties of work managers, which contain a pool of threads bound

into the Java Naming and Directory Interface.

To view this administrative console page, click Resources > Asynchronous beans > Work managers.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the

namespace.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a category name that is used to classify or group this work manager.

Work manager settings:

Use this page to modify work manager settings. Work managers contain a pool of threads that are bound

into Java Naming and Directory Interface.

 To view this administrative console page, click Resources > Asynchronous beans > Work managers >

workmanager_name.

Scope:

Chapter 14. Learn about WebSphere programming extensions 2313

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the

namespace.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a string that you can use to classify or group this work manager.

Work timeout:

Specifies the number of milliseconds to wait before attempting to release a unit of work. The timeout

interval begins when the unit of work starts, rather than when the unit of work is submitted.

 Default 0

Work request queue size:

Specifies the size of the work request queue. The work request queue is a buffer that holds submitted

units of work until a thread is available for them to run.

 Default 0

Work request queue full action:

Specifies the action taken when the thread pool is exhausted, and the work request queue is full. This

action starts when you submit non-daemon work to the work manager.

 If set to FAIL, the work manager API methods creates an exception instead of blocking.

 Default BLOCK

Range FAIL

Service names:

Specifies a list of services to make available to this work manager.

 Asynchronous beans can inherit J2EE context information by enabling one or more J2EE service contexts

on the work manager resource in the WebSphere administrative console or by setting the serviceNames

attribute of the WorkManagerInfo configuration object. When specifying the serviceNames attribute each

enabled service should be separated by a semicolon. For example:

security;UserWorkArea;com.ibm.ws.i18n. When a J2EE service context is enabled, it propagates the

context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit

the context of the scheduling thread and a default context is applied. Any related J2EE context that is

already present on the thread is suspended before any new J2EE context is applied.

2314 Administering WebSphere applications

The context information of each selected service is propagated to each work or alarm that is created using

this work manager. Selecting services that are not needed can negatively impact performance.

 Application profile (deprecated) Use the administrative console or the AppProfileService service name to

enable the application profile tasks. Application profile context is not

supported and not available for J2EE 1.4 applications. For J2EE 1.3

applications, the application profile context is deprecated and is only available

when Application Profile Service 5.x Compatibility Mode is enabled and

both the scheduling thread and target thread are J2EE 1.3 applications. When

enabled, all application profile tasks that are available on the scheduling

thread are available on the target thread. The scheduled work that runs in a

J2EE 1.4 application does not get the application profiling task of the

scheduling thread. This feature is optional.

Work area Use the administrative console or the UserWorkArea service name to enable

work area partitions. When enabled, the work area context for every work

area partition that exists on the scheduling thread is available on the target

thread. This feature is optional.

Security Use the administrative console or the security service name to enable the

Java Authentication and Authorization Service (JAAS) subject. When this

feature and administrative security are enabled, the JAAS subject that is

present on the scheduling thread is applied to the target thread. If not

enabled, the target thread is run anonymously without a JAAS subject on the

thread. This feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n service name to

enable the internationalization context information. When the

internationalization context and the Internationalization service is enabled, the

internationalization context that exists on the scheduling thread is available on

the target thread. This feature is optional.

Thread pool properties:

Specifies the priority of the threads available in this work manager.

 Number of alarm threads Specifies the desired maximum number of threads used for alarms. The

default value is 2.

Minimum number of threads Specifies the minimum number of threads available in this work manager.

Maximum number of threads Specifies the maximum number of threads available in this work manager.

Thread priority Specifies the priority of the threads available in this work manager.

Growable Specifies whether the number of threads in this work manager can be

increased.

Dynamic cache

Task overview: Using the dynamic cache service to improve

performance

Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application

performance. WebSphere Application Server consolidates several caching activities including servlets,

Web services, and WebSphere commands into one service called the dynamic cache. These caching

activities work together to improve application performance, and share many configuration parameters that

are set in the dynamic cache service of an application server. You can use the dynamic cache to improve

the performance of servlet and JSP files by serving requests from an in-memory cache. Cache entries

contain servlet output, the results of a servlet after it runs, and metadata.

Chapter 14. Learn about WebSphere programming extensions 2315

About this task

The dynamic cache service works within an application server Java virtual machine (JVM), intercepting

calls to cacheable objects. For example, it intercepts calls through a servlet service method or a command

execute method, and either stores the output of the object to the cache or serves the content of the object

from the dynamic cache.

1. Enable the dynamic cache service globally. To use the features associated with dynamic caching, you

must enable the service in the administrative console. See “Using the dynamic cache service” on page

2328 for more information.

2. Configure the type of caching that you are using:

v “Configuring servlet caching” on page 2333.

v “Configuring portlet fragment caching” on page 2334.

v “Configuring Edge Side Include caching” on page 2345.

v “Configuring command caching” on page 2367.

v “Example: Caching Web services” on page 2319.

v “Configuring the Web services client cache” on page 2369.

3. Monitor the results of your configuration using the dynamic cache monitor. For more information, see

“Displaying cache information” on page 2394.

4. If you have any problems with your configuration, see the Troubleshooting and support PDF.

What to do next

To use the DistributedMap and DistributedObjectCache interfaces for the dynamic cache, see “Using the

DistributedMap and DistributedObjectCache interfaces for the dynamic cache” on page 2375.

Disk cache infrastructure enhancements

Several performance enhancements are available for the dynamic cache service.

The dynamic cache service supports persisting objects to disk (specified by a file system location) so that

objects that are evicted from the memory cache are not regenerated by the application server. Objects are

written to disk when they are evicted from memory using a Least Recently Used (LRU) eviction algorithm.

The objects in the memory cache may also be flushed to disk on normal server shutdown. Java objects

that need to be offloaded to the disk should be serializable.

The disk offload function includes the following functions:

v An internal disk cache format for faster deletions and support for new options to limit disk cache size

v The disk cache garbage collector, which evicts objects out of the cache when a configured high

threshold is reached

v Four new performance modes to tune your disk cache performance:

– High performance/memory usage mode - keeps all metadata in system memory and provides the

highest performance

– Balanced performance/memory usage mode - provides optimal balance of performance and memory

usage by keeping some metadata in system memory

– Custom performance/memory usage mode - allows explicit configuration of the memory usage and

customization of performance requirements

– Low performance/memory usage mode - stores most of the metadata on disk for users who are very

constrained on system memory

Limiting the disk cache. The dynamic cache service provides mechanisms to limit the use of the disk

cache by specifying the size of the disk cache in gigabytes, in addition to the maximum number of entries

that are persisted to the disk. The disk cache is considered full when either of these limits is reached and

forms the basis for eviction of objects from the disk. If the cache subsystem cannot offload any more data

2316 Administering WebSphere applications

to disk, due to either an out-of-disk space condition, insufficient space on disk, or an exception when

writing data to disk as a result of a possibly corrupt disk, the disk offload capability is disabled to prevent

data integrity problems. The event is logged and the disk cache subsystem is deleted. This prevents

serving corrupt data from the cache on a restart. If the option to persist cache data is turned on, some

information such as dependency and template information is flushed to disk on a server shutdown. If a

disk full situation occurs during this shutdown process, any partially-persisted and un-persisted

dependency or template data is removed from the cache. A side effect of this, to preserve integrity, is to

invalidate the cached objects that are associated with the dependency or template data.

Disk cache size in GB. The disk cache size in GB option pertains primarily to the object data (which

includes the cached object, its identifier, and metadata such as expiration time), template information and

dependency information that are written to disk. The cache subsystem allocates separate storage and

volumes (each of which can grow to 1 GB) for object data, templates and dependencies, as needed.

When the total number of volumes on disk exceeds the specified cache size, any subsequent data that is

written to disk is discarded until more space is made available by the disk cache garbage collector. To

preserve data integrity, any information that is related to discarded objects is invalidated as well. The

thresholds for garbage collection (described below) and the disk cache full state are associated with the

space available for object data. It is also possible that in certain, rare scenarios, as information is flushed

to disk, critical system data needs to be written to disk, which may cause the total file system space

required to exceed up to 5% of the specified maximum limit. It is recommended that there be at least 25%

of actual file system space available for disk caching over and above the specified disk cache size in GB.

It is also required that each cache instance has a unique disk offload location and it is recommended that

each offload location be on a dedicated disk partition. The cache file system employs a logical file

manager to manage storage allocation for cached objects, therefore the file system size or the size of the

files in the cache directory may not be an accurate gauge of the available space for the cache subsystem.

At the same time, because of the adjusted limit, the cache subsystem may encounter a cache full state

prior to the approaching the specified maximum limit as measured in allocated file system space. The PMI

counters provide a better picture of how full the cache is.

Related concepts

“Eviction policies using the disk cache garbage collector”
The disk cache garbage collector is responsible for evicting objects out of the disk cache, based on a

specified eviction policy.

Related reference

“Dynamic cache PMI counter definitions” on page 2324
The dynamic cache statistics interface is defined as WSDynamicCacheStats under the

com\ibm\websphere\pmi\stat package.

“Dynamic cache MBean statistics” on page 2321
The dynamic cache service provides an MBean interface to access cache statistics.

Eviction policies using the disk cache garbage collector

The disk cache garbage collector is responsible for evicting objects out of the disk cache, based on a

specified eviction policy.

The garbage collector keeps a certain amount of space on disk available, which is governed by the

configuration attribute that limits the amount of disk space that is used for caching objects. To enable the

eviction policy, enable the Limit disk cache size in GB and/or Limit disk cache size in entries options in the

administrative console.

The garbage collector is triggered when the disk space reaches a specified high threshold (a percentage

of the Limit disk cache size in entries or in GB) and evicts objects, based on the eviction policy, from the

disk in the background until the disk cache size reaches a specified low threshold (a percentage of the

Limit disk cache size in entries or in GB). Eviction triggers when one or both of the high thresholds is

reached for Limit disk cache size in GB and Limit disk cache size in entries. The supported policies are:

v None: This is the default policy. Objects are evicted only when they expire, or if they are invalidated.

Chapter 14. Learn about WebSphere programming extensions 2317

v Random: The expired objects are removed first. If the disk size still has not reached the low threshold

limit, objects are picked from the disk cache in random order and removed until the disk size reaches a

low threshold limit.

v Size: The expired objects are removed first. If the disk size still has not reached the low threshold limit,

then largest-sized objects are removed until the disk size reaches a low threshold limit.

Limit disk cache size in GB and High Threshold determines when to trigger eviction and when the disk

cache is considered near full. It is computed as a function of the user-specified limit. If the specified limit is

10 GB (3 GB is the minimum), the cache subsystem initially creates three files that can grow to 1 GB in

size for cache data, dependency ID information, and template information. Each time more space is

needed to contain cache data, dependency ID information, or template information, a new file is created.

Each of these files grow in 1 GB increments until the total number of files that are created is equal to disk

cache in size in GB (in this case ten). Although the initial size of the new file may be much smaller than 1

GB, the dynamic cache service always rounds up to the next GB.

Eviction triggers when the cache data size reaches the high threshold and continues until the cache data

size reaches the low threshold. Calculation of cache data size is dynamic. The following formula describes

how to calculate the actual cache data size limit:

cache data size limit = disk cache size (in GB) - number of dependency files per GB - number of template files

When the cache data size limit is defined, the trigger point is calculated as follows:

eviction trigger point = cache data size limit * high threshold

size of evicted entries = cache data size * (high threshold - low threshold)

Consider the following scenarios:

v Scenario 1

– Disk cache size in GB = 10 GB

– High threshold = 90%

– Low Threshold = 80%

Initially, there is one file for dependency ID and template ID.

cache data size limit = 10-(1+1) = 8 GB

eviction trigger point = 8 * 90% = 7.2 GB

size of evicted entries = 8 * (90% - 80%) = 0.8 GB

In the above scenario, eviction starts when the data cache size reaches 7.2 GB and continues until the

cache size is 6.4 GB (7.2 - 0.8).

v Scenario 2

In scenario 1, if the dependency files grow to more than 1 GB, an additional dependency file generates.

The eviction trigger point launches dynamically as follows:

cache data size limit = 10 - (2+1) = 7GB

eviction trigger point = 7 * 90% = 6.3GB

size of evicted entries = 7 * (90% - 80%) = 0.7GB

In the above scenario, eviction starts when the data cache size reaches 6.3 GB, and continues until the

cache size in 5.6 GB (6.3 - 0.7).

Disk cache eviction for limit disk cache size in entries. Consider the following scenario:

v Disk cache size in entries = 100000

v High threshold = 90%

v Low threshold = 80%
eviction trigger point = 100000 * 90% = 90000

number of entries evicted = 100000 * (90% - 80%) = 10000

2318 Administering WebSphere applications

In this scenario, eviction starts when the number of cache entries reaches 90000 and 10000 entries are

evicted from the cache.

Example: Caching Web services

This topic includes examples of building a set of cache policies and SOAP messages for a Web services

application.

The following is a example of building a set of cache policies for a simple Web services application. The

application in this example stores stock quotes and has operations to read, update the price of, and buy a

given stock symbol.

Following are two SOAP message examples that the application can receive, with accompanying HTTP

Request headers.

The first message sample contains a SOAP message for a GetQuote operation, requesting a quote for

IBM. This is a read-only operation that gets its data from the back end, and is a good candidate for

caching. In this example the SOAP message is cached and a timeout is placed on its entries to guarantee

the quotes it returns are current.

Message example 1

POST /soap/servlet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-lookup

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:getQuote xmlns:m="urn:stockquote">

<symbol>IBM</symbol>

</m:getQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification and is used by HTTP

proxy servers to dispatch requests to particular HTTP servers. WebSphere Application Server dynamic

cache can use this header in its cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While message 1 is

cacheable, this message is not, because it updates the back end database.

Message example 2

POST /soap/servlet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-update

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:buyStock xmlns:m="urn:stockquote">

<symbol>IBM</symbol>

</m:buyStock>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following graphic illustrates how to invoke methods with the SOAP messages. In Web services terms,

especially Web Service Definition Language (WSDL), a service is a collection of operations such as

getQuote and buyStock. A body element namespace (urn:stockquote in the example) defines a service,

and the name of the first body element indicates the operation.

Chapter 14. Learn about WebSphere programming extensions 2319

buyStock

getQuote

SOAP Router

Servlet

Another

Service

StockQuote

Service

SOAP/HTTP

The following is an example of WSDL for the getQuote operation:

<?xml version="1.0"?>

<definitions name="StockQuoteService-interface"

targetNamespace="http://www.getquote.com/StockQuoteService-interface"

xmlns:tns="http://www.getquote.com/StockQuoteService-interface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

<message name="SymbolRequest">

<part name="return" type="xsd:string"/>

</message>

<portType name="StockQuoteService">

<operation name="getQuote">

<input message="tns:SymbolRequest"/>

<output message="tns:QuoteResponse"/>

</operation>

</portType>

<binding name="StockQuoteServiceBinding"

type="tns:StockQuoteService">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getQuote">

<soap:operation soapAction="urn:stockquote-lookup"/>

<input>

<soap:body use="encoded" namespace="urn:stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded" namespace="urn:stockquotes"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

</definition>

To build a set of cache policies for a Web services application, configure WebSphere Application Server

dynamic cache to recognize cacheable service operation of the operation.

WebSphere Application Server inspects the HTTP request to determine whether or not an incoming

message can be cached based on the cache policies defined for an application. In this example, buyStock

and stock-update are not cached, but stockquote-lookup is cached. In the cachespec.xml file for this Web

application, the cache policies need defining for these services so that the dynamic cache can handle both

SOAPAction and service operation.

WebSphere Application Server uses the operation and the message body in Web services cache IDs,

each of which has a component associated with them. Therefore, each Web services <cache-id> rule

contains only two components. The first is for the operation. Because you can perform the

stockquote-lookup operation by either using a SOAPAction header or a service operation in the body, you

2320 Administering WebSphere applications

must define two different <cache-id> elements, one for each method. The second component is of type

″body″, and defines how WebSphere Application Server should incorporate the message body into the

cache ID. You can use a hash of the body, although it is legal to use the literal incoming message in the

ID.

The incoming HTTP request is analyzed by WebSphere Application Server to determine which of the

<cache-id> rules match. Then, the rules are applied to form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and servicesOperation rules:

<cache>

<cache-entry>

 <class>webservice</class>

 <name>/soap/servlet/soaprouter</name>

 <sharing-policy>not-shared</sharing-policy>

 <cache-id>

 <component id="" type="SOAPAction">

 <value>urn:stockquote-lookup</value>

 </component>

 <component id="Hash" type="SOAPEnvelope"/>

 <timeout>3600</timeout>

 <priority>1<priority>

 </component>

 </cache-id>

 <cache-id>

 <component id="" type="serviceOperation">

 <value>urn:stockquote:getQuote</value>

 </component>

 <component id="Hash" type="SOAPEnvelope"/>

 <timeout>3600</timeout>

 <priority>1</priority>

 </component>

 </cache-id>

</cache-entry>

</cache>

Dynamic cache MBean statistics

The dynamic cache service provides an MBean interface to access cache statistics.

Access cache statistics with the MBean interface, using JACL

v Obtain the MBean identifier with the queryNames command, for example:

$AdminControl queryNames type=DynaCache,* // Returns a list of the available dynamic cache MBeans

Select your dynamic cache MBean and run the following command:

set mbean <dynamic_cache_mbean>

v Retrieve the names of the available cache statistics:

$AdminControl invoke $mbean getCacheStatisticNames

v Retrieve the names of the available cache instances:

$AdminControl invoke $mbean getCacheInstanceNames

v Retrieve all of the available cache statistics for the base cache instance:

$AdminControl invoke $mbean getAllCacheStatistics

v Retrieve all of the available cache statistics for the named cache instance:

$AdminControl invoke $mbean getAllCacheStatistics "services/cache/servletInstance_4"

v Retrieve cache statistics that are specified by the names array for the base cache instance:

$AdminControl invoke $mbean getCacheStatistics

 {"DiskCacheSizeInMB ObjectsReadFromDisk4000K RemoteObjectMisses"}

Note: This command should all be entered on one line. It is broken here for printing purposes.

v Retrieve cache statistics that are specified by the names array for the named cache instance:

Chapter 14. Learn about WebSphere programming extensions 2321

$AdminControl invoke $mbean getCacheStatistics

 {services/cache/servletInstance_4 "ExplicitInvalidationsLocal CacheHits"}

Note: This command should all be entered on one line. It is broken here for printing purposes.

v Retrieve all the cache IDs in memory for the named cache instance that matches the specified regular

expression:

$AdminControl invoke $mbean getCacheIDsInMemory {services/cache/servletInstance_4 \S}

v Retrieve all cache IDs on disk for the named cache instance that matches the specified regular

expression:

$AdminControl invoke $mbean getCacheIDsOnDisk {services/cache/servletInstance_4 \S}

v Retrieves the CacheEntry, which holds metadata information for the cache ID:

$AdminControl invoke $mbean getCacheEntry {services/cache/servletInstance_4 cache_id_1}

v Invalidates all cache entries that match the pattern-mapped cache IDs in the named cache instance and

all cache entries dependent upon the matched entries in the instance:

$AdminControl invoke $mbean invalidateCacheIDs {services/cache/servletInstance_4 cache_id_1 true}

Example: Configuring the dynamic cache service

This example puts all of the steps together for configuring the dynamic cache service with the

cachespec.xml file, showing the use of the cache ID generation rules, dependency IDs, and invalidation

rules.

Suppose that a servlet manages a simple news site. This servlet uses the query parameter ″action″ to

determine if the request views (query parameter ″view″) news or updates (query parameter ″update″)

news (used by the administrator). Another query parameter ″category″ selects the news category. Suppose

that this site supports an optional customized layout that is stored in the user’s session using the attribute

name ″layout″. Here are example URL requests to this servlet:

http://yourhost/yourwebapp/newscontroller?action=view&category=sports (Returns a news page for the

sports category)

http://yourhost/yourwebapp/newscontroller?action=view&category=money (Returns a news page for the

money category)

http://yourhost/yourwebapp/newscontroller?action=update&category=fashion (Allows the administrator to

update news in the fashion category)

Here are the steps for configuring the dynamic cache service for this example with the cachespec.xml file:

1. Define the <cache-entry> elements that are necessary to identify the servlet. In this case, the URI for

the servlet is ″newscontroller″, so this is the cache-entry <name> element. Because this example

caches a servlet or JavaServer Pages (JSP) file, the cache entry class is ″servlet″.

<cache-entry>

<name> /newscontroller </name>

<class>servlet </class>

 </cache-entry>

2. Define cache ID generation rules. This servlet caches only when action=view, so one component of the

cache ID is the parameter ″action″ when the value equals ″view″. The news category is also an

essential part of the cache ID. The optional session attribute for the user’s layout is included in the

cache ID. The cache entry is now:

<cache-entry>

 <name> /newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

2322 Administering WebSphere applications

<component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID is added for the category. Later, when

the category is invalidated due to an update event, all views of that news category are invalidated.

Following is an example of the cache entry after adding the dependency ID:

<cache-entry>

 <name>newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

 <dependency-id>category

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

4. Define invalidation rules. Because a category dependency ID is already defined, define an invalidation

rule to invalidate the category when action=update. To incorporate the conditional logic, add

″ignore-value″ components into the invalidation rule. These components do not add to the output of the

invalidation ID, but only determine whether or not the invalidation ID creates and runs. The final

cache-entry now looks like the following:

<cache-entry>

 <name>newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

 <dependency-id>category

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </dependency-id>

 <invalidation>category

 <component id="action" type="parameter" ignore-value="true">

 <value>update</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

Chapter 14. Learn about WebSphere programming extensions 2323

<required>true</required>

 </component>

 </invalidation>

</cache-entry>

Dynamic cache PMI counter definitions

The dynamic cache statistics interface is defined as WSDynamicCacheStats under the

com\ibm\websphere\pmi\stat package.

Dynamic cache statistics are structured as follows in the Performance Monitoring Infrastructure (PMI) tree:

__Dynamic Caching+

 |

 |__<Servlet: instance_1>

 |__Templates+

 |__<template_1>

 |__<template_2>

 |__Disk+

 |__<Disk Offload Enabled>

 |

 |__<Object: instance_2>

 |__Object Cache+

 |__<Counters>

+ indicates logical group

StatDescriptor locates and accesses particular statistics in the PMI tree. For example:

1. StatDescriptor to represent statistics for cache servlet: instance_1 templates group template_1: new

StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Servlet: instance1″,

WSDynamicCacheStats.TEMPLATE_GROUP, ″template_1″});

2. StatDescriptor to represent statistics for cache servlet: instance_1 disk group Disk Offload Enabled:

new StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Servlet: instance_1″,

WSDynamicCacheStats.DISK_GROUP, WSDynamicCacheStats.DISK_OFFLOAD_ENABLED});

3. StatDescriptor to represent statistics for cache object: instance2 object cache group Counters: new

StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Object: instance_2″,

WSDynamicCacheStats.OBJECT_GROUP, WSDynamicCacheStats.OBJECT_COUNTERS});

Note: Cache instance names are prepended with cache type (″Servlet: ″ or ″Object: ″).

Counter definitions for Servlet Cache

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ObjectsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

cache entries on disk.

6.1

WSDynamicCacheStats.

HitsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of requests for

cacheable objects that are

served from disk.

6.1

2324 Administering WebSphere applications

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ExplicitInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of explicit

invalidations resulting in the

removal of entries from

disk.

6.1

WSDynamicCacheStats.

TimeoutInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of disk

timeouts.

6.1

WSDynamicCacheStats

PendingRemoval FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

pending entries that are to

be removed from disk.

6.1

WSDynamicCacheStats.

DependencyIdsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency ID that are on

disk.

6.1

WSDynamicCacheStats.

DependencyIdsBuffered

ForDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency IDs that are

buffered for the disk.

6.1

WSDynamicCacheStats.

DependencyIds

OffloadedToDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

IDs that are offloaded to

disk.

6.1

WSDynamicCacheStats.

DependencyIdBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

ID-based invalidations.

6.1

WSDynamicCacheStats.

TemplatesOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are on disk.

6.1

Chapter 14. Learn about WebSphere programming extensions 2325

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

TemplatesBuffered ForDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are buffered

for the disk.

6.1

WSDynamicCacheStats.

TemplatesOffloaded ToDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of templates

that are offloaded to disk.

6.1

WSDynamicCacheStats.

TemplateBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of

template-based

invalidations.

6.1

WSDynamicCacheStats.

GarbageCollector

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of garbage

collector invalidations

resulting in the removal of

entries from disk cache due

to high threshold has been

reached.

6.1

WSDynamicCacheStats.

OverflowInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1 “ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of invalidations

resulting in the removal of

entries from disk due to

exceeding the disk cache

size or disk cache size in

GB limit.

6.1

Counter definitions for Object Cache

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ObjectsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

cache entries on disk.

6.1

WSDynamicCacheStats.

HitsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of requests for

cacheable objects that are

served from disk.

6.1

2326 Administering WebSphere applications

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ExplicitInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of explicit

invalidations resulting in the

removal of entries from

disk.

6.1

WSDynamicCacheStats.

TimeoutInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of disk

timeouts.

6.1

WSDynamicCacheStats

PendingRemoval FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

pending entries that are to

be removed from disk.

6.1

WSDynamicCacheStats.

DependencyIdsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency ID that are on

disk.

6.1

WSDynamicCacheStats.

DependencyIds

BufferedForDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency IDs that are

buffered for the disk.

6.1

WSDynamicCacheStats.

DependencyIds

OffloadedToDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

IDs that are offloaded to

disk.

6.1

WSDynamicCacheStats.

DependencyIdBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.DISK_

OFFLOAD_ENABLED

The number of dependency

ID-based invalidations.

6.1

WSDynamicCacheStats.

TemplatesOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are on disk.

6.1

Chapter 14. Learn about WebSphere programming extensions 2327

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

TemplatesBuffered ForDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP / -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are buffered

for the disk.

6.1

WSDynamicCacheStats.

TemplatesOffloaded ToDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of templates

that are offloaded to disk.

6.1

WSDynamicCacheStats.

TemplateBasedInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of

template-based

invalidations.

6.1

WSDynamicCacheStats.

GarbageCollector

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of garbage

collector invalidations

resulting in the removal of

entries from disk cache due

to high threshold has been

reached.

6.1

WSDynamicCacheStats.

OverflowInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of invalidations

resulting in the removal of

entries from disk due to

exceeding the disk cache

size or disk cache size in

GB limit.

6.1

Using the dynamic cache service

Use the dynamic cache service to improve application performance by caching the output of servlets, Web

services, and WebSphere Application Server commands into memory.

Before you begin

Develop a cache policy for your application. The cache policy defines rules for what responses to cache

and the amount of time the responses should be held in the cache. See “Configuring cacheable objects

with the cachespec.xml file” on page 2352 for more information.

About this task

The dynamic cache service is enabled by default. You can configure the default cache instance, as

follows:

1. Click Servers > Server Types > WebSphere® application servers > server_name > Container

services > Dynamic cache service.

2. Configure the default cache instance or follow the links to enable servlet or portlet caching. See

“Dynamic cache service settings” on page 2329 for more information about default cache settings.

2328 Administering WebSphere applications

What to do next

You might want to enable dynamic cache disk offload. This option moves cache entries that are expired

from memory to disk for potential future access. See “Configuring dynamic cache disk offload” on page

2341 for more information.

Dynamic cache service settings

Use this page to configure and manage the dynamic cache service settings.

To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > Container services > Dynamic cache service.

Enable servlet caching:

The dynamic servlet cache service starts when servlet caching is enabled in Web Container panel.

Enable portlet caching:

Start the dynamic portlet cache service by enabling servlet caching, then, enabling portlet fragment

caching under Portlet Container panel.

Cache provider:

Specifies whether to configure the server to use the dynamic cache or a stack product cache provider.

Cache size:

Specifies a positive integer as the value for the maximum number of entries that the cache holds.

 Enter a cache size value in this field that is between the range of 100 through 200,000.

Default priority:

Specifies the default priority for cache entries, determining how long an entry stays in a full cache.

 Default 1

Range 1 to 255

Limit memory cache size:

Specifies the size of the memory cache.

 Use this feature to provide an ability to constrain the cache in terms of the JVM heap. In addition to

specifying the cache size in MB, dynamic cache will also enable you to set a high watermark and low

watermark for the cache heap that is consumed. When the cache heap memory reaches the high

watermark, dynamic cache will either discard or LRU to disk, until the cache is brought down to the low

watermark. This functionality of limiting the cache in terms of the JVM heap is only available if the objects

that are put into the cache implement the sizeable interface. This interface has one method that returns

the size of the object in bytes put into the cache. Dynamic cache will use the sizeable interface to estimate

the heap size of the cache.

 Default -1 to disable limiting the memory cache size

Range 1 to maximum integer

Memory cache size:

Chapter 14. Learn about WebSphere programming extensions 2329

Specifies a value for the maximum memory cache size in megabytes (MB).

High threshold:

Specifies a high watermark when the memory cache eviction policy starts. The threshold is expressed in

terms of the percentage of the memory cache size in megabytes (MB). The default value is 95%

 Values 1 to 100

Low threshold:

Specifies a low watermark when the memory cache eviction policy ends. The threshold is expressed in

terms of the percentage of the memory cache size in megabytes (MB). The default value is 80%.

 Values 1 to 100

Enable disk offload:

Specifies whether disk offload is enabled.

 By default, the dynamic cache maintains the number of entries that are configured in memory. If new

entries are created while the cache is full, the priorities that are configured for each cache entry, and a

least recently used algorithm, are used to remove entries from the cache. In addition to having a cache

entry removed from memory when the cache is full, you can enable disk offload to have a cache entry

copied to the file system (the location is configurable). Later, if that cache entry is needed, it is moved

back to memory from the file system.

Before you enable disk offload, consider the following:

v You cannot specify the number of cache entries that are offloaded to disk.

v You cannot specify the amount of disk space to use.

Offload location:

Specifies the location on the disk to save cache entries when disk offload is enabled.

 If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server

name/_dynacache/cache JNDI name is used. If disk offload location is specified, the node, server name, and

cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the

location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored

if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the

value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move

the disk cache contents to the new location:

v The application server creates a new disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all of the disk cache content at the old location is lost when you

restart the application server

When you are specifying a directory, consider the following:

v If you use the default directory and the disk fills up, WebSphere Application Server could possibly stall if

it needs to write messages to log files, and there is no more space.

v Depending on the operating system, you may see disk full messages on the console.

Flush to disk:

2330 Administering WebSphere applications

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable disk offload is not selected.

 Default false

Limit disk cache size in GB:

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a

positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 3 and above.

Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you

can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting

applies only if enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than

this, when evicted from memory, will not be offloaded to disk. When you select this option, you can specify

a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Disk cache performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if

enableDiskOffload is specified for the cache. Performance levels determine how memory resources

should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.

This setting applies only if enable disk offload is specified for the cache.

 High performance and high memory usage Indicates that all metadata will be kept in memory.

Balanced performance and balanced memory usage Indicates some metadata will be kept in memory. This is

the default performance setting and will provide an

optimal balance of performance and memory usage for

most users.

Low performance and low memory usage Indicates that limited metadata will be kept in memory.

Custom performance Indicates that the administrator will explicitly configure the

memory settings that will be used to support the above

background activity. The administrator sets these values

using the DiskCacheCustomPerformanceSettings

object.

Disk cache cleanup frequency:

Chapter 14. Learn about WebSphere programming extensions 2331

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup

runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,

or custom. The high performance level does not require disk cleanup, and this value is ignored.

 Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Specifies a value for the maximum number of cache identifiers that are stored for an individual

dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information

is offloaded to the disk. This setting applies only when the disk offload performance level is CUSTOM.

 Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 100 to MAXINT

Maximum buffer for templates:

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 10 to MAXINT

Disk cache eviction algorithm:

Specifies the eviction algorithm that the disk cache will use to evict entries once the high threshold is

reached. This setting applies only if enable disk offload is specified for the cache. This setting does not

apply when the disk cache eviction policy is set to none.

 None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service

stops writing to disk

Random When the disk size reaches a high threshold limit, the

disk cache garbage collector wakes up and randomly

picks entries on the disk and evicts them until the size

reaches a low threshold limit.

Size When the disk size reaches a high threshold limit, the

disk cache garbge collector wakes up and picks the

largest entries on the disk and evicts them until the disk

size reaches a low threshold limit.

High threshold:

Specifies when the eviction policy runs. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The lower value is used when limit disk cache size in GB and limit disk cache

size in entries are specified. This setting does not apply when the disk cache eviction policy is set to none.

2332 Administering WebSphere applications

Values 1 to 100

Low threshold:

Specifies when the eviction policy will end. The threshold is expressed in terms of the percentage of the

disk cache size in GB or entries. The lower value is used limit disk cache size in GB and limit disk cache

size in entries are specified. This setting does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Enable cache replication:

Use cache replication to have cache entries copied to multiple application servers that are configured in

the same replication domain.

 Full group replication domain:

Specifies a replication domain from which your data is replicated.

 Choose from any replication domains that have been defined. If there are no replication domains listed,

you must create one during cluster creation or manually in the administrative console by clicking

Environment > Internal replication domains > New. The replication domain you choose to use with the

dynamic cache service must be using a Full group replica. Do not share replication domains between

replication consumers. Dynamic cache should use a different replication domain from session manager or

stateful session beans.

Replication type:

Specifies the global sharing policy for this application server.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. On the

other hand, if a request is made for an ID which has not been previously published, the server assumes

it does not exist in the cluster and creates a new entry.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default is Not Shared.

Push frequency:

Specifies the time, in seconds, to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) sends the cache entries immediately. Setting this property to a value greater than 0

(zero) results in a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 1 (one).

Configuring servlet caching

After a servlet is invoked and completes generating the output to cache, a cache entry is created

containing the output and the side effects of the servlet. These side effects can include calls to other

Chapter 14. Learn about WebSphere programming extensions 2333

servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and entry priority

information. Configure servlet caching to save the output of servlets and JavaServer Pages (JSP) files to

the dynamic cache.

Before you begin

To enable servlet caching, you must complete “Using the dynamic cache service” on page 2328.

About this task

Unique entries are distinguished by an ID string that is generated from the HttpServletRequest object each

time the servlet runs. You can then base servlet caching on:

v Request parameters and attributes of the Universal Resource Identifier (URI) that was used to invoke

the servlet

v Session information

v Other options, including cookies

Because JavaServer Pages files are compiled into servlets, the dynamic cache function treats JavaServer

Pages files the same as servlets, except in specifically documented situations.

1. In the administrative console, click Servers > Application servers > server_name > Web container

settings > Web container in the console navigation tree.

2. Select Enable servlet caching under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server. See Managing application servers for more information.

What to do next

Define the cache policy for your servlets by “Configuring cacheable objects with the cachespec.xml file” on

page 2352.

Dynamic caching with Asynchronous Request Dispatcher:

Asynchronous Request Dispatcher (ARD) improves servlet response time when slow operations are

logically separated and performed concurrently with other operations that are required to complete the

response.

 Servlet caching works with ARD include requests, with certain caveats. The dynamic caching service does

not support the ESI and ExternalCache features when ARD is enabled, due to complex and intractable

buffering issues with third party content.

If the include request has been cached by the dynamic cache service, the include request returns

immediately with the response data written to the top-level response data for the servlet.

In combination with the Remote Request Dispatcher (RRD), include request processing can also be

offloaded to other members in the application server core group, thus reducing resource requirements on

the original application server.

Configuring portlet fragment caching

After a portlet is invoked and completes generating the output to cache, a cache entry is created,

containing the output and the side effects of the portlet. These side effects can include calls to other

portlets or metadata about the entry, including timeout and entry priority information. Configure portlet

fragment caching with the WebSphere Application Sever administrative console to save the output of

portlets to the dynamic cache.

2334 Administering WebSphere applications

Before you begin

To enable portlet fragment caching, you must complete “Using the dynamic cache service” on page 2328.

About this task

Unique entries are distinguished by an ID string that generates from the PortletRequest object each time

the portlet runs. You can then base portlet fragment caching on:

v Request parameters and attributes

v Session information

v Portlet-specific information, portlet session, portlet window ID, portlet mode, and portlet window state

1. In the administrative console, click Servers > Application servers > server_name > Portlet container

settings > Portlet container in the administrative console navigation tree.

2. Select Enable portlet fragment cache under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server.

See the Setting up the application serving environment PDF for more information.

What to do next

Define a cache policy for your portlets. Note that portlets are not cached unless an applicable caching

policy is defined in a cachespec.xml file. See “Configuring cacheable objects with the cachespec.xml file”

on page 2352 for general task information about defining a cache policy. See “Configuring caching policies

for portlets” for information about defining portlet-specific aspects in a cache policy.

Configuring caching policies for portlets:

Fragment caching for portlets requires that you define a cache policy in a cachespec.xml file, either within

the portlet Web application archives (WAR) file or globally. If no caching policy is defined and applicable to

a particular portlet, that porlet is not cached.

 WebSphere Application Server caching policies provide a lot of flexibility for defining cache IDs and

invalidation rules that match the specific requirements of individual portlets. The caching policies that you

can define are not necessarily compliant with the caching behavior that is defined by the Java Portlet

Specification. The following sections provide some recommendations on how you can exploit the features

of cachespec.xml file, to define a caching policy that conforms to the specification.

Cache expiration. Portlets define cache expiration time in the <expiration-cache> element of the

portlet.xml deployment descriptor. If this element is not present, or has a value of zero, the portlet is not

cached. The cache expiration time for portlets is only defined in the deployment descriptor; any cache

timeout values that are specified in a cachespec.xml file have no effect.

Caching scopes. Portlets are defined in the <caching-scope> element of the portlet.xml deployment

descriptor, whether the portlet content should be shared across all users or whether it contains

user-specific information and must be cached individually for each user. To maintain this setting in your

caching policy definition, include the com.ibm.wsspi.portletcontainer.user_cache_scope attribute in your

cache key, with the following cache key component:

<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

This attribute has the following values:

v The value, public, in a portlet that defines public cache scope.

v The current logon user ID in a portlet that defines private cache scope.

v Null (anonymous) in a portlet that defines private cache scope if no user is logged on.

Chapter 14. Learn about WebSphere programming extensions 2335

If you want to cache portlet content for anonymous access, even in a portlet that defines private cache

scope, add <required>false</required> to the cache key component. This implies that all anonymous

browser access will retrieve the same cache content.

Portlet lifecycle methods. The Java Portlet Specification defines the four lifecycle phases: action, event,

render and resource for running in a portlet. Only the render and resource phases produce content; the

action and event phases invoke portlet activity without generating content and must not be cached. The

lifecycle phase for a portlet call is available in the javax.portlet.lifecycle_phase request attribute. Check

for the correct lifecycle by including the following cache key component:

<component id="javax.portlet.lifecycle_phase" type="attribute">

 <value>RENDER_PHASE</value>

</component>

This cache key component only caches render requests to the portlet. Cache additional resource requests

by adding the RESOURCE_PHASE. In many cases, the best approach is to define a separate <cache-id>

element for resource requests. The resource ID is available in the

com.ibm.wsspi.portletcontainer.resource_id request attribute for caching key generation in resource

requests.

Request parameters. Portlets can typically display multiple views. Render parameters distinguish which

view displays. Each combination of parameters addresses a different view of the portlet. All views need to

be cached separately; therefore, the full request parameter map should normally be included in the cache

key. The com.ibm.wsspi.portletcontainer.all_parameters attribute provides a unique value for the

content of the full request parameter map that can be used with the following cache key component:

<component id="com.ibm.wsspi.portletcontainer.all_parameters" type="attribute">

 <required>false</required>

</component>

If you write a cache policy for a specific portlet, and you know exactly which views of the portlet are

addressed by which request parameters, it is usually more efficient to use specific <parameter> elements

in the cache key to cache only the most important views of the portlet.

Other cache key components. Depending on your usage scenario, you will need to include other

information in your cache key, if the returned content depends on it (for example, the portlet mode and

window state, or the request locale in a multi-language portal). In a multi-device portal that supports

different markup types, the returned content type should also be part of the cache key. The content type

for a portlet is available in the com.ibm.wsspi.portletcontainer.response_contenttype request attribute.

Cache invalidation. The Java Portlet Specification states that action and event requests to a portlet must

invalidate all currently cached content. The portlet caching definitions usually allow for caching multiple

views of a portlet at the same time. To invalidate all of them, use the dependency ID mechanism of

cachespec.xml.

Define a common dependency ID for all views that should be invalidated by an action. The common ID will

usually only include the portlet window ID and the user scope, so that a portlet action does not affect

private cache entries for other users:

<dependency-id>action

 <component id="" type="portletWindowId"/>

 <component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

</dependency-id>

Define an invalidation rule that repeats the dependency ID and adds the current lifecycle method as a

condition. It is essential to have the ignore-value attribute on the condition part. The lifecycle attribute

must not be part of the returned invalidation ID, because that invalidation ID must match exactly with the

dependency ID that is specified above.

2336 Administering WebSphere applications

<invalidation>action

 <component id="" type="portletWindowId"/>

 <component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

 <component id="javax.portlet.lifecycle_phase" type="attribute" ignore-value="true">

 <value>ACTION_PHASE</value>

 <value>EVENT_PHASE</value>

 </component>

</invalidation>

Following the same pattern, specify more complex invalidation rules in caching policies for individual

portlets, (for example, you can only invalidate a subset of the portlet views for specific actions that are

determined by request parameters). The following example code describes a generic caching configuration

that conforms to the behavior that is defined by the Java Portlet Specification:

Sample cachespec.xml file

<?xml version="1.0" ?>

<!DOCTYPE cache SYSTEM "cachespec.dtd">

<cache>

 <cache-entry>

 <class>portlet</class>

 <name>MyPortlet</name>

 <property name="consume-subfragments">true</property>

 <cache-id>

 <component id="" type="portletWindowId"/>

 <component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

 <component id="" type="portletWindowState">

 <!-- minimized portlets are not cached -->

 <not-value>minimized</not-value>

 </component>

 <component id="" type="portletMode"/>

 <component id="" type="locale"/>

 <component id="com.ibm.wsspi.portletcontainer.response_contenttype" type="attribute"/>

 <component id="com.ibm.wsspi.portletcontainer.all_parameters" type="attribute">

 <required>false</required>

 </component>

 <component id="javax.portlet.lifecycle_phase" type="attribute">

 <value>RENDER_PHASE</value>

 </component>

 </cache-id>

 <dependency-id>action

 <component id="" type="portletWindowId"/>

 <component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

 </dependency-id>

 <invalidation>action

 <component id="" type="portletWindowId"/>

 <component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

 <component id="javax.portlet.lifecycle_phase" type="attribute" ignore-value="true">

 <value>ACTION_PHASE</value>

 <value>EVENT_PHASE </value>

 </component>

 </invalidation>

 </cache-entry>

</cache>

Configuring portlet fragment caching with the wsadmin tool

You can configure portlet fragment caching with scripting and the wsadmin tool.

Chapter 14. Learn about WebSphere programming extensions 2337

Before you begin

Before starting this task, the wsadmin tool must be running. See the Using the administrative clients PDF

for more information.

About this task

Note: If you use the wsadmin tool to enable portlet fragment caching, you must make sure that servlet

caching is also enabled. Similarly if you use the wsadmin tool to disable portlet fragment caching,

you must make sure that servlet caching is also disabled. The settings for these two caching

functions must stay synchronized. If you enable or disable portlet fragment caching using the

administrative console, synchronization is automatically taken care of for you.

1. Locate the server object. The following example selects the first server found:

Using Jacl:

set s1 [$AdminConfig getid /Server:server1/]

Using Jython:

s1 = AdminConfig.getid(’/Server:server1/’)

2. List the Web containers and assign them to the wc variable, for example:

Using Jacl:

set wc [$AdminConfig list PortletContainer $s1]

Using Jython:

wc = AdminConfig.list(’PortletContainer’, s1)

3. Set the enablePortletCaching attribute to true and assign it to the serEnable variable, for example:

Using Jacl:

set serEnable "{enablePortletCaching true}"

Using Jython:

serEnable = [[’enablePortletCaching’, ’true’]]

4. Enable caching, for example:

Using Jacl:

$AdminConfig modify $wc $serEnable

Using Jython:

AdminConfig.modify(wc, serEnable)

Configuring caching for Struts and Tiles applications

Use this task to cache Struts and Tiles applications.

Before you begin

Before you configure Struts and Tiles caching, you should have a developed application. For more

information about developing Struts and Tiles applications, see The Apache Struts Web Application

Framework on the Apache Web site at http://struts.apache.org/.

About this task

Use this task when you want to cache data in Struts and Tiles applications.

Struts is an open source framework for building Web applications using the Model-View-Controller (MVC)

architecture. The Struts framework has a controller component and integrates with other technologies to

provide the model and the view. Struts provide a control layer for the Web application, which reduces

construction time and maintenance costs.

2338 Administering WebSphere applications

The Tiles framework builds on the jsp:include feature and is bundled with the Struts Web application

framework. The Tiles framework reduces the duplication between JavaServer Pages (JSP) files and makes

Web site layouts flexible and easy to maintain by assembling presentation pages from component parts.

Struts and Tiles caching is an extension of servlet and JSP caching, so the actions performed for each

type of caching are very similar. See “Configuring servlet caching” on page 2333 for more information.

1. Enable servlet and JSP caching. Enabling servlet caching automatically enables Struts and Tiles

caching. See “Configuring servlet caching” on page 2333 for more information.

2. Develop the cache policy. A cache policy is required to cache a struts or tiles response.

To develop a Struts cache policy:

 The Struts framework provides the controller component in the MVC-style application. The

controller is a servlet called org.apache.struts.action.ActionServlet.class. In the web.xml

file of the application, a servlet mapping of *.do is added for this Struts ActionServlet servlet so

that every request for a Web address that ends with .do is processed. The ActionServlet

servlet uses the information in the struts-config.xml file to decide which Struts action class

runs the request for the specified resource.

Cache policy using a previous version of WebSphere Application Server

In the previous version of WebSphere Application Server, only one cache policy per servlet

was supported. However, when you are using Struts, every request that ends in .do maps to

the same ActionServlet servlet. To cache Struts responses, write a cache policy for the

ActionServlet servlet based on its servlet path.

For example, consider two Struts actions: /HelloParam.do and /HelloAttr.do. To cache the

responses based on the id request parameter and the arg request attribute respectively, use

the following cache policy:

<cache-entry>

 <class>servlet</class>

 <name>org.apache.struts.action.ActionServlet.class</name>

 <cache-id>

 <component id="" type="servletpath">

 <value>/HelloParm.do</value>

 </component>

 </cache-id>

 <cache-id>

 <component id="" type="servletpath">

 <value>/HelloAttr.do</value>

 </component>

 <component id="arg" type="attribute">

 <required>true</required>

 </component>

 </cache-id>

</cache-entry>

Cache policy using WebSphere Application Server, Version 6.0 or later

With the current version of WebSphere Application Server, you can map multiple cache

policies for a single servlet. You can rewrite the previous cache policy as in the following

example:

<cache-entry>

 <class>servlet>

 <name>/HelloParam.do</name>

 <cache-id>

 <component id="id" type="parameter">

 <required>true</required>

 </component>

</cache-entry>

<cache-entry>

 <class>servlet</class>

 <name>/HelloAttr.do</name>

Chapter 14. Learn about WebSphere programming extensions 2339

<cache-id>

 <component id="arg" type="attribute">

 <required>true</required>

 </component>

 </cache-id>

</cache-entry>

To develop a Tiles cache policy:

The Tiles framework is built on the jsp:include tag, so everything that applies to JSP caching

also applies to Tiles. You must set the flush attribute to true in any fragments that are included

using the tiles:insert tag for the fragments to be cached correctly. The extra feature in tiles

caching over JSP caching is based on the tiles attribute. For example, you might develop the

following layout.jsp template:

<html>

 <%String categoryId = request.getParameter("categoryId")+"test"; %>

 <tiles:insert attribute="header">

 <tiles:put name="categoryId" value="<%= categoryId %>" />

 </tile:insert>

 <table>

 <tr>

 <td width="70%" valign="top"><tiles:insert attribute="body" /> </td>

 </tr>

 <tr>

 <td colspan="2"><tiles:insert attribute="footer" /></td>

 </tr>

 </table>

</body>

</html>

The nested tiles:put tag specifies the attribute of the inserted tile. In the layout.jsp template,

the categoryId attribute is defined and passed on to the tile that is inserted into the placeholder

for the header. In the following example, the layout.jsp file is inserted into another JSP file:

<html>

<body>

<tiles:insert page="layout.jsp?categoryId=1002" flush="true">

 <tiles:put name="header" value="/header.jsp" />

 <tiles:put name="body" value="/body.jsp" />

 <tiles:put name="footer" value="/footer.jsp" />

</tiles:insert>

</body>

</html>

The categoryId tile attribute is passed on to the header.jsp file. The header.jsp file can use

the <tiles:useAttribute> tag to retrieve the value of categoryId. To cache the header.jsp file

based on the value of the categoryId attribute, you can use the following cache policy:

<cache-entry>

 <class>servlet</class>

 <name>/header.jsp</name>

 <cache-id>

 <component id="categoryId" type="tiles_attribute">

 <required>true</required>

 </component>

 </cache-id>

</cache-entry>

3. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file

while your application is running. See “Configuring cacheable objects with the cachespec.xml file” on

page 2352 for more information about cache policies.

2340 Administering WebSphere applications

Results

What to do next

See “Task overview: Using the dynamic cache service to improve performance” on page 2315 for more

information about the dynamic cache.

Related tasks

“Configuring servlet caching” on page 2333
After a servlet is invoked and completes generating the output to cache, a cache entry is created

containing the output and the side effects of the servlet. These side effects can include calls to other

servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and entry priority

information. Configure servlet caching to save the output of servlets and JavaServer Pages (JSP) files to

the dynamic cache.

“Configuring cacheable objects with the cachespec.xml file” on page 2352
Use this task to define cacheable objects inside the cachespec.xml, found inside the Web module WEB-INF

or enterprise bean META-INF directory.

“Task overview: Using the dynamic cache service to improve performance” on page 2315
Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application

performance. WebSphere Application Server consolidates several caching activities including servlets,

Web services, and WebSphere commands into one service called the dynamic cache. These caching

activities work together to improve application performance, and share many configuration parameters that

are set in the dynamic cache service of an application server. You can use the dynamic cache to improve

the performance of servlet and JSP files by serving requests from an in-memory cache. Cache entries

contain servlet output, the results of a servlet after it runs, and metadata.

Configuring dynamic cache disk offload

Use this task to configure dynamic cache disk offload, which saves cache entries that are deleted from the

memory cache to disk.

About this task

By default, when the number of cache entries reaches the configured limit for a given application server,

cache entries are removed from the memory cache, allowing newer entries to be stored in the cache. Use

disk offload to copy the cache entries that are being removed from the memory cache to disk for potential

future access.

1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > Container services > Dynamic cache service.

2. Select Enable disk offload.

3. After you enable the disk offload, you can set the Disk offload location. The disk offload location

specifies where to save the cache entries on the disk. The disk offload location must be unique for any

application servers that are defined on the same node. If you have multiple servers defined on the

same node, make sure the disk offload location is different for each server.

4. Enable Flush to disk if you want cache objects that are in memory to be saved to disk when the

server is stopped. Disk offload must be enabled if you choose this option. If you do not enable flush to

disk, all the cache objects are deleted when the server stops.

5. Click Apply or OK.

6. Restart WebSphere Application Server.

Results

You enabled disk offload. Memory cache entries are moved to disk for potential future access.

Chapter 14. Learn about WebSphere programming extensions 2341

When you have two or more application servers with servlet caching enabled and the application servers

specify the same disk offload location for their caches through the dynamic cache service, the following

exceptions might occur:

java.lang.NullPointerException

 at com.ibm.ws.cache.CacheOnDisk.readTemplate(CacheOnDisk.java:686)

 at com.ibm.ws.cache.Cache.internalInvalidateByTemplate(Cache.java:828)

or:

java.lang.NullPointerException

 at com.ibm.ws.cache.CacheOnDisk.readCacheEntry(CacheOnDisk.java:600)

 at com.ibm.ws.cache.Cache.getCacheEntry(Cache.java:341)

If one server is run as root and the other servers are run as non-root, this problem could occur. For

example, if server1 runs as root and server2 runs as wasuser or wasgroup, the cache files in the disk

offload location might be created with root permissions. This situation causes the applications running on

the non-root servers to crash when they try to read or write to the cache.

Java virtual machine cache settings:

Use this page to set Java virtual machine (JVM) custom properties to maintain cache entries that are

saved to disk.

 You can set the custom properties globally to affect all cache instances, or you can set the custom

property on a single cache instance. In most cases, set the properties on the individual cache instances.

To set the custom properties on the default cache instance, use the global option. If you set the same

property both globally and on a cache instance, the value that is set on the cache instance overrides the

global value.

To configure the custom properties on a single object cache instance or servlet cache instance, perform

the following steps:

1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache

instances > servlet_cache_instance_name > Custom properties > New.

v To configure an object cache instance, click Resources > Cache instances > Object cache

instances > object_cache_instance_name > Custom properties > New.

2. Type the name of the custom property. When configuring these custom properties on a single cache

instance, you do not use the full property path. For example, type explictBufferLimitOnStop to

configure the com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances, perform the following

steps:

1. In the administrative console, click Servers > Application servers > server_name > Java and

process management > Process definition > Java virtual machine > Custom properties > New.

2. Type the name of the custom property (com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop) in

the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

Also use these properties to tune the delay offload function for the disk cache.

2342 Administering WebSphere applications

Note: Setting these custom properties using the wsadmin command is deprecated for WebSphere

Application Server Version 7.0. Use the administrative console to set these properties. The

individual property descriptions include information on how to use the administrative console to set

these properties.

The delay offload function uses extra memory buffers for dependency IDs and templates to delay the disk

offload and minimize the input and output operations. However, if most of your cache IDs are longer than

100 bytes, the delay offload function might use too much memory. Use any combination of the following

properties to tune your configuration:

v To increase or decrease the in-memory limit of cache IDs for dependency ID and template buffers, use

the com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

v To disable the disk cache delay offload function, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling this property saves all

cache entries to disk immediately after removing them from the memory cache.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency:

Use this property to change the amount of time between disk cache cleanup.

Note: Setting this custom property manually is deprecated for V6.1. Therefore, you should use the

administrative console to set this property. To set this property in the administrative console, click

one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache

instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object cache

instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field if it is not already selected.

2. Under Performance Settings, select Balanced performance and balanced memory usage or

Custom.

3. In the Disk cache cleanup frequency field, specify an appropriate length of time, in minutes.

By default, the disk cache cleanup is scheduled to run at midnight to remove expired cache entries and

cache entries that have not been accessed in the past 24 hours. However, if you have thousands of cache

entries that might expire within one or two hours, the files that are in the disk cache can grow large and

become unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property

to change the time interval between disk cache cleanup.

 Units minutes

For example, a value of 60 means 60 minutes between

each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight every 24

hours.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit:

Use this property to specify the number of different cache IDs that can be saved in memory for the

dependency ID and template buffers. Consider increasing this value if you have a lot of memory in your

server and you want to increase the performance of your disk cache.

Chapter 14. Learn about WebSphere programming extensions 2343

Note: Setting this custom property using the wsadmin command is deprecated for V7.0. Therefore, you

should use the administrative console to set this property. To set this property in the administrative

console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache

instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object cache

instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field, if it is not already selected.

2. Under Disk Cache settings, select Limit disk cache size in entries, if it is not already selected.

3. In the Disk cache size field, specify the number of cache IDs that can be saved in memory for

the dependency ID and template buffers.

 Units number of cache IDs

For example, a value of 1000 means that each

dependency ID or template ID can have up to 1000

different cache IDs in memory.

Default 1000

Minimum 100

com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop:

Use this custom property when the flush-to-disk-on-stop feature is enabled. When the server is stopping,

offloads are limited to the value specified for this property, pending removal of entries in the explicit

invalidation buffer.

 If this property is set to 0, there is no limit to the number of offloads that can occur. Only positive integers

are accepted as values for this property. If the number of entries in the explicit invalidation buffer is greater

than the specified limit, all of the disk files for this specified cache instance are deleted after the server

stops.

Note: You cannot use the administrative console to set this property.

com.ibm.ws.cache.CacheConfig.lruToDiskTriggerTime:

Use this custom property to set the frequency with which cache entries in memory are asynchronously

offloaded to disk when the disk offload feature is enabled.

 Units integer, milliseconds

Lower bound 0

Upper bound 5000

Scope Applicable to all cache instances.

com.ibm.ws.cache.CacheConfig.lruToDiskTriggerPercent:

Use this custom property to set the percentage of the memory cache size to be used as an overflow buffer

when disk offload is enabled.

2344 Administering WebSphere applications

Cache entries in the overflow buffer are purged and asynchronously offloaded to disk at a frequency of

lruToDiskTriggerTime milliseconds. If the memory overflow buffer is full, cache entries are offloaded to disk

synchronously on the thread for the caller.

 Units integer, percentage

Lower bound 0

Upper bound 100

Scope Configurable per cache instance.

Configuring Edge Side Include caching

The Web server plug-in contains a built-in ESI processor. The ESI processor can cache whole pages, as

well as fragments, providing a higher cache hit ratio. The cache implemented by the ESI processor is an

in-memory cache, not a disk cache, therefore, the cache entries are not saved when the Web server is

restarted.

About this task

Edge Side Include (ESI) is configured through the plugin-cfg.xml file.

When a request is received by the Web server plug-in, it is sent to the ESI processor, unless the ESI

processor is disabled. It is enabled by default. If a cache miss occurs, a Surrogate-Capabilities header is

added to the request and the request is forwarded to the WebSphere Application Server. If servlet caching

is enabled in the application server, and the response is edge cacheable, the application server returns a

Surrogate-Control header in response to the WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules that are used by the ESI

processor to generate the cache ID. The response is then stored in the ESI cache, using the cache ID as

the key. For each ESI include tag in the body of the response, a new request is processed so that each

nested include results in either a cache hit or another request that forwards to the application server.

When all nested includes have been processed, the page is assembled and returned to the client.

The ESI processor is configurable through the WebSphere Web server plug-in configuration file

plugin-cfg.xml. The following is an example of the beginning of this file, which illustrates the ESI

configuration options.

<?xml version-"1.0"?>

<Config>

 <Property Name="esiEnable" Value="true"/>

 <Property Name="esiMaxCacheSize" Value="1024"/>

 <Property Name="esiInvalidationMonitor" Value="false"/>

v The first option, esiEnable, can be used to disable the ESI processor by setting the value to false. ESI

is enabled by default. If ESI is disabled, then the other ESI options are ignored.

v The second option, esiMaxCacheSize, is the maximum size of the cache in 1K byte units. The default

maximum size of the cache is 1 megabyte. If the cache is full, the first entry to be evicted from the

cache is the entry that is closest to expiration.

v The third option, esiInvalidationMonitor, specifies if the ESI processor should receive invalidations from

the application server. ESI works well when the Web servers following a threading model are used, and

only one process is started. When multiple processes are started, each process caches the responses

independently and the cache is not shared. This could lead to a situation where, the system’s memory

is fully used up by ESI processor. There are three methods by which entries are removed from the ESI

cache: first, an entry expiration timeout occurs; second, an entry is purged to make room for newer

entries; or third, the application server sends an explicit invalidation for a group of entries. For the third

mechanism to be enabled, the esiInvalidationMonitor property must be set to true and the

DynaCacheEsi application must be installed on the application server. The DynaCacheEsi application is

Chapter 14. Learn about WebSphere programming extensions 2345

located in the installableApps directory and is named DynaCacheEsi.ear. If the ESIInvalidationMonitor

property is set to true but the DynaCacheEsi application is not installed, then errors occur in the Web

server plug-in and the request fails.

v On distributed platforms, the cache for the ESI processor is monitored through the CacheMonitor

application. In order for ESI processor cache to be visible in the CacheMonitor, the DynaCacheEsi

application must be installed as described above, and the ESIInvalidationMonitor property must be set

to true in the plugin-cfg.xml file.

v When WebSphere Application Server is used to serve static data, such as images and HTML on the

application server, the URLs are also cached in the ESI processor. This data has a default timeout of

300 seconds. You can change the timeout value by adding the property com.ibm.servlet.file.esi.timeOut

to the Java virtual machine (JVM) command line parameters. The following example shows how to set a

one minute timeout on static data cached in the plug-in:

-Dcom.ibm.servlet.file.esi.timeOut=60

For information about configuring alternate URL, see the Tuning guide PDF.

Configuring alternate URL:

Alternate URL is a method for edge caching JavaServer Pages (JSP) files and servlet responses that you

can not request externally. Dynamic cache provides support to recognize the presence of an Edge Side

Include (ESI) processor and to generate ESI include tags and appropriate cache policies for edge

fragments that can be cached. However, you must be able to externally request an edge fragment from

the application server before it can be cached. In other words, if a user types the URL in their browser

with the appropriate parameters and cookies for the fragment, WebSphere Application Server must be able

to return the content for that fragment.

 About this task

One of the standard Java 2 Platform, Enterprise Edition (J2EE) programming architectures is the

model-view-controller (MVC) architecture, where a call to a controller servlet might include one or more

child JSP files to construct the view. When using the MVC programming model, the child JSP files are

edge cached only if you can request these JSP files externally, which is not usually the case. For example,

if a child JSP file uses one or more request attributes that are determined and set by the controller servlet,

you cannot cache that JSP file on the edge. You can use alternate URL support to overcome this limitation

by providing an alternate controller servlet URL used to invoke the JSP file.

The alternate URL for a JSP file or a servlet is set in the cachespec.xml file as a property with the name

alternate_url. You can set the alternate URL either on a per cache-entry basis or on a per cache-id

basis. It is valid only if the EdgeCacheable property is also set for that entry. If the EdgeCacheable property

is not set, the alternate_url property is ignored. The following is a sample cache policy using the

alternate_url property:

<cache-entry>

 <class>servlet</class>

 <name>/AltUrlTest2.jsp</name>

 <property name=″EdgeCacheable″>true</property>

 <property name=″alternate_url″>/alturlcontroller2</property>

 <cache-id>

 <timeout>600</timeout>

 <priority>2</priority>

 </cache-id>

</cache-entry>

What to do next

For more information on the cachespec.xml file, see “cachespec.xml file” on page 2354.

2346 Administering WebSphere applications

Configuring external cache groups

The dynamic cache can control caches outside of the application server, such as the Edge server, an IBM

HTTP Server, or an HTTP Server ESI Fragment Processor plug-in.

About this task

When external cache groups are defined, the dynamic cache matches externally cacheable cache entries

with those groups, and pushes cache entries and invalidations out to those groups. This allows

WebSphere Application Server to manage dynamic content beyond the application server. The content can

then be served from the external cache, instead of the application server, improving savings in

performance.

1. Open the administrative console.

2. Enable the dynamic cache.

a. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service.

b. Select Enable service at server startup to enable the dynamic cache each time the application

server starts.

3. Define the external cache group that WebSphere Application Server should control.

a. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service > External cache groups.

b. Click New or choose an external cache group from the list.

4. Configure cache group members.

a. Click External cache groups from the dynamic cache administrative console page. Then click

New or choose an external cache group from the list.

b. Click External cache group members > New or choose an external cache group member from

the list.

c. Type the configuration string in the Address field.

d. Type the adapter bean name in the Adapter Bean Name field.

e. Save the configuration.

f. Click Apply or OK.

External cache group collection:

Use this page to define sets of external caches that are controlled by WebSphere Application Server on

Web servers such as IBM Edge Server and IBM HTTP Server.

 To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > Container services > Dynamic cache service > External cache groups.

Name:

Specifies the external cache group name.

 The external cache group name needs to match the ExternalCache property as defined in the servlet or

Java Server Pages (JSP) file cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URI)

and pushes matching pages to the external cache. The entries can then be served from the external

cache, instead of from the application server.

Type:

Specifies the external cache group type.

Chapter 14. Learn about WebSphere programming extensions 2347

External cache group settings:

Use this page to configure sets of external caches that are controlled by WebSphere Application Server on

Web servers, such as IBM Edge Server and IBM HTTP Server.

 To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > Container services > Dynamic cache service > External cache groups >

external_cache_group.

Name:

Specifies the external cache group name.

 The external cache group name must match the ExternalCache property as defined in the servlet or

JavaServer Pages (JSPs) cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URIs)

and pushes matching pages to the external cache. The entries can then be served from the external

cache, instead of the application server. This ability creates a significant savings in performance.

External cache group member collection:

Use this page to define specific caches that are members of a cache group.

 To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > Container services > Dynamic cache service > External cache groups >

external_cache_group > External cache group members.

Address:

Specifies a configuration string that is used by the external cache adapter bean to connect to the external

cache.

AdapterBeanName:

Specifies the adapter bean name.

 Example adapter bean names that are supported in WebSphere Application Server are as follows:

 AFPA

AdapterBeanName: com.ibm.ws.cache.servlet.Afpa

Address: Port on which afpa listens

ESI

AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

IBM Web Traffic Express (WTE) (IBM Edge Server)

AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter

Address: hostname:port (host name and port on which WTE is listening)

External cache group member settings:

Use this page to define a single cache that is controlled by WebSphere Application Server.

2348 Administering WebSphere applications

To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > Container services > Dynamic cache service > External cache groups >

external_cache_group > External cache group members > external_cache_group_member.

Advanced Fast Path Architecture adapter bean name:

Specifies the adapter bean name.

 v Adapter bean name: specifies the adapter bean name. For example, you can use a bean name such

as com.ibm.ws.cache.servlet.Afpa.

v Address: specifies the port on which AFPA listens.

Edge Side Include (ESI):

Specifies the adapter bean name.

v Adapter bean name: specifies the adapter bean name. For example, you can use a bean name such

as com.ibm.websphere.servlet.cache.ESIInvalidatorServlet.

v Address: local host

IBM Web Traffic Express (IBM WebSphere Edge Server):

Specifies the adapter bean name.

v Adapter bean name: specifies the adapter bean name. For example, you can use a bean name such

as com.ibm.websphere.edge.dynacache.WteAdapter.

v Address: hostname:port (host name and port on which WTE is listening).

Configuring high-speed external caching through the Web server:

IBM HTTP Server for Windows 2000 and Windows 2003 operating systems contains a high-speed cache

referred to as the Fast Response Cache Accelerator, or cache accelerator. The Fast Response Cache

Accelerator is available on Windows 2000 and Windows 2003 operating systems and AIX platforms.

However, support to cache dynamic content is only available on Windows 2000 and Windows 2003

operating systems. You can enable cache accelerator to cache static and dynamic content.

 Before you begin

About this task

Enable cache accelerator for caching static content by adding the following directives to the httpd.conf

configuration file, located in the IBM HTTP Server conf directory:

v AfpaEnable

v AfpaCache on

v AfpaLogFile ″app_server_root\IBMHttpServer\logs\afpalog″ V-ECLF

To enable cache accelerator for caching dynamic content, such as servlets and JavaServer Pages (JSP)

files, configure WebSphere Application Server and IBM HTTP Server for distributed platforms:

1. Configure WebSphere Application Server to enable Fast Response Cache Accelerator. It is important

to follow all of the steps for every application server in the cluster.

a. Configure an external cache group on the application server:

1) Click Servers > Application servers > server_name > Container services > Dynamic cache

service > External cache groups.

2) Click New on the External cache group administrative console page to define an external

cache group named afpa for each application server that uses the cache accelerator.

3) In the External cache group field, type afpa and apply the changes.

b. Add a member to the group with an adapter bean name of com.ibm.ws.cache.servlet.Afpa.

Chapter 14. Learn about WebSphere programming extensions 2349

1) Click Afpa > External cache group members.

2) Click New on the External cache group members administrative console page.

3) In the AdapterBean name field, type com.ibm.ws.cache.servlet.Afpa.

4) In the Address field, enter an unused port number.

c. Add a cache policy in the cachespec.xml file for the servlet or JSP file you want to cache. Add the

following property to the cache policy:

<property name="ExternalCache">afpa</property>

2. Enable cache accelerator on IBM HTTP Server for distributed platforms:

a. Add the following directives to the end of the httpd.conf file:

v AfpaEnable

v AfpaCache on

v AfpaLogFile ″app_server_root\IBMHttpServer\logs\afpalog″ V-ECLF

v IBM HTTP Server 1.3.x - LoadModule afpaplugin_module app_server_root\bin\afpaplugin.dll

v IBM HTTP Server 2.0 - LoadModule afpaplugin_20_module app_server_root\bin\
afpaplugin_20.dll

v AfpaPluginHost WAS_Hostname:port, where WAS_Hostname is the host name of the application

server and port is the port you specified in the Address field while configuring the external

cache group member

The LoadModule directive loads the IBM HTTP Server plug-in that connects the Fast Response Cache

Accelerator to the WebSphere Application Server fragment cache. If multiple IBM HTTP Servers are

routing requests to a single application server, add the directives above to the httpd.conf file of each

of these IBM HTTP Servers for distributed platforms. If one IBM HTTP Server is routing requests to a

cluster of application servers, add the AfpaPluginHost WAS_Hostname:port directive to the httpd.conf

file for each application server in the cluster. For example, if there are three application servers in the

cluster, add the following directives to the httpd.conf file:

v LoadModule afpaplugin_module app_server_root/bin/afpaplugin.dll

v AfpaPluginHost WAS1_Hostname:port1

v AfpaPluginHost WAS2_Hostname:port2

v AfpaPluginHost WAS3_Hostname:port3

Configuring cache replication

Use this task to improve performance by configuring the data replication service (DRS) to replicate data

from the dynamic cache service across the consumers in a replication domain.

Before you begin

See “Cache replication” on page 2352 for more information about replicating data for the dynamic cache

service.

You should have a replication domain created for the dynamic cache service. Configure a different

replication domain for each type of consumer of the replication domain. For example, configure two

different replication domains for dynamic cache and session manager. There are two ways to configure

replication domains:

v To create replication domains manually, click Environment > Replication domains in the

administrative console.

v To create a new replication domain automatically when you create a cluster, click Servers > Clusters >

New in the administrative console.

For more details about configuring replication domains, see Replicating data across application servers in

a cluster.

Do not use the default value of a single replica for the Number of replicas for dynamic cache replication

domains. Instead, use a full group replica for any replication domains that you configure for dynamic

cache.

2350 Administering WebSphere applications

Note: If you configured cache replication with a previous version of WebSphere Application Server, review

Migrating servers from multi-broker replication domains to data replication domains to learn about

the new type of replication domains that you should use with the current version of WebSphere

Application Server.

About this task

Use this task to improve performance in a clustered environment by enabling the data replication service

(DRS) to replicate cached data across the servers in a cluster. Invalidations of cache entries are sent

across the cluster to keep the cached data consistent and valid.

1. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service.

2. To enable replication, select Enable cache replication.

3. Choose a replication domain. Use different replication domains for each type of consumer. For

example, dynamic cache should use a different replication domain than session manager. The only

replication domains that you can select in this panel include replication domains that are configured to

use full-group replication. In a full-group configuration, every cache entry is replicated to every other

cache that is configured in the servers that are in the replication domain. If none of the replication

domains in your configuration meet these requirements, the list is empty. In this case, create a

replication domain or alter an existing replication domain so that you have a replication domain that

can perform full-group replication. See Replicating data across application servers in a cluster for more

information.

4. Define the dynamic cache replication settings. Click Enable cache replication. On this page, you can

define when and how often data is replicated across the dynamic cache replication domain. For more

information about these settings, see “Dynamic cache service settings” on page 2329.

5. Define sharing policies in the cachespec.xml file.

This is optional.You can override the global sharing policy by specifying a specific sharing policy in the

cache policy. For example, if your global policy is to use Push only, you can change the sharing policy

of a specific cache entry by making this change to your cache policy:

<cache-entry>

 <sharing-policy>not-shared</sharing-policy>

 <class>servlet</class>

 <name>/app</name>

 <cache-id>

 <component id="action" type="parameter">

 <value>portfolio</value>

 <required>true</required>

 </component>

 <component id="JSESSIONID" type="cookie">

 <required>true</required>

 </component>

 <property name="EdgeCacheable">true</property>

 </cache-id>

</cache-entry>

For more information about the sharing policies that can be defined in the cachespec.xml file, see

“cachespec.xml file” on page 2354.

Results

Cache entries copy to the other application servers in the configured replication domain.

What to do next

Use the cache monitor to view the contents of the cache. See “Displaying cache information” on page

2394 for more information.

Chapter 14. Learn about WebSphere programming extensions 2351

Cache replication

With replication, data is generated one time and copied or replicated to other servers in the cluster, saving

time and resources. Caching in a cluster has additional concerns. In particular, the same data can be

required and generated in multiple places. Also, the permission the resources need to generate the cached

data can be restricted, preventing access to the data.

Cache replication deals with these concerns by generating the data one time and copying it to the other

servers in the cluster. It also aids in cache consistency. Cache entries that are not needed are removed or

replaced.

The data replication configuration can exist as part of the Web container dynamic cache configuration

accessible through the administrative console, or on a per cache entry basis through the cachespec.xml

file. With the cachespec.xml file, you can configure cache replication at the Web container level, but

disable it for a specific cache entry.

Cache replication can take on three forms:

v PUSH - Send out new entries, both ID and data, and updates to those entries.

v PULL - Requests data from other servers in the cluster when that data is not locally present. This mode

of replication is not recommended.

v PUSH/PULL - Sends out IDs for new entries, then, only requests from other servers in the cluster

entries for IDs previously broadcast. The dynamic cache always sends out cache entry invalidations.

You can also perform a batch update. Specifically, for PUSH or PUSH/PULL, the dynamic cache

broadcasts the update asynchronously, based on a timed interval rather than sending them immediately

when they are created. Invalidations are sent immediately. Distribution of invalidations prevents stale data

from residing in a cluster. For more information about configuring cache replication, see “Configuring cache

replication” on page 2350 and “Dynamic cache service settings” on page 2329.

Note: In PUSH/PULL mode, the cached object is kept locally on the server that creates it; however, other

servers also use the cache ID and store it in the DRSPushPullTable table. If a remote server needs

the object, it requests the object by cache ID, or name, from the creating server. Each cache

instance has one DRSPushPullTable table that is associated with it. The following conditions cause

the DRSPushPullTable table to grow too big:

v There are too many entries being shared with other servers.

v Not many entries are expiring.

v If you are using the disk offload feature, the disk scan is not running often to evict the expired

entries.

Use the following suggestions to resolve the issue:

v Increase the heap size to 1.5 GB or 2 GB, if possible.

v Maintain better distribution for the expiration time of entries, for example:

– 20% of the entries never expire.

– 30% of the entries expire in 3600 seconds.

– 30% of the entries expire in 600 seconds.

– 20% of the entries expire in 60 seconds.

v When you use the disk offload feature in WebSphere Application Server 7.0, for the disk cache

performance settings, which are low, balanced, and custom, adjust the disk cleanup frequency to

an optimal value, in minutes. For example, about 20% of the entries expire at that time.

Configuring cacheable objects with the cachespec.xml file

Use this task to define cacheable objects inside the cachespec.xml, found inside the Web module WEB-INF

or enterprise bean META-INF directory.

2352 Administering WebSphere applications

Before you begin

Enable the dynamic cache. See “Using the dynamic cache service” on page 2328 for more information.

About this task

You can save a global cachespec.xml in the application server properties directory, but the recommended

method is to place the cache configuration file with the deployment module. The root element of the

cachespec.xml file is <cache>, which contains <cache-entry> elements.

The <cache-entry> element can be nested within the <cache> element or a <cache-instance> element.

The <cache-entry> elements that are nested within the <cache> element are cached in the default cache

instance. Any <cache-entry> elements that are in the <cache-instance> element are cached in the

instance that is specified in the name attribute on the <cache-instance> element.

Within a <cache-entry> element are parameters that allow you to complete the following tasks to enable

the dynamic cache with the cachespec.xml file:

1. Develop a cachespec.xml file.

a. Create a caching configuration file.

In the <app_server_root>/properties directory, locate the cachespec.sample.xml file.

b. Copy the cachespec.sample.xml file to cachespec.xml in Web module WEB-INF or enterprise bean

META-INF directory.

2. Define the cache-entry elements necessary to identify the cacheable objects. See the topic

“cachespec.xml file” on page 2354 for a list of elements.

3. Develop cache ID rules.

To cache an object, WebSphere Application Server must know how to generate unique IDs for different

invocations of that object. The <cache-id> element performs that task. Each cache entry can have

multiple cache-ID rules that run in order until either a rule returns cache-ID that is not empty or no

more rules remain to run. If no cache-ID generation rules produce a valid cache ID, then the object is

not cached. Develop the cache IDs in one of two ways:

v Use the <component> element defined in the cache policy of a cache entry (recommended). See

“cachespec.xml file” on page 2354 for more information about the <component> element.

v Write custom Java code to build the ID from input variables and system state. To configure the

cache entry to use the ID generator, specify your IdGenerator in the XML file by using the

<idgenerator> tag, for example:
<cache-entry>

 <class>servlet</class>

 <name>/servlet/CommandProcessor</name>

 <cache-id>

 <idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

 <timeout>60</timeout>

 </cache-id>

</cache-entry>

4. Specify dependency ID rules. Use dependency ID elements to specify additional cache group

identifiers that associate multiple cache entries to the same group identifier.

The dependency ID is generated by concatenating the dependency ID base string with the values

returned by its component elements. If a required component returns a null value, then the entire

dependency ID does not generate and is not used. You can validate the dependency IDs explicitly

through the dynamic cache API, or use another cache-entry <invalidation> element. Multiple

dependency ID rules can exist per cache entry. All dependency ID rules run separately. See

“cachespec.xml file” on page 2354 for a list of <component> elements.

5. Invalidate other cache entries as a side effect of this object start, if relevant. You can define

invalidation rules in exactly the same manner as dependency IDs. However, the IDs that are generated

by invalidation rules are used to invalidate cache entries that have those same dependency IDs.

Chapter 14. Learn about WebSphere programming extensions 2353

The invalidation ID is generated by concatenating the invalidation ID base string with the values

returned by its component element. If a required component returns a null value, then the entire

invalidation ID is not generated and no invalidation occurs. Multiple invalidation rules can exist per

cache-entry. All invalidation rules run separately.

6. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file

while your application is running. The dynamic cache reloads the updated file automatically. If you are

caching static content and you are adding the cache policy to an application for the first time, you must

restart the application. You do not need to restart the application server to activate the new cache

policy. See “Verifying the cacheable page” for more information.

What to do next

Typically you declare several <cache-entry> elements inside a cachespec.xml file.

When new versions of the cachespec.xml are detected, the old policies are replaced. Objects that cached

through the old policy file are not automatically invalidated from the cache; they are either reused with the

new policy or eliminated from the cache through its replacement algorithm.

For each of the three IDs (cache, dependency, invalidation) generated by cache entries, a <cache-entry>

can contain multiple elements. The dynamic cache runs the <cache-id> rules in order, and the first one

that successfully generates an ID is used to cache that output. If the object is to be cached, each one of

the <dependency-id> elements is run to build a set of dependency IDs for that cache entry. Finally, each of

the <invalidation> elements are run, building a list of IDs that the dynamic cache invalidates, whether or

not this object is cached.

Verifying the cacheable page

Use this task to verify that the dynamic cache service has its cache policies configured correctly and is

serving cached content.

Before you begin

The dynamic cache service should be enabled. You should have a cache policy developed for your

application. See “Configuring cacheable objects with the cachespec.xml file” on page 2352 for more

information. You must have servlet caching enabled in the web container. See “Configuring servlet

caching” on page 2333 for more information.

About this task

You can verify the cacheable page by invoking the snoop servlet in the default application. If the dynamic

cache is working correctly, refreshing the servlet repeatedly results in viewing cached content.

1. View the Snoop servlet in the default application by accessing the URI: /snoop The Snoop servlet is a

part of the default application. See “Default Application” on page 46 for more information.

2. Invoke and reload the URI several times using a different Web browser or using different parameters.

This action returns the same output for the snoop servlet. The snoop servlet is now operating

incorrectly, because it displays the request information from its first invocation rather than from the

current request.

3. Inspect the entry in the cache with the dynamic cache monitor. See “Displaying cache information” on

page 2394 for more information.

cachespec.xml file

The cache parses the cachespec.xml file when the server starts, and extracts a set of configuration

parameters from each cache-entry element. Every time a new servlet or other cacheable object initializes,

the cache attempts to match each of the cache-entry elements to find the configuration information for that

object.

2354 Administering WebSphere applications

The cache-entry elements can be inside the root cache element or inside a cache-instance element.

Cache entries that are in the root element are cached with the default cache instance. Cache entries that

are in the <cache-instance> element are cached in that particular cache instance. Different cacheable

objects have different class elements. You can define the specific object that a cache policy refers to using

the name element.

Location

Place the cachespec.xml file with the deployment module. Use an assembly tool to define the cacheable

objects. See Assembling applications for more information about assembling applications. You can also

place a global cachespec.xml file in the application server properties directory.

The cachespec.dtd file is available in the application server properties directory. The cachespec.dtd file

defines the legal structure and the elements that can be in your cachespec.xml file.

Usage notes

Cachespec.xml elements

The root element of the cachespec.xml file is cache and contains cache-instance and cache-entry

elements. The cache-entry elements can also be placed inside of cache-instance elements to make that

cache entry part of a cache instance that is different from the default.

cache-instance

<cache-instance name=″cache_instance_name″></cache-instance>

The name attribute is the Java Naming and Directory Interface (JNDI) name of the cache instance that is

set in the administrative console.

Each cache-instance element must contain at least one cache-entry element. A cache entry that is

matched within a cache-instance element is cached in the servlet cache instance that is specified by the

name attribute. If identical cache-entry elements exist across cache-instance elements, the first

cache-entry element that is matched is used.

cache-entry

Each cache entry must specify certain basic information that the dynamic cache uses to process that

entry. This section explains the function of each cache entry element of the cachespec.xml file including:

v class

v name

v sharing-policy

v skip-cache

v property

v cache-id

With the current version of WebSphere Application Server, you can define multiple cache policies for a

single servlet. For example, if you define multiple mappings for a servlet in the web.xml file, you can create

a cache entry for each one of the mappings.

class

<class>command | servlet | webservice | JAXRPCClient | static | portlet </class>

This element is required and specifies how the application server interprets the remaining cache policy

definition. The value servlet refers to servlets and JavaServer Pages (JSP) files that are deployed in the

Chapter 14. Learn about WebSphere programming extensions 2355

WebSphere Application Server servlet engine. The webservice class extends the servlet with special

component types for Web services requests. The JAXRPCClient is used to define a cache entry for the

Web services client cache. The value, command, refers to classes using the WebSphere Application Server

command programming model. The value, static, refers to files that contain static content. The following

examples illustrate the class element:

<class>command</class>

<class>servlet</class>

<class>webservice</class>

<class>JAXRPCClient</class>

<class>static</class>

<class>portlet</class>

name

<name>name</name>

Use the following guidelines for the name element to specify a cacheable object:

v For commands, this required element must include the package name, if any, and class name, including

a trailing .class, of the configured object.

v For servlets and JSP files, if the cachespec.xml file is in the WebSphere Application Server properties

directory, this required element must include the full URI of the JSP file or servlet to cache. For servlets

and JSP files, if the cachespec.xml file is in the Web application, this required element can be relative to

the specific Web application context root.

v For Web services, include the Universal Resource Identifier (URI) of the Simple Object Access Protocol

(SOAP) router that is associated with the Web service that you want to cache.

v For Web services client cache, the name is the target end point of the cacheable Web service or the

URI of the SOAP router that is associated with the cacheable Web service. You can use the SOAP

address location in the Web Services Description Language (WSDL) file to define the name for the Web

services client cache.

v For static files, if the cachespec.xml file is in the WebSphere Application Server properties directory, this

required element must include the full URI of the file to cache. If the cachespec.xml file is in the Web

application, this required element can be relative to the specific Web application context root. For a Web

application with a context root, the cache policy for files using the static class must be specified in the

Web application, and not in the properties directory.

v For portlets, if the cachespec.xml file is in the WebSphere Application Server properties directory, this

required element must include the full context path and name of the portlet to cache. If the

cachespec.xml file is in the Web application, this required element is the portlet name that is relative to

the specific Web application context root.

Note: The preferred location of the cachespec.xml file is in the Web application, not the properties

directory.

You can specify multiple name elements within a cache-entry if you have different mappings that refer to

the same servlet.

The following examples illustrate the name element:

<name>com.mycompany.MyCommand.class</name>

<name>default_host:/servlet/snoop</name>

<name>com.mycompany.beans.MyJavaBean</name>

<name>mywebapp/myjsp.jsp</name>

<name>/soap/servlet/soaprouter</name>

<name>http://remotecompany.com:9080/service/getquote</name>

<name>mywebapp/myLogo.gif</name>

sharing-policy

<sharing-policy> not-shared | shared-push | shared-pull | shared-push-pull</sharing-policy>

2356 Administering WebSphere applications

When working within a cluster with a distributed cache, these values determine the sharing characteristics

of entries that are created from this object. If this element is not present, a not-shared value is assumed.

When enabling a replication, the default value is not-shared . This property does not affect distribution to

Edge Side Include processors through the Edge fragment caching property.

 Value Description

not-shared Cache entries for this object are not shared among

different application servers. These entries can contain

non-serializable data. For example, a cached servlet can

place non-serializable objects into the request attributes,

if the <class> type supports it.

shared-push Cache entries for this object are automatically distributed

to the dynamic caches in other application servers or

cooperating Java virtual machines (JVMs). Each cache

has a copy of the entry at the time it is created. These

entries cannot store non-serializable data.

shared-pull Cache entries for this object are shared between

application servers on demand. If an application server

gets a cache miss for this object, it queries the

cooperating application servers to see if they have the

object. If no application server has a cached copy of the

object, the original application server runs the request

and generates the object. These entries cannot store

non-serializable data. This mode of sharing is not

recommended.

shared-push-pull Cache entries for this object are shared between

application servers on demand. When an application

server generates a cache entry, it broadcasts the cache

ID of the created entry to all cooperating application

servers. Each server then knows whether an entry exists

for any given cache ID. On a given request for that entry,

the application server knows whether to generate the

entry or pull it from somewhere else. These entries

cannot store non-serializable data.

The following example shows a sharing policy:

<sharing-policy>not-shared</sharing-policy>

skip-cache

Takes the name of a request attribute, which if present in the request context, dictates that the response

cannot be retrieved from the cache instance that is specified. This property is useful for previewing content

in production systems and verifying that the application is working and performing as expected.

<cache>

 <skip-cache-attribute>att1</skip-cache-attribute> <!–Applies only to the base cache- ->

...

<cache-instance name="instance1">

<skip-cache-attribute>att2</skip-cache-attribute> <!-Applies only to this instance- ->

...

</cache-instance>

</cache>

property

<property name=″key″>value</property>

where key is the name of the property for this cache entry element, and value is the corresponding value.

Chapter 14. Learn about WebSphere programming extensions 2357

You can set optional properties on a cacheable object, such as a description of the configured servlet. The

class determines valid properties of the cache entry. At this time, the following properties are defined:

 Property Valid classes Value

ApplicationName All Overrides the J2EEName application

ID so that multiple applications can

share a common cache ID

namespace.

EdgeCacheable Servlet True or false. The default is false. If

the property is true, then the given

servlet or JSP file is externally

requested from an Edge Side Include

processor. Whether or not the servlet

or JSP file is cacheable depends on

the rest of the cache specification.

ExternalCache Servlet and portlet Specifies the external cache name.

The external cache name needs to

match the external cache group

name.

consume-subfragments Servlet, Web service, or portlet True or false. The default is false.

When a servlet is cached, only the

content of that servlet is stored, and

includes placeholders for any other

fragments to which it includes or

forwards. Consume-subfragments

(CSF) tells the cache not to stop

saving content when it includes a

child servlet. The parent entry, the

one marked CSF, includes all the

content from all fragments in its

cache entry, resulting in one big

cache entry that has no includes or

forwards, but the content from the

whole tree of entries.

Consume-subfragments can save a

significant amount of application

server processing, but is typically only

useful when the external HTTP

request contains all the information

needed to determine the entire tree of

included fragments.

Use the <exclude> element to tell the

cache to stop consuming for the

excluded fragment and instead,

create a placeholder for the include or

forward. For example, exclude A.jsp

from the consume-subfragment, as

follows:

<property name=

 "consume-sbufragments">true

<exclude>/A.jsp<exclude>

</property>

2358 Administering WebSphere applications

do-not-consume Servlet, Web service, or portlet True or false. The default is false.

When a fragment parent has the

consume-subfragment property set to

true the child fragment content is

saved in the cache entry of the

parent. Do-not-consume (DNC) tells

the cache to stop saving the content

for this fragment in the parent

cache-entry and create a placeholder

instead for the include or forward.

alternate_url Servlet Specifies the alternate URL that is

used to invoke the servlet or JSP file.

The property is valid only if the

EdgeCacheable property also is set

for the cache entry.

persist-to-disk All True or false. The default is true.

When this property is set to false,

the cache entry is not written to the

disk when overflow or server stopping

occurs.

save-attributes Servlet and portlet True or false. The default is true.

When this property is set to false,

the request attributes are not saved

with the cache entry.

Use the <exclude> element to specify

the request attributes that do not

apply to the save-attributes property.

For example, to save only the attr1

attribute with the cache entry:

<property name=

"save-attributes">false

<exclude>attr1</exclude>

</property>

To save all attributes except the attr1

attribute in the cache entry, set the

property to true in the preceding

sample. If you do not use the

<exclude> element, either all or no

request attributes are saved with the

cache entry.

delay-invalidations Command True or false. When this property is

set to true, the commands that are

invalidating cached objects based on

the invalidation rules in this cache

entry invalidate the cache entries

after running. By default, the

invalidation occurs before the

command runs.

Chapter 14. Learn about WebSphere programming extensions 2359

store-cookies Servlet and portlet Takes one or more cookie name as

its argument which is saved along

with the cache object and restored by

the servlet cache in the response with

a set-cookie header.

Save all cookies except cookie1 as

part of the cache-entry as follows:

<property name=

 "store-cookies">true

<exclude>cookie</exclude>

</property>

Save only cookie1 as part of the

cache-entry, as follows:

<property name=

 "store-cookies">false

<exclude><cookie1</exclude>

</property>

ignore-get-post Servlet and portlet True or false. The default is false.

When the property is set to true the

request type is not appended to the

cache-id for GET and POST requests

unless the requestType component

requestType component subelement

is defined. By default the request type

is automatically appended to the

cache-id for GET and POST requests.

do-not-cache Servlet and portlet Defines a fragment that is neither

cached nor consumed by its parent.

<cache-entry>

...

<property name="do-not-cache">

 true</property>

or

<cache-id>

<property name="do-not-cache">

 true</property>

</cache-id>

</cache-entry>

cache-id

To cache an object, the application server must know how to generate a unique ID for different invocations

of that object. These IDs are built either from user-written custom Java code or from rules that are defined

in the cache policy of each cache entry. Each cache entry can have multiple cache ID rules that run in

order until either:

v A rule returns a non-empty cache ID, or

v No more rules are left to run.

If none of the cache ID generation rules produce a valid cache ID, the object is not cached.

Each cache-id element defines a rule for caching an object and is composed of the sub-elements

component, timeout, inactivity, priority, property, idgenerator, and metadatagenerator. The following

example illustrates a cache-id element:

2360 Administering WebSphere applications

<cache-id>

 component*| timeout? | inactivity? | priority? | property* | idgenerator? | metadatagenerator?

</cache-id>

component subelement

Use the component subelement to generate a portion of the cache ID. The component subelement

consists of the attributes id, type, and ignore-value, and the elements index, method, field, required, value,

and not-value.

v Use the id attribute to identify the component.

v Use the type attribute to identify the type of component. The following table lists the values for the type.

 Type Valid classes Meaning

method Command Calls the indicated method on the

command or object

field Command Retrieves the named field in the

command or object

parameter Servlet and portlet Retrieves the named parameter value

from the request object

parameter-list Servlet and portlet Retrieves a list of values for the

named parameter

session Servlet and portlet Retrieves the named value from the

HTTP session

cookie Servlet Retrieves the named cookie value

attribute Servlet and portlet Retrieves the named request attribute

header Servlet, Web service, and portlet Retrieves the named request header

pathInfo Servlet Retrieves the pathInfo element from

the request

servletpath Servlet Retrieves the servlet path

locale Servlet and portlet Retrieves the request locale

requestType Servlet and portlet Retrieves the HTTP request method

from the request.

tiles_attribute Servlet and portlet Retrieves the value of an attribute

from a tile.

SOAPEnvelope Web service and Web services client

cache

Retrieves the SOAPEnvelope element

from a Web services request. An ID

attribute of Hash uses a Hash of the

SOAPEnvelope element, while Literal

uses the SOAPEnvelope element as

received.

SOAPAction Web service Retrieves the SOAPAction header, if

available, for a Web services request.

serviceOperation Web service Retrieves the service operation for a

Web services request

serviceOperationParameter Web service Retrieves the specified parameter

from a Web services request

Chapter 14. Learn about WebSphere programming extensions 2361

Type Valid classes Meaning

operation Web services client cache Indicates an operation type in the

Web Services Description Language

(WSDL) file. The id attribute is

ignored and the value is the operation

or method name. If the namespace of

the operation is specified, format the

value as

namespaceOfOperation:nameOfOperation

part Web services client cache Indicates an input message part in

the WSDL file or a request parameter.

Its id attribute is the part or parameter

name, and the value is the part or

parameter value.

SOAPHeaderEntry Web services client cache Retrieves special information in the

Simple Object Access Protocol

(SOAP) header of the Web services

request. The id attribute specifies the

name of the entry. In addition, the

entry of the SOAP header in the

SOAP request must have the actor

attribute, which contains

com.ibm.websphere.cache. For

example:

<soapenv:Header>

 <getQuote soapenv:actor=

 "com.ibm.websphere.cache">IBM

 </getQuote>

</soapenv:Header>

portletSession Portlet Retrieves the named value from the

portlet session

portletWindowId Portlet Retrieves the portlet window ID from

the portlet request object

portletMode Portlet Retrieves the portlet mode from the

portlet request object

portletWindowsState Portlet Retrieves the portlet window state

from the portlet request object

sessionID Servlet and portlet Retrieves the HTTP session ID

v Use the ignore-value attribute to specify whether or not to use the value that is returned by this

component in cache ID formation. This attribute is optional with a default value of false. If the value is

true, only the ID of the component is used when creating a cache ID, or no output is used when

creating a dependency or invalidation ID.

v Use the method element to call a void method on a returned object. You can infinitely nest method and

field objects in any combination. The method must be public and is not valid for edge-cacheable

components. For example:

<component id="getUser" type="method"><method>getUserInfo

<method>getName</method></method></component>

This method is equivalent to getUser().getUserInfo().getName()

For component types attribute, method, or field that can return an object, when the object returned is a

collection or array, the ID is created with a comma separated list of the elements in the collection or

array. For example, if the request attribute users returns an array [a, b] and the cache entry is defined

like the following example:

2362 Administering WebSphere applications

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The cache id contains the string users: a,b. The dependency id is dep: a,b.

Use the multipleIDs attribute with the component types to specify and generate multiple dependency IDs

(or invalidation IDs), based on the items in the collection or array. For example:

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute" multipleIDs="true">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The cache policy will generates the following dependency IDs:

– dep:a,b

– dep:a

– dep:b

Use the index element with the prvious component type to add only the value of the element at the

specified index position in the collection or array, to the ID that is being created.

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 <index>1</index>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute" multipleIDs="true">

Chapter 14. Learn about WebSphere programming extensions 2363

<required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The previous cache policy generates the following component to use in the cache ID: users: b. Use the

<method> element to call a void method on a returned object.

v Use the field element to access a field in a returned object. You can infinitely nest method and field

objects in any combination. The field must be public. This field is not valid for edge-cacheable

components. For example:

<component id="getUser" type="method"><method>getUserInfo

<field>name</field></method></component>

This method is equivalent to the getUser().getUserInfo().name method.

v Use the required element to specify whether or not this component must return a non-null value for this

cache ID to represent a valid cache. If set to true, this component must return a non-null value for this

cache ID to represent a valid cache ID. If set to false, the default, a non-null value is used in the

formation of the cache ID and a null value means that this component is not used at all in the ID

formation. For example:

<required>true</required>

v Use the value element to specify values that must match to use this component in cache ID formation.

For example:

<component id="getUser" type="method"><value>blue</value>

<value>red</value> </component>

v Use the not-value element to specify values that must not match to use this component in cache ID

formation. This method is similar to value element, but instead prescribes the defined values from

caching. You can use multiple not-value elements when more than one value that is not valid exists. For

example:

<component id="getUser" type="method">

<required>true</required>

<not-value>blue</not-value>

<not-value>red</not-value></component>

The component subelement can have either a method and a field element, a value element, or a not-value

element. The method and field elements apply to commands only. The following example illustrates the

attributes of a component sub-element:

<component id="isValid" type="method" ignore-value="true"><component>

timeout subelement

The timeout subelement is used to specify an absolute time-to-live (TTL) value for the cache entry. For

example,

<timeout>value</timeout>

where value is the amount of time, in seconds, to keep the cache entry. Cache entries that are in memory

are kept indefinitely, as long as the entries remain in memory. Cache entries that are stored on disk are

evicted if they are not accessed for 24 hours.

inactivity subelement

The inactivity subelement is used to specify a time-to-live (TTL) value for the cache entry based on the

last time that the cache entry was accessed. It is a subelement of the cache-id element.

<inactivity>value</inactivity>

where value is the amount of time, in seconds, to keep the cache entry in the cache after the last cache

hit.

2364 Administering WebSphere applications

priority subelement

Use the priority subelement to specify the priority of a cache entry in a cache. The priority weighting is

used by the least recently used (LRU) algorithm of the cache to decide which entries to remove from the

cache if the cache runs out of storage space. For example,

<priority>value</priority>

where value is a positive integer between 1 and 16 inclusive.

Samples

The following sample keeps the cache entry in the cache for a minimum of 35 seconds and a maximum of

180 seconds. If the cache entry is accessed within each 35 second inactivity period, the inactivity period is

extended for another 35 seconds. However, because the timeout element is also configured, the cache

entry is always invalidated after 180 seconds. If the cache entry is not accessed within the 35 second

period, the entry is removed from the cache.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <timeout>180</timeout>

 <inactivity>35</inactivity>

 <priority>1</priority>

</cache-id>

The following sample keeps the cache entry in the cache for a minimum of 600 seconds. If the cache

entry is accessed within each 600 second period, the inactivity period is extended for another 600

seconds. If the cache entry is not accessed within the 600 second period, the cache entry is removed from

the cache.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <inactivity>600</inactivity>

 <priority>1</priority>

</cache-id>

In the following sample, the value for inactivity has no meaning because the timeout period is less than the

inactivity period. The cache entry is always invalidated after 180 seconds, no matter how often the cache

entry is accessed.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <timeout>180</timeout>

 <inactivity>600</inactivity>

 <priority>1</priority>

</cache-id>

property subelement

Use the property subelement to specify generic properties for the cache entry. For example,

<property name="key">value</property>

where key is the name of the property to define, and value is the corresponding value.

For example:

<property name="description">The Snoop Servlet</property>

Chapter 14. Learn about WebSphere programming extensions 2365

Property Valid classes Meaning

sharing-policy/timeout/priority All Overrides the settings for the

containing cache entry when the

request matches this cache ID.

EdgeCacheable Servlet Overrides the settings for the

containing cache entry when the

request matches this cache ID.

idgenerator and metadatagenerator sub-elements

Use the idgenerator element to specify the class name that is loaded for the generation of the cache ID.

The IdGenerator element must implement the com.ibm.websphere.servlet.cache.IdGenerator interface for

a servlet or the com.ibm.websphere.webservices.IdGenerator interface for the Web services client cache.

An example of the idgenerator element follows:

<idgenerator> class name </idgenerator>

Where class name is the fully-qualified name of the class to use. Define this generator class in a shared

library.

Use the metadatagenerator element inside the cache-id element to specify the class name loaded for the

metadata generation. The MetadataGenerator class must implement the

com.ibm.websphere.servlet.cache.MetaDataGenerator interface for a servlet or the

com.ibm.websphere.cache.webservices.MetaDataGenerator interface for Web services client cache. The

MetadataGenerator class defines properties like timeout, inactivity, external caching properties or

dependencies. An example of the metadatagenerator element follows:

<metadatagenerator> classname </metadatagenerator>

In this example, class name is the fully-qualified name of the class to use. Define this generator class in a

shared library.

dependency-id element

Use the dependency-id element to specify additional cache identifiers that associate multiple cache entries

to the same group identifier.

The value of the dependency-id element is generated by concatenating the dependency ID base string

with the values that are returned by its component elements. If a required component returns a null value,

the entire dependency does not generate and is not used. Validate the dependency IDs explicitly through

the dynamic cache API, or use the invalidation element. Multiple dependency ID rules can exist in one

cache-entry element. All dependency rules run separately.

invalidation element

To invalidate cached objects, the application server must generate unique invalidation IDs. Build

invalidation IDs by writing custom Java code or through rules that are defined in the cache policy of each

cache entry. The following example illustrates an invalidation in the cache policy:

<invalidation>component* | invalidationgenerator? </invalidation>

invalidationgenerator subelement

The invalidationgenerator element is used with the Web Services client cache only. Use the

invalidationgenerator element to specify the class name to load for generating invalidation IDs. The

2366 Administering WebSphere applications

InvalidationGenerator class must implement the

com.ibm.websphere.cache.webservices.InvalidationGenerator interface. An example of the

invalidationgenerator element follows:

<invalidationgenerator>class name</invalidationgenerator>

In this example, classname is the fully qualified name of the class that implements the

com.ibm.websphere.cache.webservices.InvalidationGenerator interface. Define this generator class in a

shared library.

Configuring command caching

Cacheable commands are stored in the cache for reuse with a similar mechanism for servlets and

JavaServer Pages (JSP) files.

About this task

In this case, however, the unique cache IDs are generated based on methods and fields present in the

command as input parameters. For example, a GetStockQuote command can have a symbol as its input

parameter.

A unique cache ID can generate from the name of the command, plus the value of the symbol.

To use command caching you must:

Create a command.

1. Define an interface. The Command interface specifies the most basic aspects of a command.

You must define the interface that extends one or more of the interfaces in the command package. The

command package consists of three interfaces:

v TargetableCommand

v CompensableCommand

v CacheableCommand

In practice, most commands implement the TargetableCommand interface, which allows the command

to run remotely. The code structure of a command interface for a targetable command follows:

...

import com.ibm.websphere.command.*;

public interface MyCommand extends TargetableCommand {

 // Declare application methods here

}

2. Provide an implementation class for the interface. Write an interface that extends the

CacheableCommandImpl class and implements your command interface. This class contains the code

for the methods in your interface, the methods inherited from extended interfaces like the

CacheableCommand interface, and the required or abstract methods in the CacheableCommandImpl

class.

You can also override the default implementations of other methods provided in the

CacheableCommandImpl class.

Command class

Extend one or more of the three interfaces included in the command package to write a command

interface. The base interface for all commands is the Command interface.

The Command interface provides only the client-side interface for generic commands and declares three

basic methods:

v isReadyToCallExecute. This method is called on the client side before the command runs on server.

v execute. This method passes the command to the target and returns any data.

Chapter 14. Learn about WebSphere programming extensions 2367

v reset. This method reverts any output properties to the values they had before the execute method was

called so that you can reuse the object.

The implementation class for your interface must contain implementations for the isReadyToCallExecute

and reset methods.

CacheableCommandImpl class

Commands are implemented by extending the class CacheableCommandImpl, which implements the

CacheableCommand interface.

The CacheableCommandImpl class is an abstract class that provides implementations for some of the

methods in the CacheableCommand interface, for example, setting return values. This class declares

additional methods that the application must implement, for example, how to run the command.

The code structure of an implementation class for the CacheableCommand interface follows:

...

import com.ibm.websphere.command.*;

public class MyCommandImpl extends CacheableCommandImpl

implements MyCommand {

// Set instance variables here ...

// Implement methods in the MyCommand interface ...

// Implement abstract methods in the CacheableCommandImpl class

...

}

Example: Caching a command object

Cacheable commands are stored in the cache for reuse with a similar mechanism for servlets and

JavaServer Pages (JSP) files.

This example of command caching is a simple stock quote command.

The following is a stock quote command bean. It accepts a ticker as an input parameter and produces a

price as its output parameter.

public class QuoteCommand extends CacheableCommandImpl

{

 private String ticker;

 private double price;

 // called to validate that command input parameters have been set

 public boolean isReadyToCallExecute() {

 return (ticker!=null);

 }

 // called by a cache-hit to copy output properties to this object

 public void setOutputProperties(TargetableCommand fromCommand) {

 QuoteCommand f = (QuoteCommand)fromCommand;

 this.price = f.price;

 }

 // business logic method called when the stock price must be retrieved

 public void performExecute()throws Exception {...}

 //input parameters for the command

 public void setTicker(String ticker) { this.ticker=ticker;}

 public String getTicker() { return ticker;}

 //output parameters for the command

 public double getPrice() { return price;};

}

To cache the above command object using the stock ticker as the cache key and using a 60 second

time-to-live, use the following cache policy:

2368 Administering WebSphere applications

<cache>

 <cache-entry>

 <class>command</class>

 <sharing-policy>not-shared</sharing-policy>

 <name>QuoteCommand</name>

 <cache-id>

 <component type="method" id="getTicker">

 <required>true</required>

 </component>

 <priority>3</priority>

 <timeout>60</timeout>

 </cache-id>

 </cache-entry>

</cache>

Configuring the Web services client cache

The Web services client cache is a part of the dynamic cache service that is used to increase the

performance of Web services clients by caching responses from remote Web services. Configuring the

Web services client cache can improve the performance of your application server by caching the

responses from remote Web services for a specified amount of time.

Before you begin

Enable the dynamic cache service. To enable the dynamic cache service, see “Task overview: Using the

dynamic cache service to improve performance” on page 2315. Before attempting to configure the Web

services client cache, understand how to create basic cache policies. See “Configuring cacheable objects

with the cachespec.xml file” on page 2352 for more information.

About this task

Enabling the Web services client cache is an option to improve the performance of your system by using

the dynamic cache service to save responses from remote Web services for a specified amount of time.

After a response is returned from a remote Web service, the response is saved in the client cache on the

application server. Any identical requests that are made to the same remote Web service are then

responded to from the cache for a specified period of time. The Web services client cache relies primarily

on time-based invalidations because the target web service can be outside of your enterprise network and

unaware of your client caching. Therefore, you can specify the amount of time in the cache and the rules

to build cache entry IDs in the cache in your client application.

The Web services client cache is provided as a Java API for XML-Based Remote Procedure Calls

(JAX-RPC) handler on your application server. This JAX-RPC cache handler intercepts the SOAP requests

that flow through it from application clients. It then identifies a cache policy based on the target Web

service. After a policy is found, all the cache ID rules are evaluated one by one until a valid rule is

detected.

1. Locate the Web Services Description Language (WSDL) file for the remote service. Portions of the

WSDL file contain information that you will use in writing your cache policy. For more information about

WSDL files, see “WSDL” on page 362. Following is an example of portions of a WSDL file that

contains values that are used for the purpose of demonstration.

<definitions targetNamespace="http://TradeSample.com/"

 xmlns:tns="http://TradeSample.com/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="getQuoteRequest">

 <part name="symbol" type="xsd:string"/>

 </message>

.....

.....

<binding name="SoapBinding" type="tns:GetQuote">

Chapter 14. Learn about WebSphere programming extensions 2369

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getQuote">

 <soap:operation soapAction=""/>

 <input name="getQuoteRequest">

 <soap:body namespace="http://TradeSample.com/"

 use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 </operation>

</binding>

<service name="GetQuoteService">

 <port binding="tns:SoapBinding" name="SoapPort">

 <soap:address location="http://TradeSample.com:9080/service/getquote"/>

 </port>

</service>

</definitions>

The highlighted text indicates values that are used in writing your cache policy.

2. Choose how you plan to generate the cache id for your Web services client caching. You can build

your cache id rules by using one of four options:

v By calculating a hash of the SOAPEnvelope

v By using SOAPHeader entries

v By using operation and part parameters

v By using custom Java code to build the cache id from input SOAP message content

Using SOAPHeader entries is the best option if you can include information for building cache keys as

part of the SOAP header. This method creates easy to read cache keys and can be built without

parsing the SOAP body. Use custom Java code to generate a specific cache id based on the SOAP

message. If you cannot include the header information, you can calculate the hash of the

SOAPEnvelope for performance or parse the SOAP Body for user-friendly cache keys.

3. Develop your cache policy.

All Web services client cache policies must have the class JAXRPCClient. The name element in each

cache entry is the target endpoint location that is defined in the WSDL file. You can find this address in

the WSDL file by finding the <soap:address location=″..″/> tag located in the port element. In the

WSDL file for this sample, the address is http://TradeSample.com:9080/service/getquote. Develop

the rest of your cache policy by using one of the following options:

v Calculate a hash of the SOAPEnvelope to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="hash" type="SOAPEnvelope"/>

 <timeout>60</timeout>

 </cache-id>

 </cache-entry>

</cache>

Note the component attributes to create a cache id based on a hash calculation of the

SOAPEnvelope. The cache id for this sample is generated as http://TradeSample.com:9080/
service/getquote:Hash=xxxHashSoapEnvelope.

v Use the SoapHeader to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

2370 Administering WebSphere applications

<component id="urn:stock:getQuote" type="SOAPHeaderEntry"/>

 </cache-id>

 </cache-entry>

</cache>

This cache id is built by using special information in the SOAP header to identify requests for entries

in the cache. Specify the type as SOAPHeaderEntry and the id as the operation name located in the

binding element in the WSDL file. The cache id for this sample is generated as

http://TradeSample.com:9080/service/getquote:urn:stock:getQuote=IBM.

An example of a SOAP request generated by the client using SOAP Header:

Note that the soapenv:actor attribute must contain com.ibm.websphere.cache.

POST /wsgwsoap1/soaprpcrouther HTTP/1.1

SOAPAction: ""

Context-Type: text/xml; charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-Length: 645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

 <getQuote soapenv:actor="com.ibm.websphere.cache" xmlns="urn:stock">IBM</getQuote>

</soapenv:Header>

<soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

 <getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM</symbol>

 </getQuote>

</soapenv:Body>

</soapenv:Envelope>

v Use operation and part to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="" type="operation">

 <value>http://TradeSample.com/:getQuote</value>

 </component>

 <component id="symbol" type="part"/>

 </cache-id>

 </cache-entry>

</cache>

This example uses operation and request parameters. The operation can be a method name in the

WSDL file located in the binding element or a method name in the Document/Literal Invocation

(DII). If the namespace of the operation is defined, the value is formatted as

namespaceOfOperation:nameOfOperation. The part type can be defined in the message element of

the WSDL file, as a request parameter, or as a request parameter of the DII invocation. Its id

attribute is the part or parameter name, and the value is the part or parameter value. The cache id

generated from using operation and request parameters is http://TradeSample.com:9080/service/
getquote:operation=http://TradeSample.com/:getQuote/symbol=IBM.

An example of the SOAP request generated by the client using operation and part:

POST /wsgwsoap1/soaprpcrouter HTTP/1.1

SOAPAction:""

Content-Type: text/xml/charset=utf-8

User-Agent: Java/1.4.1

Chapter 14. Learn about WebSphere programming extensions 2371

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Current-Length: 645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns: soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM</symbol>

 </getQuote>

</soapenv:Body>

</soapenv:Envelope>

v Use custom Java code to build the cache id from input SOAP message content

If you use custom Java code to build the cache id, create an ID generator Java class that

implements the IdGenerator interface defined in the

com.ibm.websphere.cache.webservices.IdGenerator package and add a reference to the class you

create in the cachespec.xml file by using the idgenerator tag.

You can also implement the com.ibm.websphere.cache.webservices.MetaDataGenerator package to

assign cache metadata such as timeout, priority, and dependency ids to cache entries using the

metadatagenerator tag.

Implement the com.ibm.websphere.cache.webservices.InvalidationGenerator interface and use the

invalidationgenerator tag in the cachespec.xml file to generate cache ids and to invalidate entries

in the cache. The id generated by the invalidation generator can be a cache id or a dependency id.

For example, if you develop an ID generator class named SampleIdGeneratorImpl, a metadata

generator class named SampleMetaDataGeneratorImpl, and an invalidation generator class named

SampleInvalidationGeneratorImpl, your cachespec.xml file might contain the following:

<cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

 <metadatagenerator>

 com.mycompany.SampleMetaDataAndInvalidationGeneratorImpl

 </metadatagenerator>

 <timeout>60</timeout>

 </cache-id>

 <invalidation>http://TradeSample.com:9080/service/GetQuote

 <invalidationgenerator>

 com.mycompany.SampleMetaDataAndInvalidationGeneratorImpl

 </invalidationgenerator>

 </invalidation>

</cache-entry>

The SampleIdGeneratorImpl class is a custom Java class that implements the

com.websphere.cache.webservices.IdGenerator interface. The SampleIdGeneratorImpl class

contains the getID method:

String getId(javax.xml.rpc.handler.soap.SOAPMessageContext messageContext)

The following is an example of the SampleIdGeneratorImpl.java class.

public class SampleIdGeneratorImpl implements IdGenerator {

//The SampleIdGenerator class builds cache keys using SOAP header entries

 public String getId(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext) {

 // retrieve SOAP header entries from SOAPMessage

 SOAPHeader sh = soapEnvelope.getHeader();

2372 Administering WebSphere applications

if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals("getQuote")){

 String sNamespace = element.getNamespaceURI("");

 if (sNamespace != null && !sNamespace.equals("")) {

 headerEntryName = sNamespace + ":" + headerEntryName;

 String quotes = element.getValue();

 }

 ...

 ...

 // create a method "parseAndSort" to parse and sort quotes

 // By parsing and sorting quotes, you avoid duplicate cache

 // entries.

 // quotes e.g. IBM,CSCO,MSFT,INTC

 // to return a cache key "urn:stock:getQuote=CSCO,IBM,INTC,MSFT"

 String sortQuotes = parseAndSort(quotes);

 cacheKey = headerEntryName + "=" + sortQuotes;

 }

 }

 return cacheKey;

 }

 }

The cache id for this sample is generated as http://TradeSample.com:9080/service/
getquote:urn:stock:symbol=CSCO,IBM,INTC,MSFT.

The SampleMetaDataAndInvalidationGeneratorImpl class is a custom Java class that implements

the com.websphere.cache.webservices.MetaDataGenerator interface and the

com.websphere.cache.webservices.InvalidationGenerator interface. The

SampleMetaDataAndInvalidationGeneratorImpl class contains the setMetaData method and the

getInvalidationIds method. You can also set up two smaller classes instead of this one large class.

For example, create one class for the metadata generator and a different class for the invalidation

generator. The following are method prototypes for the setMetaData method and the

getInvalidationIds method:

void setMetaData (javax.xml.rpc.handler.soap.SOAPMessageContext messageContext,

 com.ibm.websphere.cache.webservices.JAXRPCEntryInfo entryInfo)

String[] getInvalidationIds (javax.xml.rpc.handler.soap.SOAPMessageContext messageContext)

An example of the SampleMetaDataAndInvalidationGeneratorImpl.java class follows:

public class SampleMetaDataAndInvalidationGeneratorImpl implements

 MetaDataGenerator, InvalidationGenerator {

 //assigns time limit, and priority metadata

 public void setMetadata(javax.xml.rpc.handler.soap.SOAPMessageContext messageContext,

 com.ibm.websphere.cache.webservices.JAXRPCEntryInfo entryInfo) {

 // retrieve SOAP header entries from SOAPMessage

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals(“metadata”)) {

 // retrieve each metadata element and set metadata

 entryInfo.setTimeLimit(timeLimit);

 entryInfo.setPriority(priority);

 }

 }

Chapter 14. Learn about WebSphere programming extensions 2373

}

 //builds invalidation ids using SOAP header.

 public String[] getInvalidationIds(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext) {

 // retrieve SOAP header entries from SOAPMessage

 String[] invalidationIds = new String[1];

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals("invalidation")) {

 String sNamespace = element.getNamespaceURI("");

 if (sNamespace != null && !sNamespace.equals("")) {

 headerEntryName = sNamespace + ":symbol";

 String quotes = element.getValue();

 }

 ...

 ...

 // create a method "parseAndSort" to parse and sort quotes

 // By parsing and sorting quotes, you avoid duplicate cache

 // entries.

 // quotes e.g. SUNW,NT

 // to return a cache key "urn:stock:symbol=NT,SUNW"

 String sortQuotes = parseAndSort(quotes);

 invalidationIds[0] = headerEntryName + "=" sortQuotes;

 }

 }

 return invalidationIds;

 }

}

The invalidation id for this sample is generated as:

http://TradeSample.com:9080/service/getquote:urn:stock:symbol=NT,SUNW

An example of the SOAP request generated by the client when using custom Java code follows:

POST /wsgwsoap1/soaprpcrouter HTTP/1.1

SOAPAction: ""

Context-type: text/xml, charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-Length:645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

 <getQuote soapenv:actor="com.mycompany.actor"

 xmlns="urn:stock">IBM,CSCO,MSFT,INTC</getQuote>

 <metaData soapenv:actor="com.mycompany.actor" xmlns="urn:stock">

 <priority>10</priority>

 <timeLimit>30000</timeLimit>

 </metaData>

 <invalidation soapenv:actor="com.mycompany.actor"

 xmlns="urn:stock">SUNW, NT</invalidation>

</soapenv:Header>

<soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

2374 Administering WebSphere applications

<getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM,CSCO,MSFT,INTC</symbol>

</getQuote>

</soapenv:Body>

</soapenv:Envelope>

4. Save the cache policy to the appropriate directory.

v If you are using the Web Services Gateway on SOAP channel 1, the directory is:

<app_server_root>\installedApps\wsgwsoap1.servername.nodename.ear/wsgwsoap.war/WEB-INF

v If you are using a simple JAX-RPC client in your application to invoke remote Web services, save

your cache policy in the Web module WEB-INF of your JAX-RPC application.

Results

You can monitor the results of your Web services client cache policy by using the dynamic cache monitor.

See “Displaying cache information” on page 2394 for more information.

Using the DistributedMap and DistributedObjectCache interfaces for

the dynamic cache

By using the DistributedMap or DistributedObjectCache interfaces, Java Platform, Enterprise Edition (Java

EE) applications and system components can cache and share Java objects by storing a reference to the

object in the cache.

About this task

The DistributedMap and DistributedObjectCache interfaces are simple interfaces for the dynamic cache.

Using these interfaces, Java EE applications and system components can cache and share Java objects

by storing a reference to the object in the cache. The default dynamic cache instance is created if the

dynamic cache service is enabled in the administrative console. This default instance is bound to the

global Java Naming and Directory Interface (JNDI) namespace using the name services/cache/
distributedmap.

Multiple instances of the DistributedMap and DistributedObjectCache interfaces on the same Java virtual

machine (JVM) enable applications to separately configure cache instances as needed. Each instance of

the DistributedMap interface has its own properties.

Note: For more information about the DistributedMap and DistributedObjectCache interfaces, see the API

documentation for the com.ibm.websphere.cache package. See Additional Application Programming

Interfaces (APIs) for more information.

Note: If you are using custom object keys, you must place your classes in a shared library. You can

define the shared library at cell, node, or server level. Then, in each server create a class loader

and associate it with the shared library that you defined. See the Setting up the application serving

environment PDF for more information.

Place JAR files in a shared library when you deploy the application in a cluster with replication

enabled. Simply turning on replication does not require a shared library; however, if you are using

application-specific Java objects, such as cache key or cache value, those Java classes are

required to be in the shared library. If those values are not in a shared library, you will get

ClassNotFound exceptions when the data replication service (DRS) attempts to deserialize those

objects on the receiving side.

In a clustered environment, the content you place in cache might be shared with other servers in the

cluster. The content might also be offloaded to disk. If you intend to have the cached objects shared or

offloaded to disk, you must make these particular objects serializable. If the objects you place in cache are

non-serializable, you must specify that the sharing policy for these objects is not shared. The

Chapter 14. Learn about WebSphere programming extensions 2375

DistributedMap interface DistributedMap interface contains information about how to specify the sharing

policy for a cached object. Specifying a sharing policy other than not shared for non-serializable objects

can result in poor system performance.

There are four methods for configuring and using cache instances:

v Configuring the default object cache (method one below)

v Creating and configuring the custom object cache (method three below)

v Creating and configuring the custom object cache by using the cacheinstances.properties file (method

four below)

v Using the resource reference (method five below)

v Method 1 - Configure default cache instances. The default servlet cache instance (JNDI name:

services/cache/basecache) is created when the server starts , if servlet caching is enabled. The default

object cache instance (JNDI name: services/cache/distributedmap) is always created when the server

starts.

1. In the administrative console, select Servers > Application servers > <server_name> Container

services > Dynamic cache services.

2. Configure other cache settings. Refer to the Dynamic cache service settings article for more

information.

3. Click Apply or OK.

4. Restart WebSphere Application Server.

You can use the following code to look up the cache instances:

 InitialContext ic = new InitialContext();

DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");

DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

// or

InitialContext ic = new InitialContext();

DistributedObjectCache dm1 = (DistributedObjectCache)ic.lookup("services/cache/instance_one");

DistributedObjectCache dm2 = (DistributedObjectCache)ic.lookup("services/cache/instance_two");

v

v Method 2 - Configure servlet cache instances. A servlet cache instance is a location, in addition to

the default servlet cache, where dynamic cache can store, distribute, and share data. By using servlet

cache instances, your applications have greater flexibility and better tuning of the cache resources. The

Java™ Naming and Directory Interface (JNDI) name that is specified for the cache instance is mapped

to the name attribute in the <cache instance> tag in the cachespec.xml configuration file.

 1. In the administrative console, click Resources > Cache instances > Servlet cache instances.

 2. Enter the scope, as follows:

– Specify CELL SCOPE to view and configure cache instances that are available to all servers

within the cell.

– Specify NODE SCOPE to view and configure cache instances that are available to all servers

with the particular node.

– Specify SERVER SCOPE to view and configure cache instances that are available only on the

specific server.

 3. Enter the required display name for the resource in the name field.

 4. Enter the JNDI name for the resource. Specify this name in the attribute field in the

<cache-instance> tag in the cachespec.xml configuration file. This tag finds the particular cache

instance in which to store cache entries.

 5. Configure other cache settings. Refer the Dynamic cache service settings article for more

information.

2376 Administering WebSphere applications

6. Click Apply or OK.

 7. Optional:If you want to set up additional custom properties for this instance, click Resources >

Cache instances > Servlet cache instances <servlet_cache_instance_name> > Custom

properties > New.

 8. Optional: Enter the name of the custom property in the Name field. Refer to the Dynamic cache

custom properties article for more information.

Note: Use the custom property with scope indicated Per cache instnace only. For example, enter

createCacheAtServerStartup in the Name field.

 9. Enter a valid value for the property in the Value field.

10. Save the property and restart WebSphere Application Server.

v

v Method 3 - Configure object cache instances. An object cache instance is a location, in addition to

the default object cache, where dynamic cache can store, distribute, and share data for Java™ Platform,

Enterprise Edition (Java EE) applications. Use cache instances to give applications better flexibility and

tuning of the cache resources. Use the DistributedObjectCache programming interface to access the

cache instances. For more information about the DistributedObjectCache application programming

interface, see the API documentation.

Note: Method three is an extension to method one or method two, listed above. First use either method

one or method two.

Create and configure the object cache instance, as follows:

 1. In the administrative console, click Resources > Cache instances > Object cache intances.

 2. Enter the scope:

– Specify CELL SCOPE to view and configure cache instances that are available to all servers

within the cell.

– Specfy NODE SCOPE to view and configure cache instances that area available to all servers

with the particular node.

– Specify SERVER SCOPE to view and configure cache instances that are available only on the

specific server.

 3. Enter the required display name for the resource in the name field.

 4. Enter the JNDI name for the resource. Use this name when looking up a reference to this cache

instance. The results return a DistributedMap object.

 5. Configure other cache settings. See the Dynamic cache service setting article for more information.

 6. Click Apply or OK.

 7. Optional: If you want to set up additional custom properties for this instance, click Resources >

Cache instances > Object cache instances <servlet_cache_instance_name> Custom

properties > New.

 8. Optional: Enter the name of the custom property in the Name field.

Note: Use the custom property with scope indicated Per cache instance only. For example, enter

createCacheAtServerStartup in the Name field.

 9. Enter a valid value for the property in the Value field.

10. Save the property and restart WebSphere Application Server.

If you defined two object cache instances in the administrative console with JNDI names of

services/cache/instance_one and services/cache/instance_two, you can use the following code to

look up the cache instances:

 InitialContext ic = new InitialContext();

DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");

DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

Chapter 14. Learn about WebSphere programming extensions 2377

// or

InitialContext ic = new InitialContext();

DistributedObjectCache dm1 = (DistributedObjectCache)ic.lookup("services/cache/instance_one");

DistributedObjectCache dm2 = (DistributedObjectCache)ic.lookup("services/cache/instance_two");

v Method 4 - Configure cache instances using the cacheinstances.properties file. You can create

cache instances using the cacheinstances.properties file and package the file in your Enterprise Archive

(EAR) file. Use the table information in the cacheinstances.properties file article as a reference of the

names, values, and explanations.

The first line defines the cache instance name. The subsequent lines define custom properties. The

formats are as follows:

cache.instance.x=InstanceName

cache.instance.x.customPropertyName=customPropertyValue

where:

– x is the instance name number, which starts with 0.

– customPropertyName is the custom property name. Refer to the Dynamic cache custom properties

article for more information.

Note: Use the custom property with scope indicated per cache instance only.

– customPropertyValue is the possible custom property value.

Examples

The following is an example of how you can create additional cache instances using the

cacheinstances.properties. file:

cache.instance.0=/services/cache/instance_one

cache.instance.0.cacheSize=1000

cache.instance.0.enableDiskOffload=true

cache.instance.0.diskOffloadLocation=${app_server_root}/diskOffload

cache.instance.0.flushToDiskOnStop=true

cache.instance.0.useListenerContext=true

cache.instance.0.enableCacheReplication=false

cache.instance.0.disableDependencyId=false

cache.instance.0.htodCleanupFrequency=60

cache.instance.1=/services/cache/instance_two

cache.instance.1.cacheSize=1500

cache.instance.1.enableDiskOffload=false

cache.instance.1.flushToDiskOnStop=false

cache.instance.1.useListenerContext=false

cache.instance.1.enableCacheReplication=true

cache.instance.1.replicationDomain=DynaCacheCluster

cache.instance.1.disableDependencyId=true

The preceding example creates two cache instances named instance_one and instance_two. Cache

instance_one has a cache entry size of 1,000 and instance_two has a cache entry size of 1,500. Disk

offload is enabled in instance_one and disabled in instance_two. Use listener context is enabled in

instance_one and disabled in instance_two. Flush to disk on stop is enabled in instance_one and

disabled in instance_two. Cache replication is enabled in instance_two and disabled in instance_one.

The name of the data replication domain for instance_two is DynaCacheCluster. Dependency ID support

is disabled in instance_two.

Place the cacheinstances.properties file in either your application server or application class path. For

example, you can use your application WAR file, WEB-INF\classes directory or server_root\classes

directory. The first entry in the properties file (cache.instance.0) specifies the JNDI name for the cache

instance in the global namespace.

You can use the following code to look up the cache instance:

2378 Administering WebSphere applications

InitialContext ic = new InitialContext();

 DistributedMap dm1 =

(DistributedMap)ic.lookup("services/cache/instance_one");

 DistributedMap dm2 =

(DistributedMap)ic.lookup("services/cache/instance_two");

// or

InitialContext ic = new InitialContext();

DistributedObjectCache dm1 = (DistributedObjectCache)ic.lookup("services/cache/instance_one");

DistributedObjectCache dm2 = (DistributedObjectCache)ic.lookup("services/cache/instance_two");

v Method 5: Resource reference.

Note: This method is an extension to method three and method four, listed above. First use either

method three or method four.

Define a resource-ref in your module deployment descriptor (web.xml and ibm-web-bnd.xmi files) and

look up the cache using the java:comp namespace.

Resource-ref example:

File: web.xml

<resource-ref id="ResourceRef_1">

 <res-ref-name>dmap/LayoutCache</res-ref-name>

 <res-type>com.ibm.websphere.cache.DistributedMap</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

<resource-ref id="ResourceRef_2">

 <res-ref-name>dmap/UserCache</res-ref-name>

 <res-type>com.ibm.websphere.cache.DistributedMap</res-type>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

File: ibm-web-bnd.xmi

<?xml version="1.0" encoding="UTF-8"?>

<webappbnd:WebAppBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:webappbnd="webappbnd.xmi"

xmlns:webapplication="webapplication.xmi" xmlns:commonbnd="commonbnd.xmi"

xmlns:common="common.xmi"

xmi:id="WebApp_ID_Bnd" virtualHostName="default_host">

 <webapp href="WEB-INF/web.xml#WebApp_ID"/>

 <resRefBindings xmi:id="ResourceRefBinding_1"

jndiName="services/cache/instance_one">

 <bindingResourceRef href="WEB-INF/web.xml#ResourceRef_1"/>

 </resRefBindings>

 <resRefBindings xmi:id="ResourceRefBinding_2"

jndiName="services/cache/instance_two">

 <bindingResourceRef href="WEB-INF/web.xml#ResourceRef_2"/>

 </resRefBindings>

 </webappbnd:WebAppBinding>

The following example shows how to look up the resource-ref:

InitialContext ic = new InitialContext();

 DistributedMap dm1a =(DistributedMap)ic.lookup("java:comp/env/dmap/LayoutCache");

 DistributedMap dm2a =(DistributedMap)ic.lookup("java:comp/env/dmap/UserCache");

// or

 DistributedObjectCache dm1a =(DistributedObjectCache)ic.lookup("java:comp/env/dmap/LayoutCache");

 DistributedObjectCache dm2a =(DistributedObjectCache)ic.lookup("java:comp/env/dmap/UserCache");

The previous resource-ref example maps java:comp/env/dmap/LayoutCache to /services/cache/
instance_one and java:comp/env/dmap/UserCache to /services/cache/instance_two. In the examples,

DistributedMap dm1 and dm1a are the same object. DistributedMap dm2 and dm2a are the same

object.

Chapter 14. Learn about WebSphere programming extensions 2379

v Method 6: Java virtual machine cache settings. You can set the custom properties globally to affect

all cache instances. This overwrites the settings in method 1, method 2 and method 3, but not method 4

(cacheinstances.properties). Configure the cache instance globally, as follows:

1. In the administrative console, click Servers > Application servers > server_name > Java and

process management > Process definition > Java virtual machine > Custom properties >

New.

2. Enter the name of the custom property in the Name field. Refer to the Dynamic cache custom

properties article for more information. After you find the custom property name, add the

com.ibm.ws.cache.CacheConfig prefix to the front of custom property name. For example, if the

custom property name is createCacheAtServerStartup, enter

com.ibm.ws.cache.CacheConfig.createCacheAtServerStartup in the Name field.

3. Enter a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

Object cache instance settings

An object cache instance is a location, in addition to the default shared dynamic cache, where any Java 2

Platform, Enterprise Edition (J2EE) application can store, distribute, and share data. This gives

applications greater flexibility and better tuning of the cache resources. Use the DistributedMap

programming interface to access this cache instance. See the API documentation for more information.

To view this administrative console page, click Resources > Cache instances > Object cache instances

> cache_instance_name.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Use this name when

looking up a reference to this cache instance. The results return a DistributedMap object.

Description:

Specifies a description for the resource. This field is optional.

Category:

Specifies a category string to classify or group the resource. This field is optional.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands.

 Default 2000

Range 100 - 200,000

Default priority:

Specifies the default priority for servlets that can be cached. This value determines how long an entry

stays in a full cache.

 The recommended value is one. The range is one through 255.

2380 Administering WebSphere applications

Enable disk offload:

Specifies if disk offloading is enabled.

 If you have disk offload disabled, when a new entry is created while the cache is full, the priorities are

configured for each entry and the least recently used algorithm are used to remove the entry from the

cache in memory. If you enable disk offload, the entry that would be removed from the cache is copied to

the local file system. The location of the file is specified by the disk offload location.

 Default false

Offload location:

Specifies the directory that is used for disk offload.

 If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server

name/_dynacache/cache JNDI name will be used. If disk offload location is specified, the node, server name,

and cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the

location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored

if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the

value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move

the disk cache contents to the new location:

v The Application Server creates a new disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all the disk cache content at the old location is lost when you

restart the Application Server

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable Disk Offload is not selected.

 Default false

Limit disk cache size in GB:

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a

positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you

can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting

applies only if enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

Chapter 14. Learn about WebSphere programming extensions 2381

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than

this, when evicted from memory, will not be offloaded to disk. When you select this option, you can specify

a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if

enableDiskOffload is specified for the cache. Performance levels determine how memory resources

should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.

This setting applies only if enable disk offload is specified for the cache.

 High performance and high memory usage Indicates that all metadata will be kept in memory.

Balanced performance and balanced memory usage Indicates some metadata will be kept in memory. This is

the default performance setting and will provide an

optimal balance of performance and memory usage for

most users.

Low performance and low memory usage Indicates that limited metadata will be kept in memory.

Custom performance Indicates that the administrator will explicitly configure the

memory settings that will be used to support the above

background activity. The administrator sets these values

using the DiskCacheCustomPerformanceSettings

object.

Disk cache cleanup frequency:

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup

runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,

or custom. The high performance level does not require disk cleanup, and this value is ignored.

 Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Specifies a value for the maximum number of cache identifiers that are stored for an individual

dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information

is offloaded to the disk. This setting applies only when the disk offload performance level is custom.

 Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 100 to MAXINT

Maximum buffer for templates:

2382 Administering WebSphere applications

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 10 to MAXINT

Eviction policy algorithm:

Specifies the eviction algorithm that the disk cache will use to evict entries once the high threshold is

reached. This setting applies only if enable disk offload is specified for the cache.

 None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service

stops writing to disk

Random When the disk size reaches a high threshold limit, the

disk cache garbage collector wakes up and randomly

picks entries on the disk and evicts them until the size

reaches a low threshold limit.

Size When the disk size reaches a high threshold limit, the

disk cache garbge collector wakes up and picks the

largest entries on the disk and evicts them until the disk

size reaches a low threshold limit.

High threshold:

Specifies when the eviction policy runs. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The disk cache garbage collector is awaken when the disk size exceeds high

threshold limit. The lower value limits disk cache size in GB and disk cache size in entries. This setting

does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Low threshold:

Specifies when the eviction policy ends. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The lower value limits disk cache size in GB and disk cache size in entries.

The disk cache garbage collector, when awaken, evicts entries until the disk size reaches the low

threshold limit. This setting does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Use listener context:

Set this value to true to have invalidation events sent to registered invalidation listeners using the Java 2

Platform, Enterprise Edition (J2EE) context of the listener. If you want to use listener J2EE context for

callback, set this value to true. If you want to use the caller thread context for callback, set this to false.

Dependency ID support:

Specifies that the dynamic cache service, supports cache entry dependency IDs. Disable this option if you

do not need to use dependency IDs. Dependency IDs specify additional cache group identifiers that

associate multiple cache entries to the same group identifier in your cache policy.

Chapter 14. Learn about WebSphere programming extensions 2383

This option might not be available for cache instances that were created with a previous version of

WebSphere Application Server.

 Default true

Enable cache replication:

Use cache replication to enable sharing of cache IDs, cache entries, and cache invalidations with other

servers in the same replication domain.

 This option might be unavailable for cache instances created with a previous version of WebSphere

Application Server.

Full group replication domain:

Specifies a replication domain from which your data is replicated.

 Specifies a replication domain from which your data is replicated. Choose from any replication domains

that have been defined. If there are no replication domains listed, you must create one during cluster

creation or manually in the administrative console by clicking Environment > Internal replication

domains > New. The replication domain you choose to use with the dynamic cache service must be using

a Full group replica. Do not share replication domains between replication consumers. Dynamic cache

should use a different replication domain from session manager or stateful session beans.

Replication type:

Specifies the global sharing policy for this cache instance.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. If a

request is made for an ID which has not been previously published, the server assumes it does not

exist in the cluster and creates a new entry.

v Pull only shares cache entries for this object between application servers on demand. If an application

server gets a cache miss for this object, it queries the cooperating application servers to see if they

have the object. If no application server has a cached copy of the object, the original application server

runs the request and generates the object. These entries cannot store non-serializable data. This mode

of sharing is not recommended.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default setting for a an environment without clustering is Not Shared. When enabling replication, the

default value is Not Shared.

Push frequency:

Specifies the time, in seconds, to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) sends the cache entries immediately. Setting this property to a value greater than 0

(zero) results in a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 1 (one).

2384 Administering WebSphere applications

Object cache instance collection

Use this page to configure and manage object cache instances, which in addition to the default shared

dynamic cache, can store, distribute, and share data for Java 2 Platform, Enterprise Edition (J2EE)

applications. Use cache instances to give applications better flexibility and tuning of the cache resources.

To view this administrative console page, click Resources > Cache instances > Object cache

instances.

Use the DistributedObjectCache programming interface to access the cache instances. For more

information about the DistributedObjectCache application programming interface, see the API

documentation.

Scope: Specify CELL SCOPE to view and configure cache instances that are available to all servers

within the cell. Specify NODE SCOPE to view and configure cache instances that are available to all

servers with the particular node. Specify SERVER SCOPE to view and configure cache instances that are

available only on the specific server.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Use this name when

looking up a reference to this cache instance. The results return a DistributedMap object.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands. The default is 2000.

 The minimum value is 100, with no set maximum value.

cacheinstances.properties file

Use the information in this document as a reference of the names, values, and explanations that you can

use in the cacheinstances.properties file.

The following list provides the property names, associated values, and explanations for the

cacheinstance.properties file.

 Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

Cache core properties

cache.instance.x 5.1.x and later Per cache instance any string (no default

set)

Specifies cache

instance name or

JNDI name.

cache.instance.x.

cacheSize

5.1.x and later Per cache instance > 0 (default=2000) Specifies the

maximum number of

entries that are held

in memory cache.

Chapter 14. Learn about WebSphere programming extensions 2385

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x.

disableDependencyId

6.0.2.x and later Per cache instance True or false

(default=false)

Specifies that the

dynamic cache

service supports

cache entry

dependency IDs.

Disable this option if

you do not need to

use dependency IDs.

Dependency IDs

specify additional

cache group

identifiers that

associate multiple

cache entries to the

same group identifier

in your cache policy.

cache.instance.x.

disableTemplates

Support

6.0.2.x and later Per cache instance True or false

(default=false)

Specifies whether

template support

feature is enabled.

cache.instance.x.

useListenerContext

5.1.x and later Per cache instance True or false

(default=false)

Set this value to true

to have invalidation

events sent to

registered invalidation

listeners, using the

Java Platform,

Enterprise Edition

(Java EE) context of

the listener. If you

want to use listener

Java EE context for

callback, set this

value to true. If you

want to use the caller

thread context for

callback, set this

value to false.

cache.instance.x.

enableNioSupport

6.0.2.x and later Per cache instance True or false

(default=false)

Specifies whether

DistributedMap or

DistributedNioMap is

used.

cache.instance.x.

memoryCacheSizeInMB

7.0 Per cache instance > 0 (default: -1 limit

does not exist)

Specifies a value for

the maximum memory

cache size in

megabytes (MB)

cache.instance.x.

memoryCacheHigh

Threshold

7.0 Per cache instance > 0 % (default=95) Specifies when the

eviction policy runs.

The threshold is

expressed in terms of

the percentage of the

memory cache size in

MB. The higher value

is used when limit

memory cache size in

MB is specified.

2386 Administering WebSphere applications

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x.

memoryCacheLow

Threshold

7.0 Per cache instance > 0 % (default=80) Specifies when the

eviction policy runs.

The threshold is

expressed in terms of

the percentage of the

memory cache size in

MB. The lower value

is used when limit

memory cache size in

MB is specified.

cache.instance.x.

createCacheAt

ServerStartup

7.0 Per cache instance True or false

(default=false)

Specifies whether the

configured cache

instance is created

during the server

startup. This is useful

when cache

replication feature is

used. However, the

time for server startup

will take long.

Cache

servlet/JavaServer

Pages (JSP) caching

properties

cache.instance.x.

cascadeCachespec

Properties

6.0.2.19, 6.1.0.9 and

later

Per cache instance True or false

(default=false)

A configurable change

in the behavior of the

cache so that the

child pages and

fragments inherit the

cache specification

properties of their

parent pages and

fragments. If the

request for a fragment

does not match a

defined cache policy,

the fragment will

inherit the

save-attributes and

the store-cookies

properties from its

parent fragment.

Enable this cascade

of save-attributes and

store-cookies

properties by setting

the value to true.

Chapter 14. Learn about WebSphere programming extensions 2387

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x.

disableStoreCookies

6.0.2.9, 6.1.x and

later

Per cache instance ″none″, ″ALL″,″All″,

cache instance name,

comma delineated list

of cookie names,

(default=″none″)

Specifies whether

disable store cookies

is NONE or ALL.

Stores cookies as

part of the response

by default unless

configured otherwise

on a per request

basis in

cachespec.xml file.

There is a risk of

sharing cookies

between users, which

violates security.

cache.instance.x.

enableServlet

Support

6.0.2.x and later Per cache instance True or false

(default=false)

Specifies whether the

cache instance is

servlet cache or

object cache.

Cache disk offload

properties

cache.instance.x.

enableDiskOffload

5.1.x and later Per cache instance True or false

(default=false)

Specifies whether

disk offload is

enabled.

cache.instance.x.

diskOffload

Location

5.1.x and later Per cache instance String – For example:

. $(app_server_root)

/diskOffload

Specifies the location

on the disk to save

cache entries when

disk offload is

enabled.

cache.instance.x.

diskCacheSize

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance >= 0 (0=limit does not

exist)

Specifies a value for

the maximum disk

cache size in number

of entries.

cache.instance.x.

diskCacheSizeInGB

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance 0 or > 2 in GB

(0=limit does not

exist)

Specifies a value for

the maximum disk

cache size in

gigabytes (GB).

cache.instance.x.

diskCacheEntrySize

InMB

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance >= 0 in MB (0=limit

does not exist)

Specifies a value for

the maximum size of

an individual cache

entry in megabytes

(MB). Any cache entry

that is larger than

this, when evicted

from memory, will not

be offloaded to disk.

cache.instance.x.

flushToDiskOnStop

5.1.x and later Per cache instance True or false (default

= false)

Specifies if in-memory

cached objects are

saved to disk when

the server stops.

2388 Administering WebSphere applications

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x.

diskCache

PerformanceLevel

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance 0=low 1=balance

2=custom 3=high

(default=1)

Specifies the

performance level to

tune the performance

of the disk cache.

cache.instance.x.

htodCleanup

Frequency

5.1.1.2 and later Per cache instance 0 <= x <= 1440 in

minutes (0=cleanup at

midnight)

Specifies a value for

the disk cache

cleanup frequency, in

minutes. If this value

is set to 0, the

cleanup runs only at

midnight. This setting

applies only when the

Disk Offload

Performance Level is

low, balanced, or

custom. The high

performance level

does not require disk

cleanup, and this

value is ignored.

cache.instance.x.

htodDelayOffload

DepIdBuckets

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance > 0 (default=1000) Specifies a value for

the maximum number

of dependency

identifier buckets in

the disk cache

metadata in memory.

If this limit is

exceeded, the

information is

offloaded to the disk.

This setting applies

only when the disk

cache performance

level is custom.

cache.instance.x.

htodDelayOffload

TemplateBuckets

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance > 0 (default=100) Specifies a value for

the maximum number

of template buckets

that are in the disk

cache metadata in

memory. If this limit is

exceeded, the

information is

offloaded to the disk.

This setting applies

only when the disk

cache performance

level is custom.

Chapter 14. Learn about WebSphere programming extensions 2389

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x

htodDelayOffload

EntriesLimit

5.1.1.2 and later Per cache instance > 0 (default=1000) Specifies a value for

the maximum number

of cache identifiers

that are stored for an

individual dependency

ID or template in the

disk cache metadata

in memory. If this limit

is exceeded, the

information is

offloaded to the disk.

This setting applies

only when the disk

offload performance

level is custom.

cache.instance.x.

diskCacheEviction

Policy

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance 0=disable 1=random

2:size (default=0)

Specifies the eviction

algorithm that the disk

cache will use to evict

entries once the high

threshold is reached.

cache.instance.x.

diskCacheHigh

Threshold

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance > 0 % (default=80) Specifies when the

eviction policy runs.

The threshold is

expressed in terms of

the percentage of the

disk cache size in GB

or entries. The high

value is used when

limit disk cache size

in GB and limit disk

cache size in entries

are specified.

cache.instance.x.

diskCacheLow

Threshold

5.1.1.13, 6.0.2.17,

6.1.x and later

Per cache instance > 0 % (default=70) Specifies when the

eviction policy runs.

The threshold is

expressed in terms of

the percentage of the

disk cache size in GB

or entries. The lower

value is used when

limit disk cache size

in GB and limit disk

cache size in entries

are specified.

Cache replication

properties

2390 Administering WebSphere applications

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x.

enableCache

Replication

6.0.2.x and later Per cache instance True or false

(default=false)

Specifies whether

cache replication is

enabled. Use cache

replication to have

cache entries copied

to multiple application

servers configured in

the same replication

domain.

cache.instance.x.

replicationType

5.1.x and later Per cache instance 1 (Not shared, 2

(Push), 4 (Push and

pull)

Specifies the global

sharing policy for this

application server.

cache.instance.x.

replicationDomain

6.0.2.x and later Per cache instance String – For example:

DynamicCacheDomain

Specifies a replication

domain from which

your data is

replicated.

cache.instance.x.

useServer

ClassLoader

5.1.1.9, 6.0.2.9, 6.1.x

and later

Per cache instance True or false

(default=false)

Specifies whether

using server class

loader is enabled.

Setting this value to

true, deserializes the

InvalidationEvent

using system

classloader first and

then using application

classloader, if that

fails. This improves

performance.

cache.instance.x.

cacheEntryWindow

5.1.1.13, 6.0.2.17,

6.1.0.7 and later

Per cache instance > 0 (default=50) Specifies a limit on

the total number of

cache entries that are

sent by the data

replication service

(DRS) in terms of

number of entries.

cache.instance.x.

cachePercentage

Window

5.1.1.13, 6.0.2.17,

6.1.0.7 and later

Per cache instance > 0 % (default=2) Specifies a limit on

the number of cache

entries that are sent

by DRS in terms of

the percentage of

total cache in

memory.

cache.instance.x.

cacheInvalidate

EntryWindow

5.1.1.14, 6.0.2.19,

6.1.0.7 and later

Per cache instance > 0 (default=50) Specifies a limit on

the total number of

invalidation events

that are sent by DRS

in terms of number of

entries.

Chapter 14. Learn about WebSphere programming extensions 2391

Property name - x is

the instance

number, which

starts with 0 Version Scope Possible value Description

cache.instance.x.

cacheInvalidate

PercentWindow

5.1.1.14, 6.0.2.19,

6.1.0.7 and later

Per cache instance > 0 % (default=2) Specifies a limit on

the number of

invalidation events

that are sent by DRS

in terms of the

percentage of total

cache in memory.

cache.instance.x.

filterTimeOut

Invalidation

6.0.2.13, 6.1.x and

later

Per cache instance True or false

(default=false)

Specifies whether

sending invalidations

that are based on

timeout eviction is

enabled.

cache.instance.x.

filterLRU

Invalidation

6.0.2.13, 6.1.x and

later

Per cache instance True or false

(default=false)

Specifies whether

sending invalidations

that are based on

LRU eviction is

enabled.

cache.instance.x.

ignoreValueIn

InvalidationEvent

5.1.1.13, 6.0.2.17,

6.1.x or later

Per cache instance True or false

(default=false)

Specifies whether the

cache value of

Invalidation event is

ignored. If it is true,

the cache value of

Invalidation event is

set to NULL when the

code is returned to

the caller.

Invalidation listeners

Invalidation listener mechanism uses Java events for alerting applications when contents are removed

from the cache.

Applications implement the InvalidationListener interface (defined in the com.ibm.websphere.cache

package) and register it to the cache using the DistributedMap interface. Listeners receive

InvalidationEvents (defined in the com.ibm.websphere.cache package) when entries from the cache are

removed, due to an explicit user invalidation, timeout, least recently used (LRU) eviction, cache clear, or

disk timeout. Applications can immediately recalculate the invalidated data and prime the cache before the

next user request.

Enable listener support in DistributedMap before registering listeners. DistributedMap can also be

configured to use the invalidation listener Java Platform, Enterprise Edition (Java EE) context from

registration time during callbacks. Setting the value of the custom property useListenerContext to true

enables the invalidation listener Java EE context for callbacks. See Cache instance settings for more

information.

The following example shows how to set up an invalidation listener:

dmap.enableListener(true); // Enable cache invalidation listener.

InvalidationListener listener = new MyListenerImpl(); //Create invalidation listener object.

dmap.addInvalidationListener(listener); //Add invalidation listener.

 :

 :

 :

2392 Administering WebSphere applications

dmap.removeInvalidationListener(listener); //Remove the invalidation listener.

//This increases performance.

dmap.enableListener(false); // Disable cache invalidation listener.

//This increases performance.

For more information about invalidation listeners, see Additional Application Programming Interfaces (APIs)

for the com.ibm.websphere.cache package.

Disabling template-based invalidations during JSP reloads

By setting the Java virtual machine (JVM) com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation

custom property to true, the template-based invalidations are disabled during JSP reloads.

About this task

To set any of these JVM custom properties, complete the following steps:

1. In the administrative console, click Servers > Application servers > server_name > Process

definition > Java virtual machine > Custom properties > New.

2. Enter com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation in the Name field.

3. Enter true in the Value field.

4. Save the property and restart WebSphere Application Server.

Using object cache instances

Perform this task so that your application can access dynamic cache object cache instances with the

DistributedMap or DistributedObjectCache interfaces.

Before you begin

Before you begin, enable the dynamic cache service. See “Using the dynamic cache service” on page

2328 for more information.

About this task

Using object cache instances can improve the performance of your application because you can

programmatically store and share frequently used objects. By using object cache instances, you also have

the necessary control over the dynamic cache when you are running multiple applications in an application

server. See “Cache instances” on page 1410 for more information.

1. Configure one or more cache instances.

a. In the administrative console, click Resources > Cache instances > Object cache instances.

b. Specify the scope for the cache instance.

Cell scope makes the cache instance available to all servers within the cell. Node scope makes the

cache instance available to all servers on the particular node. Cluster scope makes the cache

instance available to all members in a specified cluster. Server scope makes the cache instance

available to only the selected server. You can mix scopes, if necessary.

c. Click Apply after changing the scope.

d. Click New.

e. Enter the Java Naming and Directory Interface (JNDI) name for this cache instance.

This is name that you pass to the InitialContext lookup() method from within your application. For

example, services/cache/instance_one.

f. Enter or modify other properties as needed.

Chapter 14. Learn about WebSphere programming extensions 2393

2. Update your application. To store and retrieve objects in an object cache instance, you need a

DistributedMap or DistributedObjectCache reference for the named object cache instance. See “Using

the DistributedMap and DistributedObjectCache interfaces for the dynamic cache” on page 2375 for

more information.

Results

You configured object cache instances that you can access programmatically with the DistributedMap and

DistributedObjectCache interfaces.

Displaying cache information

Use this task to monitor the activity of the dynamic cache service.

About this task

The dynamic cache monitor is an installable Web application that displays simple cache statistics, cache

entries, and cache policy information for servlet cache instances.

1. Use the administrative console to install the cache monitor application from the app_server_root/
installableApps directory. The name of the application is CacheMonitor.ear. For more information

about installing applications, see Installing enterprise application files with the console. Install the

cache monitor onto the application server that you want to monitor.

2. Configure the Web container transport chain and host alias for the server with cache monitor installed.

a. Add a host alias for the port your server is using. Click Environment > Virtual hosts > host_type

> Host aliases and create a new Host name and Port to add to the list.

b. You can then access the cache monitor using http://your_host_name:your_port_number/
cachemonitor.

Note: You can find the port number in the SystemOut.log file. Look for message TCPC0001I or

SRVE0171I.

3. Access the cache monitor using a Web browser and the URL http://your host_name:your

port_number/cachemonitor, where your port_number is the port associated with the host on which you

installed the cache monitor application.

4. Verify the list of cache instances that are shown. For each cache instance, you can perform the

following actions:

Note: You must select the servlet cache instance that you want to monitor. If you do not use servlet

cache instances by using <cache-instance> tags in your cachespec.xml file, all the content is in

the baseCache instance.

v View the Statistics page and verify the cache configuration and cache data. Click Reset Statistics

to reset the counters.

v View the Cache Policies page to see which cache policies are currently loaded in the dynamic

cache. Click on a template to view the cache ID rules for the template.

v View the Cache Contents page to examine the contents that are currently cached in memory.

v View the Edge Statistics page to view data about the current ESI processors configured for caching.

Click Refresh Statistics to see the latest statistics or content from the ESI processors. Click Reset

Statistics to reset the counters.

v View the Disk Offload page to view the disk configuration, statistics, and the content that is currently

off-loaded from memory to disk.

When you are viewing contents on memory or disk, click on a template to view all entries for that

template, click on a dependency ID to view all entries for the ID, or click on the cache ID to view all

the data that is cached for that entry.

5. Use the cache monitor to perform basic operations on data in a cache instance.

2394 Administering WebSphere applications

Remove an entry from cache

Click Invalidate when viewing a cache entry.

Remove all entries for a certain dependency ID

Click Invalidate when viewing entries for a dependency ID.

Remove all entries for a certain template

Click Invalidate when viewing entries for a template.

Move an entry to the front of the Least Recently Used queue to avoid eviction

Click Refresh when viewing a cache entry.

Move an entry from disk to cache

Click Send to Memory when viewing a cache entry on disk.

Clear the entire contents of the cache

Click Clear Cache while viewing statistics or contents.

Clear the contents on the ESI processors

Click Clear Cache while viewing ESI statistics or contents.

Clear the contents of the disk cache

Click Clear Disk while viewing disk contents.

Cache monitor

Cache monitor is an installable Web application that provides a real-time view of the current state of

dynamic cache. You use it to help verify that dynamic cache is operating as expected. The only way to

manipulate the data in the cache is by using the cache monitor. It provides a GUI interface to manually

change data.

Cache monitor provides a way to:

v Verify the configuration of dynamic cache

After you create multiple servlet cache instances in the administrative console, you can configure

properties, including the maximum size of the cache and disk offload location on each cache instance,

as well as advanced features such as controlling external caches. You can verify the configuration of the

dynamic cache by viewing of the configured features and properties in the cache monitor.

v Verify the cache policies

To cache an object, unique IDs must be generated for different invocations of that object. To create

unique IDs for each object, provide rules for each cacheable object in the cachespec.xml file, found

inside the Web module WEB-INF or enterprise bean META-INF directory. See “cachespec.xml file” on

page 2354 for more information. Each cacheable object can have multiple cache ID rules that run in

sequence until either a rule returns a cache ID or no more rules remain. If none of the cache ID

generation rules produce a valid cache ID, then the object is not cached. There can be multiple

cachespec.xml files with multiple cache ID rules. With cache monitor, you can verify the policies of each

object. You can also view all of the cache polices for each cache instance that is currently loaded in

dynamic cache. This view is also convenient to verify that the cachespec.xml file was read by the

dynamic cache without errors.

v Monitor cache statistics

You can view the essential cache data, such as number of cache hits, cache misses, and number of

entries in each cache instance. With this data, you can tune the cache configuration to improve the

dynamic cache performance. For example, if the number of used entries is often high, and entries are

being removed and recreated, consider increasing the maximum size of the cache or enabling disk

offload.

v Monitor the data flowing through the cache

Once a cacheable object is invoked, dynamic cache creates a cache entry for it that contains the output

of the actions that are performed and metadata, such as time to live, sharing policy, and so on. Entries

are distinguished by a unique ID string that is based on the rules specified in the cachespec.xml file for

the particular object name. Objects with the same name might generate multiple cache IDs for different

invocations, based on request parameters and attributes for each invocation. You can view of all the

cache entries that are in the cache instance, based on the unique ID. You can also view the group of

cache entries that share a common name (also known as template). Cache entries can also be grouped

Chapter 14. Learn about WebSphere programming extensions 2395

together by a dependency ID, which is used to invalidate the entire group of entries dependent on a

common entity. Therefore, cache monitor also provides a view of the group of cache entries that share

a common dependency ID.

For each entry, cache monitor also displays metadata, such as time to live, priority and sharing-policy,

and provides a view of the output that has been cached. This helps the customer to verify which pages

have been cached, that the pages have been cached in the correct cache instance with the right

attributes such as time to live, priority, and that the pages have the right content.

v Monitor the data in the edge cache

Dynamic cache provides support to recognize the presence of an Edge Side Include (ESI) processor

and to generate ESI include tags and appropriate cache policies for edge cacheable fragments. With

the ESI processor, you can cache whole pages, as well as fragments, providing a higher cache hit ratio.

There can be multiple ESI processors running on multiple hosts configured for caching.

You can view a list of all ESI processes and their hosts that are enabled for caching. Select a host or a

processor, and view its edge cache statistics and the current cache entries.

v View the data offloaded to the disk

By default, when the number of cache entries reaches the configured limit for a given server, cache

entries are removed, enabling new entries to enter the cache service. With disk offload, the removed

cache entries are copied to disk for future access. You can view the content that is copied to disk that

corresponds to the view of the contents cached in memory for each cache instance.

v Manage the data in the cache

You can perform the following basic operations on the data in the cache:

– Remove an entry from a cache instance

– Remove all entries for a certain dependency ID

– Remove all entries for a certain name (template)

– Move an entry to the front of the least recently used queue to avoid removal of the cache entry

– Move an entry from the disk to the memory within a cache instance

– Clear the entire contents of the cache instance

– Clear the contents of the disk for the cache instance

With these operations, you can manually change the state of the cache without having to restart the

server.

Edge cache statistics:

Cache monitor provides a view of the edge cache statistics.

 The following statistics are available:

v ESI Processors. The number of processes that are configured as edge caches.

v Number of Edge Cached Entries. The number of entries that are currently cached on all edge servers

and processes.

v Cache Hits. The number of requests that match entries on edge servers.

v Cache Misses By URL. A cache policy does not exist on the edge server for the requested template.

Note:

– The initial ESI request for a template that has a cache policy on WebSphere Application

Server results in a miss.

– Every request for a template that does not have a cache policy on WebSphere Application

Server results in a miss by URL on the edge server.
v Cache Misses By Cache ID. The policy for the requested template exists on the edge server, and a

cache ID is created, based on the ID rules and the request attributes, but the cache entry for this ID

does not exist.

Note: If the policy exists on the edge server for the requested template, but a cache ID match is not

found, based on the ID rules and the request attributes, it is not treated as a cache miss.

v Cache Timeouts. The number of entries that are removed from the edge cache based on the timeout

value.

2396 Administering WebSphere applications

v Evictions. The number of entries that are removed from the edge cache due to invalidations received

from WebSphere Application Server.

Tuning dynamic cache with the cache monitor

Use this task to interpret cache monitor statistics to improve the performance of the dynamic cache

service.

Before you begin

Verify that dynamic cache is enabled and that the cache monitor application is installed on your application

server.

About this task

See the Displaying cache information topic in the Administering applications and their environment PDF to

configure the cache monitor application.

Use the cache monitor to watch cache hits versus misses. By comparing these two values, you can

determine how much dynamic cache is helping your application, and if you can take any additional steps

to further improve performance and decrease the cost of processing for your application server.

1. Start cache monitor and click on Cache Statistics. You can view the following cache statistics:

 Cache statistic Description

Cache Size The maximum number of entries that the cache can hold.

Used Entries The number of cache entries used.

Cache Hits The number of request responses that are served from

the cache.

Cache Misses The number of request responses that are cacheable but

cannot be served from the cache.

LRU Evictions The number of cache entries removed to make room for

new cache entries.

Explicit Removals The number of cache entries removed or invalidated from

the cache based on cache policies or were deleted from

the cache through the cache monitor.

2. You can also view the following cache configuration values:

 Cache configuration value Description

Default priority Specifies the default priority for all cache entries. Lower

priority entries are moved from the cache before higher

priority entries when the cache is full. You can specify the

priority for individual cache entries in the cache policy.

Servlet Caching Enabled If servlet caching is enabled, results from servlets and

JavaServer Pages (JSP) files are cached. See the

Administering applications and their environment PDF for

more information.

Disk Offload Enabled Specifies if entries that are being removed from the cache

are saved to disk. See the Administering applications and

their environment PDF for more information.

3. Wait for the application server to add data to the cache. You want the number of used cache entries in

the cache monitor to be as high as it can go. When the number of used entries is at its highest, the

cache can serve responses to as many requests as possible.

Chapter 14. Learn about WebSphere programming extensions 2397

4. When the cache has a high number of used entries, reset the statistics. Watch the number of cache

hits versus cache misses. If the number of hits is far greater than the number of misses, your cache

configuration is optimal. You do not need to take any further actions. If you find a higher number of

misses with a lower number of hits, the application server is working hard to generate responses

instead of serving the request using a cached value. The application server might be making database

queries, or running logic to respond to the requests.

5. If you have a large number of cache misses, increase the number of cache hits by improving the

probability that a request can be served from the cache.

To improve the number of cache hits, you can increase the cache size or configure additional cache

policies. See the Administering applications and their environment PDF for more information to

increase the cache size and to configure cache policies.

Results

By using the cache monitor application, you optimized the performance of the dynamic cache service.

What to do next

See the Administering applications and their environment PDF for more information about the dynamic

cache.

Using servlet cache instances

Use this task to configure servlet cache instances.

Before you begin

Before you begin, enable the dynamic cache service. See “Using the dynamic cache service” on page

2328 for more information.

About this task

Perform this task so that your application can access dynamic cache servlet cache instances. Using

servlet cache instances can improve the performance of your application because you can store the output

and the side effects of an invoked servlet. Servlet cache instances also give you the necessary control

over the cache for multiple applications that are running in an application server. See “Cache instances” on

page 1410 for more information.

1. Enable servlet caching. See “Configuring servlet caching” on page 2333 for more information.

2. Configure one or more cache instances.

a. In the administrative console, click Resources > Cache instances > Servlet cache instances.

b. Specify the scope of the cache instance. Specify a scope of cell to make the cache instance

available to all the servers that are in the cell. Node scope makes the cache instance available to

all servers in a node. Server scope makes the cache instance available to the selected server only.

If necessary, you can mix the scopes.

c. Click Apply to save the scope.

d. Specify the settings for the cache instance. The Name and Java Naming and Directory interface

(JNDI) name fields are required. The JNDI name is the name attribute that is specified in the

<cache-instance> element in the cachepec.xml file. An example of a JNDI name that is specified in

the cachespec.xml file follows:

<cache-instance name="services/cache/instance_one">

In this example, specify services/cache/instance_one as the JNDI name.

3. Update your application. To use a servlet cache instance, you must specify a <cache-instance>

element that has a name that is equal to the JNDI Name for this cache instance.

2398 Administering WebSphere applications

Servlet cache instance collection

A servlet cache instance is a location, in addition to the default shared dynamic cache, where dynamic

cache can store, distribute, and share data. By using servlet cache instances, your applications have

greater flexibility and better tuning of the cache resources. The Java Naming and Directory Interface

(JNDI) name specified for the cache instance is mapped to the name attribute in the <cache-instance> tag

in the cachespec.xml configuration file.

To view this administrative console page, click Resources > Cache instances > Servlet cache

instances.

Scope: Specify CELL SCOPE to view and configure cache instances that are available to all servers

within the cell. Specify NODE SCOPE to view and configure cache instances that are available to all

servers with the particular node. Specify SERVER SCOPE to view and configure cache instances that are

available only on the specific server.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Specify this name in the

name attribute field in the <cache-instance> tag in the cachespec.xml configuration file. This tag is used to

find the particular cache instance in which to store cache entries.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands. The default is 2000.

 The minimum value is 100, with no set maximum value.

Servlet cache instance settings

A servlet cache instance is a location, in addition to the default shared dynamic cache, where dynamic

cache can store, distribute, and share data. By using servlet cache instances, your applications have

greater flexibility and better tuning of the cache resources. The Java Naming and Directory Interface

(JNDI) name specified for the cache instance is mapped to the name attribute in the <cache-instance> tag

in the cachespec.xml configuration file.

To view this administrative console page, click Resources > Cache instances > Servlet cache instances

> cache_instance_name.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Specify this name in the

name attribute field in the <cache-instance> tag in the cachespec.xml configuration file. This tag is used to

find the particular cache instance in which to store cache entries.

Description:

Specifies a description for the resource. This field is optional.

Category:

Chapter 14. Learn about WebSphere programming extensions 2399

Specifies a category string to classify or group the resource. This field is optional.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands.

 Default 2000

Range 100 - no set maximum value

Default priority:

Specifies the default priority for servlets that can be cached. This value determines how long an entry

stays in a full cache.

 The recommended value is one.

Enable disk offload:

Specifies if disk offloading is enabled.

 If you have disk offload disabled, when a new entry is created while the cache is full, the priorities are

configured for each entry and the least recently used algorithm are used to remove the entry from the

cache in memory. If you enable disk offload, the entry that would be removed from the cache is copied to

the local file system. The location of the file is specified by the disk offload location.

 Default false

Offload location:

Specifies the directory used for disk offload.

 If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server

name/_dynacache/cache JNDI name will be used. If disk offload location is specified, the node, server name,

and cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the

location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored

if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the

value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move

the disk cache contents to the new location:

v The Application Server creates a new disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all the disk cache content at the old location is lost when you

restart the Application Server

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable Disk Offload is not selected.

 Default false

Limit disk cache size in GB:

2400 Administering WebSphere applications

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a

positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you

can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting

applies only if enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than

this, when evicted from memory, will not be offloaded to disk. When you select this option, you can specify

a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if

enableDiskOffload is specified for the cache. Performance levels determine how memory resources

should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.

This setting applies only if enable disk offload is specified for the cache.

 High performance and high memory usage Indicates that all metadata will be kept in memory.

Balanced performance and balanced memory usage Indicates some metadata will be kept in memory. This is

the default performance setting and will provide an

optimal balance of performance and memory usage for

most users.

Low performance and low memory usage Indicates that limited metadata will be kept in memory.

Custom Indicates that the administrator will explicitly configure the

memory settings that will be used to support the above

background activity. The administrator sets these values

using the DiskCacheCustomPerformanceSettings

object.

Disk cache cleanup frequency:

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup

runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,

or custom. The high performance level does not require disk cleanup, and this value is ignored.

 Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Chapter 14. Learn about WebSphere programming extensions 2401

Specifies a value for the maximum number of cache identifiers that are stored for an individual

dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information

is offloaded to the disk. This setting applies only when the disk offload performance level is CUSTOM.

 Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 100 to MAXINT

Maximum buffer for templates:

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is cusotm.

 Value 10 to MAXINT

Eviction policy algorithm:

Specifies the eviction algorithm that the disk cache will use to evict entries once the high threshold is

reached. This setting applies only if enable disk offload is specified for the cache.

 None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service

stops writing to disk

Random When the disk size reaches a high threshold limit, the

disk cache garbage collector wakes up and randomly

picks entries on the disk and evicts them until the size

reaches a low threshold limit.

Size When the disk size reaches a high threshold limit, the

disk cache garbge collector wakes up and picks the

largest entries on the disk and evicts them until the disk

size reaches a low threshold limit.

High threshold:

Specifies when the eviction policy starts. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The disk cache garbage collector is awaken when the disk size exceeds high

threshold limit. The lower value limits disk cache size in GB and disk cache size in entries. This setting

does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Low threshold:

Specifies when the eviction policy ends. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The lower value limits disk cache size in GB and disk cache size in entries.

2402 Administering WebSphere applications

The disk cache garbage collector, when awaken, evicts entries until the disk size reaches the low

threshold limit. This setting does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Enable cache replication:

Use cache replication to enable sharing of cache IDs, cache entries, and cache invalidations with other

servers in the same replication domain.

 This option might be unavailable for cache instances created with a previous version of WebSphere

Application Server.

Full group replication domain:

Specifies a replication domain from which your data is replicated.

 Specifies a replication domain from which your data is replicated. Choose from any replication domains

that have been defined. If there are no replication domains listed, you must create one during cluster

creation or manually in the administrative console by clicking Environment > Internal replication

domains > New. The replication domain you choose to use with the dynamic cache service must be using

a Full group replica. Do not share replication domains between replication consumers. Dynamic cache

should use a different replication domain from session manager or stateful session beans.

Replication type:

Specifies the global sharing policy for this cache instance.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. If a

request is made for an ID which has not been previously published, the server assumes it does not

exist in the cluster and creates a new entry.

v Pull only shares cache entries for this object between application servers on demand. If an application

server gets a cache miss for this object, it queries the cooperating application servers to see if they

have the object. If no application server has a cached copy of the object, the original application server

runs the request and generates the object. These entries cannot store non-serializable data. This mode

of sharing is not recommended.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default setting for a an environment without clustering is Not Shared. When enabling replication, the

default value is Not Shared.

Push frequency:

Specifies the time, in seconds, to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) sends the cache entries immediately. Setting this property to a value greater than 0

(zero) results in a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 1 (one).

Chapter 14. Learn about WebSphere programming extensions 2403

Using the DynamicContentProvider interface for dynamic cache

Use this task to configure the DynamicContentProvider interface for cached servlets and JavaServer

Pages (JSP) files.

Before you begin

The dynamic cache service should be enabled and you should be using servlet caching. See “Using the

dynamic cache service” on page 2328 and “Configuring servlet caching” on page 2333 for more

information.

About this task

A cacheable servlet or JavaServer Pages (JSP) file might contain a state in the response that does not

belong to the fragment for that servlet or JSP. When the state changes, the cached servlet or JSP is not

valid for caching. Use the com.ibm.websphere.servlet.cache.DynamicContentProvider interface to make

the fragment cacheable.

Servlets or JSP files that implement the DynamicContentProvider interface can add user exits in fragments

that are cacheable by calling the addDynamicContentProvider(DCP) method on the wrapper response

object. When the dynamic cache renders the page, it identifies the user exit and calls the dynamic content

provider to add the dynamic content to the rendered page.

1. Provide an implementation class of the com.ibm.websphere.servlet.cache.DynamicContentProvider

interface. An example of an implementation follows:

class DynamicContentProviderImpl implements com.ibm.websphere.servlet.cache.

 DynamicContentProvider {

 DynamicContentProviderImpl() {}

 public void provideDynamicContent(HttpServletRequest request, OutputStream streamWriter)

 throws IOException {

 String dynamicContent = System.currentTimeMillis();

 streamWriter.write(dynamicContent.getBytes());

 }

 public void provideDynamicContent(HttpServletRequest request, Writer streamWriter)

 throws IOException {

 String dynamicContent = System.currentTimeMillis();

 streamWriter.write(dynamicContent.toCharArray());

 }

 }

2. Add user exits to your servlet or JSP file by calling the addDynamicContentProvider(DCP) method on

the wrapper response object. An example follows:

public class DCPServlet extends CacheTestCase {

 public void performTest(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 out.println(“Testing the DCP feature begin ”+System.currentTimeMillis());

 DynamicContentProvider dcp = new DynamicContentProviderImpl();

 ServletCacheResponse scr = (ServletCacheResponse)(response);

 scr.addDynamicContentProvider(dcp);

 out.println("Testing the DCP feature end”+System.currentTimeMillis());

 }

 }

What to do next

See “Task overview: Using the dynamic cache service to improve performance” on page 2315 for more

information about the other tasks that you can perform with the dynamic cache.

2404 Administering WebSphere applications

Dynamic query

Using EJB query

The Enterprise JavaBeans (EJB) query language is used to specify a query over container-managed entity

beans. The language is similar to structured query language (SQL). An EJB query is independent of the

bean’s mapping to a persistent store.

About this task

An EJB query can be used in three situations:

v To define a finder method of an EJB entity bean.

v To define a select method of an EJB entity bean.

v To dynamically specify a query using the executeQuery method dynamic API.

Finder and select queries are specified in the bean’s deployment descriptor using the <ejb-ql> tag; they

are compiled into SQL during deployment. Dynamic queries are included within the application code itself.

The product’s EJB query language is compliant with the EJB QL defined in Sun’s EJB 2.1 and EJB 3.0

specifications and has additional capabilities as listed in the topic Comparison of EJB specification and

WebSphere Query Language.

v Before using EJB query, familiarize yourself with query language concepts, starting with the topic, EJB

Query Language.

v Define an EJB query in one of the following ways:

– Rational Application Developer. When defining an entity bean, specify the <ejb-ql> tag for the

finder or select method. For more information about using Rational Application Developer see the

assembly tool information center at http://wilson.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/
index.jsp?topic=/com.ibm.jee5.doc/topics/cejb3.html

– Dynamic query service. Add the executeQuery method to your application.

Example

See the topic Example: EJB queries.

EJB query language

EJB query language enables you to write queries based on entity beans without knowing the underlying

relational schema.

An EJB query is a string that contains the following elements:

v a SELECT clause that specifies the enterprise beans or values to return;

v a FROM clause that names the bean collections;

v an optional WHERE clause that contains search predicates over the collections;

v an optional GROUP BY and HAVING clause (see Aggregation functions);

v an optional ORDER BY clause that specifies the ordering of the result collection.

Collections of entity beans are identified in EJB queries through the use of their abstract schema name in

the query FROM clause.

The elements of EJB query language are discussed in more detail in the following related topics.

Example: Queries with EJB:

Here is an example Enterprise JavaBeans (EJB) schema, followed by a set of example queries.

 Table 55. DeptBean schema

Entity bean name (EJB name) DeptEJB (not used in query)

Chapter 14. Learn about WebSphere programming extensions 2405

http://wilson.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/index.jsp?topic=/com.ibm.jee5.doc/topics/cejb3.html
http://wilson.boulder.ibm.com/infocenter/radhelp/v7r5mbeta/index.jsp?topic=/com.ibm.jee5.doc/topics/cejb3.html

Table 55. DeptBean schema (continued)

Abstract schema name DeptBean

Implementation class com.acme.hr.deptBean (not used in query)

Persistent attributes (cmp fields) v deptno - Integer (key)

v name - String

v budget - BigDecimal

Relationships v emps - 1:Many with EmpEJB

v mgr - Many:1 with EmpEJB

 Table 56. EmpBean schema

Entity bean name (EJB name) EmpEJB (not used in query)

Abstract schema name EmpBean

Implementation class com.acme.hr.empBean (not used in query)

Persistent attributes (cmp fields) v empid - Integer (key)

v name - String

v salary - BigDecimal

v bonus - BigDecimal

v hireDate - java.sql.Date

v birthDate - java.util.Calendar

v address - com.acme.hr.Address

Relationships v dept - Many:1 with DeptEJB

v manages - 1:Many with DeptEJB

Address is a serializable object used as cmp field in EmpBean. The definition of address is as follows:

 public class com.acme.hr.Address extends Object implements Serializable {

 public String street;

 public String state;

 public String city;

 public Integer zip;

 public double distance (String start_location) { ... } ;

 public String format () { ... } ;

 }

The following query returns all departments:

SELECT OBJECT(d) FROM DeptBean d

The following query returns departments whose name begins with the letters ″Web″. Sort the result by

name:

SELECT OBJECT(d) FROM DeptBean d WHERE d.name LIKE ’Web%’ ORDER BY d.name

The keywords SELECT and FROM are shown in uppercase in the examples but are case insensitive. If a

name used in a query is a reserved word, the name must be enclosed in double quotes to be used in the

query. You can find a list of reserved words in “EJB query: Reserved words” on page 2428. Identifiers

enclosed in double quotes are case sensitive. This example shows how to use a cmp field that is a

reserved word:

SELECT OBJECT(d) FROM DeptBean d WHERE d."select" > 5

The following query returns all employees who are managed by Bob. This example shows how to navigate

relationships using a path expression:

SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name=’Bob’

A query can contain a parameter which refers to the corresponding value of the finder or select method.

Query parameters are numbered starting with 1:

2406 Administering WebSphere applications

SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name= ?1

This query shows navigation of a multivalued relationship and returns all departments that have an

employee that earns at least 50000 but not more than 90000:

SELECT OBJECT(d) FROM DeptBean d, IN (d.emps) AS e

WHERE e.salary BETWEEN 50000 and 90000

There is a join operation implied in this query between each department object and its related collection of

employees. If a department has no employees, the department does not appear in the result. If a

department has more than one employee that earns more than 50000, that department appears multiple

times in the result.

The following query eliminates the duplicate departments:

SELECT DISTINCT OBJECT(d) from DeptBean d, IN (d.emps) AS e WHERE e.salary > 50000

Find employees whose bonus is more than 40% of their salary:

SELECT OBJECT(e) FROM EmpBean e where e.bonus > 0.40 * e.salary

Find departments where the sum of salary and bonus of employees in the department exceeds the

department budget:

SELECT OBJECT(d) FROM DeptBean d where d.budget <

(SELECT SUM(e.salary+e.bonus) FROM IN(d.emps) AS e)

A query can contain DB2 style date-time arithmetic expressions if you use java.sql.* datatypes as CMP

fields and your datastore is DB2. Find all employees who have worked at least 20 years as of January 1st,

2000:

SELECT OBJECT(e) FROM EmpBean e where year(’2000-01-01’ - e.hireDate) >= 20

If the datastore is not DB2 or if you prefer to use java.util.Calendar as the CMP field, then you can use the

java millsecond value in queries. The following query finds all employees born before Jan 1, 1990:

SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Find departments with no employees:

SELECT OBJECT(d) from DeptBean d where d.emps IS EMPTY

Find all employees whose earn more than Bob:

SELECT OBJECT(e) FROM EmpBean e, EmpBean b

WHERE b.name = ’Bob’ AND e.salary + e.bonus > b.salary + b.bonus

Find the employee with the largest bonus:

SELECT OBJECT(e) from EmpBean e WHERE e.bonus =

(SELECT MAX(e1.bonus) from EmpBean e1)

The above queries all return EJB objects. A finder method query must always return an EJB Object for the

home. A select method query can in addition return CMP fields or other EJB Objects not belonging to the

home.

The following would be valid select method queries for EmpBean. Return the manager for each

department:

SELECT d.mgr FROM DeptBean d

Return department 42 manager’s name:

SELECT d.mgr.name FROM DeptBean d WHERE d.deptno = 42

Return the names of employees in department 42:

Chapter 14. Learn about WebSphere programming extensions 2407

SELECT e.name FROM EmpBean e WHERE e.dept.deptno=42

Another way to write the same query is:

SELECT e.name from DeptBean d, IN (d.emps) AS e WHERE d.deptno=42

Finder and select queries allow only a single CMP field or EJBObject in the SELECT clause. A select

query can return aggregate values in Enterprise JavaBeans 2.1 using SUM, MIN, MAX, AVG and COUNT.

SELECT max(e.salary) FROM EmpBean e WHERE e.dept.deptno=42

The dynamic query API allows multiple expressions in the SELECT clause. The following query would be a

valid dynamic query, but not a valid select or finder query:

SELECT e.name, e.salary+e.bonus as total_pay , object(e), e.dept.mgr

FROM EmpBean e

ORDER BY 2

The following dynamic query returns the number of employees in each department:

SELECT e.dept.deptno as department_number , count(*) as employee_count

FROM EmpBean e

GROUP BY by e.dept.deptno

ORDER BY 1

The dynamic query API allows queries that contain bean or value object methods:

SELECT object(e), e.address.format()

FROM EmpBean e EmpBean e

FROM clause:

The FROM clause specifies the collections of objects to which the query is to be applied. Each collection

is specified either by an abstract schema name (ASN) or by a path expression identifying a relationship.

An identification variable is defined for each collection.

 Conceptually, the semantics of the query is to form a temporary collection of tuples, R, with elements

consisting of all possible combinations of objects from the collections. This collection is subject to the

constraints imposed by any path relationships and by the JOIN operation. The JOIN can be either an inner

or outer join.

The identification variables are bound to elements of the tuple. After forming the temporary collection, the

search conditions of the WHERE clause are applied to R, and yield a new temporary collection, R1. The

ORDER BY, GROUP BY, HAVING, and SELECT clauses are applied to R1 to yield the final result.

from_clause::=FROM identification_variable_declaration [, {identification_variable_declaration |

 collection_member_declaration }]*

identification_variable_declaration::= range_variable_declaration [join]*

join := [{ LEFT [OUTER] | INNER }] JOIN {collection_valued_path_expression | single_valued_path_expression}

 [AS] identifier

Examples: Joining collections

DeptBean contains records 10, 20, and 30. EmpBean contains records 1, 2, and 3 that are related to

department 10, and records 4 and 5 that are related to department 20. Department 30 has no employees.

SELECT d FROM DeptBean AS d, EmpBean AS e

WHERE d.name = e.name

The comma syntax performs an inner join resulting in all possible combinations. In this example, R would

consist of 15 tuples (3 departments x 5 employees). If any collection is empty, then R is also empty. The

keyword AS is optional.

2408 Administering WebSphere applications

This example shows that a collection can be joined with itself.

SELECT d FROM DeptBean AS d, DeptBean AS d1

R would consist of 9 tuples (3 departments x 3 departments).

Examples: Relationship joins

A collection can be a relationship based on a previously declared identifier as in

SELECT e FROM DeptBean AS d , IN (d.emps) AS e

R would contain 5 tuples. Department 30 would not appear in R because it contains no employees.

Department 10 would appear in 3 tuples and department 20 would appear in 2 tuples. IN can only refer to

multi-valued relationships. The following is not valid

SELECT m FROM EmpBean e, IN(e.dept.mgr) as m INVALID

When joining with a relationship the alternate syntax INNER JOIN (keyword INNER is optional) can also

be used, as shown here.

SELECT e FROM DeptBean AS d INNER JOIN d.emps AS e

An ASN declaration (d in the above query) can be followed by one or more join clauses. The relationship

following the JOIN keyword must be related (directly or indirectly) to the ASN declaration. Unlike the case

with the IN clause, relationships used in a join clause can be single- or multi-valued. This query has the

same semantics as the query

SELECT e FROM DeptBean AS d , IN (d.emps) AS e

You can use multiple joins together.

SELECT m FROM EmpBean e JOIN e.dept d JOIN d.mgr m

This is equivalent to

SELECT m FROM EmpBean e JOIN e.dept.mgr m

Examples: OUTER JOIN

An OUTER JOIN results in a temporary collection that contains combinations of the left and right

operands, subject to the relationship constraints and such that the left operand always appears in R. In the

example an outer join results in a temporary collection R that contains department 30, even though the

collection d.emps is empty. The tuple contains Department 30 along with a NULL value. References to e

in the query yields a null value.

SELECT e FROM DeptBean AS d LEFT OUTER JOIN d.emps AS e

The keyword OUTER is optional, as shown here..

SELECT e FROM DeptBean AS d LEFT JOIN d.emps AS e

You can also use combinations of INNER and OUTER JOIN.

SELECT m FROM EmpBean e JOIN e.dept d LEFT JOIN d.mgr m

Inheritance in EJB query:

If an Enterprise JavaBeans (EJB) inheritance hierarchy has been defined for an abstract schema, using

the abstract schema name in a query statement implies the collection of objects for that abstract schema

as well as all subtypes.

Chapter 14. Learn about WebSphere programming extensions 2409

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of

ManagerBean in an EJB inheritance hierarchy. The following query returns employees as well as managers

and executives:

SELECT OBJECT(e) FROM EmpBean e

Path expressions:

A path expression is an identification variable followed by the navigation operator (.) and a container

managed persistence (CMP) or relationship name.

 A path expression that leads to a cmr field can be further navigated if the cmr field is single-valued. If the

path expression leads to a multi-valued relationship, then the path expression is terminal and cannot be

further navigated. If the path expression leads to a CMP field whose type is a value object, it is possible to

navigate to attributes of the value object.

Example: Value object

Assume that address is a CMP field for EmpBean, which is a value object.

SELECT object(e) FROM EmpBean e

WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational columns if you intend to

search on value attributes. If you store value objects in serialized format, then each value object must be

retrieved from the database and deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be defined on either the remote

or local bean interface. Methods can only be used in dynamic queries. You cannot mix both remote and

local methods in a single query statement.

If the query contains remote methods, the dynamic query must be executed using the query remote

interface. Using the query remote interface causes the query service to activate beans and create

instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the query local interface. This

causes the query service to activate beans and local interface instances.

Do not use get methods to access CMP and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have different number of

parameters.

Methods must have non-void return types and method arguments and return types must be either primitive

types byte, short, int, long, float, double, boolean, char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character, java.util.Calendar,

java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a NULL value and the

method is not invoked.

A collection valued path expression can be used in the FROM clause as a collection member declaration,

and with the IS EMPTY, MEMBER OF, and EXISTS predicates in the WHERE clause.

 FROM EmpBean e WHERE e.dept.mgr.name=’Bob’ OK

2410 Administering WebSphere applications

FROM EmpBean e WHERE e.dept.emps.name=’BOB’ INVALID -- cannot navigate through emps because it is

multivalued

FROM EmpBean e, IN (e.dept.emps) e1

WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause:

The WHERE clause lists search conditions for items to add to a result set.

 The WHERE clause contains search conditions composed of the following:

v literal values

v input parameters

v expressions

v basic predicates

v quantified predicates

v BETWEEN predicate

v IN predicate

v LIKE predicate

v NULL predicate

v EMPTY collection predicate

v MEMBER OF predicate

v EXISTS predicate

v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals:

Literals can be considered constants that do not change in value.

 A string literal is enclosed in single quotes. A single quote that occurs within a string literal is represented

by two single quotes. For example: ’Tom’’s’. A string literal cannot exceed the maximum length that is

supported by the underlying persistent datastore.

A numeric literal can be any of the following:

v an exact value such as 57, -957, +66

v any value supported by Java long

v a decimal literal such as 57.5, -47.02

v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by the underlying persistent

datastore.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

Input parameters:

Input parameters are designated by the question mark followed by a number; for example: ?2. Input

parameters are numbered starting at 1 and correspond to the arguments of the finder or select method;

therefore, a query must not contain an input parameter that exceeds the number of input arguments.

 An input parameter can be a primitive type of byte, short, int, long, float, double, boolean, char or wrapper

types of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Char, java.util.Calendar,

java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp, an EJBObject, or a binary data string in the

form of Java byte[].

Chapter 14. Learn about WebSphere programming extensions 2411

An input parameter must not have a NULL value. To search for the occurrence of a NULL value the NULL

predicate should be used.

Expressions:

An expression specifies a value.

 Conditional expressions can consist of comparison operators and logical operators (AND, OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be composed of arithmetic

operations and functions, path expressions that evaluate to a numeric value and numeric literals and

numeric input parameters.

String expressions can be used in comparison expressions and can be composed of string functions, path

expressions that evaluate to a string value and string literals and string input parameters. A CMP field of

type char is handled as if it were a string of length 1.

Binary expressions can be used in comparison expressions and can be composed of path expressions

that evaluate to the Java byte[] type as well as input parameters of type byte[].

Boolean expressions can be used with = and <> comparison and can be composed of path expressions

that evaluate to a boolean value and TRUE and FALSE keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be composed of path expressions

that evaluate to a cmr field, an identification variable and an input parameter whose type is an EJB

reference

Four different expression types are supported for working with date-time types. For portability the

java.util.Calendar type should be used. DB2 style date, time and timestamp expressions are supported if

the datastore is DB2 and the CMP field is of type java.util.Date, java.sql.Date, java.sql.Time or

java.sql.Timestamp. If you use DB2 UDB, you might obtain a syntax error when using the

java.sql.Timestamp.ojbect. You must use the syntax TIMESTAMP ’yyyy-mm-dd hh:mm:ss.nnnn’.

A Calendar type can be compared to another Calendar type, an exact numeric literal or input parameter of

type long whose value is the standard Java long millisecond value.

The following query finds all employees born before Jan 1, 1990:

SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of operators + - , date

duration expressions and date functions, path expressions that evaluate to a date value, string

representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of operators + - , time

duration expressions and time functions, path expressions that evaluate to a time value, string

representation of time and time input parameters.

Timestamp expressions can be used in comparison expressions and can be composed of operators + - ,

timestamp duration expressions and timestamp functions, path expressions that evaluate to a timestamp

value, string representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

The operators and their precedence order from highest to lowest are:

v Navigation operator (.)

v Arithmetic operators in precedence order:

2412 Administering WebSphere applications

– + - unary

– * / multiply, divide

– + - add, subtract
v Comparison operators: =, >, <, >=, <=, <>(not equal)

v Logical operator NOT

v Logical operator AND

v Logical operator OR

Null value semantics:

The following describe the semantics of NULL values.

 v Comparison or arithmetic operations with an unknown (NULL) value yield an unknown value

v In a Java 2 platform, Enterprise Edition (J2EE) version 1.3 application, a path expression uses an

outer-join semantic where a NULL field or cmr value evaluates to NULL. In J2EE version 1.4, the path

expression uses an inner-join semantic.

v The IS NULL and IS NOT NULL operators can be applied to path expressions and return TRUE or

FALSE. Boolean operators AND, OR and NOT use three valued logic.

 AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

 OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

 NOT

True False

False True

Unknown Unknown

Example: Null value semantics

select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

If salary is NULL the evaluation of e.salary > 10 returns unknown and the employee object is not

returned. If the cmr field dept or budget is NULL evaluation of e.dept.budget > 100 returns unknown and

the employee object is not returned.

select object(e) from EmpBean where e.dept.budget is null

In J2EE 1.3 if dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and the employee

object is returned. In J2EE 1.4 the employee object is returned only if budget is NULL.

select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

If dept is NULL, then the multivalued path expression e.dept.emps results in an empty collection (not a

collection that contains a NULL value). An employee with a null dept value will not be returned.

select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee object is not returned.

Chapter 14. Learn about WebSphere programming extensions 2413

select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the employee is not returned.

Date time arithmetic and comparisons:

DATE, TIME and TIMESTAMP values can be compared with another value of the same type. Comparisons

are chronological. Date time values can also be incremented, decremented, and subtracted.

 If the datastore is DB2, then DB2 string representation of DATE, TIME and TIMESTAMP types can also be

used. A string representation of a date or time can use ISO, USA, EUR or JIS format. A string

representation of a timestamp uses ISO format.

 Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or PM 1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons

e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:

’1990-02-24-13.50.00.000000’ or

’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and comparisons. A date

duration is a decimal(8,0) number that represents the difference between two dates in the format

YYYYMMDD. A time duration is a decimal(6,0) number that represents the difference between two time

values as HHMMSS. A timestamp duration is a decimal(20,6) number representing the differences

between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ (ZZZZZZ is the number of

microseconds and is to the right of the decimal point) .

Two date values (or time values or timestamp values) can be subtracted to yield a duration. If the second

operand is greater than the first the duration is a negative decimal number. A duration can be added or

subtracted from a datetime value to yield a new datetime value.

Example 2: Date time arithmetic comparisons

DATE(’3/15/2000’) - ’12/31/1999’ results in a decimal number 215 which is a duration of 0 years, 2

months and 15 days.

Durations are really decimal numbers and can be used in arithmetic expressions and comparisons.

(DATE(’3/15/2000’) - ’12/31/1999’) + 14 > 215 evaluates to TRUE.

DATE(’12/31/1999’) + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME(’11:02:26’) - ’00:32:56’ results in a decimal number 102930 which is a time duration of 10 hours,

29 minutes and 30 seconds.

TIME(’00:32:56’) + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME(’00:00:59’) + DECIMAL(240000,6,0) results in a time value of 00:00:59.

2414 Administering WebSphere applications

e.hiredate + DECIMAL(500,8,0) > ’2000-10-01’ means compare the hiredate plus 5 months to the date

10/01/2000.

Basic predicates:

A basic predicate compares two values.

 Basic predicates can be of two forms, for example:

expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect cannot return a type of an

Enterprise JavaBean (EJB) reference. Boolean types and reference types only support = and <>

comparisons.

Example: Basic predicates

d.name=’Java Development’

e.salary > 20000

e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates:

A quantified predicate compares a value with a set of values produced by a subselect.

 Use the syntax:

expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:

v TRUE if the comparison is true for at least one value returned by the subselect.

v FALSE if the subselect is empty or if the comparison is false for every value returned by the subselect.

v UNKNOWN if the comparison is not true for all of the values returned by the subselect and at least one

of the comparisons is unknown because of a null value.

When ALL is specified the result of the predicate is as follows:

v TRUE if the subselect returns empty or if the comparison is true to every value returned by the

subselect.

v FALSE if the comparison is false for at least one value returned by the subselect.

v UNKNOWN if the comparison is not false for all values returned by the subselect and at least one

comparison is unknown because of a null value.

BETWEEN predicate:

The BETWEEN predicate determines whether a given value lies between two other given values.

 The syntax for the predicate is:

expression [NOT] BETWEEN expression-2 AND expression-3

The expression must not evaluate to a boolean or reference type.

Example: BETWEEN predicate

e.salary BETWEEN 50000 AND 60000

is equivalent to:

Chapter 14. Learn about WebSphere programming extensions 2415

e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:

e.name < ’A’ OR e.name > ’B’

IN predicate:

The IN predicate compares a value to a set of values.

 It can have one of two forms:

expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2, )

ValueN can either be a literal value or an input parameter. The expression cannot evaluate to a reference

type.

Example: IN predicate

e.salary IN (10000, 15000)

is equivalent to

(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate:

The LIKE predicate searches a string value for a certain pattern.

 The syntax for this predicate is:

string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the underscore (_) stands

for any single character and percent (%) stands for any sequence of characters (including empty

sequence). Any other character stands for itself. The escape character can be used to search for

character _ and %. The escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate

v ’’ LIKE ’’ is true

v ’’ LIKE ’%’ is true

v e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’

v e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’

v e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’

v e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’

2416 Administering WebSphere applications

v e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

NULL predicate:

The NULL predicate tests for null values.

 Use the syntax:

single-valued-path-expression IS [NOT] NULL

Example: NULL predicate

e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

EMPTY collection predicate:

You can use the EMPTY collection predicate to test if a multivalued relationship has no members.

 Use the following syntax:

collection-valued-path-expression IS [NOT] EMPTY

Example: Empty collection predicate

To find all departments with no employees:

SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate:

This expression tests whether the object reference specified by the single valued path expression or input

parameter is a member of the designated collection.

 If the collection valued path expression designates an empty collection the value of the MEMBER OF

expression is FALSE.

{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF] collection-valued-path-expression

Example: MEMBER OF predicate

Find employees that are not members of a given department number:

SELECT OBJECT(e) FROM EmpBean e , DeptBean d

WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:

SELECT OBJECT(e) FROM EmpBean e, DeptBean d

WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate:

The exists predicate tests for the presence or absence of a condition specified by a subselect.

 Use the syntax:

EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path expression evaluates to

a nonempty collection, otherwise the result is false.

Chapter 14. Learn about WebSphere programming extensions 2417

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Return departments that have at least one employee earning more than 1000000:

SELECT OBJECT(d) FROM DeptBean d

WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:

SELECT OBJECT(d) FROM DeptBean d

WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The above query can also be written as follows:

SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate:

The IS OF TYPE predicate is used to test the type of an Enterprise JavaBeans (EJB) reference. It is

similar in function to the Java instance of operator.

 IS OF TYPE is used when several abstract beans have been grouped into an EJB inheritance hierarchy.

The type names specified in the predicate are the bean abstract names. The ONLY option can be used to

specify that the reference must be exactly this type and not a subtype.

identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2, )

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of

ManagerBean in an EJB inheritance hierarchy.

The following query returns employees as well as managers and executives:

SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The above query is equivalent to the following query:

SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:

SELECT OBJECT(e) FROM ManagerBean e

WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions:

An Enterprise JavaBeans (EJB) query contains scalar functions for doing type conversions, string

manipulation, and for manipulating date-time values.

 The list of scalar functions is documented in the topic EJB query: Scalar functions.

2418 Administering WebSphere applications

Example: Scalar functions

Find employees hired in 1999:

SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

The only scalar functions that are guaranteed to be portable across backend datastore vendors are the

following:

v ABS

v MOD

v SQRT

v CONCAT

v LENGTH

v LOCATE

v SUBSTRING

v UCASE

v LCASE

The other scalar functions should be used only when DB2 is the backend datastore.

EJB query: Scalar functions:

Enterprise JavaBeans (EJB) query contains scalar built-in functions for doing type conversions, string

manipulation, and for manipulating date-time values.

 EJB query scalar built-in functions are listed below:

Numeric functions

ABS (< any numeric datatype >) -> < any numeric datatype >

MOD (<int>, <int>) -> int

SQRT (< any numeric datatype >) -> Double

Type conversion functions

CHAR (< any numeric datatype >) -> string

CHAR (< string >) -> string

CHAR (< any datetime datatype > [, Keyword k]) -> string

Datetime datatype is converted to its string representation in a format specified by the keyword k. The

valid keywords values are ISO, USA, EUR or JIS. If k is not specified the default is ISO.

BIGINT (< any numeric datatype >) -> Long

BIGINT (< string >) -> Long

The function in the second line of the following code converts the argument to an integer n by truncation,

and returns the date that is n-1 days after January 1, 0001:

DATE (< date string >) -> Date

DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:

DATE(timestamp) -> Date

DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and scale s.

DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and scale s.

DECIMAL (< string > [, p [, s]]) -> Decimal

Chapter 14. Learn about WebSphere programming extensions 2419

DOUBLE (< any numeric datatype >) -> Double

DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double

FLOAT (< string >) -> Double

Float is a synonym for DOUBLE.

INTEGER (< any numeric datatype >) -> Integer

INTEGER (< string >) -> Integer

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short

SMALLINT (< string >) -> Short

TIME (< time >) -> Time

TIME (< time-string >) -> Time

TIME (< timestamp >) -> Time

TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp

TIMESTAMP (< timestamp-string >) -> Timestamp

String functions

CONCAT (<string>, <string>) -> String

The following function returns a character string representing absolute value of the argument not including

its sign or decimal point. For example, digits(-42.35) is ″4235″.

DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument is a numeric or datetime

type, it returns the length of internal representation.

LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case characters have been

converted to lower case.

LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of argument 1 inside argument 2

with optional start position. If not found, it returns 0.

LOCATE (String s1 , String s2 [, Integer start]) -> Integer

The following function returns a substring of s beginning at character m and containing n characters. If n is

omitted, the substring contains the remainder of string s. The result string is padded with blanks if needed

to make a string of length n.

SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case characters have been

converted to upper case.

UCASE (< string >) -> String

Date - time functions

The following function returns the day portion of its argument. For a duration, the return value can be -99

to 99.

DAY (Date) -> Integer

DAY (< date-string >) -> Integer

DAY (< date-duration >) -> Integer

DAY (Timestamp) -> Integer

DAY (< timestamp-string >) -> Integer

DAY (< timestamp-duration >) -> Integer

2420 Administering WebSphere applications

The following function returns one more than number of days from January 1, 0001 to its argument.

DAYS (Date) -> Integer

DAYS (< Date-string >) -> Integer

DAYS (Timestamp) -> Integer

DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the return value can be -99 to

99.

HOUR (Time) -> Integer

HOUR (< time-string >) -> Integer

HOUR (< time-duration >) -> Integer

HOUR (Timestamp) -> Integer

HOUR (< timestamp-string >) -> Integer

HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.

MICROSECOND (Timestamp) -> Integer

MICROSECOND (< timestamp-string >) -> Integer

MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the return value can be -99

to 99.

MINUTE (Time) -> Integer

MINUTE (< time-string >) -> Integer

MINUTE (< time-duration >) -> Integer

MINUTE (Timestamp) -> Integer

MINUTE (< timestamp-string >) -> Integer

MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration, the return value can be

-99 to 99.

MONTH (Date) -> Integer

MONTH (< date-string >) -> Integer

MONTH (< date-duration >) -> Integer

MONTH (Timestamp) -> Integer

MONTH (< timestamp-string >) -> Integer

MONTH (< timestamp-duration >) -> Integer

The following function returns the second part of its argument. For a duration, the return value can be -99

to 99.

SECOND (Time) -> Integer

SECOND (< time-string >) -> Integer

SECOND (< time-duration >) -> Integer

SECOND (Timestamp) -> Integer

SECOND (< timestamp-string >) -> Integer

SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the return value can be

-9999 to 9999.

YEAR (Date) -> Integer

YEAR (< date-string >) -> Integer

YEAR (< date-duration >) -> Integer

YEAR (Timestamp) -> Integer

YEAR (< timestamp-string >) -> Integer

YEAR (< timestamp-duration >) -> Integer

Aggregation functions:

Aggregation functions operate on a set of values to return a single scalar value. You can use these

functions in the select and subselect methods.

Chapter 14. Learn about WebSphere programming extensions 2421

The following example illustrates an aggregation:

SELECT SUM (e.salary) FROM EmpBean e WHERE e.dept.deptno =20

This aggregation computes the total salary for department 20.

The aggregation functions are AVG, COUNT, MAX, MIN, and SUM. The syntax of an aggregation function

is illustrated in the following example:

aggregation-function ([ALL | DISTINCT] expression)

or:

COUNT([ALL | DISTINCT] identification-variable)

or:

COUNT(*)

The DISTINCT option eliminates duplicate values before applying the function. ALL is the default option

and does not eliminate duplicates. Null values are ignored in computing the aggregate function except in

the cases of COUNT(*) and COUNT(identification-variable), which return a count of all the elements in the

set.

If your datastore is Informix, you must limit the expression argument to a single valued path expression

when using the COUNT function or the DISTINCT forms of the functions SUM, AVG, MIN, and MAX.

Defining return type

For a select method using an aggregation function, you can define the return type as a primitive type or a

wrapper type. The return type must be compatible with the return type from the datastore. The MAX and

MIN functions can apply to any numeric, string or datetime datatype and return the corresponding

datatype. The SUM and AVG functions take a numeric type as input, and return the same numeric type

that is used in the datastore. The COUNT function can take any datatype, and returns an integer.

When applied to an empty set, the SUM, AVG, MAX, and MIN functions can return a null value. The

COUNT function returns zero (0) when it is applied to an empty set. Use wrapper types if the return value

might be NULL; otherwise, the container displays an ObjectNotFound exception.

Using GROUP BY and HAVING

The set of values that is used for the aggregate function is determined by the collection that results from

the FROM and WHERE clause of the query. You can divide the set into groups and apply the aggregation

function to each group. To perform this action, use a GROUP BY clause in the query. The GROUP BY

clause defines grouping members, which comprise a list of path expressions. Each path expression

specifies a field that is a primitive type of byte, short, int, long, float, double, boolean, char, or a wrapper

type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,

java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

The following example illustrates the use of the GROUP BY clause in a query that computes the average

salary for each department:

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

In division of a set into groups, a NULL value is considered equal to another NULL value.

Just as the WHERE clause filters tuples (that is, records of the return collection values) from the FROM

clause, the groups can be filtered using a HAVING clause that tests group properties involving aggregate

functions or grouping members:

2422 Administering WebSphere applications

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e

GROUP BY e.dept.deptno

HAVING COUNT(*) > 3 AND e.dept.deptno > 5

This query returns the average salary for departments that have more than three employees and the

department number is greater than five.

It is possible to use a HAVING clause without a GROUP BY clause, in which case the entire set is treated

as a single group, to which the HAVING clause is applied.

SELECT clause:

The SELECT clause consists of either a single identification variable that is defined in the FROM clause,

or a single valued path expression that evaluates to an object reference or container managed persistence

(CMP) value. You can use the DISTINCT keyword to eliminate duplicate references.

 For finder and select queries, the syntax of the SELECT clause is illustrated in the following example:

SELECT [ALL | DISTINCT]

 { single-valued-path-expression | aggregation expression | OBJECT (identification-variable) }

For a query that defines a finder method, the query must return an object type consistent with the home

that is associated with the finder method. For example, a finder method for a department home can not

return employee objects.

Example: SELECT clause

Find all employees that earn more than John:

SELECT OBJECT(e) FROM EmpBean ej, EmpBean e

WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:

SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary value:

SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The previous query returns a collection of name values for those departments having employees earning

less than 20000.

A select method query can return an aggregate value:

SELECT avg(e.salary) FROM EmpBean e

ORDER BY clause:

The ORDER BY clause specifies an ordering of the objects in the result collection

 Use the syntax:

ORDER BY [order_element ,]* order_element

order_element ::= { path-expression | integer } [ASC | DESC]

The path expression must specify a single valued field that is a primitive type of byte, short, int, long, float,

double, char or a wrapper type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Character,

java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Chapter 14. Learn about WebSphere programming extensions 2423

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:

SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:

SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

UNION operation:

The UNION clause specifies a combination of the output of two subqueries. The two queries must return

the same number of elements and compatible types.

 For the purposes of UNION, all Enterprise JavaBeans (EJB) types in the same inheritance hierarchy are

considered compatible. UNION requires that equality be defined for the element types.

query_expression := query_term [UNION [ALL] query_term]*

query_term := {select_clause_dynamic from_clause [where_clause]

 [group_by_clause] [having_clause] } | (query_expression) }

You cannot use dependent value objects with UNION.

UNION ALL combines all results together in a single collection.

UNION combines results but eliminates duplicates.

If ORDER BY is used together with UNION, the ORDER BY must refer to selection expression using

integer numbers.

Examples: UNION operation

This example returns a collection of all employee objects of type EmpBean and all manager objects of

type ManagerBean where ManagerBean is a subtype of EmpBean.

 select e from EmpBean e union all select m from DeptBean d, in(d.mgr) m

This example shows a query that is not valid, because EmpBean and DeptBean are not compatible.

 select e from EmpBean e union all select d from DeptBean d

Subqueries:

A subquery can be used in quantified predicates, the EXISTS predicate, or the IN predicate. A subquery

should only specify a single element in the SELECT clause.

 When a path expression appears in a subquery, the identification variable of the path expression must be

defined either in the subquery, in one of the containing subqueries, or in the outer query. A scalar

subquery is a subquery that returns one value. A scalar subquery can be used in a basic predicate and in

the SELECT clause of a dynamic query.

Example: Subqueries

SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The above query returns employees who earn more than average salary of all employees.

2424 Administering WebSphere applications

SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >

(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn more than average salary of their department.

SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =

(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn the most in their department.

 SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1

WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The above query returns employees who earn more than the average of employees hired in same year.

EJB query language limitations and restrictions:

When using the Enterprise JavaBeans (EJB) query language on the product, deviations can be seen in

comparison to standard EJB query language. The limitations and restrictions you must be aware of are

listed in the following section.

 This topic outlines current known limitations and restrictions.

v EJB query language (QL) queries involving enterprise beans with keys made up of relationships to other

enterprise beans appear as not valid and cause errors at deployment time. This is a known problem.

v The IBM EJB QL support extends the EJB 2.0 specification in various ways, including relaxing some

restrictions, adding support for more DB2 functions, and so on. If portability across various vendor

databases or EJB deployment tools is a concern, then care should be taken to write all EJB QL queries

strictly according to Chapter 11 in the EJB 2.0 specification.

v Pre-loading across m:n relationships results in the generation of inaccurate structured query language

(SQL). This is a known limitation that may be addressed in the future.

v Pre-loading across self referencing relationships causes inaccurate SQL to be generated.

v Avoid relationships between parent and children enterprise beans within the same inheritance hierarchy

that are not well-defined.

v EJB Query Language validation for EJB 2.0 JAR files currently runs as a part of the EJB-RDB Mapping

validation. If a mapping document (Map.mapxmi file) does not exist in the project, the EJB queries are

not validated.

EJB query compatibility issues with SQL:

Because an Enterprise JavaBeans (EJB) query is compiled into structured query language (SQL), you

must be aware of compatibility issues between the Java language and SQL.

 The two languages differ along the following points that can be critical to correct EJB query formulation:

v The comparison semantics of SQL strings do not exactly match those of the Java language. For

example: ’A’ (the letter A) and’A ’ (the letter A plus a blank space) are considered equal in SQL, but not

in the Java language.

v Comparisons and collating order depend on the underlying database. For example, if you are using DB2

with an EBCDIC code page, the collating order is not the same as doing the sort in a Java program.

Some databases sort the NULL value low while others sort the NULL value high.

v An arithmetic overflow causes an exception in SQL, but not in the Java language.

v SQL databases have differing minimum and maximum ranges for floating point values, which can differ

from floating point value ranges in the Java language. Values near the range limits of Java Double may

fail to translate into SQL.

v Java methods do not translate into SQL; therefore standard EJB queries cannot include Java methods.

Chapter 14. Learn about WebSphere programming extensions 2425

Note: Only with the dynamic EJB query service can you use functions that do not translate into SQL.

Such functions include Java methods and converters or composers that are used in mapping

enterprise beans to relational databases (RDBs). A standard finder or select query that uses any

of these functions fails at deployment time with the message ″Cannot push down query″. (You

can resolve this problem by changing either the query or the mapping.) The dynamic query run

time, however, processes the query by performing the operation involving the function in the

application server.

Database restrictions for EJB query:

The Enterprise JavaBeans (EJB) query functions must adhere to certain restrictions for databases.

 General database restriction

v All of the enterprise beans involved in a given query must map to the same data source. The EJB query

does not support cross-data source join operations.

v It is possible that a structured query language (SQL) statement generated by the WebSphere

Application Server deployment code generation utility for an ejbSelect Enterprise JavaBeans query

language query returns rows in a result set that consist of null values in all columns.

During run time persistence manager saves the set received as a result from this query. When your

application retrieves the primary key of the result bean, persistence manager calls the extractor. The

extractor is a method that is an EJB deploy generated class. This method returns a value of 0 for any

null column entries. This value is passed back to the EJB container to forward to the application. The

EJB container invokes the bean instance with the PK value of 0. This could create a problem, as the

end user cannot determine if this bean instance has a null PK or a PK value of 0.

To avoid this, use the IS NOT NULL clause in the finder query to eliminate such null values from the

result set.

Specific database restrictions

Different database products place different restrictions on elements that can be included in EJB query

statements. Following is a list of those restrictions; check with your database administrator to see if any

apply in your environment:

v Certain functions are used in queries that run against DB2 only, because these functions are not

supported by other databases. These functions include date and time arithmetic expressions, certain

scalar functions (those not listed as portable across vendors), and implied scalar functions when used

for mapping certain CMP fields. For example, consider mapping an int numeric type to a decimal (5,2)

type field. When deployed against a database other than DB2, a finder or select query that contains a

CMP field with this particular mapping fails, producing a Cannot push down query error message.

v A CMP of type String, when mapped to a character large object (CLOB) in the database, cannot be

used in comparison operations because the database does not support CLOB comparisons.

v Databases can impose limits on the length of string values that are used either as literals or input

parameters with comparison operators. These limits can hinder query performance. For example: For

DB2 on the z/OS platform, the search ″name = ?1″ can fail if the value of ?1 at run time is greater than

255 in length.

v Mapping a numeric CMP type to a column that contains a dissimilar type can cause unexpected results.

For example, consider the case of mapping the int numeric type to a column of type decimal (5,2). This

scenario does not preserve an exact decimal value (for example, the value 12.25) over the course of

transfer from the database to the enterprise bean CMP field, and back again to the database. This

mapping causes replacement of the initial value with a whole number (in this case, 12). Consequently,

you want to avoid using the CMP field in comparison operations when the CMP field uses a mapping of

this nature.

2426 Administering WebSphere applications

v Some databases do not support a datatype that corresponds to the semantics of java.sql.Time. For

example: If a CMP field of type java.sql.Time is mapped to an Oracle DATE column, comparisons on

time might not produce the expected result because the year-month-day portion of the column value is

truncated in the mapping.

v Some databases treat a zero length string value (’’) as a null value; this approach can affect the query

results. For the sake of portability, avoid the use of zero length string values.

v Some databases perform division between two integer values using integer arithmetic rules, while

others use non-integer rules. This discrepancy might not be desirable in environments that use both

kinds of databases. For the sake of portability, avoid the division of integer values in an EJB query.

v Current releases of UDB DB2 for i5/OS only support a TIMESTAMP value of the format

’yyyy-mm-dd-hh.mm.ss.nnnnnn’. This is not compatible with the standard format supported by the

java.sql.Timestamp class, which is ’yyyy-mm-dd-hh mm.ss.nnnnnn’. The TIMESTAMP scalar function

should be used to convert a string representation of a java.sql.Timestamp object to a value that can be

recognized by DB2 UDB for i5/OS.

Rules for data type manipulation in EJB query:

When using an Enterprise JavaBean (EJB) query to work with data types, certain rules must be followed.

 Rules for container managed persistence (CMP) field type

You can use a CMP field of any type in a SELECT clause. You must, however, use fields of only the

following types in search conditions and in grouping or ordering operations:

v Primitive types: byte, short, int, long, float, double, boolean, char

v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,

java.util.Calendar, java.util.Date

v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

v Binary string: byte[]

Converters and basic types

If ALL of the following conditions occur:

v a CMP field of one of the basic types listed previously is mapped to an SQL column using a converter

v the CMP field appears in the left hand side of a basic predicate

v the right hand side of the predicate is a literal or input parameter

then the toData() method of the converter is used to compute the SQL search value.

For example, given a converter that maps the integer value 10 to the string value ″Ten,″ the following EJB

query:

e.cmp = 10

is translated into the following SQL query:

column = ’Ten’

If you include a more complicated predicate, such as in the following example:

e.cmp * 10 > e.salary

in a finder or select query, you receive the Cannot push down query error message. Use the dynamic EJB

query service for such multi-function queries; the dynamic query run time processes the predicate in the

application server.

Overall, converters preserve equality, collating sequence, and NULL values. If a converter does not meet

these requirements, avoid using it for CMP field comparison operations.

Chapter 14. Learn about WebSphere programming extensions 2427

User types, converters, and composers

A user type cannot be used in a comparison operation or expression. You can, however, use subfields of

the user type in a path expression. For example, consider the CMP addr field with the type

com.exam.Address, and street, city, and state subfields. The following syntax for a query on this CMP field

is not valid:

e.addr = ?1

However, a query that designates one of the subfields is valid:

e.addr.street = ?1

A CMP field can be mapped to an SQL column using Java serialization. Using the CMP field in predicates

or expressions for deployment queries usually results in the Cannot push down query error message. The

dynamic query run time processes the expression by reading and deserializing all instances of the user

type in the application server.

However, this expensive process sacrifices performance. You can maintain performance by using a

composer in a deployment EJB query. In the previous example, if you want to map the addr field to a

binary type, you use a composer to map each subfield to a binary column in the database.

EJB query: Reserved words:

The following words are reserved in WebSphere Application Server Enterprise JavaBeans (EJB) queries.

 all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union, where

Avoid using identifiers that start with underscore (for example, _integer) as these are also reserved.

EJB query: BNF syntax:

The Backus-Naur Form (BNF) is one of the most commonly used notations for specifying the syntax of

programming languages or command sets. This article lists the syntax for Enterprise JavaBeans (EJB)

query language.

 EJB QL ::= [select_clause] from_clause [where_clause] [order_by_clause]

DYNAMIC EJB QL := query_expression [order_by_clause]

query_expression := query_term [UNION [ALL] query_term]*

query_term := {select_clause_dynamic from_clause [where_clause]

 [group_by_clause] [having_clause] } | (query_expression) } [order_by_clause]

from_clause::=FROM identification_variable_declaration

 [, {identification_variable_declaration | collection_member_declaration }]*

identification_variable_declaration::=collection_member_declaration |

 range_variable_declaration [join]*

join := [{ LEFT [OUTER] | INNER }] JOIN {collection_valued_path_expression | single_valued_path_expression}

 [AS] identifier

collection_member_declaration::=

 IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=

 {single_valued_navigation | identification_variable}. (cmp_field |

 method | cmp_field.value_object_attribute | cmp_field.value_object_method)

2428 Administering WebSphere applications

| single_valued_navigation

single_valued_navigation::=

 identification_variable.[single_valued_cmr_field.]*

 single_valued_cmr_field

collection_valued_path_expression ::=

 identification_variable.[single_valued_cmr_field.]*

 collection_valued_cmr_field

select_clause::= SELECT { ALL | DISTINCT } {single_valued_path_expression |

 identification_variable | OBJECT (identification_variable) |

 aggregate_functions }

select_clause_dynamic ::= SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= { expression | subselect } [[AS] id]

order_by_clause::= ORDER BY [{single_valued_path_expression | integer} [ASC|DESC],]*

 {single_valued_path_expression | integer}[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |

 conditional_expression OR conditional_term

conditional_term ::= conditional_factor |

 conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary::=simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |

 like_expression | in_expression | null_comparison_expression |

 empty_collection_comparison_expression | quantified_expression |

 exists_expression | is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN

 { (subselect) | ([atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE

 {string_literal | input_parameter}

 [ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=

 single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=

 collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=

 { single_valued_path_expression | input_paramter } [NOT] MEMBER [OF]

 collection_valued_path_expression

quantified_expression ::=

 expression comparison_operator {SOME | ANY | ALL} (subselect)

exists_expression ::= EXISTS {collection_valued_path_expression | (subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] expression from_clause [where_clause]

 [group_by_clause] [having_clause]

group_by_clause::= GROUP BY [single_valued_path_expression,]*

 single_valued_path_expression

Chapter 14. Learn about WebSphere programming extensions 2429

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE

 ([[ONLY] abstract_schema_name,]* [ONLY] abstract_schema_name)

comparison_expression ::= expression comparison_operator { expression | (subquery) }

comparison_operator ::= = | > | >= | < | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |

 (expression) | input_parameter | functions | aggregate_functions

aggregate_functions :=

 AVG([ALL|DISTINCT] expression) |

 COUNT({[ALL|DISTINCT] expression | * | identification_variable }) |

 MAX([ALL|DISTINCT] expression) |

 MIN([ALL|DISTINCT] expression) |

 SUM([ALL|DISTINCT] expression) |

functions ::=

 ABS(expression) |

 BIGINT(expression) |

 CHAR({expression [,{ISO|USA|EUR|JIS}]) |

 CONCAT (expression , expression) |

 DATE(expression) |

 DAY({expression) |

 DAYS(expression) |

 DECIMAL(expression [,integer[,integer]])

 DIGITS(expression) |

 DOUBLE(expression) |

 FLOAT(expression) |

 HOUR (expression) |

 INTEGER(expression) |

 LCASE (expression) |

 LENGTH(expression) |

 LOCATE(expression, expression [, expression]) |

 MICROSECOND(expression) |

 MINUTE (expression) |

 MOD (expression , expression) |

 MONTH(expression) |

 REAL(expression) |

 SECOND(expression) |

 SMALLINT(expression) |

 SQRT (expression) |

 SUBSTRING(expression, expression[, expression]) |

 TIME(expression) |

 TIMESTAMP(expression) |

 UCASE (expression) |

 YEAR(expression)

xrel := XREL identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }

 [, identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }]*

EJB specification and WebSphere query language comparison:

WebSphere Application Server extends the Enterprise JavaBeans (EJB) query language with elements of

its own.

2430 Administering WebSphere applications

WebSphere Application Server supports the following extensions to the EJB query language.

 Item

Delimited identifiers

Dependent Value object attributes used in path

expressions

EJB Inheritance

EXISTS predicate

Java methods: EJB bean methods or value object

methods

dynamic query only

Multiple element select clauses dynamic query only

SQL Date/time expressions

Subqueries, group by, and having clauses

Using the dynamic query service

There are times in the development process when you might prefer to use the dynamic query service

rather than the regular Enterprise JavaBean (EJB) query service (which can be referred to as deployment

query). During testing, for instance, the dynamic query service can be used at application run time, so you

do not have to re-deploy your application.

About this task

Following are common reasons for using the dynamic query service rather than the regular EJB query

service:

v You need to programmatically define a query at application run time, rather than at deployment.

v You need to return multiple CMP or CMR fields from a query. (Deployment queries allow only a single

element to be specified in the SELECT clause.) For more information, see the Example: EJB queries

article.

v You want to return a computed expression in the query.

v You want to use value object methods or bean methods in the query statement. For more information,

see Path expressions.

v You want to interactively test an EJB query during development, but do not want to repeatedly deploy

your application each time you update a finder or select query.

The dynamic query API is a stateless session bean; using it is similar to using any other J2EE EJB

application bean. It is included in the com.ibm.websphere.ejbquery in the API package.

The dynamic query bean has both a remote and a local interface. If you want to return remote EJB

references from the query, or if the query statement contains remote methods, you must use the query

remote interface:

remote interface = com.ibm.websphere.ejbquery.Query

remote home interface = com.ibm.websphere.ejbquery.QueryHome

If you want to return local EJB references from the query, or if the query statement contains local methods,

you must use the query local interface:

local interface = com.ibm.websphere.ejbquery.QueryLocal

local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

Because it uses less application server memory, the local interface ensures better overall EJB

performance than the remote.

Chapter 14. Learn about WebSphere programming extensions 2431

1. Verify that the query.ear application file is installed on the application server on which your application

is to run, if that server is different from the default application server created during installation of the

product.

The query.ear file is located in the app_server_root directory, where <WAS_HOME> is the location of the

WebSphere Application Server. The product installation program installs the query.ear file on the

default application server using a JNDI name of

com/ibm/websphere/ejbquery/Query

(You or the system administrator can change this name.)

2. Set up authorization for the methods executeQuery(), prepareQuery(), and executePlan() in the remote

and local dynamic query interfaces to control access to sensitive data. (This step is necessary only if

your application requires security.)

Because you cannot control which ASN names, CMP fields, or CMR fields can be used in a dynamic

EJB query, you or your system administrator must place restrictions on use of the methods. If, for

example, a user is permitted to run the executeQuery method, he or she can run any valid dynamic

query. In a production environment, you certainly want to restrict access to the remote query interface

methods.

3. Write the dynamic query as part of your application client code. You can consult the following

examples as query models; they illustrate which import statements to use, and so on:

v Remote interface dynamic query example

v Local interface dynamic query example

4. If the CMP you want to query is on a different module, you should:

a. do a remote lookup on query.ear

b. map the query.ear file to the server that the queried CMP bean is installed on.

5. Compile and run your client program with the file qryclient.jar in the classpath.

Example: Using the remote interface for Dynamic query

When you run a dynamic Enterprise JavaBeans (EJB) query using the remote interface, you are calling

the executeQuery method on the Query interface. The executeQuery method has a transaction attribute of

REQUIRED for this interface; therefore you do not need to explicitly establish a transaction context for the

query to run.

Begin with the following import statements:

import com.ibm.websphere.ejbquery.QueryHome;

import com.ibm.websphere.ejbquery.Query;

import com.ibm.websphere.ejbquery.QueryIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

Create a Query object by obtaining a reference from the QueryHome class. (This class defines the

executeQuery method.) Note that for the sake of simplicity, the following example uses the dynamic query

JNDI name for the Query object:

InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =

 (QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);

Query qb = qh.create();

2432 Administering WebSphere applications

You then must specify a maximum size for the query result set, which is defined in the QueryIterator

object, which is included in the Class QueryIterator. This class is included in the You then must specify a

maximum size for the query result set, which is defined in the QueryIterator object, which is included in the

QueryIterator API package. This example sets the maximum size of the result set to 99:

QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

The iterator contains a collection of IQueryTuple objects, which are records of the return collection values.

Corresponding to the criteria of our example query statement, each tuple in this scenario contains one

value of name and one value of object(e). To display the contents of this query result, use the following

code:

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 Emp e = (Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);

 System.out.println(e.getPrimaryKey().toString());

}

The output from the program might look something like the following:

name Bob

emp 1001

name Dave

emp 298003

...

Finally, catch and process any exceptions. An exception might occur because of a syntax error in the

query statement or a run-time processing error. The following example catches and processes these

exceptions:

} catch (QueryException qe) {

 System.out.println("Query Exception "+ qe.getMessage());

}

Handling large result collections for the remote interface query

If you intend your query to return a large collection, you have the option of programming it to return results

in multiple smaller, more manageable quantities. Use the skipRow and maxRow parameters on the remote

executeQuery method to retrieve the answer in chunks. For example:

int skipRow=0;

int maxRow=100;

QueryIterator it = null;

do {

 it = qb.executeQuery(query, null, null ,skipRow, maxRow);

 while (it.hasNext()) {

 // display result

 skipRow = skipRow + maxRow;

}

} while (! it.isComplete()) ;

Example: Using the local interface for Dynamic query

When you run a dynamic Enterprise JavaBeans (EJB) query using the local interface, you are calling the

executeQuery method on the QueryLocal interface. This interface does not initiate a transaction for the

method; therefore you must explicitly establish a transaction context for the query to run.

Note: To establish a transaction context, the following example calls the begin() and commit() methods.

An alternative to using these methods is simply embedding your query code within an EJB method

that runs within a transaction context.

Chapter 14. Learn about WebSphere programming extensions 2433

Begin your query code with the following import statements:

import com.ibm.websphere.ejbquery.QueryLocalHome;

import com.ibm.websphere.ejbquery.QueryLocal;

import com.ibm.websphere.ejbquery.QueryLocalIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

Create a QueryLocal object by obtaining a reference from the QueryLocalHome class. (This class defines

the executeQuery method.) Note that in the following example, ejb/query is used as a local EJB reference

pointing to the dynamic query JNDI name (com/ibm/websphere/ejbquery/Query):

InitialContext ic = new InitialContext();

 QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");

QueryLocal qb = qh.create();

The last portion of code initiates a transaction, calls the executeQuery method, and displays the query

results. The QueryLocalIterator class is instantiated because it defines the query result set. This class is

included in the Class QueryIterator API package. Keep in mind that the iterator loses validity at the end of

the transaction; you must use the iterator in the same transaction scope as the executeQuery call.

userTransaction.begin();

QueryLocalIterator it = qb.executeQuery(query, null, null);

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 EmpLocal e = (EmpLocal) tuple.getObject(2);

 System.out.println(e.getPrimaryKey().toString());

}

userTransaction.commit();

In most situations, the QueryLocalIterator object is demand-driven. That is, it causes data to be returned

incrementally: for each record retrieval from the database, the next() method must be called on the iterator.

(Situations can exist in which the iterator is not demand-driven. For more information, consult the ″Local

query interfaces″ subsection of the Dynamic query performance considerations topic.)

Because the full query result set materializes incrementally in the application server memory, you can

easily control its size. During a test run, for example, you may decide that return of only a few tuples of

the query result is necessary. In that case you should use a call of the close() method on the

QueryLocalIterator object to close the query loop. Doing so frees SQL resources that the iterator uses.

Otherwise, these resources are not freed until the full result set accumulates in memory, or the transaction

ends.

Dynamic query performance considerations

While using a dynamic query can be convenient, there are times when it can have an impact on your

application performance.

General performance considerations

Use of the following elements in your dynamic query can diminish application performance somewhat:

v Datatype converters and Java methods

2434 Administering WebSphere applications

Why: In general, query operations and predicates are translated into SQL so that the database server

can perform them. If your query includes datatype converters (for EJB to RDB mapping, for example) or

Java methods, however, the associated predicates and operations of your query must be performed in

the memory of the application server.

v EJB methods and criteria that call for the return of EJB references

Why: Queries that incorporate these elements trigger full activation of EJBs in the memory of the

application server. (Returning a list of CMP fields from a query does not cause an EJB to be activated.)

When assessing application performance, you should also be aware that dynamic queries share

connections with the persistence manager. Consequently, an application that includes a mixture of finder

methods, CMR navigation, and dynamic queries relies on a single shared connection between the

persistence manager and the dynamic query service to perform these tasks.

Limiting the return collection size

v Remote interface queries: The QueryIterator class of the remote interface mandates that all of your

query results materialize in application server memory over the course of one method call. The SQL

cursor(s) used to run the EJB query are closed upon completion of that call. Because this requirement

poses a high risk for creating bottlenecks within the database server, you need to limit the size of any

potentially large result collections.

v Local interface queries: In most situations, the QueryLocalIterator object behaves as a wrapper

around an SQL cursor. It is demand-driven; it causes data to be returned incrementally. For each record

retrieval from the database, the next() method must be called on the iterator.

Use of certain operations in local interface queries, however, overrides the demand-driven behavior. In

these cases, the query results fully materialize in memory just as do the result collections of remote

interface queries. An example of such a case is:

select e.myBusinessMethod() from EmpBean e

 where e.salary < 50000 order by 1 desc

This query requires performance of an EJB method to produce the final result collection. Consequently,

the full dataset from the database must be returned in one collection to application server memory,

where the EJB method can be run on the dataset in its entirety. For that reason, local interface query

operations that invoke EJB methods are generally not demand-driven. You cannot control the return

collection size for such queries.

Because they are demand-driven, all other local interface queries allow you to control the size of return

collections. You can use a call of the close() method on the QueryLocalIterator object to close the query

loop after the desired number of return values has been fetched from the datastore. Otherwise, the SQL

cursor(s) used to run the EJB query are not closed until the full result set accumulates in memory, or

the transaction ends.

Access intent implications for dynamic query

WebSphere Application Server gives you the option to set access intent policies for your entity enterprise

beans as a way of managing their transfer of data with the underlying data store. An access intent policy

controls the isolation level used on the data source connection, as well as the database locks used during

data retrieval. By manipulating these elements, you can maximize the efficiency of your application’s data

flow.

To learn more, begin with the topics “Access intent policies” on page 179 and “Concurrency control” on

page 180.

When formulating dynamic queries, keep in mind the following considerations concerning their interaction

with access intent policies:

v A dynamic query uses the first ASN name in the FROM clause to determine access intent.

v The collection increment attribute of an access intent policy is not used in processing a dynamic query.

v When performed on entity beans that have a pessimistic-Update access intent policy, your dynamic

queries must return updateable collections. Therefore you need to formulate your query statements to

Chapter 14. Learn about WebSphere programming extensions 2435

return only collections of entity beans, not collections of CMP fields. For example, the statement select

object(c) from Customer is valid for a dynamic query performed under the constraint of a

pessimistic-Update policy. The statement select c.name from Customer c, however, is not a valid

dynamic query under this constraint.

v Using pessimistic-Update policy places restrictions on the types of query expressions. The restrictions

depend on the back end database type and release. Refer to the topic Access intent -- isolation levels

and update locks for details.

Dynamic query API: prepareQuery() and executePlan() methods

Use these methods to more efficiently allocate the overhead associated with dynamic query. They are

equivalent in function to the prepareStatement() and executeQuery() methods of the JDBC API.

To perform a dynamic Enterprise JavaBeans (EJB) query, the application server must parse the query

string into structured query language (SQL) at run time. You can, of course, eliminate run-time overhead

by choosing to perform a standard EJB query instead of a dynamic query. Sometimes referred to as

deployment queries, standard queries are parsed and built at deployment, then performed by a finder or

select method.

Another option is to write code that redistributes dynamic query overhead for better application

performance. Begin by calling the prepareQuery() method in place of the executeQuery() method. The

prepareQuery() method parses and translates your query, and returns a string called a query plan. The

plan contains the SQL statement produced by parsing and translation, as well as other information needed

by the dynamic query API. Save this string in your application and call the executePlan() method with the

string to run your query. (You also might want to use the prepareQuery() method simply to see the SQL

translation product; just call the method and display the return value.)

Pass the parameters of your query as an array of type Object on the prepareQuery() and the

executePlan() method calls. Ensure that you pass appropriate data types, because the application server

validates your query according to parameter type (rather than actual values) when it processes the

prepareQuery() method call.

Example code

Note: In the example code that follows, the first executePlan() method call substitutes parms[0] for ?1.

Hence the first query performed is functionally equivalent to the following query statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000

The second call runs a query that is functionally equivalent to this statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 60000

The example:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < ?1";

QueryIterator it = null;

Integer[] parms = new Integer[1];

parms[0] = new Integer(0);

In the call to prepareQuery(), pass any Integer value. Doing so defines ?1 as an Integer type, as in the

following:

String queryPlan= qb.prepareQuery(query, parms, null);

 parms[0] = new Integer(50000);

Next you run the query with a real value of Integer(50000) for ?1:

2436 Administering WebSphere applications

select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000it =

 qb.executePlan(queryPlan, parms, 0, 99);

parms[0] = new Integer(60000);

Run the query again with a different value of Integer(60000) for ?1:

it = qb.executePlan(queryPlan, parms, 0, 99);

Related tasks

“Using the dynamic query service” on page 2431
There are times in the development process when you might prefer to use the dynamic query service

rather than the regular Enterprise JavaBean (EJB) query service (which can be referred to as deployment

query). During testing, for instance, the dynamic query service can be used at application run time, so you

do not have to re-deploy your application.

Using the dynamic query service

There are times in the development process when you might prefer to use the dynamic query service

rather than the regular Enterprise JavaBean (EJB) query service (which can be referred to as deployment

query). During testing, for instance, the dynamic query service can be used at application run time, so you

do not have to re-deploy your application.

About this task

Following are common reasons for using the dynamic query service rather than the regular EJB query

service:

v You need to programmatically define a query at application run time, rather than at deployment.

v You need to return multiple CMP or CMR fields from a query. (Deployment queries allow only a single

element to be specified in the SELECT clause.) For more information, see the Example: EJB queries

article.

v You want to return a computed expression in the query.

v You want to use value object methods or bean methods in the query statement. For more information,

see Path expressions.

v You want to interactively test an EJB query during development, but do not want to repeatedly deploy

your application each time you update a finder or select query.

The dynamic query API is a stateless session bean; using it is similar to using any other J2EE EJB

application bean. It is included in the com.ibm.websphere.ejbquery in the API package.

The dynamic query bean has both a remote and a local interface. If you want to return remote EJB

references from the query, or if the query statement contains remote methods, you must use the query

remote interface:

remote interface = com.ibm.websphere.ejbquery.Query

remote home interface = com.ibm.websphere.ejbquery.QueryHome

If you want to return local EJB references from the query, or if the query statement contains local methods,

you must use the query local interface:

local interface = com.ibm.websphere.ejbquery.QueryLocal

local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

Because it uses less application server memory, the local interface ensures better overall EJB

performance than the remote.

1. Verify that the query.ear application file is installed on the application server on which your application

is to run, if that server is different from the default application server created during installation of the

product.

Chapter 14. Learn about WebSphere programming extensions 2437

The query.ear file is located in the app_server_root directory, where <WAS_HOME> is the location of the

WebSphere Application Server. The product installation program installs the query.ear file on the

default application server using a JNDI name of

com/ibm/websphere/ejbquery/Query

(You or the system administrator can change this name.)

2. Set up authorization for the methods executeQuery(), prepareQuery(), and executePlan() in the remote

and local dynamic query interfaces to control access to sensitive data. (This step is necessary only if

your application requires security.)

Because you cannot control which ASN names, CMP fields, or CMR fields can be used in a dynamic

EJB query, you or your system administrator must place restrictions on use of the methods. If, for

example, a user is permitted to run the executeQuery method, he or she can run any valid dynamic

query. In a production environment, you certainly want to restrict access to the remote query interface

methods.

3. Write the dynamic query as part of your application client code. You can consult the following

examples as query models; they illustrate which import statements to use, and so on:

v Remote interface dynamic query example

v Local interface dynamic query example

4. If the CMP you want to query is on a different module, you should:

a. do a remote lookup on query.ear

b. map the query.ear file to the server that the queried CMP bean is installed on.

5. Compile and run your client program with the file qryclient.jar in the classpath.

Example: Using the remote interface for Dynamic query

When you run a dynamic Enterprise JavaBeans (EJB) query using the remote interface, you are calling

the executeQuery method on the Query interface. The executeQuery method has a transaction attribute of

REQUIRED for this interface; therefore you do not need to explicitly establish a transaction context for the

query to run.

Begin with the following import statements:

import com.ibm.websphere.ejbquery.QueryHome;

import com.ibm.websphere.ejbquery.Query;

import com.ibm.websphere.ejbquery.QueryIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

Create a Query object by obtaining a reference from the QueryHome class. (This class defines the

executeQuery method.) Note that for the sake of simplicity, the following example uses the dynamic query

JNDI name for the Query object:

InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =

 (QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);

Query qb = qh.create();

You then must specify a maximum size for the query result set, which is defined in the QueryIterator

object, which is included in the Class QueryIterator. This class is included in the You then must specify a

2438 Administering WebSphere applications

maximum size for the query result set, which is defined in the QueryIterator object, which is included in the

QueryIterator API package. This example sets the maximum size of the result set to 99:

QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

The iterator contains a collection of IQueryTuple objects, which are records of the return collection values.

Corresponding to the criteria of our example query statement, each tuple in this scenario contains one

value of name and one value of object(e). To display the contents of this query result, use the following

code:

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 Emp e = (Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);

 System.out.println(e.getPrimaryKey().toString());

}

The output from the program might look something like the following:

name Bob

emp 1001

name Dave

emp 298003

...

Finally, catch and process any exceptions. An exception might occur because of a syntax error in the

query statement or a run-time processing error. The following example catches and processes these

exceptions:

} catch (QueryException qe) {

 System.out.println("Query Exception "+ qe.getMessage());

}

Handling large result collections for the remote interface query

If you intend your query to return a large collection, you have the option of programming it to return results

in multiple smaller, more manageable quantities. Use the skipRow and maxRow parameters on the remote

executeQuery method to retrieve the answer in chunks. For example:

int skipRow=0;

int maxRow=100;

QueryIterator it = null;

do {

 it = qb.executeQuery(query, null, null ,skipRow, maxRow);

 while (it.hasNext()) {

 // display result

 skipRow = skipRow + maxRow;

}

} while (! it.isComplete()) ;

Example: Using the local interface for Dynamic query

When you run a dynamic Enterprise JavaBeans (EJB) query using the local interface, you are calling the

executeQuery method on the QueryLocal interface. This interface does not initiate a transaction for the

method; therefore you must explicitly establish a transaction context for the query to run.

Note: To establish a transaction context, the following example calls the begin() and commit() methods.

An alternative to using these methods is simply embedding your query code within an EJB method

that runs within a transaction context.

Begin your query code with the following import statements:

Chapter 14. Learn about WebSphere programming extensions 2439

import com.ibm.websphere.ejbquery.QueryLocalHome;

import com.ibm.websphere.ejbquery.QueryLocal;

import com.ibm.websphere.ejbquery.QueryLocalIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

Create a QueryLocal object by obtaining a reference from the QueryLocalHome class. (This class defines

the executeQuery method.) Note that in the following example, ejb/query is used as a local EJB reference

pointing to the dynamic query JNDI name (com/ibm/websphere/ejbquery/Query):

InitialContext ic = new InitialContext();

 QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");

QueryLocal qb = qh.create();

The last portion of code initiates a transaction, calls the executeQuery method, and displays the query

results. The QueryLocalIterator class is instantiated because it defines the query result set. This class is

included in the Class QueryIterator API package. Keep in mind that the iterator loses validity at the end of

the transaction; you must use the iterator in the same transaction scope as the executeQuery call.

userTransaction.begin();

QueryLocalIterator it = qb.executeQuery(query, null, null);

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 EmpLocal e = (EmpLocal) tuple.getObject(2);

 System.out.println(e.getPrimaryKey().toString());

}

userTransaction.commit();

In most situations, the QueryLocalIterator object is demand-driven. That is, it causes data to be returned

incrementally: for each record retrieval from the database, the next() method must be called on the iterator.

(Situations can exist in which the iterator is not demand-driven. For more information, consult the ″Local

query interfaces″ subsection of the Dynamic query performance considerations topic.)

Because the full query result set materializes incrementally in the application server memory, you can

easily control its size. During a test run, for example, you may decide that return of only a few tuples of

the query result is necessary. In that case you should use a call of the close() method on the

QueryLocalIterator object to close the query loop. Doing so frees SQL resources that the iterator uses.

Otherwise, these resources are not freed until the full result set accumulates in memory, or the transaction

ends.

Dynamic query performance considerations

While using a dynamic query can be convenient, there are times when it can have an impact on your

application performance.

General performance considerations

Use of the following elements in your dynamic query can diminish application performance somewhat:

v Datatype converters and Java methods

2440 Administering WebSphere applications

Why: In general, query operations and predicates are translated into SQL so that the database server

can perform them. If your query includes datatype converters (for EJB to RDB mapping, for example) or

Java methods, however, the associated predicates and operations of your query must be performed in

the memory of the application server.

v EJB methods and criteria that call for the return of EJB references

Why: Queries that incorporate these elements trigger full activation of EJBs in the memory of the

application server. (Returning a list of CMP fields from a query does not cause an EJB to be activated.)

When assessing application performance, you should also be aware that dynamic queries share

connections with the persistence manager. Consequently, an application that includes a mixture of finder

methods, CMR navigation, and dynamic queries relies on a single shared connection between the

persistence manager and the dynamic query service to perform these tasks.

Limiting the return collection size

v Remote interface queries: The QueryIterator class of the remote interface mandates that all of your

query results materialize in application server memory over the course of one method call. The SQL

cursor(s) used to run the EJB query are closed upon completion of that call. Because this requirement

poses a high risk for creating bottlenecks within the database server, you need to limit the size of any

potentially large result collections.

v Local interface queries: In most situations, the QueryLocalIterator object behaves as a wrapper

around an SQL cursor. It is demand-driven; it causes data to be returned incrementally. For each record

retrieval from the database, the next() method must be called on the iterator.

Use of certain operations in local interface queries, however, overrides the demand-driven behavior. In

these cases, the query results fully materialize in memory just as do the result collections of remote

interface queries. An example of such a case is:

select e.myBusinessMethod() from EmpBean e

 where e.salary < 50000 order by 1 desc

This query requires performance of an EJB method to produce the final result collection. Consequently,

the full dataset from the database must be returned in one collection to application server memory,

where the EJB method can be run on the dataset in its entirety. For that reason, local interface query

operations that invoke EJB methods are generally not demand-driven. You cannot control the return

collection size for such queries.

Because they are demand-driven, all other local interface queries allow you to control the size of return

collections. You can use a call of the close() method on the QueryLocalIterator object to close the query

loop after the desired number of return values has been fetched from the datastore. Otherwise, the SQL

cursor(s) used to run the EJB query are not closed until the full result set accumulates in memory, or

the transaction ends.

Access intent implications for dynamic query

WebSphere Application Server gives you the option to set access intent policies for your entity enterprise

beans as a way of managing their transfer of data with the underlying data store. An access intent policy

controls the isolation level used on the data source connection, as well as the database locks used during

data retrieval. By manipulating these elements, you can maximize the efficiency of your application’s data

flow.

To learn more, begin with the topics “Access intent policies” on page 179 and “Concurrency control” on

page 180.

When formulating dynamic queries, keep in mind the following considerations concerning their interaction

with access intent policies:

v A dynamic query uses the first ASN name in the FROM clause to determine access intent.

v The collection increment attribute of an access intent policy is not used in processing a dynamic query.

v When performed on entity beans that have a pessimistic-Update access intent policy, your dynamic

queries must return updateable collections. Therefore you need to formulate your query statements to

Chapter 14. Learn about WebSphere programming extensions 2441

return only collections of entity beans, not collections of CMP fields. For example, the statement select

object(c) from Customer is valid for a dynamic query performed under the constraint of a

pessimistic-Update policy. The statement select c.name from Customer c, however, is not a valid

dynamic query under this constraint.

v Using pessimistic-Update policy places restrictions on the types of query expressions. The restrictions

depend on the back end database type and release. Refer to the topic Access intent -- isolation levels

and update locks for details.

Dynamic query API: prepareQuery() and executePlan() methods

Use these methods to more efficiently allocate the overhead associated with dynamic query. They are

equivalent in function to the prepareStatement() and executeQuery() methods of the JDBC API.

To perform a dynamic Enterprise JavaBeans (EJB) query, the application server must parse the query

string into structured query language (SQL) at run time. You can, of course, eliminate run-time overhead

by choosing to perform a standard EJB query instead of a dynamic query. Sometimes referred to as

deployment queries, standard queries are parsed and built at deployment, then performed by a finder or

select method.

Another option is to write code that redistributes dynamic query overhead for better application

performance. Begin by calling the prepareQuery() method in place of the executeQuery() method. The

prepareQuery() method parses and translates your query, and returns a string called a query plan. The

plan contains the SQL statement produced by parsing and translation, as well as other information needed

by the dynamic query API. Save this string in your application and call the executePlan() method with the

string to run your query. (You also might want to use the prepareQuery() method simply to see the SQL

translation product; just call the method and display the return value.)

Pass the parameters of your query as an array of type Object on the prepareQuery() and the

executePlan() method calls. Ensure that you pass appropriate data types, because the application server

validates your query according to parameter type (rather than actual values) when it processes the

prepareQuery() method call.

Example code

Note: In the example code that follows, the first executePlan() method call substitutes parms[0] for ?1.

Hence the first query performed is functionally equivalent to the following query statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000

The second call runs a query that is functionally equivalent to this statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 60000

The example:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < ?1";

QueryIterator it = null;

Integer[] parms = new Integer[1];

parms[0] = new Integer(0);

In the call to prepareQuery(), pass any Integer value. Doing so defines ?1 as an Integer type, as in the

following:

String queryPlan= qb.prepareQuery(query, parms, null);

 parms[0] = new Integer(50000);

Next you run the query with a real value of Integer(50000) for ?1:

2442 Administering WebSphere applications

select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000it =

 qb.executePlan(queryPlan, parms, 0, 99);

parms[0] = new Integer(60000);

Run the query again with a different value of Integer(60000) for ?1:

it = qb.executePlan(queryPlan, parms, 0, 99);

Related tasks

“Using the dynamic query service” on page 2431
There are times in the development process when you might prefer to use the dynamic query service

rather than the regular Enterprise JavaBean (EJB) query service (which can be referred to as deployment

query). During testing, for instance, the dynamic query service can be used at application run time, so you

do not have to re-deploy your application.

Internationalization

Task overview: Globalizing applications

An application that can present information to users according to regional cultural conventions is said to be

globalized: The application can be configured to interact with users from different localities in culturally

appropriate ways. In a globalized application, a user in one region sees error messages, output, and

interface elements in the requested language. Date and time formats, as well as currencies, are presented

appropriately for users in the specified region. A user in another region sees output in the conventional

language or format for that region. Globalization consists of two phases: internationalization (enabling an

application component to use regional conventions) and localization (implementing a specific regional

convention). This product supports globalization through the use of its localizable-text API and

internationalization service.

v Make sure the server runtime environment is properly configured.

For more information about supported locales and character encodings, see “Working with locales and

character encodings” on page 2449.

v Implement message catalogs in your application by using the localizable-text API.

This product supports the maintenance and deployment of centralized message catalogs for the output

of properly formatted, language-specific (localized) interface strings.

For more information about the localizable-text API, see “Task overview: Internationalizing interface

strings (localizable-text API)” on page 2447.

v Implement more extensive locale support by using the internationalization service.

With the internationalization service, you can manage the distribution of the internationalization

information, or internationalization context, that is necessary to perform localizations within Java

Platform, Enterprise Edition (Java EE) application components. Supported application components also

include Web service client environments and Web service-enabled enterprise beans.

For more information about the internationalization service, see “Task overview: Internationalizing

application components (internationalization service)” on page 2447.

Globalization

An application that can present information to users according to regional cultural conventions is said to be

globalized: The application can be configured to interact with users from different localities in culturally

appropriate ways. In a globalized application, a user in one region sees error messages, output, and

interface elements in the requested language. Date and time formats, as well as currencies, are presented

appropriately for users in the specified region. A user in another region sees output in the conventional

language or format for that region. Globalization consists of two phases: internationalization (enabling an

application component to use regional conventions) and localization (implementing a specific regional

convention).

Chapter 14. Learn about WebSphere programming extensions 2443

Historically, the creation of globalized applications has been restricted to large corporations writing

complex systems. However, given the rise in distributed computing and in the use of the World Wide Web,

application developers are pressured to globalize a much wider variety of applications. This trend requires

making globalization techniques much more accessible to application developers.

Internationalization of an application is driven by two variables, the time zone and the locale. The time

zone indicates how to compute the local time as an offset from a standard time like Greenwich Mean

Time. The locale is a collection of information about language, currency, and the conventions for

presenting information like dates. A time zone can cover many locales, and a single locale can span time

zones. With both time zone and locale, the date, time, currency, and language for users in a specific

region can be determined.

By convention, a given locale is specified with a pair of codes (for language and region) that are governed

by different standards. The ISO-639 standard governs the language code; the ISO-3166 standard governs

the regional code. In notation, the two codes are typically joined by an underscore (_) character, for

example, en_US for English in the United States. In Java code, locales are set and retrieved by means of

the java.util.Locale class.

A first step: Localization of interface strings

In an application that is not globalized, the user interface is unalterably written into the application code.

Internationalizing a user interface adds a layer of abstraction into the design of an application. The

additional layer of abstraction enables you to localize the application for each locale that must be

supported by the application.

In a localized application, the locale determines the message catalog from which the application retrieves

message strings. Instead of printing an error message, the application represents the error message with

some language-neutral information; in the simplest case, each error condition corresponds to a key. To

print a usable error message, the application looks up the key in a message catalog. Each message

catalog is a list of keys with associated strings. Different message catalogs provide strings for the different

languages that are supported. The application looks up the key in the appropriate catalog, retrieves the

corresponding error message in the requested language, and prints the string for the user.

Localization of text can be used for far more than translating error messages. For example, by using keys

to represent each element in a graphical user interface (GUI) and by providing the appropriate message

catalogs, the GUI (buttons, menus, and so on) can support multiple languages. Extending support to

additional languages requires that you provide message catalogs for those languages; in many cases, the

application needs no further modification.

The localizable-text package is a set of Java classes and interfaces that can be used to localize the

strings in distributed applications easily. Language-specific string catalogs can be stored centrally so that

they can be maintained efficiently.

Globalization challenges in distributed applications

With the advent of Internet-based business computational models, applications increasingly consist of

clients and servers that operate in different geographical regions. These differences introduce the following

challenges to the task of designing a solid client-server infrastructure:

Clients and servers can run on computers that have different endian architectures or code sets

 Clients and servers can reside in computers that have different endian architectures: A client can

reside in a little-endian CPU, while the server code runs in a big-endian one. A client might want to

call a business method on a server running in a code set different from that of the client.

A client-server infrastructure must define precise endian and code-set tracking and conversion

rules. The Java platform has nearly eliminated these problems in a unique way by relying on its

2444 Administering WebSphere applications

Java virtual machine (JVM), which encodes all of the string data in UCS-2 format and externalizes

everything in big-endian format. The JVM uses a set of platform-specific programs for interfacing

with the native platform. These programs perform any necessary code set conversions between

UCS-2 and the native code set of a platform.

Clients and servers can run on computers with different locale settings

 Client and server processes can use different locale settings. For example, a Spanish client might

call a business method upon an object that resides on an American English server. Some

business methods are locale-sensitive in nature; for example, given a business method that

returns a sorted list of strings, the Spanish client expects that list to be sorted according to the

Spanish collating sequence, not in the English collating sequence of the server. Because data

retrieval and sorting procedures run on the server, the locale of the client must be available to

perform a legitimate sort.

A similar consideration applies in instances where the server has to return strings containing date,

time, currency, exception messages, and so on, that are formatted according to the cultural

expectations of the client.

Clients and servers can reside in different time zones

 Client and server processes can run in different time zones. To date, all internationalization

literature and resources concentrate mainly on code set and locale-related issues. They have

generally ignored the time zone issue, even though business methods can be sensitive to time

zone as well as to locale.

For example, suppose that a vendor makes the claim that orders received before 2:00 PM are

processed by 5:00 PM the same day. The times given, of course, are in the time zone of the

server that is processing the order. It is important to know the time zone of the client to give

customers in other time zones the correct times for same-day processing.

Other time zone-sensitive operations include time stamping messages logged to a server, and

accessing file or database resources. The concept of Daylight Savings Time further complicates

the time zone issue.

Java Platform, Enterprise Edition (Java EE) provides support for application components that run on

computers with differing endian architecture and code sets. It does not provide dedicated support for

application components that run on computers with different locales or time zones.

The conventional method for solving locale and time zone mismatches across remote application

components is to pass one or more extra parameters on all business methods needed to convey the

client-side locale or time zone to the server. Although simple, this technique has the following limitations

when used in Enterprise JavaBeans (EJB) applications:

v It is intrusive because it requires that one or more parameters be added to all bean methods in the call

chain to locale-sensitive or time zone-sensitive methods.

v It is inherently error-prone.

v It is impracticable within applications that do not support modification, such as legacy applications.

The internationalization service addresses the challenges posed by locale and time zone mismatch without

incurring the limitations of conventional techniques. The service systematically manages the distribution of

internationalization contexts across the various components of EJB applications, including client

applications, enterprise beans, and servlets. For more information, see “Task overview: Internationalizing

application components (internationalization service)” on page 2447.

Language versions offered by this product

This product is offered in several languages, as enabled by the operating platform on which the product is

installed.

The following language versions are available:

Chapter 14. Learn about WebSphere programming extensions 2445

v Brazilian Portuguese

v Chinese (Simplified)

v Chinese (Traditional)

v Czech

v English

v French

v German

v Hungarian

v Italian

v Japanese

v Korean

v Polish

v Russian

v Spanish

Globalization: Resources for learning

Use links in this topic to find relevant supplemental information about globalization. The information resides

on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and IBM

Redbooks publications that supplement the broad coverage of the release documentation with in-depth

examinations of particular product areas.

View links to additional information about:

v “Programming instructions and examples”

v “Programming specifications”

Programming instructions and examples

v Java internationalization tutorial

An online tutorial that explains how to use the Java SDK Internationalization API.

v Globalize your On Demand Business

IBM’s portal site for delivering globalized applications.

Programming specifications

v Java 2 Platform Standard Edition 5.0 Development Kit Documentation: Internationalization

The Java internationalization documentation from Sun Microsystems, including a list of supported

locales and encodings. For other versions of the Java platform, click the ″Internationalization Home

Page″ link on that page.

v Java Specification Request 150, Internationalization Service for J2EE

The specification of the Java internationalization service that was developed through the Java

Community Process.

v W3C, Internationalization Core Working Group

The W3C’s Internationalization Core Working Group responsible for investigating the internationalization

of Web services, in particular, the dependence of Web services on language, culture, region, and

locale-related contexts.

v Making the WWW truly World Wide

The W3C effort to make World Wide Web technology work with the many writing systems, languages,

and cultural conventions of the global community:

2446 Administering WebSphere applications

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://www.ibm.com/software/globalization/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://www.jcp.org/en/jsr/detail?id=150
http://www.w3.org/International/core/
http://www.w3.org/International/

Task overview: Internationalizing interface strings (localizable-text API)

This topic summarizes the steps involved in implementing message catalogs through the localizable-text

API.

About this task

This product supports the maintenance and deployment of centralized message catalogs for the output of

properly formatted, language-specific (localized) interface strings.

1. Identify localizable text in your application.

2. Create the message catalogs that are necessary for the locales to be supported by your application.

3. In your application code, compose the language-specific strings for output.

4. Using an assembly tool, assemble your application code as one or more application components.

5. Prepare the localizable-text package for deployment with your localized application. In this step, you

create a deployment Java archive (JAR) file.

6. Assemble the application modules and the deployment JAR file into a Java Platform, Enterprise Edition

(Java EE) application.

7. Deploy and manage the application.

Results

Your application is deployed with localized text.

Task overview: Internationalizing application components

(internationalization service)

This topic summarizes the steps involved in using the internationalization service.

About this task

With the internationalization service, you can manage the distribution of the internationalization information,

or internationalization context, that is necessary to perform localizations within Java Platform, Enterprise

Edition (Java EE) application components. Supported application components also include Web service

client environments and Web service-enabled enterprise beans.

1. Use the internationalization context API within application components to obtain or manage

internationalization context.

Servlet and enterprise bean business methods can use internationalization context to perform locale-

and time zone-sensitive localizations. Enterprise JavaBeans (EJB) client applications, and server

components that are configured to manage internationalization context must use the

internationalization context API to set the context elements scoped to their invocations.

You use the internationalization context API within Web service-enabled Java EE client programs and

stateless session beans in the same manner that you would use conventional Java EE application

components, with one exception. Internationalization context propagated over Web service requests

contains a time zone ID, whereas conventional Remote Method Invocation/ Internet Inter-ORB Protocol

(RMI/IIOP) requests propagate complete time zone information, including the raw offset, Daylight

Savings Time information, and so on.

2. Assemble internationalized applications.

The internationalization type specifies the internationalization policy that applies to a servlet or an

enterprise bean and, in particular, indicates whether the application component or its hosting Java EE

container manages internationalization context. Container internationalization attributes can be

specified for container-managed servlet and enterprise bean business methods. These attributes tailor

a policy by indicating which context the container scopes to an invocation. Configuring

internationalization policies declaratively prescribes, by means of the application deployment descriptor,

the distribution and management of context throughout an application.

Chapter 14. Learn about WebSphere programming extensions 2447

As you edit the deployment descriptor for assembly, you can also set the internationalization type and

configure any container internationalization attributes for the servlets and enterprise beans in your

application.

You configure internationalization type and container internationalization attributes for Web

service-enabled stateless session beans in the same manner as you do for conventional beans.

3. Manage the internationalization service.

Use the administrative console to enable the service on all application servers.

By default, the service is enabled within Java EE client environments but is disabled on application

servers. You must enable the service on all application servers hosting your servlets and enterprise

beans to use internationalization context.

4. Troubleshoot the internationalization service as needed.

Use the administrative console to enable the trace service to log internationalization service messages

when debugging your applications.

The trace strings for the internationalization service follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

Internationalization service

In a distributed client-server environment, application processes can run on different machines, configured

for different locales, corresponding to different cultural conventions; they can also be located across

geographical boundaries. The internationalization service can help manage your application in a globally

distributed environment.

For an understanding of how differences in locale impact application development, read “Globalization” on

page 2443.

Java Platform, Enterprise Edition (Java EE) provides support for application components that run on

computers with differing endian architecture and code sets. It does not provide dedicated support for

application components that run on computers with different locales or time zones.

The internationalization service addresses the challenges posed by locale and time zone mismatch without

incurring the limitations of conventional techniques. The service systematically manages the distribution of

internationalization contexts across the various components of EJB applications, including client

applications, enterprise beans, and servlets.

The service works by associating an internationalization context with every service request within an

application. When a client-side component calls a business method, the internationalization service

interposes by obtaining the internationalization context associated with the current client-side process and

by attaching that context to the outgoing request. On the server side, the internationalization service again

interposes by detaching the context from the incoming request and associating it with the server-side

process on which the business method will run, effectively scoping the context to the business method.

For HTTP requests, the caller context is constructed from the HTTP attributes and default values. The

service propagates internationalization context on subsequent business method invocations in the same

manner, which distributes the context of the originating request over the entire chain of business method

invocations.

This basic operation of scoping and propagation is defined precisely by internationalization context

management policies. Internationalization policies specify whether an application component or its hosting

Java EE container are to manage internationalization context. For container-managed components, the

policy indicates which internationalization context the container scopes to invocations on that component.

Server components configured to manage internationalization context, as well as EJB clients, must use the

internationalization context API to manage the internationalization context elements scoped to their

invocations.

2448 Administering WebSphere applications

Every application component has a default policy, which can be overridden and tailored for servlets and

enterprise beans at assembly time.

At run time, application components can use the internationalization context API to get any element of the

internationalization contexts scoped to an invocation. To programmatically access context elements,

application components first resolve an internationalization context API reference, then call the appropriate

API method to access the various context elements, such as the caller locale or the invocation time zone.

These elements can be used in calls to Java SDK internationalization API methods; for example, to

perform localizations such as formatting messages, configuring dates, or comparing strings.

Working with locales and character encodings

Internationalization support for this product relies on that provided by the Java Platform, Standard Edition

(JSE). Support varies by platform.

v Verify that the operating system on which the application server is installed supports the locales and

encodings that you plan to use.

Java internationalization support might use underlying services of the operating system. For example, if

user IDs for your server are expected to contain non-English characters, make sure that the operating

system is configured to process those characters.

v Plan for encoding changes as necessary.

Consider differences in encoding support among operating system subcomponents. Although this

product and the Java platform are based on Unicode encoding, it is not always possible to run

applications in a purely Unicode environment.

v Set the console.encoding property as necessary.

Results

If your application produces an UnsupportedEncodingException exception, check your operating system

documentation to determine if the target operating system supports the required encoding and adjust the

runtime environment as needed.

Administering the internationalization service

To use internationalization context in an Enterprise JavaBeans (EJB) application, the internationalization

service must be enabled in the runtime environments for all server-side components (servlets and

enterprise beans, including session beans enabled for Web service usage) as well as all client-side

components (EJB client applications and Web service clients).

About this task

If you do not require the internationalization service, do not enable it. Leaving the service disabled

prevents any possible performance degradation incurred by the implicit distribution of internationalization

resources.

The internationalization service cannot be enabled for HTTP clients, because support for

internationalization in that case is provided by the browser, not by the application server.

v Enable or disable the internationalization service for servlets and enterprise beans. By default, the

service is disabled for server-side components within the application server. You enable the service by

using either the administrative console or the wsadmin tool.

v Enable or disable the internationalization service for EJB clients. By default, the service is disabled

within the client container. You enable the service by using the launchClient tool.

Enabling the internationalization service for servlets and enterprise beans

Perform this task to enable the internationalization service in the application server runtime environment.

Chapter 14. Learn about WebSphere programming extensions 2449

About this task

Any servlet or enterprise bean can use internationalization context if the internationalization service is

enabled within the hosting application server instance.

1. Start the administrative console.

2. Click Servers > Application servers > server_name > Container services > Internationalization

service.

3. Enable the internationalization service.

a. If not already selected, select the Enable service at server startup check box.

b. Click OK.

Results

When you select the Enable service at server startup setting, the application server automatically

initializes and starts the internationalization service whenever the server starts. If you change this setting,

be sure to restart the application server for the new setting to take effect.

To disable the service, clear the Enable service at server startup check box. In this case, the

internationalization service is initialized but not started when the application server starts.

Example

Alternatively, the internationalization service can be enabled from the command line by using the wsadmin

tool. Start the wsadmin tool and enter the following commands:

set x [$AdminConfig list I18NService]

$AdminConfig modify $x { { enable true } }

$AdminConfig save

exit

What to do next

If you enable or disable the internationalization service, be sure to stop and then restart the application

server for the new setting to take effect.

Enabling the internationalization service for EJB clients

By default, the internationalization service is disabled for use within Enterprise JavaBeans (EJB) and

Web-service enabled client applications. You must enable the service for client applications as well as for

all server instances in the runtime environment.

Enable the service.

When calling the launchClient tool, include the argument -CCDI18NService.enable=true or

-CCDI18NService.enable=yes.

Internationalization service settings

Use this page to enable or disable the internationalization service. The internationalization service

manages the implicit propagation and scoping of locale and time zone information, called

internationalization context, within application components. When the service is enabled, application

components can use the internationalization context API to programmatically manage locale and time zone

information. In turn, components can use that locale and time zone information with the Java Platform,

Standard Edition (JSE) Internationalization API to perform localizations. If internationalization support is not

required on the server, disabling the service can improve performance.

To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name. Then, under Container Settings, click Container Services > Internationalization

Service.

2450 Administering WebSphere applications

Enable service at server startup:

Specifies whether the server attempts to start the internationalization service.

 Default Cleared

Range Valid values are Selected or Cleared

More information about valid values follows:

Selected

When the application server starts, it attempts to start the internationalization service automatically.

Cleared

The server does not try to start the internationalization service.

 To enable the internationalization service for applications on this server, the system administrator must

select this property and then restart the server.

Internationalization service errors

Certain conditions might cause the internationalization service not to start, to issue

java.lang.IllegalStateException exceptions while an application is running, or to exercise default behaviors.

The java.lang.IllegalStateException exception indicates one of the following things:

v An application component attempted an operation that is not supported by the internationalization

programming model.

The IllegalStateException exception is issued whenever a server application component whose

internationalization type is set to container-managed internationalization (CMI) attempts to set invocation

context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot

modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory

Interface (JNDI) lookup on the UserInternationalization URL attribute issues a

javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions

might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to

exercise default behaviors:

v “The service is disabled ”

v “The service is not started” on page 2452

v “Invalid context element” on page 2453

v “Missing context element” on page 2453

v “Invalid policy” on page 2453

v “Missing policy” on page 2453

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these

conditions. You need to examine the trace log to investigate these conditions, which requires that you

configure the diagnostic trace service to generate messages about internationalization service function. To

get started with logging and tracing, see Tracing and logging configuration.

The trace strings for the internationalization service follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates

a message that indicates whether it is enabled or disabled. Applications cannot access the

internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the

Chapter 14. Learn about WebSphere programming extensions 2451

UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the

reference cannot be found. In addition, the service does not scope (propagate) internationalization context

on incoming (outgoing) business method calls.

The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an

application attempts to access internationalization context and the service is not started, the API issues an

IllegalStateException exception. In addition, the service does not provide runtime support for servlets and

enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates

(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not

start. After the service is started, its state can change to BLOCKED in the event that a serious error

occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine

the problem. For instance, the internationalization service does not start if the activity service is

unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or runtime problems:

No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal

error. Examine the SystemErr.log and SystemOut.log files for information.

No TCM support

The service cannot obtain an instance of its thread context manager (TCM). This condition is a

fatal error. Examine the SystemErr.log and SystemOut.log files for information.

No IIOP (activity service) support

The service cannot register with the activity service. This condition is a fatal error. The

internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol

(IIOP) requests without activity service support. Examine the SystemErr.log and SystemOut.log

files for information.

No AsynchBeans support

The service cannot register into the asynchronous beans environment. This warning indicates that

the asynchronous beans environment cannot support internationalization context.

No EJB container support

The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates

that the internationalization service cannot support enterprise beans. Without EJB container

support, internationalization contexts do not scope properly to EJB business methods. Review the

trace log for any EJB container-related error conditions.

No Web container support

The service cannot register with the Web container. This warning indicates that the

internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web

container support, internationalization contexts do not scope properly to servlet service methods.

Review the trace log for any Web container-related error conditions.

No Metadata support

The service cannot register with the metadata service. This warning indicates that the

internationalization service cannot process the internationalization policies within application

deployment descriptors. Without metadata support, the service associates the default

internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle

method and enterprise bean business method invocation. Review the trace log for any metadata

service-related error conditions.

No JNDI (Naming service) support

The service cannot bind the UserInternationalization object into the namespace. This condition is a

fatal error. Application components are unable to access internationalization context API

2452 Administering WebSphere applications

references, and are therefore unable to access internationalization context elements. Review the

trace log for any Naming (JNDI) service-related error conditions.

No API support

The service cannot obtain an instance of an internationalization context API object. This condition

is a fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization

service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service

encounters an unusable element, it logs a message and substitutes the corresponding default element of

the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from

application servers that do not support the internationalization service) lack internationalization context.

When the service attempts to access a caller internationalization context element (which does not exist in

this case), the service logs a message and substitutes the corresponding default element of the Java

virtual machine (JVM).

Whenever possible, enable the internationalization service within all clients and hosting application servers

that comprise an internationalized enterprise application. Read more information about Administering the

internationalization service in the Administering applications and their environment PDF book.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application

deployment descriptor. The service replaces the malformed attribute with the appropriate default. For

instance, if the internationalization type for an entity bean is set to Application during the run of a servlet

or EJB business method call, the service logs the inconsistency and enforces the Container setting

instead.

Also, AMI application components do have an implicit container internationalization attribute. By default

they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs

messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time

zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces

each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in

the Developing and deploying applications PDF book.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the

appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,

the service sets the attribute to Container.

Container internationalization attributes are not mandatory for CMI application components. In the event

that a CMI servlet or EJB business method lacks a container internationalization attribute, the service

silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or metadata support is

unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet

service method and EJB business method invocation.

Chapter 14. Learn about WebSphere programming extensions 2453

Read the information in the Developing and deploying applications PDF book:

v Assembling internationalized applications

v Container internationalization attributes

v Internationalization type

Object pools

Using object pools

An object pool helps an application avoid creating new Java objects repeatedly. Most objects can be

created once, used and then reused. An object pool supports the pooling of objects waiting to be reused.

About this task

Object pools are not meant to be used for pooling JDBC connections or Java Message Service (JMS)

connections and sessions. WebSphere Application Server provides specialized mechanisms for dealing

with those types of objects. These object pools are intended for pooling application-defined objects or

basic Developer Kit types.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Note: The Object pool manager service is only supported from within the EJB container or Web container.

Looking up and using a configured object pool manager from a Java 2 Platform Enterprise Edition

(J2EE) application client container is not supported.

1. Start the administrative console.

2. Click Resources > Object pool managers.

3. Specify a Scope value and click New.

4. Specify the required properties for work manager settings.

Scope The scope of the configured resource. This value indicates the location for the configuration

file.

Name The name of the object pool manager. This name can be up to 30 ASCII characters long.

JNDI Name

The Java Naming and Directory Interface (JNDI) name for the pool manager.

5. [Optional] Specify a Description and a Category for the object pool manager.

Results

After you have completed these steps, applications can find the object pool manager by doing a JNDI

lookup using the specified JNDI name.

Example

The following code illustrates how an application can find an object pool manager object:

InitialContext ic = new InitialContext();

ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

When the application has an ObjectPoolManager, it can cache an object pool for classes of the types it

wants to use. The following is an example:

ObjectPool arrayListPool = null;

ObjectPool vectorPool = null;

try

{

 arrayListPool = opm.getPool(ArrayList.class);

 vectorPool = opm.getPool(Vector.class);

2454 Administering WebSphere applications

}

catch(InstantiationException e)

{

 // problem creating pool

}

catch(IllegalAccessException e)

{

 // problem creating pool

}

When the application has the pools, the application can use them as in the following example:

ArrayList list = null;

try

{

 list = (ArrayList)arrayListPool.getObject();

 list.clear(); // just in case

 for(int i = 0; i < 10; ++i)

 {

 list.add("" + i);

 }

 // do what ever we need with the ArrayList

}

finally

{

 if(list != null) arrayListPool.returnObject(list);

}

This example presents the basic pattern for using object pooling. If the application does not return the

object, then the only adverse effect is that the object cannot be reused.

Object pool managers

Object pool managers control the reuse of application objects and Developer Kit objects, such as Vectors

and HashMaps.

Multiple object pool managers can be created in an Application Server cell. Each object pool manager has

a unique cell-wide Java Naming and Directory Interface (JNDI) name. Applications can find a specific

object pool manager by doing a JNDI lookup using the specific JNDI name.

The object pool manager and its associated objects implement the following interfaces:

public interface ObjectPoolManager

{

 ObjectPool getPool(Class aClass)

 throws InstantiationException, IllegalAccessException;

 ObjectPool createFastPool(Class aClass)

 throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool

{

 Object getObject();

 void returnObject(Object o);

}

The getObject() method removes the object from the object pool. If a getObject() call is made and the pool

is empty, then an object of the same type is created. A returnObject() call puts the object back into the

object pool. If returnObject() is not called, then the object is no longer allocatable from the object pool. If

the object is not returned to the object pool, then it can be garbage collected.

Each object pool manager can be used to pool any Java object with the following characteristics:

v The object must be a public class with a public default constructor.

Chapter 14. Learn about WebSphere programming extensions 2455

v If the object implements the java.util.Collection interface, it must support the optional clear() method.

Each pooled object class must have its own object pool. In addition, an application gets an object pool for

a specific object using either the ObjectPoolManager.getPool() method or the

ObjectPoolManager.createFastPool() method. The difference between these methods is that the getPool()

method returns a pool that can be shared across multiple threads. The createFastPool() method returns a

pool that can only be used by a single thread.

If in a Java virtual machine (JVM), the getPool() method is called multiple times for a single class, the

same pool is returned. A new pool is returned for each call when the createFastPool() method is called.

Basically, the getPool() method returns a pool that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool because of the need to handle

thread synchronization. However, extreme care must be taken when using a fast pool.

Consider the following interface:

public interface PoolableObject

{

 void init();

 void returned();

}

If the objects placed in the pool implement this interface and the ObjectPool.getObject() method is called,

the object that the pool distributes has the init() method called on it. When the ObjectPool.returnObject()

method is called, the PoolableObject.returned() method is called on the object before it is returned to the

object pool. Using this method objects can be pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example, an application might

want to pool ArrayList objects. The ArrayList object needs clearing each time the application reuses it. The

application might extend the ArrayList object and have the ArrayList object implement a poolable object.

For example, consider the following:

public class PooledArrayList extends ArrayList implements PoolableObject

{

 public PooledArrayList()

 {

 }

 public void init() {

 }

 public void returned()

 {

 clear();

 }

}

If the application uses this object, in place of a true ArrayList object, the ArrayList object is cleared

automatically when it is returned to the pool.

Clearing an ArrayList object simply marks it as empty and the array backing the ArrayList object is not

freed. Therefore, as the application reuses the ArrayList, the backing array expands until it is big enough

for all of the application requirements. When this point is reached, the application stops allocating and

copying new backing arrays and achieves the best performance.

It might not be possible or desirable to use the previous procedure. An alternative is to implement a

custom object pool and register this pool with the object pool manager as the pool to use for classes of

2456 Administering WebSphere applications

that type. The class is registered by the WebSphere administrator when the object pool manager is

defined in the cell. Take care that these classes are packaged in Java Archive (JAR) files available on all

of the nodes in the cell where they might be used.

Object pool managers collection

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Name:

Specifies the name by which the object pool manager is known for administrative purposes.

 Data type String

Range 1 through 30 ASCII characters

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the object pool manager.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies the description of the object pool manager.

 Data type String

Category:

Specifies the category name used to classify or group this object pool manager.

 Data type String

Object pool managers settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

Chapter 14. Learn about WebSphere programming extensions 2457

To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

The name by which the object pool manager is known for administrative purposes.

 Data type String

Range 1 through 30 ASCII characters

JNDI Name:

The Java Naming and Directory Interface (JNDI) name for the object pool manager.

 Data type String

Description:

A description of the object pool manager.

 Data type String

Category:

A category name used to classify or to group this object pool manager.

 Data type String

Custom object pool collection:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name > Custom object pools.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

2458 Administering WebSphere applications

These features allow for actions such as, clearing the state of an object when returning it to the pool,

configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending

instructions on how to behave using custom properties.

To use an object pool the product administrator must define an object pool manager using the

administrative console. You can create multiple object pool managers in an Application Server cell.

Pool class name:

Specifies the fully qualified class name of the objects that are stored in the custom object pool.

 Data type String

Pool implementation class name:

Specifies the fully qualified class name of the implementation class for the custom object pool.

 Data type String

Custom object pool settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name > Custom object pools > objectpool_name.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,

configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending

instructions on how to behave using custom properties.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Pool Class Name:

The fully qualified class name of the objects that are stored in the object pool.

 Data type String

Pool Impl Class Name:

The fully qualified class name of the CustomObjectPool implementation class for this object pool.

Chapter 14. Learn about WebSphere programming extensions 2459

Data type String

Object pool service settings

Use this page to enable or disable the object pool service, which manages object pool resources used by

the server.

To view this administrative console page, click Servers > Application Servers > server_name > Container

services > Object Pool Service.

Enable service at server startup:

Specifies whether the server attempts to start the object pool service.

 Default Cleared

Range Selected

When the application server starts, it attempts to start the object pool

service automatically.

Cleared

The server does not try to start the object pool service. If object pool

resources are used on this server, then the system administrator

must start the object pool service manually or select this property,

and then restart the server.

Object pools: Resources for learning

This topic provides links to find relevant supplemental information about object pools.

Use the following links to find relevant supplemental information about object pools. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Furthermore, these links provide guidance on using object pools. Since object pooling is a general topic

and the WebSphere Application Server product implementation is only one way to use it, you must

understand when object pooling is necessary. These articles help you make that decision.

Programming model and decisions

v Build your own ObjectPool in Java to boost application speed

v Improve the robustness and performance of your ObjectPool

v Recycle broken objects in resource pools

MBeans for object pool managers and object pools

Legacy MBean names for object pool managers and object pools are deprecated. The legacy names are

based on the object pool manager name (which is not required to be unique) rather than the object pool

manager JNDI name.

About this task

For object pools, the legacy name is also lacking any identifier of the version of the pooled class.

Additionally, object pool Performance Monitoring Instrumentation (PMI) statistics are aggregated for object

pools with the same legacy object pool MBean name.

2460 Administering WebSphere applications

http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html

For example, if the object pool manager and pooled class are as follows:

object pool manager name: My ObjectPool

object pool manager JNDI name: op/MyObjectPool

pooled class name: java.util.ArrayList

hash code of java.util.ArrayList.class: 1111eb3f (hexadecimal)

the legacy object pool manager MBean name will be:

ObjectPoolManager_My ObjectPool

and the legacy object pool MBean name will be:

ObjectPool_My ObjectPool_java.util.ArrayList

Instead of using the deprecated legacy MBean names, use the MBean names that are based on the JNDI

name of the object pool manager.

For the example above, the JNDI name-based object pool manager MBean name is:

ObjectPoolManager_op/MyObjectPool

and the JNDI name-based object pool MBean name is:

ObjectPool_op/MyObjectPool_java.util.ArrayList.class@1111eb3f

Formats for MBean names

 Type Name format

Deprecated legacy object pool manager MBean name: ObjectPoolManager_[object pool manager name]

JNDI name-based object pool manager MBean name: ObjectPoolManager_[object pool manager JNDI name]

Deprecated legacy object pool MBean name: ObjectPool_[object pool manager name]_[pooled class

name]

JNDI name-based object pool MBean name: ObjectPool_[object pool manager JNDI name]_[pooled

class name].class@[hexadecimal representation of the

hash code of the pooled class’ java.lang.Class reference]

In all of the above formats, characters that are not valid for MBean names are replaced with the ’.’

character.

MBeans for object pool managers and object pools

Legacy MBean names for object pool managers and object pools are deprecated. The legacy names are

based on the object pool manager name (which is not required to be unique) rather than the object pool

manager JNDI name.

About this task

For object pools, the legacy name is also lacking any identifier of the version of the pooled class.

Additionally, object pool Performance Monitoring Instrumentation (PMI) statistics are aggregated for object

pools with the same legacy object pool MBean name.

For example, if the object pool manager and pooled class are as follows:

object pool manager name: My ObjectPool

object pool manager JNDI name: op/MyObjectPool

pooled class name: java.util.ArrayList

hash code of java.util.ArrayList.class: 1111eb3f (hexadecimal)

the legacy object pool manager MBean name will be:

ObjectPoolManager_My ObjectPool

Chapter 14. Learn about WebSphere programming extensions 2461

and the legacy object pool MBean name will be:

ObjectPool_My ObjectPool_java.util.ArrayList

Instead of using the deprecated legacy MBean names, use the MBean names that are based on the JNDI

name of the object pool manager.

For the example above, the JNDI name-based object pool manager MBean name is:

ObjectPoolManager_op/MyObjectPool

and the JNDI name-based object pool MBean name is:

ObjectPool_op/MyObjectPool_java.util.ArrayList.class@1111eb3f

Formats for MBean names

 Type Name format

Deprecated legacy object pool manager MBean name: ObjectPoolManager_[object pool manager name]

JNDI name-based object pool manager MBean name: ObjectPoolManager_[object pool manager JNDI name]

Deprecated legacy object pool MBean name: ObjectPool_[object pool manager name]_[pooled class

name]

JNDI name-based object pool MBean name: ObjectPool_[object pool manager JNDI name]_[pooled

class name].class@[hexadecimal representation of the

hash code of the pooled class’ java.lang.Class reference]

In all of the above formats, characters that are not valid for MBean names are replaced with the ’.’

character.

Scheduler

Using schedulers

Schedulers enable Java Platform, Enterprise Edition (Java EE) application tasks to run at a requested

time. Schedulers also enable application developers to create their own stateless session Enterprise

JavaBeans (EJB) components to receive event notifications during a task life cycle, allowing the

plugging-in of custom logging utilities or workflow applications.

About this task

You can schedule the following types of tasks:

v Invoke a session bean method

v Send a Java Message Service (JMS) message to a queue or topic

Stateless session EJB components are also used to provide generic calendaring. Developers can either

use the supplied calendar bean or create their own for their existing business calendars. For example, one

of your business processes might involve invoicing for services. With the scheduler’s use of stateless EJB

components, you can schedule when periodic email distributions are to be sent to your customers who

have received invoices. The scheduler service performs these tasks, repeating as necessary, according to

the metadata for that task.

A scheduler is the mechanism by which the timer service for Enterprise Java Beans 2.1 runs. You can

configure the EJB timer service to use many of the features that schedulers provide See the timer service

for Enterprise Java Beans 2.1 documentation for more details.

2462 Administering WebSphere applications

Use the following table to determine which persistent timer service is best for you:

 Schedulers EJB timers

Run stateless session EJB components and sends JMS

messages

Run all EJB types except for stateful session beans

Persistent, transactional and highly available. Persistent, transactional and highly available.

Tasks guaranteed to run only once Timers guaranteed to run only once, if the timer EJB uses

a container-managed global transaction

Run repeating tasks using any calculation rules Run repeating tasks using a repeating interval defined in

milliseconds

Uses a modified fixed-delay time calculation to determine

repeating intervals (next run time based on the start-time

of the previous task)

Uses a fixed-rate time calculation to determine repeating

intervals (time of the next task is based on the original

scheduled time).

Programmatic task monitoring capability with the use of

the NotificationSink stateless session EJB component

No programmatic timer monitoring

Abort late or time-sensitive tasks from running Abort late or time-sensitive tasks from running (achieved

through manual detection within the

javax.ejb.TimedObject implementation).

Manage any task lifecycle (find, suspend, resume, cancel

and purge tasks programmatically and through Java

Management Extensions (JMX)).

Find and cancel its timers programmatically.

Administrators find and cancel timers using a

command-line utility.

Store a limited amount of text with the data, like a Name

(arbitrary data stored externally).

Store arbitrary data with a timer

This task demonstrates how to manage, develop and interoperate with schedulers and subsequent tasks.

1. Manage the scheduler service. This topic includes instructions for creating and configuring schedulers,

creating and configuring a database for schedulers and administering schedulers.

2. Develop and schedule tasks. This topic includes instructions for developing various types of tasks,

receiving notifications from a task, submitting tasks to a scheduler, and managing tasks.

Note: Creating and manipulating scheduled tasks through the Scheduler API interface is only

supported from within the Enterprise Java Beans (EJB) container or Web container (JavaServer

Pages or servlets). Looking up and using a configured scheduler from a Java EE application

client container is not supported.

3. Interoperate with schedulers. This topic explains how to manage scheduler in a clustered environment

with mixed WebSphere Application Server product versions and mixed platforms.

Example: Using default scheduler calendars

The SIMPLE and CRON calendars can be used from any J2EE application. This topic describes that

process.

Using default scheduler calendars involves looking-up the default UserCalendarHome Enterprise

JavaBeans (EJB) home object, creating the UserCalendar bean and calling the applyDelta() method. For

details on the applyDelta method as well as the syntax for the SIMPLE and CRON calendars, see the

UserCalendar interface topic.

Example:

import java.util.Date;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

import com.ibm.websphere.scheduler.UserCalendar;

import com.ibm.websphere.scheduler.UserCalendarHome;

Chapter 14. Learn about WebSphere programming extensions 2463

// Create an initial context

InitialContext ctx = new InitialContext();

// Lookup and narrow the default UserCalendar home.

UserCalendarHome defaultCalHome=(UserCalendarHome)

 PortableRemoteObject.narrow(ctx.lookup(

 UserCalendarHome.DEFAULT_CALENDAR_JNDI_NAME),

 UserCalendarHome.class);

// Create the default UserCalendar instance.

UserCalendar defaultCal = defaultCalHome.create();

// Calculate a date using CRON based on the current

// date and time. Return the next date that is

// Saturday at 2AM

Date newDate =

 defaultCal.applyDelta(new Date(),

 "CRON", "0 0 2 ? * SAT");

Scheduler daemon

A scheduler daemon is a background thread that searches for tasks to run in the database.

A scheduler daemon is started for each scheduler defined on each server. If Scheduler 1 is configured on

server1, then only one scheduler daemon runs on server1 unless it is cloned. If Scheduler 1 is defined at

the node scope level, then the scheduler will run on each server within that node.

The poll interval determines the frequency at which the persistent store is queried. By default, this value is

set to 30 seconds. When a task is found that is scheduled to run within the current poll interval, an

asynchronous beans alarm is set. The task then runs as close to this time as possible using an alarm

thread from the scheduler’s associated work manager. Thus, the number of alarm threads configured on

the work manager determines how many concurrent tasks are executed. No tasks are lost. If we reach this

limit, then new tasks are simply queued to be executed when an alarm thread becomes available. The

actual firing time is dictated by server load and availability of free threads in the alarm thread pool of the

associated work manager.

Scheduler daemons in a cluster

When multiple schedulers are configured to use the same tables (as is the case in a clustered

environment), any of the daemons can find a task and set the alarm in its Java virtual machine (JVM). The

task is executed in the virtual machine where the scheduler daemon first runs, until the daemon is stopped

and another daemon starts. If an application on server1 schedules a task to run and server2 was started

before server1, then the task runs on server2.

Example: Stopping and starting scheduler daemons using Java Management Extensions API:

Use the wsadmin scripting tool to invoke a Jacl script and stop and start a scheduler daemon.

 This example JACL script can be invoked using the wsadmin scripting tool. It will attempt to stop and start

a scheduler daemon.

Example JACL Script to restart a Scheduler Daemon

set schedJNDIName sched/MyScheduler

Find the WASScheduler MBean

regsub -all {/} $schedJNDIName "." schedJNDIName

set mbeanName Scheduler_$schedJNDIName

puts "Looking up Scheduler MBean $mbeanName"

set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

Invoke the stopDaemon operation.

puts "Stopping the daemon..."

2464 Administering WebSphere applications

$AdminControl invoke $sched stopDaemon

puts "The daemon has stopped."

Invoke the startDaemon operation.

puts "Starting the daemon..."

$AdminControl invoke $sched startDaemon 0

puts "The daemon has started."

Example: Dynamically changing scheduler daemon poll intervals using Java Management

Extensions API:

Use the wsadmin scripting tool to invoke a Jacl script and dynamically change scheduler daemon poll

intervals.

 To dynamically change scheduler daemon poll intervals, use the wsadmin scripting tool to invoke this

example JACL script. Invoking this example sets the poll interval of the scheduler daemon to 60 seconds.

Example JACL Script to set the Scheduler daemon’s poll interval

set schedJNDIName sched/MyScheduler

Find the WASScheduler MBean

regsub -all {/} $schedJNDIName "." schedJNDIName

set mbeanName Scheduler_$schedJNDIName

puts "Looking-up Scheduler MBean $mbeanName"

set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

Set the poll interval to 60 seconds (60000 ms)

$AdminControl setAttribute $sched pollInterval 60000

puts "Poll interval set."

Interoperating with schedulers

Schedulers support forward compatibility. Tasks created in previous versions of WebSphere Application

Server Enterprise Edition 5.0 or WebSphere Business Integration Server Foundation 5.1 continue to run in

WebSphere Application Server, Version 6.x schedulers. Tasks that you create using Version 6.x are not

compatible with product schedulers from Version 5.x. Version 5.x schedulers do not run any Version 6.x

tasks.

Schedulers and versions

All schedulers that are configured to use the same database and tables are considered a clustered

scheduler. To guarantee that your tasks run correctly, all servers in a scheduler cluster must be at the

same version. If the servers are at different versions, tasks created with a Version 6.x scheduler might not

run. If a mixed-Version environment is required for a short period of time, then all scheduler poll daemons

should be stopped on all Version 5.x servers to allow a Version 6.x server to run all tasks. This action

allows the Version 6.x schedulers to obtain leases and run tasks that have been created with a Version 6.x

scheduler.

Running tasks created with schedulers prior to Version 5.0.2 is not supported. See the topic,

″Interoperating with the Scheduler service,″ in the WebSphere Application Server Enterprise Edition

Version 5.0.2 information center for details on how to migrate these tasks to a more recent version. See

the Information Center Library to access the Version 5.0.2 information center.

Scheduler calendars

The scheduler provides stateless session bean interfaces which allow creating common calendars which

can be used by the scheduler and any Java Platform, Enterprise Edition (Java EE) application.

The SchedulerCalendars.ear application is available and provides a default UserCalendar Enterprise Java

Beans (EJB) implementation which allows using the SIMPLE and CRON calendars. Although this

application is not required when using the scheduler, it is available to use from any Java EE application.

Chapter 14. Learn about WebSphere programming extensions 2465

http://www-306.ibm.com/software/webservers/appserv/infocenter.html

For details on how the SIMPLE and CRON calendars behave, see the API documentation for the

com.ibm.websphere.scheduler.UserCalendar interface.

Specifying a UserCalendar with the scheduler

A UserCalendar is specified using the setUserCalendar() method of the TaskInfo interface of the scheduler.

This interface allows you to select the Java Naming and Directory Interface (JNDI) name of the home

interface of a UserCalendar bean. Because some UserCalendar bean implementations might handle

multiple types of calendars, the interface also allows you to optionally select which type of calendar to use.

A list of valid calendar types can be retrieved by invoking the getCalendarNames() method of the

UserCalendar interface.

If the setUserCalendar() method is not invoked, or if a value of null or empty-string is specified for the

home JNDI name parameter, then the default UserCalendar is used internally by the scheduler. When the

default UserCalendar is accessed internally, it is not necessary that the SchedulerCalendars.ear system

application be installed.

You might want to use the default UserCalendar directly in your other Java EE applications, apart from the

scheduler. In this case, you may use the UserCalendarHome.DEFAULT_CALENDAR_JNDI_NAME value

to look up the default UserCalendar from your applications. You may also supply this value to the

setUserCalendar() method of the TaskInfo interface. You will need to ensure the SchedulerCalendars.ear

system application was either automatically installed or that you have installed it manually.

Scheduler service settings

Use this page to enable or disable the scheduler service. The scheduler service manages scheduler

resources used by the server. The administrative console page used to configure the scheduler service is

not available for version 6 (and above) servers. It is only available for version 5.x servers.

To view this administrative console page, click Servers > Application Servers > server_name >

Scheduler Service.

Startup:

Specifies whether the server attempts to start the scheduler service.

 Default Selected

Range Selected

When the application server starts, it attempts to

start the scheduler service automatically.

Cleared

The server does not try to start the scheduler

service. If scheduler resources are to be used on

this server, the system administrator must start

the scheduler service manually or select this

property, then restart the server.

Installing default scheduler calendars

The default scheduler SIMPLE and CRON calendars are available in the SchedulerCalendars.ear system

application and are automatically installed on standalone server profiles. System applications cannot be

installed and uninstalled like traditional Java Platform, Enterprise Edition (Java EE) applications.

About this task

The following steps are required to map the SchedulerCalendars.ear system application on a server or

cluster in a network deployment environment.

2466 Administering WebSphere applications

1. Start the wsadmin tool and connect to the deployment manager.

2. Install the system application.

v To install on a non-clustered server:

– Using Jacl:

$AdminApp install

"\${WAS_INSTALL_ROOT}/systemApps/SchedulerCalendars.

ear" {-systemApp -appname SchedulerCalendars -cell

 mycell -node mynode -server myserver}

– Using Jython list:

AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/

SchedulerCalendars.ear’, [’-systemApp’, ’–appName’,

 ’SchedulerCalendars’,’-cell’, ’mycell’, ’-node’,

 ’mynode’, ’-server’, ’myserver’])

– Using Jython string:

AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/

SchedulerCalendars.ear’, ’[-systemApp –appName

 SchedulerCalendars –cell mycell –node mynode

 -server myserver]’)

Where:

 Value Option

mycell the value of the cell option

mynode the value of the node option

myserver the value of the server option

v To install on a cluster:

– Using Jacl:

$AdminApp install

"\${WAS_INSTALL_ROOT}/systemApps/SchedulerCalendars.

ear" {-systemApp -appname SchedulerCalendars -cell

 mycell -cluster mycluster}

– Using Jython list:

AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/

SchedulerCalendars.ear’, [’-systemApp’, ’–appName’,

 ’SchedulerCalendars’,’-cell’, ’mycell’, ’-cluster’,

 ’mycluster’])

– Using Jython string:

AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/

SchedulerCalendars.ear’, ’[-systemApp –appName

 SchedulerCalendars –cell mycell -cluster mycluster]’)

Where:

 Value Option

mycell the value of the cell option

mycluster the value of the cluster option

3. Save the configuration changes.

4. Synchronize the node.

Uninstalling default scheduler calendars

The default scheduler SIMPLE and CRON calendars are available in the SchedulerCalendars.ear system

application and are automatically installed on standalone server profiles. System applications cannot be

installed and uninstalled like traditional Java Platform, Enterprise Edition (Java EE) applications.

Chapter 14. Learn about WebSphere programming extensions 2467

About this task

Remove the SchedulerCalendars system application on federated node, as follows:

1. Open a command window on the federated node.

2. Run the following command:

On Unix platforms:

$Install_Root/bin/wsadmin.sh -conntype none -profile $Profile_Name

On Windows platforms:

$Install_Root/bin/wsadmin -conntype none -profile $Profile_Name

where:

v Install_Root is the directory where WebSphere Application Server is installed.

v Profile_Name is the name of the profile where the target server is located.

3. At the wsadmin> prompt, enter the following command for each server that exists on the node where

you want to have the SchedulerCalendars application available:

wsadmin> $AdminApp uninstall SchedulerCalendars "-cell $MyCell -node $MyNode -server $MyServer"

where:

v $Install_Root is the directory where WebSphere Application Server is installed.

v $MyCell, $MyNode, and $MyServer are the values with the name of the cell, node, and server.

Note: Each of these values are case-sensitive.

4. Repeat step three for each server in the current profile for which you will uninstall the

SchedulerCalendars application.

5. When uninstallation is complete for the system application on all appropriate servers, enter the

following commands:

wsadmin> $AdminConfig save

wsadmin> exit

6. Repeat steps 1-5 for each federated node or profile where the SchedulerCalendars application is to be

removed.

7. Using the Administrative Console or scripting, start or restart the servers to unload the

SchedulerCalendars application.

Results

The SchedulerCalendars application should now be removed.

Managing schedulers

Schedulers are configured using the administrative console, configuration service or scripting and are

available to all servers on which a scheduler is visible.

About this task

You can create multiple schedulers within a single server, cluster, node or cell. Each configured scheduler

is an independent task scheduling engine that has a unique Java Naming and Directory Interface (JNDI)

name, persistent storage device and daemon.

1. Configure schedulers.

2. Create the database for schedulers.

2468 Administering WebSphere applications

Configuring schedulers

Before your application can make use of the scheduler service, you must configure a scheduler using the

administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a data

source in that you must specify various configuration attributes, including a JNDI name where the instance

is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can look up the

scheduler object and call various methods to manage tasks.

About this task

The scheduler service is always enabled. In previous versions of the product, the scheduler service could

be disabled using the administrative console or configuration service. Scheduler service configuration

objects are present in the configuration service, but the enabled attribute is ignored.

To achieve high availability, you can configure a duplicate scheduler on each server in a cluster, or create

a scheduler at the cluster scope. For example, each server that contains a scheduler with the JNDI name

sched/MyScheduler, with the same database configuration parameters (data source and table prefix)

behaves as a single clustered scheduler. Each server in the scheduler cluster has a running scheduler

instance, which increases the number of poll daemons and allows automatic failover. For more information

on creating clusters for high availability, see the article, ″WebSphere Enterprise Scheduler planning and

administration guide.″

Typically, create schedulers at the server or cluster scope. Scheduler poll daemons run in each server

within the configured scope, which means that if you create a scheduler at the node or cell scope, the

scheduler poll daemon can attempt to run tasks on any of the servers in the node or cell. If applications

are not mapped uniformly over each server in that scope, the scheduler might not run tasks correctly.

Because applications are mapped to servers and clusters, there is less chance for error and less

competition between daemons to run tasks.

Depending on your preferred method of configuration, select one of the following steps to configure

schedulers.

1. Configuring schedulers using the administrative console.

2. Configuring schedulers using Java Management Extensions API (JMX).

Results

A scheduler is configured and ready to use.

Configuring scheduler default transaction isolation:

The scheduler uses read-committed transaction isolation, by default, when reading tasks using the get or

find APIs on the com.ibm.websphere.scheduler.Scheduler interface and WASScheduler MBean. The

default behavior for a scheduler can be changed to read-uncommitted, which allows the get and find

methods to return the current or next state of the task in the database. This topic describes how to change

the default behavior for the get and find methods.

 About this task

See the scheduler API documentation to view the

com.ibm.websphere.scheduler.TaskInfo.setTaskExecutionOptions() method, which details how to return the

next state of the task or the current state of the task.

Note: If the scheduler database does not support uncommitted reads, such as Oracle, this parameter has

no effect.

To change the default behavior for the get and find methods, complete the following steps:

Chapter 14. Learn about WebSphere programming extensions 2469

http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html

1. From the administrative console, click Resources > Schedulers > scheduler_name.

2. Click Custom Properties.

3. Click New.

4. Add the following properties:

 Name defaultReadTransactionIso

Type java.lang.Integer

Value 1 (for read-uncommitted transaction isolation)

2 (for read-committed transaction isolation)

5. Click Apply or

6. Click OK.

7. Save the changes and verify that you initiate a file synchronization before restarting the servers.

8. Restart the application server for the changes to take effect.

Configuring schedulers using the administrative console:

Schedulers can be created or configured using the administrative console.

 1. Start the administrative console.

2. Select Resources > Schedulers.

3. Click New.

4. Specify configuration settings. Fields marked with an asterisk (*) are required. The settings are

described in detail in the topic ″Scheduler settings.″

5. Click OK or Apply to save the changes.

6. Save the changes to the configuration repository.

Results

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI

name is not yet visible to your application, restarting the application or restarting application server will

allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon will not automatically start and must be

started manually and will only start automatically the next time the server is started. To start the poll

daemon manually, see the scheduler daemons topic.

Note: Changes to existing scheduler configurations will not take affect until after the application server is

restarted.

Schedulers collection:

Use this page to manage scheduler configurations. Schedulers are persistent and transactional timer

services that can run business logic. Each scheduler runs tasks independently and has a programming

interface accessible from Java Platform, Enterprise Edition (Java EE) applications using the Java Naming

and Directory Interface (JNDI). You can also manage schedulers using a Java Management Extensions

(JMX) MBean. See the scheduler documentation in the Information Center for details on how to configure

and use schedulers.

 To view this administrative console page, click Resources > Schedulers.

Name:

Specifies the name of the data source where persistent tasks are stored.

2470 Administering WebSphere applications

Data type String

JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run

concurrently with the scheduler. The work manager also can limit the amount of Java EE context applied

to the task.

 The JNDI name specifies where this scheduler instance is bound in the name space. Clients can look this

name up directly, although the use of resource references is recommended.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Data source JNDI name:

Specifies the alias for the user name and password that are used to access the data source.

 Any data source available in the name space can be used with a scheduler. Multiple schedulers can share

a single data source while using different tables by specifying a table prefix.

 Data type String

Table prefix:

Specifies the string prefix to affix to the scheduler tables.

 Multiple independent schedulers can share the same database if each instance specifies a different prefix

string.

 Data type String

Poll interval:

Specifies the interval, in seconds, that a scheduler polls the database. The default value is appropriate for

most applications.

 Each poll operation can be consuming. If the interval is extremely small and there are many scheduled

tasks, polling can consume a large portion of system resources.

 Data type Integer

Units Seconds

Default 30

Range Any positive long integer

Work manager JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run

concurrently with the scheduler. The work manager also can limit the amount of Java EE context applied

to the task.

Chapter 14. Learn about WebSphere programming extensions 2471

The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating

task that is created using this scheduler uses the Number of alarm threads specified in the work

manager, which affects the number of tasks that can run concurrently. Use the work manager Service

Names property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can

control the number of actively running tasks at a given time by configuring schedulers with a specific work

manager. The number of tasks that can run concurrently is governed by the Number of alarm threads

parameter on the work manager.

Note: When you configure a scheduler resource on a Version 5.x node or server, the scheduler must

reference a work manager in the same scope. For example, a scheduler instance configured at the

server1 scope must use a work manager also configured at the server1 scope.

Verify tables:

Specifies to validate that scheduler data sources, table prefixes, security authentication information and

tables are configured correctly.

 You can use this verification method in production and development environments without altering

database properties.

Create tables:

Specifies to create the necessary tables and indices required for a scheduler to operate.

 This method of creating scheduler tables is designed for simple topologies and development environments.

Use the supplied scheduler data definition language files for advanced or production environments and for

databases that do not support this feature. .

Drop tables:

Specifies the removal of tables and indices required for schedulers to operate.

 This method of removing scheduler tables and indices is recommended for development environments and

does not delete previously scheduled tasks.

Schedulers settings:

Use this page to modify scheduler settings.

 To view this administrative console page, click Resources > Schedulers > scheduler_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which this scheduler is known for administrative purposes.

 Data type String

JNDI name:

Specifies the name of the data source where persistent tasks are stored.

2472 Administering WebSphere applications

The Java™ Naming and Directory Interface (JNDI) name specifies where this scheduler instance is bound

in the namespace. Clients can look this name up directly, although the use of resource references is

recommended.

 Data type String

Description:

Specifies the description of this scheduler for administrative purposes.

 Data type String

Category:

Specifies a string that can be used to classify or group this scheduler.

 Data type String

Data source JNDI name:

Specifies the name of the data source where persistent tasks are stored.

 Any data source available in the name space can be used with a scheduler. Multiple schedulers can share

a single data source while using different tables by specifying a table prefix.

 Data type String

Data source alias:

Specifies the alias for the user name and password that are used to access the data source.

 Data type String

Table prefix:

Specifies the string prefix to affix to the scheduler tables. Multiple independent schedulers can share the

same database if each scheduler specifies a different prefix string.

 Multiple independent schedulers can share the same database if each instance specifies a different prefix

string.

Note: Use a table prefix with all capital characters. If lowercase characters are used for the table prefix,

they are automatically capitalized at run time.

 Data type String

Poll interval:

Specifies the interval, in seconds, that a scheduler polls the database. The default value is appropriate for

most applications.

 Each poll operation can be consuming. If the interval is extremely small and there are many scheduled

tasks, polling can consume a large portion of system resources.

Chapter 14. Learn about WebSphere programming extensions 2473

Data type Integer

Units Seconds

Default 30

Range Any positive long integer

Work manager JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run

concurrently with the scheduler. The work manager also can limit the amount of Java Platform, Enterprise

Edition (Java EE) context applied to the task.

 The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating

task that is created using this scheduler uses the Number of alarm threads specified in the work

manager, which affects the number of tasks that can run concurrently. Use the work manager Service

Names property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can

control the number of actively running tasks at a given time by configuring schedulers with a specific work

manager. The number of tasks that can run concurrently is governed by the Number of alarm threads

parameter on the work manager.

Note: When you configure a scheduler resource on a Version 5.x node or server, the scheduler must

reference a work manager in the same scope. For example, a scheduler instance configured at the

server1 scope must use a work manager also configured at the server1 scope.

Use administration roles:

Specifies that when this option and administrative security are both enabled, the user administration roles

are enforced when the scheduler JMX commands or APIs are used to create and modify tasks. If this

option is not enabled, all the users can create and modify tasks.

 Schedulers require several user roles to plan for, develop, administer and operate the scheduler service:

administrator, developer and operator.

 Data type check box

Default unchecked

Range v Operator, Administrator --Calls any of the scheduler

MBean or API methods and runs any of the scheduler

administrative console functions.

v Monitor, Configurator --Calls the scheduler MBean or

API methods, but cannot create tasks or modify the

state of any tasks. Only read-only methods and

properties are accepted.

Configuring schedulers using Java Management Extensions:

Schedulers can be created or configured using the Java Management Extensions (JMX) API using one of

several scripting languages or Java.

 About this task

To run with Java, the following JAR file needs to be present in the program class path:

com.ibm.ws.admin.client_6.1.0.jar..

Complete these steps when using Java programs that utilize JMX.

2474 Administering WebSphere applications

1. Look up the host and get an administration client handle.

2. Get a configuration service handle.

3. Update the resource-pme.xml file using the configuration service, as needed.

a. Find the SchedulerProvider for a given scope.

b. Create a SchedulerConfiguration and specify all required parameters identifying the

SchedulerProvider as the parent object.

4. Reload the resource-pme.xml file to bind the newly created scheduler into the JNDI namespace.

Perform this step if you want to use the newly created scheduler immediately, without restarting the

application server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Invoke the reload() operation.

Results

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI

name is not yet visible to your application, reinstalling the application or restarting the application server

will allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon does not automatically start, and you must

start it manually. When you restart the server, the poll daemon starts automatically. To start the poll

daemon manually, see scheduler daemons.

Note: Changes to existing scheduler configurations will not take affect until after the application server is

restarted.

Example: Using scripting to create and configure schedulers:

Use the wsadmin scripting tool to invoke a Jacl script and create a SchedulerConfiguration resource.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which creates a

SchedulerConfiguration resource using the DefaultWorkManager at the server scope.

Example JACL Script to create a SchedulerConfiguration

at the server scope

Change the cell, node and server to match your environment

set cellName MyCell

set nodeName MyNode

set serverName server1

We can just grab the first provider, since there is only one at the

server scope level.

set schedProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/

 SchedulerProvider:SchedulerProvider]

if {$schedProv == ""} {

 puts "Unable to find SchedulerProvider for server: $serverName. Aborting."

 exit

}

puts "Found a SchedulerProvider"

Create a WorkManager for our scheduler at the server scope.

We could use any of the other scopes as long as it is at the same

or higher than the Scheduler’s scope.

set wrkMgrProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/

 WorkManagerProvider:WorkManagerProvider/]

if {$wrkMgrProv == ""} {

 puts "Unable to find the WorkManagerProvider for server: $serverName. Aborting."

 exit

Chapter 14. Learn about WebSphere programming extensions 2475

}

puts "Found a WorkManagerProvider"

set wmName "MyScheduler WorkManager"

set wmJNDIName "wm/MySchedWorkManager"

set wmIsGrowable false

set wmMaxThreads 1

set wmMinThreads 0

set wmNumAlarmThreads 10

set wmServiceNames "com.ibm.ws.i18n;security;UserWorkArea;zos.wlm"

set wmThreadPriority 5

Setup our DefaultWorkManager attributes

set createAttrs [subst { \

 {isGrowable $wmIsGrowable} \

 {jndiName $wmJNDIName} \

 {maxThreads $wmMaxThreads} \

 {minThreads $wmMinThreads} \

 {name "$wmName"} \

 {numAlarmThreads $wmNumAlarmThreads} \

 {serviceNames "$wmServiceNames"} \

 {threadPriority $wmThreadPriority} }]

puts "Creating a WorkManager"

$AdminConfig create WorkManagerInfo $wrkMgrProv $createAttrs

puts "WorkManager Created"

Setup our SchedulerConfiguration attributes

set schedulerName MyScheduler

set schedulerJNDIName sched/MyScheduler

set datasourceJNDIName jdbc/MySchedulerDatasource

set datasourceAlias MySchedulerAlias

set pollInterval 30

set tablePrefix MSCD

set useAdminRoles true

set createAttrs [subst { \

 {name $schedulerName} \

 {datasourceJNDIName $datasourceJNDIName} \

 {datasourceAlias $datasourceAlias} \

 {jndiName $schedulerJNDIName} \

 {pollInterval $pollInterval} \

 {tablePrefix $tablePrefix} \

 {useAdminRoles true} \

 {workManagerInfoJNDIName $wmJNDIName}}]

puts "Creating a Scheduler"

$AdminConfig create SchedulerConfiguration $schedProv $createAttrs

puts "Scheduler created"

Save the configuration

$AdminConfig save

Creating a scheduler resource reference:

When you define schedulers in the server configuration, the object instance is bound into the global name

space under the configured Java Naming Directory Interface (JNDI) name. You can use a resource

reference to avoid manually coding this JNDI name into your application. Using a resource reference

allows administrators to map applications to the appropriate schedulers.

 About this task

You can alternatively create a scheduler resource reference by editing the XML directly. A Scheduler

resource reference is a Java Platform, Enterprise Edition (Java EE) compliant resource that uses the class

2476 Administering WebSphere applications

com.ibm.websphere.scheduler.Scheduler as the object type. For information regarding the XML file format,

see the Java EE Specification.

 1. Start an assembly tool, such as Rational Application Developer.

 2. Open the Java EE perspective.

 3. Open your Enterprise JavaBeans (EJB) or Web module with the Deployment Descriptor Editor.

 4. Click the Reference tab at the bottom of the window.

 5. Click Add.

 6. Select the Resource reference option.

 7. Click Next.

 8. Complete the Reference fields as shown in the following properties:

Name The reference name, for example, sched/MyScheduler. According to this example, the name

you choose has a local reference name of java:comp/env/sched/MyScheduler.

Type Select com.ibm.websphere.scheduler.Scheduler, and click OK.

Authentication

Select container.

Description

Any relevant description.

 9. Click finish.

10. (Optional) Enter a global JNDI name of a configured scheduler in the JNDI name field in the

Bindings section of the Reference window. You can specify or override this value when you install

the application.

11. Save your changes to the deployment descriptor.

Results

A scheduler resource reference is now available to use within your application

Creating the database for schedulers

Each scheduler requires a database in which to store its persistent information. Schedulers use this

database for storing tasks and then running them. The choice of database and location should be

determined by the application developer and server administrator.

Before you begin

Scheduler performance is ultimately limited by database performance. If you need more tasks per second,

you can run the scheduler daemons on larger systems, use clusters for the session beans used by the

tasks or partition the tasks by using multiple schedulers. Eventually, however, the scheduler database

becomes saturated, and a larger or better-tuned database system is needed. For detailed information on

scheduler topologies see the technical paper, ″WebSphere Enterprise Scheduler planning and

administration guide″.

Multiple schedulers can share a database when you specify unique table prefix values in each scheduler

configuration. This sharing can lower the cost of administering scheduler databases.

About this task

Complete the following steps to create scheduler databases.

1. Create a database. To create the database for a scheduler or to determine if an existing database is

adequate for a scheduler, review the topic, ″Create scheduler databases″.

2. Create the scheduler tables. There are three methods for creating the tables for a scheduler:

a. Create tables for schedulers using the administrative console. Use the administrative console to

add, delete and verify database tables through your Web browser. This method is ideal for

developers and simple scheduler topologies.

Chapter 14. Learn about WebSphere programming extensions 2477

http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html

b. Create tables for schedulers using JMX or scripting.

Use JMX to add, delete and verify database tables programmatically with Java or scripting. This

method is ideal for automating scheduler configurations for simple scheduler topologies.

c. Create tables for schedulers using DDL files. Manually edit the DDL files through your favorite text

editor, and verify that mapping between the table names and the scheduler resources and data

sources is correct.

Creating scheduler databases:

The scheduler uses the scheduler database for storing and running tasks. To create a scheduler database,

your database system must be installed and available.

 Before you begin

The performance of schedulers is ultimately limited by the performance of the database. If you need more

tasks per second, you can run the scheduler daemons on larger systems or you can use clusters for the

session beans used by the tasks. Eventually, however, the task database becomes saturated and you then

need a larger or better-tuned database system.

Multiple applications can share a scheduler database. This sharing can lower the cost of administering

scheduler databases.

About this task

The scheduler requires a database, a JDBC provider, and a data source.

1. Create the database according to the description for your database system:

v Creating Apache Derby databases for schedulers.

v Creating a DB2 database for schedulers.

v Creating a DB2 for iSeries database for schedulers.

v Creating an Informix database for schedulers.

v Creating a Microsoft SQL Server database for schedulers.

v Creating an Oracle database for schedulers.

v Creating a Sybase database for schedulers.

2. If the database is not on the same machine as your IBM WebSphere Application Server, verify that you

can access the database from your application server machine.

3. Configure your JDBC provider and data source. For details, see the topic Creating and configuring a

JDBC provider and data source. The JDBC driver can be either one-phase or two-phase commit

depending on whether other transactions take place using other data sources, for example, while using

the scheduler. The data source can represent multiple versions of the product.

Results

The database is created and ready for you to create scheduler tables.

Creating Apache Derby databases for schedulers:

This topic describes how to create Apache Derby databases for schedulers using data definition language

(DDL) or structured query language (SQL) files.

 About this task

To create Apache Derby databases for schedulers, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

2478 Administering WebSphere applications

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in Java code, which results in code page conversion problems when a

client uses an incompatible code page.

4. Use the ij utility supplied with the Apache Derby system to create the database. To use ij to create a

database called scheddb which is located in /opt, for example, you would do the following:

ij.sh

ij>connect ’/opt/scheddb;create=true’;

ij>quit;

The embedded version of Apache Derby supports only one local connection. If the Application Server

product is running and accessing a Apache Derby database, then any attempts to open a second

connection to the database from the command line are rejected.

Note: Add a semi-colon (;) at the end of each command. Otherwise, ij does not execute the

command.

5. Exit the ij utility by issuing the quit command: quit;

Results

The Apache Derby database for the scheduler service exists.

Creating DB2 databases for schedulers:

This topic describes how to create DB2 databases for scheduler, using data definition language (DDL) or

structured query language (SQL) files.

 About this task

To create DB2 databases for scheduler, using data definition language (DDL) or structured query language

(SQL) files, use these steps.

1. Open a DB2 command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, it cannot store all the characters that

can be handled in Java code, which might result in code page conversion problems, when a client

uses an incompatible code page.

To avoid deadlocks, be sure that the DB2 isolation level is set to ″read stability″. If necessary, enter the

command

db2set DB2_RR_TO_RS=YES

then restart the DB2 instance to activate the change.

4. In the DB2 command line processor, enter this command to create the database with an example

name, scheddb:

db2 CREATE DATABASE scheddb USING CODESET UTF-8 TERRITORY en-us

A DB2 database named scheddb has been created.

Results

The DB2 database for the scheduler exists.

Creating DB2 for iSeries databases for schedulers:

Chapter 14. Learn about WebSphere programming extensions 2479

This topic describes how to create DB2 for iSeries databases for scheduler, using data definition language

(DDL) or structured query language (SQL) files.

 About this task

To create DB2 for iSeries databases for scheduler, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Run the following command to start an interactive SQL session:

STRSQL

2. In interactive SQL, enter this command to create the collection with an example name, scheddb:

CREATE COLLECTION scheddb

3. Exit the interactive SQL session.

4. Change the owner for the new collection to QEJBSVR by executing the following command:

CHGOBJOWN OBJ(scheddb) OBJTYPE(*LIB) NEWOWN(QEJBSVR)

where scheddb is the name of the collection you created in the previous step.

Results

The DB2 for iSeries database for the scheduler exists.

Creating Informix databases for schedulers:

This topic describes how to create Informix databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

 About this task

To create Informix databases for schedulers, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

4. If you want to create a new database named scheddb, for example, enter the command:

dbaccess CREATE DATABASE scheddb with log

Results

The Informix database for scheduler exists.

Creating Microsoft SQL Server databases for schedulers:

This topic describes how to create Microsoft SQL Server databases for schedulers, using data definition

language (DDL) or structured query language (SQL) files.

 About this task

To create Microsoft SQL Server databases for schedulers, using data definition language (DDL) or

structured query language (SQL) files, use these steps.

1. Make sure that you are using a user ID that has administrator rights for the database system.

2480 Administering WebSphere applications

2. In the Enterprise Manager, expand a server group, then expand a server. A Microsoft SQL Server

database named scheddb is created.

3. Right-click Databases, then click New Database.

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible codepage.

5. Type the name scheddb.

6. Modify any default values, and save your changes. The Microsoft SQL Server database, scheddb, is

created.

Results

The Microsoft SQL Server database for scheduler exists.

Creating Oracle databases for schedulers:

This topic describes how to create Oracle databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

 About this task

To create Oracle databases for schedulers, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

4. Use the Database Configuration Assistant to create the database, scheddb, for example. Verify that you

select the JServer option for the database. Use a Unicode code page when creating the database.

The text data you pass to the APIs must be compatible with the selected code page.

Results

The Oracle database for scheduler exists.

Creating Sybase databases for schedulers:

This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

 About this task

This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Make sure that you have the DTM option for Sybase ASE installed.

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

5. Use the Sybase isql utility to create the database, scheddb, for example. See your Sybase product

documentation for details.

Chapter 14. Learn about WebSphere programming extensions 2481

Results

The Sybase database for the scheduler exists.

Scheduler table management functions:

The administration console and the WASSchedulerConfiguration MBeans provide simplified methods for

creating scheduler tables and schema, verifying that the scheduler tables and schema are setup properly

and are accessible and removing scheduler tables and schema.

 When connecting to a deployment manager or node agent, the operation attempts to verify, create, or drop

the tables based on the most granular scope where the scheduler and associated data source is located.

If a scheduler is configured at the server scope, the data source at the node scope, and the verify tables

operation is being run from a deployment manager for example, the deployment manager attempts to

connect to server1 and run the operation there. If the server is unavailable, then it attempts to verify at the

node agent level and then at the deployment manager level.

Note: There are limitations when running the table management functions relating to data source access.

See the Verifying a connection topic for details on these limitations. If a connection cannot be

verified successfully, the scheduler table management functions will fail.

Verify tables

Validates that scheduler data sources, table prefixes, security authentication information and tables are

configured correctly. You can use this verification method in production and development environments

without altering database properties.

Create tables

Creates the necessary tables and indices required for schedulers to operate. This method of creating

scheduler tables is designed for simple topologies and development environments. Use the supplied

scheduler data definition language files for advanced or production environments and for databases that

do not support this feature. For details, see the topic Creating scheduler tables using the administrative

console.

Drop tables

Specifies the removal of tables and indices required for schedulers to operate. This method of removing

scheduler tables and indices is recommended for development environments. When you drop tables, the

action removes all previously scheduled tasks, and the scheduler no longer operates successfully, until the

tables are recreated.

Scheduler table definition:

Schedulers require database tables and indices with a table prefix. This page provides reference

information about the tables.

 Each scheduler requires several database tables and indices to operate. Each table name and index

described in this topic requires a table prefix. For example, if the scheduler is configured with a table prefix

value, SCHED_, the table with the name, TASK, would be named SCHED_TASK. See Scheduler settings

for details on the table prefix.

To create the tables, see Creating the database for schedulers. To see the exact schema definition such

as field sizes and types, see Creating scheduler tables using DDL files. This section references the

location where the DDL or SQL statements are stored. These statements create the table schema.

2482 Administering WebSphere applications

Note: The information in this topic is provided for problem determination. Do not alter the scheduler table

names, field names or index names. The data content format might change without notice. Be

aware of this factor when accessing the tables directly. Modifying data in the tables without using

the Scheduler API might cause failures.

TASK

The TASK table contains the tasks that have been scheduled, but not yet purged. The primary key for this

table is the TASKID which equates to the getTaskID() method on the

com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database and table support

row-locking. Using page, or table locks, inhibits the scheduler from running tasks concurrently.

 Field name Purpose and notes

TASKID Contains all of the tasks that have been scheduled, but not yet purged. The primary key for

this table is TASKID which equates to the getTaskID() method on the

com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database and table

support row-locking. Using page, or table locks, will inhibit the scheduler from running tasks

concurrently.

VERSION Internal version ID of this row format.

ROW_VERSION The version of this row. Used for optimistic locking.

TASKTYPE The type of task: 1=BeanTaskInfo, 2=MessageTaskInfo

TASKSUSPENDED This value indicates if the task is suspended or if it is running. The task is suspended if the

value BITWISE AND 1 equals 1. The task is running if the value BITWISE AND 2 equals 2.

CANCELLED The value, 1, if the task is cancelled.

NEXTFIRETIME The date in milliseconds using java.util.Date.getTime() when the task is scheduled to run

next.

STARTBYINTERVAL The start-by-interval of the task.

STARTBYTIME Reserved.

VALIDFROMTIME The task start time.

VALIDTOTIME Reserved.

REPEATINTERVAL The task repeat interval.

MAXREPEATS The number of times to run the task.

REPEATSLEFT The number of times the task has yet to run.

TASKINFO Internal binary data.

NAME The task name.

AUTOPURGE The value, 1, if the task is to automatically purge upon completion.

FAILUREACTION Reserved.

MAXATTEMPTS Reserved.

QOS Reserved.

PARTITIONID Reserved.

OWNERTOKEN The task owner.

CREATETIME The time in milliseconds using java.util.Date.getTime() when the task was created.

Chapter 14. Learn about WebSphere programming extensions 2483

The TASK table also has the following indices that are required to allow the scheduler to run and access

tasks concurrently:

v TASK_IDX1 – Used to access individual tasks using the Scheduler API.

v TASK_IDX2 – Used by the poll daemon to load expiring tasks.

TREG

The TREG table is used to store scheduler information that is shared between redundant schedulers. This

table is not highly used.

 Field name Purpose and notes

REGKEY The registry key. This is the primary key of the table.

REGVALUE The registry value.

LMGR

The LMGR table is used to track the leases that redundant schedulers use. This table is not highly used.

 Field name Purpose and notes

LEASENAME The name of the lease. This is the scheduler JNDI name and is the primary key.

LEASEOWNER The owner of the lease. The format is Cell/Node/Server.

LEASE_EXPIRE_TIME The time in milliseconds using java.util.Date.getTime() when the lease for the scheduler

expires.

DISABLED Reserved.

LMPR

The LMPR table is used to store arbitrary properties for the lease. This table is not highly utilized.

 Field name Purpose and notes

LEASENAME The name of the lease. See the LMGR table.

NAME The name of the property.

VALUE The value of the property.

The LMPR table also has the following index:

v LMPR_IDX1 – Used to retrieve properties for a given lease.

Creating scheduler tables using the administrative console:

To create scheduler tables using the administrative console, the scheduler requires a database, a Java

DataBase Connectivity (JDBC) provider and a data source.

 Before you begin

Note: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local

transactions are not supported. If you have schedulers that use an Oracle XA data source, either

temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the

tables manually using the supplied DDL files. If you use the administrative console to create or drop

2484 Administering WebSphere applications

scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a

SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A

database administrator is typically involved with defining and managing databases on DB2 z/OS systems.

The administration interface is targeted for the non-database administrator or developer who does not

want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for

the database administrator to create the required tables.

1. Verify that the database to be used for this scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a

database. The remaining steps describe how to create scheduler tables in an existing database.

2. Start the administrative console.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of

the JDBC data source. Verify that you save the new Scheduler to the configuration repository before

you proceed to the next step.

6. Click Resources > Schedulers to view all defined schedulers.

7. Select one or more schedulers.

8. Click Create Tables to create the tables for the selected schedulers in their associated database. The

tables and indices you created reflect the table prefixes and data sources specified in each scheduler

configuration.

9. Restart the server or start the poll daemon to run scheduler tasks.

Results

Scheduler tables and schema are created.

Creating scheduler tables using scripting and Java Management Extensions:

Creating scheduler tables using scripting and Java Management Extensions requires a database, a Java

DataBase Connectivity (JDBC) provider, and a data source.

 Before you begin

Note: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local

transactions are not supported. If you have schedulers that use an Oracle XA data source, either

temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the

tables manually using the supplied DDL files. If you use the administrative console to create or drop

scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a

SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A

database administrator is typically involved with defining and managing databases on DB2 z/OS systems.

The administration interface is targeted for the non-database administrator or developer who does not

want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for

the database administrator to create the required tables.

Chapter 14. Learn about WebSphere programming extensions 2485

1. Verify that the database to be used for this Scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a

database. The remainder of these steps describe how to create scheduler tables in an existing

database.

2. Launch the wsadmin tool and connect to a deployment manager or application server. This process

requires an active server to be available and fails, if you are disconnected from the server.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of

the JDBC data source. Verify that you save the new Scheduler to the configuration before you proceed

to the next step.

6. Run the createTables MBean operation.

a. Look up the SchedulerConfiguration object or use the object you created in a previous step.

b. Locate the WASSchedulerConfiguration MBean.

c. Run one of the createTables MBean operation on the WASSchedulerConfiguration object to

create the tables for the specified SchedulerConfiguration object in its associated database. The

tables and indices that you created reflect the table prefix and data source specified in the

scheduler configuration.

7. Restart the server or start the poll daemon to run scheduler tasks.

Results

Scheduler tables and schema are created.

Example: Using scripting to verify scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and verify tables and indices for a scheduler.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which verifies that the

tables and indices are created correctly for a scheduler. See the “Configuring Schedulers” topic for details

on how a scheduler is created.

Example JACL Script to verify the scheduler tables

The name of the scheduler to verify

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler $schedName could not be found."

 puts ""

 exit

}

Invoke the verifyTables method on the helper MBean.

puts ""

puts "Verifying tables for:"

puts "$myScheduler"

puts ""

2486 Administering WebSphere applications

if { [catch {$AdminControl invoke $schedHelper verifyTables $myScheduler} errorInfo] } {

 puts ""

 puts "Error verifying tables: $errorInfo"

 puts ""

} else {

 puts ""

 puts "Tables verified successfully."

 puts ""

}

Example: Using scripting to create scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and create scheduler tables.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which creates the

scheduler tables for a configured scheduler. See the Configuring Schedulers topic for details on how to

create a scheduler.

Example JACL Script to create the scheduler tables

The name of the scheduler to create tables for

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler with name: $schedName could not be found."

 puts ""

 exit

}

Invoke the createTables method on the helper MBean.

puts ""

puts "Creating tables for:"

puts "$myScheduler"

puts ""

if {[catch {

 set result [$AdminControl invoke $schedHelper createTables $myScheduler]

 if {$result} {

 puts ""

 puts "Successfully created the tables."

 puts ""

 } else {

 puts ""

 puts "The tables were already created."

 puts ""

 }

 } errorInfo] } {

 puts ""

 puts $errorInfo

 puts ""

}

Example: Using scripting to drop scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and remove scheduler tables.

Chapter 14. Learn about WebSphere programming extensions 2487

The following Jacl example script can be invoked using the wsadmin scripting tool, which removes the

scheduler tables for a configured scheduler. See the “Configuring Schedulers” topic for details on how a

scheduler is created

Example JACL Script to drop the scheduler tables

The name of the scheduler to drop the tables for

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler with name: $schedName could not be found."

 puts ""

 exit

}

Invoke the dropTables method on the helper MBean.

puts ""

puts "Dropping tables for:"

puts "$myScheduler"

puts ""

if {[catch {

 set result [$AdminControl invoke $schedHelper dropTables $myScheduler]

 if {$result} {

 puts ""

 puts "Successfully dropped the tables."

 puts ""

 } else {

 puts ""

 puts "The tables were already dropped."

 puts ""

 }

 } errorInfo] } {

 puts ""

 puts $errorInfo

 puts ""

}

Creating scheduler tables using DDL files:

This topic provides the steps for creating scheduler tables using DDL files.

 Before you begin

Your database system must be installed and available.

The scheduler requires a database, a Java™ Database Connectivity (JDBC) provider, and a data source.

About this task

Complete the following steps to create scheduler tables using DDL files.

1. Verify that your database is created. See the topic ″Creating scheduler databases.″

2. Create the database tables according to the instructions for your database system.

2488 Administering WebSphere applications

v “Creating Apache Derby tables for schedulers”

v Creating DB2 tables for schedulers.

v .

v Creating DB2 for iSeries tables for schedulers.

v Creating Informix tables for schedulers.

v Creating Microsoft SQL Server tables for schedulers.

v Creating Oracle tables for schedulers.

v Creating Sybase tables for schedulers.

The following scripts are deprecated, but will still work:

 Deprecated script New script

createSchemaDB2.ddl createSchemaMod1DB2.ddl

createSchemaDB2iSeries.ddl createSchemaMod1DB2iSeries.ddl

createSchemaDerby.ddl createSchemaMod1Derby.ddl

createSchemaMSSQL.sql createSchemaMod1MSSQL.sql

createSchemaInformix.sql createSchemaMod1Informix.sql

createSchemaOracle.ddl createSchemaMod1Oracle.ddl

createSchemaSybase12.ddl createSchemaMod1Sybase12.ddl

dropSchemaMSSQL.sql dropSchemaMod1MSSQL.sql

dropSchemaDB2.ddl dropSchemaMod1DB2.ddl

dropSchemaDB2iSeries.ddl dropSchemaMod1DB2iSeries.ddl

dropSchemaDerby.ddl dropSchemaMod1Derby.ddl

dropSchemaInformix.sql dropSchemaMod1Informix.sql

dropSchemaOracle.ddl dropSchemaMod1Oracle.ddl

dropSchemaSybase12.ddl dropSchemaMod1Sybase12.ddl

Creating Apache Derby tables for schedulers:

This topic describes how to create tables for schedulers on Apache Derby databases, using data definition

language (DDL) or structured query language (SQL) files.

 Before you begin

This task requires you to configure a database and make it available. See the ″Creating Cloudscape

databases for schedulers″ topic, for more information.

About this task

To create tables for schedulers on Apache Derby databases, using data definition language (DDL) or

structured query language (SQL) files, use these steps.

1. Open a command-line window.

2. Create the schema.

a. Using a text editor, edit the script, %app_server_root%\Scheduler\createSchemaMod1Derby.ddl,

according to the instructions at the top of the file.

Note: When setting the table prefix, capitalize all characters.

b. Enter one of the following commands.

Chapter 14. Learn about WebSphere programming extensions 2489

Note: Apache Derby provides both an embedded and network server version. This example is for

the embedded version of Apache Derby. See the Apache Derby product documentation for

more details on running DDL scripts.
On Windows systems (using the example name, scheddb):

%app_server_root%\derby\bin\embedded\ij.bat %app_server_root%\Scheduler\createSchemaMod1Derby.ddl

On UNIX systems (using the example name, scheddb):

%app_server_root%/derby/bin/embedded/ij.sh %app_server_root%/Scheduler/createSchemaMod1Derby.ddl

Results

The Apache Derby tables and schema for the scheduler exist.

Creating DB2 tables for schedulers:

This topic describes how to create tables for scheduler on DB2 databases, using data definition language

(DDL) or structured query language (SQL) files.

 Before you begin

This task requires you to configure a database and make it available. See the ″Creating DB2 databases

for schedulers″ topic for more information.

About this task

To create tables for scheduler on DB2 databases, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a DB2 command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the table space and schema.

a. Analyze the results of your experiences during development and system testing. The size of your

database depends on many factors. If possible, distribute table space containers across different

logical disks, and implement an appropriate security policy. Consider the performance implications

of your choices for buffer pools and log file settings.

b. Using a text editor, edit the following scripts according to the instruction at the top of each file.

Note: When setting the table prefix, capitalize all characters.
%WAS_HOME%\Scheduler\createTablespaceDB2.ddl, %WAS_HOME%\Scheduler\createSchemaMod1DB2.ddl,

%WAS_HOME%\Scheduler\dropSchemaMod1DB2.ddl, and %WAS_HOME%\Scheduler\dropTablespaceDB2.ddl.

c. Verify that you are attached to the correct instance. Check the environment variable

DB2INSTANCE.

d. To connect to the database, scheddb, for example, and enter the command:

db2 connect to scheddb

e. Create the table space. Enter the following command:

db2 -tf createTablespaceDB2.ddl

Verify that the script output contains no errors. If there were any errors, you can drop the table

space using the following script:

dropTablespaceDB2.ddl

f. To create the schema (tables and indices), in the DB2 command line processor, enter the command

db2 -tf createSchemaMod1DB2.ddl. Verify that the script output contains no errors. If there were any

errors, you can use the following file to drop the schema:

dropSchemaMod1DB2.ddl

2490 Administering WebSphere applications

g. Verify that the DB2_RR_TO_RS DB2 flag is set to YES to avoid deadlocks. Restart the DB2

instance to activate the change, if needed.

Results

The DB2 tables and schema for the scheduler exist.

Creating DB2 for iSeries tables for schedulers:

This topic describes how to create tables for scheduler on DB2 for iSeries databases, using data definition

language (DDL) or structured query language (SQL) files.

 Before you begin

This task requires you to configure a database and make it available. See the ″ Creating DB2 for iSeries

databases for schedulers″ topic for more information.

About this task

To create tables for scheduler on DB2 for iSeries databases, using data definition language (DDL) or

structured query language (SQL) files, use these steps.

1. Start a QShell session by running the following command from a CL command line:

STRQSH

2. Create a new IFS directory under your profile directory:

mkdir profile_root/scheduler

Where profile_root is the fully qualified path of the directory that contains your profile.

3. Copy the following scripts to this new directory:

%WAS_HOME%/scheduler/createDB2iSeriesSchema.ddl

%WAS_HOME%/scheduler/dropSchemaDB2iSeries.ddl

4. Using a text editor, edit these scripts in the new directory. Replace all occurrences of

@TABLE_PREFIX@ with <collection_name>, <table_prefix> where <collection_name> is the name of

the collection that will be used to store the database files and is the collection that was created in the ″

Creating DB2 for iSeries databases for schedulers″ topic. The <table_prefix> precedes each table

name.

5. Use the iSeries Navigator to create the database files on your iSeries server.

a. Start iSeries Navigator.

b. Expand the iSeries icon to locate the system where you want to create the database files.

c. Expand Database, and right-click the system database.

d. Select Run SQL Scripts.

e. Select File > Open.

f. Navigate to the createDB2iSeriesSchema.ddl file in your profile directory.

g. Select Run > All.

h. Select View > Job Log to verify that the tables were created.

6. Execute the following command to change the owner for the new database files to QEJBSVR:

CHGOBJOWN OBJ(*ALL) OBJTYPE(*ALL) NEWOWN(QEJBSVR)

Results

The DB2 for iSeries tables and schema for the scheduler exist.

Creating Informix tables for schedulers:

Chapter 14. Learn about WebSphere programming extensions 2491

This topic describes how to create tables for schedulers on Informix databases, using data definition

language (DDL) or structured query language (SQL) files.

 Before you begin

This task requires that you configure a database and make it available. See the ″Creating Informix

databases for schedulers″ topic for more information.

About this task

To create tables for schedulers on Informix databases, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the schema.

a. Using a text editor, edit the script %WAS_HOME%\Scheduler\createSchemaMod1Informix.sql according

to the instruction at the top of the file.

Note: When setting the table prefix, capitalize all characters.

b. Enter the following command, using the database, scheddb, for example:

 dbaccess scheddb createSchemaMod1Informix.sql

Results

The Informix tables and schema for the scheduler exist.

Creating Microsoft SQL Server tables for schedulers:

This topic describes how to create tables for schedulers on Microsoft SQL Server databases, using data

definition language (DDL) or structured query language (SQL) files.

 Before you begin

This task requires you to configure a database and make it available. See the ″Creating Microsoft SQL

Server databases for schedulers″ topic for more information.

About this task

To create tables for schedulers on Microsoft SQL Server databases, using data definition language (DDL)

or structured query language (SQL) files, use these steps.

1. Open a command-line window.

2. Change to the directory where the configuration scripts for scheduler are located. This is the Scheduler

subdirectory of the IBM WebSphere Application Server installation directory.

3. Use a text editor to edit the schema creation script, createSchemaMod1MSSQL.sql, according to the

instructions at the beginning of the file.

Note: When setting the table prefix, capitalize all characters.

4. Create the schema:

a. Verify that you have administrator rights for the database system. The user ID you use to create

the schema must be the one that you configure WebSphere Application Server to use when

accessing the database.

b. Run the following script to create the schema (tables and views) :

isql -S <servername> -U<userid> -P<password> -D<databaseName> -i<script name>

2492 Administering WebSphere applications

Results

The Microsoft SQL Server tables and schema for scheduler exist.

Creating Oracle tables for schedulers:

This topic describes how to create tables for schedulers on Oracle databases, using data definition

language (DDL) or structured query language (SQL) files.

 Before you begin

This task requires you to configure a database and make it available. See the ″Creating Oracle databases

for schedulers″ topic for more information.

About this task

To create tables for schedulers on Oracle databases, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Create the table space and schema.

a. Using a text editor, edit the following scripts according to the instructions at the top of the files.

Note: When setting the table prefix, capitalize all characters.
%app_server_root%\Scheduler\createTablespaceOracle.ddl and %app_server_root%\createSchemaMod1Oracle.ddl

b. Set the environment variable ORACLE_SID, if you do not want the schema to be created in the

default instance.

c. Run the script, createTablespaceOracle.ddl, to create the table space.

For test purposes, use the same location for all table spaces and pass the path as a command line

argument to the script.

d. Run the script, createSchemaMod1Oracle.ddl, to create the schema.

Results

The Oracle tables and schema for scheduler exist.

Creating Sybase tables for schedulers:

This topic describes how to create tables for schedulers on Sybase databases, using data definition

language (DDL) or structured query language (SQL) files.

 Before you begin

This task requires you to configure a database and make it available. See the ″Creating Sybase

databases for schedulers″ topic for more information.

About this task

To create tables for schedulers on Sybase databases, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

Chapter 14. Learn about WebSphere programming extensions 2493

3. Make sure that you have the Distributed Transaction Management (DTM) option for Sybase ASE

installed.

a. Set enable DTM to 1 in the Sybase server configuration.

b. Set enable xact coordination to 1 in the Sybase server configuration.

c. Add the dtm_tm_role role to the Sybase administration user ID. For example, enter the user ID sa.

d. Restart the Sybase server.

4. Use the Sybase isql utility to create a database. For example, enter the database name scheddb. See

your Sybase product documentation for details.

5. Create the schema:

a. Using a text editor, edit the following script according to the instructions located at the top of the

file.

Note: When setting the table prefix, capitalize all characters.
app_server_root\Scheduler\createSchemaMod1Sybase12.ddl

b. Enter the following command:

isql -S <servername> -U <userid> -P <password> -D scheddb -i createSchemaMod1Sybase12.ddl

Results

The Sybase tables and schema for scheduler exist.

Startup beans

Using startup beans

There are two types of startup beans: application startup beans and Module startup beans.

About this task

A module startup bean is a session bean that is loaded when an EJB Jar file starts. Module startup beans

enable Java Platform Enterprise Edition (Java EE) applications to run business logic automatically,

whenever an EJB module starts or stops normally. An application startup bean is a session bean that is

loaded when an application starts. Application startup beans enable Java EE applications to run business

logic automatically, whenever an application starts or stops normally.

Startup beans are especially useful when used with asynchronous bean features. For example, a startup

bean might create an alarm object that uses the Java Message Service (JMS) to periodically publish

heartbeat messages on a well-known topic. This enables clients or other server applications to determine

whether the application is available. Refer to the Enabling an application to wait for a messaging engine to

start article if you are using the default JMS provider.

1. For Application startup beans, use the home interface,

com.ibm.websphere.startupservice.AppStartUpHome, to designate a bean as an Application startup

bean. For Module startup beans, use the home interface,

com.ibm.websphere.startupservice.ModStartUpHome, to designate a bean as a Module startup bean.

2. For Application startup beans, use the remote interface,

com.ibm.websphere.startupservice.AppStartUp, to define start() and stop() methods on the bean. For

Module startup beans, use the remote interface, com.ibm.websphere.startupservice.ModStartUp, to

define start() and stop() methods on the bean.

The startup bean start() method is called when the module or application starts and contains business

logic to be run at module or application start time.

2494 Administering WebSphere applications

The start() method returns a boolean value. True indicates that the business logic within the start()

method ran successfully. Conversely, False indicates that the business logic within the start() method

failed to run completely. A return value of False also indicates to the Application server that application

startup is aborted.

The startup bean stop() methods are called when the module or application stops and contains

business logic to be run at module or application stop time. Any exception thrown by a stop() method

is logged only. No other action is taken.

The start() and stop() methods must never use the TX_MANDATORY transaction attribute. A global

transaction does not exist on the thread when the start() or stop() methods are invoked. Any other

TX_* attribute can be used. If TX_MANDATORY is used, an exception is logged, and the application

start is aborted.

The start() and stop() methods on the remote interface use Run-As mode. Run-As mode specifies the

credential information to be used by the security service to determine the permissions that a principal

has on various resources. If security is on, the Run-As mode needs to be defined on all of the

methods called. The identity of the bean without this setting is undefined.

There are no restrictions on what code the start() and stop() methods can run, since the full Application

Server programming model is available to these methods.

3. Use an optional environment property integer, wasStartupPriority, to specify the start order of multiple

startup beans in the same Java Archive (JAR) file. If the environment property is found and is the

wrong type, application startup is aborted. If no priority value is specified, a default priority of 0 is used.

It is recommended that you specify the priority property. Beans that have specified a priority are sorted

using this property. Beans with numerically lower priorities are run first. Beans that have the same

priority are run in an undefined order. All priorities must be positive integers. Beans are stopped in the

opposite order to their start priority. The priority values for module startup beans and application

startup beans are mutually exclusive. All modules will be started prior to the application being declared

as ″started″ and therefore the start() methods for module startup beans within an application will be

invoked prior to the start() methods for any application startup beans. Likewise, all application startup

bean stop() methods for a specific Java Archive (JAR) file will be invoked prior to any module startup

bean stop() methods for that JAR.

4. For module startup beans, the order in which EJB modules are started can be adjusted via the

″Starting weight″ value associated with each module

5. To control who can invoke startup bean methods via WebSphere Security do the following:

a. Define the method permissions for the Start() and Stop() methods as you would for any EJB

module. (See ″Defining method permissions for EJB modules″.)

b. Ensure that the user that is mapped to the Security Role defined for the startup bean methods is

the same user that is defined as the Server user ID within the User Registry.

What to do next

View the startup beans service settings.

Startup beans service settings

Use this page to enable startup beans that control whether application-defined startup beans function on

this server. Startup beans are session beans that run business logic through the invocation of start and

stop methods when applications start and stop. If the startup beans service is disabled, then the automatic

invocation of the start and stop methods does not occur for deployed startup beans when the parent

application starts or stops. This service is disabled by default. Enable this service only when you want to

use startup beans. Startup beans are especially useful when used with asynchronous beans.

To view this administrative console page, click Servers > Application servers >server_name > Container

services > Startup beans service.

Enable service at server startup:

Chapter 14. Learn about WebSphere programming extensions 2495

Specifies whether the server attempts to initiate the startup beans service.

 Default Cleared

Range Selected

When the application server starts, it attempts to

initiate the startup bean service automatically.

Cleared

The server does not try to initiate the startup

beans service. All startup beans do not start or

stop with the application. If you use startup beans

on this server, then the system administrator

must start the startup beans service manually or

select this property, and then restart the server.

Enabling startup beans in the administrative console

Enabling startup beans in the administrative console enables Java 2 Platform Enterprise Edition (J2EE)

applications to run business logic automatically, whenever an application starts or stops normally.

About this task

Use the following steps to enable startup beans in the administrative console.

1. Start the administrative console.

2. Select Servers > Application Servers > server_name > Container Services > Startup beans

service.

3. Select the Enable service at server startup check box.

4. Click Apply to save the configuration.

What to do next

View the startup beans service settings.

Work area

Task overview: Implementing shared work areas

About this task

The work area service enables application developers to implicitly propagate information beyond the

information passed in remote calls. Applications can create a work area, insert information into it, and

make remote invocations. The work area is propagated with each remote method invocation, eliminating

the need to explicitly include an appropriate argument in the definition of each method. The methods on

the server side can use or ignore the information in the work area as appropriate.

Before proceeding with the steps to implement work areas, as described below, review the topic Work

area service: Overview.

1. Developing applications that use work areas. Applications interact with the work area service by

implementing the UserWorkArea interface.

2. Managing work areas. The work area service is managed using the administrative console.

3. “Configuring work area partitions” on page 2505 You can create multiple work areas with additional

configuration options than the UserWorkArea partition.

4. “Propagating work area context over Web services” on page 2515 You can propagate work area

context on a Web service call instead of an RMI/IIOP call.

2496 Administering WebSphere applications

Overview of work area service

The work area service passes information explicitly as an argument or implicitly to remote methods.

One of the foundations of distributed computing is the ability to pass information, typically in the form of

arguments to remote methods, from one process to another. When application-level software is written

over middleware services, many of the services rely on information beyond that passed in the application’s

remote calls. Such services often make use of the implicit propagation of private information in addition to

the arguments passed in remote requests; two typical users of such a feature are security and transaction

services. Security certificates or transaction contexts are passed without the knowledge or intervention of

the user or application developer. The implicit propagation of such information means that application

developers do not have to manually pass the information in method invocations, which makes

development less error-prone, and the services requiring the information do not have to expose it to

application developers. Information such as security credentials can remain secret.

The work area service gives application developers a similar facility. Applications can create a work area,

insert information into it, and make remote invocations. The work area is propagated with each remote

method invocation, eliminating the need to explicitly include an appropriate argument in the definition of

every method. The methods on the server side can use or ignore the information in the work area as

appropriate. If methods in a server receive a work area from a client and subsequently invoke other

remote methods, the work area is transparently propagated with the remote requests. When the creating

application is done with the work area, it terminates it.

There are two prime considerations in deciding whether to pass information explicitly as an argument or

implicitly by using a work area. These considerations are:

v Pervasiveness: Is the information used in a majority of the methods in an application?

v Size: Is it reasonable to send the information even when it is not used?

When information is sufficiently pervasive that it is easiest and most efficient to make it available

everywhere, application programmers can use the work area service to simplify programming and

maintenance of code. The argument does not need to go onto every argument list. It is much easier to put

the value into a work area and propagate it automatically. This is especially true for methods that simply

pass the value on but do nothing with it. Methods that make no use of the propagated information simply

ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary number of individual pieces of

data, each stored as a property.

Use the work area service in the administrative console to configure the UserWorkArea partition. The

UserWorkArea partition is the partition that is available in JNDI naming under the name

″java:comp/websphere/UserWorkArea″ as demonstrated in the article, “Accessing the UserWorkArea

partition” on page 2504. The UserWorkArea partition is the default work area partition created

automatically, if it has not been disabled, and is available through JNDI naming to all users. Any

configuration option made to the UserWorkArea partition under the work area service panel in the

administrative console does not affect the work area partition service or any partitions defined in it, and

conversely. For example, if you select the enable or disable option in the work area service panel, this

does not affect the work area partition service or any partition within it.

Work area property modes:

The information in a work area consists of a set of properties; a property consists of a key-value-mode

triple. The key-value pair represents the information contained in the property; the key is a name by which

the associated value is retrieved. The mode determines whether you can modify or remove the property.

Chapter 14. Learn about WebSphere programming extensions 2497

Property modes

There are four possible mode values for properties, as shown in the following code example:

Code example: The PropertyModeType definition

public final class PropertyModeType {

 public static final PropertyModeType normal;

 public static final PropertyModeType read_only;

 public static final PropertyModeType fixed_normal;

 public static final PropertyModeType fixed_readonly;

};

A property’s mode determines three things:

v Whether the value associated with the key can be modified

v Whether the property can be deleted

v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property; the two fixed modes forbid

deletion of the property.

The work area service does not provide methods specifically for the purpose of modifying the value of a

key or the mode associated with a property. To change information in a property, applications simply

rewrite the information in the property; this has the same effect as updating the information in the property.

The mode of a property governs the changes that can be made. Modifying key-value pairs describes the

restrictions each mode places on modifying the value and deleting the property. Changing modes

describes the restrictions on changing the mode.

Changing modes

The mode associated with a property can be changed only according to the restrictions of the original

mode. The read-only and fixed read-only properties do not permit modification of the value or the mode.

The fixed normal and fixed read-only modes do not allow the property to be deleted. This set of

restrictions leads to the following permissible ways to change the mode of a property within the lifetime of

a work area:

v If the current mode is normal, it can be changed to any of the other three modes: fixed normal,

read-only, fixed read-only.

v If the current mode is fixed normal, it can be changed only to fixed read-only.

v If the current mode is read-only, it can be changed only by deleting the property and re-creating it with

the desired mode.

v If the current mode is fixed read-only, it cannot be changed.

v If the current mode is not normal, it cannot be changed to normal. If a property is set as fixed normal

and then reset as normal, the value is updated but the mode remains fixed normal. If a property is set

as fixed normal and then reset as either read-only or fixed read-only, the value is updated and the mode

is changed to fixed read-only.

Note: The key, value, and mode of any property can be effectively changed by terminating (completing)

the work area in which the property was created and creating a new work area. Applications can

then insert new properties into the work area. This is not precisely the same as changing the value

in the original work area, but some applications can use it as an equivalent mechanism.

Nested work areas:

Applications can nest work areas to define and scope properties for specific tasks without having to make

the work areas available to all parts of the application.

 When an application creates a work area, a work area context is associated with the creating thread. If the

application thread creates another work area, the new work area is nested within the existing work area

2498 Administering WebSphere applications

and becomes the current work area. All properties defined in the original, enclosing work area are visible

to the nested work area. The application can set additional properties within the nested work area that are

not part of the enclosing work area.

An application working with a nested work area does not actually see the nesting of enclosing work areas.

The current work area appears as a flat set of properties that includes those from enclosing work areas. In

the figure below, the enclosing work area holds several properties and the nested work area holds

additional properties. From the outermost work area, the properties set in the nested work area are not

visible. From the nested work area, the properties in both work areas are visible.

Nesting can also affect the apparent settings of the properties. Properties can be deleted from or directly

modified only within the work areas in which they were set, but nested work areas can also be used to

temporarily override information in the property without having to modify the property. Depending on the

modes associated with the properties in the enclosing work area, the modes and the values of keys in the

enclosing work area can be overridden within the nested work area.

The mode associated with a property when it is created determines whether nested work areas can

override the property. From the perspective of a nested work area, the property modes used in enclosing

work areas can be grouped as follows:

v Modes that permit a nested work area to override the mode or the value of a key locally. The modes

that permit overriding are:

– Normal

– Fixed normal
v Modes that do not permit a nested work area to override the mode or the value of a key locally. The

modes that do not permit overriding are:

– Read-only

– Fixed read-only

If an enclosing work area defines a property with one of the modes that can be overridden, a nested work

area can specify a new value for the key or a new mode for the property. The new value or mode

becomes the value or mode seen by subsequently nested work areas. Changes to the mode are governed

key1

key5

key2

key6

key3

key7

key4

key8

A

E

B

F

C

G

D

H

normal

normal

fixed normal

fixed normal

read-only

read-only

fixed read-only

fixed read-only

key value mode

Work Area 1.1

key value mode

Work Area 1
Visible to Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 1.1

key1 = A

key2 = B

key3 = C

key4 = D

key5 = E

key6 = F

key7 = G

key8 = H

Figure 37. Defining new properties in nested work areas

Chapter 14. Learn about WebSphere programming extensions 2499

by the restrictions described in Changing modes. If an enclosing work area defines a property with one of

the modes that cannot be overridden, no nested work area can specify a new value for the key.

A nested work area can delete properties from enclosing work areas, but the changes persist only for the

duration of the nested work area. When the nested work area is completed, any properties that were

added in the nested area vanish and any properties that were deleted from the nested area are restored.

The following figure illustrates the overriding of properties from an enclosing work area. The nested work

area redefines two of the properties set in the enclosing work area. The other two cannot be overridden.

The nested work area also defines two new properties. From the outermost work area, the properties set

or redefined in the nested work are not visible. From the nested work area, the properties in both work

areas are visible, but the values seen for the redefined properties are those set in the nested work area.

Distributed work areas:

Work area context propagates to a target object on a remote invocation on both bidirectional and

non-bidirectional defined work area partitions. The propagation of work area context operates differently

depending on whether a work area partition is defined as bidirectional. If the partition is defined as

bidirectional, the context propagates from a target object back to the originator.

 Non-bidirectional work area partitions (UserWorkArea partition)

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors is propagated to the target. The target application can locally modify the

information, as allowed by the property modes, by creating additional nested work areas; this information

is propagated to any remote objects it invokes. However, no changes made to a nested work area on a

target object are propagated back to the calling object. The caller’s work area is unaffected by changes

made in the remote method.

key1

key1

key2

key2

key3

key5

key4

key6

A

X

B

Y

C

E

D

F

normal

normal

fixed normal

fixed normal

read-only

normal

fixed read-only

fixed

key value mode

Work Area 2.1

key value mode

Work Area 2
Visible to Work Area 2

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 2.1

key1 = X (overridden in 2.1)

key2 = Y (overridden in 2.1)

key3 = C

key4 = D

key5 = E

key6 = F

Figure 38. Redefining existing properties in nested work areas

2500 Administering WebSphere applications

Bidirectional work area partitions

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors is propagated to the target. The target application can locally modify the

information, as allowed by the property modes, this information is propagated to any remote objects it

invokes. In a partition that is not defined as bidirectional, a target application must begin a nested work

area before making changes to the imported work area. However, if a partition is defined as bidirectional, a

target application need not begin a nested work area before operating on an imported work area. By not

beginning a nested work area, any new context set into the work area, or any context changes made by

the target application, is not only propagated on future remote invocations but is also propagated back to

the originating application (that is, the one who initiated the remote invocation) thus allowing bidirectional

propagation of work area context. If the target application does not want new or changed context to

propagate back to the originating application, then the target application must begin a nested work area to

scope the context to its process. However, the new or changed context in the nested work area

propagates on any future remote invocation the target application may make.

WorkArea service: Special considerations:

Developers who use work areas should consider the following issues that could potentially cause

problems: interoperability between the EJB and CORBA programming models; and the use of work areas

with Java’s Abstract Windowing Toolkit.

 EJB and CORBA interoperability

Although the work area service can be used across the EJB and CORBA programming models, many

composed data types cannot be successfully used across those boundaries. For example, if a

SimpleSampleCompany instance is passed from the WebSphere environment into a CORBA environment,

the CORBA application can retrieve the SimpleSampleCompany object encapsulated within a CORBA Any

object from the work area, but it cannot extract the value from it. Likewise, an IDL-defined struct defined

within a CORBA application and set into a work area is not readable by an application using the

UserWorkArea class.

Note: Applications can avoid this incompatibility by directly setting only primitive types, like integers and

strings, as values in work areas, or by implementing complex values with structures designed to be

compatible, like CORBA valuetypes.

Also, CORBA Anys that contains either the tk_null or tk_void typecode can be set into the work area by

using the CORBA interface. However, the work area specification cannot allow the Java 2 Platform,

Enterprise Edition (J2EE) implementation to return null on a lookup that retrieves these CORBA-set

properties without incorrectly implying that there is no value set for the corresponding key. For example,

when a user attempts to retrieve a nonexistent key from a work area, the work area service returns null to

indicate that the specified key does not contain a value, implying that the key itself is not in use or does

not exist. In the case where CORBA Anys contains either tk_null or tk_void, when a user requests the key

associated with one of these values, the work area service returns null as expected. In this case, the key

may actually exist and the work area service was simply returning the key’s value of null. Therefore, when

working with CORBA Anys, a user must not make any implications when a null is returned from a work

area because it could mean that either there isn’t a property associated with the given key, or that there is

a property associated with the given key and it contains a tk_null or tk_void, for example, a null in the

J2EE environment. If a J2EE application tries to retrieve CORBA-set properties that are non-serializable,

or contain CORBA nulls or void references, the com.ibm.websphere.workarea.IncompatibleValue exception

is raised.

Chapter 14. Learn about WebSphere programming extensions 2501

Using work areas with Java’s Abstract Windowing Toolkit (AWT)

Work areas must be used cautiously in applications that use Java’s Abstract Windowing Toolkit (AWT).

The AWT implementation is multithreaded, and work areas begun on one thread are not available on

another. For example, if a program begins a work area in response to an AWT event, such as pressing a

button, the work area might not be available to any other part of the application after the execution of the

event completes.

Work area service performance considerations: The work area service is designed to address

complex data passing patterns that can quickly grow beyond convenient maintenance. A work area is a

note pad that is accessible to any client that is capable of looking up Java Naming Directory Interface

(JNDI). After a work area is established, data can be placed there for future use in any subsequent

method calls to both remote and local resources.

You can utilize a work area when a large number of methods require common information or if information

is only needed by a method that is significantly further down the call graph. The former avoids the need for

complex parameter passing models where the number of arguments passed becomes excessive and hard

to maintain. You can improve application function by placing the information in a work area and

subsequently accessing it independently in each method, eliminating the need to pass these parameters

from method to method. The latter case also avoids unnecessary parameter passing and helps to improve

performance by reducing the cost of marshalling and de-marshalling these parameters over the Object

Request Broker (ORB) when they are only needed occasionally throughout the call graph.

When attempting to maximize performance by using a work area, cache the UserWorkArea partition that is

retrieved from JNDI wherever it is accessed. You can reduce the time spent looking up information in JNDI

by retrieving it once and keeping a reference for the future. JNDI lookup takes time and can be costly.

Additional caching mechanisms available to a user-defined partition are defined by the configuration

property, ″Deferred Attribute Serialization″. This mechanism attempts to minimize the number of

serialization and deserialization calls. See “Work area partition service” on page 2505 for further

explanation of this configuration attribute.

The maxSendSize and maxReceiveSize configuration parameters can affect the performance of the work

area. Setting these two values to 0 (zero) effectively turns off the policing of the size of context that can be

sent in a work area. This action can enhance performance, depending on the number of nested work

areas an application uses. In applications that use only one work area, the performance enhancement

might be negligible. In applications that have a large number of nested work areas, there might be a

performance enhancement. However, a user must note that by turning off this policing it is possible that an

extremely large amount of data might be sent to a server.

Performance is degraded if you use a work area as a direct replacement to passing a single parameter

over a single method call. The reason is that you incur more overhead than just passing that parameter

between method calls. Although the degradation is usually within acceptable tolerances and scales

similarly to passing parameters with regard to object size, consider degradation a potential problem before

utilizing the service. As with most functional services, intelligent use of the work areas yields the best

results.

The work area service is a tool to simplify the job of passing information from resource to resource, and in

some cases can improve performance by reducing the overhead that is associated with a parameter

passing when the information is only sparsely accessed within the call graph. Caching the instance

retrieved from JNDI is important to effectively maximize performance during runtime.

2502 Administering WebSphere applications

Managing the UserWorkArea partition

Before you begin

For an application to take advantage of work areas, the work area service must be enabled for both clients

and servers. On a server the service is disabled by default. On the client, the service is enabled by

default.

For an application to take advantage of the default partition, the UserWorkArea partition, this partition must

be enabled by enabling the work area service for both clients and servers. The work area service on a

server is disabled by default and the work area service on a client is enabled by default. Note that rather

than using this default work area partition, a user can create their own work area partition using the “Work

area partition service” on page 2505.

About this task

Applications can set maximum sizes on each work area that is sent or received. By default, the maximum

size of a work area that is sent by a client and received, then possibly resent, by a server is 32,768 bytes.

The maximum size that you can specify is determined by the maximum value expressible in the Java

Integer data type, 2,147,483,647. The smallest maximum size that you can specify is 1. Using a maximum

size of 1 byte effectively means that no requests associated with the work area can leave the system or

enter another system. A value of 0 means that no limit is imposed. A value of -1 means that the default

value is to be honored. The default value is also used if an invalid value or a malformed property is

specified. You can change this size as described in this topic.

1. Enable or disable the use of the UserWorkArea partition on a server: The work area service is disabled

by default on servers but enabled by default on the client

a. Start the administrative console.

b. Select Servers → Server Types → WebSphere application servers → server_name → Business

Process Services → Work area service.

c. Select or clear the Startup check box. This specifies whether or not the server should

automatically start the work area service when the server starts.

d. Save the new configuration and restart the server to apply the new configuration.

2. Enable (or disable) the UserWorkArea partition on a client: Set the

com.ibm.websphere.workarea.enabled property to TRUE or FALSE before starting the client. For

example, to disable the work area service, when invoking the launchClient script found in the

app_server_root/bin directory, add the following system property to the launchClient invocation:

-CCDcom.ibm.websphere.workarea.enabled=false

Alternatively, this property can be set in a property file that is used by the launchClient script. See

“Running application clients” on page 227 for additional information.

3. Manage the size of the work areas that this server can send and the number of work areas that this

server can accept.

a. Start the administrative console.

b. Select Servers → Server Types → WebSphere application servers → server_name → Business

Process Services → Web container.

v To change the send size or receive size on the work area service (namely the ″UserWorkArea″

partition):

– Select Work area service.

v To change the send size or receive size on a user defined partition:

– Select Work area partition service.

– Select a partition.

Chapter 14. Learn about WebSphere programming extensions 2503

c. Enter a new value in the Maximum send size field to modify the size of the work area that this

server can send, or enter a new value in the Maximum receive size field to modify the size of the

work area that this server can accept.

d. Save the new configuration and restart the server to apply the new configuration.

4. Change the size of the work area that can be sent by a client. This step only applies to the

UserWorkArea partition on the client. To set the maximum send or receive size on a user defined

partition, you must set these values when creating the partition on the client. For more information on

creating a partition on a client, see the client section in the Configuring work area partitions topic. To

change the size of the work area that can be sent by a client, set the

com.ibm.websphere.workarea.maxSendSize property to the desired number of bytes before starting

the client. You can set the maximum send size as follows:

v Set the maximum send size when invoking the launchClient invocation script found in the

$WAS_HOME/bin directory. For example, to set the maximum size to 10,000 bytes, add the following

system properties to the launchClient invocation as needed:

-CCDcom.ibm.websphere.workarea.maxSendSize=10000

v Set the maximum send size propery, com.ibm.websphere.workarea.maxSendSize, in a property file

that is used by the launchClient script. See ″“Running application clients” on page 227″ for

additional information.

Because the UserWorkArea partition is defined as unidirectional, for example, context only propagates

on outbound calls and not on the return of those calls, the maximum receive size is ignored.

Accessing the UserWorkArea partition

About this task

The work area service provides a JNDI binding to an implementation of the UserWorkArea interface under

the name java:comp/websphere/UserWorkArea. This is the default work area partition, namly the

″UserWorkArea″ partition. It is created and bound into JNDI naming automatically, as long as it is enabled

as defined in Enabling the work area service (UserWorkArea partition). Applications that need to access

UserWorkArea partition can perform a lookup on that JNDI name, as shown in the following code example:

Example

import com.ibm.websphere.workarea.*;

import javax.naming.*;

public class SimpleSampleServlet {

 ...

 InitialContext jndi = null;

 UserWorkArea userWorkArea = null;

 try {

 jndi = new InitialContext();

 userWorkArea = (UserWorkArea)jndi.lookup(

 "java:comp/websphere/UserWorkArea");

 }

 catch (NamingException e) { ... }

}

Rather than using this default work area partition, a user has the option to create their own work area

partition using the Work area partition service.

What to do next

The next step is to use the begin method to create a new work area and associate it with the calling

thread, as described in the topic, Beginning a new work area.

2504 Administering WebSphere applications

Configuring work area partitions

About this task

The work area partition service extends the work area service by allowing the creation of multiple work

areas with more configuration options than what is available to the UserWorkArea partition. Follow these

steps to create and configure a work area partition:

1. Create a user defined partition on the server.

a. Start the administrative console.

b. Click Servers → Server Types → WebSphere application servers → server_name → Business

process services → Work area partition service.

c. Click New.

d. On the settings page for work area partitions, specify values such as the partition name,

maxSendSize and maxReceiveSize, then click OK.

e. Save the new configuration.

f. Restart the server to apply the new configuration.

2. Create a user defined partition on the client. Use the createWorkAreaPartition method described in the

“The Work area partition manager interface” on page 2509 article to programmatically create a

partition. See “Example: Using the work area partition manager” on page 2511 for an example of using

this method.

Results

You have created a work area partition.

What to do next

Retrieve the partition through the work area partition manager interface and use it as defined by the work

area service and the UserWorkArea interface. See the topic “Example: Using the work area partition

manager” on page 2511 for an example.

Work area partition service

The work area partition service is an extension of the work area service that allows the creation of multiple

custom work areas. The work area partition service is an optional service to users. Any user that currently

uses the work area service and the UserWorkArea partition can continue using it in the same manner. The

UserWorkArea partition is created automatically (if it has not been disabled) by the work area partition

service. By allowing a user the option to create their own work area partition through the work area

partition service, they can have more control over configuration and access to their partition.

The work area partition service is essentially a ″factory″ for creating instances of the UserWorkArea

interface. Applications interact with work areas by using the UserWorkArea interface and its

implementation. This interface defines all of the methods used to create, manipulate, and complete work

areas. The work area partition service allows users to create their own named instance of the

UserWorkArea interface, each named instance is called a user defined work area partition, or partition for

short. Each instance of the UserWorkArea interface (partition) is separate from other user defined

partitions. Furthermore, a partition can be configured with various configuration options to provide qualities

of service unique to an individual user’s use case. Any configuration option made within the work area

partition service panel will not effect the work area service.

Unlike the UserWorkArea partition, which is publicly known, work areas created by the work area partition

service are accessible to, and known only by the creator. However, the work area partition service does

not strictly enforce that a partition is accessed and/or operated on exclusively by the partition creator.

There are no limitations should the creator want to publish their work area partition and make it publicly

available by binding their partition reference in java naming or by other means. However, the work area

partition service does try to hide a partition as much as possible should a user not want others to know

Chapter 14. Learn about WebSphere programming extensions 2505

about a certain partition. The work area partition service does not allow a person to determine, or query

the names of all the partitions that have been created; however, it does not restrict the partitions from

being accessed by users other than the creator of that partition. The context of a partition, such as the

UserWorkArea partition or a user defined partition, is scoped to a single thread and is not accessible by

multiple threads.

The work area partition reference that is returned to a user implements javax.naming. Referenceable, as

well as com.ibm.websphere.UserWorkArea, therefore a user can bind their partition into a name to make

their partition publicly available. An alternative to using Java naming to bind and access the partition is to

use the work area partition manager interface. Anyone can access the work area partition manager

interface; therefore, if a user wants to make their partition publicly available, they simply need to publish

their partition name. Other users can then call the getWorkAreaPartition method on the work area partition

manager interface with the published name.

The WorkAreaPartitionManager.createWorkAreaPartition method can only be used from a Java 2 Platform,

Enterprise Edition (J2EE) client. To create a work area partition on the server side, one must use the

administrative console. On the server side a work area partition must be created during server startup

because each partition needs to be register with the appropriate Web and Enterprise JavaBeans (EJB)

collaborators before the server has started. Custom work area partitions are created by the work area

partition service and defined by the UserWorkArea interface.

The work area partition service also allows a user to configure partitions with additional properties that are

not available on the UserWorkArea partition, such as bidirectional propagation of work area partition

context and deferred attribute serialization. These properties are available as configuration properties when

creating a partition. For a complete list of the configuration properties available when creating a partition,

please see the section ″Configurable Work Area Partition Properties″ in “The Work area partition manager

interface” on page 2509. The properties are defined as follows:

Bidirectional propagation of work area context

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors are propagated to the target application. The target application can locally

modify the information, as allowed by the property modes, by creating additional nested work areas; this

information is propagated to any remote objects that it invokes.

Whether context changes propagate back to a calling application from a remote application depends on

the configuration of the work area partition. If a user creates a partition to be bidirectional (selects the

Bidirectional property during creation), changes made by a remote application propagates back to the

calling application, meaning that changes made to the work area context by a downstream process will

propagate back up stream. The UserWorkArea partition is not configured (and can never be configured) to

be bidirectional; therefore context changes only flow to downstream processes and do not propagate back

upstream.

Example: Bidirectional propagation of work area context

Whether context changes propagate back to a calling application from a remote application depends on

the configuration of the work area partition. If a user creates a bidirectional partition, changes made by a

remote application propagate back to the calling application. Changes made to the work area context by a

downstream process propagate back up stream. Figure 1 illustrates distribution of work area context on a

remote call when the partition containing the given work area is configured for bidirectional propagation of

its work area context. For this illustration, the client and server must have created a partition with the same

name.

2506 Administering WebSphere applications

As Figure 1 shows, when the client makes a remote call to the server, the server receives the context set

by the client process. The server then can make changes to this context or add to it. In this illustration, the

server overwrites the value at key1, removes the property at key2, and adds two new properties at key5

and key6. When the server application returns to the client, the work area context is propagated back to

the client and demarshalled. The current work area is then updated with the new context. Note, that if the

partition is not configured as bidirectional, and the server tries to change or remove context in work area,

″Work Area 1″, it receives a com.ibm.websphere.workarea.NotOriginator exception because the client was

the originator of the work area. The server can retrieve the context in ″Work Area 1″. This is the main

distinction between bidirectional propagation of context and non-bidirectional propagation.

Example: Bidirectional propagation of nested work area context

If a remote application needs to add context to a work area that is only used by itself or any other remote

objects, the remote application must begin another work area. By beginning a new work area, the new

context added is scoped to that application and does not flow back to the calling application. The major

benefit of nesting work areas is that nesting work areas allows an application to scope work area context

to a given application. Taking the above illustration one step further, if the server has begun a work area

before overwriting the value at key1, removing the property at key2, or adding new properties at key5 and

key6; those changes would not have propagated back to the client. This is shown in Figure 2. You can

also see from this figure that the client does not receive the context from the nested work area started by

the server.

Context deleted

by the server

Context added

by the server

Process Boundary

Client Server

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Key

key3

key4

key1

key5

key6

key2

Value

C

D

G

E

F

B

Mode

fixed normal

fixed read-only

normal

fixed normal

normal

read-only

Work Area 1

Key

key3

key4

key1

key5

key6

key2

Value

C

D

G

E

F

B

Mode

fixed normal

fixed read-only

normal

fixed normal

normal

read-only

Context visible to

Work Area 1

key3 = C

key4 = D

key1 = G

key5 = E

key6 = F

after remote call:

Deleted context

Added context

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

before remote call:

Figure 39. Figure 1

Chapter 14. Learn about WebSphere programming extensions 2507

Deferred attribute serialization of work area context

By default, on each set operation the attribute set into a work area is automatically serialized by the work

area service. On each subsequent get operation on that same attribute it is deserialized and returned to

the requester. This gives the work area service complete control of the attribute such that any changes to

a mutable object are not reflected in the work area’s copy of the attribute unless a user specifically resets

the attribute into the work area. However, this can potentially lead to excessive serialization and

deserialization.

Excessive serialization and deserialization can result in observable performance degradation under heavy

load. The deferred attribute serialization configuration property is a caching feature that reduces

serialization and deserialization operations. When deferred attribute serialization is enabled in a client or

server process, by selecting the Deferred Attribute Serialization field during the creation of the work area,

attributes set into the work area service are not automatically serialized during the set operation. Rather, a

reference to the attribute is stored in the work area. If the attribute is mutable, then changes to the object

are reflected in the work area’s reference to that attribute. When a get operation is performed on that

attribute, the reference to that object is returned and no deserialization is performed.

Attributes are not actually serialized until the thread with which the attribute is associated makes a remote

IIOP invocation. At that point the attribute is serialized and the serialized form of the attribute is cached. If

the attribute is not reset into the work area, changes to the original attribute are still reflected within the

attribute contained within the work area because the work area still holds a cached reference to the

original object. However, if the work area has not been told that the attribute has changed by resetting the

attribute into the work area, subsequent remote requests continues to use the cached serialized version of

the attribute and direct changes to the mutable attribute are not propagated. This is an important

distinction between enabling and not enabling the deferred attribute serialization configuration property and

a user must pay close attention to this difference and how mutable objects are handled when enabling

Process Boundary

Client Server

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Context from Work Area 1

Context added to

Work Area 1.1

Deleted context

Added content

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

before remote call:

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

after remote call:

Work Area 1.1

Key

key1

key3

key2

key5

key6

key4

Value

A

C

D

B

E

F

Mode

normal

fixed normal

fixed r

read only

read only

fixed normal

ead-only

Figure 40. Figure 2

2508 Administering WebSphere applications

deferred attribute serialization. The work area service releases cached references and cached serialized

versions of attributes when any of the following occur:

v An attribute is reset or removed.

v The work area is explicitly completed by the application.

v Server component ends execution of the request during which the work area was begun.

v Client process which began the work area terminates.

Partition context propagation across process boundaries

Work area context automatically propagates from client to server when a client makes a remote call to a

server. If a client is configured with, for example, three different work area partitions when it makes a

remote call to a server, server1; the context associated with each partition on the client thread propagates

to server1. If the same three partitions reside (have been created) on server1, the context is demarshalled

to the appropriate partition. However, if none or only a few of the three partitions have been created on

server1, only the context associated with a partition that is resident on both the client and server is

demarshalled. The context associated with a partition that is not resident on server1 is still resident on

server1 but will not be accessible. The context associated with partitions that are not resident on server1

must remain resident on server1 in case another remote call is made to a different server. Going one step

further, if server1 makes a call to yet another server, server2 and assume server2 has created all the

same partitions that the client has, server2 receives the context for the partitions that were not resident on

server1. Any partitions that reside on server1 that did not reside on the client, now have its context

propagated to server2.

For additional information about work area, see the com.ibm.websphere.workarea package in the

Application Programming Interface (API). The generated API documentation is available in the information

center table of contents from the path Reference → APIs - Application Programming Interfaces.

The Work area partition manager interface

Applications interact with the work area partition service by using the work area partition manager

interface. A user can retrieve an instance of the work area partition manager interface out of naming and

use the methods that are defined in the following section.

An implementation of the work area partition manager interface is bound in Java naming at

java:comp/websphere/WorkAreaPartitionManager. This interface is responsible for creating, retrieving, and

manipulating work area partitions:

package com.ibm.websphere.workarea;

import com.ibm.websphere.workarea.UserWorkArea;

import com.ibm.websphere.workarea.PartitionAlreadyExistsException;

import com.ibm.websphere.workarea.NoSuchPartitionException;

import java.util.Properties;

public interface WorkAreaPartitionManager {

 //Returns an instance of a work area partition for the given name, or throws an exception if the

 //partition name doesn’t exists.

 public UserWorkArea getWorkAreaPartition(String partitionName) throws NoSuchPartitionException;

 //Returns a new instance of a work area partition (an implementation of the UserWorkArea interface)

 //or throws an exception if the partition name already exists. The createWorkAreaPartition should

 //only be used within a Java 2 platform, Enterprise Edition (J2EE) client and NOT on the

 //server. To create a work area partition on the server, use the WebSphere administrative

 //console.

 public UserWorkArea createWorkAreaPartition(String partitionName, Properties props) throws

 PartitionAlreadyExistsException, java.lang.IllegalAccessException;

 }

}

Chapter 14. Learn about WebSphere programming extensions 2509

EJB applications can use the work area partition manager interface only within the implementation of

methods in either the remote or local interface, or both; likewise, servlets can use the interface only within

the service method of the HTTPServlet class. Use of work areas within any life cycle method of a servlet

or enterprise bean is considered a deviation from the work area programming model and is not supported.

Programmatically creating a work area partition through the createWorkAreaPartition method is only

available on the Java 2 platform, Enterprise Edition (J2EE) client. To create a work area partition on the

server, use the WebSphere administrative console as described in “Configuring work area partitions” on

page 2505. All partitions in a server process must be created before server startup is complete so that the

work area service can register with the appropriate container collaborators. Therefore, calling the

createWorkAreaPartition method in a server process after the server starts results in a

java.lang.IllegalAccessException exception. The createWorkAreaPartition method can be called in a J2EE

application client at any time.

Configurable Work Area Partition Properties

This section applies to the use of the createWorkAreaPartition method on the WorkAreaPartitionManager

interface. As is described above, this method should only be used on a Java 2 platform, Enterprise Edition

(J2EE) client. To create a partition on the server, please see Configuring work area partitions.

The ″createWorkAreaPartition″ method on the WorkAreaPartitionManager interface takes a

java.util.Properties objects. This Properties object, and the properties it contains, is used to define the work

area partition. Below is an example of creating a Properties object and setting a property:

Note: A more detailed example of the usage of the WorkAreaPartitionManager can be found at “Example:

Using the work area partition manager” on page 2511.

java.util.Properties props = new java.util.Properties():

props.put("maxSendSize","12345");

Acceptable key/values pairs (properties) for defining a partition are as follows:

v maxSendSize - Indicates the maximum size (bytes) of a work area that can be sent on a remote call.

Acceptable values are:

– ″-1″ = Uses the default size of 32767.

– ″0″ = Unlimited size, this value will not be policed which might help performance a bit depending on

the number of work area an application has.

– ″1″ = Integer.MAX_VALUE

v maxReceiveSize - Indicates the maximum size (bytes) of a work area that can be received. Acceptable

values are:

– ″-1″ = Uses the default size of 32767.

– ″0″ = Unlimited size, this value will not be policed which might help performance a bit depending on

the number of work area an application has.

– ″1″ = Integer.MAX_VALUE

v Bidirectional - Indicates if work area context that is changed by a downstream process should be

propagated back upstream to the originator of that context. For a more complete description of this

property, please see the section ″Bidirectional propagation of work area context″ at “Work area partition

service” on page 2505. Acceptable values are:

– ″true″ = Context changes will be returned from a remote call.

– ″false″ = Context changes will not be returned from a remote call.

Note: The default setting is ″false.″

2510 Administering WebSphere applications

v DeferredAttributeSerialization - Indicates if the serialization of attribute should be optimized to occur

exactly once per process. For a more complete description of this property, please see the section

″Deferred attribute serialization of work area context″ at “Work area partition service” on page 2505.

Acceptable values are:

– ″true″

- When an attribute is set into the work area, it will not be serialized until a remote request is made.

- If the value is unchanged by response, the serialized form will be used for subsequent requests;

the live object will be retrieved via getters.

- When requests are made during a remote request, a value is deserialized on demand exactly

once. The serialized form is used for subsequent requests from this remote process on this

distributed thread; subsequent requests in process for the same attribute returns the already

deserialized value. There are risks with concurrency with DeferredAttributeSerialization. After

serialization in a client process, updates to the attribute arel no longer reflected in the work area’s

copy until the value is explicitly reset through the UserWorkArea interface. Changes made to a

retrieved reference in a downstream process are not propagated to subsequent downstream

requests (or returned on the reply as a changed value) unless explicitly reset through the

UserWorkArea interface.

– ″false″

- When an attribute is set into the work area, it is immediately serialized and the bytes are stored.

- When an attribute is retrieved from the work area, it is always deserialized from stored bytes.

Note: The default value is ″false.″

v EnableWebServicePropagation - Indicates if work area context must propagate on a WebService call.

Acceptable values are:

– ″true″ = Context propagates on a WebService call.

– ″false″ = Context does not propagate on a WebService call.

Note: The default value is ″false.″

Exceptions

The work area partition service defines the following exceptions for use with the work area partition

manager interface:

PartitionAlreadyExistsException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user tries to create a work area partition with a partition name that already

exists. Partition names must be unique.

NoSuchPartitionException

This exception is raised by the getWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user requests a work area partition with a partition name that does not exist.

java.lang.IllegalAccessException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user tries to create a work area partition during run time on a server process.

This method can only be used on a J2EE client process. In the server process, a partition must be

created using the administrative console.

For additional information about work area, see the com.ibm.websphere.workarea package in the

application programming interface (API). The generated API documentation is available in the information

center table of contents from the path Reference > APIs - Application Programming Interfaces.

Example: Using the work area partition manager

The example below demonstrates the use of the work area partition manager interface. The sample

illustrates how to create and retrieve a work area partition programmatically`. Please note that

Chapter 14. Learn about WebSphere programming extensions 2511

programmatically creating a work area partition is only available on the Java 2 platform, Enterprise Edition

(J2EE) client. To create a work area partition on the server one must use the administrative console. See

“Work area partition service” on page 2505 for configuration parameters available to configure a partition.

import com.ibm.websphere.workarea.WorkAreaPartitionManager;

import com.ibm.websphere.workarea.UserWorkArea;

import com.ibm.websphere.workarea.PartitionAlreadyExistsException;

import com.ibm.websphere.workarea.NoSuchPartitionException;

import java.lang.IllegalAccessError;

import java.util.Properties;

import javax.naming.InitialContext;

//This sample demonstrates how to retrieve an instance of the

//WorkAreaPartitionManager implementation and how to use that

//instance to create a WorkArea partition and retrieve a partition.

//NOTE: Creating a partition in the way listed below is only available

//on a J2EE client. To create a partition on the server use the

//WebSphere administrative console. Retrieving a WorkArea

//partition is performed in the same way on both client and server.

public class Example {

 //The name of the partition to create/retrieve

 String partitionName = "myPartitionName";

 //The name in java naming the WorkAreaPartitionManager instance is bound to

 String jndiName = "java:comp/websphere/WorkAreaPartitionManager";

 //On a J2EE client a user would create a partition as follows:

 public UserWorkArea myCreate(){

 //Variable to hold our WorkAreaPartitionManager reference

 WorkAreaPartitionManager partitionManager = null;

 //Get an instance of the WorkAreaPartitionManager implementation

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

 } catch (Exception e) { }

 //Set the properties to configure our WorkArea partition

 Properties props = new Properties();

 props.put("maxSendSize","12345");

 props.put("maxReceiveSize","54321");

 props.put("Bidirectional","true");

 props.put("DeferredAttributeSerialization","true");

 //Variable used to hold the newly created WorkArea Partition

 UserWorkArea myPartition = null;

 try{

 //This is the way to create a partition on the J2EE client. Use the

 //WebSphere Administrative Console to create a WorkArea Partition

 //on the server.

 myPartition = partitionManager.createWorkAreaPartition(partitionName,props);

 }

 catch (PartitionAlreadyExistsException e){ }

 catch (IllegalAccessException e){ }

 return myPartition;

 }

 //. . . .

 //In order to retrieve a WorkArea partition at some time later or

 //from some other class, do the following (from client or server):

 public UserWorkArea myGet(){

 //Variable to hold our WorkAreaPartitionManager reference

 WorkAreaPartitionManager partitionManager = null;

 //Get an instance of the WorkAreaPartitionManager implementation

2512 Administering WebSphere applications

try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

 } catch (Exception e) { }

 //Variable used to hold the retrieved WorkArea partition

 UserWorkArea myPartition = null;

 try{

 myPartition = partitionManager.getWorkAreaPartition(partitionName);

 }catch(NoSuchPartitionException e){ }

 return myPartition;

 }

}

Work area partition collection

Use this page to manage the work area service.

The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Business Process Services → Work area partition service.

Name:

Specifies the name of the work area partition that is used to retrieve the partition. This name must be

unique.

Description:

Specifies the description of the work area partition.

Enable service at server startup:

Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional:

Permits applications to modify the context of a work area that is imported by a J2EE request; modified

properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

 A value of 0 means there is no limit to the data sent. The default value of -1 represents 32768 bytes of

data sent.

Maximum receive size:

Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =

default)

 A value of 0 means there is no limit to the data received. The default value of -1 represents 32768 bytes

of data received.

Deferred attribute serialization:

Chapter 14. Learn about WebSphere programming extensions 2513

Specifies whether attribute serialization is deferred until the work area is propagated on a remote

invocation.

Enable Web service propagation:

Specifies whether the work area partition is propagated on Web service requests. This option is disabled

by default.

Work area partition settings:

Use this page to modify the work area partition settings.

 The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Business Process Services → Work area partition service →

work_area_partition_name.

Name:

Specifies the name of the work area partition that is used to retrieve the partition. This name must be

unique.

Description:

Specifies the description of the work area partition.

Enable service at server startup:

Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional:

Permits applications to modify the context of a work area that is imported by a J2EE request; modified

properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

 Data type Integer

Units Bytes

Default 32768

Range -1, 0 (no limit) and 1 to 2147483647

Maximum receive size:

Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =

default)

 Data type Integer

Units Bytes

Default 32768

Range -1, 0 (no limit) and 1 to 2147483647

Deferred attribute serialization:

2514 Administering WebSphere applications

Specifies whether attribute serialization is deferred until the work area is propagated on a remote

invocation. This option is disabled by default.

Enable Web service propagation:

Specifies whether the work area partition is propagated on Web service requests. This option is disabled

by default.

Accessing a user defined work area partition

About this task

The work area partition service provides a Java Naming and Directory Interface (JNDI) binding to an

implementation of the work area partition manager interface under the name java:comp/websphere/
WorkAreaPartitionManager. Applications that need to access their partition can perform a lookup on that

JNDI name and then use the getWorkAreaPartition method on the work area partition manager, as shown

in the following code example:

Example

import com.ibm.websphere.workarea.*;

import javax.naming.*;

public class SimpleSampleServlet {

 ...

 //Variable to hold our WorkAreaPartitionManager implementation

 WorkAreaPartitionManager partitionManager = null;

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager)

 initialContext.lookup("java:comp/websphere/WorkAreaPartitionManager");

 } catch (Exception e) {...}

 //Variable used to hold the retrieved WorkArea Partition

 UserWorkArea myPartition = null;

 try{

 myPartition = partitionManager.getWorkAreaPartition(partitionName);

 }catch(NoSuchPartitionException e){...}

}

What to do next

The next step is to use the begin method to create a new work area and associate it with the calling

thread, as described in the topic Beginning a new work area.

Propagating work area context over Web services

WebSphere Application Server Version 6.1 introduces the option to propagate work area context on a Web

service call. Prior to WebSphere Application Server Version 6.1, work area context was only propagated

over RMI/IIOP calls. The work area application programming interfaces (APIs) have not changed to

implement this propagation. You can use the work area APIs as they have in the past and as outlined in

the work area documentation. However, by default, work area context is not propagated on a Web service

call, you must enable this option.

1. Enable a server to propagate work area context on a Web service call.

a. Start the administrative console.

b. Select Servers → Server Types → WebSphere application servers → server_name → Business

Process Services .

v To enable the work area service, (the UserWorkArea partition) to propagate its context on a Web

service call:

– Select Work area service.

Chapter 14. Learn about WebSphere programming extensions 2515

v To enable an individual partition to propagate its context on a Web service call:

– Select Work area partition service.

– Select a partition.

c. Check the EnableWebServicePropagation field to enable Web service propagation.

d. Save the new configuration and restart the server to apply the new configuration.

2. Enable a client to propagate work area context on a Web service call:

Note: The steps below are for the work area service (the UserWorkArea partition). For user defined

partitions the EnableWebServicePropagation property must be set when creating a partition on

the client, see “The Work area partition manager interface” on page 2509.

a. Set the property com.ibm.websphere.workarea.EnableWebServicePropagation to true when

invoking the launchClient script found in the $WAS_HOME/bin directory. For example, to set this

property to true, add the following system properties to the launchClient invocation as needed:

-CCDcom.ibm.websphere.workarea.EnableWebServicePropagation=true

b. Set the property com.ibm.websphere.workarea.EnableWebServicePropagation in a property file that

is used by the launchClient script. See “Running application clients” on page 227for additional

information.

2516 Administering WebSphere applications

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory

where you have write access. You can create profiles in any valid directory where you have write access.

Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root

The default installation root directory for the Java EE WebSphere Application Client is the

/QIBM/ProdData/WebSphere/AppClient/V7/client directory.

app_client_user_data_root

The default Java EE WebSphere Application Client user data root is the /QIBM/UserData/
WebSphere/AppClient/V7/client directory.

app_client_profile_root

The default Java EE WebSphere Application Client profile root is the /QIBM/UserData/WebSphere/
AppClient/V7/client/profiles/profile_name directory.

app_server_root

The default installation root directory for WebSphere Application Server Network Deployment is the

/QIBM/ProdData/WebSphere/AppServer/V7/ND directory.

cip_app_server_root

The default installation root directory is the /QIBM/ProdData/WebSphere/AppServer/V7/ND/cip/
cip_uid directory for a customized installation package (CIP) produced by the Installation Factory.

 A CIP is a WebSphere Application Server Network Deployment product bundled with optional

maintenance packages, an optional configuration archive, one or more optional enterprise archive

files, and other optional files and scripts.

cip_profile_root

The default profile root directory is the /QIBM/UserData/WebSphere/AppServer/V7/ND/cip/cip_uid/
profiles/profile_name directory for a customized installation package (CIP) produced by the

Installation Factory.

cip_user_data_root

The default user data root directory is the /QIBM/UserData/WebSphere/AppServer/V7/ND/cip/
cip_uid directory for a customized installation package (CIP) produced by the Installation Factory.

if_root This directory represents the root directory of the IBM WebSphere Installation Factory. Because

you can download and unpack the Installation Factory to any directory on the file system to which

you have write access, this directory’s location varies by user. The Installation Factory is an

Eclipse-based tool which creates installation packages for installing WebSphere Application Server

in a reliable and repeatable way, tailored to your specific needs.

iip_root

This directory represents the root directory of an integrated installation package (IIP) produced by

the IBM WebSphere Installation Factory. Because you can create and save an IIP to any directory

on the file system to which you have write access, this directory’s location varies by user. An IIP is

an aggregated installation package created with the Installation Factory that can include one or

more generally available installation packages, one or more customized installation packages

(CIPs), and other user-specified files and directories.

 java_home

The following directories are the root directories for all supported Java Virtual Machines (JVMs).

© IBM Corporation 2005, 2007 2517

JVM Directory

Classic JVM /QIBM/ProdData/Java400/jdk6

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root

The default Web server plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver/profiles/profile_name directory.

plugins_root

The default installation root directory for Web server plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V7/webserver directory.

plugins_user_data_root

The default Web server plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 7.0

installation on the system contains the program and service program objects (similar to .exe, .dll,

.so objects) for the installed product. The product library name is QWAS7x (where x is A, B, C,

and so on). The product library for the first WebSphere Application Server Version 7.0 product

installed on the system is QWAS7A. The app_server_root/properties/product.properties file contains

the value for the product library of the installation, was.install.library, and is located under the

app_server_root directory.

profile_root

The default directory for a profile named profile_name for WebSphere Application Server Network

Deployment is the /QIBM/UserData/WebSphere/AppServer/V7/ND/profiles/profile_name directory.

shared_product_library

The shared product library, which contains all of the objects shared by all installations on the

system, is QWAS7. This library contains objects such as the product definition, the subsystem

description, the job description, and the job queue.

updi_root

The default installation root directory for the Update Installer for WebSphere Software is the

/QIBM/ProdData/WebSphere/UpdateInstaller/V7/updi directory.

user_data_root

The default user data directory for WebSphere Application Server Network Deployment is the

/QIBM/UserData/WebSphere/AppServer/V7/ND directory.

 The profiles and profileRegistry subdirectories are created under this directory when you install the

product.

web_server_root

The default web server path is /www/web_server_name.

2518 Administering WebSphere applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2008 2519

2520 Administering WebSphere applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or

™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. For

a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site

(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2008 2521

http://www.ibm.com/legal/copytrade.shtml

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Web applications
	Tuning URL invocation cache
	Developing servlet applications using asynchronous request dispatcher
	Asynchronous request dispatcher
	Asynchronous request dispatcher application design considerations
	Asynchronous request dispatching settings
	Allow Asynchronous Request Dispatching
	Asynchronous include timeout
	Maximum expired requests per minute
	Maximum memory size of results store

	Task overview: Managing HTTP sessions
	Sessions
	HTTP session migration
	Session security support
	Session management support
	Session tracking options
	Session tracking with cookies
	Session tracking with URL rewriting
	Session tracking with SSL information (Deprecated)

	Distributed sessions
	Session recovery support
	Distributed environment settings

	Memory-to-memory replication
	Memory-to-memory topology: Peer-to-peer function
	Memory-to-memory topology: Client/server function

	Memory-to-memory session partitioning
	Clustered session support
	Session management tuning
	HTTP sessions: Resources for learning
	Scheduled invalidation
	Base in-memory session pool size
	HTTP session invalidation
	Write operations
	Tuning parameter settings
	Tuning level

	Tuning parameter custom settings
	Write frequency
	Write contents
	Schedule sessions cleanup

	Best practices for using HTTP sessions
	HTTP session manager troubleshooting tips
	HTTP session problems

	Modifying the default Web container configuration
	Web container settings
	Default virtual host
	Enable servlet caching
	Disable servlet request and response pooling

	Web container custom properties
	com.ibm.ws.webcontainer.disallowAllFileServing
	Disallow the use of the serving servlets by class name
	Defining classes that cannot be served by class name
	Writing chunks of data using synchronous writes
	Recognizing filter mappings to "*" as a mapping to "/*"
	Suppressing the HTML output of error text
	DebugSessionCrossover
	DecodeUrlAsUTF8
	enableInProcessConnections
	fileServingEnabled
	Invalidating sessions after specified time has elapsed
	httpsIndicatorHeader
	HttpSessionIdReuse
	Global configuration of servlet listeners
	Using Uniform Resource Locators (URLs) without leading front slashes (/)
	UseOracleBLOB
	Convert start and end attributes of the repeat tag to strings
	Disable the commons-el expression cache
	Create a FileNotFoundException exception when a JSP file is not found
	com.ibm.ws.webcontainer.suppressServletExceptionLogging
	Invoke global session listeners
	Controlling active request completion time

	Web module deployment settings
	URI
	Alternate deployment descriptor
	Starting weight
	Class loader order

	Context root for Web modules settings
	Web module
	URI
	Context root

	Environment entries for Web modules settings
	Module
	URI
	Name
	Type
	Description
	Value

	Web container troubleshooting tips
	Disabling servlet pooling: Best practices and considerations

	Task overview: Developing and deploying Web applications
	Web applications
	Web modules
	web.xml file
	Default Application
	Servlets
	JavaServer Pages
	JSP class file generation
	Packages and directories for generated .java and .class files
	JSP class loading settings
	JavaServer Pages (JSP) runtime reloading settings
	JSP and JSF option settings
	JSP run time compilation settings
	Provide options to compile JavaServer Pages settings
	JSP batch compilation
	Global tag libraries (deprecated)
	JavaServer Pages migration best practices and considerations
	JavaServer Pages specific Web container custom properties

	User profiles and authorities
	Web application deployment troubleshooting tips
	Web applications: Resources for learning

	Configuring session management by level
	Session management settings
	Session tracking mechanism
	Maximum in-memory session count
	Allow overflow
	Session timeout
	Security integration
	Serialize session access

	Configuring session tracking
	Serializing access to session data
	Cookie settings
	Cookie name
	Restrict cookies to HTTPS sessions
	Cookie domain
	Cookie path
	Cookie maximum age

	Session management custom properties
	CloneSeparatorChange
	HttpSessionCloneId
	HttpSessionIdLength
	HttpSessionReaperPollInterval
	NoAdditionalSessionInfo
	NoAffinitySwitchBack
	SessionIdentifierMaxLength
	SessionRewriteIdentifier
	Servlet21SessionCompatibility
	SessionTableName
	UseInvalidatedId
	UseOracleBLOB
	DebugSessionCrossover
	HttpSessionIdReuse
	OptimizeCacheIdIncrements
	AlwaysEncodeURL
	UsingApplicationSessionsAndInvalidateAll
	ForceSessionInvalidationMultiple

	Configuring session tracking for Wireless Application Protocol (WAP) devices
	Configuring for database session persistence
	Switching to a multirow schema
	Configuring tablespace and page sizes for DB2 session databases
	Creating a table for session persistence
	Database settings
	Datasource JNDI name
	User ID
	Password
	DB2 row size
	Table space name
	Use multi row schema

	Configuring memory-to-memory replication for the peer-to-peer mode (default memory-to-memory replication)
	Memory-to-memory replication settings
	Replication domain
	Replication mode

	Configuring memory-to-memory replication for the client/server mode
	Configuring Web module class loaders
	Task overview: Assembling applications using remote request dispatcher
	Remote request dispatcher
	Configuring Web applications to dispatch remote includes
	Configuring Web applications to service remote includes
	Configuring remote request dispatcher caching
	Remote dispatcher property settings
	Allow dispatching includes to remote resources
	Allow servicing includes from remote resources
	Asynchronous request dispatching type

	Remote request dispatcher considerations
	Servlet extension interfaces

	Backing up and recovering servlets
	Backing up and recovering JavaServer Pages files

	Chapter 2. Portlet applications
	Task overview: Managing portlets
	Portlets
	Portlet container
	Portlet container settings
	Enable portlet fragment cache

	Portlet aggregation using JavaServer Pages
	Aggregation tag library attributes
	Example: Using the portlet aggregation tag library

	Portlet Uniform Resource Locator (URL) addressability
	Portlet preferences
	Example: Configuring the extended portlet deployment descriptor to disable PortletServingServlet
	Portlet container custom properties
	Portlet and PortletApplication MBeans
	Portlet URL security

	Developing console modules
	Overview of Integrated Solutions Console
	Integrated Solutions Console components
	What is new in Integrated Solutions Console

	Example: Console module samples
	Setting up the development environment

	Developing your first console module
	Developing the portlet
	Creating the descriptors for the console module
	Portal topology descriptor
	Portal security descriptor

	Packaging a console module
	Deploying a console module
	Testing a console module
	Removing a console module

	Adding advanced API features
	Developing portlets
	Launching pages
	Passing properties to other portlets
	Launching Eclipse-based help
	Support for bidirectional characters

	Developing your first console module
	Developing the portlet
	Creating the descriptors for the console module
	Portal topology descriptor
	Portal security descriptor

	Packaging a console module
	Deploying a console module
	Testing a console module
	Removing a console module

	Adding advanced API features
	Developing portlets
	Launching pages
	Passing properties to other portlets
	Launching Eclipse-based help
	Support for bidirectional characters

	Chapter 3. EJB applications
	Task overview: Using enterprise beans in applications
	Enterprise beans
	EJB modules
	EJB containers
	Enterprise beans back up and recovery best practices
	EJB method Invocation Queuing
	Enterprise bean and EJB container troubleshooting tips
	Application client log error indicates missing JAR file

	Enterprise bean cannot be accessed from a servlet, a JSP file, a stand-alone program, or another client

	Using access intent policies
	Access intent policies
	Concurrency control
	Read-ahead hints
	Database deadlocks caused by lock upgrades
	Access intent assembly settings

	Applying access intent policies to beans
	Configuring read-read consistency checking with an assembly tool
	Example: Read-read consistency checking

	Access intent service
	Applying access intent policies to methods
	Using the AccessIntent API
	AccessIntent interface

	Access intent exceptions
	Access intent troubleshooting tips

	Managing EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default data source JNDI name
	Enable stateful session bean failover using memory-to-memory replication
	Initial state

	EJB container system properties
	com.ibm.websphere.ejbcontainer.poolSize
	com.ibm.websphere.ejbcontainer.allowEarlyInsert

	Changing enterprise bean types to initialize at application start time using the administrative console
	Stateful session bean failover for the EJB container
	Stateful session beans failover settings (applications)
	Stateful session beans failover settings (EJB modules)

	Enabling or disabling stateful session bean failover with the EJB container panel
	Enabling or disabling stateful session bean failover with the enterprise applications panel
	Enabling or disabling stateful session bean failover with the EJB modules panel
	Tuning the EJB cache using the trace service
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability
	EJB 2.1 container tuning
	EJB cache size
	EJB stateful session bean tuning
	Dcom.ibm.websphere.ejbcontainer.poolSize
	Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation
	Dcom.ibm.ws.pm.deferredcreate
	Dcom.ibm.ws.pm.batch
	com.ibm.ws.pm.useLegacyCache
	com.ibm.ws.pm.grouppartialupdate and com.ibm.ws.pm.batch

	Deploying EJB modules
	EJB 3.0 deployment overview
	EJBDEPLOY relationships – troubleshooting tips
	EJB module settings
	URI
	Alternate deployment descriptor
	Starting weight

	Chapter 4. Client applications
	Using application clients
	Application Client for WebSphere Application Server
	Application client functions
	ActiveX application clients
	Applet clients
	Java EE application clients
	Pluggable application clients
	Thin application clients

	Application client troubleshooting tips
	clientUpgrade script

	Running application clients
	launchClient tool
	Specifying the directory for an expanded EAR file
	Using Java Web Start
	Java Web Start architecture for deploying application clients
	Client application Java Network Launcher Protocol deployment descriptor file
	Preparing the application client run time dependency component for Java Web Start
	Using the Java Web Start sample
	Installing Java Web Start
	Using a static JNLP file with Java Web Start for Application clients

	Running the IBM Thin Client for Enterprise JavaBeans (EJB)
	Running application clients
	launchClient tool
	Specifying the directory for an expanded EAR file
	Using Java Web Start
	Java Web Start architecture for deploying application clients
	Client application Java Network Launcher Protocol deployment descriptor file
	Preparing the application client run time dependency component for Java Web Start
	Using the Java Web Start sample
	Installing Java Web Start
	Using a static JNLP file with Java Web Start for Application clients

	Running the IBM Thin Client for Enterprise JavaBeans (EJB)
	Installing Application Client for WebSphere Application Server
	Best practices for installing Application Client for WebSphere Application Server
	Installing Application Client for WebSphere Application Server silently
	Installing Application Client for WebSphere Application Server from a Windows workstation
	Uninstalling Application Client for WebSphere Application Server
	Uninstalling IBM Application Client for WebSphere Application server on i5/OS
	installRegistryUtils command

	Deploying J2EE application clients on workstation platforms
	Resource Adapters for the client
	Configuring resource adapters
	clientRAR tool
	Configuring new connection factories for resource adapters
	Configuring administered objects

	Resource adapter settings
	Name
	Description
	Class Path
	Native Path
	Resource Adapter Name
	Installed Resource Adapter Path

	Starting the Application Client Resource Configuration Tool and opening an EAR file
	Data sources for the Application Client
	Data source properties for application clients
	Name
	Description
	JNDI Name
	Database Name
	User
	Password
	Re-Enter Password
	Custom Properties

	Configuring new data source providers (JDBC providers) for application clients
	Example: Configuring data source provider and data source settings
	Data source provider settings for application clients

	Configuring new data sources for application clients
	Configuring mail providers and sessions for application clients
	Mail provider settings for application clients
	Mail session settings for application clients
	Example: Configuring mail provider and mail session settings for application clients

	Configuring new mail sessions for application clients
	URLs for application clients
	URL providers for the Application Client Resource Configuration Tool
	Configuring new URL providers for application clients
	Configuring URL providers and sessions using the Application Client Resource Configuration Tool
	Example: Configuring URL and URL provider settings for application clients

	Configuring new URLs with the Application Client Resource Configuration Tool
	Asynchronous messaging in WebSphere Application Server using JMS
	Java Message Service providers for clients
	Configuring Java messaging client resources
	Configuring new JMS providers with the Application Client Resource Configuration Tool
	JMS provider settings for application clients
	Default Provider connection factory settings
	Default Provider queue connection factory settings
	Default Provider topic connection factory settings
	Default Provider queue destination settings
	Default Provider topic destination settings
	Version 5 Default Provider queue connection factory settings for application clients
	Version 5 Default Provider topic connection factory settings for application clients
	Version 5 Default Provider queue destination settings for application clients
	Version 5 Default Provider topic destination settings for application clients
	WebSphere MQ Provider queue connection factory settings for application clients
	WebSphere MQ Provider topic connection factory settings for application clients
	WebSphere MQ Provider queue destination settings for application clients
	WebSphere MQ Provider topic destination settings for application clients
	Generic JMS connection factory settings for application clients
	Generic JMS destination settings for application clients
	Example: Configuring JMS provider, JMS connection factory and JMS destination settings for application clients

	Configuring new JMS connection factories for application clients
	Configuring new JMS destinations for application clients
	Configuring new resource environment providers for application clients
	Resource environment provider settings for application clients

	Configuring new resource environment entries for application clients
	Resource environment entry settings for application clients

	Managing application clients
	Updating data source and data source provider configurations with the Application Client Resource Configuration Tool
	Updating URLs and URL provider configurations for application clients
	Updating mail session configurations for application clients
	Updating Java Message Service provider, connection factories, and destination configurations for application clients
	Updating WebSphere MQ as a Java Message Service provider, and its JMS resource configurations, for application clients
	Updating resource environment entry and resource environment provider configurations for application clients
	Removing application client resources

	Chapter 5. Web services
	Task overview: Implementing Web services applications
	Service-oriented architecture
	Web services approach to a service-oriented architecture
	Web services business models supported

	Web services
	Web Services for Java EE specification
	Artifacts used to develop Web services
	WSDL
	SOAP
	JAX-WS
	JAXB
	JAX-RPC
	Web Services-Interoperability Basic Profile
	WS-I Attachments Profile

	Web services migration scenarios: JAX-RPC to JAX-WS and JAXB
	Web services migration best practices
	WebSphere Application Server roles and goals

	Deploying Web services applications onto application servers
	Provide options to perform the Web services deployment settings
	Deploy Web services option - Classpath
	Deploy Web services option - Extension Directories

	wsdeploy command
	JAX-WS application deployment model

	Deploying Web services applications onto application servers
	Provide options to perform the Web services deployment settings
	Deploy Web services option - Classpath
	Deploy Web services option - Extension Directories

	wsdeploy command
	JAX-WS application deployment model

	Using the UDDI registry
	Overview of the Version 3 UDDI registry
	UDDI registry terminology
	UDDI registry management interfaces
	UDDI registry Administrative (JMX) Interface
	User-defined value set support in the UDDI registry
	UDDI Utility Tools

	Java API for XML Registries (JAXR) provider for UDDI
	JAXR for UDDI - getting started and further information

	Planning to use Web services
	Learning about the Web Services Invocation Framework (WSIF)
	Goals of WSIF
	WSIF Overview
	WSIF architecture
	WSIF and WSDL
	WSIF usage scenarios

	Setting up and deploying a new UDDI registry
	Database considerations for production use of the UDDI registry
	Setting up a default UDDI node
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for iSeries database for the UDDI registry
	Creating an Apache Derby database for the UDDI registry
	Creating an Oracle database for the UDDI registry
	Creating a data source for the UDDI registry
	Deploying the UDDI registry application

	Setting up a customized UDDI node
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for iSeries database for the UDDI registry
	Creating an Apache Derby database for the UDDI registry
	Creating an Oracle database for the UDDI registry
	Creating a data source for the UDDI registry
	Deploying the UDDI registry application
	Initializing the UDDI registry node

	Using the UDDI registry Installation Verification Program (IVP)
	Changing the UDDI registry application environment after deployment
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for iSeries database for the UDDI registry
	Creating an Apache Derby database for the UDDI registry
	Creating an Oracle database for the UDDI registry

	Configuring Web services applications using scripting
	Querying Web services with the wsadmin tool
	WebServicesAdmin command group for the AdminTask object

	Configuring application and system policy sets for Web services using scripting
	Creating policy sets using the wsadmin tool
	Updating policy set attributes using the wsadmin tool
	Adding and removing policies using the wsadmin tool
	Editing policy configurations using the wsadmin tool
	Enabling secure conversation using the wsadmin tool
	Managing WS-Security distributed cache configurations using the wsadmin tool
	Configuring custom policies and bindings for security tokens using the wsadmin tool
	Creating policy set attachments using the wsadmin tool
	Managing policy set attachments using the wsadmin tool
	Configuring general, cell-wide bindings for policies using the wsadmin tool
	Configuring Version 6.1 server-specific default bindings for policies using the wsadmin tool
	Configuring application-specific and system bindings using the wsadmin tool
	Creating application-specific and trust service-specific bindings using the wsadmin tool
	Deleting application-specific bindings from your configuration using the wsadmin tool
	Importing and exporting policy sets to client or server environments using scripting
	Removing policy set bindings using the wsadmin tool
	Removing policy set attachments using the wsadmin tool
	Deleting policy sets using the wsadmin tool
	Refreshing policy set configurations using scripting
	Policy configuration properties for all policies
	WSSecurity policy and binding properties
	WSReliableMessaging policy and binding properties
	WSAddressing binding properties
	SSLTransport policy and binding properties
	HTTPTransport policy and binding properties
	JMSTransport policy and binding properties
	SecureConversation command group for the AdminTask object (Deprecated)
	WSSCacheManagement command group for the AdminTask object
	PolicySetManagement command group for the AdminTask object
	WS-Policy commands for the AdminTask object
	getProviderPolicySharingInfo command
	setProviderPolicySharingInfo command
	getClientDynamicPolicyControl command
	setClientDynamicPolicyControl command

	Configuring secure sessions between clients and services using the wsadmin tool
	Querying the trust service using scripting
	Managing existing token providers with scripting
	Adding and removing token provider custom properties using scripting
	Associating token providers with endpoint services (targets) using scripting
	STSManagement command group for the AdminTask object

	Adding assured delivery to Web services through WS-ReliableMessaging
	Learning about WS-ReliableMessaging
	WS-ReliableMessaging - How it works
	Benefits of using WS-ReliableMessaging
	Qualities of service for WS-ReliableMessaging
	Use patterns for WS-ReliableMessaging
	WS-ReliableMessaging sequences
	WS-ReliableMessaging - terminology
	WS-ReliableMessaging: supported specifications and standards

	Configuring endpoints to only support clients that use WS-ReliableMessaging
	Building a reliable Web service application
	Controlling WS-ReliableMessaging sequences programmatically
	Providing transactional recoverable messaging through WS-ReliableMessaging

	Configuring a WS-ReliableMessaging policy set using the administrative console
	Configuring a WS-ReliableMessaging policy set using the wsadmin tool
	Configuring WS-SecureConversation to work with WS-ReliableMessaging

	Attaching and binding a WS-ReliableMessaging policy set to a Web service application using the administrative console
	Attaching and binding a WS-ReliableMessaging policy set to a Web service application using the wsadmin tool

	Detecting and fixing problems with WS-ReliableMessaging
	Diagnosing the problem when a reliable messaging source cannot deliver its messages
	Diagnosing and recovering a WS-ReliableMessaging outbound sequence that is in retransmitting state
	Deleting a failed WS-ReliableMessaging outbound sequence
	WS-ReliableMessaging troubleshooting tips

	WS-ReliableMessaging roles and goals
	WS-ReliableMessaging - requirements for interaction with other implementations
	WS-ReliableMessaging - administrative console panels
	Reliable messaging state settings
	Message store collection
	Outbound sequence collection
	Outbound sequences settings
	Outbound message collection
	Message settings
	Inbound sequence collection
	Inbound sequences settings
	Inbound message collection
	Acknowledgement state collection
	Export messages settings
	WS-Notification Service client settings

	Using WS-Transaction policy to coordinate transactions or business activities for Web services
	Learning about WS-Transaction
	Web Services Atomic Transaction support in the application server
	Web Services Business Activity support in the application server
	Web Services transactions, firewalls and intermediary nodes
	Transaction compensation and business activity support
	WS-Transaction and mixed-version cells
	Business activity API

	Configuring a JAX-WS client for WS-Transaction context
	Configuring a JAX-WS Web service for WS-Transaction context
	Configuring a WS-Transaction policy set using the wsadmin tool
	Configuring Web Services Transaction support in a secure environment
	Configuring an intermediary node for Web services transactions
	Example: Configuring IBM HTTP server as an intermediary node for Web services transactions

	Enabling WebSphere Application Server to use an intermediary node for Web services transactions
	Configuring a server to use business activity support
	Compensation service settings

	Creating an application that uses the Web Services Business Activity support
	Business activity API

	Using WS-Policy to exchange policies in a standard format
	Learning about WS-Policy
	Web service providers and policy configuration sharing
	Web service clients and policy configuration using the service provider policy
	WS-MetadataExchange requests

	Configuring a service provider to share its policy configuration
	Configuring a service provider to share its policy configuration using the wsadmin tool
	Policy sharing settings

	Configuring the client policy using a service provider policy
	Configuring the client policy based on a service provider policy using the wsadmin tool
	Policies applied settings

	Configuring security for a WS-MetadataExchange request

	Administering deployed Web services applications
	Overview of service and endpoint listeners
	Administration of service and endpoint listeners
	Viewing service providers at the cell level using the administrative console
	Service providers collection at the cell level

	Viewing service providers at the application level using the administrative console
	Service providers collection at the application level

	Viewing the detail of a service provider and managing policy sets using the administrative console
	Service provider settings

	Managing policy sets and bindings for service providers at the application level using the administrative console
	Service provider policy sets and bindings collection

	Viewing WSDL document using the administrative console
	Viewing service clients at the cell level using the administrative console
	Service client collection at the cell level

	Viewing service clients at the application level using the administrative console
	Service clients collection at the application level

	Viewing detail of a service client and managing policy sets using the administrative console
	Service client settings

	Managing policy sets and bindings for service clients at the application level using the administrative console
	Service client policy set and bindings collection

	Viewing Web services deployment descriptors in the administrative console
	Configuring the scope of a Web service port
	Web services implementation scope

	Making deployed Web services applications available to clients
	Configuring Web services client bindings
	Web services client bindings

	Configuring endpoint URL information for HTTP bindings
	Provide HTTP endpoint URL information

	Configuring endpoint URL information for JMS bindings
	Provide JMS and EJB endpoint URL information

	Configuring endpoint URL information to directly access enterprise beans
	Publishing WSDL files using the administrative console
	Publish WSDL zip files settings

	Publishing WSDL files using a URL

	Creating a monitor for WebSphere Application Server for WSDM resources (deprecated)
	Web Services Distributed Management
	Web Services Distributed Management resource management
	WSDM manageability capabilities for WebSphere Application Server resource types
	Web Services Distributed Management support in the application server
	Web Services Distributed Management in a standalone application server instance
	Web Services Distributed Management in a Network Deployment cell
	Web Services Distributed Management in an administrative agent environment
	Notifications from the application server Web Services Distributed Management resources

	Managing policy sets using the administrative console
	Viewing policy sets using the administrative console
	Creating policy sets using the administrative console
	WS-I RSP default policy sets
	SecureConversation default policy sets
	WS-ReliableMessaging default policy sets
	WSAddressing default policy set
	WSSecurity default policy sets
	WSTransaction default policy sets
	WSHTTPS default policy set
	Copy of default policy set and bindings settings

	Importing policy sets using the administrative console
	Import policy sets from default repository settings
	Import policy sets from a selected location settings

	Modifying policy sets using the administrative console
	Deleting policy sets using the administrative console
	Defining and managing policy set bindings
	Importing policy set bindings using the administrative console
	Web services policy set bindings
	Defining and managing service client or provider bindings
	Export policy sets bindings settings
	Copy policy set binding settings
	Deleting policy set bindings
	Creating application specific bindings for policy set attachment
	Setting server default bindings for policy sets
	Setting default policy set bindings
	Modifying default bindings at the server or cell level for policy sets
	Reassigning bindings to policy sets
	Transformation of policy and binding assertions for WSDL
	Configuring the callers for general and default bindings
	Signing and encrypting message parts using policy sets
	Changing the order of the callers for a token or message part
	Policy set bindings settings
	Policy set bindings settings for WS-Security
	Keys and certificates
	WS-Security authentication and protection
	Caller settings
	Caller collection
	Message expiration settings
	Actor roles settings
	Web Services Addressing policy set binding

	Attaching a policy set to a service artifact
	Managing policies in a policy set using the administrative console
	Adding policies to policy sets using the administrative console
	Deleting policies from policy sets using the administrative console
	Modifying policies using the administrative console
	Enabling policies for policy sets using the administrative console
	Disabling policies from policy sets using the administrative console
	Web services policies

	Exporting policy sets using the administrative console
	Application policy sets collection
	Name
	Editable
	Description

	Application policy set settings
	Policy set name
	Description
	Policies
	Policies - Policy
	Policies - State
	Policies - Description
	Attachments – Attached applications

	Search attached applications collection
	Name

	Securing message parts using the administrative console
	Web services policy sets
	Overview of migrating policy sets and bindings

	Installing and managing WSIF
	wsif.properties file - Initial contents
	Enabling security for WSIF
	Web Services Invocation Framework troubleshooting tips
	WSIF (Web Services Invocation Framework) messages
	WSIF - Known restrictions

	Trace and logging for WSIF

	Getting started with the UDDI registry
	Removing and reinstalling the UDDI registry
	Removing a UDDI registry node
	Reinstalling the UDDI registry application
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for iSeries database for the UDDI registry
	Creating an Apache Derby database for the UDDI registry
	Creating an Oracle database for the UDDI registry

	Applying an upgrade to the UDDI registry
	Configuring SOAP API and GUI services for the UDDI registry
	Managing the UDDI registry
	UDDI node collection
	UDDI Node ID
	Description
	UDDI Application Location
	Status
	UDDI node settings

	Backing up and restoring the UDDI registry database

	Enabling Web services through the service integration bus
	Installing and configuring the SDO repository
	Configure the SDO repository for a single server, using the embedded Derby database
	Configure the SDO repository for a single server, using a database other than embedded Derby
	Configure the SDO repository for a network deployment cell
	The SDO repository uninstall script
	Bus-enabled Web services installation files and locations

	Configuring Web services for a service integration bus
	Making an internally-hosted service available as a Web service
	Making an externally-hosted Web service available internally
	Working with the Web services gateway

	Administering the bus-enabled Web services core resources
	Creating a new endpoint listener configuration
	Working with JAX-RPC handlers and clients
	Working with mediations
	Creating a new UDDI reference

	Creating a new WS-Security binding
	Modifying an existing WS-Security binding
	Deleting WS-Security bindings

	Creating a new WS-Security configuration
	Modifying an existing WS-Security configuration
	Deleting WS-Security configurations

	Passing SOAP messages with attachments through the service integration bus
	Locating an attachment using swaref
	SOAP Messages with Attachments: WSDL examples
	Supporting bound attachments: WSDL examples

	Using WS-Notification for publish and subscribe messaging for Web services
	Accomplishing common WS-Notification tasks
	WS-Notification roles and goals
	Learning about WS-Notification
	Designing a QoS-partitioned server topology for WS-Notification
	Designing a server topology for Web service qualities of service for WS-Notification
	Using a script to get up and running quickly with WS-Notification
	Configuring a WS-Notification service for use only by WS-Notification applications
	Providing access for WS-Notification applications to an existing bus topic space
	Balancing a WS-Notification workload across application servers
	Providing highly available (HA) topologies for WS-Notification
	Configuring a QoS-partitioned server topology for WS-Notification
	Securing WS-Notification
	Configuring JAX-WS handlers
	Applying a JAX-WS handler list to a WS-Notification service
	Configuring a Version 7.0 WS-Notification service with Web service QoS
	Configuring WS-Notification for reliable notification
	Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1 to Version 7.0
	Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification
	Interacting at run time with WS-Notification
	Publishing the WSDL files for a WS-Notification application to a ZIP file

	Configuring WS-Notification resources
	Configuring WS-Notification resources by using the administrative console
	Interacting at run time with WS-Notification

	Chapter 6. Service integration
	Service integration technologies
	Service integration buses
	Messaging engines
	Managing data stores
	Bus destinations
	Mediations
	Managing messaging with the default messaging provider
	Security
	Auditing the service integration security infrastructure
	High availability and workload sharing for service integration technologies
	Enabling Web services through the service integration bus
	Service integration topologies
	Bus topologies

	The service integration environment backup

	Planning a bus topology
	Planning issues common to all bus topologies
	Planning a single-server bus topology
	Planning a multiple-server bus without clustering
	Planning a multiple-server bus with clustering
	Planning a multiple-bus topology
	Planning a topology that includes WebSphere MQ

	Enabling or disabling service integration notification events
	Service integration buses
	Configuring buses
	Creating a bus
	Adding buses
	Configuring bus properties
	Listing the buses
	Displaying the topology of a service integration bus
	Deleting a bus
	Configuring the members of a bus
	Administering bootstrap members for a bus
	Configuring messaging engines
	Configuring bus destinations
	Connecting buses
	Defining outbound chains for bootstrapping
	Defining outbound chains for WebSphere MQ interoperation

	Operating buses
	Displaying the runtime properties of a messaging engine
	Displaying the runtime properties of a service integration bus link
	Managing messages on message points

	Managing service integration buses with administrative commands

	Messaging engines
	Configuring messaging engines
	Adding additional messaging engines to a cluster bus member
	Configuring messaging engine properties
	Listing the messaging engines in a bus
	Removing a messaging engine from a bus
	Listing the messaging engines defined for a server bus member
	Listing the messaging engines for a cluster bus member
	Adding a messaging engine to a cluster
	Removing a messaging engine from a cluster
	Correcting the messaging engine policy
	Deleting a redundant core group policy
	Setting up the data store for a messaging engine
	Configuring service integration bus links

	Starting a messaging engine
	Stopping a messaging engine
	Displaying the runtime properties of a messaging engine
	Displaying the runtime properties of a service integration bus link
	Managing messaging engines with administrative commands

	Message stores
	Considerations when choosing between a file store and a data store
	Message store high availability considerations
	Managing file stores
	Configuring a messaging engine to use a file store
	Administering messaging engine file stores

	Managing data stores
	Configuring a messaging engine to use a data store
	Administering messaging engine data store
	Increasing the number of item tables for a messaging engine when tables are not automatically created
	Increasing the number of item tables for a messaging engine when tables are automatically created
	Data store tables
	Database privileges

	Avoiding message store errors when creating a messaging engine
	Avoiding errors when creating a messaging engine with a file store or a data store by using the wsadmin tool

	Bus destinations
	Configuring bus destinations
	Listing bus destinations
	Creating a bus destination
	Configuring bus destination properties
	Configuring mediations
	Configuring a destination forward routing path
	Configuring a destination reverse routing path
	Configuring context properties for a bus destination
	Administering destination roles
	Deleting a bus destination
	Resetting a destination

	Managing bus destinations with administrative commands
	Configuring message points
	Listing message points for a messaging engine
	Listing message points for a bus destination
	Configuring a message point

	Managing messages on message points
	Listing messages on a message point
	Deleting messages on a message point

	Administering durable subscriptions
	Listing subscriptions
	Stopping active subscribers for durable subscriptions
	Deleting durable subscriptions

	Mediations
	Securing mediations
	Configuring an alternative mediation identity for a mediation handler
	Configuring the bus to access secured mediations
	Configuring a bus to run mediations in a multiple security domain environment

	Configuring mediations
	Installing a mediation into WebSphere Application Server
	Defining a mediation
	Deleting a mediation
	Configuring mediation properties
	Adding mediation context information
	Listing mediation context properties
	Configuring mediation context properties
	Deleting mediation context information
	Configuring the mediation thread pool
	Setting tuning properties for a mediation
	Mediating a destination
	Unmediating a destination

	Configuring mediation points
	Configuring a mediation point
	Listing mediation points for a bus destination
	Listing mediation points for a messaging engine

	Managing mediations with administrative commands
	Operating mediations at mediation points
	Starting a mediation
	Stopping a mediation
	Restarting a mediation that has stopped on error

	Administering messages on mediation points
	Listing messages at a mediation point
	Deleting messages on a mediation point

	Example: Using mediations to trace, monitor and log messages

	Security
	Securing buses
	Disabling bus security
	Adding a secured bus
	Securing an existing bus using multiple security domains
	Securing an existing bus using the global security domain
	Configuring bus security using an administrative console panel
	Configuring a bus to run mediations in a multiple security domain environment

	Enabling client SSL authentication
	Configuring a bus to allow client SSL authentication
	Configuring JMS client applications to perform client SSL authentication

	Adding unique names to the bus authorization policy
	Administering authorization permissions
	Administering the bus connector role
	Administering default roles
	Administering destination roles
	Administering foreign bus roles
	Administering temporary destination prefix roles
	Administering topic space root roles
	Administering topic roles
	Removing access roles from unknown users and groups

	Administering permitted transports for a bus
	Configuring a transport policy for a bus
	Listing permitted transports for a bus
	Adding a permitted transport to a bus
	Removing a permitted transport from a bus

	Configuring bus security using an administrative console panel
	Securing messages between messaging buses
	Protecting messages transmitted between buses
	Administering access to foreign destinations

	Securing access to a foreign bus
	Securing links between messaging engines
	Controlling which foreign buses can link to your bus
	Securing database access
	Securing mediations

	Chapter 7. Data access resources
	Task overview: Accessing data from applications
	Resource adapters
	WebSphere relational resource adapter settings
	Data access portability features

	JDBC providers
	Data sources
	Data access beans
	Connection management architecture
	Connection pooling
	Connection life cycle
	Unshareable and shareable connections
	Connection handles
	Transaction type and connection behavior
	Application scoped resources

	Cache instances
	Data access: Resources for learning

	Configuring data access with scripting
	Configuring a JDBC provider using scripting
	Configuring new data sources using scripting
	Configuring new connection pools using scripting
	Changing connection pool settings with the wsadmin tool
	Example: Changing connection pool settings with the wsadmin tool
	Example: Accessing MBean connection factory and data sources using wsadmin

	Configuring new data source custom properties using scripting
	Configuring new Java 2 Connector authentication data entries using scripting
	Configuring new WAS40 data sources using scripting
	Configuring new WAS40 connection pools using scripting
	Configuring new WAS40 custom properties using scripting
	Configuring new J2C resource adapters using scripting
	Configuring custom properties for J2C resource adapters using scripting
	Configuring new J2C connection factories using scripting
	Configuring new J2C activation specifications using scripting
	Configuring new J2C administrative objects using scripting
	Managing the message endpoint lifecycle using scripting
	Testing data source connections using scripting
	JDBCProviderManagement command group for the AdminTask object

	Configuring Persistence Provider support in the application server
	Configuring the Java Persistence API (JPA) default persistence provider
	Default Java Persistence API settings
	Configuring the default JTA and non-JTA data source JNDI Names

	Using third-party persistence providers
	Task overview: Data Studio pureQuery
	Configuring to use pureQuery in a Java EE environment
	Configuring to use pureQuery in Java SE environment

	Associating persistence units and data sources
	Configuring OpenJPA caching to improve performance
	Troubleshooting Java Persistence API (JPA) applications
	Logging with the Java Persistence API (JPA) and the application server
	Enabling Enhanced Tracing for Java Persistence API (JPA)
	Enabling Enhanced Tracing for Java Persistence API (JPA) in a Java SE environment

	Troubleshooting Java Persistence API (JPA) deadlocks and transaction time-outs
	wsjpaversion command

	Using object cache instances
	Administering data access applications
	Configuring Java EE Connector connection factories in the administrative console
	Configuring connection factories for resource adapters within applications
	Connection pool settings
	Connection pool advanced settings
	Connection pool (Version 4) settings
	J2C Connection Factories collection
	Connection factory JNDI name practices

	Installing a resource adapter archive
	Installing resource adapters within applications
	Install RAR

	Configuring resource adapters
	Resource adapters collection

	Updating a resource adapter archive
	J2EE connector security
	Mapping resource references to references
	Managing messages with message endpoints
	Manage message endpoints

	Configuring a JDBC provider and data source
	Data source minimum required settings, by vendor
	Configuring a JDBC provider using the administrative console
	Configuring a JDBC provider for a clustered environment
	Configuring a data source using the administrative console
	Creating and configuring a JDBC provider and data source using the Java Management Extensions API
	Using the DB2 Universal JDBC Driver to access DB2 for z/OS
	Extend DB2 data source definitions at the application level
	Enabling trusted context for DB2 databases
	Configuring the application server and DB2 to authenticate with Kerberos
	Configuring Oracle Real Application Cluster (RAC) with the application server
	Configuring client reroute for applications that use DB2 databases
	Developing a custom DataStoreHelper class
	Verifying a connection
	Test connection service
	Testing a connection with the administrative console
	Testing a connection using wsadmin

	Configuring data access for the Application Client
	Client configuration with the ACRCT

	Resource references
	Select
	Module
	EJB
	URI
	Resource Reference
	Target Resource JNDI name
	Login configuration

	Mapping-configuration alias
	Select a J2C authentication alias
	Considerations for isolated resource providers
	Configuring data access security
	Passing client information to a database
	Example: Setting client information with the setClientInformation(Properties) API
	Implicitly set client information
	Setting client information traces with the administrative console

	About Apache Derby
	Verifying the Cloudscape automatic migration
	Upgrading Cloudscape manually
	Database performance tuning
	DB2 Universal Database performance tips
	Managing resources through JCA lifecycle management operations
	JCA lifecycle management

	Data access problems
	Data access problems - Oracle data source
	Data access problems - DB2 database
	Data access problems - Microsoft SQL Server data source
	Data access problems - Apache Derby database
	Data access problems - Sybase data source

	JDBC trace configuration
	Configuring the connection validation timeout

	Deploying data access applications
	Available resources
	Select
	JNDI name
	Scope
	Description

	Map data sources for all 1.x CMP beans
	Select
	EJB
	EJB Module
	URI
	JNDI name
	User name

	Map default data sources for modules containing 1.x entity beans
	Select
	EJB Module
	URI
	JNDI name
	User name

	Map data sources for all 2.x CMP beans settings
	Set Multiple JNDI names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB
	EJB Module
	URI
	Target resource JNDI name
	Resource authorization

	Map data sources for all 2.x CMP beans
	Set Multiple JNDI Names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB Module
	URI
	JNDI name
	Resource authorization
	Extended Datasource Properties

	Chapter 8. Messaging resources
	Managing messaging with the default messaging provider
	Configuring resources for the default messaging provider
	Configuring resources for the default messaging provider by using the wsadmin tool
	Listing JMS resources for the default messaging provider
	Configuring JMS resources for point-to-point messaging
	Configuring JMS resources for publish/subscribe messaging
	Configuring a unified JMS connection factory for the default messaging provider
	Configuring a JMS queue connection factory for the default messaging provider
	Configuring a JMS topic connection factory for the default messaging provider
	Configuring a JMS queue for the default messaging provider
	Configuring a JMS topic for the default messaging provider
	Configuring a JMS activation specification for the default messaging provider
	Deleting JMS resources for the default messaging provider
	Configuring JMS connection factory properties for durable subscriptions
	Configuring JMS activation specification properties for durable subscriptions
	Enabling a provider to stream messages to cloned durable subscriptions
	Enabling CMP entity beans and messaging engine data stores to share database connections
	Configuring a connection to a non-default bootstrap server
	Configuring MDB throttling on the default messaging provider
	Protecting a message-driven bean from system resource problems
	Sample JMS 1.1 application client

	Interoperating with a WebSphere MQ network
	Using WebSphere MQ links to connect a bus to a WebSphere MQ network
	Using a WebSphere MQ server to integrate WebSphere MQ queues into a bus
	Setting the WebSphere MQ encoding format for JMS Map entries

	Managing WebSphere Application Server Version 5.1 JMS use of messaging resources in later versions of the product
	Creating a WebSphere MQ client link
	Configuring a WebSphere MQ client link
	Listing WebSphere MQ client links for a messaging engine
	Starting and stopping WebSphere MQ client links
	Listing client connections for a WebSphere MQ client link
	Starting and stopping WebSphere MQ client connections
	Deleting WebSphere MQ client links

	Configuring the messaging engine selection process for JMS applications
	Managing messages and subscriptions for JMS destinations
	Managing messages on message points

	Using JMS from standalone clients to interoperate with service integration resources
	Using JMS to connect to a WebSphere Application Server default messaging provider messaging engine
	Securing client and resource adapter connections
	Adding tracing and logging for standalone clients

	Using JMS from a third party application server
	Deploying the Resource Adapter for JMS with WebSphere Application Server
	Deploying inbound connections for the resource adapter
	Configuring high availability for the resource adapter

	Choosing a messaging provider
	JMS providers collection
	Select JMS resource provider
	Activation specification collection
	Connection factory collection
	Queue connection factory collection
	Queue collection
	Topic connection factory collection
	Topic collection

	Choosing messaging providers for a mixed environment
	Service integration and WebSphere MQ messaging - a comparison

	Other ways of managing messaging
	Managing messaging with a third-party messaging provider
	Defining a third-party messaging provider
	Listing third-party JMS messaging resources
	Configuring JMS resources for a third-party messaging provider

	Maintaining Version 5 default messaging resources
	Listing Version 5 default messaging resources
	Configuring Version 5 default JMS resources
	Managing Version 5 JMS servers in a deployment manager cell
	Configuring authorization security for a Version 5 default messaging provider
	JMS components on Version 5 nodes

	Administering listener ports and activation specifications for message-driven beans
	Configuring a J2C activation specification
	Configuring a J2C administered object
	Configuring message listener resources for message-driven beans
	Important file for message-driven beans

	Choosing messaging providers for a mixed environment
	Service integration and WebSphere MQ messaging - a comparison

	Other ways of managing messaging
	Managing messaging with a third-party messaging provider
	Defining a third-party messaging provider
	Listing third-party JMS messaging resources
	Configuring JMS resources for a third-party messaging provider

	Maintaining Version 5 default messaging resources
	Listing Version 5 default messaging resources
	Configuring Version 5 default JMS resources
	Managing Version 5 JMS servers in a deployment manager cell
	Configuring authorization security for a Version 5 default messaging provider
	JMS components on Version 5 nodes

	Administering listener ports and activation specifications for message-driven beans
	Configuring a J2C activation specification
	Configuring a J2C administered object
	Configuring message listener resources for message-driven beans
	Important file for message-driven beans

	Learning about messaging with WebSphere Application Server
	Types of messaging providers
	Enhanced features of the WebSphere MQ messaging provider

	Styles of messaging in applications
	JMS interfaces - explicit polling for messages
	Message-driven beans - automatic message retrieval
	Message-driven beans - JCA components
	J2C activation specification configuration and use
	WebSphere Application Server activation specification optional binding properties
	Message-driven beans - transaction support

	WebSphere Application Server cloning and WebSphere MQ clustering
	Asynchronous messaging - security considerations
	Messaging: Resources for learning

	Configuring messaging with scripting
	Configuring the message listener service using scripting
	Configuring new JMS providers using scripting
	Configuring new JMS destinations using scripting
	Configuring new JMS connections using scripting
	Configuring new WebSphere queue connection factories using scripting
	Configuring new WebSphere topic connection factories using scripting
	Configuring new WebSphere queues using scripting
	Configuring new WebSphere topics using scripting
	Configuring a new connection factory for the WebSphere MQ messaging provider using scripting
	Configuring a new queue connection factory for the WebSphere MQ messaging provider using scripting
	Configuring a new topic connection factor for the WebSphere MQ messaging provider using scripting
	Configuring a new queue for the WebSphere MQ messaging provider using scripting
	Configuring a new topic for the WebSphere MQ messaging provider using scripting
	JCAManagement command group for the AdminTask object

	Managing messaging with the WebSphere MQ messaging provider
	Configuring JMS resources for the WebSphere MQ messaging provider
	Creating an activation specification for the WebSphere MQ messaging provider using the Create Activation Specification wizard
	Configuring an existing activation specification for the WebSphere MQ messaging provider
	Configuring a listener port to an activation specification for use with the WebSphere MQ messaging provider
	Creating a connection factory for the WebSphere MQ messaging provider using the Create JMS Resource wizard
	Configuring a JMS connection factory for the WebSphere MQ messaging provider
	Configuring an existing JMS queue connection factory for the WebSphere MQ messaging provider
	Configuring an existing JMS topic connection factory for the WebSphere MQ messaging provider
	Configuring a JMS queue destination for the WebSphere MQ messaging provider
	Configuring a JMS topic destination for the WebSphere MQ messaging provider
	Configuring WebSphere MQ connection pooling
	Configuring custom properties for the WebSphere MQ messaging provider

	Listing JMS resources for the WebSphere MQ messaging provider
	WebSphere MQ messaging provider activation specification collection
	WebSphere MQ connection factory collection
	WebSphere MQ queue connection factory collection
	WebSphere MQ topic connection factory collection
	WebSphere MQ queue destination collection
	WebSphere MQ topic destination collection

	WMQAdminCommands command group for the AdminTask object
	createWMQActivationSpec command
	deleteWMQActivationSpec command
	listWMQActivationSpecs command
	modifyWMQActivationSpec command
	showWMQActivationSpec command
	createWMQConnectionFactory command
	deleteWMQConnectionFactory command
	listWMQConnectionFactories command
	modifyWMQConnectionFactory command
	showWMQConnectionFactory command
	createWMQTopic command
	deleteWMQTopic command
	listWMQTopics command
	modifyWMQTopic command
	showWMQTopic command
	manageWMQ command
	migrateWMQMLP command
	createWMQQueue command
	deleteWMQQueue command
	listWMQQueues command
	modifyWMQQueue command
	showWMQQueue command

	Mapping of administrative console panel names to command names and WebSphere MQ names

	Chapter 9. Mail, URLs, and other J2EE resources
	Using mail
	JavaMail API
	Mail providers and mail sessions
	JavaMail security permissions best practices
	Mail: Resources for learning
	JavaMail support for IPv6

	Using URL resources within an application
	URLs
	URL provider collection
	Name
	Scope
	Description

	URL provider settings
	Scope
	Name
	Description
	Class path
	Stream handler class name
	Protocol

	URL collection
	Name
	JNDI Name
	Scope
	Provider
	Description
	Category

	URL configuration settings
	Scope
	Provider
	Create New Provider
	Name
	JNDI Name
	Description
	Category
	Specification

	URLs: Resources for learning

	Mapping logical names of environment resources to their physical names
	Resource environment providers and resource environment entries
	Resource environment provider collection
	Name
	Scope
	Description
	Resource environment provider settings
	New Resource environment provider

	Resource environment entries collection
	Name
	JNDI Name
	Scope
	Provider
	Description
	Category
	Resource environment entry settings

	Referenceables collection
	Factory Class name
	Class name
	Referenceables settings

	Resource environment references
	Select
	Module
	EJB
	URI
	Reference binding
	JNDI name

	Configuring mail providers and sessions
	Mail provider collection
	Name
	Scope
	Description

	Mail provider settings
	Scope
	Name
	Description
	Isolate this mail provider
	Class path

	Protocol providers collection
	Protocol
	Class name
	Type

	Protocol providers settings
	Scope
	Protocol
	Class name
	Type

	Mail session collection
	Name
	Scope
	Provider
	JNDI Name
	Description
	Category

	Mail session settings
	Scope
	Provider
	Create New Provider
	Name
	JNDI name
	Description
	Category
	Enable debug mode
	Enable strict Internet address parsing
	Outgoing Mail Properties
	Incoming Mail Properties

	JavaMail system properties
	mail.mime.charset
	mail.mime.decodetext.strict
	mail.mime.encodeeol.strict

	Configuring mail, URLs, and resource environment entries with scripting
	Configuring new mail providers using scripting
	Configuring new mail sessions using scripting
	Configuring new protocols using scripting
	Configuring new custom properties using scripting
	Configuring new resource environment providers using scripting
	Configuring custom properties for resource environment providers using scripting
	Configuring new referenceables using scripting
	Configuring new resource environment entries using scripting
	Configuring custom properties for resource environment entries using scripting
	Configuring new URL providers using scripting
	Configuring custom properties for URL providers using scripting
	Configuring new URLs using scripting
	Configuring custom properties for URLs using scripting
	Provider command group for the AdminTask object

	Chapter 10. Security (omitted)
	Chapter 11. Naming and directory
	Using naming
	Naming
	Namespace logical view
	Initial context support
	Lookup names support in deployment descriptors and thin clients
	JNDI support in WebSphere Application Server
	Configured name bindings
	Namespace federation
	Naming roles
	Foreign cell bindings
	Naming and directories: Resources for learning

	Configuring name servers
	Name server settings
	Name
	Initial state

	Configuring namespace bindings
	Name space binding collection
	Name
	Scope
	Binding type

	Specify binding type settings
	Binding type

	String binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	String value

	EJB binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Enterprise bean location
	Server
	JNDI name

	CORBA object binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Corbaname URL
	Federated context

	Indirect lookup binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Provider URL
	JNDI name
	Initial context factory name

	Other context properties settings
	Name
	Value
	Description

	Configuring foreign cell bindings
	Migrating bootstrap addresses
	Foreign cell binding collection
	Foreign cell name

	Foreign cell binding settings
	Foreign cell name

	Bootstrap address collection
	Host name
	Port
	Bootstrap address settings

	Developing applications that use JNDI
	Example: Getting the default initial context
	Example: Getting an initial context by setting the provider URL property
	Using a CORBA object URL
	Using a CORBA object URL with multiple name server addresses
	Using a CORBA object URL from a non-WebSphere Application Server JNDI implementation
	Using an IIOP URL

	Example: Setting the provider URL property to select a different root context as the initial context
	Selecting the initial root context with a CORBA object URL
	Selecting the initial root context with the namespace root property

	Example: Looking up an EJB home or business interface with JNDI
	JNDI interoperability considerations
	JNDI caching
	JNDI cache settings
	com.ibm.websphere.naming.jndicache.cachename
	com.ibm.websphere.naming.jndicache.cacheobject
	com.ibm.websphere.naming.jndicache.maxcachelife
	com.ibm.websphere.naming.jndicache.maxentrylife

	JNDI to CORBA name mapping considerations

	Chapter 12. Object Request Broker
	Managing Object Request Brokers
	Object Request Brokers
	Logical pool distribution
	Object Request Broker tuning guidelines
	Thread pool adjustments
	Fragment size
	Interceptors
	Connection Cache Adjustments
	JNI Reader Threads

	Object Request Broker service settings
	Request timeout
	Request retries count
	Request retries delay
	Connection cache maximum
	Connection cache minimum
	ORB tracing
	Locate request timeout
	Force tunneling
	Tunnel agent URL
	Pass by reference

	Object Request Broker custom properties
	com.ibm.CORBA.BootstrapHost
	com.ibm.CORBA.BootstrapPort
	com.ibm.CORBA.ConnectTimeout
	com.ibm.CORBA.ConnectionInterceptorName
	com.ibm.CORBA.enableLocateRequest
	com.ibm.CORBA.FragmentSize
	com.ibm.CORBA.ListenerPort
	com.ibm.CORBA.LocalHost
	com.ibm.CORBA.numJNIReaders
	com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl
	com.ibm.CORBA.RasManager
	com.ibm.CORBA.ServerSocketQueueDepth
	com.ibm.CORBA.ShortExceptionDetails
	com.ibm.CORBA.WSSSLClientSocketFactoryName
	com.ibm.CORBA.WSSSLServerSocketFactoryName
	com.ibm.websphere.ObjectIDVersionCompatibility
	com.ibm.websphere.threadpool.strategy.implementation
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue
	com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint
	com.ibm.ws.orb.services.redirector.RequestTimeout
	com.ibm.ws.orb.transport.useMultiHome
	javax.rmi.CORBA.UtilClass

	Object Request Broker communications trace
	Client-side programming tips for the Object Request Broker service
	Resolution of initial references to services
	Preferred API for obtaining an ORB instance
	API restrictions with sharing an ORB instance among Java EE application components
	Required use of rmic and idlj that ship with the IBM Developer Kit

	Character code set conversion support for the Java Object Request Broker service
	Object Request Brokers: Resources for learning
	Object request broker troubleshooting tips

	Enabling HTTP tunneling
	Enabling HTTP tunneling

	Chapter 13. Transactions
	Using the transaction service
	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment (LTC)
	Local and global transaction considerations
	Client support for transactions
	Commit priority for transactional resources
	Transactional high availability
	Transaction compensation and business activity support
	JTA support

	Local transaction containment considerations
	Transaction service exceptions

	Configuring transaction properties for an application server
	Transaction service settings
	Transaction log directory
	Total transaction lifetime timeout
	Asynchronous response timeout
	Client inactivity timeout
	Maximum transaction timeout
	Heuristic retry limit
	Heuristic retry wait
	Enable logging for heuristic reporting
	Heuristic completion direction
	Accept heuristic hazard
	Enable file locking
	Enable transaction coordination authorization
	Default WS-Transaction specification level
	External WS-Transaction HTTP(S) URL prefix
	Select prefix
	Specify custom prefix
	Manual transactions
	Retry transactions
	Heuristic transactions
	Imported prepared transactions
	Transactions needing manual completion
	Transactions retrying resources
	Transactions with heuristic outcome
	Transactions imported and prepared
	Transaction resources

	Configuring transaction properties for peer recovery
	Configuring manual peer recovery for the transaction service
	Configuring automated peer recovery for the transaction service
	Disabling file locking

	Managing manual peer recovery of the transaction service
	Managing active and prepared transactions
	Managing active and prepared transactions using scripting
	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Interoperating transactionally between application servers

	Chapter 14. Learn about WebSphere programming extensions
	ActivitySessions
	Configuring the default ActivitySession timeout for an application server
	ActivitySession service settings

	Disabling or enabling the ActivitySession service

	Application profiling
	Task overview: Application profiling
	Application profiling
	Application profiling tasks
	Application profiling interoperability

	Managing application profiles
	Using the TaskNameManager interface
	Application profiling exceptions

	Asynchronous beans
	Using asynchronous beans
	Asynchronous beans
	Work manager service settings

	Configuring timer managers
	Timer manager collection

	Configuring work managers
	Work manager collection

	Dynamic cache
	Task overview: Using the dynamic cache service to improve performance
	Disk cache infrastructure enhancements
	Eviction policies using the disk cache garbage collector
	Example: Caching Web services
	Dynamic cache MBean statistics
	Example: Configuring the dynamic cache service
	Dynamic cache PMI counter definitions

	Using the dynamic cache service
	Dynamic cache service settings
	Configuring servlet caching
	Configuring portlet fragment caching
	Configuring portlet fragment caching with the wsadmin tool
	Configuring caching for Struts and Tiles applications
	Configuring dynamic cache disk offload
	Configuring Edge Side Include caching
	Configuring external cache groups

	Configuring cache replication
	Cache replication

	Configuring cacheable objects with the cachespec.xml file
	Verifying the cacheable page
	cachespec.xml file

	Configuring command caching
	Command class
	CacheableCommandImpl class
	Example: Caching a command object

	Configuring the Web services client cache
	Using the DistributedMap and DistributedObjectCache interfaces for the dynamic cache
	Object cache instance settings
	Object cache instance collection
	cacheinstances.properties file
	Invalidation listeners

	Disabling template-based invalidations during JSP reloads
	Using object cache instances
	Displaying cache information
	Cache monitor
	Tuning dynamic cache with the cache monitor

	Using servlet cache instances
	Servlet cache instance collection
	Servlet cache instance settings
	Using the DynamicContentProvider interface for dynamic cache

	Dynamic query
	Using EJB query
	EJB query language

	Using the dynamic query service
	Example: Using the remote interface for Dynamic query
	Example: Using the local interface for Dynamic query
	Dynamic query performance considerations
	Access intent implications for dynamic query
	Dynamic query API: prepareQuery() and executePlan() methods

	Using the dynamic query service
	Example: Using the remote interface for Dynamic query
	Example: Using the local interface for Dynamic query
	Dynamic query performance considerations
	Access intent implications for dynamic query
	Dynamic query API: prepareQuery() and executePlan() methods

	Internationalization
	Task overview: Globalizing applications
	Globalization
	Language versions offered by this product
	Globalization: Resources for learning

	Task overview: Internationalizing interface strings (localizable-text API)
	Task overview: Internationalizing application components (internationalization service)
	Internationalization service

	Working with locales and character encodings
	Administering the internationalization service
	Enabling the internationalization service for servlets and enterprise beans
	Enabling the internationalization service for EJB clients
	Internationalization service settings
	Internationalization service errors

	Object pools
	Using object pools
	Object pool managers
	Object pool managers collection
	Object pool service settings
	Object pools: Resources for learning

	MBeans for object pool managers and object pools
	MBeans for object pool managers and object pools

	Scheduler
	Using schedulers
	Example: Using default scheduler calendars
	Scheduler daemon
	Interoperating with schedulers
	Scheduler calendars
	Scheduler service settings

	Installing default scheduler calendars
	Uninstalling default scheduler calendars

	Managing schedulers
	Configuring schedulers
	Creating the database for schedulers

	Startup beans
	Using startup beans
	Startup beans service settings

	Enabling startup beans in the administrative console

	Work area
	Task overview: Implementing shared work areas
	Overview of work area service

	Managing the UserWorkArea partition
	Accessing the UserWorkArea partition

	Configuring work area partitions
	Work area partition service
	The Work area partition manager interface
	Example: Using the work area partition manager
	Work area partition collection
	Accessing a user defined work area partition
	Propagating work area context over Web services

	Appendix. Directory conventions
	Notices
	Trademarks and service marks

