
WebSphere® Application Server - Express for Distributed Platforms, Version 7.0

Tuning guide

���

Note

Before using this information, be sure to read the general information under “Notices” on page 115.

Compilation date: September 9, 2008

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . v

Changes to serve you more quickly . vii

Chapter 1. Planning for performance . 1

Application design consideration . 1

Chapter 2. Taking advantage of performance functions 5

Chapter 3. Obtaining advice from the advisors . 7

Why you want to use the performance advisors . 7

Performance advisor types and purposes . 8

Performance and Diagnostic Advisor . 9

Using the Performance and Diagnostic Advisor . 11

Performance and Diagnostic Advisor configuration settings 13

Advice configuration settings . 14

Viewing the Performance and Diagnostic Advisor recommendations 15

Starting the lightweight memory leak detection . 16

Enabling automated heap dump generation . 17

Using the performance advisor in Tivoli Performance Viewer 20

Performance advisor report in Tivoli Performance Viewer 21

Chapter 4. Tuning parameter hot list . 23

Chapter 5. Tuning TCP/IP buffer sizes . 25

Chapter 6. Tuning the IBM virtual machine for Java 27

Chapter 7. Tuning HotSpot Java virtual machines (Solaris & HP-UX) 37

Sun HotSpot JVM tuning parameters (Solaris and HP-UX) 40

-Xmx (Maximum Java Heap size) . 41

-XX:+AggressiveHeap . 41

-XX:CMSInitiatingOccupancyFraction=75 . 41

-XX:+DisableExplicitGC . 41

-XX:MaxNewSize= and -XX:NewSize= . 42

-XX:MaxPermSize (Permanent region) . 42

-XX:MaxTenuringThreshold=number-of-collections 42

-XX:NewRatio=2 . 43

-XX:NewSize=128m . 43

-XX:+PrintTenuringDistribution . 43

-XX:SurvivorRatio= . 44

-XX:TargetSurvivorRatio= . 44

-XX:+UseAdaptiveSizePolicy . 44

-XX:+UseConcMarkSweepGC . 44

-XX:+UseParallelGC . 45

Chapter 8. Tuning transport channel services . 47

Chapter 9. Checking hardware configuration and settings 53

Chapter 10. Tuning operating systems . 55

Tuning Windows systems . 55

Tuning Linux systems . 57

© Copyright IBM Corp. 2008 iii

Tuning AIX systems . 59

Tuning Solaris systems . 61

Tuning HP-UX systems . 63

Chapter 11. Tuning Web servers . 67

Chapter 12. Tuning WebSphere applications . 69

Web services . 70

Monitoring the performance of Web services applications 70

Tuning Web services security for Version 7.0 applications 71

Tuning Web services security for Version 5.x applications 73

Service integration . 74

Tuning messaging engines . 74

Tuning messaging performance with service integration technologies 78

Tuning messaging engine data stores . 80

Setting tuning properties for a mediation . 83

Enabling CMP entity beans and messaging engine data stores to share database connections . . . 84

Tuning bus-enabled Web services . 86

Security . 92

Tuning, hardening, and maintaining . 92

Learn about WebSphere programming extensions . 104

Dynamic cache . 104

Chapter 13. Troubleshooting performance problems 107

Appendix. Directory conventions . 111

Notices . 115

Trademarks and service marks . 117

iv Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 v

vi Tuning guide

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The

information center is the official delivery format for IBM WebSphere Application Server documentation. If

you use the PDF books primarily for convenient printing, it is now easier to print various parts of the

information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon

is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation

tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a

separate browser window as one HTML file. The HTML file includes each of the topics in the section,

with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a

preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book

delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF

format more frequently. During a temporary transition phase, you might experience broken links. During

the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2008 vii

viii Tuning guide

Chapter 1. Planning for performance

How well a Web site performs while receiving heavy user traffic is an essential factor in the overall

success of an organization. This section provides online resources that you can consult to ensure that

your site performs well under pressure.

v Consult the following Web resources for learning.

IBM® Patterns for e-Business

 IBM Patterns for e-business is a group of reusable assets that can help speed the process of

developing Web-based applications. The patterns leverage the experience of IBM architects to

create solutions quickly, whether for a small local business or a large multinational enterprise.

Planning for availability in the enterprise

 Availability is an achievable service-level characteristic that every enterprise struggles with. The

worst case scenario is realized when load is underestimated or bandwidth is overloaded

because availability planning was not carefully conducted. Applying the information in this article

and the accompanying spreadsheet to your planning exercises can help you avoid such a

scenario.

Hardware configurations for WebSphere® Application Server production environments

This article describes the most common production hardware configurations, and provides the

reasons for choosing each one. It begins with a single machine configuration, and then

proceeds with additional configurations that have higher fault tolerance, horizontal scaling, and a

separation of Web and enterprise bean servers.

v See the documentation for the product functionality to improve performance .

Application design consideration

This topic describes the architectural suggestions in design and how to tune applications.

Consult the Designing applications topic in the Developing and deploying applications PDF, which

highlights Web sites and other ideas for finding best practices for designing WebSphere applications,

particularly in the realm of WebSphere extensions to the Java™ Platform, Enterprise Edition (Java EE)

specification.

The Designing applications topic in the Developing and deploying applications PDF contains the

architectural suggestions in design and the implementation of applications. For existing applications, the

suggestions might require changing the existing implementations. Tuning the application server and

resource parameters can have the greatest effect on performance of the applications that are well

designed.

Note: Use the following information as an architectural guide when implementing applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Persistence

Java EE applications load, store, create, and remove data from relational databases, a process commonly

referred to as persistence. Most enterprise applications have significant database access. The architecture

© IBM Corporation 2004 1

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

and performance of the persistence layer is critical to the performance of an application. Therefore,

persistence is a very important area to consider when making architectural choices that require trade-offs

related to performance. This guide recommends first focusing on a solution that has clean architecture.

The clean architecture considers data consistency, security, maintenance, portability, and the performance

of that solution. Although this approach might not yield the absolute peak performance obtainable from

manual coding a solution that ignores the mentioned qualities of service, this approach can achieve the

appropriate balance of data consistency, maintainability, portability, security, and performance.

Multiple options are available in Java EE for persistence: Session beans using entity beans including

container-managed persistence (CMP) or bean-managed persistence (BMP), session beans using Java

Database Connectivity (JDBC), and Java beans using JDBC. For the reasons previously mentioned,

consider CMP entity persistence because it provides maximum security, maintenance, and portability. CMP

is also recommended for good performance. Refer to the Tune the EJB container section of the Tuning

application servers topic on tuning enterprise beans and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the persistence mechanism

usually involves the JDBC API. Because JDBC requires manual coding, the Structured Query Language

(SQL) that runs against a database instance, it is critical to optimize the SQL statements that are used

within the application. Also, configure the database server to support the optimal performance of these

SQL statements. Finally, usage of specific JDBC APIs must be considered including prepared statements

and batching.

Regardless of which persistence mechanism is considered, use container-managed transactions where the

bean delegates management of transactions to the container. For applications that use JDBC, this is easily

achieved by using the session façade pattern, which wraps all JDBC functions with a stateless session

bean.

Finally, information about tuning the connection over which the EJB entity beans or JDBC communicates

can be found in the Tune the data sources section of the Tuning application servers topic.

Model-view-controller pattern

One of the standard Java EE programming architectures is the model-view-controller (MVC) architecture,

where a call to a controller servlet might include one or more child JavaServer Pages (JSP) files to

construct the view. The MVC pattern is a recommended pattern for application architecture. This pattern

requires distinct separation of the view (JSP files or presentation logic), the controller (servlets), and the

model (business logic). Using the MVC pattern enables optimization of the performance and scalability of

each layer separately.

Statelessness

Implementations that avoid storing the client user state scale and perform the best. Design

implementations to avoid storing state. If state storage is needed, ensure that the size of the state data

and the time that the state is stored are kept to the smallest possible values. Also, if state storage is

needed, consider the possibility of reconstructing the state if a failure occurs, instead of guaranteeing state

failover through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise beans. Refer to the

follow tuning guides for tuning the size, replication, and timing of the state storage:

v Session management tuning

v EJB 2.1 container tuning

v “Tuning dynamic cache with the cache monitor” on page 104

Caching

2 Tuning guide

Most Java EE application workloads have more read operations than write operations. Read operations

require passing a request through several topology levels that consist of a front-end Web server, the Web

container of an application server, the EJB container of an application server, and a database. WebSphere

Application Server provides the ability to cache results at all levels of the network topology and Java EE

programming model that include Web services.

Application designers must consider caching when the application architecture is designed because

caching integrates at most levels of the programming model. Caching is another reason to enforce the

MVC pattern in applications. Combining caching and MVC can provide caching independent of the

presentation technology and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed because caching also

integrates at most levels of the network topology. For applications that are available on the public Internet,

network designers might want to consider Edge Side Include (ESI) caching when WebSphere Application

Server caching extends into the public Internet. Network caching services are available in the proxy server

for WebSphere Application Server, WebSphere Edge Component Caching Proxy, and the WebSphere

plug-in.

Asynchronous considerations

Java EE workloads typically consist of two types of operations. You must perform the first type of operation

to respond to a system request. You can perform the second type of operation asynchronously after the

user request that initiated the operation is fulfilled.

An example of this difference is an application that enables you to submit a purchase order, enables you

to continue while the system validates the order, queries remote systems, and in the future informs you of

the purchase order status. This example can be implemented synchronously with the client waiting for the

response. The synchronous implementation requires application server resources and you wait until the

entire operations complete. If the process enables you to continue, while the result is computed

asynchronously, the application server can schedule the processing to occur when it is optimal in relation

to other requests. The notification to you can be triggered through e-mail or some other interface within the

application.

Because the asynchronous approach supports optimal scheduling of workloads and minimal server

resource, consider asynchronous architectures. WebSphere Application Server supports asynchronous

programming through Java EE Java Message Service (JMS) and message-driven beans (MDB) as well as

asynchronous beans that are explained in the Tuning Java Message Service and Tuning MDB topics.

Third-party libraries

Verify that all the libraries that applications use are also designed for server-side performance. Some

libraries are designed to work well within a client application and fail to consider server-side performance

concerns, for example, memory utilization, synchronization, and pooling. It is suggested that all libraries

that are not developed as part of an application undergo performance testing using the same test

methodologies as used for the application.

Additional reference:

IBM WebSphere Developer Technical Journal: The top 10 (more or less) Java EE best practices

Improve performance in your XML applications, Part 2

Chapter 1. Planning for performance 3

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

4 Tuning guide

Chapter 2. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a combination of product

features and application development considerations.

v Use this product functionality to improve performance.

Using the dynamic cache service to improve performance

 The dynamic cache service improves performance by caching the output of servlets,

commands, and JavaServer Pages (JSP) files. Dynamic caching features include cache

replication among clusters, cache disk offload, Edge-side include caching, and external caching,

which is the ability to control caches outside of the application server, such as that of your Web

server.

v Ensure your applications perform well.

Details are available in the following topics:

– “Application design consideration” on page 1 (architectural suggestions)

– Designing applications.

See the Developing and deploying applications PDF for more information.(coding best practices)

© IBM Corporation 2004, 2008 5

6 Tuning guide

Chapter 3. Obtaining advice from the advisors

Advisors provide a variety of recommendations that help improve the performance of your application

server.

Before you begin

The advisors provide helpful performance as well as diagnostic advice about the state of the application

server.

About this task

Tuning WebSphere Application Server is a critical part of getting the best performance from your Web site.

However, tuning WebSphere Application Server involves analyzing performance data and determining the

optimal server configuration. This determination requires considerable knowledge about the various

components in the application server and their performance characteristics. The performance advisors

encapsulate this knowledge, analyze the performance data, and provide configuration recommendations to

improve the application server performance. Therefore, the performance advisors provide a starting point

to the application server tuning process and help you without requiring that you become an expert.

The Runtime Performance Advisor is extended to also provide diagnostic advice and is now called the

Performance and Diagnostic Advisor. Diagnostic advice provides useful information regarding the state of

the application server. Diagnostic advice is especially useful when an application is not functioning as

expected, or simply as a means of monitoring the health of application server.

v Decide which performance advisor is right for the purpose, Performance and Diagnostic Advisor or

Tivoli® Performance Viewer advisor.

v Use the chosen advisor to periodically check for inefficient settings, and to view recommendations.

v Analyze Performance Monitoring Infrastructure data with performance advisors.

Why you want to use the performance advisors

The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application

Server using general performance principles, best practices, and WebSphere Application Server-specific

rules for tuning. The advisors that are based on this information provide advice on how to set some of

your configuration parameters to better tune WebSphere Application Server.

The advisors provide a variety of advice on the following application server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Data source statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2® Performance Configuration wizard

v Connection use violations

For example, consider the data source statement cache. It optimizes the processing of prepared

statements and callable statements by caching those statements that are not used in an active connection.

(Both statements are SQL statements that essentially run repeatable tasks without the costs of repeated

© Copyright IBM Corp. 2008 7

compilation.) If the cache is full, an old entry in the cache is discarded to make room for the new one. The

best performance is generally obtained when the cache is large enough to hold all of the statements that

are used in the application. The PMI counter, prepared statement cache discards, indicates the number

of statements that are discarded from the cache. The performance advisors check this counter and provide

recommendations to minimize the cache discards.

Another example is thread or connection pooling. The idea behind pooling is to use an existing thread or

connection from the pool instead of creating a new instance for each request. Because each thread or

connection in the pool consumes memory and increases the context-switching cost, the pool size is an

important configuration parameter. A pool that is too large can hurt performance as much as a pool that is

too small. The performance advisors use PMI information about current pool usage, minimum or maximum

pool size, and the application server CPU utilization to recommend efficient values for the pool sizes.

The advisors can also issue diagnostic advice to help in problem determination and health monitoring. For

example, if your application requires more memory than is available, the diagnostic adviser tells you to

increase the size or the heap for application server.

Performance advisor types and purposes

Two performance advisors are available: the Performance and Diagnostic Advisor and the performance

advisor in Tivoli Performance Viewer.

The Performance and Diagnostic Advisor runs in the Java virtual machine (JVM) process of application

server; therefore, it does not provide expensive advice. In a stand-alone application server environment,

the performance advisor in Tivoli Performance Viewer runs within the application server JVM.

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to help tune systems for

optimal performance and provide recommendations on inefficient settings by using collected Performance

Monitoring Infrastructure (PMI) data. Obtain the advice by selecting the performance advisor in TPV.

The following chart shows the differences between the Performance and Diagnostic Advisor and the Tivoli

Performance Viewer advisor:

 Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Start location Application server Tivoli Performance Viewer client

Invocation of tool Administrative console Tivoli Performance Viewer

Output v The SystemOut.log file

v The administrative console

v JMX notifications

Tivoli Performance Viewer in the

administrative console

Frequency of operation Configurable When you select refresh in the Tivoli

Performance Viewer administrative

console

8 Tuning guide

Types of advice Performance advice:

v Object Request Broker (ORB) service

thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Memory leak detection

Diagnostic advice:

v Connection factory diagnostics

v Data source diagnostics

Connection usage diagnostics

v Detection of connection use by

multiple threads

v Detection of connection use across

components

Performance advice:

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM) heap size

v DB2 Performance Configuration wizard

Performance and Diagnostic Advisor

Use this topic to understand the functions of the Performance and Diagnostic Advisor.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance

and is configured using the WebSphere Application Server administrative console or the wsadmin tool.

Running in the Java virtual machine (JVM) of the application server, the Performance and Diagnostic

Advisor periodically checks for inefficient settings and issues recommendations as standard product

warning messages. These recommendations are displayed both as warnings in the administrative console

under Runtime Messages in the WebSphere Application Server Status panel and as text in the application

server SystemOut.log file. Enabling the Performance and Diagnostic Advisor has minimal system

performance impact.

The Performance and Diagnostic Advisor provides performance advice and diagnostic advice to help tune

systems for optimal performance, and also to help understand the health of the system. It is configured

using the WebSphere Application Server administrative console or the wsadmin tool. Running in the Java

virtual machine (JVM) of the application server, the Performance and Diagnostic Advisor periodically

checks for inefficient settings and issues recommendations as standard product warning messages. These

recommendations are displayed as warnings in the administrative console under Runtime Messages in the

WebSphere Application Server Status panel, as text in the application server SystemOut.log file, and as

Java Management Extensions (JMX) notifications. Enabling the Performance and Diagnostic Advisor has

minimal system performance impact.

From WebSphere Application Server, Version 6.0.2, you can use the Performance and Diagnostic Advisor

to enable the lightweight memory leak detection, which is designed to provide early detection of memory

problems in test and production environments.

The advice that the Performance and Diagnostic Advisor gives is all on the server level. The only

difference when running in a Network Deployment environment is that you might receive contradictory

advice on resources that are declared at the node or cell level and used at the server level.

For example, two sets of advice are given if a data source is declared at the node level to have a

connection pool size of {10,50} and is used by two servers (server1 and server2). If server1 uses only two

connections and server2 uses all fifty connections during peak load, the optimal connection pool size is

Chapter 3. Obtaining advice from the advisors 9

different for the two servers. Therefore, the Performance and Diagnostic Advisor gives two sets of advice

(one for server1 and another for server2). The data source is declared at the node level and you must

make your decisions appropriately by setting one size that works for both, or by declaring two different

data sources for each server with the appropriate level.

Read “Using the Performance and Diagnostic Advisor” on page 11 for startup and configuration steps.

Diagnostic alerts

In WebSphere Application Server Version 7.0 the Performance and Diagnostic Advisors are extended to

provide more diagnostic alerts to help common troubleshoot problems.

Several alerts are made available to monitor connection factory and data sources behavior. See the

Administering applications and their environment PDF for more information. Some of these alerts are

straightforward and easy to comprehend. Others are much more involved and are intended for use by IBM

support only.

ConnectionErrorOccured diagnostic alert

When a resource adapter or data source encounters a problem with connections such that the connection

might no longer be usable, it informs the connection manager that a connection error occurred. This

causes the destruction of the individual connection or a pool purge, which is the destruction of all

connections in the pool, depending on the pool purge policy configuration setting. An alert is sent,

indicating a potential problem with the back-end if an abnormally high number of unusable connections are

detected.

Connection low-percent efficiency diagnostic alert

If the percentage of time that a connection is used versus held for any individual connections drops below

a threshold, an alert is sent with a call stack.

Cross-Component Use JCA Programming Model Violation Diagnostic Alert

When you enable cross-component use detection, the application server raises an alert when a connection

handle is used by a Java EE application component that is different from the component that originally

acquired the handle through a connection factory. This condition might inadvertently occur if an application

passes a connection handle in a parameter or an application obtains a handle from a cache that is shared

by multiple application components. If components use a connection handle in this manner, this might

result in problems with application or data integrity. Enable the alert to detect the cross-component

connection use during development to identify and avoid potential application problems.

Local transaction containment (LTC) nesting threshold exceeded diagnostic alert

For LTC definition, see the Local transaction containment (LTC) and Transaction type and connection

behavior topics in the Administering applications and their environment PDF, and Default behavior of

managed connections in WebSphere Application Server topic.

If a high number of LTCs are started on a thread before completing, an alert is raised. This alert is useful

in debugging some situations where the connection pool is unexpectedly running out of connections due to

multiple nested LTCs holding onto multiple shareable connections.

Multi-Thread Use JCA Programming Model Violation Diagnostic Alert

Multi-thread use detection raises an alert when an application component acquires a connection handle

using a connection factory, and then the component uses the handle on a different thread from which the

handle was acquired. If you use a connection in this manner, this behavior might cause data integrity

10 Tuning guide

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0506_johnsen/0506_johnsen.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0506_johnsen/0506_johnsen.html

problems, especially if an application uses a connection handle on a thread that is not managed. Enable

the alert to detect multi-thread connection usage during application development.

Pool low-percent efficiency diagnostic alert

If the average time that a connection is held versus used for the all connections in the pool drops below a

threshold, an alert is sent.

Serial reuse violation diagnostic alert

For information on what serial reuse is, see the Transaction type and connection behavior topic in the

Administering applications and their environment PDF. Some legitimate scenarios exist, where a serial

reuse violation is appropriate, but in most cases this violation is not intended and might lead to data

integrity problems.

If this alert is enabled, any time a serial reuse violation occurs within an LTC, an alert is sent.

Surge mode entered or exited diagnostic alert

When surge mode is configured, an alert is sent whenever surge mode engages or disengages. See the

surge mode documentation in the Administering applications and their environment PDF for more

information.

Stuck connection block mode entered or exited diagnostic alert

When stuck connection detection is configured, an alert is sent whenever stuck connection blocking starts

or stops. See the stuck connection documentation in the Administering applications and their environment

PDF.

Thread maximum connections exceeded diagnostic alert

When one or more LTCs on a thread ties too many managed connections, or poolable connections for

data sources an alert is issued.

Using the Performance and Diagnostic Advisor

The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application

Server using general performance principles, best practices, and WebSphere Application Server-specific

rules for tuning.

AIX

Linux

Windows

About this task

This topic is only appropriate for AIX®, Linux®, and Windows® operating systems.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance

and is configured using the WebSphere Application Server administrative console or the wsadmin tool .

The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning. Running in the Java virtual machine (JVM) of the application

server, this advisor periodically checks for inefficient settings, and issues recommendations as standard

product warning messages. View these recommendations by clicking Troubleshooting > Runtime

Messages > Runtime Warning in the administrative console. Enabling the Performance and Diagnostic

Advisor has minimal system performance impact.

 1. Ensure that PMI is enabled, which is default. If PMI is disabled, consult the Enabling PMI using the

administrative console topic. To obtain advice, you must first enable PMI through the administrative

Chapter 3. Obtaining advice from the advisors 11

console and restart the server. The Performance and Diagnostic Advisor enables the appropriate

monitoring counter levels for all enabled advice when PMI is enabled. If specific counters exist that

are not wanted, or when disabling the Performance and Diagnostic Advisor, you might want to disable

PMI or the counters that the Performance and Diagnostic Advisor enabled.

 2. Click Servers > Application servers in the administrative console navigation tree.

 3. Click server_name > Performance and Diagnostic Advisor Configuration.

 4. Under the Configuration tab, specify the number of processors on the server. This setting is critical

to ensure accurate advice for the specific configuration of the system.

 5. Select the Calculation Interval. PMI data is taken over time and averaged to provide advice. The

calculation interval specifies the length of time over which data is taken for this advice. Therefore,

details within the advice messages display as averages over this interval.

 6. Select the Maximum Warning Sequence. The maximum warning sequence refers to the number of

consecutive warnings that are issued before the threshold is updated. For example, if the maximum

warning sequence is set to 3, then the advisor sends only three warnings, to indicate that the

prepared statement cache is overflowing. After three warnings, a new alert is issued only if the rate of

discards exceeds the new threshold setting.

 7. Specify Minimum CPU for Working System. The minimum central processing unit (CPU) for a

working system refers to the CPU level that indicates a application server is under production load.

Or, if you want to tune your application server for peak production loads that range from 50-90% CPU

utilization, set this value to 50. If the CPU is below this value, some diagnostic and performance

advice are still issued. For example, regardless of the CPU level if you are discarding prepared

statements at a high rate, you are notified.

 8. Specify CPU Saturated. The CPU saturated level indicates at what level the CPU is considered fully

utilized. The level determines when concurrency rules no longer increase thread pools or other

resources, even if they are fully utilized.

 9. Click Apply.

10. Click Save.

11. Click the Runtime tab.

12. Click Restart. Select Restart on the Runtime tab to reinitialize the Performance and Diagnostic

Advisor using the last configuration information that is saved to disk.

This action also resets the state of the Performance and Diagnostic Advisor. For example, the current

warning count is reset to zero (0) for each message.

13. Simulate a production level load. If you use the Performance and Diagnostic Advisor in a test

environment, do any other tuning for performance, or simulate a realistic production load for your

application. The application must run this load without errors. This simulation includes numbers of

concurrent users typical of peak periods, and drives system resources, for example, CPU and

memory, to the levels that are expected in production. The Performance and Diagnostic Advisor

provides advice when CPU utilization exceeds a sufficiently high level only. For a list of IBM business

partners that provide tools to drive this type of load, see the topic, Performance: Resources for

learning in the subsection of Monitoring performance with third-party tools.

14. Select the check box to enable the Performance and Diagnostic Advisor.

Tip: To achieve the best results for performance tuning, enable the Performance and Diagnostic

Advisor when a stable production-level load is applied.

15. Click OK.

16. Select Runtime Warnings in the administrative console under the Runtime Messages in the Status

panel or look in the SystemOut.log file, which is located in the following directory:

profile_root/logs/server_name

Some messages are not issued immediately.

17. Update the product configuration for improved performance, based on advice. Although the

performance advisors attempt to distinguish between loaded and idle conditions, misleading advice

12 Tuning guide

might be issued if the advisor is enabled while the system is ramping up or down. This result is

especially likely when running short tests. Although the advice helps in most configurations, there

might be situations where the advice hinders performance. Because of these conditions, advice is not

guaranteed. Therefore, test the environment with the updated configuration to ensure that it functions

and performs better than the previous configuration.

Over time, the advisor might issue differing advice. The differing advice is due to load fluctuations and

the runtime state. When differing advice is received, you need to look at all advice and the time

period over which it is issued. Advice is taken during the time that most closely represents the peak

production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update

the configuration that is based on the advice, and retest for improved performance. This procedure is

continued until optimal performance is achieved.

What to do next

You can enable and disable advice in the Advice Configuration panel. Some advice applies only to certain

configurations, and can be enabled only for those configurations. For example, unbounded Object Request

Broker (ORB) service thread pool advice is only relevant when the ORB service thread pool is unbounded,

and can only be enabled when the ORB thread pool is unbounded. For more information on Advice

configuration, see the topic, “Advice configuration settings” on page 14.

Performance and Diagnostic Advisor configuration settings

Use this page to specify settings for the Performance and Diagnostic Advisor.

To view this administrative page, click Servers > Application Servers > server_name > Performance

and Diagnostic Advisor Configuration under the Performance section.

Enable Performance and Diagnostic Advisor Framework

Specifies whether the Performance and Diagnostic Advisor runs on the server startup.

The Performance and Diagnostic Advisor requires that the Performance Monitoring Infrastructure (PMI) be

enabled. It does not require that individual counters be enabled. When a counter that is needed by the

Performance and Diagnostic Advisor or is not enabled, the Performance and Diagnostic Advisor enables it

automatically. When disabling the Performance and Diagnostic Advisor, you might want to disable

Performance Monitoring Infrastructure (PMI) or the counters that Performance and Diagnostic Advisor

enabled. The following counters might be enabled by the Performance and Diagnostic Advisor:

v ThreadPools (module)

– Web Container (module)

- Pool Size

- Active Threads
– Object Request Broker (module)

- Pool Size

- Active Threads
v JDBC Connection Pools (module)

– Pool Size

– Percent used

– Prepared Statement Discards
v Servlet Session Manager (module)

– External Read Size

– External Write Size

– External Read Time

– External Write Time

– No Room For New Session
v System Data (module)

– CPU Utilization

Chapter 3. Obtaining advice from the advisors 13

– Free Memory

Enable automatic heap dump collection

Specifies whether the Performance and Diagnostic Advisor automatically generates heap dumps for post

analysis when suspicious memory activity is detected.

Calculation Interval

Specifies the length of time over which data is taken for this advice.

PMI data is taken over an interval of time and averaged to provide advice. The calculation interval

specifies the length of time over which data is taken for this advice. Details within the advice messages

display as averages over this interval. The default value is automatically set to four minutes.

Maximum warning sequence

The maximum warning sequence refers to the number of consecutive warnings that are issued before the

threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends three warnings to

indicate that the prepared statement cache is overflowing. After three warnings, a new alert is only issued

if the rate of discards exceeds the new threshold setting. The default value is automatically set to one.

Number of processors

Specifies the number of processors on the server.

This setting is helpful to ensure accurate advice for the specific configuration of the system. Depending

your configuration and system, there may be only one processor utilized. The default value is automatically

set to two.

Minimum CPU For Working System

The minimum CPU for working system refers to the point at which concurrency rules do not attempt to free

resources in thread pools.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect

performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to

help determine when an application server is active and tunable.

The Minimum CPU for working system sets a lower limit as to when you should consider adjusting thread

pools. For example, say you set this value to 50%. If the CPU is less than 50%, concurrency rules do not

try to free up resources by decreasing pools to get rid of unused threads. That is, if the pool size is 50-100

and only 20 threads are consistently used then concurrency rules would like to decrease the minimum

pool size to 20.

CPU Saturated

The CPU Saturated setting determines when the CPU is deemed to be saturated.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect

performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to

help determine when an application server is active and tunable.

The CPU saturated setting determines when the CPU has reached its saturation point. For example, if this

is set to 95%, when the CPU is greater than 95% the concurrency rules do not try to improve things, that

is, increase the size of a thread pool.

Advice configuration settings

Use this page to select the advice you wish to enable or disable.

14 Tuning guide

To view this administrative page, click Servers > Application Servers > server_name . Under the

Performance section, click Performance and Diagnostic Advisor Configuration > Performance and

Diagnostic Advice Configuration.

Advice name

Specifies the advice that you can enable or disable.

Advice applied to component

Specifies the WebSphere Application Server component to which the advice applies.

Advice type

Categorizes the primary indent of a piece of Advice.

Use Advice type for grouping, and then enabling or disabling sets of advice that is based upon your

purpose. Advice has the following types:

v Performance: Performance advice provides tuning recommendations, or identifies problems with your

configuration from a performance perspective.

v Diagnostic: Diagnostic advice provide automated logic and analysis relating to problem identification and

analysis. These types advice are usually issued when unexpected circumstances are encountered by

the application server.

Performance impact

Generalizes the performance overhead that an alert might incur.

The performance impact of a particular piece of advice is highly dependant upon the scenario being run

and upon the conditions meet. The performance categorization of alerts is based upon worst case

scenario measurements. The performance categorizations are:

v Low: Advice has minimal performance overhead. Advice might be run in test and production

environments. Cumulative performance overhead is within run to run variance when all advice of this

type is enabled.

v Medium: Advice has measurable but low performance overhead. Advice might be run within test

environments, and might be run within production environments if deemed necessary. Cumulative

performance overhead is less than 4% when all advice of this type is enabled.

v High: Advice impact is high or unknown. Advice might be run during problem determination tests and

functional tests. It is not run in production simulation or production environments unless deemed

necessary. Cumulative performance overhead might be significant when all advice of this type is

enabled.

Advice status

Specifies whether the advice is stopped, started, or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

v Started: The advice is enabled.

v Stopped: The advice is not enabled.

v Unavailable: The advice does not apply to the current configuration, for example, persisted session size

advice in a configuration without persistent sessions.

Viewing the Performance and Diagnostic Advisor recommendations

Runtime Performance Advisor uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning.

Chapter 3. Obtaining advice from the advisors 15

About this task

The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning. Running in the Java virtual machine (JVM) of the application

server, this advisor periodically checks for inefficient settings, and issues recommendations as standard

product warning messages.

The Performance and Diagnostic Advisor recommendations are displayed in two locations:

1. The WebSphere Application Server SystemOut.log log file.

2. The Runtime Messages panel in the administrative console. To view this administrative page, click

Troubleshooting > Runtime Messages > Runtime Warning.

Example

The following log file is a sample output of advice on the SystemOut.log file:

[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W CWTUN0202W:

Increasing the Web Container thread pool Maximum Size to 48

might improve performance.

Additional explanatory data follows.

Average number of threads: 48.

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.

The threshold will be updated to reduce the

overhead of the analysis.

Starting the lightweight memory leak detection

Use this task to start the lightweight memory leak detection using the Performance and Diagnostic Advisor.

Before you begin

If you have a memory leak and want to confirm the leak, or you want to automatically generate heap

dumps on Java virtual machines (JVM) in WebSphere Application Server, consider changing your

minimum and maximum heap sizes to be equal. This change provides the memory leak detection more

time for reliable diagnosis.

About this task

To start the lightweight memory leak detection using the Performance and Diagnostic Advisor, perform the

following steps in the administrative console:

1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name > Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Enable the Performance and Diagnostic Advisor Framework.

5. Click OK.

6. From the Runtime or Configuration tab of Performance and Diagnostic Advisor Framework, click

Performance and Diagnostic Advice configuration.

7. Start the memory leak detection advice and stop any other unwanted advice.

Results

The memory leak detection advice is started.

16 Tuning guide

Important: To achieve the best results for performance tuning, start the Performance and Diagnostic

Advisor when a stable production level load is running.

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime

Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor

recommendations” on page 15 topic.

Lightweight memory leak detection

This topic describes memory leaks in Java applications and introduces lightweight memory leak detection.

Memory leaks in Java applications

Although a Java application has a built-in garbage collection mechanism, which frees the programmer from

any explicit object deallocation responsibilities, memory leaks are still common in Java applications.

Memory leaks occur in Java applications when unintentional references are made to unused objects. This

occurrence prevents Java garbage collection from freeing memory.

The term memory leak is overused; a memory leak refers to a memory misuse or mismanagement. Old

unused data structures might have outstanding references but are never garbage collected. A data

structure might have unbounded growth or there might not be enough memory that is allocated to

efficiently run a set of applications.

Lightweight memory leak detection in WebSphere Application Server

Most existing memory leak technologies are based upon the idea that you know that you have a memory

leak and want to find it. Because of these analysis requirements, these technologies have significant

performance burdens and are not designed for use as a detection mechanism in production. This limitation

means that memory leaks are generally not detected until the problem is critical; the application passes all

system tests and is put in production, but it crashes and nobody knows why.

WebSphere Application Server has implemented a lightweight memory leak detection mechanism that runs

within the WebSphere Performance and Diagnostic Advisor framework. This mechanism is designed to

provide early detection of memory problems in test and production environments. This framework is not

designed to provide analysis of the source of the problem, but rather to provide notification and help

generating the information that is required to use analysis tools. The mechanism only detects memory

leaks in the Java heap and does not detect native leaks.

The lightweight memory leak detection in WebSphere Application Server does not require any additional

agents. The detection relies on algorithms that are based on information that is available from the

Performance Monitoring Infrastructure service and has minimal performance overhead.

Enabling automated heap dump generation

Use this task to enable automated heap dump generation. This function is not supported when using a

Sun Java virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and

Solaris operating systems. You need to research taking heap dumps on Sun JVMs or call IBM Support.

Before you begin

Although heap dumps are only generated in response to a detected memory leak, you must understand

that generating heap dumps can have a severe performance impact on WebSphere Application Server for

several minutes.

Chapter 3. Obtaining advice from the advisors 17

About this task

The automated heap dump generation support, which is available only on IBM Software Development Kit

and analyzes memory leak problems on AIX, Linux, and Windows operating systems.

Manually generating heap dumps at appropriate times might be difficult. To help you analyze memory leak

problems when memory leak detection occurs, some automated heap dump generation support is

available. This functionality is available only for IBM Software Development Kit on AIX, Linux, and

Windows operating systems.

Most memory leak analysis tools perform some forms of difference evaluation on two heap dumps. Upon

detection of a suspicious memory situation, two heap dumps are automatically generated at appropriate

times. The general idea is to take an initial heap dump as soon as problem detection occurs. Monitor the

memory usage and take another heap dump when you determine that enough memory is leaked, so that

you can compare the heap dumps to find the source of the leak.

To help you analyze memory leak problems when memory leak detection occurs, some automated heap

dump generation support is available.

To enable automated heap dump generation support, perform the following steps in the administrative

console:

1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name >Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Select the Enable automatic heap dump collection check box.

5. Click OK.

Results

The automated heap dump generation support is enabled.

Important: To preserve disk space, the Performance and Diagnostic Advisor does not take heap dumps if

more than 10 heap dumps already exist in the WebSphere Application Server home directory. Depending

on the size of the heap and the workload on the application server, taking a heap dump might be quite

expensive and might temporarily affect system performance.

The automatic heap dump generation process dynamically reacts to various memory conditions and

generates dumps only when it is needed. When the heap memory is too low, the heap dumps cannot be

taken or the heap dump generation cannot be complete.

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime

Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor

recommendations” on page 15 topic. If a memory leak is detected and you want to find the heap dump,

refer to the Locating and analyzing heap dumps topic.

Generating heap dumps manually

Use this task to generate heap dumps manually. This function is not supported on when using a Sun Java

virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and Solaris

operating systems.

18 Tuning guide

Before you begin

Windows

AIX

Linux

Although heap dumps are generated only in response to a detected

memory leak, you must understand that generating heap dumps can have a severe performance impact

on WebSphere Application Server for several minutes. When generating multiple heap dumps manually for

memory leak analysis, make sure that significant objects are leaked in between the two heap dumps. This

approach enables problem determination tools to identify the source of the memory leak.

About this task

You might want to manually generate heap dumps for the analysis of memory leaks. On a Java virtual

machines (JVM) in WebSphere Application Server, you cannot enable automated heap dump generation.

You might want to designate certain times to take heap dumps because of the overhead involved. On JVM

in WebSphere Application Server, you can manually produce heap dumps by using the

generateHeapDump operation on WebSphere Application Server managed beans (MBeans) that are

special Java beans.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server runtime operations. WebSphere Application Server supports the Jacl and Jython

scripting languages only. To learn more about the wsadmin tool, see the Administering applications and

their environment PDF for more information.

1. Start the wsadmin scripting client. You have several options to run scripting commands, ranging from

running them interactively to running them in a profile.

2. Invoke the generateHeapDump operation on a JVM MBean, for example,

v Finding JVM objectName:

<wsadmin> set objectName [$AdminControl queryNames

WebSphere:type=JVM,process=<servername>,node=<nodename>,*]

v Invoking the generateHeapDump operation on JVM MBean:

<wsadmin> $AdminControl invoke $objectName generateHeapDump

where,

 $ is a Jacl operator for substituting a variable name with its

value

invoke is the command

generateHeapDump is the operation you are invoking

<servername> is the name of the server on which you want to generate

a heap dump

<nodename> is the node to which <servername> belongs

What to do next

After running the wsadmin command, the file name of the heap dump is returned. For more information

on finding heap dumps, refer to the Locating and analyzing heap dumps topic. When you have a couple of

heap dumps, use a number of memory leak problem determination tools to analyze your problem.

Locating and analyzing heap dumps

Use this task to locate and analyze heap dumps.

Before you begin

Do not analyze heap dumps on the WebSphere Application Server machine because analysis is very

expensive. For analysis, transfer heap dumps to a dedicated problem determination machine.

Chapter 3. Obtaining advice from the advisors 19

About this task

When a memory leak is detected and heap dumps are generated, you must analyze heap dumps on a

problem determination machine and not on the application server because the analysis is very central

processing unit (CPU) and disk I/O intensive.

Perform the following procedure to locate the heap dump files.

1. On the physical application server where a memory leak is detected, go to the WebSphere Application

Server home directory. For example, on the Windows operating system, the directory is:

profile_root\myProfile

2. IBM heap dump files are usually named in the following way:

heapdump.<date>..<timestamp><pid>.phd

3. Gather all the .phd files and transfer them to your problem determination machine for analysis.

4. Many tools are available to analyze heap dumps that include Rational® Application Developer 6.0.

WebSphere Application Server serviceability released a technology preview called Memory Dump

Diagnostic For Java. You can download this preview from the product download Web site.

What to do next

When you have a couple of heap dumps, use a number of memory leak problem determination tools to

analyze your problem.

Using the performance advisor in Tivoli Performance Viewer

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to help tune systems for

optimal performance and provides recommendations on inefficient settings by using the collected

Performance Monitoring Infrastructure (PMI) data.

About this task

Obtain advice by clicking Performance Advisor in TPV. The performance advisor in TPV provides more

extensive advice than the “Performance and Diagnostic Advisor” on page 9. For example, TPV provides

advice on setting the dynamic cache size, setting the Java virtual machine (JVM) heap size and using the

DB2 Performance Configuration wizard.

1. Enable PMI in the application server as described in the Enabling PMI using the administrative console

article.

To monitor performance data through the PMI interfaces, you must first enable PMI through the

administrative console before restarting the server.

2. Enable data collection and set the PMI monitoring level to Extended.

The monitoring levels that determine which data counters are enabled can be set dynamically, without

restarting the server. These monitoring levels and the data selected determine the type of advice you

obtain. The performance advisor in TPV uses the extended monitoring level; however, the performance

advisor in TPV can use a few of the more expensive counters (to provide additional advice) and

provide advice on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to All. Or, you can use

the PMI Custom Monitoring Level to enable the Servlet Session Manager SessionObjectSize counter.

The monitoring of the SessionSize PMI counter is expensive, and is not in the Extended PMI statistic

set. Complete this action in one of the following ways:

a. Performance Monitoring Infrastructure settings.

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.

3. In the administrative console, click Monitoring and Tuning > Performance Viewer > Current®

Activity.

20 Tuning guide

4. Simulate a production level load. Simulate a realistic production load for your application, if you use the

performance advisor in a test environment, or do any other performance tuning. The application must

run this load without errors. This simulation includes numbers of concurrent users typical of peak

periods, and drives system resources, for example, CPU and memory to the levels that are expected

in production. The performance advisor only provides advice when CPU utilization exceeds a

sufficiently high level. For a list of IBM business partners providing tools to drive this type of load, see

the article, Performance: Resources for learning in the subsection of Monitoring performance with third

party tools.

5. Log performance data with TPV.

6. Clicking Refresh on top of the table of advice causes the advisor to recalculate the advice based on

the current data in the buffer.

7. Tuning advice displays when the Advisor icon is chosen in the TPV Performance Advisor. Double-click

an individual message for details. Because PMI data is taken over an interval of time and averaged to

provide advice, details within the advice message display as averages.

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to enable sufficient data

to be collected for performing average calculations. Currently 5 minutes of data is required.

Hence, the following guidelines intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is the amount of PMI

data available in memory and it must be greater than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with TPV logs, the logs must be at least

300 seconds of duration.

For more information about configuring user and logging settings of TPV, refer to the

Configuring TPV settings article.

8. Update the product configuration for improved performance, based on advice. Because Tivoli

Performance Viewer refreshes advice at a single instant in time, take the advice from the peak load

time. Although the performance advisors attempt to distinguish between loaded and idle conditions,

misleading advice might be issued if the advisor is enabled while the system is ramping up or down.

This result is especially likely when running short tests. Although the advice helps in most

configurations, there might be situations where the advice hinders performance. Because of these

conditions, advice is not guaranteed. Therefore, test the environment with the updated configuration to

ensure it functions and performs well.

Over a period of time the advisor might issue differing advice. The differing advice is due to load

fluctuations and run-time state. When differing advice is received, you need to look at all advice and

the time period over which it was issued. You must take advice during the time that most closely

represents the peak production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update

the configuration that is based on the advice, and retest for improved performance. This procedure is

continued until optimal performance is achieved.

Performance advisor report in Tivoli Performance Viewer

View recommendations and data from the performance advisor in Tivoli Performance Viewer (TPV) by

clicking the Advisor link in TPV for a server.

For more information on how to use the performance advisor in TPV, see the article, Using the

performance advisor in Tivoli Performance Viewer.

Message

Specifies recommendations for performance tuning.

Click the message to obtain more details.

Chapter 3. Obtaining advice from the advisors 21

Performance data in the upper panel

Displays a summary of performance data for WebSphere Application Server. Data here corresponds to the

same period that recommendations were provided for. However, recommendations might use a different

set of data points during analysis than the set that is displayed by the summary page.

The first table represents the number of requests per second and the response time in milliseconds for

both the Web and Enterprise JavaBeans™ containers.

The pie graph displays the CPU activity as percentage busy and idle.

The second table displays the average thread activity for the Web container and Object Request Broker

(ORB) thread pools, and the average database connection activity for connection pools. The activity is

expressed as the number of threads or connections busy and idle.

22 Tuning guide

Chapter 4. Tuning parameter hot list

The following hot list contains recommendations that have improved performance or scalability, or both, for

many applications.

WebSphere Application Server provides several tunable parameters and options to match the application

server environment to the requirements of your application.

v Review the hardware and software requirements

It is critical for proper functionality and performance to satisfy the minimum hardware and software

requirements. Refer to IBM WebSphere Application Server supported hardware, software, and APIs

Web site which details hardware and software requirements.

v Install the most current refresh pack, fix pack, and the recommended interim fixes

The list of recommended updates is maintained on the Support site.

v Check hardware configuration and settings

Verify network interconnections and hardware configuration is setup for peak performance.

v Tune the operating systems

Operating system configuration plays a key role in performance. For example, adjustments such as

TCP/IP parameters might be necessary for your application

v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size then the default for best performance. It is also advised to

select an appropriate GC policy based on the application’s characteristics.

v Use a type 4 (or pure Java) JDBC driver

In general, the type 2 JDBC driver is recommended if the database exists on the same physical

machine as the WebSphere instance. However, in the case where the database is in a different tier, the

type 4 JDBC driver offers the fastest performance since they are pure Java not requiring native

implementation. Use the link above to view a list of database vendor-specific requirements, which can

tell you if a type 4 JDBC driver is supported for your database.

See the Administering applications and their environment PDF for more information.

v Tune WebSphere Application Server JDBC data sources and associated connection pools

The JDBC data source configuration might have a significant performance impact. For example, the

connection pool size and prepared statement cache need to be sized based on the number of

concurrent requests being processed and the design of the application.

See the Administering applications and their environment PDF for more information.

v Enable the pass by reference option

Use applications that can take advantage of the pass by reference option to avoid the cost of copying

parameters to the stack.

v Tune related components, for example, database

In many cases, some other component, for example, a database, needs adjustments to achieve higher

throughput for your entire configuration.

For more information, see the Administering applications and their environment PDF for more

information.

v Disable functions that are not required

For example, if your application does not use the Web services addressing (WS-Addressing) support,

disabling this function can improve performance.

Attention: Use this property with care because applications might require WS-Addressing MAPs to

function correctly. Setting this property also disables WebSphere Application Server support for the

following specifications, which depend on the WS-Addressing support: Web Services Atomic

Transactions, Web Services Business Agreement and Web Services Notification.

To disable the support for WS-Addressing, refer to Enabling Web Services Addressing support for

JAX-RPC applications

v Review your application design

© IBM Corporation 2002, 2008 23

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www-1.ibm.com/support/docview.wss?uid=swg27004980

You can track many performance problems back to the application design. Review the design to

determine if it causes performance problems.

24 Tuning guide

Chapter 5. Tuning TCP/IP buffer sizes

WebSphere Application Server uses the TCP/IP sockets communication mechanism extensively. For a

TCP/IP socket connection, the send and receive buffer sizes define the receive window. The receive

window specifies the amount of data that can be sent and not received before the send is interrupted. If

too much data is sent, it overruns the buffer and interrupts the transfer. The mechanism that controls data

transfer interruptions is referred to as flow control. If the receive window size for TCP/IP buffers is too

small, the receive window buffer is frequently overrun, and the flow control mechanism stops the data

transfer until the receive buffer is empty.

About this task

Flow control can consume a significant amount of CPU time and result in additional network latency as a

result of data transfer interruptions. It is recommended that you increase buffer sizes avoid flow control

under normal operating conditions. A larger buffer size reduces the potential for flow control to occur, and

results in improved CPU utilization. However, a large buffer size can have a negative effect on

performance in some cases. If the TCP/IP buffers are too large and applications are not processing data

fast enough, paging can increase. The goal is to specify a value large enough to avoid flow control, but

not so large that the buffer accumulates more data than the system can process.

The default buffer size is 8 KB. The maximum size is 8 MB (8096 KB). The optimal buffer size depends on

several network environment factors including types of switches and systems, acknowledgment timing,

error rates and network topology, memory size, and data transfer size. When data transfer size is

extremely large, you might want to set the buffer sizes up to the maximum value to improve throughput,

reduce the occurrence of flow control, and reduce CPU cost.

Buffer sizes for the socket connections between the Web server and WebSphere Application Server are

set at 64KB. In most cases this value is adequate.

Flow control can be an issue when an application uses either the IBM Developer Kit for Java(TM) JDBC

driver or the IBM Toolbox for Java JDBC driver to access a remote database. If the data transfers are

large, flow control can consume a large amount of CPU time. If you use the IBM Toolbox for Java JDBC

driver, you can use custom properties to configure the buffer sizes for each data source. It is

recommended that you specify large buffer sizes, for example,1 MB.

Some system-wide settings can override the default 8 KB buffer size for sockets. With some applications,

for exmaple, WebSphere Commerce Suite, a buffer size of 180 KB reduces flow control and typically does

not adversely affect paging. The optimal value is dependent on specific system characteristics. You might

need to try several values before you determine the ideal buffer size for your system. To change the

system wide value, perform the following steps:

Results

Repeat this process until you determine the ideal buffer size.

What to do next

The TCP/IP buffer sizes are changed. Repeat this process until you determine the ideal buffer size.

© Copyright IBM Corp. 2008 25

26 Tuning guide

Chapter 6. Tuning the IBM virtual machine for Java

An application server is a Java based server and requires a Java virtual machine (JVM) environment to

run and support the enterprise applications that run on it. As part of configuring your application server,

you can configure the Java SE Runtime Environment to tune performance and system resource usage.

This topic applies to IBM virtual machines for Java.

Before you begin

v Determine the type of JVM on which your application server is running.

Issue the java –fullversion command from within your application server app_server_root/java/bin

directory. In response to this command, the application server writes information about the JVM,

including the JVM provider information, into the SystemOut.log file.

If your application server is running on a Sun HotSpot JVM, see the topic Tuning Sun HotSpot Java

virtual machines (Solaris & HP-UX).

v Verify that the following statements are true for your system:

1. The most recent supported version of the JVM is installed on your system.

2. The most recent service update is installed on your system. Almost every new service level includes

JVM performance improvements.

About this task

Each JVM vendor provides detailed information on performance and tuning for their JVM. Use the

information provided in this topic in conjunction with the information that is provided with the JVM that is

running on your system.

A Java SE Runtime Environment provides the environment for running enterprise applications and

application servers. Therefore the Java configuration plays a significant role in determining performance

and system resource consumption for an application server and the applications that run on it.

The IBM virtual machine for Java Version 6.0 includes the latest in Java Platform, Enterprise Edition (Java

EE) specifications, and provides performance and stability improvements over previous versions of Java.

Even though JVM tuning is dependent on the JVM provider you use, there are some general tuning

concepts that apply to all JVMs. These general concepts include:

v Compiler tuning. All JVMs use Just-In-Time (JIT) compilers to compile Java byte codes into native

instructions during server runtime.

v Java memory or heap tuning. Tuning the JVM memory management function, or garbage collection, is a

good starting point for improving JVM performance.

v Class loading tuning.

v Start up versus runtime performance optimization

The following steps provide specific instructions on how to perform the following types of tuning for each

JVM. The steps do not have to be performed in any specific order.

1. Limit the number of dumps that are taken in specific situations.

In certain error conditions, multiple application server threads might fail and the JVM requests a

TDUMP for each of those threads. If a significant number of threads fail at the same time, the resulting

number of TDUMPs that are taken concurrently might lead to other system problems, such. as a

shortage of auxiliary storage. Use the JAVA_DUMP_OPTS environment variable to specify the number

of dumps that you want the JVM to produce in certain situations. The value specified for this variable

does not affect the number of TDUMPS that are generated because of

com.ibm.jvm.Dump.SystemDump() calls from applications that are running on the application server.

For example, if you want to configure JVM such that it:

© IBM Corporation 2006 27

v Limits the number of TDUMPs that are taken to one

v Limits the number of JAVADUMPs taken to a maximum of three

v Does not capture any documentation if an INTERRUPT occurs

Then, set the JAVA_DUMP_OPTS variable to the following value:

JAVA_DUMP_OPTS=ONANYSIGNAL(JAVADUMP[3],SYSDUMP[1]),ONINTERRUPT(NONE)

2. Optimize the startup and runtime performance.

In some environments, such as a development environment, it is more important to optimize the

startup performance of your application server rather than the runtime performance. In other

environments, it is more important to optimize the runtime performance. By default, IBM virtual

machines for Java are optimized for runtime performance, while HotSpot-based JVMs are optimized for

startup performance.

The Java Just-in-Time (JIT) compiler impacts whether startup or runtime performance is optimized. The

initial optimization level that the compiler uses influences the length of time that is required to compile

a class method, and the length of time that is required to start the server. For faster startups, reduce

the initial optimization level that the compiler uses. However if you reduce the initial optimization level,

the runtime performance of your applications might decrease because the class methods are now

compiled at a lower optimization level.

v -Xquickstart

This setting influences how the IBM virtual machine for Java uses a lower optimization level for

class method compiles. A lower optimization level provides for faster server startups, but lowers

runtime performance. If this parameter is not specified, the IBM virtual machine for Java defaults to

starting with a high initial optimization level for compiles, which results in faster runtime

performance, but slower server starts.

 Default High initial compiler optimization level

Recommended High initial compiler optimization level

Usage Specifying -Xquickstart improves server startup time.

3. Configure the heap size.

The Java heap parameters influence the behavior of garbage collection. Increasing the heap size

supports more object creation. Because a large heap takes longer to fill, the application runs longer

before a garbage collection occurs. However, a larger heap also takes longer to compact and causes

garbage collection to take longer.

The JVM uses defined thresholds to manage the storage that it is allocated. When the thresholds are

reached, the garbage collector is invoked to free up unused storage. Therefore, garbage collection can

cause significant degradation of Java performance. Before changing the initial and maximum heap

sizes, you should consider the following information:

v In the majority of cases you should set the maximum JVM heap size to a value that is higher than

the initial JVM heap size. This setting allows for the JVM to operate efficiently during normal, steady

state periods within the confines of the initial heap. This setting also allows the JVM to operate

effectively during periods of high transaction volume because the JVM can expand the heap up to

the value specified for the maximum JVM heap size. In some rare cases, where absolute optimal

performance is required, you might want to specify the same value for both the initial and maximum

heap size. This setting eliminates some overhead that occurs when the JVM expands or contracts

the size of the JVM heap. Before changing any of the JVM heap sizes, verify that the JVM storage

allocation is large enough to accommodate the new heap size.

v Do not make the size of the initial heap so large that while it initially improves performance by

delaying garbage collection, when garbage collection does occur, the collection process affects

response time because the process has to run longer.

To use the administrative console to configure the heap size:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name.

28 Tuning guide

b. In the Server Infrastructure section, click Java and process management > Process definition >

Java virtual machine.

c. Specify a new value in either the Initial heap size or the Maximum heap size field.

You can also specify values for both fields if you need to adjust both settings.

For performance analysis, the initial and maximum heap sizes should be equal.

The Initial heap size setting specifies, in megabytes, the amount of storage that is allocated for the

JVM heap when the JVM starts. The Maximum heap size setting specifies, in megabytes, the

maximum amount of storage that can be allocated to the JVM heap. Both of these settings have a

significant effect on performance.

If you are tuning a production system where you do not know the working set size of the enterprise

applications that are running on that system, an appropriate starting value for the initial heap size is

25 percent of the maximum heap size. The JVM then tries to adapt the size of the heap to the

working set size of the application.

The following illustration represents three CPU profiles, each running a fixed workload with varying

Java heap settings. In the middle profile, the initial and maximum heap sizes are set to 128 MB.

Four garbage collections occur. The total time in garbage collection is about 15 percent of the total

run. When the heap parameters are doubled to 256 MB, as in the top profile, the length of the work

time increases between garbage collections. Only three garbage collections occur, but the length of

each garbage collection is also increased. In the third profile, the heap size is reduced to 64 MB

and exhibits the opposite effect. With a smaller heap size, both the time between garbage

collections and the time for each garbage collection are shorter. For all three configurations, the

total time in garbage collection is approximately 15 percent. This example illustrates an important

concept about the Java heap and its relationship to object utilization. A cost for garbage collection

always exists when running enterprise applications.

Varying Java Heap Settings

Time
0

20

40

60

80

100

-ms128M, -mx128M Time spent in Garbage Collection

C
P

U
%

Processor #1

Processor #2

C
P

U
%

0

20

40

60

80

100

-ms64M, -mx64M Time spent in Garbage Collection

Time

Processor #1

Processor #2

-ms256M, -mx256M Time spent in Garbage Collection

Time

C
P

U
%

0

20

40

60

80
100 Processor #1

Processor #2

Run a series of tests that vary the Java heap settings. For example, run experiments with 128 MB,

192 MB, 256 MB, and 320 MB. During each experiment, monitor the total memory usage. If you

expand the heap too aggressively, paging can occur.

Use the vmstat command or the Windows Performance Monitor to check for paging. If paging

occurs, reduce the size of the heap or add more memory to the system.

When all the runs are finished, compare the following statistics:

v Number of garbage collection calls

Chapter 6. Tuning the IBM virtual machine for Java 29

v Average duration of a single garbage collection call

v Ratio between the length of a single garbage collection call and the average time between calls

If the application is not over utilizing objects and has no memory leaks, the state of steady memory

utilization is reached. Garbage collection also occurs less frequently and for short duration.

If the heap free space settles at 85 percent or more, consider decreasing the maximum heap size

values because the application server and the application are under-utilizing the memory allocated

for heap.

for the controller and the servant if the server is configured to run in 64-bit mode.

d. Click Apply.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

You can also use the following command-line parameters to adjust these settings. These parameters

apply to all supported JVMs and are used to adjust the minimum and maximum heap size for each

application server or application server instance.

v -Xms

This parameter controls the initial size of the Java heap. Tuning this parameter reduces the

overhead of garbage collection, which improves server response time and throughput. For some

applications, the default setting for this option might be too low, which causes a high number of

minor garbage collections.

 Default 50 MB

Recommended Workload specific, but higher than the default.

Usage Specifying -Xms256m sets the initial heap size to 256 MB.

v -Xmx

This parameter controls the maximum size of the Java heap. Increasing this parameter increases

the memory available to the application server, and reduces the frequency of garbage collection.

Increasing this setting can improve server response time and throughput. However, increasing this

setting also increases the duration of a garbage collection when it does occur. This setting should

never be increased above the system memory available for the application server instance.

Increasing the setting above the available system memory can cause system paging and a

significant decrease in performance.

 Default 256 MB

Recommended Workload specific, but higher than the default value,

depending on the amount of available physical memory.

Usage Specifying -Xmx512m sets the maximum heap size to 512

MB.

v

AIX

Windows

-Xlp

Use this parameter with the IBM virtual machine for Java to allocate the heap when using large

pages, such as 16 MB pages. Before specifying this parameter, verify that your operating system is

configured to support large pages. Using large pages can reduce the CPU overhead needed to

keep track of heap memory, and might also allow the creation of a larger heap.

v

AIX

–Xlp64k

This parameter can be used to allocate the heap using medium size pages, such as 64 KB. Using

this virtual memory page size for the memory that an application requires can improve the

performance and throughput of the application because of hardware efficiencies that are associated

with a larger page size.

AIX

i5/OS and AIX provide rich support around 64 KB pages because 64 KB pages are

intended to be general purpose pages. 64 KB pages are easy to enable, and applications might

30 Tuning guide

receive performance benefits when 64 KB pages are used instead of 4 KB pages, which is the

default setting. This setting can be changed without changing the operating system configuration.

However, it is recommended that you run your application servers in a separate storage pool if you

enable the use of 64KB pages.

AIX

To support a 64 KB page size, in the administrative console, click Servers > Application

servers > server_name > Process definition > Environment entries > New, and then specify

LDR_CNTRL in the Name field and DATAPSIZE=64K@TEXTPSIZE=64K@STACKPSIZE=64K in the Value field.

 Default 4 KB

Recommended -Xlp64k enables the 64 KB page size support.

AIX

POWER5+™ systems, and AIX 5L™ Version

5.3 with the 5300-04 Recommended Maintenance

Package support a 64 KB page size when they are

running the 64-bit kernel.

4. Tune Java memory.

Enterprise applications written in the Java language involve complex object relationships and use large

numbers of objects. Although, the Java language automatically manages memory associated with

object life cycles, understanding the application usage patterns for objects is important. In particular,

verify that the following conditions exist:

v The application is not over utilizing objects

v The application is not leaking objects

v The Java heap parameters are set properly to handle a given object usage pattern

a. Check for over-utilization of objects.

You can review the counters for the JVM run time, that are included in Tivoli Performance Viewer

reports, to determine if an application is overusing objects. You have to specify the

-XrunpmiJvmtiProfiler command-line option, as well as the JVM module maximum level, to enable

the Java virtual machine profiler interface, JVMTI, counters.

The optimal result for the average time between garbage collections is at least five to six times the

average duration of a single garbage collection. If you do not achieve this number, the application

is spending more than 15 percent of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the

bottleneck. The most cost-effective way to optimize the application is to implement object caches

and pools. Use a Java profiler to determine which objects to target. If you can not optimize the

application, try adding memory, processors and clones. Additional memory allows each clone to

maintain a reasonable heap size. Additional processors allow the clones to run in parallel.

b. Test for memory leaks.

Memory leaks in the Java language are a dangerous contributor to garbage collection bottlenecks.

Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads

to system instability. Over time, garbage collection occurs more frequently until the heap is

exhausted and the Java code fails with a fatal out-of-memory exception. Memory leaks occur when

an unused object has references that are never freed. Memory leaks most commonly occur in

collection classes, such as Hashtable because the table always has a reference to the object, even

after real references are deleted.

High workload often causes applications to crash immediately after deployment in the production

environment. These application crashes if the applications are having memory leaks because the

high workload accelerates the magnification of the leakage, and a memory allocation failures occur.

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of

the amount of bytes or kilobytes that cannot be garbage collected. The delicate task is to

differentiate these amounts between expected sizes of useful and unusable memory. This task is

Chapter 6. Tuning the IBM virtual machine for Java 31

achieved more easily if the numbers are magnified, resulting in larger gaps and easier identification

of inconsistencies. The following list provides insight on how to interpret the results of your memory

leak testing:

v Long-running test

Memory leak problems can manifest only after a period of time, therefore, memory leaks are

found easily during long-running tests. Short running tests might provide invalid indications of

where the memory leaks are occurring. It is sometimes difficult to know when a memory leak is

occurring in the Java language, especially when memory usage has seemingly increased either

abruptly or monotonically in a given period of time. The reason it is hard to detect a memory

leak is that these kinds of increases can be valid or might be the intention of the developer. You

can learn how to differentiate the delayed use of objects from completely unused objects by

running applications for a longer period of time. Long-running application testing gives you

higher confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

In many cases, memory leak problems occur by successive repetitions of the same test case.

The goal of memory leak testing is to establish a big gap between unusable memory and used

memory in terms of their relative sizes. By repeating the same scenario over and over again, the

gap is multiplied in a very progressive way. This testing helps if the number of leaks caused by

the execution of a test case is so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular

testing is better control. When a module is designed to keep the private module without creating

external side effects such as memory usage, testing for memory leaks is easier. First, the

memory usage before running the module is recorded. Then, a fixed set of test cases are run

repeatedly. At the end of the test run, the current memory usage is recorded and checked for

significant changes. Remember, garbage collection must be suggested when recording the

actual memory usage by inserting System.gc() in the module where you want garbage collection

to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

Some memory leak problems can occur only when there are several threads running in the

application. Unfortunately, synchronization points are very susceptible to memory leaks because

of the added complication in the program logic. Careless programming can lead to kept or

not-released references. The incident of memory leaks is often facilitated or accelerated by

increased concurrency in the system. The most common way to increase concurrency is to

increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:

– A good test case exercises areas of the application where objects are created. Most of the

time, knowledge of the application is required. A description of the scenario can suggest

creation of data spaces, such as adding a new record, creating an HTTP session, performing

a transaction and searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed

of objects within the same class. Also, collection classes such as Vector and Hashtable are

common places where references to objects are implicitly stored by calling corresponding

insertion methods. For example, the get method of a Hashtable object does not remove its

reference to the retrieved object.

You can use the Tivoli Performance Viewer to help find memory leaks.

For optimal results, repeat experiments with increasing duration, such as 1,000, 2,000, and 4,000

page requests. The Tivoli Performance Viewer graph of used memory should have a jagged shape.

Each drop on the graph corresponds to a garbage collection. There is a memory leak if one of the

following conditions is appears in the graph:

v The amount of memory used immediately after each garbage collection increases significantly.

When this condition occurs, the jagged pattern looks more like a staircase.

v The jagged pattern has an irregular shape.

v The gap between the number of objects allocated and the number of objects freed increases

over time.

32 Tuning guide

Heap consumption that indicates a possible leak during periods when the application server is

consistently near 100 percent CPU utilization, but disappears when the workload becomes lighter

or near-idle, is an indication of heap fragmentation. Heap fragmentation can occur when the JVM

can free sufficient objects to satisfy memory allocation requests during garbage collection cycles,

but the JVM does not have the time to compact small free memory areas in the heap to larger

contiguous spaces.

Another form of heap fragmentation occurs when objects that are less than 512 bytes are freed.

The objects are freed, but the storage is not recovered, resulting in memory fragmentation until a

heap compaction occurs.

Heap fragmentation can be reduced by forcing compactions to occur. However, there is a

performance penalty for forcing compactions. Use the Java -X command to see the list of memory

options.

5. Tune garbage collection

Examining Java garbage collection gives insight to how the application is utilizing memory. Garbage

collection is a Java strength. By taking the burden of memory management away from the application

writer, Java applications are more robust than applications written in languages that do not provide

garbage collection. This robustness applies as long as the application is not abusing objects. Garbage

collection typically consumes from 5 to 20 percent of total run time of a properly functioning

application. If not managed, garbage collection is one of the biggest bottlenecks for an application.

Monitoring garbage collection while a fixed workload is running, provides you with insight as to whether

the application is over using objects. Garbage collection can even detect the presence of memory

leaks.

You can use JVM settings to configure the type and behavior of garbage collection. When the JVM

cannot allocate an object from the current heap because of lack of contiguous space, the garbage

collector is invoked to reclaim memory from Java objects that are no longer being used. Each JVM

vendor provides unique garbage collector policies and tuning parameters.

You can use the Verbose garbage collection setting in the administrative console to enable garbage

collection monitoring. The output from this setting includes class garbage collection statistics. The

format of the generated report is not standardized between different JVMs or release levels.

To adjust your JVM garbage collection settings:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition >

Java virtual machine

c. Enter the –X option you want to change in the Generic JVM arguments field.

d. Click Apply.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

The following list describes the –X options for the different JVM garbage collectors.

The IBM virtual machine for Java garbage collector.

A complete guide to the IBM implementation of the Java garbage collector is provided in the

IBM Developer Kit and Runtime Environment, Java2 Technology Edition, Version 5.0

Diagnostics Guide. This document is available on the developerWorks® Web site.

 Use the Java -X option to view a list of memory options.

v -Xgcpolicy

The IBM virtual machine for Java provides four policies for garbage collection. Each policy

provides unique benefits.

Chapter 6. Tuning the IBM virtual machine for Java 33

– optthruput is the default policy, and provides high throughput but with longer garbage

collection pause times. During a garbage collection, all application threads are stopped

for mark, sweep and compaction, when compaction is needed. The optthruput policy is

sufficient for most applications.

– optavgpause is the policy that reduces garbage collection pause time by performing the

mark and sweep phases of garbage collection while an application is running. This policy

causes a small performance impact to overall throughput.

– gencon, is the policy that works with the generational garbage collector. The generational

scheme attempts to achieve high throughput along with reduced garbage collection

pause times. To accomplish this goal, the heap is split into new and old segments. Long

lived objects are promoted to the old space while short-lived objects are garbage

collected quickly in the new space. The gencon policy provides significant benefits for

many applications. However, it is not suited for all applications, and is typically more

difficult to tune.

– subpool is a policy that increases performance on multiprocessor systems, that

commonly use more then 8 processors. This policy is only available on IBM System p™

System p and System z™ processors. The subpool policy is similar to the optthruput

policy except that the heap is divided into subpools that provide improved scalability for

object allocation.

 Default optthruput

Recommended optthruput

Usage Specifying Xgcpolicy:optthruput sets the garbage

collection policy to optthruput

Setting gcpolicy to optthruput disables concurrent mark. You should get optimal throughput

results when you use the optthruput policy unless you are experiencing erratic application

response times, which is an indication that you might have pause time problems

Setting gcpolicy to optavgpause enables concurrent mark with its default values. This

setting alleviates erratic application response times that normal garbage collection causes.

However, this option might decrease overall throughput.

v -Xnoclassgc

By default, the JVM unloads a class from memory whenever there are no live instances of

that class left. Therefore, class unloading can decrease performance.

You can use the -Xnoclassgc argument to disable class garbage collection so that your

applications can reuse classes more easily. Turning off class garbage collection eliminates

the overhead of loading and unloading the same class multiple times.

Note: This argument should be used with caution, if your application creates classes

dynamically, or uses reflection, because for this type of application, the use of this

option can lead to native memory exhaustion, and cause the JVM to throw an

Out-of-Memory Exception. When this option is used, if you have to redeploy an

application, you should always restart the application server to clear the classes and

static data from the pervious version of the application.

 Default Class garbage collection is enabled.

Recommended Disable class garbage collection.

Usage Specify Xnoclassgc to disable class garbage collection.

6. Enable class sharing in a cache.

34 Tuning guide

The share classes option of the IBM implementation of the Java 2 Runtime Environment (J2RE)

Version 1.5.0 lets you share classes in a cache. Sharing classes in a cache can improve startup time

and reduce memory footprint. Processes, such as application servers, node agents, and deployment

managers, can use the share classes option.

Note: The IBM implementation of J2RE Version 1.5.0 is currently not supported on:

v

Solaris

Solaris

v

HP�UX

HP-UX

If you use this option, you should clear the cache when the process is not in use. To clear the cache,

either call the app_server_root/bin/clearClassCache.bat/sh utility or stop the process and then restart

the process.

If you need to disable the share classes option for a process, specify the generic JVM argument

-Xshareclasses:none for that process:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition >

Java virtual machine

c. Enter -Xshareclasses:none in the Generic JVM arguments field.

d. Click OK.

e. Click Save to save your changes to the master configuration.

f. Stop and restart the application server.

 Default The Share classes in a cache option are enabled.

Recommended Leave the share classes in a cache option enabled.

Usage Specifying -Xshareclasses:none disables the share

classes in a cache option.

7. Enable compressed references on 64-bit environments, such as AIX 64, Linux PPC 64, zLinux 64, and

Microsoft Windows AMD64, and Linux AMD64.

The compressed references option of the IBM implementation of the 64-bit Java SE Runtime

Environment (JRE) Version 6.0 lets you limit all of the memory references to 32-bit size. Typically, the

64-bit JVMs use more heap space than the 32-bit JVMs because they use 64-bit wide memory

references to address memory. The heap that is addressable by the 64-bit reference is orders of

magnitude larger than the 32-bit heap, but in the real world, a heap that requires all 64-bits for

addressing is typically not required. Compressing the references reduces the size of the addresses

and makes more efficient use of the heap. Compressing these references also improves the processor

cache and bus utilization, thereby improving performance.

Note:

The compressed references feature is not supported on:

v Solaris 64-bit JVM

v HP-UX 64-bit JVM

v iSeries Classic 64-bit JVM

The product automatically enables pointer compression on the supported platforms by default if the

heap size (controlled by the -Xmx parameter) is set under a certain heap size (around 25 GB

depending on platform), else it will default to non-compressed references. The user can override these

defaults by using the command line options below.

The following command-line options control compressed references feature:

-Xcompressedrefs

This command-line option enables the compressed references feature. When the JVM is

Chapter 6. Tuning the IBM virtual machine for Java 35

launched with this command line option it would use 32-bit wide memory references to address

the heap. This feature can be used up to a certain heap size (around 29GB depending on the

platform), controlled by -Xmx parameter.

-Xnocompressedrefs

This command-line options explicitly disable the compressed references feature. When the

JVM is launches with this command line option it will use full 64-bit wide memory references to

address the heap. This option can be used by the user to override the default enablement of

pointer compression, if needed.

8. Tune the configuration update process for a large cell configuration.

In a large cell configuration, you might have to determine whether configuration update performance or

consistency checking is more important. When configuration consistency checking is turned on, a

significant amount of time might be required to save a configuration change, or to deploy a several

applications. The following factors influence how much time is required:

v The more application servers or clusters that are defined in a cell, the longer it takes to save a

configuration change.

v The more applications that are deployed in a cell, the longer it takes to save a configuration change.

If the amount of time required to change a configuration change is unsatisfactory, you can add the

config_consistency_check custom property to your JVM settings and set the value of this property to

false.

a. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition.

c. In the Additional Properties section , click Java virtual machine > Custom properties > New.

d. Enter config_consistency_check in the Name field and false in the Value field.

e. Click APPLY.

f. Click Save to save your changes to the master configuration.

g. Restart the server.

If you are using the wsadmin command wsadmin -conntype none in local mode, you must set the

config_consistency_check property to false before issuing this command.

What to do next

Continue to gather and analyze data as you make tuning changes until you are satisfied with how the JVM

is performing.

36 Tuning guide

Chapter 7. Tuning HotSpot Java virtual machines (Solaris &

HP-UX)

The architecture of the Sun-developed, HP-ported HotSpot Java virtual machine (JVM) has evolved

differently than the IBM-developed software development kit (SDK.) Its internal structure, for young or old

generation and permanent regions, arises to primarily support generational garbage collection, as well as

other garbage collection modes as necessary.

Before you begin

v Determine the type of JVM on which your application server is running.

Issue the java –fullversion command from within your application server app_server_root/java/bin

directory. In response to this command, the application server writes information about the JVM,

including the JVM provider information, into the SystemOut.log file. If your application server is running

on an IBM virtual machine for Java, see the topicTuning the IBM virtual machine for Java.

v Verify that the following statements are true for your system:

1. The most recent supported version of the JVM is installed on your system.

2. The most recent service update is installed on your system. Almost every new service level includes

JVM performance improvements.

About this task

Tuning the Sun HotSpot JVM is an iterative process where the JVM configuration is developed, data

gathered, primarily from verbosegc data, and then analyzed, and any configuration revisions applied on

the next cycle. Perform one or more of the following steps if you need to tune your Sun HotSpot JVM.

v Provide enough Java Heap Memory.

The Java heap memory is a reserved, contiguous set of addresses. The size of the Java heap memory

is the maximum size for which the Java heap is configured. These addresses are not available for other

native or system memory demands, and are maintained and managed only by the JVM because the

Java heap is used for Java object storage for the lifetime of that JVM.

When the JVM initializes, secures resources for the Java heap are obtained according to the JVM

configuration settings. If insufficient memory is available, the JVM initialization fails. If inadequate

memory is configured in the Java heap, the system eventually fails with an OutOfMemory report, that is

typically preceded by significant garbage collection activity, during which almost no Java processing

occurs.

Sufficient consideration for the native memory needs of other components of your process must be

made to accommodate running threads, storing data for I/O, and satisfying such requirements as

alignment, and page size.

The Sun HotSpot Java heap comprises two physically independent parts that you must take into

consideration when you specify maximum Java heap sizes:

– The permanent region, which is a combination of young and old generation regions that are further

(subdivided into eden, survivor spaces, and tenured regions.

– The provision memory for the Java components of this system.

The -XX:MaxPermSize= and -Xmx (Maximum Java Heap size) parameters respectively configure the

maximum size of the permanent region, where the class code and related data are logically presented

as part of the old generation region but are kept physically separate, and the maximum size of the main

heap where Java objects and their data are stored either in the young or old generation regions.

Together the permanent region and the main heap comprise the total Java heap. An allocation failure in

either of these regions either represents the inability to accommodate either all the application code or

all the application data, both of which are terminal conditions, that can exhaust available storage, and

cause an OutOfMemory error.

Consult these tuning parameters:

© IBM Corporation 2008 37

– -XX:MaxPermSize (Permanent region)

– -Xmx (Maximum Java Heap size)

v Disable explicit garbage collection to eliminate any unnecessary or mistimed major garbage collection

cycles that might be introduced in software components of the system.

Consult these tuning parameters:

– -XX:+DisableExplicitGC.

v Tune region sizes to optimize garbage collection action.

Any garbage collection tuning endeavour decisions should be based on the behavior of the garbage

collectors. You should identify the correct garbage collection mode to suit the operational needs of you

application. You should also verify that you are meeting your performance requirements, and are

efficiently recycling enough memory resources to consistently meet the demands of your application.

Any changes that you make to garbage collection parameter settings should produce sufficiently

different results and show benefits that are derived from exploiting different regions of the HotSpot Java

heap.

An unwise choice typically lengthens the tuning process as the iterative tuning process needs to be

substantially repeated. Further sections present the two principal choices, parallel throughput or

concurrent low-pause, and the relevant options for further tuning. Both modes offer the potential for high

performance, but the key performance factor is that the behavior that gets optimized is different for each

mode.

The dominant tuning activity concerns controlling resource utilization to service allocation activity of the

application, and to arrange efficient garbage collection to recycle storage, as required. Inevitably, these

tuning discussions are dependent on the garbage collection mode employed. Two types of garbage

collection are discussed:

– The throughput collector that performs parallel scavenge copy collection on the young generation.

This type of garbage collection is the default type on multi-processor server class machines.

– A concurrent low-pause collector.

The objective of tuning with these collectors is to deliver the behavior that is most suited for the

allocation patterns and object lifetimes of your application system, and that maximizes the efficiency of

their collection actions.

– Option 1: Use the default throughput/parallel scavenge collector with built-in tuning enabled.

Starting with Version 5, the Sun HotSPot JVM provides some detection of the operating system on

which the server is running, and the JVM attempts to set up an appropriate generational garbage

collection mode, that is either parallel or serial, depending on the presence of multiple processors,

and the size of physical memory. It is expected that all of the hardware, on which the product runs in

production and preproduction mode, satisfies the requirements to be considered a server class

machine. However, some development hardware might not meet this criteria.

The behavior of the throughput garbage collector, whether tuned automatically or not, remains the

same and introduces some significant pauses, that are proportional to the size of the used heap, into

execution of the Java application system as it tries to maximize the benefit of generational garbage

collection. However, these automatic algorithms cannot determine if your workload well-suits its

actions, or whether the system requires or is better suited to a different garbage collection strategy.

Consult these tuning parameters:

- -XX:+UseParallelGC

- -XX:+UseAdaptiveSizePolicy

- -XX:+AggressiveHeap

– Option 2: Use the default throughput/parallel scavenge collector, but tune it manually.

Disadvantages of using the built-in algorithm that is established using the

-XX:+UseAdaptiveSizePolicy parameter, include limiting what other parameters, such as the

-XX:SurvivorRatio parameter, can be configured to do in combination with the built-in algorithm.

When you use the built-in algorithm, you give up some control over determining the resource

allocations that are used during execution. If the results of using the built-in algorithm are

38 Tuning guide

unsatisfactory, it is easier to manually configure the JVM resources, than to try and tune the actions

of the algorithm. Manually configuring the JVM resources involves the use of half as many options as

it takes to tune the actions of the algorithm.

Consult these tuning parameters:

- -XX:NewRatio=2 This is the default for a server that is configured for VM mode

- -XX:MaxNewSize= and -XX:NewSize=

- -XX:SurvivorRatio=

- -XX:+PrintTenuringDistribution

- -XX:TargetSurvivorRatio=

– Option 3: Use the concurrent low-pause mark-sweep collector

This collector is a radical departure from the evolution of generational garbage collection that has

under pinned the Hotspot architecture, permitting the overlap of application thread processing with a

dedicated low-priority, background garbage collection thread. If your application data is incompatible

with the behavior of the default throughput collector, then the concurrent mark-sweep (CMS) collector

might be a viable strategy, particularly for application systems that are intolerant of invasive pauses.

This collector is particularly helpful with the very large heaps that are used with the 64-bit JVM, or

applications that have a large set of long-lived data, also referred to as a large tenured generation,

and that maintains comparatively good cache utilization, largely preserving pages of the young

generation, even while the background thread must scan through all the pages of the entire heap.

To employ the concurrent mark-sweep collector as the principle housekeeping agent, add this option,

instead of any other garbage collection modes, to your JVM configuration.

Consult these tuning parameters:

- -XX:+UseConcMarkSweepGC

- -XX:CMSInitiatingOccupancyFraction=75

- -XX:SurvivorRatio=6

- -XX:MaxTenuringThreshold=8

- -XX:NewSize=128m

Among the difficulties for tuning with CMS, is that the worst case garbage collection times, which is

when the CMS cycle aborts, can take last several seconds, which is especially costly for a system

that uses CMS precisely to avoid long pauses. Consequently, service level agreements might dictate

the use of CMS, because the average or median pause times are very, very low, and the tuning

must err on the cautious side to ensure that CMS cycles don’t abort. CMS succeeds only when its

anticipatory trigger ensures that the CMS cycle always starts early enough to ensure sufficient free

resources are available before they are demanded. If the CMS collector is unable to finish before the

tenured generation fills up, the collection is completed by pausing the application threads, which is

known as a full collection. Full collections are a sign that further tuning is required to the CMS

collector to make it better suit your application.

Finally, unlike other garbage collection modes with a compaction phase, the use of CMS theoretically

raises the risk of fragmentation occurring with the HotSpot. However, in practice this is rarely a

problem while the collection recovers a healthy proportion of the heap. In cases when the CMS fails,

or aborts a collection, an alternative compacting garbage collection is triggered. Inevitably any other

type of garbage collection incurs a significant invasive pause compared to a normal CMS collection.

Note: As with the throughput collector, there are considerably more options available for explicitly

controlling CMS. However, those mentioned represent the core of the options that you are

likely to need to considered using when you are tuning the HotSpot JVM.

What to do next

Gather and analyze data to evaluate the configuration, typically using verbosegc. Continue to gather and

analyze data as you make tuning changes until you are satisfied with how the JVM is performing.

Chapter 7. Tuning HotSpot Java virtual machines (Solaris & HP-UX) 39

Sun HotSpot JVM tuning parameters (Solaris and HP-UX)

Tuning a Sun HotSpot Java virtual machine (JVM) is an iterative process where the JVM configuration is

developed, data is gathered, primarily the verbosegc data, and then analyzed. Any configuration revisions

are then applied on the next cycle. Even though there are many Sun HotSpot JVM parameters, the

following parameters have been identified as central to tuning. Which of these parameters you modify

depends on your configuration choices. Therefore, in addition to reviewing these parameter descriptions, it

is strongly recommended that your read the topic Tuning Sun HotSpot Java Virtual Machines (Solaris &

HP-UX) for a complete understanding or the JVM tuning methodology.

There is a standard form by which all Sun HotSpot options are specified. Understanding this form can help

you avoid problems with transcribing options, interpreting instructions, and avoiding the potential confusion

caused by the JVM rejecting an option, and then refusing to start.

You should be particularly concerned with the Sun HotSpot options that are particular to the

implementation of the Sun HotSpot JVM, starting with the -XX option, rather than to standard or portable

VM options, such as -X option or - option. The majority of these options are boolean valued, meaning they

are set to either true or false. These settings either enable or disable a feature. The following standard

form is used to enable an option, which is what you typically do when you change the setting of an option

during the tuning process:

-XX:+ option

The following standard form is used to disable an option, which you will do less frequently:

-XX:- option

Note:

v The use of a plus sign or a minus sign should immediately follows the colon. Otherwise the

option typically requires a value, and appears more like the assignment of a value because it has

an option=value format.

v As stated on the SUN Web site, the -XX Hotspot options are subject to change without notice in

subsequent releases of the JDK. Therefore, before specifying an option, you should verify that it

is supported for the version of the JDK that you are running on your system.

When determining which option to use, the name of the option typically describes the action that occurs if

the option is enabled. The default value for most options leave the feature disabled. Therefore, if you

disable an option that is already disabling a feature, it is possible to cause a double-negative situation.

This is particularly true with options that have names that begins with the word Disable. For example, the

default setting for the DisableExplicitGC option causes JVM to honor Explicit garbage collection requests.

Therefore, you would normally want to enable this option by specifying a plus sign in front of this option.

The plus sign has the affect of disabling the honoring of explicit garbage collection requests, which is what

the name of the options implies. With options, such as the DisableExplicitGC option, it is rare to encounter

the setting -XX:-DisableExplicitGC because this setting equates to specifying the default action.

In circumstances where the name of the option includes the term Use, the option typically makes more

sense either for the enablement or disablement of that feature and the sense of the plus or minus sign is

usually more intuitive.

Where a value needs to be specified, the option appears like an assignment with an equal sign between

the option and the setting. In this situation, the option expects an appropriate number value to immediately

follow the equal sign, without any blank spaces between the equal sign and the number. The value can

often accept standard abbreviations, such as k for kilobytes, m for megabytes, and g for gigabytes, where

it is appropriate to specify these values. The virtual machine performs only limited validation of such

parameters, and, where invalid, typically produces an error message that indicates that the virtual machine

cannot start.

40 Tuning guide

-Xmx (Maximum Java Heap size)

Tune this parameter, in conjunction with the -XX:MaxPermSize parameter, to provide enough Java heap

memory. When you specify a value for the maximum Java heap size for object storage in the Java heap,

you should consider that the peak resource demands that are necessary for processing the peak input

volumes that are designed to be handled by the system.

By contrast, the initial minimum size of the Java heap, that is specified using the -Xms parameter, should

reflect the sizing of the Java heap that is needed to accommodate the persistent data that arises from the

normal operation of the system under a routine steady-state input load. Such a resource request ensures

an efficient system startup, where just the right amount of storage is claimed to permit quick initialization

without needing many garbage collection cycles to increase heap capacity. Thereafter, the working size

capacity of the Java heap varies between the normal capacity known to accommodate a routine

steady-state workload, and the systems design peak size, and any variations in heap capacity should

reflect changes in the systems inputs, such as a burst of activity, or the increase of workload.

The working size capacity of the Java heap is considered useful information about the running state of the

system. Tuning the initial minimum size of the Java heap should only involve optimizing system startup.

Setting minimum and maximum heap sizes to the same value fixes the Java heap and constrains the

recovery options of the JVM for its housekeeping of the Java heap. This type of setup can cause

performance penalties and poor utilization of Java heap resources.

-XX:+AggressiveHeap

Use this parameter if you are using the default throughput/parallel scavenge collector with built-in tuning

enabled. The JVM can attempt to aggressively tune the parameters of its tuning algorithm based on using

all the resources of the operating system on which you are running. In situations where a single product

process is executing using all of the resources of the operating system, use of this option to determine if

the JVM can deliver satisfactory results. Using this option while testing JVM results should reduce your

tuning effort.

-XX:CMSInitiatingOccupancyFraction=75

Configure this parameter if you are using the concurrent low-pause mark-sweep collector. This option is

used to control CMS. It sets the triggering condition for when the dedicated background thread engages to

conduct garbage collection on the tenured region of the heap. Unlike other garbage collection modes, the

garbage collection action does not wait for an allocation to fail. Instead the objective is to trigger the

garbage collection to recover sufficient space before the allocation arises that would otherwise have failed.

The principle trigger is based on the percentage utilization of the Java heap, and defaults to about 70%.

The default value typically ensures that CMS cycles start sufficiently, although this frequency might be

higher than necessary.

However, with only a very small eden region, and no use of the survivor spaces, there is barely any

opportunity for objects to age, such that the generational garbage collection support can collect short-lived

objects. For systems that benefit from generational garbage collection, by producing many quite short-lived

objects, the CMS defaults deny the opportunity to exploit the generational support for which the Sun

HotSpot structure is primarily designed. For only a modest investment of resources in the young

generation survivor spaces, and a decent eden region, to re-enable full generational garbage collection

action will probably only cause an invasive pause of a second, or less, keeping the promotion of aged

objects into the tenured region low. This condition gives you the full benefit of the free compaction of

surviving content as objects age, and provides maximum opportunity for the CMS thread to collect the

tenured region, even with large heaps.

-XX:+DisableExplicitGC

This option disable explicit garbage collection to eliminate any unnecessary or mistimed major garbage

collection cycles that might be introduced in the software components of the system.

Chapter 7. Tuning HotSpot Java virtual machines (Solaris & HP-UX) 41

It is recommended that developers avoid the use of System.gc() calls to cause programmer-initiated, full

compaction garbage collection cycles, because such calls can interfere with tuning the resources and

garbage collection for a entire application system. If you are striving to meet demanding pause time

requirements, and want to prevent programmer initiated garbage collection calls, then use of this option

must be strongly considered because this option causes explicit System.gc() calls to be ignored.

-XX:MaxNewSize= and -XX:NewSize=

Use these parameters if you are using the default throughput/parallel scavenge collector, but have decided

to manually tune this scavenge collector, instead of using the built-in tuning that the

-XX:+UseAdaptiveSizePolicy parameter provides. The current young generation size is bound to be

greater than or equal to the initial or minimum young generation size, as specified on the -XX:NewSize

parameter. This size is less than or equal to the value specified for the maximum young generation, as

specified on the -XX:MaxNewSize parameter.

Certain circumstances might suggest that you constrain the amount of the heap that is considered by

generational garbage collection, as determined by the -XX:NewRatio parameter, typically limiting the

maximum scope of the young generation, and occasionally limiting the minimum size. For example, setting

the limit of a large object that might be subject to generational garbage collection, or to limit the maximum

amount of memory that is typically in use beyond the set of persistent objects with long lifetimes, you

might need to set a maximum size for the young generation heap. Specifying a minimum size, for the

section of the heap that is used for young generation objects, typically accompanies tuning the use of

survivor spaces, which is usually of secondary importance, but must satisfy meeting the constraints for the

minimum resources in the Java heap, as specified on the -Xms parameter.

Unless you are striving for a specific behavior within generational garbage collection, it should be

unnecessary to specify either minimum or maximum separately from the use of the NewRatio option. The

reasons for setting either the maximum or minimum values are typically different. Seldom do these settings

need to be set to the same value, even though there is a shorthand for setting and fixing the size of the

young generation section, using the -Xmn parameter. However, an inappropriate configuration risks the

loss of the benefits of generational garbage collection entirely.

-XX:MaxPermSize (Permanent region)

Tune this parameter in conjunction with the -Xmx parameter to provide enough Java heap memory. The

permanent region is employed to store all the class code and class-like data, such as interned strings.

The permanent region must be large enough to accommodate all of the classes that might be concurrently

loaded together. Determining an appropriate size for this region might be confusing, because this region of

the heap is smaller, expands more slowly, and is specifically employed for class-like objects, and it is

commonly observed to be utilized at 99-100% of its current capacity. Therefore, you must be careful how

you interpret out-of-memory events. You should always verify that this region is maximally expanded

before providing this region with more resources.

Note: In any Java Platform, Enterprise Edition (Java EE) based system, with its heavy use of application

class loaders, you should avoid using the -Xnoclassgc parameter because this parameter prevents

garbage collection of this critical region of the heap, effectively creating a memory leak of class

data. For a development system where you are frequently deploying changing class content, you

should significantly oversize this region. You should also regularly restart this system to prevent old

versions of dormant code from accumulating within currently used, and otherwise unreleaseable

class loaders.

-XX:MaxTenuringThreshold=number-of-collections

Configure this parameter when using the concurrent low-pause mark-sweep collector. This parameter

controls the promotion of the objects from the new generation section to the old generation section by

42 Tuning guide

specifying the number of collections during which an object remains in the new generation section before

being moved to the old generation section. 8 is the default value.

-XX:NewRatio=2

Use this parameter if you are using the default throughput/parallel scavenge collector, but have decided to

manually tune this scavenge collector, instead of using the built-in tuning that the

-XX:+UseAdaptiveSizePolicy parameter provides.

The Java heap is divided into two sections where objects are stored. One of the sections is where

generational garbage collection occurs, and is where young generation objects reside. The other section,

which comprises the rest of the heap, is called the tenured heap, and is where the old or long-lived objects

reside. This option sizes the young generation region that supports generational garbage collection, in

proportion to the overall heap capacity. The current young generation size is bound to be greater-than or

equal to the initial or minimum young generation size, as specified on the -XX:NewSize parameter. This

size is less-than or equal to the value specified for the maximum young generation, as specified on the

-XX:MaxNewSize parameter. The young generation size is maintained as a ratio to the tenured region, as

determined by the current capacity of the main Java heap. The default value of 2 means that the tenured

region is twice the size of the young generation region, which means that the young generation is one

third of the entire Java heap.

This default value typically delivers good generational garbage collection performance, which is the typical

goal of tuning the Sun HotSpot JVM. However, other strategies exist. For example, you might want to

increase the proportion of the heap where generational garbage collection is conducted. If you decide to

change the proportion, remember that there is a limit as to how much of the heap can reasonably be

maintained by generational garbage collection, and if that limit is exceeded, all generational garbage

collection might be lost because garbage collection cycles will become major garbage collection cycles

over the whole heap instead of the desired minor garbage collection cycles that consider just the

generational part of the heap.

2 is the default value for a server that is running in VM mode.

-XX:NewSize=128m

Configure this parameter if you are using the concurrent low-pause mark-sweep collector. The current

young generation size is bound to be greater than or equal to the initial or minimum young generation

size, as specified on the -XX:NewSize parameter. One of the difficulties for tuning with CMS is that the

worst case garbage collection times, which occurs when the CMS cycle aborts, might take several

seconds, which is especially costly for a system that is employing CMS as a way to avoid long pauses.

Consequently, service level agreements might dictate the use of CMS. In this situation tuning must err on

the cautious side to ensure that CMS is given every opportunity to succeed. CMS succeeds only when its

anticipatory trigger ensures the CMS cycle starts early enough to always ensure that sufficient free

resources are available before they are demanded. If the CMS collector is unable to finish before the

tenured generation fills up, the collection is completed by pausing the application threads, which is called a

full collection. Full collections are a sign that further tuning is required to the CMS collector to make its

operation better suit your application.

-XX:+PrintTenuringDistribution

This option is a garbage collection logging option which enables the printing of information regarding the

age of the objects, tenuring information, as they age through the survivor spaces.

Chapter 7. Tuning HotSpot Java virtual machines (Solaris & HP-UX) 43

-XX:SurvivorRatio=

Use this parameter if you are using the default throughput/parallel scavenge collector, but have decided to

manually tune this scavenge collector, instead of using the built-in tuning that the

-XX:+UseAdaptiveSizePolicy parameter provides, or if you are trying to tune the concurrent low pause

collector.

The generational garbage collection action concerns dividing short-lived objects from longer lived ones.

Only those objects that continue in use need to be preserved in the heap. The young generation region

that hosts generational garbage collection includes further internal structure. It includes a large eden

region where objects are initially allocated, and smaller survivor spaces where objects, that have longer

lifetimes, reside. The SurvivorRatio sizes these regions in terms of how large the eden region is relative to

the smaller survivor space. Sizing the survivor spaces is typically of secondary importance, because the

volume of objects that might benefit from optimization varies greatly by application. However, typically you

should lower this value from the default value of 25, to something like 8.

Any changes to this parameter should be justified through an analysis of the data concerning the tenuring.

You can use the -XX:+PrintTenuringDistribution parameter to obtain this data

Note: -XX:SurvivorRatio= option is incompatible with the JVM parameter -XX:+UseAdaptiveSizePolicy.

Please use either one according to your situation.

-XX:TargetSurvivorRatio=

Use this parameter if you are using the default throughput/parallel scavenge collector, but have decided to

manually tune this scavenge collector, instead of using the built-in tuning that the

-XX:+UseAdaptiveSizePolicy parameter provides.

This parameter encourages the JVM to increase the percentage utilization of the survivor spaces, thereby

avoiding premature promotion, if possible, and maximizing the chance for objects to be collected from the

young generation. The default value is 50. Better utilization of these regions might be achieved if you set

this parameter to 90.

-XX:+UseAdaptiveSizePolicy

Use this parameter to enable the built-in tuning with the default throughput/parallel scavenge collector

default throughput/parallel scavenge collector.

In addition to the automatic operating system detection, Sun includes a tuning algorithm that attempts to

autonomically tune the JVM to optimize the throughput goal and the efficiency of the throughput collection

strategy. This tuning algorithm is turned on by default, and is explicitly engaged using the

-XX:+UseAdaptiveSizePolicy parameter. This tuning algorithm should typically achieve satisfactory

results for the majority of application workloads, saving you from having to perform additional tuning

efforts. However you should still test this algorithm for your workload and verify that it meets your

throughput requirements before using it in a production environment.

-XX:+UseConcMarkSweepGC

Use this parameter to enable the concurrent low-pause mark-sweep collector. This garbage collection

mode reconfigures the generational garbage collection so that your out-of-the-box the system minimizes

the invasive pauses introduced by having to collect the young generation content.

This parameter also minimizes the extent of the young generation, or eden region. Server-class systems

typically detect the availability of multiple processors, and attempt to collect the young generation in

parallel, in an attempt to deliver absolutely the minimum pause possible, even if there exists only a limited

amount of work available, giving little advantage for the use of multiple threads after the coordination

44 Tuning guide

overhead. To offset the work no longer being performed by generational garbage collection, it is typically

necessary to increase the resources committed to the main heap by about ten to thirty percent, as

compared to the throughput collector settings.

-XX:+UseParallelGC

Use this parameter to enable the default throughput/parallel scavenge collector.

The default garbage collection mode of a server JVM is to adopt the throughput collector that conducts the

minor garbage collections over the young generation in parallel as a foreground stop-the-world task. This

collector can be enabled explicitly through the use of the -XX:+UseParallelGC parameter. Goals, other

than throughput, can be specified. However, the penalty for not achieving such goals can be quite severe,

and might cause a fatal out-of-memory error.

Chapter 7. Tuning HotSpot Java virtual machines (Solaris & HP-UX) 45

46 Tuning guide

Chapter 8. Tuning transport channel services

The transport channel services manage client connections and I/O processing for HTTP and JMS

requests. These I/O services are based on the non-blocking I/O (NIO) features that are available in Java.

These services provide a highly scalable foundation to WebSphere Application Server request processing.

Java NIO based architecture has limitations in terms of performance, scalability and end user usability.

Therefore, integration of true asynchronous I/O is implemented. This implementation provides significant

benefits in usability, reduces the complexity of I/O processing and reduces that amount of performance

tuning you have to perform.

About this task

Key features of the new transport channel services include:

v Scalability, which enables the product to handle many concurrent requests.

v Asynchronous request processing, which provides a many-to-one mapping of client requests to Web

container threads

v Resource sharing and segregation, which enables thread pools to be shared between the Web

container and a messaging service.

v Improved usability and

v Incorporation of autonomic tuning and configuration functions.

Changing the default values for settings on one or more of the transport channels associated with a

transport chain can improve the performance of that chain.

v Adjust TCP transport channel settings. In the administration console, click Servers > Server Types

> WebSphere application servers > server_name > Ports. Then click View associated transports for

the appropriate port.

1. Select the transport chain whose properties you are changing.

WebContainer

WebContainer
Channel

TCP Channel

Thread 1 Thread X

HTTP Channel

Request 1 Request 2 Request N

The WebContainer Channel provides a
dispatching layer between the channel
and the servlet/JSP container

The HTTP Channel provides a HTTP
protocol support for the WebSphere Web
serving capabilities.

The TCP Channel manages client
connections providing and
asynchronous I/O layer between
clients and WebSphere threads. The
mapping of client connections to
threads is generally many to one.

Figure 1. Transport Channel Service

© IBM Corporation 2004 47

2. Click on the TCP transport channel defined for that chain.

3. Lower the value specified for the Maximum open connections property. This parameter controls the

maximum number of connections that are available for a server to use. Leaving this parameter at

the default value of 20000, which is the maximum number of connections allowed, might lead to

stalled web sites under failure conditions, because the product continues to accept connections,

thereby increasing the connection, and associated work, backlog. The default should be changed to

a significantly lower number, such as 500, and then additional tuning and testing should be

performed to determine the optimal value that you should specify for a specific Web site or

application deployment.

4. If client connections are being closed without data being written back to the client, change the value

specified for the Inactivity timeout parameter. This parameter controls the maximum number of

connections available for a server’s use. Upon receiving a new connection, the TCP transport

channel waits for enough data to arrive to dispatch the connection to the protocol specific channels

above the TCP transport channel. If not enough data is received during the time period specified for

the Inactivity timeout parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds, which is adequate for most applications. You

should increase the value specified for this parameter if your workload involves a lot of connections

and all of these connections can not be serviced in 60 seconds.

5. Assign a thread pool to a specific HTTP port. Each TCP transport channel is assigned to a particular

thread pool. Thread pools can be shared between one or more TCP transport channels as well as

with other components. The default settings for a TCP transport channel is to have all HTTP based

traffic assigned to the WebContainer thread pool and all other traffic assigned to the Default thread

pool. Use the Thread pool pull-down to assign a particular thread pool to each TCP transport

channel. The default settings for this parameter has all HTTP based traffic assigned to the

WebContainer thread pool and all other traffic is assigned to the Default thread pool. (Thread pool

collection describes how to create additional thread pools.)

6. Tune the size of your thread pools. By default, a thread pool can have a minimum of 10 threads and

a maximum of 50 maximum threads. To adjust these values, click on Thread pools >

threadpool_name and adjust the values specified for the Minimum Size and Maximum Size

parameters for that thread pool.

Typical applications usually do not need more than 10 threads per processor. One exception is if

there is some off server condition, such as a very slow backend request, that causes a server

thread to wait for the backend request to complete. In such a case, CPU usage is usually low and

increasing the workload does not increase CPU throughput. Thread dumps show nearly all threads

in a call out to the backend resource. If this condition exists, and the backend is tuned correctly, try

increasing the minimum number of threads in the pooll until you see improvements in throughput

and thread dumps show threads in other areas of the runtime besides the backend call.

The setting for the Grow as needed parameter should not be changed unless your backend is prone

to hanging for long periods of time. This condition might indicate that all of your runtime threads are

blocked waiting for the backend instead of processing other work that does not involve the hung

backend.

v Adjust HTTP transport channel settings. In the administration console, click Servers > Server Types

> WebSphere application servers > server_name > Ports. Then click View associated transports for

the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive.

The Use persistent (keep-alive) connections setting controls whether or not connections are left

open between requests. Leaving the connections open can save setup and teardown costs of

sockets if your workload has clients that send multiple requests. The default value is true, which is

typically the optimal setting.

48 Tuning guide

If your clients only send single requests over substantially long periods of time, it is probably better

to disable this option and close the connections right away rather than to have the HTTP transport

channel setup the timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter to increase the number

of requests that can flow over a connection before it is closed.

When the Use persistent connections option is enabled, the Maximum persistent requests parameter

controls the number of requests that can flow over a connection before it is closed. The default

value is 100. This value should be set to a value such that most, if not all, clients always have an

open connection when they make multiple requests during the same session. A proper setting for

this parameter helps to eliminate unnecessary setting up and tearing down of sockets.

For test scenarios in which the client will never close a socket or where sockets are always proxy or

Web servers in front of your application server, a value of -1 will disable the processing which limits

the number of requests over a single connection. The persistent timeout will still shutdown some idle

sockets and protect your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase the length of time that a

connection is held open before being closed due to inactivity. The Persistent timeout parameter

controls the length of time that a connection is held open before being closed because there is no

activity on that connection. The default value is 30 seconds This parameter should be set to a value

that keeps enough connections open so that most clients can obtain a connection available when

they need to make a request.

6. If clients are having trouble completing a request because it takes them more than 60 seconds to

send their data, change the value specified for the Read timeout parameter. Some clients pause

more than 60 seconds while sending data as part of a request. To ensure they are able to complete

their requests, change the value specified for this parameter to a length of time in seconds that is

sufficient for the clients to complete the transfer of data. Be careful when changing this value that

you still protect the server from clients who send incomplete data and thereby utilize resources

(sockets) for an excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being written to them, change

the value specified for the Write timeout parameter. Some clients are slow and require more than 60

seconds to receive data that is sent to them. To ensure they are able to obtain all of their data,

change the value specified for this parameter to a length of time in seconds that is sufficient for all

of the data to be received. Be careful when changing this value that you still protect the server from

malicious clients.

v Adjust the Web container transport channel settings. In the administration console, click Servers >

Server Types > WebSphere application servers > server_name > Ports. Then click View associated

transports for the appropriate port.

1. Select the transport chain whose properties need to be changed.

2. Click on the Web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change the value specified for the

Write buffer size parameter to a value that is more appropriate for your clients. The Write buffer size

parameter controls the maximum amount of data per thread that the Web container buffers before

sending the request on for processing. The default value is 32768 bytes, which is sufficient for most

applications. If the size of a response is greater than the size of the write buffer, the response is

chunked and written back in multiple TCP writes.

If you need to change the value specified for this parameter, make sure the new value enables most

requests to be written out in a single write. To determined an appropriate value for this parameter,

look at the size of the pages that are returned and add some additional bytes to account for the

HTTP headers.

v Adjust the settings for the bounded buffer.

Even though the default bounded buffer parameters are optimal for most of the environments, you might

need to change the default values in certain situations and for some operating systems to enhance

Chapter 8. Tuning transport channel services 49

performance. Changing the bounded buffer parameters can degrade performance. Therefore, make

sure that you tune the other related areas, such as the Web container and ORB thread pools, before

deciding to change the bounded buffer parameters.

To change the bounded buffer parameters:

1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name.

2. In the Server Infrastructure section, click Java and process management > Process definition >

Java virtual machine.

3. Specify one of the following parameters in the Generic JVM arguments field.

4. Click Apply or OK.

5. Enter one of the following custom properties in the Name field and an appropriate value in the Value

field, and then click Apply to save the custom property and its setting.

– com.ibm.ws.util.BoundedBuffer.spins_take=value

Specifies the number of times a Web container thread is allowed to attempt to retrieve a request

from the buffer before the thread is suspended and enqueued. This parameter enables you to

trade off the cost of performing possibly unsuccessful retrieval attempts, with the cost to

suspending a thread and activating it again in response to a put operation.

 Default: 4

Recommended: Any non-negative integer value is allowed. In practice an

integer between 2 and 8 have shown the best

performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=6. Six

attempts are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_take=true or false

Specifies that a thread yields the CPU to other threads after a set number of attempts to take a

request from the buffer. Typically a lower number of attempts is preferable.

 Default: false

Recommended: The effect of yield is implementation specific for individual

platforms.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=boolean value

– com.ibm.ws.util.BoundedBuffer.spins_put=value

Specifies the number of attempts an InboundReader thread makes to put a request into the

buffer before the thread is suspended and enqueued. This value allows to trade off between the

cost of repeated, possibly unsuccessful, attempts to put a request into the buffer with the cost to

suspend a thread and reactivate it in response to a take operation.

 Default: 4

Recommended: Any non-negative integer value is allowed. In practice an

integer between 2 and 8 have shown the best

performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_put=6. Six attempts

are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_put=true or false

Specifies that a thread yields the CPU to other threads after a set number of attempts to put a

request into the buffer. Typically a lower number of attempts is preferable.

 Default: false

50 Tuning guide

Recommended: The effect of yield is implementation specific for individual

platforms.

Usage: com.ibm.ws.util.BoundedBuffer.yield_put=boolean value

– com.ibm.ws.util.BoundedBuffer.wait=number of milliseconds

Specifies the maximum length of time, in milliseconds, that a request might unnecessarily be

delayed if the buffer is completely full or if the buffer is empty.

 Default: 10000 milliseconds

Recommended: A value of 10000 milliseconds usually works well. In rare

instances when the buffer becomes either full or empty, a

smaller value guarantee a more timely handling of

requests, but there is usually a performance impact to

using a smaller value.

Usage: com.ibm.ws.util.BoundedBuffer.wait=8000. A request

might unnecessarily be delayed up to 8000 milliseconds.

v Click Apply and then click Save to save these changes.

Chapter 8. Tuning transport channel services 51

52 Tuning guide

Chapter 9. Checking hardware configuration and settings

An optimal hardware configuration enables applications to get the greatest benefit from performance

tuning. The hardware speed impacts all types of applications and is critical to overall performance.

About this task

The following parameters include considerations for selecting and configuring the hardware on which the

application servers run.

v Optimize disk speed

– Description: Disk speed and configuration have a dramatic effect on the performance of application

servers running applications that are heavily dependent on the database support, using extensive

messaging, or processing workflow. The disk input or output subsystems that are optimized for

performance, for example Redundant Array of Independent Disks (RAID) array, high-speed drives,

and dedicated caches, are essential components for optimum application server performance in

these environments.

Application servers with fewer disk requirements can benefit from a mirrored disk drive configuration

that improves reliability and has good performance.

– Recommendation: Spread the disk processing across as many disks as possible to avoid

contention issues that typically occur with 1- or 2-disk systems. Placing the database tables on disks

that are separate from the disks that are used for the database log files reduces disk contention and

improve throughput.

v Increase processor speed and processor cache

– Description: In the absence of other bottlenecks, increasing the processor speed often helps

throughput and response times. A processor with a larger L2 or L3 cache yields higher throughput,

even if the processor speed is the same as a CPU with a smaller L2 or L3 cache.

v Increase system memory

– Description: Increase memory to prevent the system from paging memory to the disk to improve

performance. Allow a minimum of 256 MB of memory for each processor and 512 MB per application

server. Adjust the available memory when the system pages and the processor utilization is low

because of the paging. The memory access speed might depend on the number and placement of

the memory modules. Check the hardware manual to make sure that your configuration is optimal.

– Recommendation: Use 256 MB of memory for each processor and 512 MB per application server.

Some applications might require more memory.

v Run network cards and network switches at full duplex

– Description: Run network cards and network switches at full duplex and use the highest supported

speed. Full duplex is much faster than half duplex. Verify that the network speed of adapters, cables,

switches, and other devices can accommodate the required throughput. Some Web sites might

require multiple gigabit links.

– Recommendation Make sure that the highest speed is in use on 10/100/1000 Ethernet networks.

© Copyright IBM Corp. 2008 53

54 Tuning guide

Chapter 10. Tuning operating systems

Use this page to determine your operating system and configure tuning specifications.

About this task

The following tuning parameters are specific to operating systems. Because these operating systems are

not WebSphere Application Server products, be aware that the products can change and results can vary.

Note: Check your operating system documentation to determine how to make the tuning parameters

changes permanent and if a reboot is required.

1. Determine your operating system.

2. Select your operating system from the related links section.

3. Configure your settings to optimize performance of Websphere Application Server.

Tuning Windows systems

This topic describes how to tune Windows 2000, Windows XP, and Windows 2003 operating systems to

optimize the performance of WebSphere Application Server. Because Windows operating systems are not

WebSphere Application Server products, be aware that the products can change and results can vary.

About this task

When you have a performance concern, check the operating system settings to determine if they are

appropriate for your application.

Configure the following settings or variables according to your specific tuning needs:

v TcpTimedWaitDelay

– Description: Determines the time that must elapse before TCP/IP can release a closed connection

and reuse its resources. This interval between closure and release is known as the TIME_WAIT

state or twice the maximum segment lifetime (2MSL) state. During this time, reopening the

connection to the client and server costs less than establishing a new connection. By reducing the

value of this entry, TCP/IP can release closed connections faster and provide more resources for

new connections. Adjust this parameter if the running application requires rapid release, the creation

of new connections, or an adjustment because of a low throughput caused by multiple connections in

the TIME_WAIT state.

– How to view or set:

1. Use the regedit command, access the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters registry subkey, and create a new REG_DWORD value named

TcpTimedWaitDelay.

2. Set the value to decimal 30, which is Hex 0x0000001e. This value sets the wait time to 30

seconds.

3. Stop and restart the system.
– Default value: 0xF0, which sets the wait time to 240 seconds (4 minutes).

– Recommended value: A minimum value of 0x1E, which sets the wait time to 30 seconds.

v MaxUserPort

– Description: Determines the highest port number that TCP/IP can assign when an application

requests an available user port from the system.

– How to view or set:

1. Use the regedit command, access the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters registry subkey, and create a new REG_DWORD value named

MaxUserPort.

2. Set this value to at least decimal 32768.

© Copyright IBM Corp. 2008 55

3. Stop and restart the system.
– Default value: None

– Recommended value: At least decimal 32768.

v MaxConnect Backlog

– Description: If many connection attempts are received simultaneously, increase the default number

of pending connections that are supported by the operating system.

– How to view or set:

1. Use the regedit command and access the HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\AFD\Parameters registry subkey

2. Create and set (and create if necessary) the following values:

"EnableDynamicBacklog"=dword:00000001

"MinimumDynamicBacklog"=dword:00000020

"MaximumDynamicBacklog"=dword:00001000

"DynamicBacklogGrowthDelta"=dword:00000010

3. These values request a minimum of 20 and a maximum of 1000 available connections. The

number of available connections is increased by 10 each time that there are fewer than the

minimum number of available connections.

4. Stop and restart the system.

v TPC/IP acknowledgements

– TCP/IP can be the source of some significant remote method delays. You can increase TCP

performance by immediately acknowledging incoming TCP segments, in all situations.

Complete the following steps to immediately acknowledge incoming TCP segments on a server that

runs a Microsoft® Windows 2000 operating system:

1. Start the Registry Editor (regedit.exe).

2. Locate and click the following registry subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\

3. On the Edit menu, click Add Value, and create the following registry value:

Value name: TcpDelAckTicks

Data type: REG_DWORD

Value data: 0

Quit Registry Editor.

4. Restart your Windows operating system.

Similarly, to immediately acknowledge incoming TCP segments on a server that runs a Microsoft

Windows XP or Windows Server 2003 operating system:

1. Start the Registry Editor (regedit.exe).

2. Locate and then click the following registry subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\

3. On the Edit menu, click New > DWORD Value.

4. Name the new value, TcpAckFrequency, and assign it a value of 1.

5. Close the Registry Editor.

6. Restart your Windows operating system.

v Large page support

– Description: Using large pages can reduce the CPU overhead of managing a large JVM heap.

– How to view or set: The Windows operating system provides large page support by default. Use

the -Xlp JVM option to make use of this support.

Results

This tuning procedure improves performance of WebSphere Application Server on Windows 2000,

Windows XP, and Windows 2003 operating systems.

56 Tuning guide

What to do next

After tuning your operating system for performance, consult other tuning topics for various tuning tips.

Tuning Linux systems

This topic describes how to tune the Linux operating system to optimize the performance of your

WebSphere Application Server.

About this task

When you have a performance concern, check the operating system settings to determine if these settings

are appropriate for your application. Because the Linux operating system is not a WebSphere Application

Server product, be aware that it can change and results can vary.

Configure the following settings and variables according to your tuning needs:

v timeout_timewait parameter

– Description: Determines the time that must elapse before TCP/IP can release a closed connection

and reuse its resources. This interval between closure and release is known as the TIME_WAIT

state or twice the maximum segment lifetime (2MSL) state. During this time, reopening the

connection to the client and server cost less than establishing a new connection. By reducing the

value of this entry, TCP/IP can release closed connections faster, providing more resources for new

connections. Adjust this parameter if the running application requires rapid release, the creation of

new connections, and a low throughput due to many connections sitting in the TIME_WAIT state.

– How to view or set:

Issue the following command to set the timeout_timewait parameter to 30 seconds:

echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout

v SUSE Linux Enterprise Server 8 (SLES 8) SP2A - sched_yield_scale tuning

– Description: The Linux scheduler is very sensitive to excessive context switching, so fixes are

integrated into the SLES 8 kernel distribution to introduce delay when a thread yields processing.

This fix is automatically enabled in SLES 8 SP3, but must be enabled explicitly in SLES 8 SP2A or

later.

– How to view or set:

1. Upgrade your SLES 8 service pack to SP2A.

2. Issue the sysctl -w sched_yield_scale=1 command .
– Default value: 0

– Recommended value: 1

v RedHat Advanced Server 2.1 kernel update

– Description: Kernel updates for RedHat Advanced Server 2.1 implemented changes that affect

WebSphere Application Server performance, especially memory-to-memory HTTP session

replication.

– How to view or set:

1. Issue the uname -a command

2. If you are running any kernel prior to 2.4.9-e.23, upgrade at least to the RedHat Advanced Server

2.1 kernel, but preferably to the latest supported.
– Default value: 2.4.9-e.3

– Recommended value: 2.4.9-e.23

v Linux file descriptors (ulimit)

– Description: Specifies the number of open files that are supported. The default setting is typically

sufficient for most applications. If the value set for this parameter is too low, a file open error,

memory allocation failure, or connection establishment error might be displayed.

Chapter 10. Tuning operating systems 57

– How to view or set: Check the UNIX® reference pages on the ulimit command for the syntax of

different shells. To set the ulimit command to 8000 for the KornShell shell (ksh), issue the ulimit -n

8000 command. Use the ulimit -a command to display the current values for all limitations on

system resources.

– Default value: For SUSE Linux Enterprise Server 9 (SLES 9), the default is 1024.

– Recommended value: 8000

v Connection backlog

– Description: Change the following parameters when a high rate of incoming connection requests

result in connection failures:

echo 3000 > /proc/sys/net/core/netdev_max_backlog

echo 3000 > /proc/sys/net/core/somaxconn

v TCP_KEEPALIVE_INTERVAL

– Description: Determines the wait time between isAlive interval probes.

– How to view or set: Issue the following command to set the value:

echo 15 > /proc/sys/net/ipv4/tcp_keepalive_intvl

– Default value: 75 seconds

– Recommended value: 15 seconds

v TCP_KEEPALIVE_PROBES

– Description: Determines the number of probes before timing out.

– How to view or set: Issue the following command to set the value:

echo 5 > /proc/sys/net/ipv4/tcp_keepalive_probes

– Default value: 9 seconds

– Recommended value: 5 seconds

v Allocating large pages for Java virtual machine (JVM) heap (tested with SLES 9)

Some applications require a very large heap for optimal performance. The CPU overhead of managing

a large heap can be reduced by using the ″large page″ support that is provided by the CPU and

operating system. The following example assumes a large page size of 4MB and a desired heap size of

2300MB.

1. Set the following three settings by a sysctl.conf file, typically located at /etc/sysctl.conf.

Note: You must have root privilege access to modify this file. Also, verify the file is not marked as

read-only before attempting to make changes.

a. Set the number of large pages (2300MB = 575 * 4MB) by issuing the following command:

vm.nr_hugepages = 575

b. Set the maximum shared segment size to 2300MB plus a little more (about 95MB) (2511724800

= 2300MB * 1048576 bytes/MB + 100000000 bytes) by issuing the following command:

kernel.shmmax = 2511724800

c. Set the total amount of memory to be shared by issuing the following command:

kernel.shmall = 2511724800

2. Set the Xmx JVM option to 2300MB.

3. Relocate the program text to a lower virtual memory address (0x10000000) to provide more address

space for a larger heap. On SUSE Linux Enterprise Server 9 , run the following command to

relocate the text in the script that invokes the JVM or in a .profile file:

echo "0x10000000" > /proc/self/mapped_base

Results

This tuning procedure improves performance of WebSphere Application Server on the Linux operating

system.

58 Tuning guide

What to do next

After tuning your operating system for performance, consult other tuning topics for various tuning tips.

Tuning AIX systems

This topic describes how to tune the AIX operating system to optimize the performance of your

WebSphere Application Server.

About this task

There are a number of configuration changes and variables you can set to tune the performance of

Websphere to suit your needs. Because the AIX operating system is not a WebSphere Application Server

product, be aware that it can change and results can vary.

Change the following configuration settings or variables according to your needs:

v TCP_TIMEWAIT

– Description: Determines the time that must elapse before TCP/IP can release a closed connection

and reuse its resources. This interval between closure and release is known as the TIME_WAIT

state or twice the maximum segment lifetime (2MSL) state. During this time, reopening the

connection to the client and server costs less than establishing a new connection. By reducing the

value of this entry, TCP/IP can release closed connections faster, providing more resources for new

connections. Adjust this parameter, if the running application requires rapid release or the creation of

new connections, or if a low throughput occurs due to many connections sitting in the TIME_WAIT

state.

– How to view or set:

Issue the following command to set TCP_TIMEWAIT state to 15 seconds:

/usr/sbin/no –o tcp_timewait =1

v AIX operating systems with DB2

– Description: Separating your DB2 log files from the physical database files can boost performance.

You can also separate the log and the database files from the drive that contains the Journaled File

System (JFS) service. AIX uses specific volume groups and file systems for the JFS logging.

– How to view or set: Use the AIX filemon utility to view all the file system input and output and to

strategically select the file system for the DB2 log files. Set the DB2 log location according to the

DB2 tuning parameters topic.

– Default value: The default location for the DB2 log files is often the same disk drive where the

database tables are stored.

– Recommended value: Move the files to a disk that is separate from the DB2 data and has the

minimum input or output activity.

v AIX file descriptors (ulimit)

– Description: Specifies the various restrictions on resource usage on the user account. The ulimit -a

command displays all the ulimit limits. The ulimit -a command specifies only the number of open files

that are permitted. The default number of open files setting (2000) is typically sufficient for most

applications. If the value set for this parameter is too low, errors might occur when opening files or

establishing connections. Because this value limits the number of file descriptors that a server

process might open, a value that is too low prevents optimum performance.

– How to view or set: Perform the following steps to change the open file limit to 10,000 files:

1. Open the command window.
1. Edit the /etc/security/limits file. Add the following lines to the user account that the

WebSphere Application Server process runs on:

nofiles = 10000

nofiles_hard = 10000

2. Save the changes.

3. Restart your AIX system.

Chapter 10. Tuning operating systems 59

4. To verify the result, type the ulimit -a command on the command line. For example, type # ulimit

-a.
– Default value: For the AIX operating system, the default setting is 2000.

– Recommended value: The value is application dependent. Increasing the ulimit file descriptor limits

might improve performance. Increasing some of the other limits might be needed depending on your

application. Any changes to the data or stack ulimits should ensure that data+stack < 256MB (for

32-bit WebSphere Application Server only).

v AIX TCP_KEEPIDLE

– Description: The keepAlive packet ensures that a connection stays in an active/ESTABLISHED

state.

– How to view or set: Use the no command to determine the current value or to set the value. The

change is effective until the next time you restart the machine. To permanently change the value,

add the no command to the /etc/rc.net directory. For example:

no -o tcp_keepidle=600

– Default value: 14400 half seconds (2 hours).

– Recommended value: 600 half seconds (5 minutes).

v TCP_KEEPINTVL

– Description: Specifies the interval between packets that are sent to validate the connection.

– How to view or set: Use the following command to set the value to 5 seconds:

no -o tcp_keepintvl=10

– Default value: 150(1/2 seconds)

– Recommended value: 10(1/2 seconds)

v TCP_KEEPINIT

– Description: Specifies the initial timeout value for TCP connection.

– How to view or set: Use the following command to set the value to 20 seconds:

no -o tcp_keepinit=40

– Default value: 150(1/2 seconds)

– Recommended value: 40(1/2 seconds)

v Allocating large pages (16 MB) for Java virtual machines heap

Some applications require a very large heap for optimal performance. Reduce the CPU overhead of

managing a large heap by using large page support that is provided by the CPU and the operating

system. The following steps allocate 4 GB of RAM as large pages (16 MB):

1. As root user, run the following commands to reserve 4 GB of large page:

vmo -r -o lgpg_regions=256 -o lgpg_size=16777216

bosboot -ad /dev/ipldevice

reboot -q

2. After reboot, run the following command to enable large page support on the AIX operating system:

vmo -p -o v_pinshm=1

3. As root user, add the following capabilities for the user:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE $USER

4. Add the -Xlp Java options to the Java command.

a. Click Servers > Server TypesWebSphere application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >

Java Virtual Machine.

c. In the Generic JVM Argument field, add -Xlp.

5. Add the EXTSHM custom property and set to OFF.

a. Click Servers > Server TypesWebSphere application servers > server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >

Environment Entries > New.

c. In the Name field, enter EXTSHM.

d. In the Value field, enter OFF.

60 Tuning guide

6. Validate large page support is used with the following command:

vmstat -l 1

Note: The ″alp″ column is non-zero when the application is running.

There are several concerns when enabling large pages, which can cause serious events to occur on the

machine when large pages are enabled. For more information on AIX large pages, see the

″Considerations for using large pages″ section at the following address: http://publib.boulder.ibm.com/
infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/large_page_ovw.htm.

If you do not want to use the large pages option, there is also a medium page option. The medium

page size option, which is similar, and has close to the same performance gains as large pages.

However, it does not involve the problems of reserving physical memory for a specific user or process.

For more information, see the -Xlp64k option in the Tuning Java virtual machines topic.

v Other AIX information

Consider the other AIX operating system settings that are not within the scope of this document. You

can adjust the following additional settings:

– Adapter transmit and receive queue

– TCP/IP socket buffer

– IP protocol mbuf pool performance

– Update file descriptors

– Update the scheduler

For more information about AIX operating systems, see Performance: Resources for learning.

Results

This tuning procedure improves performance of WebSphere Application Server on the AIX operating

system.

What to do next

After tuning your operating system for performance, consult the other tuning topics for various tuning tips.

Tuning Solaris systems

The following tuning parameters are specific to the Solaris operating system. Because the Solaris

operating system is not a WebSphere Application Server product, be aware that it can change and results

vary.

About this task

On the Solaris operating system, WebSphere Application Server runs on the Sun Hotspot Java virtual

machine (JVM). It is important to use the correct tuning parameters with the Sun JVM to utilize its

performance optimizing features. Refer to the Chapter 6, “Tuning the IBM virtual machine for Java,” on

page 27 topic for more information about tuning the JVM. Also, consider the following parameters that are

specific to the Solaris operating system to ensure that WebSphere Application Server has enough

resources.

Configure the following settings or variables according to your tuning needs:

v Solaris file descriptors (ulimit)

– Description: Specifies the maximum number of open files supported. If the value of this parameter

is too low, a Too many files open error is displayed in the WebSphere Application Server

stderr.log file.

– How to view or set: Check the UNIX reference pages on the ulimit command for the syntax of

different shells. For the KornShell (ksh) shell use the ulimit -n 1024 command. Use the ulimit -a

command to display the current settings. Use the ulimit -n 2000 command to set the values.

Chapter 10. Tuning operating systems 61

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/large_page_ovw.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/large_page_ovw.htm

– Default value: None

– Recommended value: 8000

v Solaris TCP_TIME_WAIT_INTERVAL

– Description: Notifies TCP/IP on how long to keep the connection control blocks closed. After the

applications complete the TCP/IP connection, the control blocks are kept for the specified time.

When high connection rates occur, a large backlog of the TCP/IP connections accumulates and can

slow server performance. The server can stall during certain peak periods. If the server stalls, the

netstat command shows that many of the sockets that are opened to the HTTP server are in the

CLOSE_WAIT or FIN_WAIT_2 state. Visible delays can occur for up to four minutes, during which

time the server does not send any responses, but CPU utilization stays high, with all of the activities

in system processes.

– How to view or set: Use the get command to determine the current interval and the set command

to specify an interval of 30 seconds. For example:

ndd -get /dev/tcp tcp_time_wait_interval

ndd -set /dev/tcp tcp_time_wait_interval 30000

– Default value: The default time wait interval for a Solaris operating system is 240000 milliseconds,

which is equal to 4 minutes.

– Recommended value: 60000 milliseconds

v Solaris TCP_FIN_WAIT_2_FLUSH_INTERVAL

– Description: Specifies the timer interval prohibiting a connection in the FIN_WAIT_2 state to remain

in that state. When high connection rates occur, a large backlog of TCP/IP connections accumulates

and can slow server performance. The server can stall during peak periods. If the server stalls, using

the netstat command shows that many of the sockets opened to the HTTP server are in the

CLOSE_WAIT or FIN_WAIT_2 state. Visible delays can occur for up to four minutes, during which

time the server does not send any responses, but CPU utilization stays high, with all of the activity in

system processes.

– How to view and set: Use the get command to determine the current interval and the set command

to specify an interval of 67.5 seconds. For example,

ndd -get /dev/tcp tcp_fin_wait_2_flush_interval

ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 67500

– Default value: 675000 milliseconds

– Recommended value: 67500 milliseconds

v Solaris TCP_KEEPALIVE_INTERVAL

– Description: The keepAlive packet ensures that a connection stays in an active and established

state.

– How to view or set: Use the ndd command to determine the current value or to set the value. For

example:

ndd -set /dev/tcp tcp_keepalive_interval 300000

– Default value: 7200000 milliseconds

– Recommended value: 15000 milliseconds

v Solaris kernel semsys:seminfo_semopm

– Description: An entry in the /etc/system file can exist for this tuning parameter. This number is the

maximum value of System V semaphore operations per semop call. The default value for this option

is too low for highly concurrent systems.

– How to view or set: Set this parameter through the /etc/system entry: semsys:seminfo_semopm =

200

– Default value: None

– Recommended value: 200 (100 is appropriate for most systems, but 200 might be needed in some

cases.)

Note: This parameter has been superseded on the Solaris 10 operating system by the

process.max-sem-ops resource control, which now has a default value of 512 per process. This

default is sufficient for most applications. For more information on Solaris 10 parameters and

resource controls, search for ″tunable parameters″ and ″resource control″ on the Sun

Microsystems Web site at: http://docs.sun.com.

62 Tuning guide

v Connection backlog

– Description: Change the following parameter when a high rate of incoming connection requests

result in connection failures:

ndd -get /dev/tcp tcp_conn_req_max_q

ndd -set /dev/tcp tcp_conn_req_max_q 8000

– Default value: For Solaris 8, the default value is 128.

– Default value: For Solaris 9 and Solaris 10, the default value is 128.

– Recommended value: 8000

v Large page support

Using large pages can reduce the CPU overhead of managing a large JVM heap. .

With Solaris 9 and Solaris 10, large page support is provided by default. No operating system or JVM

parameters are necessary to make use of large pages for the JVM heap

Results

This tuning procedure improves the performance of WebSphere Application Server on the Solaris

operating system.

What to do next

After tuning your operating system for performance, consult other tuning topics for various tuning tips.

Tuning HP-UX systems

This topic describes how to tune the HP-UX operating system to optimize the performance of your

WebSphere Application Server. Because the HP-UX operating system is not a WebSphere Application

Server product, be aware that it can change and results vary

Before you begin

On the HP-UX operating system, WebSphere Application Server runs on the Java virtual machine (JVM),

which is based on the technology of Sun HotSpot JVM. Properly tuning this JVM significantly affects

WebSphere Application Server performance by fully utilizing its performance optimizing characteristics.

See the Chapter 6, “Tuning the IBM virtual machine for Java,” on page 27 topic for details on setting up

the JVM on the HP-UX system. It is also important to change some parameters that are specific to the

HP-UX operating system to prevent WebSphere Application Server from being deprived of resources.

About this task

When you have a performance concern, check the operating system settings to determine if they are

appropriate for your application.

v Configure the following settings and variables according to your tuning needs:

– Tuning the HP operating system with the DB2 type 2 JDBC driver

When using the type 2 Java Database Connectivity (JDBC) driver on the HP operating system with

DB2, you can increase the performance of WebSphere Application Server by preallocating the DB2

trace segment. Perform the following steps:

1. Before starting application server, switch to the user that is associated with the DB2 instance.

2. Run the db2trc alloc command.

3. Start application server.

Usage note: Use the type 4 driver for best performance and compatibility.

Another issue with the type 2 JDBC driver on the HP operating system is code page conversion.

Creating the database using the UTF-8 code set avoids this problem and significantly increases

Chapter 10. Tuning operating systems 63

performance. See the database documentation for instructions on creating databases with a specific

code set. Refer to DB2 tuning parameters for information about DB2 tuning parameters.

– The HP performance tuning parameters

Modify HP-UX 11i settings to significantly improve WebSphere Application Server performance. For

additional information about the HP performance tuning parameters, see Performance: Resources for

learning.

– Java virtual machine (JVM) virtual page size

- Description: Sets the JVM instruction and data page sizes to 64 MB to improve performance.

- How to view or set: Use the WASHOME/java/bin/SYSTEM_ARCH_PATH/java command. The

command output provides the current operating system characteristics of the process executable.

- Default value: 4 MB, if not assigned

- Recommended value: 64 MB

– HP-UX 11i TCP_CONN_REQUEST_MAX

- Description: Specifies the maximum number of connection requests that the operating system

can queue when the server does not have available threads. When high connection rates occur, a

large backlog of TCP/IP connection requests builds up and client connections are dropped. Adjust

this setting when clients start to time out after waiting to connect. Verify this situation by issuing

the netstat -p tcp command. Look for the following value: connect requests dropped due to full

queue

- How to view or set: Set this parameter by using the ndd -set /dev/tcp tcp_conn_request_max

8192 command.

- Default value: 4096

- Recommended value: In most cases the default is sufficient. Consider adjusting this value to

8192, if the default proves inadequate.

– HP-UX 11i kernel parameter recommendations

Refer to the table of kernel parameters shown in the ″Preparing HP-UX systems for installation″ topic

in the information center.

– TCP_KEEPALIVE_INTERVAL

- Description: Determines the interval between probes.

- How to view or set: Use the ndd command to determine the current value or to set the value.

For example:

ndd -set /dev/tcp tcp_keepalive_interval 7200000

- Default value: None

- Recommended value: 7200000 milliseconds

– TCP_KEEPALIVES_KILL

- Description: Determines the maximum number of times to probe before dropping.

- How to view or set: Use the ndd command to determine the current value or to set the value.

For example:

ndd -set /dev/tcp tcp_keepalives_kill 5000

- Default value: 1

- Recommended value: 5000 milliseconds

v Keeping current with the operating system and Java patches is one of the most important things you

can do to optimize the performance of a server. For the latest Java patches, visit the following Web site:

HP-UX Patch Information

Also, for the latest operating system quality pack, visit the following Web site:

Support Plus: Quality Pack Bundles

Results

This tuning procedure improves performance of WebSphere Application Server on the HP-UX operating

system.

64 Tuning guide

http://www.hp.com/products1/unix/java/patches/index.html
http://www.software.hp.com/SUPPORT_PLUS/qpk.html

What to do next

After tuning your operating system for performance, consult the other tuning topics for various tuning tips.

Chapter 10. Tuning operating systems 65

66 Tuning guide

Chapter 11. Tuning Web servers

WebSphere Application Server provides plug-ins for several Web server brands and versions. Each Web

server operating system combination has specific tuning parameters that affect the application

performance.

About this task

Following is a list of tuning parameters specific to Web servers. The listed parameters may not apply to all

of the supported Web servers. Check your Web server documentation before using any of these

parameters.

v Tune the IBM HTTP Server 2.0.47.1, Apache 2.0.48, IBM HTTP Server 6.0, and IBM HTTP Server

6.1. Monitoring the CPU utilization and checking the IBM HTTP Server error_log and http_plugin.log

files can help you diagnose Web server performance problems.

You can also configure the IBM HTTP Server to show a status page:

– Edit the IBM HTTP Server httpd.conf file and remove the comment character (#) from the following

lines in this file:

#LoadModule status_module, modules/ApacheModuleStatus.dll,

#<Location/server-status>

#SetHandler server-status

#</Location>

– Save the changes and restart the IBM HTTP Server.

– In a Web browser, go to: http://yourhost/server-status. Alternatively, click Reload to update status.

(Optional) If the browser supports refresh, go to http://your_host/server-status?refresh=5 to refresh

every five seconds.

– (Optional) If the browser supports refresh, go to http://your_host/server-status?refresh=5 to refresh

every five seconds.

All of these Web servers allocate a thread to handle each client connection. Ensuring that enough

threads are available for the maximum number of concurrent client connections helps prevent this tier

from being a bottleneck. The settings for these Web servers can be tuned by making changes to the

httpd.conf file on the Web server system.

You can check the IBM HTTP Server error_log file to see if there are any warnings about having

reached the maximum number of clients (MaxClients). There are several parameters, depending on the

specific operating system platform, that determine the maximum number of clients the Web server

supports. See http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients for a description of

the MaxClients parameters.

v Support thousands of concurrent clients. It is not unusual for a single IBM HTTP Server system to

support thousands of concurrent clients. If your requirements are to support more concurrent clients

than the number of threads that are supported by the Web server operating system and hardware,

consider using multiple Web servers.

v Respond to a Connection Refused error message. Some clients might receive a Connection

Refused error message if there is a sudden increase in the number of clients. Increasing the

ListenBacklog and StartServer parameters can reduce or eliminate this error.

– The ListenBacklog parameter indicates to the operating system the maximum allowed number of

pending connections. Although the IBM HTTP Server default is 511, the actual value can be much

higher or lower depending on the corresponding operating system parameter. To handle large

numbers of simultaneous connections, this parameter and the corresponding OS parameter might

need to be set to the number (possibly thousands) of expected simultaneous connections. (See

Chapter 10, “Tuning operating systems,” on page 55 for additional information on how to tune your

operating system.

– The StartServers parameter indicates the number of IBM HTTP Server processes to initially start.

Pre-starting these IBM HTTP Server threads/processes reduces the chance of a user having to wait

© IBM Corporation 2003, 2004 67

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients

for a new process to start. You should set this parameter to a value equal to the MinSpareServers

parameter so that the minimum number of IBM HTTP Server processes needed for this client load is

started immediately.

v Prevent the frequent creation and destruction of client threads/processes as the number of

users change. You can a use the MinSpareServers and MaxSpareServers to specify the minimum and

maximum number of servers (client threads/processes) that can exist in an idle state. To prevent

frequent creation and destruction of client threads/processes as the number of users change, set this

range large enough to include the maximum number of simultaneous users.

v Change the setting on the Web server’s Access logging parameter to reduce the load on the

Web server. If you do not need to log every access to the Application Server, change the default value

of the Web server’s Access logging parameter. This change will reduce the load on the Web server.

v Modify the settings of the Load balancing option and Retry interval Web server plug-in

properties to improve performance. You can improve the performance of IBM HTTP Server (with the

WebSphere Web server plug-in) by modifying the following Web server plug-in configuration properties:

– Load balancing option, which specifies the load balancing option that the plug-in uses in sending

requests to the various application servers associated with that Web server.

The goal of the default load balance option, Round Robin, is to provide an even distribution of work

across cluster members. Round Robin works best with Web servers that have a single process

sending requests to the Application Server. If the Web server is using multiple processes to send

requests to the Application Server, the Random option can sometimes yield a more even distribution

of work across the cluster.

– Retry interval. which specifies the length of time to wait before trying to connect to a server that has

been marked temporarily unavailable.

The plug-in marks a server temporarily unavailable if the connection to the server fails. Although a

default value is 60 seconds, you might have to lower this value in order to increase throughput under

heavy load conditions. Lowering the RetryInterval might help when the IBM HTTP Server is

configured to have fewer than 10 threads per process.

How can lowering the RetryInterval affect throughput? If the plug-in attempts to connect to a

particular application server while the application server threads are busy handling other connections,

which happens under heavy load conditions, the connection might time out, causing the plug-in to

mark the server temporarily unavailable. If the same plug-in process has other connections open to

the same server and a response is received on one of these connections, the server is marked

again. If there are only a few threads per IBM HTTP Server process, there might not be an

established connection to this application server . When this situation occurs, the plug-in must wait

for the entire retry interval.

Note: Although lowering the RetryInterval can improve performance, if all the application servers are

running, a low value can have an adverse affect when one of the application servers is down.

In this case, each IBM HTTP Server process attempts to connect and fail more frequently,

resulting in increased latency and decreased overall throughput.

Making these changes can help the IBM HTTP Server to support more product users. To modify these

properties, in the administrative console, click Servers > Server Types > Web Servers >

web_server_name > Plug-in properties > Request routing .

68 Tuning guide

Chapter 12. Tuning WebSphere applications

This topic provides quick links to information about tuning specific WebSphere application types, and the

services and containers that support them.

Note: The WebSphere Application Server documentation contains a finite set of tuning topics to which the

following table provides links. Installing the documentation plug-ins for additional components, such

as Service integration, might add new entries to the information table of contents. The new entries

will not be shown in the table. To see the complete set of application tuning topics available in this

information center installation, expand Tuning performance > Tuning WebSphere applications in

the table of contents.

Product architecture and programming model, at a glance

 Application serving environment -- See

Tuning the application serving

environment

WebSphere applications WebSphere applications

Servers

v Application servers

v Java virtual machines

v Transport channels

v Web servers

v More server types

v Core groups

v Workload balancing

Environment

v Hardware

v Operating system

v Virtual hosts

v Variable settings

v Shared libraries

System administration

v Administrative clients

v Configuration files

v Domains (cells, nodes)

Performance tools

v Monitoring

v Tuning performance

Troubleshooting tools

v Diagnostic tools

v Support and self-help

The product subsystems are discussed in

the Product architecture. For the most part,

they do not depend on the type of

applications being deployed

Services

v Security

v Naming

v ORB

v Transactions

J2EE applications

v Web applications > Sessions

v EJB applications

Clients

v Client applications

v Web clients

v Web services clients

v Administrative clients

Web services

v Web services and Service

Oriented Architecture (SOA)

v Web services security

J2EE resources

v Data access resources

v Messaging resources

v Mail, URLs, and more

WebSphere extensions

v ActivitySessions

v Application profiling

v Asynchronous beans

v Dynamic caching

v Dynamic and EJB query

v Internationalization

v Object pools

v Scheduler

v Startup beans

v Work area

© Copyright IBM Corp. 2008 69

Web services

Monitoring the performance of Web services applications

You can monitor the performance of a Web service that is implemented in the WebSphere Application

Server using Performance Monitoring Infrastructure (PMI) tooling.

About this task

You can use the Performance Monitoring Infrastructure (PMI) to measure the time required to process

Web services requests. To monitor the performance of a Web services application, follow the steps in this

task:

1. Enable PMI services in an application server through the administrative console. Select the Web

module named webServicesModule in step 7.

2. Monitor performance with Tivoli Performance Monitor In the left pane of the performance view, expand

the host and server. Select Web Services. Run the Web services client application.

Results

PMI provides detailed statistics that can help you gain clear insight into the runtime behavior and

performance of Web services. Performance counters enable you to see key performance data for each

individual Web service including:

v The number of requests dispatched to an implementation bean

v The number of requests dispatched with successful replies

v The average time in milliseconds to process full requests

v The average time in milliseconds between receiving the request and dispatching it to the bean

v The average time in milliseconds between the dispatch and receipt of a reply from the bean. This

represents the time spent in business logic.

v The average time in milliseconds between the receipt of a reply from a bean to the return of a result to

the client

v The average size of the SOAP request

v The average size of the SOAP reply

To read about other Web services PMI counters, see PMI data organization.

What to do next

If you are having problems with your Web services applications, read about problems and solutions in

Troubleshooting Web services.

Web services performance best practices

This topic presents best practices for the performance of Web services applications.

Web services are developed and deployed based on standards provided by the Web Services for Java

Platform, Enterprise Edition (Java EE) specification and the Java API for XML-Based Web Services

(JAX-WS) and Java Architecture for XML Binding (JAXB) programming models, and is the mechanism

used to access a Web service. This article explains performance considerations for Web services

supported by this specification.

When you develop or deploy a Web service, several artifacts are required, including a Web Services

Description Language (WSDL) file. The WSDL file describes the format and syntax of the Web service

input and output SOAP messages. When a Web service is implemented in the WebSphere Application

Server runtime, the SOAP message is translated based on the Java EE request. The Java EE-based

response is then translated back to a SOAP message.

70 Tuning guide

The most critical performance consideration is the translation between the XML-based SOAP message

and the Java object. Performance is high for a Web service implementation in WebSphere Application

Server, however, application design, deployment and tuning can be improved. See Monitoring the

performance of Web services applications for more information about analyzing and tuning Web services.

If you are using a Web service application that was developed for a WebSphere Application Server version

prior to Version 6, you can achieve better performance by running the wsdeploy command. The

wsdeploy command regenerates Web services artifact classes to increase the serialization and

deserialization performance.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java

API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application

server does not support the wsdeploy command. If your Web services application contains only JAX-WS

endpoints, you do not need to run the wsdeploy command, as this command is used to process only

JAX-RPC endpoints.

Basic considerations for a high-performance Web services application

The following are basic considerations you should know when designing a Web services application:

v Reduce the Web services requests by using a few highly functional APIs, rather than several simple

APIs.

v Design your WSDL file interface to limit the size and complexity of SOAP messages.

v Use the document/literal style argument when you generate the WSDL file.

v Leverage the caching capabilities offered for WebSphere Application Server.

v Test the performance of your Web service.

Additional Web services performance features that you can leverage

v In-process optimizations for Web services to optimize the communication path between a Web services

client application and a Web container that are located in the same application server process. For

details and enabling this feature, see Web services client to Web container optimized communication.

v Access to Web services over multiple transport protocols extends existing Java API for XML-based

remote procedure call (JAX-RPC) capabilities to support non-SOAP bindings such as RMI/IIOP and

JMS. These alternative transports can improve performance and quality of service aspects for Web

services. For more detailed information see RMI-IIOP using JAX-RPC.

v SOAP with Attachments API for Java (SAAJ) Version 1.2 provides a programming model for Web

services relative to JAX-RPC. The SAAJ API provides features to create and process SOAP requests

using an XML API. SAAJ supports just-in-time parsing and other internal algorithms. For information

about SAAJ or Web services programming, see SOAP with Attachments API for Java.

SAAJ 1.3 provides support for Web services that are developed and implemented based on the Java

API for XML Web Services (JAX-WS) programming model.

v The Web services tooling generates higher performance custom deserializers for all JAX-RPC beans.

Redeploying a V5.x application into the V6 runtime can decrease the processing time for large

messages.

v Serialization and deserialization runtime is enhanced to cache frequently used serializers and

deserializers. This can decrease the processing time for large messages.

v The performance of WS-Security encryption and digital signature validation is improved because of the

use of the SAAJ implementation.

IBM provides considerable documentation and best practices for Web services application design and

development that details these items and more.

Tuning Web services security for Version 7.0 applications

Version 6 and later applications

Chapter 12. Tuning WebSphere applications 71

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) Version

1.4.x and later. This is no longer an optional package. However, the default JCE jurisdiction policy file

shipped with the SDK enables you to use cryptography to enforce this default policy. In addition, you can

modify the WS-Security configuration options to achieve the best performance for WS-Security protected

applications.

About this task

Using the unrestricted JCE policy files

Due to export and import regulations, the default JCE jurisdiction policy file shipped with the SDK enables

you to use strong, but limited, cryptography only. To enforce this default policy, WebSphere Application

Server uses a JCE jurisdiction policy file that might introduce a performance impact. The default JCE

jurisdiction policy might have a performance impact on the cryptographic functions that are supported by

Web services security. If you have Web services applications that use transport level security for XML

encryption or digital signatures, you might encounter performance degradation over previous releases of

WebSphere Application Server. However, IBM and Sun Microsystems provide versions of these jurisdiction

policy files that do not have restrictions on cryptographic strengths. If you are permitted by your

governmental import and export regulations, download one of these jurisdiction policy files. After

downloading one of these files, the performance of JCE and Web services security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version 6,

you can obtain unlimited jurisdiction policy files by completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java SE 6

3. Scroll down and click IBM SDK Policy files.

The Unrestricted JCE Policy files for the SDK Web site is displayed.

4. Click Sign in and provide your IBM intranet ID and password or register with IBM to download the

files.

5. Select the appropriate Unrestricted JCE Policy files and then click Continue.

6. View the license agreement and then click I Agree.

7. Click Download Now.

Results

After following these steps, two Java Archive (JAR) files are placed in the JVM jre/lib/security/

directory.

Example

Using configuration options to tune WebSphere Application Server

When using WS-Security for message-level protection of SOAP message in WebSphere Application

Server, the choice of configuration options can affect the performance of the application. The following

guidelines will help you achieve the best performance for your WS-Security protected applications.

1. Use WS-SecureConversation when appropriate for JAX-WS applications. The use of symmetric keys

with a Secure Conversation typically performs better than asymmetric keys used with X.509.

Note: The use of WS-SecureConversation is supported for JAX-WS applications only, not JAX-RPC

applications.

2. Use the standard token types provided by WebSphere Application Server. Use of custom tokens is

supported, but higher performance is achieved with the use of the provided token types.

72 Tuning guide

http://www.ibm.com/developerworks/java/jdk/security/index.html

3. For signatures, use only the exclusive canonicalization transform algorithm. See the W3

Recommendation Web page (http://www.w3.org/2001/10/xml-exc-c14n#) for more information.

4. Whenever possible, avoid the use of the XPath expression to select which SOAP message parts to

protect. The WS-Security policies shipped with WebSphere Application Server for JAX-WS applications

use XPath expressions to specify the protection of some elements in the security header, such as

Timestamp, SignatureConfirmation, and UsernameToken. The use of these XPath expressions is

optimized, but other uses are not.

5. Although there are Websphere Application Server extensions to WS-Security that can be used to insert

nonce and timestamp elements into SOAP message parts before signing or encrypting the message

parts, you should avoid the use of these extensions for improved performance.

6. There is an option to send the base-64 encoded CipherValue of WS-Security encrypted elements as

MTOM attachments. For small encrypted elements, the best performance is achieved by avoiding this

option. For larger encrypted elements, the best performance is achieved by using this option.

7. When signing and encrypting elements in the SOAP message, specify the order as sign first, then

encrypt.

8. When adding a timestamp element to a message, the timestamp should be added to the security

header before the signature element. This is accomplished by using the Strict or LaxTimestampFirst

security header layout option in the WS-Security policy configuration.

9. For JAX-WS applications, use the policy-based configuration rather than WSS API-based configuration.

What to do next

In IBM WebSphere Application Server Version 6.1 and later, Web services security supports the use of

cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with

Web services security. See Hardware cryptographic device support for Web Services Security for more

information.

Tuning Web services security for Version 5.x applications

Version 5.x application

The Java Cryptography Extension (JCE) policy is integrated into the IBM Software Development Kit (SDK)

Version 1.4.x and is no longer an optional package. However, due to export and import regulations, the

default JCE jurisdiction policy file shipped with the SDK enables you to use strong, but limited,

cryptography only.

About this task

To enforce this default policy, WebSphere Application Server uses a JCE jurisdiction policy file that might

introduce a performance impact. The default JCE jurisdiction policy might have a performance impact on

the cryptographic functions that are supported by Web services security. If you have Web services

applications that use transport level security for XML encryption or digital signatures, you might encounter

performance degradation over previous releases of WebSphere Application Server. However, IBM and Sun

Microsystems provide versions of these jurisdiction policy files that do not have restrictions on

cryptographic strengths. If you are permitted by your governmental import and export regulations,

download one of these jurisdiction policy files. After downloading one of these files, the performance of

JCE and Web Services security might improve.

1.

AIX

Linux

Windows

For WebSphere Application Server platforms using IBM Developer Kit,

Java Technology Edition Version 1.4.2, including the AIX, Linux, and Windows platforms, you can

obtain unlimited jurisdiction policy files by completing the following steps:

a. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html.

b. Click Java 1.4.2.

Chapter 12. Tuning WebSphere applications 73

http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.ibm.com/developerworks/java/jdk/security/index.html

c. Click IBM SDK Policy files. The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

d. Enter your user ID and password or register with IBM to download the policy files. The policy files

are downloaded onto your machine.

2.

Solaris

HP�UX

For WebSphere Application Server platforms using the Sun-based Java SE

Development Kit 6 (JDK 6) Version 1.4.2, including the Solaris environments and the HP-UX platform,

you can obtain unlimited jurisdiction policy files by completing the following steps:

a. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html.

b. Click Other Downloads.

c. Locate the JCE Unlimited Strength Jurisdiction Policy Files 1.4.2 information and click Download.

The policy files are downloaded onto your machine.

Results

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM directory.

jre/lib/security/

C:\Program Files\ibm\jre\lib\security

Service integration

Tuning messaging engines

Use this task to set tuning properties for the service integration environment.

About this task

The service integration environment includes properties that you can set to improve the performance of a

messaging engine or the component of the messaging engine that manages the data store. These

properties are known collectively as tuning properties. You can set these properties either with the

WebSphere Application Server administrative console or by editing the sib.properties file.

Note: Properties set with the administrative console take precedence over properties set in the

sib.properties file.

v Set tuning properties by using the administrative console:

– Set the tuning properties of a messaging engine.

– Control the memory buffers used by a messaging engine.

v Use the administrative console to tune the data source.

v Set tuning properties for any of the components mentioned above by editing the sib.properties file.

Setting tuning properties of a messaging engine

You can set the tuning properties for a messaging engine to improve its performance.

About this task

You can set the following tuning property for a messaging engine:

sib.trm.retry

The messaging engine to messaging engine connection retry interval, in seconds. The retry interval is

the time delay left between attempts to contact neighboring messaging engines with which

communications exist. The default retry interval is 30 seconds.

To set the tuning properties for a messaging engine, use the administrative console to complete the

following steps.

74 Tuning guide

http://java.sun.com/j2se/1.4.2/download.html

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the messaging engine for the changes to take effect.

Controlling the memory buffers used by a messaging engine

Every messaging engine manages two memory buffers that contain messages and message-related data.

You can improve the interaction of a messaging engine with its data store by tuning the properties that set

the sizes of the two buffers.

About this task

You can set the following properties to improve the interaction of a messaging engine with its data store:

sib.msgstore.discardableDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the

quality of service attribute is best effort nonpersistent. The default value is 320000, which is

approximately 320 kilobytes.

 The discardable data buffer contains all data for which the quality of service attribute is best effort

nonpersistent. That data comprises both data that is involved in active transactions, and any other

best effort nonpersistent data that the messaging engine has neither discarded nor consumed. The

messaging engine holds this data entirely within this memory buffer and never writes the data to the

data store. When the messaging engine adds data to the discardable data buffer, for example when

the messaging engine receives a best effort nonpersistent message from a client, the messaging

engine might discard data already in the buffer to make space. The messaging engine can discard

only data that is not involved in active transactions. This behavior enables the messaging engine to

discard best effort nonpersistent messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to be

handled before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient space

remains after discarding all the data that is not involved in active transactions, the messaging engine

throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications can catch this

exception, wrapped inside API-specific exceptions such as javax.jms.JMSException.

sib.msgstore.cachedDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the

quality of service attribute is better than best effort nonpersistent and which is held in the data store.

The default value is 320000, which is approximately 320 kilobytes.

 The purpose of the cached data buffer is to optimize the performance of the messaging engine by

caching in memory the data that the messaging engine might otherwise need to read from the data

store. As it writes data to the data store and reads from the data store, the messaging engine attempts

to add that data to the cached data buffer. The messaging engine might discard data already in the

buffer to make space.

sib.msgstore.transactionSendLimit

The maximum number of operations that the messaging engine includes in each transaction. For

example, each JMS send or receive is an operation that counts towards the transaction send limit. The

default value is 100.

Note: The messaging engine uses approximate calculations to manage the data it holds in the memory

buffers. Neither of the DataBufferSize properties gives an accurate indication of the amount of

Chapter 12. Tuning WebSphere applications 75

memory that the messaging engine consumes in the JVM heap. The messaging engine can

consume considerably more heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data store, use the

administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

What to do next

Note: When you change any of these properties, the new values do not take effect until you restart the

messaging engine.

Tuning the JDBC data source of a messaging engine

The messaging engine needs to have the correct configuration for JDBC data source to achieve

messaging performance on a service integration bus.

Before you begin

Consider whether you need to configure the connection pool for the JDBC data source to achieve your

requirements for messaging performance.

About this task

The messaging engine uses the connection pool to obtain its connections to the database. With a heavy

workload, a messaging engine might require a large number of concurrent connections to avoid delays

waiting for connections to become available in the pool. For example, a very heavily loaded messaging

engine might need 50 or more connections. Perform the following steps to configure the connection pool to

meet your performance requirements:

1. Ensure that the configuration of your relational database management system (RDBMS) permits the

number of connections that you require. Refer to the documentation for your RDBMS for more

information.

2. Use the administrative console to set the connection pool parameters for your data source. Navigate to

Resources → JDBC → Data sources → data_source_name → [Additional Properties] Connection

pool properties.

a. Set the Maximum connections to the number of connections you require, for example, at least

50. The default number of connections is 10.

Note: If your messaging engine times out when requesting a database connection, check the error

log. If the error log contains error message CWSIS1522E, increase the number of

connections and ensure that the configuration of your RDBMS permits that number of

connections.

b. Set the Purge policy to EntirePool. This policy enables the connection pool to release all

connections when the messaging engine stops.

Setting tuning properties by editing the sib.properties file

Use this task to set tuning properties for the service integration environment by editing the sib.properties

file

76 Tuning guide

About this task

You can set tuning properties to improve the performance of components in the service integration

environment. The properties you can set are listed in the tables below:

Properties for a messaging engine

sib.trm.retry

The messaging engine to messaging engine connection retry interval, in seconds. The retry interval is

the time delay left between attempts to contact neighboring messaging engines with which

communications exist. The default retry interval is 30 seconds.

Properties for the component of a messaging engine that manages the data store

sib.msgstore.discardableDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the

quality of service attribute is best effort nonpersistent. The default value is 320000, which is

approximately 320 kilobytes.

 The discardable data buffer contains all data for which the quality of service attribute is best effort

nonpersistent. That data comprises both data that is involved in active transactions, and any other

best effort nonpersistent data that the messaging engine has neither discarded nor consumed. The

messaging engine holds this data entirely within this memory buffer and never writes the data to the

data store. When the messaging engine adds data to the discardable data buffer, for example when

the messaging engine receives a best effort nonpersistent message from a client, the messaging

engine might discard data already in the buffer to make space. The messaging engine can discard

only data that is not involved in active transactions. This behavior enables the messaging engine to

discard best effort nonpersistent messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to be

handled before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient space

remains after discarding all the data that is not involved in active transactions, the messaging engine

throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications can catch this

exception, wrapped inside API-specific exceptions such as javax.jms.JMSException.

sib.msgstore.cachedDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the

quality of service attribute is better than best effort nonpersistent and which is held in the data store.

The default value is 320000, which is approximately 320 kilobytes.

 The purpose of the cached data buffer is to optimize the performance of the messaging engine by

caching in memory the data that the messaging engine might otherwise need to read from the data

store. As it writes data to the data store and reads from the data store, the messaging engine attempts

to add that data to the cached data buffer. The messaging engine might discard data already in the

buffer to make space.

sib.msgstore.transactionSendLimit

The maximum number of operations that the messaging engine includes in each transaction. For

example, each JMS send or receive is an operation that counts towards the transaction send limit. The

default value is 100.

To set these properties by editing the sib.properties file, perform the following steps:

1. Navigate to the profile_root/properties directory, where profile_root is the directory in which

profile-specific information is stored.

2. If the directory does not contain a sib.properties file, then copy the template sib.properties files from

the app_server_root/properties directory, where app_server_root is the root directory for the installation

of WebSphere Application Server.

Chapter 12. Tuning WebSphere applications 77

3. Using a text editor, open the sib.properties file and add the name and value of the property that you

want to set. The format is name=value. For example sib.trm.retry=60

Tuning messaging performance with service integration technologies

To help optimize performance, you can set tuning properties that control the performance of

message-driven beans and other messaging applications deployed to use service integration technologies.

About this task

To optimize the performance of messaging with service integration technologies, you can use the

administrative console to set various parameters as described in the steps below. You can also set these

parameters using the wsadmin tool.

v View the Available Message Count on a destination.

Viewing the Available Message Count on a destination enables you to determine whether your message

consumers are able to cope with your current workload. If the available message count on a given

destination is too high, or is increasing over time, consider some of the tuning recommendations in this

topic.

1. Enable AvailableMessageCount statistics for a queue. If you restart the administrative server, you

need to enable AvailableMessageCount statistics again because such runtime settings are not

preserved when the server is restarted.

a. In the navigation pane, click Monitoring and Tuning → Performance Monitoring Infrastructure

(PMI).

b. In the content pane, click server_name.

c. Click the Runtime tab.

d. In the Currently monitored statistic set, click Custom.

e. On the Custom monitoring level panel, click SIB Service → SIB Messaging Engines →

engine_name → Destinations → Queues → queue_name.

f. Select the AvailableMessageCount option.

g. Click the Enable button at the top of the panel.

2. View the available message count for a queue.

a. In the navigation pane, click Monitoring and Tuning → Performance Viewer → Current activity.

b. In the content pane, click server_name.

c. Click Performance Modules → SIB Service → SIB Messaging Engines → engine_name →

Destinations → Queues → queue_name.

d. Click the View Module(s) button at the top of the Resource Selection panel, located on the left

side. This displays the AvailableMessageCount data in the Data Monitoring panel, located on the

right side.

You can use the Data Monitoring panel to manage the collection of monitoring data; for example,

you can use the buttons to start or stop logging, or to change the data displayed as either a

table or graph.

v Monitor MDB Thread Pool Size for the Default Message Provider.

You might experience a performance bottleneck if there are insufficient threads available for the

message-driven beans. There is a trade-off between providing sufficient threads to maximize the

throughput of messages and configuring excessive threads, which can lead to CPU starvation of the

threads in the application server. If you notice that the throughput for express nonpersistent, reliable

nonpersistent, or reliable persistent messaging has fallen as a result of increasing the size of the default

thread pool, then decrease the size of the thread pool and reassess the message throughput.

1. View or change the number of threads in the default thread pool for an application server. By

default, message-driven beans use the default thread pool.

78 Tuning guide

a. Click Servers → Server Types → WebSphere application servers → server_name → [Additional

Properties] Thread Pools → Default. By default the Minimum size value is set to 5 and the

Maximum size value is set to 20. The best performance is obtained by setting the Maximum size

value to the expected maximum concurrency for all message-driven beans. For high throughput

using a single message bean, 41 was found to be the optimal Maximum size value.

b. Change the Maximum size value, then click OK.

2. Optional: Create your own thread pool. The default thread pool is also used by other WebSphere

Application Server components, so you might want to define a separate thread pool for the

message-driven beans. This reduces thread contention for the default thread pool.

a. Click Servers → Server Types → WebSphere application servers → server_name → [Additional

Properties] Thread Pools.

b. Create a new thread pool.

c. Create sufficient threads to support the maximum amount of concurrent work for the

message-driven beans.

d. Change the SIB JMS Resource Adapter to use the new thread pool:

1) Click Resources → Resource Adapters → Resource adapters.

2) If you cannot see any SIB JMS Resource Adapter instances in the list, expand Preferences

and enable Show built-in resources.

3) Select the SIB JMS Resource Adapter with the appropriate scope depending upon the

scope of the connection factories.

4) Add the name of the new thread pool in the Thread pool alias box.

5) Click Apply .

3. Save your changes to the master configuration.

v Tune MDB performance with the default messaging provider.

1. Click Resources → JMS → Activation specifications → activation_specification_name.

2. Set the maximum batch size for this activation specification.

Delivering batches of messages to each MDB endpoint can improve performance, particularly when

used with Acknowledge mode set to Duplicates-ok auto-acknowledge. However, if message

ordering must be retained across failed deliveries, set this parameter to 1.

3. Set the maximum number of concurrent endpoints for this activation specification.

The maximum concurrent endpoints parameter controls the amount of concurrent work that can be

processed by a message bean. The parameter is applicable to message-driven beans using an

activation specification. Increasing the number of concurrent endpoints can improve performance but

can increase the number of threads in use at one time. To benefit from a change in this parameter,

there should be sufficient threads available in the MDB thread pool to support the concurrent work.

However, if message ordering must be retained across failed deliveries, set this parameter to 1.

4. Save your changes to the master configuration.

For additional information about tuning the throttling of message-driven beans, including controlling the

maximum number of instances of each message bean and the message batch size for serial delivery,

see Configuring MDB throttling on the default messaging provider.

v Ensure that application servers hosting one or more messaging engines are provided with an

appropriate amount of memory for the message throughput you require.

You can tune the initial and maximum Java Virtual Machine (JVM) heap sizes when adding a server to

a messaging bus, that is when you create a messaging engine. You have the option to do this in any of

the following cases:

– When adding a single server to a bus

– When adding a cluster to a bus

– When adding a new server to an existing cluster that is itself a bus member

Chapter 12. Tuning WebSphere applications 79

For an application server that is a bus member of at least one bus, or a member of a cluster that is a

bus member of at least one bus, the recommended initial and maximum heap sizes are 768MB.

When you are adding a cluster to a bus, you are recommended to increase the initial and maximum

JVM heap sizes for every server in the cluster to 768MB.

– Increasing the initial heap size improves the performance for small average message sizes

– Increasing the maximum heap size improves the performance for higher average message sizes

v Reduce the occurrence of OutOfMemoryError exceptions

If the cumulative size of the set of messages being processed within a transaction by the service

integration bus is large enough to exhaust the JVM heap, OutOfMemoryError exceptions occur.

Consider one of the following options for reducing the occurrence of OutOfMemoryError exceptions

when processing a large set of messages within a transaction.

– Increase the JVM heap sizes for the application server.

– Reduce the cumulative size of the set of messages being processed within the transaction.

v Change the maximum connections in a connection factory for the default messaging provider.

The maximum connections parameter limits the number of local connections. The default is 10. This

parameter should be set to a number equal to or greater than the number of threads (enterprise beans)

concurrently sending messages.

1. Click Resources → JMS → Topic connection factories → factory_name → [Additional Properties]

Connection pool properties.

2. Enter the required value in the Maximum connections field.

3. Click Apply.

4. Save your changes to the master configuration.

v Tune reliability levels for messages.

The reliability level chosen for the messages has a significant impact on performance. In order of

decreasing performance (fastest first), the reliability levels are:

1. Best-Effort Nonpersistent

2. Express Nonpersistent

3. Reliable Nonpersistent

4. Reliable Persistent

5. Assured Persistent

For MDB point-to-point messaging, best-effort nonpersistent throughput is more than six times greater

than assured persistent. For more information about reliability levels, see Message reliability levels.

Tuning messaging engine data stores

Obtain an overview of improving the performance of messaging engine data stores.

About this task

v “Tuning the JDBC data source of a messaging engine” on page 76

v “Controlling the memory buffers used by a messaging engine” on page 75

v Sharing connections to benefit from one-phase commit optimization

Tuning the JDBC data source of a messaging engine

The messaging engine needs to have the correct configuration for JDBC data source to achieve

messaging performance on a service integration bus.

Before you begin

Consider whether you need to configure the connection pool for the JDBC data source to achieve your

requirements for messaging performance.

80 Tuning guide

About this task

The messaging engine uses the connection pool to obtain its connections to the database. With a heavy

workload, a messaging engine might require a large number of concurrent connections to avoid delays

waiting for connections to become available in the pool. For example, a very heavily loaded messaging

engine might need 50 or more connections. Perform the following steps to configure the connection pool to

meet your performance requirements:

1. Ensure that the configuration of your relational database management system (RDBMS) permits the

number of connections that you require. Refer to the documentation for your RDBMS for more

information.

2. Use the administrative console to set the connection pool parameters for your data source. Navigate to

Resources → JDBC → Data sources → data_source_name → [Additional Properties] Connection

pool properties.

a. Set the Maximum connections to the number of connections you require, for example, at least

50. The default number of connections is 10.

Note: If your messaging engine times out when requesting a database connection, check the error

log. If the error log contains error message CWSIS1522E, increase the number of

connections and ensure that the configuration of your RDBMS permits that number of

connections.

b. Set the Purge policy to EntirePool. This policy enables the connection pool to release all

connections when the messaging engine stops.

Controlling the memory buffers used by a messaging engine

Every messaging engine manages two memory buffers that contain messages and message-related data.

You can improve the interaction of a messaging engine with its data store by tuning the properties that set

the sizes of the two buffers.

About this task

You can set the following properties to improve the interaction of a messaging engine with its data store:

sib.msgstore.discardableDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the

quality of service attribute is best effort nonpersistent. The default value is 320000, which is

approximately 320 kilobytes.

 The discardable data buffer contains all data for which the quality of service attribute is best effort

nonpersistent. That data comprises both data that is involved in active transactions, and any other

best effort nonpersistent data that the messaging engine has neither discarded nor consumed. The

messaging engine holds this data entirely within this memory buffer and never writes the data to the

data store. When the messaging engine adds data to the discardable data buffer, for example when

the messaging engine receives a best effort nonpersistent message from a client, the messaging

engine might discard data already in the buffer to make space. The messaging engine can discard

only data that is not involved in active transactions. This behavior enables the messaging engine to

discard best effort nonpersistent messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to be

handled before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient space

remains after discarding all the data that is not involved in active transactions, the messaging engine

throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications can catch this

exception, wrapped inside API-specific exceptions such as javax.jms.JMSException.

sib.msgstore.cachedDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the

Chapter 12. Tuning WebSphere applications 81

quality of service attribute is better than best effort nonpersistent and which is held in the data store.

The default value is 320000, which is approximately 320 kilobytes.

 The purpose of the cached data buffer is to optimize the performance of the messaging engine by

caching in memory the data that the messaging engine might otherwise need to read from the data

store. As it writes data to the data store and reads from the data store, the messaging engine attempts

to add that data to the cached data buffer. The messaging engine might discard data already in the

buffer to make space.

sib.msgstore.transactionSendLimit

The maximum number of operations that the messaging engine includes in each transaction. For

example, each JMS send or receive is an operation that counts towards the transaction send limit. The

default value is 100.

Note: The messaging engine uses approximate calculations to manage the data it holds in the memory

buffers. Neither of the DataBufferSize properties gives an accurate indication of the amount of

memory that the messaging engine consumes in the JVM heap. The messaging engine can

consume considerably more heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data store, use the

administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses → bus_name → [Topology] Messaging

engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

What to do next

Note: When you change any of these properties, the new values do not take effect until you restart the

messaging engine.

Increasing the number of data store tables to relieve concurrency bottleneck

Service integration technologies enables users to spread the data store for a messaging engine across

several tables. In typical use this is unlikely to have a significant influence. However, if statistics suggest a

concurrency bottleneck on the SIBnnn tables for a data store, you might try to solve the problem by

increasing the number of tables.

About this task

For more information on the set of tables in a data store see Data store tables

 SIB000 contains information about the structure of the data in the

other two tables – the “stream table”

SIB001 contains persistent objects – the “permanent item table”

SIB002 contains nonpersistent objects that have been saved to

the data store to reduce the messaging engine memory

requirement – the “temporary item table”

Having multiple tables means you can relieve any performance bottleneck you might have in your system.

You can modify SIBnnn tables of the data store of a messaging engine. You can increase the number of

permanent and temporary tables (SIB001 and SIB002), although there is no way to increase the number

of stream tables (SIB000).

82 Tuning guide

Example

This example illustrates what the SIBnnn tables for a data store might look like after modification:

 SIB000 contains information about the structure of the data in the

other two tables – the “stream table”

SIB001 contains persistent objects – the “permanent item table”

SIB002 contains persistent objects – the “permanent item table”

SIB003 contains persistent objects – the “permanent item table”

SIB004 contains nonpersistent objects that have been saved to

the data store to reduce the messaging engine memory

requirement – the “temporary item table”

SIB005 contains nonpersistent objects that have been saved to

the data store to reduce the messaging engine memory

requirement – the “temporary item table”

For instructions on how to configure the data store to use multiple item table, see the following topics:

One-phase commit optimization tuning

If you have configured your messaging engine to use a data store, you can achieve better performance by

configuring both the messaging engine and container-managed persistent (CMP) beans.

About this task

You need to configure both the CMP bean and the messaging engine resource authorization so that they

share the same data source.

1. Open the administrative console.

2. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ [Enterprise Java Bean Properties] Map data sources for all 2.x CMP beans.

3. On the content pane, select the check boxes next to all the CMP beans.

4. Select Per application in the Resource authorization selection list.

5. Modify the messaging engine’s resource authorization to Per application by modifying the property file

sib.properties and adding the custom property

sib.msgstore.jdbcResAuthForConnections=Application.

Setting tuning properties for a mediation

Use this task to tune a mediation for performance by using the administrative console.

Before you begin

Review the guidance on when it is appropriate to tune a mediation for performance in the topic Guidance

for tuning mediations for performance.

About this task

You can set the following tuning property in the administrative console to improve the performance of a

mediation:

sib:SkipWellFormedCheck

Whether you want to omit the well formed check that is performed on messages after they have been

processed by the mediation. Either true or false.

Chapter 12. Tuning WebSphere applications 83

Note: This property is overridden for messages that have the delivery option assured persistent, and

a well formed check is always performed.

To set, or unset, one or more tuning properties for a mediation, use the administrative console to complete

the following steps:

1. Display the mediation context information:

a. Click Service integration → Buses → bus_name → [Destination resources] Mediations.

b. In the content pane, select the name of the mediation for which you want to configure tuning

information.

c. Click [Additional Properties] Context information.

2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean in the list box.

5. Type true in the Context Value field to set the property, or type false to unset the property.

6. Click OK.

7. Save your changes to the master configuration.

Enabling CMP entity beans and messaging engine data stores to share

database connections

Use this task to enable container-managed persistence (CMP) entity beans to share the database

connections used by the data store of a messaging engine. This has been estimated as a potential

performance improvement of 15% for overall message throughput, but can only be used for entity beans

connected to the application server that contains the messaging engine.

About this task

To enable CMP entity beans to share the database connections used by the data store of a messaging

engine, complete the following steps.

1. Configure the data store to use a data source that is not XA-capable. For more information about

configuring a data store, see Configuring a JDBC data source for a messaging engine.

2. Select the Share data source with CMP option.

This option is provided on the JMS connection factory or JMS activation specification used to connect

to the service integration bus that hosts the bus destination that is used to store and process

messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete the following steps:

a. Display the default messaging provider. In the navigation pane, click Resources → JMS → JMS

providers.

b. Select the default provider for which you want to configure a unified connection factory.

c. Optional: Change the Scope check box to set the level at which the connection factory is to be

visible, according to your needs.

d. In the content pane, under Additional Properties, click Connection factories

e. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into the name space.

84 Tuning guide

Bus name

Type the name of the service integration bus that the connection factory is to create

connections to. This service integration bus hosts the destinations that the JMS queues

and topics are assigned to.

f. Optional: To change the properties of an existing connection factory, click one of the connection

factories displayed. This displays the properties for the connection factory in the content pane.

g. Select the check box for the Share data source with CMP field

h. Click OK.

i. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging engine that is in the

application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging engine, and specify

the same data source as used by the messaging engine. You can use the administrative consoles to

complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click Servers → Server

Types → WebSphere application servers → server_name → [Server messaging] Messaging

engines → engine_name → [Additional Properties] Message store The Data source name field

displays the name of the data source; by default:

jdbc/com.ibm.ws.sib/engine_name

b. Click Applications → New Application → New Enterprise Application.

c. On the first Preparing for application install page, specify the full path name of the source

application file (.ear file otherwise known as an EAR file), then click Next

d. On the second Preparing for application install page, complete the following steps:

1) Select the check box for the Generate Default Bindings property. Data source bindings (for EJB

1.1 JAR files) are generated based on the JNDI name, data source user name password

options. This results in default data source settings for each EJB JAR file. No bean-level data

source bindings are generated.

2) Under Connection Factory Bindings, click the check box for the Default connection factory

bindings: property, then type the JNDI name for the data source and optionally select a

Resource authorization value.

3) Click Next

4. If your application uses EJB modules that contain Container Managed Persistence (CMP) beans that

are based on the EJB 1.x specification, for Step: Provide default data source mapping for modules

containing 1.x entity beans, specify a JNDI name for the default data source for the EJB modules. The

default data source for the EJB modules is optional if data sources are specified for individual CMP

beans.

5. If your application has CMP beans that are based on the EJB 1.x specification, for Step: Map data

sources for all 1.x CMP, specify a JNDI name for data sources to be used for each of the 1.x CMP

beans. The data source attribute is optional for individual CMP beans if a default data source is

specified for the EJB module that contains CMP beans. If neither a default data source for the EJB

module nor a data source for individual CMP beans are specified, then a validation error displays after

you click Finish (step 13) and the installation is cancelled.

6. Complete other panels as needed.

7. On the Summary panel, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click the Click here link.

b. Verify the settings on the Map modules to servers page displayed. Ensure that the application

server that is specified contains the messaging engine and its data store.

c. Specify the Web servers as targets that will serve as routers for requests to this application. This

information is used to generate the plug-in configuration file (plugin-cfg.xml) for each Web server.

d. Click Finish.

Chapter 12. Tuning WebSphere applications 85

Results

For more information about installing applications, see Installing application files with the console.

Tuning bus-enabled Web services

You can use the administrative console or a Jacl script to tune performance settings for service integration

bus-enabled Web services.

About this task

Bus-enabled Web services dynamically use a fast-path route through the bus where possible. This

fast-path route is used if the following criteria are met:

v The inbound port and outbound port for the service are on the same server.

v There are no mediations on the path from the inbound port to the outbound port.

Further optimizations can be made, if your configuration also meets the following criteria:

v The inbound template WSDL URI is the same location as the Outbound Target Service WSDL location

URI.

v The inbound service template WSDL service name matches the outbound WSDL service name.

v The inbound service template port name matches the outbound WSDL port name.

v The mapping of the namespaces is disabled (that is, you have set the inbound service property

com.ibm.websphere.wsgw.mapSoapBodyNamespace to false).

v Operation-level security is not enabled on the outbound service.

If your Web services use the fast-path route, you need not tune mediations or the service integration bus.

However it is good practise to do so, because a typical environment will have at least one non-fast-path

(for example, mediated) service.

To improve the performance of bus-enabled Web services you can tune the following parameters:

v The Java virtual machine heap size. This helps ensure there is enough memory available to process

large messages, or messages with large attachments.

v The maximum number of instances of a message-driven bean that are permitted by the activation

specification for the service integration technologies resource adapter. This throttles the number of

concurrent clients serviced.

v The maximum batch size for batches of messages to be delivered to a client. By default, only a single

message is delivered to a message-driven bean instance at one time; you can improve performance by

allowing messages to be sent in batches to a message-driven bean.

v The number of threads available to service requests for each client. That is, the number of threads

available in the default thread pool, the Web container thread pool and the mediation thread pool for a

given application server.

v The number of threads available in the mediation thread pool. This assumes that your mediations use

concurrent support where appropriate, as explained in Concurrent mediations.

If you have mediations that act on SOAP headers, you can improve performance by inserting the

associated header schemas (.xsd files) into the SDO repository.

To tune bus-enabled Web services, complete one of the following two steps:

v Use the administrative console to tune bus-enabled Web services, or

v Use a Jacl script to tune bus-enabled Web services.

If you have mediations that act on SOAP headers, also complete the following step:

v Insert the header schemas into the SDO repository.

86 Tuning guide

friend.was/ae/trun_app_instwiz.html

v Optional: To use the administrative console to tune bus-enabled Web services, complete the following

steps:

1. Use the topic Tuning Java virtual machines to set the JVM heap size to a larger value than the

default value (256 megabytes). The value should generally be as large as possible without incurring

paging.

2. Use the topic Tuning service integration messaging to tune the maximum number of instances of a

message-driven bean, the maximum batch size for batches of messages for a bean, and the

number of threads available to service requests for a bean.

3. Use the topic Tuning the application serving environment to tune the general application serving

environment, in particular the size of the Web Container Thread Pool. In a server which is

exclusively serving requests to bus-enabled Web services, the default thread pool and the Web

Container thread pool should be the same size.

4. Use the topic Configuring the mediation thread pool to configure the number of threads available to

concurrent mediations.

v To use a script to tune bus-enabled Web services, use the wsadmin scripting client to run a script

similar to the following example. Whilst the values in this script indicate parameters that you should

investigate in terms of performance, you must ensure that you understand the impact that changing

these parameters will have on the system, especially in cases where bus-enabled Web services may

not be the only work that your application server handles.

#--

Bus-enabled Web services WebSphere Tuning Script

#--

This script is designed to modify some of the tuning pertinent to a

bus-enabled Web services deployment.

In order to tune the config parameters, simply change the values

provided below. This script assumes that all server names in a

cluster configuration are unique.

To invoke the script, type:

wsadmin -f tuneWAS.py <scope> <id>

scope - ’cluster’ or ’server’

id - name of target object within scope (i.e. servername)

Example:

wsadmin -f tuneWAS.py server server1

wsadmin -f tuneWAS.py cluster WSGWCluster

#--

import sys

AdminConfig.setValidationLevel("NONE")

print "Starting script..."

print "Reaqding config parameters..."

#--

COMMON CONFIG PARAMETERS

- Adjust these parameters based on the intended target system (Defaults in parentheses)

#--

WebContainer Thread Pool (10,50)

minWebPool=10

maxWebPool=15

Default Thread Pool - (Multiprotocol MDB) (10,50)

minDefaultPool=10

maxDefaultPool=15

Mediations Thread Pool (1,5)

Chapter 12. Tuning WebSphere applications 87

friend.was/ae/tprf_tunejvm_v61.dita
friend.was/ae/tprf_tuneprf.dita
friend.was/ae/txml_launchscript.dita

minMediationPool=10

maxMediationPool=15

HTTP KeepAlive settings (true, 100)

keepAliveEnabled="true"

maxPersistentRequests=-1

Inactivity Timeouts for thread pools (3500)

inactivity=3500

JVM properties

minHeap=1280

maxHeap=1280

verboseGC="false"

genericArgs=""

J2CActivationSpec for the SIB_RA Resource adapter

SIB_RA_maxConcurrency=40

SIB_RA_maxBatchSize=5

Jav2 Security (false for 5.1 and true for 6.0)

j2Security="false"

Parallel server startup

parallelStart="false"

#---

Check/Print Usage

#---

def printUsageAndExit():

 print

 print "Usage: wsadmin -f tuneWAS.py <cluster | server> <name>"

 sys.exit(0)

#---

Misc Procedures

#---

def getName(objectid):

 endIndex=objectid.index("(")

 return objectId[0:endIndex]

#---

Parse command line arguments

#---

print "Parsing command line arguments..."

if len(sys.argv)<2:

 printUsageAndExit()

else:

 scope=sys.argv[0]

 print "Scope: %s" % scope

 if scope=="cluster":

 clustername=sys.argv[1]

 print "Cluster: %s" % clustername

 elif scope=="server":

 servername=sys.argv[1]

 print "Server: %s" % servername

 else:

 print "Error: Invalid Argument (%s)" % scope

 printUsageAndExit()

#---

Obtain server list

88 Tuning guide

#---

print

print "Obtaining server list..."

serverList=[]

if scope=="cluster":

 cluster=AdminConfig.getid("/ServerCluster:%s/" % clustername)

 temp=AdminConfig.showAttribute(cluster , "members")

 memberList=" ".split(temp[1:-1])

 for member in memberList:

 memberName=getName(member)

 serverList.insert(0,AdminConfig.getid("/Server:%s/" % memberName))

else:

 server=AdminConfig.getid("/Server:%s/" % servername)

 serverList.insert(0,server)

#---

Print config properties

#---

print

print "WebSphere configuration"

print "-----------------------"

print ""

print " Enforce Java2 Security: %s" % j2Security

print

print "Servers:"

for server in serverList:

 print " %s" % getName(server)

print

print " Web --"

print " Min WebContainer Pool Size: %s" % minWebPool

print " Max WebContainer Pool Size: %s" % maxWebPool

print " JVM --"

print " Min JVM Heap Size: %s" % minHeap

print " Max JVM Heap Size: %s" % maxHeap

print " Verbose GC: %s" % verboseGC

print

#---

Modify cell parameters

#---

Accessing cell based security config

print "Accessing security configuration..."

sec=AdminConfig.list("Security")

attrs=[["enforceJava2Security",j2Security]]

print "Updating secuirty..."

AdminConfig.modify(sec,attrs)

#---

Modify server parameters

#---

for server in serverList:

 servername=getName(server)

 print

 print "Serevr: %s" % servername

 print

 # Accessing server startup config

 print "Accessing server startup configuration..."

Chapter 12. Tuning WebSphere applications 89

print "Parallel Startup (old/new): %s/%s"

 print % (AdminConfig.showAttribute(server,"parallelStartEnabled") , parallelStart)

 attrs=[[’parallelStartEnabled’ , parallelStart]]

 print "Updating server startup..."

 print

 AdminConfig.modify(server , attrs)

 # Accessing web container thread pool config

 print "Accessing web container thread pool configuration..."

 tpList=AdminConfig.list(’ThreadPool’,server).splitlines()

 webPool=filter(lambda x: re.search("WebContainer" , x) , tpList)[0]

 print "ThreadPool MaxSize (old/new): %s/%s"

 print % (AdminConfig.showAttribute(webPool , "maximumSize") , maxWebPool)

 print "ThreadPool MinSize (old/new): %s/%s"

 print % (AdminConfig.showAttribute(webPool , "minimumSize") , minWebPool)

 print "ThreadPool Inactivity Timeout (old/new): %s/%s"

 print % (AdminConfig.showAttribute(webPool , "inactivityTimeout") , inactivity)

 attrs=[["maximumSize" , maxWebPool] , ["minimumSize" , minWebPool] ,

 ["inactivityTimeout" , inactivity]]

 print "Updating web container thread pool..."

 print

 AdminConfig.modify(webPool , attrs)

 # Accessing default thread pool config

 print "Accessing default thread pool configuration..."

 tpList=AdminConfig.list("ThreadPool" , server)

 webPool=filter(lambda x: re.search("Default" , x) , tpList)[0]

 print "ThreadPool MaxSize (old/new): %s/%s"

 print % (AdminConfig.showAttribute(webPool , "maximumSize") , maxDefaultPool)

 print "ThreadPool MinSize (old/new): %s/%s"

 print % (AdminConfig.showAttribute(webPool , "minimumSize") , minDefaultPool)

 print "ThreadPool Inactivity Timeout (old/new): %s/%s"

 print % (AdminConfig.showAttribute(webPool , "inactivityTimeout") , inactivity)

 attrs=[["maximumSize" , maxDefaultPool] , ["minimumSize" , minDefaultPool] ,

 ["inactivityTimeout" , inactivity]]

 print "Updating default thread pool..."

 print

 AdminConfig.modify(webPool , attrs)

 # Creating Mediations Thread Pool

 print "Creating Mediations thread pool"

 me=AdminConfig.list(SIBMessagingEngine)

 mtpName="%s-mediationThreadPool" % AdminConfig.showAttribute(me , "name")

 tpAttrs=[["name" , mtpName] , ["minimumSize" , minMediationPool] ,

 ["maximumSize" , maxMediationPool]]

 print "ThreadPool Name : %s" % mtpName

 print "ThreadPool MaxSize : %s" % maxMediationPool

 print "ThreadPool MinSize : %s" % minMediationPool

 AdminConfig.create("ThreadPool" , me , tpAttrs , "mediationThreadPool")

 print "Mediations Thread Pool Created"

 print

 # Accessing HTTP keepalive config

 print "Accessing HTTP KeepAlive configuration..."

 HTTPInbound=AdminConfig.list("HTTPInboundChannel" , server)

 http2=filter(lambda x: re.search("HTTP_2" , x) , HTTPInbound)[0]

 print "KeepAlive Enabled (old/new): %s/%s"

 print % (AdminConfig.showAttribute(http2 , "keepAlive") ,keepAliveEnabled)

 print "Max Persistent Requests (old/new): %s/%s"

 print % (AdminConfig.showAttribute(http2 ,

 print "maximumPersistentRequests") , maxPersistentRequests)

 attrs=[["keepAlive" , keepAliveEnabled] ,

 print ["maximumPersistentRequests" , maxPersistentRequests]]

 print "Updating HTTP KeepAlives"

 print

90 Tuning guide

AdminConfig.modify(http2 , attr)

 # Accessing JVM config

 print "Accessing JVM configuration..."

 jvm=AdminConfig.list("JavaVirtualMachine" , server)

 print "Initial Heap Size (old/new): %s/%s"

 print % (AdminConfig.showAttribute(jvm , "initialHeapSize") , minHeap)

 print "Maximum Heap Size (old/new): %s/%s"

 print % (AdminConfig.showAttribute(jvm , "maximumHeapSize") , maxHeap)

 print "VerboseGC Enabled (old/new): %s/%s"

 print % (AdminConfig.showAttribute(jvm , "verboseModeGarbageCollection") , verboseGC)

 attrs=[["initialHeapSize" , minHeap] , ["maximumHeapSize" , maxHeap],

 ["verboseModeGarbageCollection" , verboseGC]]

 print "Updating JVM..."

 print

 AdminConfig.modify(jvm , attrs)

 # Accessing J2CActivationSpec for the SIB Resource Adapter

 print "Modifying the J2CActivationSpec for the SIB Resource Adapter"

 actSpec=AdminConfig.getid("/J2CActivationSpec:SIBWS_OUTBOUND_MDB/")

 propSet=AdminConfig.showAttribute(actSpec , "resourceProperties").splitlines()

 propSet=propSet[0]

 maxConcurrency=["value" , SIB_RA_maxConcurrency]

 maxConcurrency=[maxConcurrency]

 maxBatchSize=["value" , SIB_RA_maxBatchSize]

 maxBatchSize=[maxBatchSize]

 for propId in propSet:

 if AdminConfig.showAttribute(propId , "name")=="maxConcurrency":

 AdminConfig.modify(propId , maxConcurrency)

 print "Custom property changed : %s" % AdminConfig.showall(propId)

 if AdminConfig.showAttribute(propId , "name")=="maxBatchSize":

 AdminConfig.modify(propId , maxBatchSize)

 print "Custom property changed : %s" % AdminConfig.showall(propId)

 print "J2CActivationSpec modifications complete"

print

print "Script completed..."

print "Saving config..."

AdminConfig.save()

v Optional: If you have mediations that act on SOAP headers, insert the associated schemas (.xsd files)

into the SDO repository as described in “Including SOAP header schemas in the SDO repository.”

Including SOAP header schemas in the SDO repository

About this task

Mediations accessing SOAP headers should ensure that the SOAP header schema is made available to

the SDO repository. This simplifies access to the header fields (see Web Services code example) and can

provide a significant performance benefit. Normally the schema (.xsd file) for a SOAP header is already

available to the application developer.

Here is an example of a header (used for routing) that is passed in the SOAP message:

<soapenv:Header>

<hns0:myClientToken xmlns:hns0="http://www.ibm.com/wbc">

 <UseRoutingId>true</ UseRoutingId >

 <RoutingID>5</ RoutingID >

 </hns0: myClientToken >

</soapenv:Header>

Here is an example of an associated header schema:

Chapter 12. Tuning WebSphere applications 91

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.ibm.com/wbc"

 elementFormDefault="unqualified">

<xs:element name=" myClientToken">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="UseRoutingId" type="xs:string"/>

 <xs:element name="RoutingID" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

To insert the schema into the SDO repository, complete the following steps:

1. Create a script that contains the following code:

v For Jython, create a script called sdoXSDImport.py:

xsdFile=sys.argv[0]

xsdKey=sys.argv[1]

sdoRep=AdminControl.queryNames(“*,type=SdoRepository,node=%s” % AdminControl.

getNode)

print AdminControl.invoke(sdoRep , importResource([xsdKey , xsdFile]))

v For Jacl, create a script called sdoXSDImport.jacl:

set xsdFile [lindex $argv 0]

set xsdKey [lindex $argv 1]

set sdoRep [$AdminControl queryNames *,type=SdoRepository,node=[$AdminControl

 getNode]]

puts [$AdminControl invoke $sdoRep importResource [list $xsdKey $xsdFile]]

Note: To create an equivalent script for removing a resource from the SDO repository, take a copy of

this script and modify the final line as follows:

v Using Jython:

AdminControl.invoke(sdoRep , “removeResource” , [[xsdKey , “false"]])

v Using Jacl:

$AdminControl invoke $sdoRep removeResource [list $xsdKey false]

2. Use the wsadmin scripting client to insert the schema into the SDO repository by entering the following

command.

v To use the Jython script:

wsadmin -lang jython -f sdoXSDImport.py your_header.xsd your_header_namespace

v To use the Jacl script:

wsadmin -f sdoXSDImport.jacl your_header.xsd your_header_namespace

where

v your_header.xsd is the name of the file that contains your header schema.

v your_header_namespace is the target namespace for the header. For example http://
yourCompany.com/yourNamespace.

Security

Tuning, hardening, and maintaining

After installing WebSphere Application Server, there are several considerations for tuning, strengthening,

and maintaining your security configuration.

92 Tuning guide

friend.was/ae/txml_launchscript.html

About this task

The following topics are covered in this section:

v Tuning security configurations You can tune your security configuration to balance performance with

function. You can achieve this balance following considerations for tuning general security, Common

Secure Interoperability version 2 (CSIv2), Lightweight Directory Access Protocol (LDAP) authentication,

Web authentication, and authorization. For more information on tuning security, see “Tuning security

configurations.”

v Hardening security configurations Several methods exist that you can use to protect your infrastructure

and applications from different forms of attack. For more information on hardening your security, see

“Hardening security configurations” on page 98.

v Securing passwords in files Password encryption and encoding can add protect to passwords existing in

files. For more information on encoding and encrypting passwords, see “Securing passwords in files” on

page 99.

Tuning security configurations

You can tune security to balance performance with function. You can achieve this balance following

considerations for tuning general security, Common Secure Interoperability version 2 (CSIv2), Lightweight

Directory Access Protocol (LDAP) authentication, Web authentication, and authorization.

About this task

Performance issues typically involve trade-offs between function and speed. Usually, the more function

and the more processing that are involved, the slower the performance. Consider what type of security is

necessary and what you can disable in your environment. For example, if your application servers are

running in a Virtual Private Network (VPN), consider whether you can disable Secure Sockets Layer

(SSL). If you have a lot of users, can they be mapped to groups and then associated to your Java

Platform, Enterprise Edition (Java EE) roles? These questions are things to consider when designing your

security infrastructure.

v Consider the following recommendations for tuning general security.

– Consider disabling Java 2 security manager if you know exactly what code is put onto your server

and you do not need to protect process resources. Remember that in doing so, you put your local

resources at some risk.

– Consider increasing the cache and token timeout if you feel your environment is secure enough. By

increasing these values, you have to re-authenticate less often. This action supports subsequent

requests to reuse the credentials that already are created. The downside of increasing the token

timeout is the exposure of having a token hacked and providing the hacker more time to hack into

the system before the token expires. You can use security cache properties to determine the initial

size of the primary and secondary hashtable caches, which affect the frequency of rehashing and the

distribution of the hash algorithms.

See the article Authentication cache settings for a list of these properties.

– Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to

Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely

stateless. Run a benchmark to determine if the performance is improved in your environment.

– Use the wsadmin script to complete the access IDs for all the users and groups to speed up the

application startup. Complete this action if applications contain many users or groups, or if

applications are stopped and started frequently. WebSphere Application Server maps user and group

names to unique access IDs in the authorization table. The exact format of the access ID depends

on the repository. The access ID can only be determined during and after application deployment.

Authorization tables created during assembly time do not have the proper access IDs. See

Commands for the AdminApp object for more information about how to update access IDs.

– Consider tuning the Object Request Broker (ORB) because it is a factor in enterprise bean

performance with or without security enabled. Refer to the ORB tuning guidelines topic.

Chapter 12. Tuning WebSphere applications 93

– If using SSL, enable the SSL session tracking mechanism option as described in the article, Session

management settings.

– In some cases, using the unrestricted Java Cryptography Extension (JCE) policy file can improve

performance. Refer to the article, Tuning Web services security.

– Distributing the workload to multiple Java virtual machines (JVMs) instead of a single JVM on a

single machine can improve the security performance because there is less contention for

authorization decisions.

v Consider the following steps to tune Common Secure Interoperability version 2 (CSIv2).

– Consider using Secure Sockets Layer (SSL) client certificates instead of a user ID and password to

authenticate Java clients. Because you are already making the SSL connection, using mutual

authentication adds little overhead while it removes the service context that contains the user ID and

password completely.

– If you send a large amount of data that is not very security sensitive, reduce the strength of your

ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action

takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

– Consider putting only an asterisk (*) in the trusted server ID list (meaning trust all servers) when you

use identity assertion for downstream delegation. Use SSL mutual authentication between servers to

provide this trust. Adding this extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk (*) is used, the identity

token is trusted. The SSL connection trusts the server through client certificate authentication.

– Ensure that stateful sessions are enabled for CSIv2. This is the default, but requires authentication

only on the first request and on any subsequent token expirations.

– If you are communicating only with WebSphere Application Server Version 5 or higher servers, make

the Active Authentication Protocol CSI, instead of CSI and SAS. This action removes an interceptor

invocation for every request on both the client and server sides.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

v Consider the following steps to tune Lightweight Directory Access Protocol (LDAP) authentication.

1. In the administration console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry and click Configure.

3. Select the Ignore case for authorization option in the standalone LDAP registry configuration,

when case-sensitivity is not important.

4. Select the Reuse connection option.

5. Use the cache features that your LDAP server supports.

6. Choose either the IBM Tivoli Directory Server or SecureWay® directory type, if you are using an IBM

Tivoli Directory Server. The IBM Tivoli Directory Server yields improved performance because it is

programmed to use the new group membership attributes to improve group membership searches.

However, authorization must be case insensitive to use IBM Tivoli Directory Server.

7. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you

are an iPlanet Directory user. Using the iPlanet Directory Server directory can increase performance

in group membership lookup. However, use Role only for group mechanisms.

v Consider the following steps to tune Web authentication.

– Increase the cache and token timeout values if you feel your environment is secure enough. The

Web authentication information is stored in these caches and as long as the authentication

information is in the cache, the login module is not invoked to authenticate the user. This supports

subsequent requests to reuse the credentials that are already created. A disadvantage of increasing

the token timeout is the exposure of having a token stolen and providing the thief more time to hack

into the system before the token expires.

94 Tuning guide

– Enable single sign-on (SSO). To configure SSO, click Security > Global security. Under Web

security, click Single sign-on (SSO).

SSO is only available when you configure LTPA as the authentication mechanism in the

Authentication mechanisms and expiration panel. Although you can select Simple WebSphere

Authentication Mechanism (SWAM) as the authentication mechanism on the Authentication

mechanisms and expiration panel, SWAM is deprecated in Version 7.0 and does not support SSO.

When you select SSO, a single authentication to one application server is enough to make requests

to multiple application servers in the same SSO domain. Some situations exist where SSO is not a

desirable and you do not want to use it in those situations.

– Disable or enabling the Web Inbound Security Attribute Propagation option on the Single sign-on

(SSO) panel if the function is not required. In some cases, having the function enabled can improve

performance. This improvement is most likely for higher volume cases where a considerable number

of user registry calls reduces performance. In other cases, having the feature disabled can improve

performance. This improvement is most likely when the user registry calls do not take considerable

resources.

– The following two custom properties might help to improve performance when security attribute

propagation is enabled:

- com.ibm.CSI.propagateFirstCallerOnly

When this custom property is set to true the first caller in the propagation token that stays on the

thread is logged when security attribute propagation is enabled. Without setting this property, all of

the caller switches are logged, which can affect performance.

- com.ibm.CSI.disablePropagationCallerList

When this custom property is set to true the ability to add a caller or host list in the propagation

token is completely disabled. This function is beneficial when the caller or host list in the

propagation token is not needed in the environment.

v Consider the following steps to tune authorization.

– Map your users to groups in the user registry. Associate the groups with your Java Platform,

Enterprise Edition (Java EE) roles. This association greatly improves performance when the number

of users increases.

– Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk

(*) to indicate all the methods in the method-name element. When all the methods in enterprise

beans require the same permission, use an asterisk (*) for the method-name to indicate all methods.

This indication reduces the size of deployment descriptors and reduces the memory that is required

to load the deployment descriptor. It also reduces the search time during method-permission match

for the enterprise beans method.

– Judiciously assign security-constraints for servlets. For example, you can use the *.jsp URL pattern

to apply the same authentication data constraints to indicate all JavaServer Pages (JSP) files. For a

given URL, the exact match in the deployment descriptor takes precedence over the longest path

match. Use the *.jsp, *.do, *.html extension match if no exact matches exist and longest path

matches exist for a given URL in the security constraints.

v Use new tuning parameters when using Java 2 security. The new tuning parameters can improve

performance significantly, and introduce a new concept called Read-only Subject, which enables a new

cache for J2C Auth Subjects when using container-managed auth data aliases. If the J2C auth subject

does not need to be modified after it is created, the following new tuning parameters can be used to

improve Java 2 Security performance:

– com.ibm.websphere.security.auth.j2c.cacheReadOnlyAuthDataSubjects=true

– com.ibm.websphere.security.auth.j2c.readOnlyAuthDataSubjectCacheSize=50 (This is the maximum

number of subjects in the hashtable of the cache. Once the cache reaches this size, some of the

entries are purged. For better performance, this size should be equal to the number of unique

subjects (cache based on uniqueness of user principal + auth data alias + managed connection

factory instance) when role-based security and Java 2 security are used together).

Chapter 12. Tuning WebSphere applications 95

v Use new tuning parameters to improve the performance of Security Attribute Propagation. The new

tuning parameters can be set through custom properties in the administrative console to reduce the

extra overhead of Security Attribute Propagation:

– com.ibm.CSI.disablePropagationCallerList=true

– com.ibm.CSI.propagateFirstCallerOnly=true (use if you want to track the first caller only).

Results

You always have a trade off between performance, feature, and security. Security typically adds more

processing time to your requests, but for a good reason. Not all security features are required in your

environment. When you decide to tune security, create a benchmark before making any change to ensure

that the change is improving performance.

What to do next

In a large scale deployment, performance is very important. Running benchmark measurements with

different combinations of features can help you to determine the best performance versus the benefit of

configuration for your environment. Continue to run benchmarks if anything changes in your environment,

to help determine the impact of these changes.

Secure Sockets Layer performance tips:

Use this page to learn about Secure Sockets Layer (SSL) performance tips. Be sure to consider that

performance issues typically involve trade-offs between function and speed. Usually, the more function and

the more processing that are involved, the slower the performance.

 The following are two types of Secure Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a connection is made, SSL

performs bulk encryption and decryption for each read-write. The performance cost of an SSL handshake

is much larger than that of bulk encryption and decryption.

To enhance SSL performance, decrease the number of individual SSL connections and handshakes.

Decreasing the number of connections increases performance for secure communication through SSL

connections, as well as non-secure communication through simple Transmission Control Protocol/Internet

Protocol (TCP/IP) connections. One way to decrease individual SSL connections is to use a browser that

supports HTTP 1.1. Decreasing individual SSL connections can be impossible if you cannot upgrade to

HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP and SSL) between two

WebSphere Application Server components. The following guidelines help to verify the HTTP transport of

the application server is configured so that the Web server plug-in does not repeatedly reopen new

connections to the application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the maximum number of

requests per thread of the Web server (or maximum number of processes for IBM HTTP Server on

UNIX). Make sure that the Web server plug-in is capable of obtaining a keep alive connection for every

possible concurrent connection to the application server. Otherwise, the application server closes the

connection after a single request is processed. Also, the maximum number of threads in the Web

container thread pool should be larger than the maximum number of keep alives, to prevent the keep

alive connections from consuming the Web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a maximum keep alive

value for channel based configurations, see HTTP transport channel settings.

96 Tuning guide

v Increase the maximum number of requests per keep alive connection. The default value is 100, which

means the application server closes the connection from the plug-in after 100 requests. The plug-in then

has to open a new connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send requests to tie up threads in

the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server only increase the SSL

handshake performance, not the bulk encryption and decryption. An accelerator typically only benefits

the Web server because Web server connections are short-lived. All other SSL connections in

WebSphere Application Server are long-lived.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just because a cipher suite

performs better in software does not mean a cipher suite will perform better with hardware. Some

algorithms are typically inefficient in hardware, for example, Data Encryption Standard (DES) and

triple-strength DES (3DES); however, specialized hardware can provide efficient implementations of

these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher suite used for an individual

SSL connection. The following chart displays the performance of each cipher suite. The test software

calculating the data was Java Secure Socket Extension (JSSE) for both the client and server software,

which used no cryptographic hardware support. The test did not include the time to establish a

connection, but only the time to transmit data through an established connection. Therefore, the data

reveals the relative SSL performance of various cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each test case. After the

connection is established, the client times how long it takes to write an integer to the server and for the

server to write the specified number of bytes back to the client. Varying the amount of data had

negligible effects on the relative performance of the cipher suites.

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the cipher suite name. This is

expected since the portion before the WITH identifies the algorithm used only during the SSL

handshake.

v MD5 and Secure Hash Algorithm (SHA) are the two hash algorithms used to provide data integrity. MD5

is generally faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4. Triple DES is the most secure, but the performance cost is high

when using only software.

Chapter 12. Tuning WebSphere applications 97

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though SSL_RSA_EXPORT_WITH_RC4_40_MD5 is

cryptographically weaker than RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the

same. Therefore, as long as the SSL connection is a long-running connection, the difference in the

performance of high and medium security levels is negligible. It is recommended that a security level of

high be used, instead of medium, for all components participating in communication only among

WebSphere Application Server products. Make sure that the connections are long running connections.

Tuning security:

Use the following procedures to tune the performance, without compromising your security settings.

 About this task

Enabling security decreases performance. The following tuning parameters provide ways to minimize this

performance impact.

v Disable security on any application servers that do not need security. You can disable security in the

administrative console by clicking Security > Global security and deselecting the Enable

administrative security option.

v Fine-tune the Authentication cache timeout value on the Authentication mechanisms and expiration

panel in the administrative console. For more information, see the Global security settings topic.

v Configure the security cache properties. For more information, see the Authentication cache settings

topic.

v Enable the Enable SSL ID tracking option on the Session management panel in the administrative

console. For more information, see the Session management settings topic.

v Improve the performance of Web services security by downloading a Java Cryptography Extension

(JCE) unlimited jurisdiction policy file that does not have restrictions on cryptography strength. For more

information, see the “Tuning Web services security for Version 7.0 applications” on page 71 topic.

v Read the Secure Sockets Layer performance tips and “Tuning security configurations” on page 93

topics for more information.

Hardening security configurations

There are several methods that you can use to protect the WebSphere Application Server infrastructure

and applications from different forms of attack. Several different techniques can help with multiple forms of

attack. Sometimes a single attack can leverage multiple forms of intrusion to achieve the end goal.

About this task

For example, in the simplest case, network sniffing can be used to obtain passwords and those passwords

can then be used to mount an application-level attack. The following issues are discussed in IBM

WebSphere Developer Technical Journal: WebSphere Application Server V5 advanced security and

system hardening:

v Take preventative measures to protect the infrastructure.

v Make applications less vulnerable to attack.

v At a minimum, ensure administrative security is enabled in all WebSphere processes. This protects

access to the administrative ConfigService interface and managed beans (MBeans) that enables control

over the WebSphere process if it is compromised.

v Ensure Secure Sockets Layer (SSL) is used whenever possible, and mutual SSL whenever possible.

However, mutual SSL requires all clients to supply a trusted personal certificate in order to connect.

v Remove any unnecessary certificate authority (CA) signer certificates from your trust stores.

v Change default keystore passwords during or after profile creation using the AdminTask

changeMultipleKeyStorePasswords command.

98 Tuning guide

http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html

v Change your Lightweight Third-Party Authentication (LTPA) keys periodically. By default, this occurs

automatically every 12 weeks. If you want to disable this automatic regeneration, remember to manually

generate a new set of keys on occasion.

v Common Secure Interoperability version 2 (CSIv2) inbound Basic authentication is supported in this

release of WebSphere Application Server. This means that the authentication process is optional.

Consider changing the authentication default to ’required’.

Securing passwords in files

Password encoding and encryption deters the casual observation of passwords in server configuration and

property files.

About this task

The following topics can be used to add protection for passwords located in files:

v Encoding passwords in files WebSphere Application Server contains some encoded passwords that are

not encrypted. The PropFilePasswordEncoder utility is included to encode these passwords. For more

information on encoding passwords in a file, see “Encoding passwords in files.”

v Enabling custom password encryption You need to protect passwords that are contained in your

WebSphere Application Server configuration. You can added protection by creating a custom class for

encrypting the passwords. For more information on custom password encryption, see “Enabling custom

password encryption” on page 102.

Encoding passwords in files:

The purpose of password encoding is to deter casual observation of passwords in server configuration and

property files. Use the PropFilePasswordEncoder utility to encode passwords stored in properties files.

WebSphere Application Server does not provide a utility for decoding the passwords. Encoding is not

sufficient to fully protect passwords. Native security is the primary mechanism for protecting passwords

used in WebSphere Application Server configuration and property files.

 About this task

WebSphere Application Server contains several encoded passwords in files that are not encrypted.

WebSphere Application Server provides the PropFilePasswordEncoder utility, which you can use to

encode passwords. The purpose of password encoding is to deter casual observation of passwords in

server configuration and property files. The PropFilePasswordEncoder utility does not encode passwords

that are contained within XML or XMI files. Instead, WebSphere Application Server automatically encodes

the passwords in these files. XML and XMI files that contain encoded passwords include the following:

 Table 1. XML and XMI files that contain encoded passwords

File name Additional information

profile_root/config/cells/cell_name/security.xml The following fields contain encoded

passwords:

v LTPA password

v JAAS authentication data

v User registry server password

v LDAP user registry bind password

v Keystore password

v Truststore password

v Cryptographic token device password

war/WEB-INF/ibm_web_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

Chapter 12. Tuning WebSphere applications 99

Table 1. XML and XMI files that contain encoded passwords (continued)

File name Additional information

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

client jar/META-INF/ibm-appclient_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

ear/META-INF/ibm_application_bnd.xml Specifies the passwords for the default basic

authentication for the run as bindings within all

the descriptors

profile_root/config/cells/cell_name

/nodes/node_name/servers/

server_name/security.xml

The following fields contain encoded

passwords:

v Keystore password

v Truststore password

v Cryptographic token device password

v Session persistence password

profile_root/config/cells/cell_name

/nodes/node_name/servers/

server_name/resources.xml

The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

v profile_root/config/cells/cell_name

/ws-security.xml

v profile_root/config/cells/cell_name

/nodes/node_name/servers/server_name/ws-security

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

You use the PropFilePasswordEncoder utility to encode the passwords in properties files. These files

include:

 Table 2. The PropFilePasswordEncoder utility - Partial File List

File name Additional information

profile_root

/properties/sas.client.props

Specifies the passwords for the following files:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root

/properties/sas.tools.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root

/properties/sas.stdclient.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root

/properties/wsserver.key

100 Tuning guide

Table 2. The PropFilePasswordEncoder utility - Partial File List (continued)

File name Additional information

profile_root/profiles/AppSrvXX/properties/sib.client.ssl.properties Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

profile_root/UDDIReg/scripts/UDDIUtilityTools.properties Specifies passwords for:

v trustStore.password

To encode a password again in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password. The new password is shown

is no longer encoded and must be re-encoded.

2. Use the PropFilePasswordEncoder.bat or the PropFilePasswordEncode.sh file in the profile_root/bin

directory to encode the password again.

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder ″file_name″

password_properties_list

Note: When you use the PropFilePasswordEncoder utility, a prompt asks whether a backup version

of the original file is required. If a backup version is required, a backup file (.bak), is created

with the clear text password. Examine the results and then delete this backup file. It contains

the unencrypted password. If you do not want to see this prompt, edit the

PropFilePasswordEncoder utility and add the following Java system property as a parameter:

-Dcom.ibm.websphere.security.util.createBackup=true or

-Dcom.ibm.websphere.security.util.createBackup=false

A true value for the Java system property creates a backup file and a false value disables the

backup file.

where:

″file_name″ is the name of the z/SAS properties file, and password_properties_list is the name of the

properties to encode within the file.

Note: Only the password should be encoded in this file using the PropFilePasswordEncoder tool.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files

only. The utility cannot encode passwords that are contained in XML files or other files that contain

open and close tags.

Results

If you reopen the affected files, the passwords are encoded. WebSphere Application Server does not

provide a utility for decoding the passwords.

PropFilePasswordEncoder command reference:

The PropFilePasswordEncoder command encodes passwords that are located in plain text property files.

This command encodes both Secure Authentication Server (SAS) property files and non-SAS property

files. After you encode the passwords, a decoding command does not exist.

 To encode passwords, you must run this command from the directory:

Syntax

The command syntax is as follows:

PropFilePasswordEncoder "file_name" { passwordPropertiesList | -SAS } { -noBackup | -Backup }

 [-profileName profile] [-help | -?]

Chapter 12. Tuning WebSphere applications 101

Parameters

The following option is available for the PropFilePasswordEncoder command:

file_name

This required parameter specifies the name of the file in which passwords are encoded.

passwordPropertiesList

This parameter is required if you are encoding passwords in property files other than the

sas.client.props file. Specify one or more password properties that you want to encode. The password

properties list should be delimited by commas.

-SAS

This parameter is required if you are encoding passwords in the sas.client.props file.

-noBackup

This parameter is optional and the default. The script does not create a backup file. The default value

can be altered by adding following Java System Property:

"-Dcom.ibm.websphere.security.util.createBackup=true".

-Backup

This parameter is optional. The script creates a backup file, <file_name>.bak, which contains

passwords in clear text.

-profileName

This parameter is optional. The profile value specifies an application server profile name. The script

uses the password encoding algorithm that it retrieves from the specified profile. If you do not specify

this parameter, the script uses the default profile.

-help or -?

If you specify this parameter, the script ignores all other parameters and displays usage text.

Enabling custom password encryption:

You need to protect passwords that are contained in your WebSphere Application Server configuration.

After creating your server profile, you can added protection by creating a custom class for encrypting the

passwords.

 Before you begin

Create your custom class for encrypting passwords. For more information, see Plug point for custom

password encryption.

About this task

Complete the following steps to enable custom password encryption.

1. Add the following system properties for every server and client process. For server processes, update

the server.xml file for each process. Add these properties as a genericJvmArgument argument

preceded by a -D prefix.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true

Note: If the custom encryption class name is

com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl, it is automatically enabled when

this class is present in the classpath. Do not define the system properties that are listed

previously when the custom implementation has this package and class name. To disable

102 Tuning guide

encryption for this class, you must specify

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false as a system

property.

2. Add the Java archive (JAR) file containing the implementation class to the app_server_root/classes

directory so that the WebSphere Application Server runtime can load the file.

3. Restart all server processes.

4. Edit each configuration document that contains a password and save the configuration. All password

fields are then run through the WSEncoderDecoder utility, which calls the plug point when it is

enabled. The {custom:alias} tags are displayed in the configuration documents. The passwords, even

though they are encrypted, are still Base64-encoded. They seem similar to encoded passwords, except

for the tags difference.

5. Encrypt any passwords that are in client-side property files using the PropsFilePasswordEncoder

(.bat or .sh) utility. This utility requires that the properties listed previously are defined as system

properties in the script to encrypt new passwords instead of encoding them.

6. To decrypt passwords from client Java virtual machines (JVMs), add the properties listed previously as

system properties for each client utility.

7. Ensure that all nodes have the custom encryption classes in their class paths prior to enabling this

function.

Results

Custom password encryption is enabled.

What to do next

If custom password encryption fails or is no longer required, see “Disabling custom password encryption.”

Disabling custom password encryption:

If custom password encryption fails or is no longer required, perform this task to disable custom password

encryption.

 Before you begin

Enable custom password encryption.

About this task

Complete the following steps to disable custom password encryption.

1. Change the com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled property to be false in

the security.xml file, but leave the com.ibm.wsspi.security.crypto.customPasswordEncryptionClass

property configured. Any passwords in the model that still have the {custom:alias} tag are decrypted

by using the customer password encryption class.

2. If an encryption key is lost, any passwords that are encrypted with that key cannot be retrieved. To

recover a password, retype the password in the password field in plaintext and save the document.

The new password must be written out using encoding with the {xor} tag with scripting or from the

administrative console.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. Restart all processes to make the changes effective.

Chapter 12. Tuning WebSphere applications 103

4. Edit each configuration document that contains an encrypted password and save the configuration. All

password fields are then run through the WSEncoderDecoder utility, which calls the plug point in the

presence of the {custom:alias} tag. The {xor} tags display in the configuration documents again after

the documents are saved.

5. Decrypt and encode any passwords that are in client-side property files using the

PropsFilePasswordEncoder (.bat or .sh) utility. If the encryption class is specified, but custom

encryption is disabled, running this utility converts the encryption to encoding and causes the {xor}

tags to display again.

6. Disable custom password encryption from the client Java virtual machines (JVMs) by adding the

system properties listed previously to all client scripts. This action enables the code to decrypt

passwords, but this action is not used to encrypt them again. The {xor} algorithm becomes the default

for encoding. Leave the custom password encryption class defined for a time in case any encrypted

passwords still exist in the configuration.

Results

Custom password encryption is disabled.

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See the Developing and deploying applications PDF book for a brief description of each WebSphere

extension.

Your applications can use the Eclipse extension framework. Your applications are extensible as soon as

you define an extension point and provide the extension processing code for the extensible area of the

application. You can also plug an application into another extensible application by defining an extension

that adheres to the target extension point requirements. The extension point can find the newly added

extension dynamically and the new function is seamlessly integrated in the existing application. It works on

a cross Java Platform, Enterprise Edition (Java EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that

build WebSphere application modules can use WebSphere Application Server extensions to implement

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,

and links at predefined extension points in the WebSphere application.

Dynamic cache

Tuning dynamic cache with the cache monitor

Use this task to interpret cache monitor statistics to improve the performance of the dynamic cache

service.

Before you begin

Verify that dynamic cache is enabled and that the cache monitor application is installed on your application

server.

About this task

See the Displaying cache information topic in the Administering applications and their environment PDF to

configure the cache monitor application.

104 Tuning guide

Use the cache monitor to watch cache hits versus misses. By comparing these two values, you can

determine how much dynamic cache is helping your application, and if you can take any additional steps

to further improve performance and decrease the cost of processing for your application server.

1. Start cache monitor and click on Cache Statistics. You can view the following cache statistics:

 Cache statistic Description

Cache Size The maximum number of entries that the cache can hold.

Used Entries The number of cache entries used.

Cache Hits The number of request responses that are served from

the cache.

Cache Misses The number of request responses that are cacheable but

cannot be served from the cache.

LRU Evictions The number of cache entries removed to make room for

new cache entries.

Explicit Removals The number of cache entries removed or invalidated from

the cache based on cache policies or were deleted from

the cache through the cache monitor.

2. You can also view the following cache configuration values:

 Cache configuration value Description

Default priority Specifies the default priority for all cache entries. Lower

priority entries are moved from the cache before higher

priority entries when the cache is full. You can specify the

priority for individual cache entries in the cache policy.

Servlet Caching Enabled If servlet caching is enabled, results from servlets and

JavaServer Pages (JSP) files are cached. See the

Administering applications and their environment PDF for

more information.

Disk Offload Enabled Specifies if entries that are being removed from the cache

are saved to disk. See the Administering applications and

their environment PDF for more information.

3. Wait for the application server to add data to the cache. You want the number of used cache entries in

the cache monitor to be as high as it can go. When the number of used entries is at its highest, the

cache can serve responses to as many requests as possible.

4. When the cache has a high number of used entries, reset the statistics. Watch the number of cache

hits versus cache misses. If the number of hits is far greater than the number of misses, your cache

configuration is optimal. You do not need to take any further actions. If you find a higher number of

misses with a lower number of hits, the application server is working hard to generate responses

instead of serving the request using a cached value. The application server might be making database

queries, or running logic to respond to the requests.

5. If you have a large number of cache misses, increase the number of cache hits by improving the

probability that a request can be served from the cache.

To improve the number of cache hits, you can increase the cache size or configure additional cache

policies. See the Administering applications and their environment PDF for more information to

increase the cache size and to configure cache policies.

Results

By using the cache monitor application, you optimized the performance of the dynamic cache service.

Chapter 12. Tuning WebSphere applications 105

What to do next

See the Administering applications and their environment PDF for more information about the dynamic

cache.

106 Tuning guide

Chapter 13. Troubleshooting performance problems

This topic illustrates that solving a performance problem is an iterative process and shows how to

troubleshoot performance problems.

Before you begin

It is recommended that you review the tuning parameter hot list before reading this topic.

About this task

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the performance is now

constrained by some other part of the system. For example, replacing slow hard disks with faster ones

might shift the bottleneck to the CPU of a system.

Measuring system performance and collecting performance data

v Begin by choosing a benchmark, a standard set of operations to run. This benchmark exercises those

application functions experiencing performance problems. Complex systems frequently need a warm-up

period to cache objects, optimize code paths, and so on. System performance during the warm-up

period is usually much slower than after the warm-up period. The benchmark must be able to generate

work that warms up the system prior to recording the measurements that are used for performance

analysis. Depending on the system complexity, a warm-up period can range from a few thousand

transactions to longer than 30 minutes.

v If the performance problem under investigation only occurs when a large number of clients use the

system, then the benchmark must also simulate multiple users. Another key requirement is that the

benchmark must be able to produce repeatable results. If the results vary more than a few percent from

one run to another, consider the possibility that the initial state of the system might not be the same for

each run, or the measurements are made during the warm-up period, or that the system is running

additional workloads.

v Several tools facilitate benchmark development. The tools range from tools that simply invoke a URL to

script-based products that can interact with dynamic data generated by the application. IBM Rational

has tools that can generate complex interactions with the system under test and simulate thousands of

users. Producing a useful benchmark requires effort and needs to be part of the development process.

Do not wait until an application goes into production to determine how to measure performance.

v The benchmark records throughput and response time results in a form to allow graphing and other

analysis techniques. The performance data that is provided by WebSphere Application Server

Performance Monitoring Infrastructure (PMI) helps to monitor and tune the application server

performance. Request metrics is another sources of performance data that is provided by WebSphere

Application Server. Request metrics allows a request to be timed at WebSphere Application Server

component boundaries, enabling a determination of the time that is spent in each major component.

Locating a bottleneck

Consult the following scenarios and suggested solutions:

v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics to determine how much each component is contributing to

the overall response time. Focus on the component accounting for the most time. Use Tivoli

Performance Viewer to check for resource consumption, including frequency of garbage collections. You

© IBM Corporation 2002, 2008 107

might need code profiling tools to isolate the problem to a specific method. See the Administering

applications and their environment PDF for more information.

v Scenario: Poor performance only occurs with multiple users.

Suggested solution: Check to determine if any systems have high CPU, network or disk utilization and

address those. For clustered configurations, check for uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk constraint but

performance problems occur with multiple users.

Suggested solutions:

– Check that work is reaching the system under test. Ensure that some external device does not limit

the amount of work reaching the system. Tivoli Performance Viewer helps determine the number of

requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large number of threads

waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM HTTP Server,

database, and the application servers. Conversely, too many threads can increase resource

contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc option of your Java

virtual machine. Excessive garbage collection can limit throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

Reducing the demand for resources can be accomplished in several ways. Caching can greatly reduce the

use of system resources by returning a previously cached response, thereby avoiding the work needed to

construct the original response. Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing out hot spots you can

optimize. IBM Rational and other companies have tools to perform code profiling. An analysis of the

application might reveal areas where some work might be reduced for some types of transactions.

Change tuning parameters to increase some resources, for example, the number of file handles, while

other resources might need a hardware change, for example, more or faster CPUs, or additional

application servers. Key tuning parameters are described for each major WebSphere Application Server

component to facilitate solving performance problems. Also, the performance advisors can provide advice

on tuning a production system under a real or simulated load.

Some critical sections of the application and server code require synchronization to prevent multiple

threads from running this code simultaneously and leading to incorrect results. Synchronization preserves

correctness, but it can also reduce throughput when several threads must wait for one thread to exit the

critical section. When several threads are waiting to enter a critical section, a thread dump shows these

threads waiting in the same procedure. Synchronization can often be reduced by: changing the code to

only use synchronization when necessary; reducing the path length of the synchronized code; or reducing

the frequency of invoking the synchronized code.

108 Tuning guide

What to do next

Additional references

WebSphere Application Server V6 Scalability and Performance Handbook

WebSphere Application Server Performance Web site

All SPEC jAppServer2004 Results Published by SPEC.

Chapter 13. Troubleshooting performance problems 109

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www-306.ibm.com/software/webservers/appserv/was/performance.html
http://www.spec.org/jAppServer2004/results/jAppServer2004.html

110 Tuning guide

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create

profiles in any directory where you have write access. Multiple installations of WebSphere Application

Server - Express products or components require multiple locations. Default values for installation actions

by root and non-root users are given. If no non-root values are specified, then the default directory values

are applicable to both root and non-root users.

app_client_root

The following list shows default installation root directories for the WebSphere Application Client.

 User Directory

Root AIX

/usr/IBM/WebSphere/AppClient (Java EE Application client

only)

HP�UX

Linux

Solaris

/opt/IBM/WebSphere/AppClient

(Java EE Application client only)

Windows

C:\Program Files\IBM\WebSphere\AppClient

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/WebSphere/AppServer/AppClient (Java EE Application

client only)

Windows

C:\IBM\WebSphere\AppClient

app_server_root

The following list shows the default installation directories for WebSphere Application Server -

Express.

 User Directory

Root AIX

/usr/IBM/WebSphere/AppServer

HP�UX

Linux

Solaris

/opt/IBM/WebSphere/
AppServer

Windows

C:\Program Files\IBM\WebSphere\AppServer

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/WebSphere/AppServer

Windows

C:\IBM\WebSphere\AppServer

cip_app_server_root

A customized installation package (CIP) is an installation package created with IBM WebSphere

Installation Factory that contains a WebSphere Application Server - Express product bundled with

one or more maintenance packages, an optional configuration archive, one or more optional

enterprise archive files, and other optional files and scripts.

 The following list shows the default installation root directories for a CIP where cip_uid is the CIP

unique ID generated during creation of the build definition file.

© IBM Corporation 2005, 2007 111

User Directory

Root AIX

/usr/IBM/WebSphere/AppServer/cip/cip_uid

HP�UX

Linux

Solaris

/opt/IBM/WebSphere/
AppServer/cip/cip_uid

Windows

C:\Program Files\IBM\WebSphere\AppServer\cip\cip_uid

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Windows

C:\IBM\WebSphere\AppServer\cip\cip_uid

component_root

The component installation root directory is any installation root directory described in this topic.

Some programs are for use across multiple components. In particular, the Update Installer for

WebSphere Software is for use with WebSphere Application Server - Express, Web server

plug-ins, the Application Client, and the IBM HTTP Server. All of these components are part of the

product package.

gskit_root

IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside

the installing product’s directory structure and is no longer installed in a global location on the

target system. The following list shows the default installation root directory for Version 7 of the

GSKit, where product_root is the root directory of the product that is installing GSKit, for example

IBM HTTP Server or the Web server plug-in.

 Directory

AIX

HP�UX

Linux

Solaris

product_root/gsk7

Windows

product_root\gsk7

if_root This directory represents the root directory of the IBM WebSphere Installation Factory. Because

you can download and unpack the Installation Factory to any directory on the file system to which

you have write access, this directory’s location varies by user. IBM WebSphere Installation Factory

is an Eclipse-based tool which creates installation packages for installing WebSphere Application

Server in a reliable and repeatable way, tailored to your specific needs.

iip_root

This directory represents the root directory of an integrated installation package (IIP) produced by

theIBM WebSphere Installation Factory. Because you can create and save an IIP to any directory

on the file system to which you have write access, this directory’s location varies by user. An IIP is

an aggregated installation package that can include one or more generally available installation

packages, one or more customized installation packages (CIPs), and other user-specified files and

directories.

 profile_root

The following list shows the default directory for a profile named profile_name on each distributed

operating system.

 User Directory

Root AIX

/usr/IBM/WebSphere/AppServer/profiles/profile_name

HP�UX

Linux

Solaris

/opt/IBM/WebSphere/
AppServer/profiles/profile_name

Windows

C:\Program Files\IBM\WebSphere\AppServer\profiles\
profile_name

112 Tuning guide

User Directory

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/WebSphere/AppServer/profiles/

Windows

C:\IBM\WebSphere\AppServer\profiles\

plugins_root

The following default installation root is for the Web server plug-ins for WebSphere Application

Server.

 User Directory

Root AIX

/usr/IBM/WebSphere/Plugins

HP�UX

Linux

Solaris

/opt/IBM/WebSphere/Plugins

Windows

C:\Program Files\IBM\WebSphere\Plugins

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/WebSphere/Plugins

Windows

C:\IBM\WebSphere\Plugins

updi_root

The following list shows the default installation root directories for the Update Installer for

WebSphere Software.

 User Directory

Root AIX

/usr/IBM/WebSphere/UpdateInstaller

HP�UX

Linux

Solaris

/opt/IBM/WebSphere/
UpdateInstaller

Windows

C:\Program Files\IBM\WebSphere\UpdateInstaller

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/WebSphere/UpdateInstaller

Windows

C:\IBM\WebSphere\UpdateInstaller

web_server_root

The following default installation root directories are for the IBM HTTP Server.

 User Directory

Root AIX

/usr/IBM/HTTPServer

HP�UX

Linux

Solaris

/opt/IBM/HTTPServer

Windows

C:\Program Files\IBM\HTTPServer

Non-root AIX

HP�UX

Linux

Solaris

user_home/IBM/HTTPServer

Windows

C:\IBM\HTTPServer

Appendix. WebSphere Application Server default directories 113

114 Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2008 115

116 Tuning guide

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or

™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. For

a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site

(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2008 117

http://www.ibm.com/legal/copytrade.shtml

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Planning for performance
	Application design consideration

	Chapter 2. Taking advantage of performance functions
	Chapter 3. Obtaining advice from the advisors
	Why you want to use the performance advisors
	Performance advisor types and purposes
	Performance and Diagnostic Advisor
	Diagnostic alerts

	Using the Performance and Diagnostic Advisor
	Performance and Diagnostic Advisor configuration settings
	Enable Performance and Diagnostic Advisor Framework
	Enable automatic heap dump collection
	Calculation Interval
	Maximum warning sequence
	Number of processors
	Minimum CPU For Working System
	CPU Saturated

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice type
	Performance impact
	Advice status

	Viewing the Performance and Diagnostic Advisor recommendations
	Starting the lightweight memory leak detection
	Lightweight memory leak detection

	Enabling automated heap dump generation
	Generating heap dumps manually
	Locating and analyzing heap dumps

	Using the performance advisor in Tivoli Performance Viewer
	Performance advisor report in Tivoli Performance Viewer
	Message
	Performance data in the upper panel

	Chapter 4. Tuning parameter hot list
	Chapter 5. Tuning TCP/IP buffer sizes
	Chapter 6. Tuning the IBM virtual machine for Java
	Chapter 7. Tuning HotSpot Java virtual machines (Solaris & HP-UX)
	Sun HotSpot JVM tuning parameters (Solaris and HP-UX)
	-Xmx (Maximum Java Heap size)
	-XX:+AggressiveHeap
	-XX:CMSInitiatingOccupancyFraction=75
	-XX:+DisableExplicitGC
	-XX:MaxNewSize= and -XX:NewSize=
	-XX:MaxPermSize (Permanent region)
	-XX:MaxTenuringThreshold=number-of-collections
	-XX:NewRatio=2
	-XX:NewSize=128m
	-XX:+PrintTenuringDistribution
	-XX:SurvivorRatio=
	-XX:TargetSurvivorRatio=
	-XX:+UseAdaptiveSizePolicy
	-XX:+UseConcMarkSweepGC
	-XX:+UseParallelGC

	Chapter 8. Tuning transport channel services
	Chapter 9. Checking hardware configuration and settings
	Chapter 10. Tuning operating systems
	Tuning Windows systems
	Tuning Linux systems
	Tuning AIX systems
	Tuning Solaris systems
	Tuning HP-UX systems

	Chapter 11. Tuning Web servers
	Chapter 12. Tuning WebSphere applications
	Web services
	Monitoring the performance of Web services applications
	Web services performance best practices

	Tuning Web services security for Version 7.0 applications
	Tuning Web services security for Version 5.x applications

	Service integration
	Tuning messaging engines
	Setting tuning properties of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Tuning the JDBC data source of a messaging engine
	Setting tuning properties by editing the sib.properties file

	Tuning messaging performance with service integration technologies
	Tuning messaging engine data stores
	Tuning the JDBC data source of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Increasing the number of data store tables to relieve concurrency bottleneck
	One-phase commit optimization tuning

	Setting tuning properties for a mediation
	Enabling CMP entity beans and messaging engine data stores to share database connections
	Tuning bus-enabled Web services
	Including SOAP header schemas in the SDO repository

	Security
	Tuning, hardening, and maintaining
	Tuning security configurations
	Hardening security configurations
	Securing passwords in files

	Learn about WebSphere programming extensions
	Dynamic cache
	Tuning dynamic cache with the cache monitor

	Chapter 13. Troubleshooting performance problems
	Appendix. Directory conventions
	Notices
	Trademarks and service marks

