
WebSphere® Application Server - Express for Distributed Platforms, Version 7.0

Migrating WebSphere applications 

  

 

  

 

 

���



Note 

Before using this information, be sure to read the general information under “Notices” on page 97.

Compilation  date:  September  23,  2008  

© Copyright  International  Business  Machines  Corporation  2008.  

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract 

with IBM Corp.

 



Contents  

How  to  send  your  comments   . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Changes  to  serve  you  more  quickly  . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter  1.  Web  applications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Migrating to Java Platform, Standard Edition (Java SE) 6  . . . . . . . . . . . . . . . . . . 1 

JavaServer Pages migration best practices and considerations  . . . . . . . . . . . . . . . . 2 

Migrating Web application components from WebSphere Application Server Version 5.x  . . . . . . . 4 

HTTP session migration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Chapter  2.  EJB  applications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Migrating to Java Platform, Standard Edition (Java SE) 6  . . . . . . . . . . . . . . . . . . 7 

Migrating enterprise bean code to the supported specification  . . . . . . . . . . . . . . . . 8 

Migrating enterprise bean code from Version 1.1 to Version 2.1  . . . . . . . . . . . . . . . 9 

Adjusting exception handling for EJB wrapped applications migrating from version 5 to version 7 10 

Container interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Chapter  3.  Client  applications   . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

clientUpgrade command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Chapter  4.  Web  services   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Web Services-Interoperability Basic Profile  . . . . . . . . . . . . . . . . . . . . . . . 17 

Web services migration best practices . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Migrating Apache SOAP Web services to JAX-RPC Web Services based on Java EE standards  . . . 21 

Migrating the UDDI registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

Migrating to Version 3 of the UDDI registry  . . . . . . . . . . . . . . . . . . . . . . . 25 

Setting up a UDDI migration data source . . . . . . . . . . . . . . . . . . . . . . . 26 

Chapter  5.  Service  integration   . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

Adding unique names to the bus authorization policy  . . . . . . . . . . . . . . . . . . . 29 

Migrating a messaging engine based on a data store  . . . . . . . . . . . . . . . . . . . 29 

Chapter  6.  Data  access  resources   . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Migrating applications to use data sources of the current Java EE Connector Architecture (JCA)  . . . 31 

Connection considerations when migrating servlets, JavaServer Pages, or enterprise session beans 33 

Verifying the Cloudscape automatic migration  . . . . . . . . . . . . . . . . . . . . . . 34 

Upgrading Cloudscape manually  . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Chapter  7.  Messaging  resources   . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Migrating from WebSphere Application Server Version 5 embedded messaging  . . . . . . . . . 41 

General considerations for migrating from Version 5 embedded messaging  . . . . . . . . . . 41 

Migrating Version 5.1 messages using the message migration utility . . . . . . . . . . . . . 45 

Migrating a stand-alone application server from Version 5 embedded messaging  . . . . . . . . 52 

Example: Migrating a message-driven bean from Version 5 embedded messaging - stage 1  . . . . 54 

Example: Migrating a message-driven bean from Version 5 embedded messaging - stage 2  . . . . 58 

Chapter  8.  Security   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Migrating, coexisting, and interoperating – Security considerations  . . . . . . . . . . . . . . 63 

Interoperating with previous product versions  . . . . . . . . . . . . . . . . . . . . . 63 

Interoperating with a C++ common object request broker architecture client  . . . . . . . . . . 65 

Migrating custom user registries  . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

Migrating trust association interceptors  . . . . . . . . . . . . . . . . . . . . . . . 70 

 

© Copyright IBM Corp. 2008 iii



Migrating Common Object Request Broker Architecture programmatic login to Java Authentication 

and Authorization Service (CORBA and JAAS)  . . . . . . . . . . . . . . . . . . . . 72 

Migrating from the CustomLoginServlet class to servlet filters  . . . . . . . . . . . . . . . 75 

Migrating Java 2 security policy  . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

Migrating with Tivoli Access Manager for authentication enabled  . . . . . . . . . . . . . . 79 

Enabling embedded Tivoli Access Manager  . . . . . . . . . . . . . . . . . . . . . . . 79 

Propagating security policy of installed applications to a JACC provider using wsadmin scripting  . . . 80 

JACCUtilityCommands command group for the AdminTask object . . . . . . . . . . . . . . 81 

Chapter  9.  Naming  and  directory   . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Migrating to Java Platform, Standard Edition (Java SE) 6 . . . . . . . . . . . . . . . . . . 85 

JNDI interoperability considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

Chapter  10.  Learn  about  WebSphere  programming  extensions   . . . . . . . . . . . . . . 89 

Application profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

Running Version 5 Application Profiles on Version 7.0  . . . . . . . . . . . . . . . . . . 89 

Application profiling interoperability  . . . . . . . . . . . . . . . . . . . . . . . . . 90 

Asynchronous beans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

Interoperating with asynchronous beans  . . . . . . . . . . . . . . . . . . . . . . . 91 

Appendix.  Directory  conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Notices   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Trademarks  and  service  marks  . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

 

iv Migrating WebSphere applications



How  to send  your  comments  

Your feedback is important in helping to provide the most accurate and highest quality information. 

v   To send comments on articles in the WebSphere Application Server Information Center 

1.   Display the article in your Web browser and scroll to the end of the article. 

2.   Click on the Feedback  link at the bottom of the article, and a separate window containing an e-mail 

form appears. 

3.   Fill out the e-mail form as instructed, and click on Submit  feedback  .

v    To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com  or fax 

them to 919-254-5250. 

Be sure to include the document name and number, the WebSphere Application Server version you are 

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information 

in any way it believes appropriate without incurring any obligation to you. 

 

© Copyright IBM Corp. 2008 v



vi Migrating WebSphere applications



Changes  to  serve  you  more  quickly  

Print  sections  directly  from  the  information  center  navigation  

PDF books are provided as a convenience format for easy printing, reading, and offline use. The 

information center is the official delivery format for IBM WebSphere Application Server documentation. If 

you use the PDF books primarily for convenient printing, it is now easier to print various parts of the 

information center as needed, quickly and directly from the information center navigation tree. 

To print a section of the information center navigation: 

1.   Hover your cursor over an entry in the information center navigation until the Open  Quick  Menu  icon 

is displayed beside the entry. 

2.   Right-click the icon to display a menu for printing or searching your selected section of the navigation 

tree. 

3.   If you select Print  this  topic  and  subtopics  from the menu, the selected section is launched in a 

separate browser window as one HTML file. The HTML file includes each of the topics in the section, 

with a table of contents at the top. 

4.   Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your 

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a 

preferable limit. The feedback link is available at the end of most information center pages. 

Under  construction!  

The Information Development Team for IBM WebSphere Application Server is changing its PDF book 

delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF 

format more frequently. During a temporary transition phase, you might experience broken links. During 

the transition phase, expect the following link behavior: 

v   Links to Web addresses beginning with http:// work 

v   Links that refer to specific page numbers within the same PDF book work 

v   The remaining links will not  work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates. 

 

© Copyright IBM Corp. 2008 vii



viii Migrating WebSphere applications



Chapter  1.  Web applications  

Migrating to Java Platform, Standard Edition (Java SE) 6 

This product version supports the Java™ Platform, Standard Edition (Java SE) 6 specification. Its Java 

virtual machine provides a Java language compiler and runtime environment. Decide whether your new 

and existing applications will take advantage of the capabilities added by Java SE 6, adjust the just-in-time 

(JIT) mode if necessary, and begin the transition from deprecated functions. 

About this task 

The following JSRs are new in Java SE 6: 

v   JSR 105: XML Digital Signature Application Programming Interfaces (APIs) 

v   JSR 173: Streaming API for XML (StAX) 

v   JSR 181: Web Services Metadata 

v   JSR 199: Java Compiler API 

v   JSR 202: Java Class-File Specification Update 

v   JSR 221: Java DataBase Connectivity (JDBC) 4.0 

v   JSR 222: Java Architecture for XML Binding (JAXB) 2.0 

v   JSR 223: Scripting for the Java Platform 

v   JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0 

v   JSR 250: Common Annotations 

v   JSR 269: Pluggable Annotation-Processing API

The new virtual machine specification adds several features and functions to benefit application 

developers, such as interfaces for integrating the Java and scripting languages, password prompting, file 

input-output enhancements, and parsing of streaming XML documents. 

v   

Solaris
   

Determine whether to use the default just-in-time (JIT) mode. 

For Java SE 6, the default JIT mode for the Solaris virtual machine depends on the hardware 

configuration. It is not always client. With Java SE 6, for server class hardware (meaning 2+ CPU and 

greater than 2 GB RAM), the virtual machine automatically switches to server  JIT mode. 

To configure the -server  or -client  parameter to your liking, set the generic Java virtual machine 

arguments of the server process definition. 

v   Decide whether to take advantage of new Java SE 6 capabilities in your applications. 

You can deploy applications using Java SE 6 features only to Version 7 nodes, as earlier product 

versions do not provide the Java SE 6 virtual machine. 

Applications that access classes and APIs internal to the Java virtual machine might produce errors. 

These classes and APIs are not covered by the Java SE 6 specification and are therefore subject to 

change. Packages with prefixes such as com.sun.* are considered internal. Additionally, direct use of 

implementations of XML and XSL parsers is strongly discouraged, such as direct use of Xerces and 

Xalan classes that provide the Java API for XML Processing (JAXP) implementation for the virtual 

machine. The direct parser APIs also are considered internal and subject to change. Applications should 

rely only on the JAXP APIs defined in the Java SE 6 API documentation. If your application requires a 

specific version of Xerces or Xalan, or some other XML/XSL parser package, then embed the parser 

within your application’s WEB-INF/lib  directory and set the appropriate class loading mode in your 

application deployment so that for your application the XML parser APIs are loaded from the application 

class path, not the Java virtual machine bootstrap class path. Failure to follow this guideline can cause 

significant errors when you try to migrate to a new Java SE 6 level. 

v   Compile Java SE 6 applications to run on previous Java virtual machine levels by setting the compiler 

modes. 

 

© Copyright IBM Corp. 2008 1



When compiling applications that are built with Java SE 6 that are intended for running on previous 

specifications, specify -source  and -target  modes for the Java SE 6 compiler. Doing so ensures that 

the bytecode generated is compatible with the earlier Java virtual machine. 

For example, if the target Java virtual machine is at 1.4.2 level, when you compile applications with 

Java SE 6, you should specify -source  1.4, and target  1.4  to generate bytecode compatible with 

1.4.2. This does not handle the usage of packages, classes, or functions new to Java SE 6. It only 

addresses bytecode output. Developers must take care in what APIs they are using from the J2SE 

packages if they intend to run the application on multiple Java virtual machine specification levels. 

v   Address incompatibilities in previously compiled Java 2 Standard Edition (J2SE) 1.4 and 5.0 

applications. 

Java SE 6 is upwards binary-compatible with Java 2 Technology Edition, Version 5.0 and Java 2 

Technology Edition, Version 1.4.2, except for the incompatibilities documented by Sun Microsystems at 

http://java.sun.com/javase/technologies/compatibility.jsp. 

v   Transition from deprecated Java Virtual Machine Debug Interface (JVMDI) and Java Virtual Machine 

Profiler Interface (JVMPI) functions to Java Virtual Machine Tool Interface (JVMTI). 

JVMDI and JVMPI functions were deprecated in J2SE 5.0. They have been removed from Java SE 6. 

v   Update your use of the Java command line interface. 

The command-line interfaces for the Java SE 6 level have not changed extensively from J2SE 5, 

although they vary among virtual machine vendors. You can find them in the JAVA_HOME/bin  directory. 

Here are some notable command line options that are standard to all Java SE 6 implementations. 

–   For JVMTI, use -agentlib  to load a native agent library that you specify. 

–   For JVMTI, use -agentpath  to load the native agent library by the full path name. 

–   For JVMTI, use -javaagent  to load the Java programming language agent (see java.lang.instrument 

for details). 

–   See apt  -help  for information about this new command line supporting the annotations capability. 

–   See javac  -help  for information and updates to that command line.

v    Update ANT tasks. 

If you have created ANT tasks based on the idltojava ANT task shipped with prior versions of this 

product, ensure that it passes the proper parameters for Java SE 6 as it does for J2SE 1.4 or 5, to 

ensure the stubs, ties and skeletons that it generates are compatible with earlier product releases.

JavaServer Pages migration best practices and considerations 

The standard JavaServer Pages (JSP) tags from JSP 1.1 such as jsp:include, jsp:useBean, and <%@ 

page %>, a will migrate successfully to JSP 2.0. However, there are several areas that must be 

considered when migrating JavaServer Pages. This topic discusses the areas that you must consider 

when migrating JavaServer Pages. 

Classes from the unnamed or default package 

As of JSP 2.0, referring to any classes from the unnamed or default package is not allowed. This can 

result in a translation error on some containers, specifically those that run in a JDK 1.4 or greater 

environment which will also break compatibility with some older JSP applications. However, as of JDK 1.4, 

importing classes from the unnamed package is not valid. See Java 2 Platform, Standard Edition Version 

1.4.2 Compatibility with Previous Releases for details. Therefore, for forwards compatibility, applications 

must not rely on the unnamed package. This restriction also applies for all other cases where classes are 

referenced, such as when specifying the class name for a tag in a Tag Library Descriptor (TLD) file. 

 

2 Migrating WebSphere applications

http://java.sun.com/javase/technologies/compatibility.jsp
http://java.sun.com/j2se/1.4/compatibility.html#source
http://java.sun.com/j2se/1.4/compatibility.html#source


Page encoding for JSP documents 

There have been noticeable differences in internationalization behavior on some containers as a result of 

ambiguity in the JSP 1.2 specification. However, steps were taken to minimize the impact on backwards 

compatibility and overall, the internationalization abilities of JSP files have been greatly improved. 

In JSP specification versions prior to JSP 2.0, JSP pages in XML syntax, JSP documents, and those in 

standard syntax determined their page encoding in the same fashion, by examining the pageEncoding or 

contentType attributes of their page directive, defaulting to ISO-8859-1 if neither was present. 

As of JSP 2.0, the page encoding for JSP documents is determined as described in section 4.3.3 and 

appendix F.1 of the XML specification, and the pageEncoding attribute of those pages is only checked to 

make sure it is consistent with the page encoding determined as per the XML specification. As a result of 

this change, JSP documents that rely on their page encoding to be determined from their pageEncoding 

attribute are no longer decoded correctly. These JSP documents must be changed to include an 

appropriate XML encoding declaration. 

Additionally, in JSP 1.2, page encodings are determined on translation unit basis whereas in JSP 2.0, 

page encodings are determined on the basis of each file. Therefore, if the a.jsp file statically includes the 

b.jsp file, and a page encoding is specified in the a.jsp file but not in the b.jsp file, in JSP 1.2 the encoding 

for the a.jsp file is used for the b.jsp file, but in JSP 2.0, the default encoding is used for the b.jsp file. 

web.xml file version 

The JSP container uses the version of the web.xml file to determine whether you are running a JSP 1.2 

application or a JSP 2.0 application. Various features can behave differently depending on the version of 

the web.xml file. The following is a list of things JSP developers should be aware of when upgrading their 

web.xml file from version Servlet 2.3 to version Servlet 2.4: 

1.   EL expressions are ignored by default in JSP 1.2 applications. When you upgrade a Web application to 

JSP 2.0, EL expressions are interpreted by default. You can use the escape sequence \$ to escape EL 

expressions that should not be interpreted by the container. Alternatively, you can use the isELIgnored 

page directive attribute, or the <el-ignored> configuration element to deactivate EL for entire translation 

units. Users of JSTL 1.0 must upgrade their taglib imports to the JSTL 1.1 uris or use the _rt versions 

of the tags, for example, use c_rt instead of c or fmt_rt instead of fmt. 

2.   Web applications that contain files with an extension of .jspx will have those files interpreted as JSP 

documents, by default. You can use the JSP configuration element <is-xml> to treat .jspx files as 

regular JSP pages, but there is no way to disassociate .jspx from the JSP container. 

3.   The escape sequence \$ was not reserved in JSP 1.2. The output for any template text or attribute 

value that appeared as \$ in JSP 1.2 was \$, however, the output now is just $.

jsp:useBean tag 

WebSphere® Application Server version 5.1 and later enforces more strict adherence to the specification 

for the jsp:useBean tag: with type and class attributes. Specifically, you should use the type attribute 

should be used to specify a Java type that cannot be instantiated as a JavaBean. For example, a Java 

type that is an abstract class, interface, or a class with no public no-args constructor. If the class attribute 

is used for a Java type that cannot be instantiated as a JavaBean, the WebSphere Application Server JSP 

container produces a unrecoverable translation error at translation time. 

Generated packages for JSP classes 

Any reliance on generated packages for JSP classes will result in non-portable JSP files. Packages for 

generated classes are implementation-specific and therefore you should not rely on these packages. 

 

Chapter 1. Web applications 3



JspServlet class 

Any reliance on the existence of a JspServlet class will cause unrecoverable error problems. WebSphere 

Application Server version 6.0 and later no longer uses a JspServlet class. 

Migrating Web  application components from WebSphere  Application 

Server Version 5.x 

About this task 

Migration of Web applications deployed in previous versions of WebSphere Application Server is usually 

not necessary. Version 2.2 and 2.3 of the Java Servlet specification and version 1.2 and 1.4 of the 

JavaServer Pages (JSP) specifications are still supported unless the behavior was changed in Servlet 2.4 

or JSP 2.0 specifications. Version 2.4 of the Java Servlet specification and version 2.0 of the JSP 

specification are still supported unless the behavior was changed in that Servlet 2.5 or JSP 2.1 

Specification. These changes are generally available in more detail in their corresponding specification. 

Servlet migration might be a concern if your application: 

v   Implements a WebSphere Application Server internal servlet to bypass a WebSphere Application Server 

Version 4.x single application path restriction 

v   Extends a PageListServlet that relies on configuration information in the servlet configuration XML file 

v   Calls the response.sendRedirect  method for a servlet using the encodeRedirectURL  function or starting 

within a non-context root 

v   Depends on a default Content-Type response header being set or the behavior of a setContentType call 

after a getWriter call is made. The behavior is set by WebSphere Application Server version level using 

the Web container custom property com.ibm.ws.webcontainer.contenttypecompatibility with a value of 

V4, V5, V6. or V7. The behavior for each version is described below. 

 Version 4 Version 5 Version 6 Version 7 

Default Content-Type text/html text/html; 

charset=<default_encoding> 

none none 

Append Charset on getWriter if the property does not exist on 

Content-Type 

text/html text/html text/xml; text/xml; 

Example: response.setCharacterEncoding(″UTF-8″); 

response.setContentType(″text/xml″); response.getWriter(); 

charset=UTF-8 charset=UTF-8 

Remove charset from the Content-Type property if the setContentType 

property is called after getWriter with a ″;charset=″ portion 

text/html text/html text/html text/xml; 

Example: setContentType(″text/html;charset=ISO-8859-7″); getWriter(); 

setContentType(″text/xml;charset=UTF-8″); 

charset=ISO-8859-7

  

JSP migration might be a concern if your application references JSP page implementation classes in 

unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in 

Version 4.x with the JSP Precompile  option), in Version 5.x. You need to recompile all JSP pages when 

migrating from WebSphere Application Server Version 5.x. 

Follow these steps if migration issues apply to your Web application: 

1.   IBM® internal servlets are used to enable special behavior such as file serving and serving servlets by 

class name. If a migrated application references internal servlets, ethe best practice is to enable or 

disable the functionality through the IBM WebSphere extensions XMI file, ibm-web-ext.xmi, located in 

each Web module WEB-INF directory or by using an assembly tool. 

2.   If using these configuration options are not viable, then verify that the package names for the following 

internal servlets match what is used in your version 7 Web deployment descriptor. 

 

4 Migrating WebSphere applications



F
ea

tu
re

 
C

o
n

fi
g

u
ra

ti
o

n
 
O

p
ti

o
n

 
S

er
vl

et
 
C

la
ss

 

D
ire

ct
or

y 
br

ow
si

ng
 

di
re

ct
or

yB
ro

w
si

ng
E

na
bl

ed
=

″t
ru

e″
 

co
m

.ib
m

.w
s.

w
eb

co
nt

ai
ne

r.s
er

vl
et

.D
ire

ct
or

yB
ro

w
si

ng
S

er
vl

et
 

A
ut

o 
m

ap
pi

ng
 
of

 
se

rv
le

t 
pa

th
s 

se
rv

eS
er

vl
et

sB
yC

la
ss

na
m

eE
na

bl
ed

=
″t

ru
e:

 
co

m
.ib

m
.w

s.
w

eb
co

nt
ai

ne
r.s

er
vl

et
.S

im
pl

eF
ile

S
er

vl
et

 

F
ile

 
se

rv
in

g 
fil

eS
er

vi
ng

E
na

bl
ed

=
″t

ru
e″

 
co

m
.ib

m
.w

s.
w

eb
co

nt
ai

ne
r.s

er
vl

et
.F

ilt
er

P
ro

xy
S

er
vl

et

  

 

 

Chapter 1. Web applications 5



3.   Add the Web container custom property, com.ibm.ws.webcontainer.contenttypecompatibility, with a 

value of V4, V5, V6, V7. The value is determined by the version that the application is dependant on. 

Because this property is a global setting, you must consider the effect on other applications.

HTTP session migration 

There are no programmatic changes required to migrate from version 5.x to version 6.x. This article 

describes features that are available after migration. 

Migration from Version 5.x

Note:   In Version 5 and later, default write frequency mode is TIME_BASED_WRITES, which is different 

from Version 4.0.x default mode of END_OF_SERVICE.

 

6 Migrating WebSphere applications



Chapter  2.  EJB  applications  

Migrating to Java Platform, Standard Edition (Java SE) 6 

This product version supports the Java Platform, Standard Edition (Java SE) 6 specification. Its Java 

virtual machine provides a Java language compiler and runtime environment. Decide whether your new 

and existing applications will take advantage of the capabilities added by Java SE 6, adjust the just-in-time 

(JIT) mode if necessary, and begin the transition from deprecated functions. 

About this task 

The following JSRs are new in Java SE 6: 

v   JSR 105: XML Digital Signature Application Programming Interfaces (APIs) 

v   JSR 173: Streaming API for XML (StAX) 

v   JSR 181: Web Services Metadata 

v   JSR 199: Java Compiler API 

v   JSR 202: Java Class-File Specification Update 

v   JSR 221: Java DataBase Connectivity (JDBC) 4.0 

v   JSR 222: Java Architecture for XML Binding (JAXB) 2.0 

v   JSR 223: Scripting for the Java Platform 

v   JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0 

v   JSR 250: Common Annotations 

v   JSR 269: Pluggable Annotation-Processing API

The new virtual machine specification adds several features and functions to benefit application 

developers, such as interfaces for integrating the Java and scripting languages, password prompting, file 

input-output enhancements, and parsing of streaming XML documents. 

v   

Solaris
   

Determine whether to use the default just-in-time (JIT) mode. 

For Java SE 6, the default JIT mode for the Solaris virtual machine depends on the hardware 

configuration. It is not always client. With Java SE 6, for server class hardware (meaning 2+ CPU and 

greater than 2 GB RAM), the virtual machine automatically switches to server  JIT mode. 

To configure the -server  or -client  parameter to your liking, set the generic Java virtual machine 

arguments of the server process definition. 

v   Decide whether to take advantage of new Java SE 6 capabilities in your applications. 

You can deploy applications using Java SE 6 features only to Version 7 nodes, as earlier product 

versions do not provide the Java SE 6 virtual machine. 

Applications that access classes and APIs internal to the Java virtual machine might produce errors. 

These classes and APIs are not covered by the Java SE 6 specification and are therefore subject to 

change. Packages with prefixes such as com.sun.* are considered internal. Additionally, direct use of 

implementations of XML and XSL parsers is strongly discouraged, such as direct use of Xerces and 

Xalan classes that provide the Java API for XML Processing (JAXP) implementation for the virtual 

machine. The direct parser APIs also are considered internal and subject to change. Applications should 

rely only on the JAXP APIs defined in the Java SE 6 API documentation. If your application requires a 

specific version of Xerces or Xalan, or some other XML/XSL parser package, then embed the parser 

within your application’s WEB-INF/lib  directory and set the appropriate class loading mode in your 

application deployment so that for your application the XML parser APIs are loaded from the application 

class path, not the Java virtual machine bootstrap class path. Failure to follow this guideline can cause 

significant errors when you try to migrate to a new Java SE 6 level. 

v   Compile Java SE 6 applications to run on previous Java virtual machine levels by setting the compiler 

modes. 

 

© Copyright IBM Corp. 2008 7



When compiling applications that are built with Java SE 6 that are intended for running on previous 

specifications, specify -source  and -target  modes for the Java SE 6 compiler. Doing so ensures that 

the bytecode generated is compatible with the earlier Java virtual machine. 

For example, if the target Java virtual machine is at 1.4.2 level, when you compile applications with 

Java SE 6, you should specify -source  1.4, and target  1.4  to generate bytecode compatible with 

1.4.2. This does not handle the usage of packages, classes, or functions new to Java SE 6. It only 

addresses bytecode output. Developers must take care in what APIs they are using from the J2SE 

packages if they intend to run the application on multiple Java virtual machine specification levels. 

v   Address incompatibilities in previously compiled Java 2 Standard Edition (J2SE) 1.4 and 5.0 

applications. 

Java SE 6 is upwards binary-compatible with Java 2 Technology Edition, Version 5.0 and Java 2 

Technology Edition, Version 1.4.2, except for the incompatibilities documented by Sun Microsystems at 

http://java.sun.com/javase/technologies/compatibility.jsp. 

v   Transition from deprecated Java Virtual Machine Debug Interface (JVMDI) and Java Virtual Machine 

Profiler Interface (JVMPI) functions to Java Virtual Machine Tool Interface (JVMTI). 

JVMDI and JVMPI functions were deprecated in J2SE 5.0. They have been removed from Java SE 6. 

v   Update your use of the Java command line interface. 

The command-line interfaces for the Java SE 6 level have not changed extensively from J2SE 5, 

although they vary among virtual machine vendors. You can find them in the JAVA_HOME/bin  directory. 

Here are some notable command line options that are standard to all Java SE 6 implementations. 

–   For JVMTI, use -agentlib  to load a native agent library that you specify. 

–   For JVMTI, use -agentpath  to load the native agent library by the full path name. 

–   For JVMTI, use -javaagent  to load the Java programming language agent (see java.lang.instrument 

for details). 

–   See apt  -help  for information about this new command line supporting the annotations capability. 

–   See javac  -help  for information and updates to that command line.

v    Update ANT tasks. 

If you have created ANT tasks based on the idltojava ANT task shipped with prior versions of this 

product, ensure that it passes the proper parameters for Java SE 6 as it does for J2SE 1.4 or 5, to 

ensure the stubs, ties and skeletons that it generates are compatible with earlier product releases.

Migrating enterprise bean code to the supported specification 

Support for the Enterprise JavaBeans (EJB) 3.0 specification is added for this product. 

Before you begin 

There should not be migration issues associated with using EJB 3.0 beans. Existing applications should 

continue to run as-is and compile without error. 

Note:   The EJB 3.0 specification has deprecated the use of EJB 1.1 style entity beans. While using EJB 

3.0 modules in the product has not yet been deprecated, you are encouraged to start migrating to 

Java Persistence API (JPA) or JDBC. 

About this task 

Follow these steps as appropriate for your application deployment. 

1.   Modify enterprise bean code for changes in the specification. 

v   You need to migrate the Version 1.1 beans to Version 2.x beans and redploy them on the product. .

Note:   The EJB Version 2.0 specification mandates that prior to the EJB container’s running a 

findByMethod  query, the state of all enterprise beans enlisted in the current transaction be 

 

8 Migrating WebSphere applications

http://java.sun.com/javase/technologies/compatibility.jsp


synchronized with the persistent store. This is done so that the query is performed against 

current data. If Version 1.1 beans are reassembled into an EJB 2.x-compliant module, the 

EJB container synchronizes the state of Version 1.1 beans, as well as that of Version 2.x 

beans. As a result, you might notice some change in application behavior even though the 

application code for the Version 1.1 beans has not been changed.

2.   Ensure WebSphere Application Server 32-bit to 64-bit compatibility. This is not an issue for a pure  Java 

application. However, if your application code utilizes the Java Native Interface (JNI) code, be aware of 

the following: the JNI allows Java code running in a virtual machine to operate with applications and 

libraries written in other languages, such as C, C++, and assembly. Therefore, if your J2EE application 

uses JNI in a 32-bit environment, your code must be recompiled in the 64-bit environment. It is 

possible that the JNI calls could be different after the compilation, as the JNI specifications can change 

from version to version. 

3.   Reassemble and redeploy all modules to incorporate migrated code.

Migrating enterprise bean code from Version 1.1 to Version 2.1 

Enterprise JavaBeans (EJB) Version 2.1-compliant beans can be assembled only in an EJB 2.1-compliant 

module, although an EJB 2.1-compliant module can contain a mixture of Version 1.x and Version 2.1 

beans. 

About this task 

The EJB Version 2.1 specification mandates that prior to the EJB container starting a findByMethod  query, 

the state of all enterprise beans that are enlisted in the current transaction be synchronized with the 

persistent store. (This action is so the query is performed against current data.) If Version 1.1 beans are 

reassembled into an EJB 2.1-compliant module, the EJB container synchronizes the state of Version 1.1 

beans as well as that of Version 2.1 beans. As a result, you might notice some change in application 

behavior even though the application code for the Version 1.1 beans has not been changed. 

The following information generally applies to any enterprise bean that currently complies with Version 1.1 

of the EJB specification. For more information about migrating code for beans produced with the Rational 

Application Developer tool, see the documentation for that product. 

1.   In beans with container-managed persistence (CMP) version 1.x, replace each CMP field with abstract 

get and set methods. In doing so, you must make each bean class abstract. 

2.   In beans with CMP version 1.x, change all occurrences of this.field  = value  to setField(value). 

3.   In each CMP bean, create abstract get and set methods for the primary key. 

4.   In beans with CMP version 1.x, create an EJB Query Language statement for each finder method. 

Note:   EJB Query Language has the following limitations in Application Developer Version 5: 

v   EJB Query Language queries involving beans with keys made up of relationships to other 

beans appear as invalid and cause errors at deployment time. 

v   The IBM EJB Query Language support extends the EJB 2.1 specification in various ways, 

including relaxing some restrictions, adding support for more DB2 functions, and so on. If 

portability across various vendor databases or EJB deployment tools is a concern, then care 

should be taken to write all EJB Query Language queries strictly according to instructions 

described in Chapter 11 of the EJB 2.1 specification.

5.   In finder methods for beans with CMP version 1.x, return java.util.Collection instead of 

java.util.Enumeration. 

6.   Update handling of non-application exceptions. 

v   To report non-application exceptions, throw javax.ejb.EJBException instead of 

java.rmi.RemoteException. 

 

Chapter 2. EJB applications 9



v   Modify rollback behavior as needed: In EJB versions 1.1 and 2.1, all non-application exceptions 

thrown by the bean instance result in the rollback of the transaction in which the instance is running; 

the instance is discarded. In EJB 1.0, the container does not roll back the transaction or discard the 

instance if it throws java.rmi.RemoteException.

7.   Update rollback behavior as the result of application exceptions. 

v   In EJB versions 1.1 and 2.1, an application exception does not cause the EJB container to 

automatically roll back a transaction. 

v   In EJB Version 1.1, the container performs the rollback only if the instance has called 

setRollbackOnly() on its EJBContext object. 

v   In EJB Version 1.0, the container is required to roll back a transaction when an application exception 

is passed through a transaction boundary started by the container.

8.    Update any CMP setting of application-specific default values to be inside ejbCreate (not using global 

variables, since EJB 1.1 containers set all fields to generic default values before calling ejbCreate, 

which overwrites any previous application-specific defaults). This approach also works for EJB 1.0 

CMPs.

Adjusting exception handling for EJB wrapped applications migrating 

from version 5 to version 7 

Because of a change in the Java APIs for XML based Remote Procedure Call (JAX-RPC) specification, 

Enterprise JavaBeans™ (EJB) applications that could be wrapped in WebSphere Application Server 

Version 5.1 cannot be wrapped in version 6 or 7 unless you modify the code to the exception handling of 

the base EJB application. 

About this task 

Essentially, the JAX-RPC version 1.1 specification states: 

a service  specific  exception  declared  in a remote  method  signature  must  be a 

checked  exception.  It must  extend  java.lang.Exception  either  directly  or indirectly  

but  it must  not  be a RuntimeException.  

So it is no longer possible to directly use java.lang.Exception or java.lang.Throwable types. You must 

modify your applications using service specific exceptions to comply with the specification. 

1.   Modify your applications that use service specific exceptions. For example, say that your existing EJB 

uses a service specific exception called UserException. Inside of UserException is a field called ex  that 

is type java.lang.Exception. To successfully wrapper your application with Web services in WebSphere 

Application Server version 7, you must change the UserException class . In this example, you could 

modify UserException to make the type of ex  to be java.lang.String  instead of java.lang.Exception. 

new  UserException  class:  

  

package  irwwbase;  

  

/**  

 * Insert  the  type’s  description  here.  

 * Creation  date:  (9/25/00  2:25:18  PM)  

 * @author:  Administrator  

 */ 

  

  

public  class  UserException  extends  java.lang.Exception  { 

  

       private  java.lang.String  _infostring  = null;  

       private  java.lang.String  ex;  

/**  

 * UserException  constructor  comment.  

 */ 

  

public  UserException()  { 

       super();

 

10 Migrating WebSphere applications



} 

/**  

 * UserException  constructor  comment.  

 */ 

public  UserException  (String  infostring)  

{ 

       _infostring  = infostring;  

} // ctor  

/**  

 * Insert  the  method’s  description  here.  

 * Creation  date:  (11/29/2001  9:25:50  AM)  

 * @param  msg  java.lang.String  

 * @param  ex  java.lang.Exception  

 */ 

public  UserException(String  msg,String  t) { 

       super(msg);  

       this.setEx(t);  

  

       } 

       /**  

        * @return  

        */ 

       public  java.lang.String  get_infostring()  { 

              return  _infostring;  

       } 

  

       /**  

        * @return  

        */ 

       public  java.lang.String  getEx()  { 

              return  ex;  

       } 

  

       /**  

        * @param  string  

        */ 

       public  void  set_infostring(java.lang.String  string)  { 

              _infostring  = string;  

       } 

  

       /**  

        * @param  Exception  

        */ 

       public  void  setEx(java.lang.String  exception)  { 

              ex = exception;  

       } 

  

       public  void  printStackTrace(java.io.PrintWriter  s) { 

         System.out.println("the  exception  is :"+ex);  

         } 

  

} 

2.   Modify all of the exception handling in the enterprise beans that use it. You must ensure that your 

enterprise beans are coded to accept the new exceptions. In this example, the code might look like 

this: 

new  EJB  exception  handling:  

  

try  { 

      if (isDistributed())  itemCMPEntity  = itemCMPEntityHome.findByPrimaryKey(ckey);  

      else  itemCMPEntityLocal  = itemCMPEntityLocalHome.findByPrimaryKey(ckey);  

  } catch  (Exception  ex)  { 

       System.out.println("%%%%%  ERROR:  getItemInstance  - CMPjdbc  " + _className);  

       ex.printStackTrace();  

       throw  new  UserException("error  on itemCMPEntityHome.findByPrimaryKey(ckey)",ex.getMessage());  

   } 

 

Chapter 2. EJB applications 11



Container interoperability 

Container  interoperability  describes the ability of the product clients and servers at different versions to 

successfully negotiate differences in native Enterprise JavaBeans (EJB) finder methods support and Java 

EE compliance. 

Interoperability of the handle formats in WebSphere Application Server, Version 5 

and Version 5.0.1 

Applications that attempt to persist handles to enterprise beans and EJBHome  needed to subclass 

ObjectInputStream in WebSphere Application Server, Version 5. This action was required so that the 

subclass ObjectInputStream could utilize the context class loader to resolve the classes for enterprise 

beans and EJBHome stubs. 

In addition, handles created and persisted in WebSphere Application Server, Version 5 only work with 

objects that have an unchanged remote interface. If the remote interface is changed, the handle is no 

longer valid because the stub is serialized inside the handle and its serial Version UID changes if the 

remote interface changes. 

This release introduces a new handle persistence mechanism that avoids the implementation drawbacks 

of the previous version. However, if handles are used for this WebSphere Application Server deployment, 

you should consider the following issues when applying this update, future WebSphere Application Server 

Fix Packs and EJB Container cumulative fixes for WebSphere Application Server, Version 5. 

If a WebSphere Application Server, Version 5 persisted handle or home handle is encountered by a 

WebSphere Application Server, Version 5.0.1 system, it can be read and utilized. In addition, it will be 

converted to WebSphere Application Server, Version 5.0.1 format if it is re-persisted. The WebSphere 

Application Server, Version 5.0.1 format cannot be read by a WebSphere Application Server, Version 5 

system unless PQ72184 is applied. 

Problems arise when handles are persisted and shared across systems that are not at the WebSphere 

Application Server, Version 5.0.1 level or later. However, a Version 5 system can receive a handle from 

Version 5.0.1 remotely through a call to get a handle on an enterprise bean or a getHomeHandle on an 

EJBHome. The remote call will succeed, however, any attempt to persist it on the Version 5 system will 

have the same limitations regarding the use of ObjectInputStream and changes in remote interface 

invalidating the persisted handle. 

When your application stores handles persistently and shares this persistence with multiple clients or 

application servers, apply WebSphere Application Server, Version 5.0.1 or PQ72184 to both the client and 

server systems at the same time. Failure to do so can result in the inability of these systems to read the 

handle data stored by upgraded systems. Also, handles stored by the WebSphere Application Server, 

Version 5 can force the applications of the updated system to still subclass ObjectInputStream. 

Applications using the WebSphere Application Server Enterprise, Version 5 scheduler and process 

choreographer, are affected by these changes. These users should update their Version 5 systems at the 

same time with either Version 5.0.1 or PQ72184. 

If the applications store handles in the session context, or locally in a file on the same system, that is not 

shared by other applications, on different systems, they might be able to update their systems individually, 

rather than all at once. If Client Container and thin client applications do not share persisted handle data, 

they can be updated as needed as well. However, handles created and persisted in WebSphere 

Application Server, Version 5, Version 4.0.3 and later (with the property flag set), or Version 3.5.7 and later 

(with the property flag set) are not usable if either the home or the remote interface changes. 

If any WebSphere Application Server, Version 3.5.7 or Version 4.0.3 and later enables the system property 

com.ibm.websphere.container.portable to true, any handles to objects on that server have the same 

interoperability limitations. In addition, if any WebSphere Application Server, Version 3.5.7 and later or 

 

12 Migrating WebSphere applications



Version 4.0.3 applications store a handle obtained from a WebSphere Application Server, Version 5 or 

Version 5.0.1, the same restrictions apply, regarding the need to subclass ObjectInputStream and the 

usability of handles after a change to the remote interface is made. 

Replication  of  the  Http  Session  and  Handles  

This note applies to you if you place Handles to Homes or Enterprise JavaBeans, or EJB or EJBHome 

references in the Http Session in your application and you use Http Session Replication. If you intend to 

replicate a mixed environment of Version 5.0.0 and Version 5.0.1 or 5.0.2 machines you should first apply 

the latest Version 5.0.0 container cumulative e-fix to the Version 5.0.0 machines before allowing the 

Version 5.0.1 or 5.0.2 server into the typology. The reason for this is that Version 5.0.0 servers are not 

able to understand the persisted Handle format used on the Version 5.0.1 and 5.0.2 server. This is similar 

to the case of Version 5.0.0 and Version 5.0.1 or 5.0.2 systems trying to use a shared database, 

mentioned above. But in this case, it is the Http Session object and not the database providing the 

persistence. 

Top Down  Deployment  Mapping  

The size of the Handle objects has grown due to the fix put in to allow serialization and deserialization to 

occur without the previous requirements of subclassing the ObjectInputStream and so on. Top down 

deployment of an object that contains EJB and EJBHome references create a database table ddl that has 

a field of 1000 bytes of VARCHAR for BITDATA which will contain the Handle. It might be that your 

object’s Handle does not fit in the 1000 byte default field, and you might need to adjust this to a higher 

value. You might try increments of 250 bytes, that is, 1250, 1500, and so on. 

 

Chapter 2. EJB applications 13



14 Migrating WebSphere applications



Chapter  3.  Client  applications  

clientUpgrade command 

Use the clientUpgrade  command to migrate previous versions of client resources to Version 7 level 

resources. 

Use the clientUpgrade  command to migrate Version 5.1.x and Version 6.x client resources to Version 7 

level resources. In the process of migrating these resources, the client-resources.xmi file located in the 

client jars is migrated to the latest level. A backup of the client-resources.xmi file is also located in the 

client jar. If this command is not executed against the client EAR files before they are installed on Version 

7, the client EARs do not operate or install correctly. 

The command file is located in the app_server_root/bin directory. 

AIX
   

Linux
   

HP�UX
   

Solaris
   

clientUpgrade.sh  EAR_file  [-clientJar  client_jar  ][-logFileLocation  logFileLocation] 

[-traceString  trace_spec  [-traceFile  file_name  ]] 

Windows
   

clientUpgrade.bat  EAR_file  [-clientJar  client_jar  ][-logFileLocation  logFileLocation] 

[-traceString  trace_spec  [-traceFile  file_name  ]] 

Parameters 

Supported arguments include the following: 

EAR_file  

Use this parameter to specify the fully qualified path to the EAR file that contains client JAR files to 

process. 

-clientJar  

Use this optional parameter to specify a JAR file for processing. If not specified, the program 

transforms all client JAR files in the EAR file. 

-logFileLocation  log_file_location  

Use this optional parameter to specify an alternate location to store the log output. 

-traceString  trace_spec  -traceFile  file_name  

Use these optional parameters to gather trace information for IBM Service personnel. Specify a 

trace_spec of ″*=all=enabled″  (with quotation marks) to gather all trace information.

The following example demonstrates correct syntax: 

clientUpgrade  EAR_file  -clientJar  ejbJarFile  

 

© Copyright IBM Corp. 2008 15



16 Migrating WebSphere applications



Chapter  4.  Web services  

Web  Services-Interoperability Basic Profile 

The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary Web services 

specifications that promote interoperability. WebSphere Application Server conforms to the WS-I Basic 

Profile Version 1.1 and WS-I Basic Security Profile Version 1.0. 

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under 

direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about 

open standards for Web services technology. All organizations that are interested in promoting 

interoperability among Web services are encouraged to become members of the Web Services 

Interoperability Organization. 

Several technology components are used in the composition and implementation of Web services, 

including messaging, description, discovery, and security. Each of these components are supported by 

specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1, 

Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration 

(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve 

interoperability, and mandates specific use of each of the technologies when appropriate. You can read 

more about the WS-I Basic Profile at the WS-I Organization Web site. 

As technology components are updated, these components are also used in the composition and 

implementation of Web Services. One example is that both SOAP 1.1 and SOAP 1.2 are now supported. 

Note:   Building on the support for WS-I Basic Profile Version 1.0, WS-I Basic Profile V1.1, Attachment 

Profile V1.0, and Basic Security Profile (BSP) V1.0, you can implement Web services with 

WebSphere Application Server Version 7.0 using the following current emerging standard WS-I 

profiles: 

v   WS-I  Basic  Profile  V1.2  builds on WS-I Basic Profile V1.0 and WS-I Basic Profile V1.1 and adds 

support for WS-Addressing (WS-A) and SOAP Message Transmission Optimization Mechanism 

(MTOM). The WS-Addressing specification enables the asynchronous message exchange 

pattern so that you can decouple the service request from the service response. The SOAP 

header of the sender’s request contains the wsa:ReplyTo value that defines the endpoint 

reference to which the provider’s response is sent. Decoupling the request from the response 

enables long running Web services interactions. Leveraging the asynchronous programming 

model support in JAX-WS Version 2.1 in combination with WS-Addressing, you can now take 

advantage of the ability to create Web services invocations where the client can continue to 

process work without waiting for a response to return. This provides for a more dynamic and 

efficient model to invoke Web services. Using MTOM, you can send and receive binary data 

optimally within a SOAP message. 

v    WS-I  Basic  Profile  V2.0  builds on top of Basic Profile V1.2 with the addition of support for SOAP 

1.2. 

v   WS-I  Basic  Security  Profile  V1.1  extends the WS-I Basic Security Profile V1.0 standard by 

profiling the latest WS-Security V1.1 specification. 

v   WS-I  Reliable  Secure  Profile  1.0  builds on WS-I Basic Profile V1.2, WS-I Basic Profile V2.0, 

WS-I Basic Security Profile V1.0, and WS-I Basic Security Profile V1.1 and adds support for 

WS-Reliable Messaging 1.1, WS-Make Connection 1.0, and WS-Secure Conversation 1.3. 

WS-Reliable Messaging 1.1 is a session-based protocol that provides message level reliability for 

Web services interactions. WS-Make Connection 1.0 was developed by the WS-Reliable 

Messaging workgroup to address scenarios where a Web services endpoint is behind a firewall 

or the endpoint has no visible endpoint reference. If a Web services endpoint loses connectivity 

during a reliable session, WS-Make Connection provides an efficient method to re-establish the 

reliable session. Additionally, WS-Secure Conversation V1.3 is a session-based security protocol 

 

© Copyright IBM Corp. 2008 17



that uses an efficient symmetric key based encryption algorithm for message level security. WS-I 

Reliable Secure Profile V1.0 provides secure reliable session-oriented Web services interactions.

Each of the technology components has requirements that you can read about in more detail at the WS-I 

Organization Web site. For example, support for Universal Transformation Format (UTF)-16 encoding is 

required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme that uses 16-bit values to 

store Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the 

Internet; UTF-16 encoding is typically used for Java and Windows® product applications; and UTF-32 is 

used by various Linux® and UNIX® systems. Unlike UTF-8, UTF-16 has issues with big-endian and 

little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for 

UTF-16 encoding and it can be used in UTF-8. 

The application server only supports UTF-8 and UTF-16 encoding of SOAP messages. 

The following table summarizes some of the properties of each UTF: 

 Bytes  Encoding  form  

EF BB BF UTF-8 

FF FE UTF-16, little-endian 

FE FF UTF-16, big-endian 

00 00 FE FF UTF-32, big-endian 

FF FE 00 00 UTF-32, little-endian
  

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML 

declaration contains the encoding, for example: <?xml  version=xxx encoding=″utf-xxx″?>. BOM is used 

with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and 

how BOM and UTF encoding are used: 

POST  http://www.whitemesa.net/soap12/add-test-rpc  HTTP/1.1  

Content-Type:  application/soap+xml;  charset=utf-16;  action=""  

SOAPAction:  

Host:  localhost:  8080  

Content-Length:  562  

OxFF0xFE<?xml  version="1.0"  encoding="utf-16"?> 

<soap:Envelope  xmlns:soap="http://www.w3.org/2002/12/soap-envelope"  

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding  

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"  

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"  

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">  

 <soap:Body>  

  <q1:echoString  xmlns:q1="http://soapinterop.org/">  

   <inputString  soap:encodingStyle="http://example.org/unknownEncoding"  

   xsi:type="xsd:string">  

    Hello  SOAP  1.2  

   </inputString>  

  </q1:echoString>  

 </soap:Body>  

</soap:Envelope>  

In the example code, 0xFF0xFE  represents the byte codes, while the <?xml>  declaration is the textual 

representation. 

Support for styleEncoding  is not supported in SOAP 1.2 so here is the same example of the SOAP 

message but without the encoding information: 

OxFF0xFE<?xml  version="1.0"  encoding="utf-16"?>  

<soap:Envelope  xmlns:soap="http://www.w3.org/2002/12/soap-envelope"  

   xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 

18 Migrating WebSphere applications



xmlns:tns="http://whitemesa.net/wsdl/soap12-test"  

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"  

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">  

 <soap:Body>  

  <q1:echoString  xmlns:q1="http://soapinterop.org/">  

   <inputString  xsi:type="xsd:string">  

    Hello  SOAP  1.2  

   </inputString>  

  </q1:echoString>  

 </soap:Body>  

</soap:Envelope>  

For a complete list of the supported standards and specifications, see the Web services specifications and 

API documentation. 

Web  services migration best practices 

Use these Web services migration best practices when migrating Web services applications. 

If you have used the Apache SOAP support to develop Web services client applications in WebSphere 

Application Server Versions 4, 5, or 5.1, you might need to migrate your applications or the security files 

for your applications. The following table summarizes the Web services specifications supported by the 

WebSphere products. 

 WebSphere  Application  Server  Version  Web  services  specifications  supported  

4.0 Apache SOAP 2.2 

5.0 and 5.0.1 Apache SOAP 2.3 

5.0.2 or later Java 2 Platform, Enterprise Edition (J2EE), also known as 

(JSR 109) 

6.0.x  and 6.1 J2EE (JSR 109) 

7.0 or later Web Services for Java Platform, Enterprise Edition (Java 

EE) 5 also known as JSR 109
  

Note:   The Apache SOAP 2.2 and Apache SOAP 2.3-based implementations that were available in 

WebSphere Application Server Version 4.0.x, 5.0 and 5.0.1 have been deprecated. It is 

recommended that applications that are using these SOAP implementations migrate to Web 

Services for Java EE (JSR 109) support that is provided in current WebSphere Application Server 

versions. 

For more information on migrating your Web services, see Migrating Apache SOAP Web services to Web 

Services to J2EE standards . 

It is recommended that new Web services be developed using the Web services for Java EE specification. 

For more information, read about implementing Web services applications. 

Security cannot be directly migrated from SOAP 2.3 to the Java EE standards. After you have migrated 

your Web services to the Java EE standards, read about securing Web services for Version 6 applications 

based on WS-Security. 

Follow these best practices for the most optimal migration experience: 

The application server supports the Java API for XML-Based Web Services (JAX-WS) programming model 

and the Java API for XML-based RPC (JAX-RPC) programming model. JAX-WS is the next generation 

Web services programming model extending the foundation provided by the JAX-RPC programming 

model. 

 

Chapter 4. Web services 19



Note:   Existing JAX-RPC applications wanting to use JAX-WS features must be rewritten using the 

JAX-WS programming model. 

Redeploy existing JAX-RPC Web services after migrating to a new release of the 

application server 

When migrating to a new release of the application server, it is recommended that you redeploy your Web 

services applications. You should redeploy your Web services application in the new application server 

environment because of possible changes to the supported levels of Web services specifications and Web 

services deployment descriptors in each release. To redeploy your Web service, select Deploy  Web  

Services  in the Install New Application wizard or use the wsdeploy command. To learn more about this 

process, see the deploying Web services applications onto application servers documentation. 

Migrating a 32-bit WebSphere Application Server environment to be compatible 

with 64-bit 

If you are using Web services that are implemented on a WebSphere Application Server 32-bit 

environment, you need to make sure the Web services are compatible with a 64-bit environment. For a 

pure Java application this is not an issue. However, if your application code utilizes the Java Native 

Interface (JNI) code, you should be aware of the following: the JNI enables the Java code running in a 

virtual machine to operate with applications and libraries written in other languages, such as C, C++, and 

assembly. Therefore, if your Java EE application uses JNI in a 32-bit environment, your code must be 

re-compiled in the 64-bit environment. It is possible that the JNI calls can be different after the compilation, 

as the JNI specifications can change from version to version. 

Migrating a Version 5 Java API for XML-based remote procedure call (JAX-RPC) 

client that uses SOAP over Java Message Service (JMS) to invoke a Web service 

A JAX-RPC client that is run on WebSphere Application Server Version 5, can use SOAP over JMS to 

invoke a Web service that is run on a Version 5 Application Server. 

A user ID and password are not required on the target WebSphere MQ queue. After the application server 

is migrated to Version 6.x, and uses the Version 6.x  default messaging feature, client requests can fail 

because basic authentication is enabled. The following error message displays when this migration 

problem occurs: 

SibMessage  W [:]  CWSIT0009W:  A client  request  failed  in the  application  server  with  

endpoint  <endpoint  name> in bus  <bus_name> with  reason:  CWSIT0016E:  The  user  

ID null  failed  authentication  in bus  <bus_name>. 

When the application server is migrated to Version 6.x, and the default messaging provider (service 

integration technologies) is used, and administrative and application security is enabled for the server or 

the cell, the service integration bus queue destination inherits the security characteristics of the server or 

the cell by default. If the server or the cell has basic authentication enabled, the client request fails. 

The following options are available to solve this problem. The solutions are listed by the level of security 

that they impose: 

v   Disable administrative and application security on the main security panel within the administrative 

console. To disable administrative and application security, click Security  > Global  security. Deselect 

the Enable  administrative  security  and Enable  application  security  options. 

v   Modify the settings for the service integration bus that hosts the queue destination so that the bus 

security is disabled and the bus does not inherit security characteristics from the server or the cell. This 

option is equivalent to the level of security that you can configure in Version 5. 

v   Configure the basic authentication on each client that uses the service.

 

20 Migrating WebSphere applications



Migrating Apache SOAP Web services 

See Migrating Apache SOAP Web services to Web Services for J2EE standards to learn how to migrate 

Apache SOAP Web services. This topic explains how to migrate Web services that were developed using 

Apache SOAP to Web services that are developed based on the Web Services for Java 2 Platform, 

Enterprise Edition (J2EE) specification. 

Migrating Web services assembled with early versions of the Application Server 

Toolkit or Assembly Toolkit 

If you are migrating your Web service or Web service components from earlier versions of the Application 

Server Toolkit or Assembly Toolkit, refer to the following hints and tips to improve your success: 

v   Secure Web services are not migrated by the J2EE Migration Wizard when Web services are migrated 

from J2EE 1.3 to J2EE 1.4. 

v   The migration of secure Web services requires manual steps. 

v   After the J2EE migration, the secure binding and extension files must be migrated manually to J2EE 1.4 

as follows: 

1.   Double click on the webservices.xml  file to open the Web Services editor. 

2.   Select the Binding  Configurations  tab to edit the binding file. 

3.   Add all the necessary binding configurations under the new sections Request  Consumer  Binding  

Configuration  Details  and Response  Generator  Binding  Configuration  Details. 

4.   Select the Extension  tab to edit the extension file. 

5.   Add all the necessary extension configurations under the new sections Request  Consumer  Service  

Configuration  Details  and Response  Generator  Service  Configuration  Details. 

6.   Save and exit the editor.

. 

Migrating Apache SOAP Web  services to JAX-RPC Web  Services 

based on Java EE standards 

You can migrate Web services that were developed using Apache SOAP to Java API for XML-based RPC 

(JAX-RPC) Web services that are developed based on the Web Services for Java Platform, Enterprise 

Edition (Java EE) specification. 

Before you begin 

If you have used Web services based on Apache SOAP and now want to develop and implement Web 

services that are Java-based, you need to migrate client applications developed with all versions of 4.0, 

and versions of 5.0 prior to 5.0.2. 

About this task 

To migrate these client applications according to Java standards: 

1.   Plan your migration strategy. You can port an Apache SOAP client to a JAX-RPC Web services client 

in one of two ways: 

v   If you have, or can create, a Web Services Description Language (WSDL) document for the service, 

consider using the WSDL2Java  command tool to generate bindings for the Web service. It is more 

work to adapt an Apache SOAP client to use the generated JAX-RPC bindings, but the resulting 

client code is more robust and easier to maintain. 

To follow this path, see the article on developing a Web services client in the information center. 

 

Chapter 4. Web services 21



v   If you do not have a WSDL document for the service, do not expect the service to change, and you 

want to port the Apache SOAP client with minimal work, you can convert the code to use the 

JAX-RPC dynamic invocation interface (DII), which is similar to the Apache SOAP APIs. The DII 

APIs do not use WSDL or generated bindings.

Because JAX-RPC does not specify a framework for user-written serializers, the JAX-RPC does not 

support the use of custom serializers. If your application cannot conform to the default mapping 

between Java, WSDL, and XML technology supported by WebSphere Application Server, do not 

attempt to migrate the application. The remainder of this topic assumes that you decided to use the 

JAX-RPC dynamic invocation interface (DII) APIs. 

2.   Review the GetQuote Sample. A Web services migration Sample is available in the Samples Gallery. 

This Sample is located in the GetQuote.java  file, originally written for Apache SOAP users, and 

includes an explanation about the changes needed to migrate to the JAX-RPC DII interfaces. 

3.   Convert the client application from Apache SOAP to JAX-RPC DII The Apache SOAP API and 

JAX-RPC DII API structures are similar. You can instantiate and configure a call object, set up the 

parameters, invoke the operation, and process the result in both. You can create a generic instance of 

a Service object with the following command: 

javax.xml.rpc.Service  service  = ServiceFactory.newInstance().createService(new  QName(""));  

in JAX-RPC. 

a.   Create the Call object. An instance of the Call object is created with the following code: 

org.apache.soap.rpc.Call  call  = new  org.apache.soap.rpc.Call  () 

in Apache SOAP. 

An instance of the Call object is created by 

java.xml.rpc.Call  call  = service.createCall();  

in JAX-RPC. 

b.   Set the endpoint Uniform Resource Identifiers (URI). The target URI for the operation is passed as 

a parameter to 

call.invoke:   call.invoke("http://...",  "");  

in Apache SOAP. 

The setTargetEndpointAddress method is used as a parameter to 

call.setTargetEndpointAddress("http://...");  

in JAX-RPC. 

Apache SOAP has a setTargetObjectURI method on the Call object that contains routing 

information for the request. JAX-RPC has no equivalent method. The information in the 

targetObjectURI is included in the targetEndpoint URI for JAX-RPC. 

c.   Set the operation name. The operation name is configured on the Call object by 

call.setMethodName("opName");  

in Apache SOAP. 

The setOperationName method, which accepts a QName  instead of a String  parameter, is used in 

JAX-RPC as illustrated in the following example: 

call.setOperationName(new  javax.xml.namespace.Qname("namespace",  "opName"));  

d.   Set the encoding style. The encoding style is configured on the Call object by 

call.setEncodingStyleURI(org.apache.soap.Constants.NS_URI_SOAP_ENC);  

in Apache SOAP. 

The encoding style is set by a property of the Call object 

 

22 Migrating WebSphere applications



call.setProperty(javax.xml.rpc.Call.ENCODINGSTYLE_URI_PROPERTY,  "http://schemas.  

xmlsoap.org/soap/encoding/");  

in JAX-RPC. 

e.   Declare the parameters and set the parameter values. Apache SOAP parameter types and values 

are described by parameter instances, which are collected into a vector and set on the Call object 

before the call, for example: 

Vector  params  = new  Vector  ();  

params.addElement  (new  org.apache.soap.rpc.Parameter(name,  type,  value,  encodingURI));  

// repeat  for  additional  parameters...  

call.setParams  (params);  

For JAX-RPC, the Call object is configured with parameter names and types without providing their 

values, for example: 

call.addParameter(name, xmlType, mode); 

// repeat  for  additional  parameters  

call.setReturnType(type); 

Where 

v   name  (type java.lang.String) is the name of the parameter 

v   xmlType  (type javax.xml.namespace.QName) is the XML type of the parameter 

v   mode  (type javax.xml.rpc.ParameterMode) the mode of the parameter, for example, IN, OUT, or 

INOUT

f.   Make the call. The operation is invoked on the Call object by 

org.apache.soap.Response  resp  = call.invoke(endpointURI,  "");  

in Apache SOAP. 

The parameter values are collected into an array and passed to call.invoke  as illustrated in the 

following example: 

Object  resp  = call.invoke(new  Object[]  {parm1,  parm2,...});  

in JAX-RPC. 

g.   Check for faults. You can check for a SOAP fault on the invocation by checking the response: 

if resp.generatedFault  then  { 

org.apache.soap.Fault  f = resp.getFault;  

f.getFaultCode();  

f.getFaultString();  

} 

in Apache SOAP. 

A java.rmi.RemoteException  error is displayed in JAX-RPC if a SOAP fault occurs on the 

invocation. 

try  { 

...  call.invoke(...)  

} catch  (java.rmi.RemoteException)  ... 

h.   Retrieve the result. In Apache SOAP, if the invocation is successful and returns a result, it can be 

retrieved from the Response object: 

Parameter  result  = resp.getReturnValue();  return  result.getValue();  

In JAX-RPC, the result of invoke is the returned object when no exception is displayed: 

Object  result  = call.invoke(...);  

 ...  

return  result;  

 

Chapter 4. Web services 23



Results 

You have migrated Apache SOAP Web services to a JAX-RPC Web services based on the Java EE 

specification. 

What to do next 

Develop a Web services client. See the article in the information center on how to develop a Web services 

client based on the Web Services for Java EE specification. 

Test the Web services-enabled clients to make sure that the migration process is successful and you can 

implement the Web services in a Java EE environment. 

Migrating the UDDI registry 

With most scenarios, migration of existing UDDI registries happens automatically when you migrate to the 

current level of WebSphere Application Server. However, if your existing UDDI registry uses a network 

Apache Derby database or a DB2® UDDI Version 2 database, there are some manual steps that you must 

take. 

Before you begin 

Migrate your installation of WebSphere Application Server; ensure that you select the option to migrate 

applications, so that the UDDI registry application will be migrated. 

About this task 

If your existing UDDI registry uses an Oracle, embedded Apache Derby or DB2 UDDI Version 3 database, 

you do not need to perform any manual migration; migration happens automatically when you migrate 

WebSphere Application Server and start the UDDI node for the first time after migration. 

If your existing UDDI registry uses a network Apache Derby database or a DB2 UDDI Version 2 database, 

you must complete some manual steps to migrate the registry. 

v   If your UDDI registry uses a DB2 UDDI Version 2 database, follow the steps in “Migrating to Version 3 

of the UDDI registry” on page 25 and sub-topics. 

v   If your UDDI registry uses a network Apache Derby database, complete the following steps. 

1.   If you have a cluster that contains servers at different levels of WebSphere Application Server, 

ensure that any UDDI registries are running on servers that are at WebSphere Application Server 

Version 7.0. For example, if you have a cluster that spans two nodes, you can upgrade one node to 

WebSphere Application Server Version 7.0 while the other node remains at a previous level, 

provided that any servers that are running a UDDI registry are at Version 7.0. 

2.   Initialize the relevant UDDI node. The initialize process will perform some of the UDDI registry 

migration. 

3.   Enter the following commands as the database administrator, from app_server_root/derby/lib. 

java -cp db2j.jar;db2jtools.jar  com.ibm.db2j.tools.ij  

  

connect ’jdbc:db2j:uddi_derby_database_path’;  

  

run ’app_server_root/UDDIReg/databaseScripts/uddi30crt_drop_triggers_derby.sql’;  

  

quit; 

  

cd app_server_root/derby/migration  

  

java -cp db2j.jar;db2jmigration.jar;../lib/derby.jar  com.ibm.db2j.tools.MigrateFrom51  

  jdbc:db2j:uddi_derby_database_path  

where 

 

24 Migrating WebSphere applications



–   uddi_derby_database_path  is the absolute path of the existing Apache Derby database, for 

example app_server_root/profiles/profile_name/databases/com.ibm.uddi/UDDI30 

–   app_server_root  is the root directory for the installation of WebSphere Application Server

Results 

The UDDI database and data source are migrated, and the UDDI node is activated. 

Note:   When you migrate WebSphere Application Server, the post-upgrade log for the profile indicates that 

the migration of the UDDI database is partially complete, and is missing the steps for triggers, 

aliases, and stored statements. If you initially enabled the debug function, the debug log for the 

database indicates that there was a failure creating triggers. Ignore these messages; the UDDI 

node completes the migration of the database when the UDDI node starts. For more information 

about these log files, see “Verifying the Cloudscape automatic migration” on page 34. Also refer to 

this topic if other errors appear in the logs. 

If the migration of the UDDI database completes successfully, the following message appears in the server 

log: 

CWUDQ0003I: UDDI registry  migration  has completed  

If the following error appears, an unexpected error occurred during migration. The UDDI registry node is 

not activated. Check the error logs for the problem and, if you cannot solve it, refer to IBM software 

support. 

CWUDQ004W: UDDI registry  not started  due to migration  errors 

Migrating to Version 3 of the UDDI registry 

Use this topic to migrate a Version 2 UDDI registry that uses a DB2 database, running in WebSphere 

Application Server Version 5.1.x to a Version 3 UDDI registry running in WebSphere Application Server 

Version 7.0. WebSphere Application Server Version 6.x already includes the Version 3 UDDI registry, so if 

you are migrating from Version 6.x, you do not need to perform this procedure. 

Before you begin 

The following constraints apply to this procedure: 

v   Your existing registry must use a DB2 database. 

v   Your existing registry must run in WebSphere Application Server Version 5.1.x.

1.   Stop the UDDI registry application that is running in your Version 5.1.x application server. This 

prevents further UDDI requests being directed to the UDDI registry and ensures that no new data is 

published during the migration process. 

2.   Record information about the uddi.properties values being used. This file is located in the 

DeploymentManager_install_dir/config/cells/cell_name/nodes/node_name/servers/server_name  

directory on your WebSphere Application Server Version 5.1.x system (or in the properties subdirectory 

if you are migrating a standalone application server). 

3.   Migrate the server from WebSphere Application Server Version 5.1.x to Version 7.0. This results in a 

new directory tree for the migrated Version 7.0 application server. 

4.   Start the new, migrated, Version 7.0 application server. 

5.   Create a new data source for the Version 2 UDDI database. This data source is known as the UDDI  

migration  data  source. The JNDI name must be datasources/uddimigration. To complete this step, 

see Setting up a UDDI migration datasource. 

6.   Set up the UDDI Version 3 registry and migrate the Version 2 data. 

 

Chapter 4. Web services 25

http://www.ibm.com/software/support
http://www.ibm.com/software/support


Follow the instructions in the topic in the information center on setting up a customized UDDI node, 

including the subtopic that relates to node initialization. The topic describes how to perform the 

following actions: 

v   Create the Version 3 DB2 database. 

v   Create the J2C authentication data entry. 

v   Create the JDBC provider and data source. 

v   Deploy the UDDI registry application. 

v   Start the server. 

v   Configure and initialize the node. The UDDI registry node initialization detects the UDDI migration 

data source, and migrates the Version 2 data as part of the UDDI node initialization processing. This 

data migration can take some time, depending on the amount of data in your UDDI registry.

Results 

The UDDI registry is migrated. If the UDDI node remains in a state of initialization pending, migration 

pending or value set creation pending, check the server log for errors. If the following message appears, 

an unexpected error occurred during migration. Check the error logs for the problem and, if it cannot be 

fixed, see the IBM software support Web site at http://www.ibm.com/software/support. 

CWUDQ004W: UDDI registry not started  due to migration errors 

After the problem is fixed, you can complete the migration by clicking Initialize  again. 

Verify that the migration process completed successfully by checking for the following message in the 

server log: 

CWUDQ0003I:  UDDI registry  migration  has completed  

What to do next 

After migration is complete, you can remove the UDDI migration data source, and the registry is available 

for use. 

Setting up a UDDI migration data source 

Use this topic to set up a UDDI migration data source, to be used to reference a Version 2 UDDI registry 

database. 

About this task 

Migration is only supported from DB2, so these instructions describe how to set up a DB2 data source. 

1.   If a suitable JDBC Provider for DB2 does not already exist, then create one, selecting the options DB2 

Universal JDBC Driver Provider and Connection Pool data source. 

For details on how to create a JDBC provider, see the article in the information center on creating and 

configuring a JDBC provider using the administrative console. 

2.   Create a data source for the Version 2 UDDI registry by following these steps: 

a.   Click Resources  → JDBC  → JDBC  Providers. 

b.   Select the desired scope of the JDBC provider you selected or created earlier. For example, select: 

Server: yourservername  

to show the JDBC providers at the server level. 

c.   Select the JDBC provider created earlier. 

d.   Under Additional  Properties, select Data  sources  (not  the Data  sources  (WebSphere  

Application  Server  V4)  option). 

e.   Click New  to create a new data source. 

 

26 Migrating WebSphere applications

http://www.ibm.com/software/support


f.   In the Create  a data  source  wizard, enter the following data: 

Name  a suitable name, such as UDDI Datasource 

JNDI  name  

set to datasources/uddimigration  - this value is compulsory, and must be as shown. 

Component-managed  authentication  alias   

select the alias for the DB2 userid used to access UDDI Version 2 data, for example 

MyNode/UDDIAlias

g.   Click Next. 

h.   On the database specific properties page of the wizard, enter the following data: 

Database  name  

UDDI20, or the name given to your Version 2 UDDI DB2 database. 

Use  this  Data  Source  in  container-managed  persistence  (CMP)  

ensure the check box is cleared.

i.   Click Next, then check the summary and click Finish. 

j.   Click the data source to display its properties, and add the following information: 

Description  

a suitable description 

Category  

set to uddi  

Data  store  helper  class  name  

filled in for you as: com.ibm.websphere.rsadapter.DB2DataStoreHelper 

Mapping-configuration  alias  

set to DefaultPrincipalMapping

3.   Click Apply  and save the changes to the master configuration. 

4.   Test the connection to your UDDI database by selecting the check box next to the data source and 

clicking Test connection. You will see a message similar to ″Test Connection for datasource UDDI 

Datasource on server server1 at node MyNode was successful″. If you do not see this message 

investigate the problem with the help of the error message.

What to do next 

Continue with the migration as detailed in Migrating to Version 3 of the UDDI registry. 

 

Chapter 4. Web services 27



28 Migrating WebSphere applications



Chapter  5.  Service  integration  

Adding unique names to the bus authorization policy 

How to update the authorization policy for the service integration bus with unique name entries. 

About this task 

You should carry out this task if you are migrating from WebSphere Application Server Version 6.x to 

WebSphere Application Server Version 7.0. In this task, you manually run the populateUniqueNames 

command to query the user repository for a selected bus for unique names, and add them to the 

authorization policy. If you do not manually run this command, the messaging engine performs the query, 

and adds the missing unique names to the authorizations policy, which adversely affects the start up time. 

When you migrate from a Version 6.x node to a Version 7.0 node, the authorization policy only contains 

the user and group security names; it does not contain the names in the user registry that uniquely define 

each user and group. If an LDAP user registry is in use, the unique name is the distinguished name (DN). 

By default, only missing unique names are added to the authorization policy. If you set the -force  

parameter, all unique name entries added to the authorization policy 

1.   Launch a scripting command. For more information, refer to Starting the wsadmin scripting client. 

2.   At the wsadmin command prompt, type the populateUniquenames command. The following example 

syntax queries the user repository for the unique names that match the security names for a bus called 

Bus 1, and adds the missing unique names to the authorization policy . 

AdminTask.populateUniquenames(’[-bus  Bus1]’)  

3.   Save your changes to the master configuration repository. The following example presents the syntax: 

AdminConfig.save()  

Results 

The authorization policy for the bus is updated with the missing unique names. 

Example 

The following example updates all the unique name entries in the authorization policy for a bus called Bus 

1. 

AdminTask.populateUniqueNames(AdminTask.populateUniquenames(’[-bus Bus1 -force TRUE]’) 

What to do next 

Use the administrative console to administer bus security authorizations. 

Migrating a messaging engine based on a data store 

Depending on your existing settings, when migrating a messaging engine from older versions of 

WebSphere Application Server to Version 7.0, you may need to create a new data store table. 

About this task 

When migrating from older versions of WebSphere Application Server to Version 7.0, if you do not have 

the ″create tables automatically″ option selected, it will be necessary to create a new table (SIBOWNERO) 

in each of your messaging engine database schemas. DDL for the creation of this table can be generated 

using the sibDDLGenerator tool located in the bin directory of your WebSphere Application Server 

installation. 

 

© Copyright IBM Corp. 2008 29

friend.was/ae/txml_launchscript.html


1.   Use the sibDDLGenerator tool to generate the DDL for the creation of this table as described in 

Enabling your database administrator to create the data store tables. 

2.   Send the output file to your database administrator to process.

 

30 Migrating WebSphere applications



Chapter  6.  Data  access  resources  

Migrating applications to use data sources of the current Java EE 

Connector Architecture (JCA) 

Migrate your applications that use Version 4 data sources, or data sources (WebSphere Application Server 

V4), to use data sources that support more advanced connection management features, such as 

connection sharing. 

About this task 

To use the connection management infrastructure in the application server, you must package your 

application as a Java EE 1.3 or later application. This process involves repackaging your Web modules to 

the 2.3 specification and your EJB modules to the 2.1 specification before installing them onto WebSphere 

Application Server. 

v   Convert a 2.2 Web module to a 2.3 Web module 

 1.   Open an assembly tool. 

 2.   Create a new Web module by selecting File  >  New  > Web  Module. 

 3.   Add any required class files to the new module. 

a.   Expand the Files  portion of the tree. 

b.   Right-click Class  Files  and select Add  Files. 

c.   In the Add Files window, click Browse. 

d.   Navigate to your WebSphere Application Server 4.0 EAR file and click Select. 

e.   In the upper left pane of the Add Files window, navigate to your WAR file and expand the 

WEB-INF  and classes  directories. 

f.   Select each of the directories and files in the classes directory and click Add. 

g.   After you add all of the required class files, click OK.

 4.   Add any required JAR files to the new module. 

a.   Expand the Files  portion of the tree. 

b.   Right-click Jar  Files  and select Add  Files. 

c.   Navigate to your WebSphere 4.0 EAR file and click Select. 

d.   In the upper left pane of the Add Files window, navigate to your WAR file and expand the 

WEB-INF  and lib  directories. 

e.   Select each JAR file and click Add. 

f.   After you add all of the required JAR files, clickOK.

 5.   Add any required resource files, such as HTML files, JSP files, GIFs, and so on, to the new 

module. 

a.   Expand the Files  portion of the tree. 

b.   Right-click Resource  Files  and select Add  Files. 

c.   Navigate to your WebSphere Application Server 4.0 EAR file and click Select. 

d.   In the upper left pane of the Add Files window, navigate to your WAR file. 

e.   Select each of the directories and files in the WAR file, excluding META-INF  and WEB-INF, and 

click Add. 

f.   After you add all of the required resource files, clickOK.

 6.   Import your Web components. 

a.   Right-click Web  Components  and select Import. 

b.   In the Import Components window click Browse. 

 

© Copyright IBM Corp. 2008 31



c.   Navigate to your WebSphere Application Server 4.0 EAR file and click Open. 

d.   In the left top pane of the Import  Components  window, highlight the WAR file that you are 

migrating. 

e.   Highlight each of the components that display in the right top pane and click Add. 

f.   When all of your Web components display in the Selected Components pane of the window, 

click OK. 

g.   Verify that your Web components are correctly imported under the Web Components section of 

your new Web module.

 7.   Add servlet mappings for each of your Web components. 

a.   Right-click Servlet  Mappings  and select New. 

b.   Identify a URL pattern for the Web component. 

c.   Select the web component from the Servlet drop-down box. 

d.   Click OK.

 8.   Add any necessary resource references by following the instructions in the Creating a resource 

reference article in the information center. 

 9.   Add any other Web module properties that are required. Click Help  for a description of the 

settings. 

10.   Save  the Web module.

v    Convert a 1.1 EJB module to a 2.1 EJB module (or later) 

1.   Open an assembly tool. 

2.   Create a new EJB Module by selecting File  > New  > EJB  Module. 

3.   Add any required class files to the new module. 

a.   Right-click Files  object  and select Add  Files. 

b.   In the Add Files window click Browse. 

c.   Navigate to your WebSphere Application Server 4.0 EAR file and click Select. 

d.   In the upper left pane of the Add Files window, navigate to your enterprise bean JAR file. 

e.   Select each of the directories and class files and click Add. 

f.   After you add all of the required class files, click OK

4.   Create your session beans and entity beans. To find help on this subject, see the information center 

article Migrating enterprise bean code to the supported specification. 

5.   Add any necessary resource references by following the instructions in the Creating a resource 

reference article in the information center. 

6.   Add any other EJB module properties that are required. Click Help  for a description of the settings. 

7.   Save  the EJB module. 

8.   Generate the deployed code for the EJB module by clicking File  > Generate  Code  for  

Deployment. 

9.   Fill in the appropriate fields and click Generate  Now.

v    Add the EJB modules and Web modules to an EAR file 

1.   Open an assembly tool. 

2.   Create a new Application by selecting File  > New  > Application. 

3.   Add each of your EJB modules. 

a.   Right-click EJB  Modules  and select Import. 

b.   Navigate to your converted EJB module and click Open. 

c.   Click OK.

4.   Add each of your Web modules. 

a.   Right-click Web  Modules  and select Import. 

 

32 Migrating WebSphere applications



b.   Navigate to your converted Web module and click Open. 

c.   Fill in a Context  root  and click OK.

5.   Identify any other application properties. Click Help  for a description of the settings. 

6.   Save the EAR file.

v    Install the application on the application server. 

1.   Install the application following the instructions in the topic on installing a new application, and bind 

the resource references to the data source that you created. 

2.   Perform the necessary administrative task of creating a JDBC provider and a data source object 

following the instructions in the topic on creating a JDBC provider and data source.

Connection considerations when migrating servlets, JavaServer 

Pages, or enterprise session beans 

If you plan to upgrade to WebSphere Application Server Version 6.x, and migrate applications from version 

1.2 of the Java 2 Platform, Enterprise Edition (J2EE) specification to a later version, such as 1.4 or Java 

Platform, Enterprise Edition (Java EE), be aware that the product allocates shareable and unshareable 

connections differently for post-version 1.2 application components. For some applications, that difference 

can result in performance degradation. 

Adverse behavior changes 

Because WebSphere Application Server provides backward compatibility with application modules coded 

to the J2EE 1.2 specification, you can continue to use Version 4 style data sources when you migrate to 

Application Server Version 6.x. As long as you configure Version 4 data sources only  for J2EE 1.2 

modules, the behavior of your data access application components does not change. 

If you are adopting a later version of the J2EE specification along with your migration to Application Server 

Version 6.x, however, the behavior of your data access components can change. Specifically, this risk 

applies to applications that include servlets, JavaServer Page (JSP) files, or enterprise session beans that 

run inside local transactions over shareable connections. A behavior change in the data access 

components can adversely affect the use of connections in such applications. 

This change affects all applications that contain the following methods: 

v   RequestDispatcher.include()  

v   RequestDispatcher.forward()  

v   JSP includes (<jsp:include>) 

Symptoms of the problem include: 

v   Session hang 

v   Session timeout 

v   Running out of connections

Note:   You can also experience these symptoms with applications that contain the components and 

methods described previously if you are upgrading from J2EE 1.2 modules within  Application Server 

Version 6.x. 

The switch in allocating shareable and unshareable connections 

For J2EE 1.2 modules using Version 4 data sources, WebSphere Application Server issues non-sharable 

connections to JSP files, servlets, and enterprise session beans. All of the other application components 

are issued shareable connections. However, for J2EE 1.3 and later modules, Application Server issues 

shareable connections to all  logically named resources (resources bound to individual references) unless 

you specify the connections as unshareable in the individual resource-references. Using shareable 

connections in this context has the following effects: 

 

Chapter 6. Data access resources 33



v   All connections that are received and used outside the scope of a user transaction are not  returned to 

the free connection pool until the encapsulating method returns, even when the connection handle 

issues a close()  call. 

v   All connections that are received and used outside the scope of a user transaction are not  shared with 

other component instances (that is, other servlets, JSP files, or enterprise beans). For example, session 

bean 1 gets a connection and then calls session bean 2 that also gets a connection. Even if all 

properties are identical, each session bean receives its own connection.

If you do not anticipate this change in the connection behavior, the way you structure your application 

code can lead to excessive connection use, particularly in the cases of JSP includes, session beans that 

run inside local transactions over shareable connections, RequestDispatcher.include()  routines, 

RequestDispatcher.forward()  routines, or calls from these methods to other components. Consequently, 

you can experience session hang, session timeout, or connection deficiency. 

Example scenario 

Servlet A gets a connection, completes the work, commits the connection, and calls close()  on the 

connection. Next, servlet A calls the RequestDispatcher.include()  to include servlet B, which performs the 

same steps as servlet A. Because the servlet A connection does not return to the free pool until it returns 

from the current method, two connections are now busy. In this way, more connections might be in use 

than you intended in your application. If these connections are not accounted for in the Max  Connections  

setting on the connection pool, this behavior might cause a lack of connections in the pool, which results 

in ConnectionWaitTimeOut  exceptions. If the connection  wait  timeout  is not enabled, or if the connection  

wait  timeout  is set to a large number, these threads might appear to hang because they are waiting for 

connections that are never returned to the pool. Threads waiting for new connections do not return the 

ones they are currently using if new connections are not available. 

Resolution 

To resolve these problems: 

1.   Use unshared connections. 

If you use an unshared connection and are not in a user transaction, the connection is returned to the 

free pool when you issue a close()  call (assuming you commit or roll back the connection). 

2.   Increase the maximum number of connections. 

To calculate the number of required connections, multiply the number of configured threads by the 

deepest level of component call nesting (for those calls that use connections). See the Examples 

section for a description of call nesting.

Verifying the Cloudscape automatic migration 

Version 7.0 of the application server requires Cloudscape® or Apache Derby to run at a minimal version of 

v10.1.x. During the application server upgrade to version 7.0, the migration tool automatically upgrades the 

database instances that are accessed through the embedded framework by some internal components, 

such as the UDDI registry. The tool also attempts to upgrade Cloudscape or Derby instances that your 

applications access through the embedded framework. You must verify the migration results for these 

backend databases. 

Before you begin 

Do not use Apache Derby or Cloudscape as a production database. Use it for development and test 

purposes only. 

The migration tool attempts to upgrade Cloudscape database instances that are accessed through the 

embedded framework only. You must manually upgrade Cloudscape instances that transact with 

application servers on the Network Server framework. See the “Upgrading Cloudscape manually” on page 

37

 

34 Migrating WebSphere applications



37 topic. This requirement eliminates the risk of corrupting third party applications that use the Network 

Server framework to access the same database instances as WebSphere Application Server. 

Other applications can access Apache Derby or Cloudscape on Network Server because the framework 

provides the database with a foundation of connectivity software; the embedded framework does not. 

Derby Network Server or Cloudscape Network Server can transact with multiple Java Virtual Machines 

(JVM) or application servers concurrently, whereas Cloudscape or Derby on the embedded framework 

works with only a single JVM. Clustered or coexistence implementations of Application Server require 

Network Server. For more information, consult the IBM Cloudscape Information Center. Find the link in the 

following IBM Suggests section. 

About this task 

For database instances that your applications access through the embedded framework, the automatic 

migration can succeed completely, fail completely, or succeed with warnings. A migration that produces 

warning messages does create an Apache Derby or Cloudscape database with your data, but does not 

migrate all of your configured logic and other settings, such as: 

v   keys 

v   checks 

v   views 

v   triggers 

v   aliases 

v   stored procedures

To distinguish between a partially and a completely successful migration, you must verify the 

auto-migration results by checking both the general post-upgrade log and the individual database logs. 

Performing these tasks gives you vital diagnostic data to troubleshoot the partially migrated databases as 

well as those that fail auto-migration completely. Ultimately, you migrate these databases through a 

manual process. 

1.   Open the post-upgrade log of each new profile for the application server. The path name of the log is 

app_server_root/profiles/profileName/logs/WASPostUpgrade.timestamp.log. 

2.   Examine the post-upgrade log for database error messages. These exceptions indicate database 

migration failures. The following lines are an example of post-upgrade log content, in which the 

database error code is DSRA7600E. The migration tool references all database exceptions with the prefix 

DSRA. 

MIGR0344I:  Processing  configuration  file  /opt/WebSphere51/AppServer/cloudscape  

/db2j.properties.  

  

MIGR0344I:  Processing  configuration  file  /opt/WebSphere51/AppServer/config/cells  

/migr06/applications/MyBankApp.ear/deployments/MyBankApp/deployment.xml.  

  

DSRA7600E:  Cloudscape  migration  of  database  instance  /opt/WebSphere61/Express  

/profiles/default/databases/_opt_WebSphere51_AppServer_bin_DefaultDB  failed,  

reason:  java.sql.SQLException:  Failure  creating  target  db  

  

MIGR0430W:  Cloudscape  Database  /fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9  

/testRun/pre/websphere_backup/bin/DefaultDB  failed  to  migrate  <new  database  name>  

Note:   Call IBM WebSphere Application Server Support if you see a migration failure message for a 

Cloudscape instance that is accessed by a WebSphere internal component (that is, a 

component that helps comprise WebSphere Application Server rather than one of your 

applications).

 

Chapter 6. Data access resources 35



3.   Open the individual database migration log that corresponds with each of your backend Cloudscape 

databases. These logs have the same timestamp as that of the general post-upgrade log. The logs 

display more detail about errors that are listed in the general post-upgrade log, as well as expose 

errors that are not documented by the general log. 

The path name of each database log is app_server_root/profiles/profileName/logs/
myFulldbPathName_migrationLogtimestamp.log. 

4.   Examine each database migration log for errors. For a completely successful migration, the log 

displays a message that is similar to the following text: 

MIGR0429I:  Cloudscape  Database  F:\temp\51BaseXExpress\PostUpgrade50BaseFVTTest2\testRun  

\pre\websphere_backup\bin\DefaultDB  was  successfully  migrated.  See  log  C:\WebSphere61  

\Express\profiles\default\logs\DefaultDB_migrationLogSun-Dec-18-13.31.40-CST-2005.log  

Otherwise, the log displays error messages in the format of the following example: 

connecting  to  source  db  <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9  

/testRun/pre/websphere_backup/bin/DefaultDB>  

  

connecting  to  source  db  <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9  

/testRun/pre/websphere_backup/bin/DefaultDB>  took  0.26  seconds  

  

creating  target  db  <jdbc:derby:/opt/WebSphere61/Express/profiles/default/databases  

/_opt_WebSphere51_AppServer_bin_DefaultDB>  

  

 ERROR:  An  error  occurred  during  migration.  See  debug.log  for  more  details.  

  

shutting  down  databases  

  

shutting  down  databases  took    0.055  seconds  

5.   For more data about a migration error, consult the debug log that corresponds with the database 

migration log. The WebSphere Application Server migration utility triggers a debug  migration  trace  by 

default; this trace function generates the database debug logs. The full path name of a debug log is 

app_server_root/profiles/profileName/logs/myFulldbPathName_migrationDebugtimestamp.log. 

The following lines are a sample of debug text. The lines display detailed exception data for the error 

that is referenced in the previous sample of database migration log data. 

java.sql.SQLException:  Database_opt_WebSphere51_AppServer_bin_DefaultDB  already  exists.  Aborting  migration  

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown  Source)  

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.doMigrate(Unknown  Source)  

 at com.ibm.db2j.tools.MigrateFrom51.doMigrate(Unknown  Source)  

 at com.ibm.ws.adapter.migration.CloudscapeMigrationUtility.migr  

Results 

v   The migration utility for the application server changes your Apache Derby or Cloudscape JDBC 

configurations whether or not it successfully migrates the database instances that are accessed by your 

applications. The tool changes the class paths for the Derby or Cloudscape JDBC provider, data source 

implementation classes, and data source helper classes. The following table depicts these changes: 

 Table 1. New  class  information  

Class type Old value New value 

JDBC provider class path ${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar ${DERBY_JDBC_DRIVER_PATH}/derby.jar 

v   Where DERBY_JDBC_DRIVER_PATH is the WebSphere 

environment variable that defines your Cloudscape 

JDBC provider 

v   Where derby.jar is the base name of the JDBC driver 

class file (In your environment, reference the JDBC 

driver class file by the full path name.) 

Data source implementation class: Connection pool com.ibm.db2j.jdbc.DB2jConnectionPool DataSource org.apache.derby.jdbc.EmbeddedConnection 

PoolDataSource 

Data source implementation class: XA com.ibm.db2j.jdbc.DB2jXADataSource org.apache.derby.jdbc.EmbeddedXADataSource 

Data source helper class com.ibm.websphere.rsadapter.Cloudscape 

DataStoreHelper 

com.ibm.websphere.rsadapter.Derby DataStoreHelper

 

36 Migrating WebSphere applications



Additionally, the db2j.properties file changes: 

–   The name app_server_root/cloudscape/dbj.properties changes to app_server_root/derby/
derby.properties 

–   Within the file, property names change from db2j.drda.* to derby.drda.*

v    A partial or a completely successful database migration changes the location and name of the database 

according to the following example: 

–   Old  database  name:  c:\temp\mydb 

–   New  database  name:  The new name includes a hash code that combines the entire path name of 

the old database and the migration time stamp. The new name also includes the old database name 

and time stamp exactly. For example: 

app_server_root\profiles\profile_name\databases\my_database_hashCode_timestamp 

Note:   For both partial and failed migrations, the log messages contain the exact old and new database 

path names that you must use to run the manual migration. Note these new path names 

precisely.

What to do next 

If you experience a partial migration, attempt to troubleshoot the Cloudscape or Derby database only if you 

have expert knowledge of these database types. Otherwise, delete the new database. Perform the manual 

migration procedure on the original database, just as you do for each database that completely fails 

auto-migration. Consult “Upgrading Cloudscape manually” for instructions. 

After a successful database migration, reboot the database and compress tables to improve performance. 

See the Apache Derby documentation for instructions. 

Upgrading Cloudscape manually 

During the upgrade of your application server, the migration tool attempts to upgrade instances of 

Cloudscape that are accessed through the embedded framework only. The automatic upgrade excludes 

Cloudscape instances that transact with applications through the Network Server framework. This 

exclusion eliminates the risk of corrupting third party applications that access the same database instances 

as the application server. You must manually upgrade database instances that are accessed through the 

Network Server framework. Do the same for databases that fail the automatic migration. 

Before you begin 

Do not use Apache Derby Version 10.1.x or Cloudscape v10.1.x as a production database. Use them for 

development and test purposes only. 

For instances of Cloudscape that are accessed through the embedded framework, determine which 

instances completely failed the automatic upgrade process and which ones were only partially upgraded. 

The topic on verifying the Cloudscape automatic migration documents how to uncover database errors and 

diagnostic data from various migration logs. The log messages contain the exact old and new database 

path names that you must use to run the manual migration. Note these new path names precisely. 

To minimize the risk of migration errors for databases that were only partially upgraded during the 

automatic migration process, delete the new database. Troubleshoot the original database according to the 

log diagnostic data, then perform manual migration on the original database. 

 

Chapter 6. Data access resources 37



About this task 

The following section consists of steps to migrate Cloudscape instances that are accessed through both 

the embedded framework as well as the Network Server framework. Steps that apply only to the 

Cloudscape Network Server framework are marked accordingly. As a migration best practice, ensure that 

your user ID has one of the following authorities: 

v   Administrator of the application server that accesses the Cloudscape instance 

v   A umask that can access the database instance

Otherwise, you might see runtime errors about the database instance being read-only. 

1.   Network  Server  framework  only:  Ensure that every client of the Cloudscape database can support 

Cloudscape v10.1.x or Apache Derby. Application server clients of the database must run versions 

6.02.x or later of the application server. 

2.   Network  Server  framework  only:  Take the database offline. No clients can access it during the 

migration process. 

3.   Examine a sample Cloudscape migration script that the application server provides, either 

db2jmigrate.bat or db2jmigrate.sh. The path of both scripts is app_server_root\derby\bin\embedded. 

You can modify the script according to the requirements of your environment. Consult the Cloudscape 

migration document for information about options that you can use with the script. For example, you 

can use the following option to specify the DDL file for the new database: 

-DB2j.migrate.ddlFile=filename  

4.   To generate database debug logs when you run the migration script, ensure that the debug migration 

trace is active. By default, this trace function is enabled. Reactivate the debug trace if it is disabled. 

a.   To set the trace options in the administrative console, click Troubleshooting  > Logging  and  

Tracing  in the console navigation tree. 

b.   Select the application server name. 

c.   Click Change  Log  Level  Details. 

d.   Optional: If All  Components  has been enabled, you might want to turn it off, and then enable 

specific components. 

e.   Optional: Select a component or group name. For more information see the topic on log level 

settings. If the selected server is not running, you will not be able to see individual component in 

graphic mode. 

f.   Enter a trace string in the trace string box. In this case, enter one of the following: 

v   all traces*=all 

v   com.ibm.ws.migration.WASUpgrade=all 

For more information on tracing read the topic on working with trace. 

g.   Select Apply, then OK.

5.   Specify your old database name and the full post-migration path of the new database name when you 

run the script. For example: E:\WebSphere\AppServer\derby\bin\embedded>db2jMigrate.bat  myOldDB  

myNewDB  The logs from the automatic migration provide the exact path names to specify for both the old 

database and the target database. You must use this target database name to specify the new 

database, because your migrated Cloudscape data sources (updated by the WebSphere Application 

Server migration utilities) now point to the target database name. The following sample text 

demonstrates how log messages display target database names: 

DSRA7600E:  Cloudscape  migration  of  database  instance  C:\temp\migration2\profiles\AppSrv01\  

installedApps\ghongellNode01Cell\DynamicQuery.ear\EmployeeFinderDB  to new  database  instance  

C:\WebSphere\AppServer\profiles\AppSrv01\databases\C__WAS602_AppServer_profiles_AppSrv01_  

installedApps_ghongellNode01Cell_DynamicQuery.ear_EmployeeFinderDB  failed,  

reason:  java.sql.SQLException:  Failure  creating  target  db 

 

38 Migrating WebSphere applications



For instances of Cloudscape that are accessed through the Network Server framework, input any 

name that you want for the new database. Remember to modify your existing data sources to point to 

the new database name. 

6.   When the migration process ends, examine the database migration log to verify the results. The path 

name of each database migration log is app_server_root/logs/derby/
myFulldbPathName_migrationLog.log. 

For a successful migration, the database migration log displays a message that is similar to the 

following text: 

Check  E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log  for  progress  

Migration  Completed  Successfully  

E:\WebSphere\AppServer\derby\bin\embedded>  

Otherwise, the log displays error messages in the format of the following example: 

Check  E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log  for  progress  

ERROR:  An error  occurred  during  migration.  See debug.log  for  more  details.  

ERROR  XMG02:  Failure  creating  target  db 

java.sql.SQLException:  Failure  creating  target  db 

        at com.ibm.db2j.tools.migration.MigrationState.getCurrSQLException(Unknown  Source)  

        at com.ibm.db2j.tools.migration.MigrateFrom51Impl.handleException(Unknown  Source)  

        at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown  Source)  

        at com.ibm.db2j.tools.migration.MigrateFrom51Impl.main(Unknown  Source)  

        at com.ibm.db2j.tools.MigrateFrom51.main(Unknown  Source)  

... 

7.   For more data about a migration error, consult the debug log that corresponds with the database 

migration log. The full path name of a debug log file is app_server_root/logs/derby/
myFulldbPathName_migrationDebug.log. 

The following lines are a sample of debug text. 

sourceDBURL=jdbc:db2j:E:\WebSphere\myOldDB  

 newDBURL=jdbc:derby:e:\tempo\myNewDB  

 ddlOnly=false  

connecting  to source  db <jdbc:db2j:E:\WebSphere\myOldDB>  

connecting  to source  db <jdbc:db2j:E:\WebSphere\myOldDB>  took    0.611  seconds  

creating  target  db <jdbc:derby:e:\tempo\myNewDB>  

creating  target  db <jdbc:derby:e:\tempo\myNewDB>  took    6.589  seconds  

initializing  source  db data  structures  

initializing  source  db data  structures  took    0.151  seconds  

recording  DDL  to create  db <E:\WebSphere\myOldDB>  

recording  DDL  to create  db <E:\WebSphere\myOldDB>  took    5.808  seconds  

Results 

As indicated in the previous steps, the database migration log displays either a Migration  Completed  

Successfully  message, or a message containing migration failure exceptions. 

What to do next 

v   For databases that fail migration, troubleshoot according to the logged error data. Then rerun the 

migration script. 

v   To access successfully upgraded databases through the embedded framework, modify your data 

sources to point to the new database names. 

v   To access successfully upgraded databases through the Network Server framework, you can use either 

the DB2 Universal JDBC driver or the Derby Client JDBC driver. 

–   If you want your existing JDBC configurations to continue to use the DB2 Universal JDBC driver, 

modify your data sources to point to the new database names. 

–   If you want to use the Derby Client JDBC driver, which can support XA data sources, modify your 

JDBC providers to use the new Derby Client JDBC driver class and the new data source 

 

Chapter 6. Data access resources 39



implementation classes. Then reconfigure every existing data source to use the correct Derby data 

source helper class, and to point to the new database name. 

Consult the article in the information center on vendor-specific data sources minimum required 

settings for all of the new class names.

 

40 Migrating WebSphere applications



Chapter  7.  Messaging  resources  

Migrating from WebSphere  Application Server Version 5 embedded 

messaging 

This set of topics describe the migration of JMS applications from the embedded messaging in 

WebSphere Application Server Version 5.1 to the default messaging provider in WebSphere Application 

Server Version 7.0. 

About this task 

You can temporarily use JMS resources developed for WebSphere Application Server Version 5.1 with 

service integration in WebSphere Application Server Version 7.0, however you should ideally migrate all 

resources to Version 7.0 as soon as possible. 

For general migration considerations, see “General considerations for migrating from Version 5 embedded 

messaging.” 

When migrating a Version 5.1 node to Version 7.0, you do not have to modify your JMS applications; they 

can continue to use most of the existing Version 5.1 JMS deployment, installation, and configuration 

settings. However, when migrating a Version 5.1 message-driven bean (MDB) application, you must modify 

the configuration to provide a JMS activation specification, not a listener port (MDBs do not use listener 

ports), then redeploy or reinstall the MDB application. 

Note:   It is intended that WebSphere Application Server Version 5.1 will no longer support connections 

from application servers or Java EE application clients to the JMS server component of embedded 

messaging. When this happens, it will no longer be possible to define JMS resources for the 

Version 5.1 default messaging provider. It is also intended that WebSphere Application Server 

Version 5.1 will no longer support connections from client applications executing in a Version 5.1 

environment, or applications using Version 5.1 default messaging provider resources, to the 

messaging engines in WebSphere Application Server Version 7.0. When this happens, it will no 

longer be possible to define a WebSphere MQ client link property for messaging engines. 

For more information about migrating from WebSphere Application Server Version 5 embedded 

messaging, see the following links: 

v   “Migrating a stand-alone application server from Version 5 embedded messaging” on page 52 

v   Migrating a network deployment configuration from Version 5 embedded messaging 

v   “Example: Migrating a message-driven bean from Version 5 embedded messaging - stage 1” on page 

54 

v   “Example: Migrating a message-driven bean from Version 5 embedded messaging - stage 2” on page 

58 

v   “General considerations for migrating from Version 5 embedded messaging” 

v   “Migrating Version 5.1 messages using the message migration utility” on page 45

General considerations for migrating from Version 5 embedded 

messaging 

This topic describes the general considerations for migrating from WebSphere Application Server Version 5 

embedded messaging to the Version 7.0 default messaging provider. These general considerations apply 

to the related migration tasks. 

v   “You do not need to change Version 5.1 JMS applications” on page 42 

v   “You do not need to change Version 5.1 JMS resource definitions” on page 42 

 

© Copyright IBM Corp. 2008 41



v   “You do not need to change Version 5.1 client JMS resource definitions” on page 43 

v   “Before migrating a WebSphere Application Server Version 5.1 node, you might need to consume 

messages” on page 43 

v   “You should replace MDB listener ports with JMS activation specifications” on page 44 

v   “A Version 5.1 JMS server is converted to a Version 7.0 application server” on page 44 

v   “Use of Version 7.0 bus resources is enabled by a WebSphere MQ client link” on page 44 

v   “The wildcard syntax is converted automatically for interoperation between Version 5.1 and Version 7.0” 

on page 45 

v   “Configuration scripts for WebSphere Application Server Version 5 embedded messaging should not be 

run, and fail if they are run” on page 45

You do not need to change Version 5.1 JMS applications 

When migrating a WebSphere Application Server Version 5.1 node to Version 7.0, you do not need to 

make any changes to JMS applications; they can continue to use their same deployment and installation, 

and their same configurations of Version 5.1 JMS resources (with one exception given in “You do not need 

to change Version 5.1 JMS resource definitions”). 

The applications can continue to use the same JMS API classes and listener ports, but rather than 

communicating with a WebSphere MQ queue manager, the applications communicate with a messaging 

engine on a service integration bus. 

You do not need to change Version 5.1 JMS resource definitions 

When migrating a WebSphere Application Server Version 5.1 node to Version 7.0, you do not need to 

make any changes to JMS resource definitions. JMS applications can continue to use their same 

configurations of Version 5.1 JMS resources, with the following exception. 

The exception to this is for JMS applications that use the Version 5 embedded messaging provider’s 

DIRECT port for publish/subscribe messaging, as set on the WebSphere Application Server topic 

connection factory. If any WebSphere Application Server Version 5.1 topic connection factory has the Port 

property set to DIRECT, change it to QUEUED before use with the Version 7.0 default messaging provider. 

If a node is migrated to WebSphere Application Server Version 7.0, the JMS resources are not changed, 

except to use the Version 7.0 naming convention. That is, the administrative name for the Version 5 

embedded messaging JMS resources is changed from WebSphere  JMS  Provider  resources to V5  

Default  Messaging  resources. 

Listener ports are copied over unmodified from the Version 5.1 configuration, and are used on WebSphere 

Application Server Version 7.0 whenever the associated Version 5 default messaging resources are used. 

After migration, the JMS resources are implemented through the WebSphere Application Server Version 

7.0 default messaging provider. You can use the Version 7.0 administrative console to manage the JMS 

resources as Version 5.1 default messaging JMS resources. For example, in the WebSphere Application 

Server Version 7.0 administrative console you can list Version 5.1 default messaging JMS queue 

connection factories by clicking Resources  → JMS  → JMS  providers  → V5  default  messaging  provider  → 

[Additional  Properties]  Queue  connection  factories  

You should replace Version 5.1 default messaging JMS resources with equivalent Version 7.0 default 

messaging provider JMS resources as soon as is conveniently possible (after all JMS applications using 

those resources have been moved onto WebSphere Application Server Version 7.0). This enables you to 

benefit from the better performance of the Version 7.0 default messaging provider, and to exploit the use 

of multiple messaging engines in a service integration bus, and other default messaging functions enabled 

by service integration technologies. 

 

42 Migrating WebSphere applications



You can replace JMS resources manually, for example by using the WebSphere Application Server 

administrative console. Alternatively, you can replace the resources programmatically, for example by 

some scripting that retrieves the Version 5.1 property values then creates Version 7.0 JMS resources with 

values appropriate to your Version 7.0 environment and your use of the Version 5.1 properties. 

New JMS resources should be created as Version 7.0 JMS resources. Any wsadmin or JMX scripts that 

create Version 5.1 JMS resources need to be changed to create Version 7.0 JMS resources for use in 

WebSphere Application Server Version 7.0. 

You do not need to change Version 5.1 client JMS resource definitions 

JMS client applications that have JMS resources configured using the Application Client Resource 

Configuration Tool (ACRCT) in WebSphere Application Server Version 5.1 should continue to work without 

change with WebSphere Application Server Version 7.0. 

You should replace Version 5.1 default messaging JMS resources with equivalent Version 7.0 default 

messaging provider JMS resources as soon as is conveniently possible (after all the application servers 

have been migrated onto WebSphere Application Server Version 7.0). You should use the Version 7.0 

ACRCT to replace the JMS resources and to create any new JMS resources. New JMS resources should 

be created as Version 7.0 JMS resources. 

Before migrating a WebSphere Application Server Version 5.1 node, you might 

need to consume messages 

When migrating a WebSphere Application Server Version 5.1 node to Version 7.0, any messages (and 

knowledge of durable subscriptions) held by the JMS server are not migrated automatically. Whether you 

need to drain all the JMS queues depends upon your migration strategy. 

You should use one of the following migration strategies: 

v   Before migrating a WebSphere Application Server Version 5.1 node, you stop Version 5.1 JMS 

applications using the JMS queues that are to be migrated. 

–   Stop all message-producing JMS applications in the WebSphere Application Server Version 5.1 

environment. For example, you can use the administrative console to stop the applications, as 

described in Starting and stopping applications. 

–   Allow all message-consuming JMS applications (including those consuming publications as a result 

of durable subscriptions) to continue until all the JMS queues are drained, then stop those 

applications. 

For each JMS queue defined on the JMS server, the migration process automatically creates a new bus 

queue with the same name as the Version 5.1 JMS queue, and creates a message point assigned to 

the messaging engine. Messages sent to the JMS queues are stored and processed at the message 

point. 

v   Leave the JMS server node at WebSphere Application Server Version 5.1 and write an application to 

run on a Version 7.0 node, to access the Version 5.1 JMS server, get the Version 5.1 messages, and 

resend or publish them to applications on WebSphere Application Server Version 7.0. 

v   Use the message migration utility to migrate the contents of existing WebSphere Application Server 

Version 5 embedded messaging queues, as described in “Migrating Version 5.1 messages using the 

message migration utility” on page 45.

Note:   the message migration utility does not migrate publish/subscribe messages or durable 

subscriptions.

 

Chapter 7. Messaging resources 43

friend.was/ae/trun_app_startstop.html


You should replace MDB listener ports with JMS activation specifications 

A JMS application that uses a message-driven bean and its listener port in WebSphere Application Server 

Version 5.1 can continue to use the listener port without change in WebSphere Application Server Version 

7. However, the message listener service uses the Application Server Facilities (ASF), which are an 

optional part of the JMS specification. Also, ASF is not supported by the service integration technologies 

on which the Version 7.0 default messaging provider is implemented. 

The Version 7.0 default messaging provider is implemented as a Java Platform, Enterprise Edition (Java 

EE) Connector Architecture (JCA) resource adapter, for which inbound connectivity is configured as an 

activation specification. Therefore, as soon as is conveniently possible, you should replace any listener 

port with a JMS activation specification for use by MDB applications with the Version 7.0 default 

messaging provider. 

If you used the listener port retry count in WebSphere Application Server Version 5.1, there is one extra 

consideration. The Java EE Connection Architecture has no concept of a listener port retry count, so this is 

not supported by the Version 7.0 default messaging provider. This should not present a problem because 

the Version 7.0 default messaging provides destinations with a “Maximum failed deliveries” setting. This 

defines the maximum number of times that the service tries to deliver a message to the destination before 

forwarding it to the exception destination. Although applications do not need to be changed, any wsadmin 

or JMX scripts that make use of the listener port retry count need to be changed to make use of the 

“Maximum failed deliveries” setting for use in WebSphere Application Server Version 7.0. 

A Version 5.1 JMS server is converted to a Version 7.0 application server 

JMS applications developed for WebSphere Application Server Version 5.1 access JMS resources through 

a JMS server, which acts as one or more queue managers. The WebSphere Application Server Version 

7.0 default messaging provider uses fully-integrated Java technology, and needs no JMS server. 

v   On a standalone node the JMS server runs as the jmsserver service of an application server. If you 

migrate a WebSphere Application Server Version 5.1 standalone node to Version 7.0, the Version 5.1 

application server is migrated to a Version 7.0 application server with the same name. The server is 

added as a member of a service integration bus that is named for the node on which the server is 

located. A messaging engine is created automatically on that bus for the application server. 

v   In a cell, each node has at most one JMS server. If you migrate a WebSphere Application Server 

Version 5.1 node to Version 7.0, the JMS server is migrated to an application server, called jmsserver, 

and added as a member of a service integration bus that has the same name as the node. A messaging 

engine is created automatically on that bus for the application server. There is only one such application 

server and bus for each Version 5.1 node.

Use of Version 7.0 bus resources is enabled by a WebSphere MQ client link 

Version 5 embedded messaging uses WebSphere MQ technology, and for communication uses 

WebSphere MQ client protocols. The WebSphere Application Server Version 7.0 default messaging 

provider uses fully-integrated Java technology, and JMS applications access JMS resources through the 

messaging engines on a service integration bus. 

JMS applications developed for WebSphere Application Server Version 5.1 can use resources on a service 

integration bus through a WebSphere  MQ  client  link  assigned to a messaging engine on the service 

integration bus. The WebSphere MQ client link is provided only for use with JMS applications developed 

for WebSphere Application Server Version 5.1. This link presents itself as a queue manager and 

transforms between the WebSphere MQ client protocols used by JMS applications developed for 

WebSphere Application Server Version 5.1 and the WebSphere Application Server Version 7 protocols 

used by messaging engines. This link can be used to access JMS resources backed by a destination 

anywhere on the bus or on any other connected bus. 

 

44 Migrating WebSphere applications



If you migrate a WebSphere Application Server Version 5.1 node to Version 7.0, a default WebSphere MQ 

client link is created automatically for the node, and assigned to the messaging engine for the application 

server that is also created by the migration process. The default link has the following properties: 

 Property  Value  

Name Default.MQClientLink 

Description Default MQ Client Link 

Queue manager name WAS_nodeName_jmsserver 

Channel name WAS.JMS.SVRCONN
  

 

The wildcard syntax is converted automatically for interoperation between Version 

5.1 and Version 7.0 

Existing WebSphere Application Server Version 5.1 client applications using Version 5.1 connection factory 

and destination definitions use the WMQI wildcard convention. Such applications can connect to the 

default messaging provider and service integration bus, and automatically have their wildcard syntax 

mapped to the XPath convention when subscriptions are created. Any display of these subscriptions 

through a Version 7.0 administrative interface shows the XPath syntax. 

Configuration scripts for WebSphere Application Server Version 5 embedded 

messaging should not be run, and fail if they are run 

When upgrading from WebSphere Application Server Version 5.1 to Version 7.0, the Version 5 embedded 

messaging configuration scripts are retained, but have no influence on the WebSphere Application Server 

Version 7.0 default messaging provider and fail if run. Do  not  run  the  scripts.  Failure of the scripts can 

appear to be a failure of the WebSphere Application Server Version 7.0 installation, but no damage or 

action to the WebSphere Application Server installation results from running the scripts. 

Migrating Version 5.1 messages using the message migration utility 

This set of topics describes the migration of WebSphere Application Server Version 5.1 messages to 

Version 7.0 messages, using the WebSphere Application Server message migration utility. 

Version 7 node node_name

JMS
application

Messaging
engine

Service integration
bus node_name

Bus
Q

application server
server1

MQ
client
link

BusQ@ME

JNDI
JMS
QCF

(V5.1)

JMS
Q

(V5.1)

= Message flows

  

Figure  1. WebSphere  Application  Server  5 JMS  application  scenario  after  migration.  This  figure  shows  an example  

single-node  scenario  after  migrating  the  node  to WebSphere  Application  Server  Version  7.0.  The  JMS  resources  are  

now  managed  as Version  5 embedded  messaging  JMS  resources  implemented  by  the Version  7.0  default  messaging  

provider.  Also,  a WebSphere  MQ  client  link  and  bus  queue  have  been  created  and  assigned  to the  messaging  engine,  

to enable  JMS  applications  developed  for WebSphere  Application  Server  Version  5.1  to use  the  JMS  resources.

 

Chapter 7. Messaging resources 45



About this task 

The message migration utility takes the contents of existing WebSphere Application Server Version 5 

embedded messaging queues and puts them on the new WebSphere Application Server Version 7.0 

default messaging queues. 

Note:   the message migration utility does not migrate publish/subscribe messages or durable 

subscriptions. 

Migrating Version 5 embedded messages, using the message migration utility, is described in more detail 

in the following topics: 

v   “WebSphere Application Server message migration utility” 

v   “Installing the message migration utility” 

v   “Running the message migration utility” on page 47 

v   “Reversing the migration of messages using the message migration utility” on page 48 

v   “XA recovery” on page 49 

v   “Migration of message fields” on page 50

WebSphere Application Server message migration utility 

This topic describes the WebSphere Application Server message migration utility. 

The message migration utility takes the contents of existing WebSphere Application Server Version 5 

embedded messaging queues and puts them onto service integration bus messaging queues. 

You run the message migration utility only once for a particular queue unless one of the following is true: 

1.   The first message migration attempt was unsuccessful. 

2.   You wish to reverse the message migration (that is, move the messages back to WebSphere 

Application Server Version 5.1).

If you migrate a server and messages from Version 5.1 to Version 7.0 and then decide to reverse the 

migration, the reversal must be done in the following order: 

1.   Run the message migration utility in the direction: Version 7.0 to Version 5.1. 

2.   Reverse the server migration.

It is possible to migrate multiple queues during a single execution of the utility. 

Installing the message migration utility 

How to install the WebSphere Application Server message migration utility, including the steps that are 

necessary before the installation. 

Before you begin 

Before you install the message migration utility ensure that you have backed up your embedded 

messaging queues on WebSphere Application Server Version 5.1. For details of backing up queues refer 

to the WebSphere MQ System Administration Guide. This guide applies to backing up WebSphere MQ 

queues but can be used to back up your embedded messaging queues. 

Note:   If you back up a WebSphere Application Server Version 5.1 queue before migration and then 

reinstate the whole queue and start migrating the same queue again, you will get two copies of the 

messages in WebSphere Application Server Version 7.0.

 

46 Migrating WebSphere applications

http://publibfp.boulder.ibm.com/epubs/pdf/amqzag05.pdf


About this task 

To install and start the message migration utility, use the administrative console to complete the following 

steps. 

1.   Install the enterprise application: 

a.   Click Applications  → New  Application  → New  Enterprise  Application. 

b.   Specify the location of the SibMsgMigrationUtility.ear file and click Next. This file is located in the 

WebSphere Application Server Version 7.0 installableApps directory. 

c.   Accept all the defaults on the next screen and click Next. 

d.   You do not need to change any other settings, so click on the final step on the left Summary, then 

click Finish  to install the message migration utility. 

e.   When you see Application:  WebSphere  Message  Migration  Utility  installed  successfully, save 

the changes to the master configuration.

2.   Start the application: 

a.   Click Applications  → Application  Types  → WebSphere  enterprise  applications. 

b.   Select WebSphere  Message  Migration  Utility. 

c.   Click Start.

3.   Check the port number. Providing the port number used by the web container has not been changed 

you can go to the following address using a web browser and the tool will start: http://
<yourhostname>:9080/MessageMigrationUtility. If the port number was changed, replace ″9080″ with 

the correct port.

Running the message migration utility 

This topic describes how to run the WebSphere Application Server message migration utility. 

Before you begin 

1.   Ensure that you have a WebSphere Application Server Version 5.1 system that contains an embedded 

messaging server. 

You do not need to start the Version 5.1 server. 

2.   Ensure that no applications are reading from the WebSphere Application Server Version 5.1 queue 

manager when you run the message migration utility. 

3.   Ensure that you have not modified or deleted the message queues on the Version 5.1 application 

server. 

4.   Ensure that you have a running WebSphere Application Server Version 7.0 system that fulfills the 

following conditions. 

a.   The WebSphere Application Server Version 7.0 system is on the same host as the WebSphere 

Application Server Version 5.1 system. 

b.   The WebSphere Application Server Version 7.0 system contains a messaging engine on the bus to 

which the messages will migrate (this is automatically included for you if you upgrade your server 

from Version 5.1 to Version 7.0).

Note:   These conditions are met if you run the message migration utility at the correct point in the 

WebSphere Application Server migration sequence. The correct point is after you have run the 

WASPostUpgrade command and restarted the Version 7.0 node.

About this task 

Messages are migrated from the WebSphere Application Server Version 5.1 system to the Version 7.0 

system under an XA (globally coordinated) transaction. For further information about the XA transaction, 

see “XA recovery” on page 49. 

 

Chapter 7. Messaging resources 47



For information about the reversal of message migration, see Reversing the migration of messages using 

the message migration utility. 

During successful migration, messages are moved from the WebSphere Application Server Version 5.1 

system to the WebSphere Application Server Version 7.0 system. No copy is left on the Version 5.1 server 

queue. 

Note:   

1.   You run the message migration utility only once for a particular queue, unless a failure occurs. 

2.   If a failure occurs during message migration, it is safe to run the message migration utility again 

in the same direction because messages are moved rather than copied. Whether you 

successfully retry a failing message migration, or delete the message, the message ordering of 

the remaining messages is preserved on the WebSphere Application Server Version 7.0 queue.

1.   Follow the actions indicated by the message migration utility. 

2.   On the panel called ″Select the direction of migration″ select Migrate  messages  from  Version  5 to 

Version  7. 

3.   Select a message reliability to apply to messages that are to be migrated. More details on the choice 

of reliability levels can be found in the Message Reliability Levels topic. 

4.   You can migrate multiple queues during a single run of the utility.

Results 

1.   You need to run the migration utility more than once if the first message migration attempt fails. 

2.   If a queue has a failing message then perform one of the following operations: 

a.   Retry the failing message, in case there is a transient error. 

b.   Delete the failing message and go on to the next message. 

c.   Stop the queue that has the failing message and move on to the next queue.

Reversing the migration of messages using the message migration utility 

This topic describes how to reverse the results of the WebSphere Application Server message migration 

utility. 

Before you begin 

If you want to revert to using WebSphere Application Server Version 5.1, instead of Version 7.0, you must 

reverse the migration of the messages before deleting the Version 7.0 server. 

About this task 

Reverse migration is carried out under XA coordination. 

If the reverse migration takes place after a partial migration from WebSphere Application Server Version 

5.1 to Version 7.0, in which only some of the messages were migrated, then the message ordering is not 

preserved. However, if the target queue in the Version 5.1 application server is empty when the migration 

takes place (as it is likely to be) then the message order is retained. 

Messages that are reverse-migrated appear on the queue after those that were not migrated at the first 

attempt. 

Note:   

1.   You run the message migration utility only once for a particular queue, unless a failure occurs. 

2.   If a failure occurs during message migration, it is safe to run the message migration utility again 

in the same direction because messages are moved rather than copied. Whether you 

 

48 Migrating WebSphere applications



successfully retry a failing message migration, or delete the message, the message ordering of 

the remaining messages is preserved on the WebSphere Application Server Version 7.0 queue.

1.   Follow the actions indicated by the message migration utility. 

2.   On the ″Select the direction of migration″ panel choose Reverse  a previous  migration.

Results 

As in normal migration, if a queue has a failing message you have the choice of: 

1.   Retrying the failing message, in case there is a transient error. 

2.   Deleting the failing message and going on to the next message. 

3.   Stopping the queue that has the failing message and moving on to the next queue.

XA recovery 

This topic describes the XA transaction and how it relates to the process of migrating messages. 

Before you begin 

For XA recovery to complete successfully: 

1.   All the resources involved in the transaction need to be available to the transaction manager. 

Note:   This is not a problem for the WebSphere Application Server Version 7.0 default messaging 

provider (the service integration bus), because it starts when the server (and the transaction 

manager) start. However, Version 5 embedded messaging is not told that the server is starting, 

and the embedded queue manager needs to be started manually to allow XA recovery to 

complete. 

2.   The resources involved must be started in the same way. The queue manager must be started using 

the same startup parameters, for example, the same TCP/IP port number as before. 

Note:   When a transaction is in doubt, information about the resources is saved in the transaction log.

About this task 

During migration, messages are removed from the WebSphere Application Server Version 5 embedded 

messaging and put into the service integration bus under an XA transaction. This ensures that the 

movement of a single message is carried out as a single unit of work even though there are two discrete 

and separate resources involved. The XA transaction uses two phase commit which ensures that all 

resources participating in a transaction are asked to ″prepare″  to commit and then, when all the resources 

have indicated they are ready, the transaction commits. 

XA transactions are coordinated by a transaction manager which informs the resources to prepare, commit 

or roll back. 

There is one XA transaction for each migrating message, and the controlling transaction manager is part of 

the service integration bus, although you will probably be unaware that the transaction manager is 

involved. 

It is possible for a transaction to be ″in doubt″. This can occur if the transaction manager has told the 

participants in a transaction to prepare and they have successfully done so, but an error has occurred 

when the final commit is attempted. This can be caused by a communications failure between the 

transaction manager and a transaction participant. If a transaction is in doubt, the transaction manager 

attempts to recover the transaction when the application server next restarts. The recovery process 

generally involves reconnecting to each of the participants and telling them to roll back the transaction. 

 

Chapter 7. Messaging resources 49



When the message migration utility connects to the Version 5 embedded messaging server, it creates a 

log of the connection parameters that were used in your profile directory on the Version 7.0 server. For 

example, if the profile in use is ″Profile1″, then the log file is located in the following directory: 

app_server_root/profiles/Profile1/logs/message_migration_utility.log  

where app_server_root  is the root directory for the installation of WebSphere Application Server. 

Note:   The log file contains details of every run of the utility. If you have run the utility more than once 

make sure that you go to the last entry. 

Sample contents of the log file: 

----------------------------------------------------------------  

Migration  Utility  was  started:  Tue  Feb  22 14:20:49  GMT  2005  

----------------------------------------------------------------  

   Browser  details    : Mozilla/5.0  (Windows;  U; Windows  NT 5.1;  en-US;  rv:1.7.5)  

            Gecko/20041107  Firefox/1.0  

   Referrer           : null  

   Query  String       : null  

   User               : your.server.name:9080  

  

Connection  to WebSphere  Application  Server  Version  5 

Embedded  Messaging  server  was  successful  using  the  following  properties:  

  

   Queue  Manager  Name:  WAS_Node01_server1  

   Hostname           : your.server.name  

   TCP/IP  Port        : 21179  

   SVRCONN  Channel    : WAS.JMS.SVRCONN  

  

Connection  to WebSphere  Application  Server  Version  7.0  

default  messaging  provider  was  successful  using  the  following  properties:  

  

   SIBus  Name         : bus1  

  

Message  migration  will  take  place  using  the  following  settings:  

  

   Queues             : [queue2,  queue1]  

   Direction          : Version  5.1  -> Version  7.0 

   V6 reliability     : ReliablePersistent  

1.   Start the Version 5 embedded messaging queue manager. 

Use the following commands: 

a.   strmqm  queue_manager_name  

b.   strmqcsv  queue_manager_name  

c.   runmqlsr  –m  queue_manager_name  -t  TCP  –p  TCP/IP_port

2.   Start the Version 7.0 application server, if it is not already started.

Results 

XA recovery continues automatically. 

Migration of message fields 

This topic shows the message changes that can occur when using the WebSphere Application Server 

message migration utility. 

Changes to messages due to migration 

All JMS message types migrate unchanged: 

1.   Message 

2.   TextMessage 

 

50 Migrating WebSphere applications



3.   MapMessage 

4.   StreamMessage 

5.   ObjectMessage 

6.   BytesMessage

User properties set on the message by an application are also unaltered. 

The JMS message types provide header fields which can  change as a result of migration: 

 Table 2. JMS  Message  Header  fields  

Header  field  name  State  after  migration  

JMSMessageID Unchanged 

JMSCorrelationID Unchanged 

JMSDeliveryMode Unchanged 

JMSPriority Unchanged 

JMSTimestamp Unchanged 

JMSExpiration Unchanged 

JMSRedelivered Can be reset as a result of the migration process. 

JMSType Unchanged 

JMSDestination The name of the destination is unaltered. Other properties 

of the destination are mapped to their WebSphere 

Application Server Version 7 equivalents, where possible. 

JMSReplyTo The name of the reply destination is unaltered, and 

assumed to exist on the WebSphere Application Server 

Version 7.0 bus to which the messages are being 

migrated. 

Note:   

v   References to temporary queues or topics are migrated 

in the same way as for permanent reply destinations. It 

will not be possible to send reply messages to these 

destinations because they will not exist in the 

WebSphere Application Server Version 7.0 bus. 

v   Topic reply-to destinations are assumed to be topics 

within the default topic space, which must exist for the 

reply message to be sent.
  

JMSX properties can  also change as a result of migration. 

 Table 3. JMSX  properties  

JMSX  property  name  State  after  migration  

JMSXUserID Unchanged 

JMSXAppID Unchanged 

JMSXDeliveryCount Can be reset as a result of the migration process. 

JMSXGroupID Unchanged 

JMSXGroupSeq Unchanged 

JMSXProducerTXID Not supported by service integration bus. 

JMSXConsumerTXID Not supported by service integration bus. 

JMSXRcvTimestamp Not supported by service integration bus. 

 

Chapter 7. Messaging resources 51



Table 3. JMSX  properties  (continued)  

JMSX  property  name  State  after  migration  

JMSXState Not supported by service integration bus.
  

The following JMS_IBM properties do  not  change as a result of migration. 

 Table 4. JMS_IBM  properties  

JMS_IBM  property  name  State  after  migration  

JMS_IBM_Report_* Unchanged 

JMS_IBM_MsgType Unchanged 

JMS_IBM_Feedback Unchanged 

JMS_IBM_Format Unchanged 

JMS_IBM_PutApplType Unchanged 

JMS_IBM_Encoding Unchanged 

JMS_IBM_Character_Set Unchanged 

JMS_IBM_PutDate Unchanged 

JMS_IBM_PutTime Unchanged 

JMS_IBM_Last_Msg_In_Group Unchanged
  

Migrating a stand-alone application server from Version 5 embedded 

messaging 

Migrate a stand-alone application server from WebSphere Application Server Version 5 embedded 

messaging for use with the WebSphere Application Server Version 7.0 default messaging provider. 

Before you begin 

Before starting this task you must stop all Version 5.1 JMS applications that are using the JMS queues 

you want to migrate: 

v   Stop all message-producing JMS applications in the WebSphere Application Server Version 5.1 

environment. For example, use the administrative console to stop the JMS applications, as described in 

Starting and stopping applications. 

v   Allow all message-consuming JMS applications (including those JMS applications that are consuming 

published messages as a result of durable subscriptions) to continue, until all the queues are drained, 

then stop the JMS applications.

About this task 

When migrating a WebSphere Application Server Version 5.1 stand-alone application server to Version 7.0, 

you do not need to make any changes to JMS applications which can continue to use their same 

deployment and installation, and their same configurations of Version 5.1 JMS resources, apart from one 

exception which is described below. For a more detailed explanation, see “General considerations for 

migrating from Version 5 embedded messaging” on page 41. 

Before migrating, consider the stand-alone application server scenario shown in the following figure 

Figure 2 on page 53. 

v   The JMS application uses JNDI to look up the JMS resources in the WebSphere Application Server 

name space. 

 

52 Migrating WebSphere applications

friend.was/ae/trun_app_startstop.html


v   The JMS resources in this example are a JMS queue connection factory (shown as JMS QCF) and a 

JMS queue (shown as JMS Q). 

v   WebSphere Application Server Version 5 embedded messaging uses WebSphere MQ technology, and 

is implemented through a JMS server that runs as the jmsserver service of the application server. The 

JMS application uses WebSphere MQ client protocols to communicate with the JMS server.

 

To migrate a stand-alone WebSphere Application Server environment from Version 5 embedded 

messaging to the Version 7.0 default messaging provider, complete the following steps: 

1.   Migrate the stand-alone WebSphere Application Server to Version 7.0. See the documentation about 

migrating product configurations. The Version 5 embedded messaging JMS resources have been 

migrated to V5 default messaging JMS resources. 

2.   If any Version 5.1 default messaging JMS topic connection factory has the Port property set to 

DIRECT, you  must  change it to QUEUED before use with the Version 7.0 default messaging provider. 

For example, after migrating the application server, use the Version 7.0 administrative console to 

complete the following steps: 

a.   Display the Version 5.1 default messaging JMS topic connection factory Click Resources  → JMS  → 

JMS  providers  → V5  default  messaging  provider  → [Additional  Properties]  Topic  connection  

factories  → factory_name. 

b.   For the Port  field, select the QUEUED option. 

c.   Click OK. 

d.   Save your changes to the master configuration.

Results 

After migrating the application server, the basic stand-alone application server scenario becomes as shown 

in the following figure Figure 3 on page 54. 

v   The JMS application can continue to access the Version 5.1 JMS resources, which are now managed 

as Version 5.1 default messaging JMS resources implemented by the WebSphere Application Server 

Version 7.0 default messaging provider. 

v   The JMS application communicates with the Version 5.1 JMS resources through the WebSphere MQ 

client link and the messaging engine. This is invisible to the JMS application. 

Version 5.1 node node_name

JMS
application

JMS
server,

jmsserver

application server
server1

JNDI
JMS
QCF

(V5.1)

JMS
Q

(V5.1)

= Message flows

  

Figure  2. Stand-alone  WebSphere  Application  Server  5 JMS  application  scenario  before  migration.  This  figure  shows  

the example  stand-alone  application  server  scenario  before  migrating  the stand-alone  application  server  to WebSphere  

Application  Server  Version  7.0.  The  JMS  application  is supported  by an application  server.  The  JMS  application  could  

be running  within  the application  server  or as a JMS  client  application.

 

Chapter 7. Messaging resources 53



v   The JMS resources, a JMS queue connection factory, shown as JMS QCF(V5), and a JMS queue, 

shown as JMS Q(V5), are managed as Version 5.1 default messaging JMS resources. 

v   The new bus queue, shown as Bus Q, is managed as a resource of the service integration bus. 

Messages for JMS Q(V5) are stored and processed by the message point for the associated bus 

destination, a queue point shown as BusQ@ME. 

v   The WebSphere MQ client link presents itself as a queue manager and transforms between the 

WebSphere MQ client protocols used by Version 5.1 JMS applications and the WebSphere Application 

Server Version 7.0 protocols used by messaging engines.

 

What to do next 

Note:   If you have configured authorization level security on Version 5.1 it cannot be migrated to Version 

7.0. The migration tool cannot migrate authorization security for you and manual configuration is 

needed. 

You should replace the Version 5.1 default messaging JMS resources with equivalent Version 7.0 default 

messaging provider JMS resources as soon as is conveniently possible (after all JMS applications using 

those resources have been moved onto the later version of WebSphere Application Server). 

You should define any new JMS resources as Version 7.0 resources; for example, as described in 

Configuring resources for the default messaging provider. 

Example: Migrating a message-driven bean from Version 5 embedded 

messaging - stage 1 

This topic provides an example of the migration of a message-driven bean application from the embedded 

messaging in WebSphere Application Server Version 5.1 to the default messaging provider in WebSphere 

Application Server Version 7.0. 

Version 7 node node_name

JMS
application

Messaging
engine

Service integration
bus node_name

Bus
Q

application server
server1

MQ
client
link

BusQ@ME

JNDI
JMS
QCF

(V5.1)

JMS
Q

(V5.1)

= Message flows

  

Figure  3. WebSphere  Application  Server  5 JMS  application  scenario  after  migration.  This  figure  shows  an example  

stand-alone  application  server  scenario  after  migrating  the  application  server  to WebSphere  Application  Server  Version  

7.0.  The  JMS  resources  are  now  managed  as Version  5 default  messaging  JMS  resources  implemented  by the  

Version  7.0 default  messaging  provider.  Also,  a WebSphere  MQ  client  link  and  bus  queue  have  been  created  and  

assigned  to the  messaging  engine,  to enable  JMS  applications  developed  for  WebSphere  Application  Server  Version  

5.1  to use  the  JMS  resources.

 

54 Migrating WebSphere applications



Before you begin 

Before migrating a WebSphere Application Server Version 5.1 node, you need to stop Version 5.1 JMS 

applications using the JMS queues that are to be migrated. 

v   Stop all message-producing JMS applications in the WebSphere Application Server Version 5.1 

environment. For example, you can use the administrative console to stop the applications, as 

described in Starting and stopping applications. 

v   Allow all message-consuming JMS applications (including those consuming publications as a result of 

durable subscriptions) to continue until all the JMS queues are drained, then stop those applications.

About this task 

This topic provides a contextual description of the migration, then a summary of the steps involved. 

The migration of the MDB application is part of the migration of the Version 5.11 node, called wasA, on 

which it runs. When migrating the WebSphere Application Server Version 5.1 node to Version 7.0, you do 

not need to make any changes to the MDB application; it can continue to use the same deployment and 

installation, and the same configurations of Version 5.1 JMS resources. However, to complete the 

migration, you should replace the listener port used by the MDB application with a JMS activation 

specification. 

Consider the example scenario shown, before migration, in the following figure. 

 

v   The JMS resources are defined on WebSphere Application Server Version 5.1 as embedded messaging 

JMS resources: 

WebSphere  Queue  connection  factory,  PPQCF  

 Name: PPQCF 

JNDI Name: jms/SamplePPQCF
  

All other properties have default settings. By default, the connection factory creates connections 

to the JMS server on the same node. 

1. To make reading easier in this topic, the abbreviation “Version 5.1” is sometimes used to refer to “WebSphere Application Server 

Version 5.1” and “Version 7.0” is used to refer to “WebSphere Application Server Version 7.0”. For example, “Version 5.1 JMS 

resources” refers to JMS resources provided by WebSphere Application Server Version 5.1. 

  

Figure  4. WebSphere  Application  Server  Version  5.1  single-node  MDB  application  scenario  before  migration

 

Chapter 7. Messaging resources 55

friend.was/ae/trun_app_startstop.html


WebSphere  Queue,  InQ  

 Name: InQ 

JNDI Name: jms/SampleInputQueue
  

All other properties have default settings. 

WebSphere  Queue,  OutQ  

 Name: OutQ 

JNDI Name: jms/SampleOutputQueue
  

All other properties have default settings.

v    The MDB application, MyMDB, is installed on the application server called server1. 

v   The listener port called MDBPort is defined on the application server and references the defined JMS 

queue connection factory and JMS input queue. 

 Name: MDBPort 

Initial state: Started 

Connection Factory JNDI Name: jms/SamplePPQCF 

Destination JNDI Name: jms/SampleInputQueue
  

v   The use of these resources in a message flow is: 

1.   The JMS client application uses JNDI to look up the JMS resources in the WebSphere Application 

Server JNDI name space. The client puts a message on the input queue. 

2.   The message-driven bean in the MyMDB application uses the listener port to listen for messages 

arriving on the input queue. When a message is put on the input queue, the onMessage method of 

the message-driven bean is called, and the message-driven bean application puts a reply message 

on the output queue. 

3.   The JMS client application gets the reply message from the output queue.

v    WebSphere Application Server Version 5 embedded messaging uses WebSphere MQ technology, and 

is implemented through a JMS server that runs as a service within the application server. The JMS 

client application uses WebSphere MQ client protocols to communicate with the JMS server.

After migrating the node, the basic single-node scenario becomes as shown in the following figure, 

Figure 5 on page 57. 

v   The JMS application communicates with the JMS resources developed for WebSphere Application 

Server Version 5.1, through the WebSphere MQ client link and the messaging engine on the service 

integration bus. This is all invisible to the JMS application. 

–   The Version 5.1 application server, server1, is migrated to a Version 7.0 application server with the 

same name, and added as a member of a service integration bus that is named for the bus. A 

messaging engine is created automatically on that bus for the application server. 

–   A default WebSphere MQ client link, called Default.MQClientLink, is created automatically for the 

node and assigned to the messaging engine for the application server. 

–   The application server is not added to any service integration bus. The MDB application connects to 

the JMS queues through the WebSphere MQ client link.

v    The JMS resources, a JMS queue connection factory (shown as V5 JMS QCF) and a JMS queue 

(shown as V5 JMS Q), are managed as Version 5.1 default messaging JMS resources. 

–   For each JMS queue defined on the Version 5.1 application server, you create a new bus queue, 

and create a message point assigned to the messaging engine. Messages sent to the JMS queues 

are stored and processed at the message point.

 

56 Migrating WebSphere applications



You should then replace the Version 5.1 default messaging JMS resources with equivalent Version 7.0 

default messaging provider JMS resources as soon as is conveniently possible (for example, after any 

Version 5.1 JMS client applications have been migrated onto WebSphere Application Server Version 7.0). 

To migrate the MDB application from Version 5 embedded messaging to the Version 7.0 default messaging 

provider, complete the following steps: 

1.   Migrate the WebSphere Application Server node to Version 7.0. See the documentation about 

migrating product configurations. The Version 5 embedded messaging JMS resources have been 

migrated to Version 5.1 default messaging JMS resources. 

2.   If any JMS application uses the Version 5 embedded messaging provider’s DIRECT port for 

publish/subscribe messaging, as set on the WebSphere topic connection factory, change the Port 

property of the connection factory to QUEUED before use with the Version 7.0 default messaging 

provider.

Results 

After migrating the Version 5.1 node, the MDB application scenario becomes as shown in the following 

figure: 

 

The MDB application can continue to access the JMS resources, which are now implemented through the 

WebSphere Application Server Version 7.0 default messaging provider. You can use the Version 7.0 

administrative console to manage the JMS resources as Version 5.1 default messaging JMS resources. 

The MDB application can continue to receive messages through the listener port. 

What to do next 

After migrating a Version 5.1 MDB application, you should complete the following steps: 

1.   You should replace Version 5.1 default messaging JMS resources with equivalent Version 7.0 default 

messaging provider JMS resources as soon as is conveniently possible (after all JMS applications 

using those resources have been moved onto WebSphere Application Server Version 7.0). 

2.   Change the configuration of the MDB application to use a JMS activation specification instead of the 

listener port. 

Version 7 node wasA

JMS client
application

Messaging
engine

Bus
Q

InQ

Bus
Q

OutQ

JMS
Q (v5.1)

OutQ

JMS
Q (v5.1)

InQ

JMS
QCF (v5.1)

PPQCF

application server
server1

Service
integration
bus wasA

= Message flows

Listener
port

MDBPort

MyMDB
application

JNDI

MQ
client
link

  

Figure  5. WebSphere  Application  Server  Version  5.1  node  after  migration

 

Chapter 7. Messaging resources 57



3.   Re-deploy or re-install (with the Deploy EJB option selected) the MDB application.

These steps enable you to benefit from the better performance of the Version 7.0 default messaging 

provider, and to exploit the use of multiple messaging engines in a service integration bus, and other 

default messaging functions enabled by service integration technologies. 

You can replace JMS resources manually, for example by using the WebSphere Application Server 

administrative console. Alternatively, you could replace the resources by writing some scripting that 

retrieves the Version 5.1 property values then creates Version 7.0 JMS resources with values appropriate 

to your Version 7.0 environment and your use of the Version 5.1 properties. 

For an example of migrating the MDB application from Version 5.1 default messaging JMS resources and 

listener port to Version 7.0 default messaging provider JMS resources including JMS activation 

specification, see “Example: Migrating a message-driven bean from Version 5 embedded messaging - 

stage 2.” 

Example: Migrating a message-driven bean from Version 5 embedded 

messaging - stage 2 

By following this example, you can migrate a message-driven bean application on a Version 7.0 node from 

using Version 5.1 default messaging JMS resources and listener port to using Version 7.0 default 

messaging provider JMS resources. 

About this task 

This topic provides a contextual description of the migration, then a summary of the steps involved. 

This example follows on from the example described in “Example: Migrating a message-driven bean from 

Version 5 embedded messaging - stage 1” on page 54. 

Consider the example scenario, before replacing the Version 5.1 JMS resources with Version 7.0 JMS 

resources, shown in the following figure Figure 6 on page 59. 

 

 

58 Migrating WebSphere applications



v   The JMS resources, a JMS queue connection factory (PPQCF) and JMS queues (InQ and OutQ), are 

managed as Version 5.1 default messaging JMS resources. The administrative name for the embedded 

messaging JMS resources is changed from WebSphere  JMS  Provider  resources to V5  default  

messaging  provider  resources. For example, in the Version 7 WebSphere Application Server 

administrative console the queue connection factory can be found by clicking Resources  → JMS  → JMS  

providers  → V5  default  messaging  provider  → [Additional  Properties]  Queue  connection  factories. 

v   On the Version 7.0 administrative console, display the listener port by clicking Servers  → Server  Types  

→ WebSphere  application  servers  → server_name  → [Communications]  Messaging  → Message  

Listener  Service  → [Additional  Properties]  Listener  Ports  → port_name, where server_name  is 

server1  and port_name  is MDBPort.

To replace the Version 5.1 default messaging JMS resources with equivalent Version 7.0 default 

messaging provider JMS resources, complete the following steps: 

 1.   Delete the Version 5.1 JMS resources: 

a.   Display the collection list of Version 5.1 JMS queue connection factories. Click Resources  → JMS  

→ JMS  providers  → V5  default  messaging  provider  → [Additional  Properties]  Queue  

connection  factories. 

b.   Select the check box next to the queue connection factory, PPQCF. 

c.   Click Delete  

d.   Click OK. 

e.   Display the collection list of Version 5.1 JMS queues. Click Resources  → JMS  → JMS  providers  → 

V5  default  messaging  provider  → [Additional  Properties]  Queues. 

f.   Select the check box next to the queues, INQ and OUTQ. 

g.   Click Delete  

h.   Click OK  

i.   Save your changes to the master configuration.

 2.   Create a Version 7.0 JMS queue connection factory to replace the Version 5.1 JMS queue connection 

factory. (If you want to use a unified JMS connection factory instead of the domain-specific JMS 

Version 7 node wasA

JMS client
application

Messaging
engine

Bus
Q

InQ

Bus
Q

OutQ

JMS
Q (v5.1)

OutQ

JMS
Q (v5.1)

InQ

JMS
QCF (v5.1)

PPQCF

application server
server1

Service
integration
bus wasA

= Message flows

Listener
port

MDBPort

MyMDB
application

JNDI

MQ
client
link

  

Figure  6. MDB  application  scenario  before  replacing  the  Version  5 JMS  resources  with  Version  7.0 JMS  resources.  

The  migrated  scenario  still  uses  the Version  5.1  JMS  resources:  a JMS  queue  connection  factory, PPQCF;  two  JMS  

queues,  InQ  and  OutQ;  and  a listener  port,  MDBPort.  These  resources  are  to be replaced  by equivalent  Version  7.0  

resources.

 

Chapter 7. Messaging resources 59



queue connection factory, you also need to rewrite the MDB application to use JMS 1.1 interfaces). 

For example, use the Version 7.0 administrative console to complete the following steps: 

a.   Display the collection list of JMS queue connection factories for the default messaging provider. 

Click Resources  → JMS  → JMS  providers  → Default  messaging  provider  → [Additional  

Properties]  Queue  connection  factories  

b.   Click New  

c.   On the New JMS queue connection factory page, set the following properties: 

 Name: PPQCF 

JNDI Name: jms/SamplePPQCF 

Bus name wasA
  

All other properties have default settings. The name and JNDI name properties match the same 

properties on the Version 5.1 JMS queue connection factory. The connection factory creates 

connections to the service integration bus called wasA. 

d.   Click OK. 

e.   Save your changes to the master configuration.

 3.   Create Version 7.0 JMS queues to replace the Version 5.1 JMS queues For example, use the Version 

7.0 administrative console to complete the following steps for the input JMS queue: 

a.   Display the collection list of JMS queues for the default messaging provider. Click Resources  → 

JMS  → JMS  providers  → Default  messaging  provider  → [Additional  Properties]  Queues. 

b.   Click New  

c.   On the New JMS queue page, set the following properties for the JMS queue called InQ that is 

backed by the existing bus destination also called InQ: 

 Name: InQ 

JNDI Name: jms/SampleInputQueue 

Queue name: InQ
  

All other properties have default settings. The Queue name property specifies the name of the 

bus queue that is used to store and process messages for the JMS queue. 

d.   Click OK  This returns you to the collection list of JMS queues. 

e.   Click New  

f.   On the New JMS queue page, set the following properties for the JMS queue called OutQ that is 

backed by the existing bus destination also called OutQ: 

 Name: OutQ 

JNDI Name: jms/SampleOutputQueue 

Queue name: OutQ
  

All other properties have default settings. The Queue name property specifies the name of the bus 

queue that is used to store and process messages for the JMS queue. 

g.   Click OK. 

h.   Save your changes to the master configuration.

 4.   Create a JMS activation specification to replace the Version 5.1 listener port. The JMS activation 

specification is used to deploy the MDB application as a J2EE Connector Architecture (JCA) 

1.5-compliant resource, as a listener on the JMS queue InQ. For example, use the Version 7.0 

administrative console to complete the following steps: 

a.   Display the collection list of JMS activation specifications for the default messaging provider. Click 

Resources  → JMS  → JMS  providers  → Default  messaging  provider  → [Additional  Properties]  

Activation  specifications. 

 

60 Migrating WebSphere applications



b.   Click New  

c.   On the New JMS activation specification page, set the following properties: 

 Name: PPAS 

Name: jms/SamplePPAS 

Destination JNDI Name: jms/SampleInputQueue
  

All other properties have default settings. 

d.   Click OK  This returns you to the collection list of JMS activation specifications. 

e.   Save your changes to the master configuration.

 5.   Save your changes to the master configuration. After replacing the Version 5.1 JMS resources with 

Version 7.0 equivalents, the MDB application scenario becomes as shown in the following figure: 

 

 6.   Redeploy the MDB application to use the JMS activation specification, as described in Deploying and 

managing applications. Ensure you select the Do  not  overwrite  existing  bindings  option. 

Accept the defaults for all installation steps except for the following: 

v   Delete the Listener Port binding 

v   Set the activation specification binding to jms/SamplePPAS.

 7.   Click OK. 

 8.   If no other Version 5.1 applications use the WebSphere MQ client link, delete it. 

a.   Display the list of WebSphere MQ client links for the messaging engine. Click Service  

integration  → Buses  → bus_name  → [Topology]  Messaging  engines  → engine_name  → 

[Additional  Properties]  WebSphere  MQ  client  links, where bus_name  is wasA  and 

engine_name  is wasA.server1-wasA. 

b.   Select the check box next to the link, Default.MQClientLink. 

c.   Click Delete  

d.   Click OK

 9.   Save your changes to the master configuration. 

Version 7 node wasA

JMS client
application

Messaging
engine

Bus
Q

InQ

Bus
Q

OutQ

JMS
Q

OutQ

JMS
Q

InQ

JMS
QCF

PPQCF

application server
server1

Service
integration
bus wasA

= Message flows

JMS
activationSpec

PPAS

MyMDB
application

JNDI

  

Figure  7. MDB  application  scenario  after  replacing  the  Version  5.1  JMS  resources  with  Version  7.0  JMS  resources.  

The  migrated  scenario  still  uses  the Version  5.1  JMS  resources,  but  equivalent  Version  7.0  resources  have  been  

created  for use  by the  MDB  application  when  it has  been  redeployed  as a JCA  1.5-compliant  resource  with  the  JMS  

activation  specification.  The  Version  7.0  resources  are:  a JMS  queue  connection  factory, PPQCF;  two  JMS  queues,  

InQ  and  OutQ;  and  a JMS  activation  specification,  PPAS.

 

Chapter 7. Messaging resources 61

friend.was/ae/trun_appl.html
friend.was/ae/trun_appl.html


10.   

Results 

You should now be able to use the MDB application with the Version 7.0 JMS resources. On the 

Enterprise Applications panel (Applications  → Application  Types  → WebSphere  enterprise  applications) 

ensure that the MDB application is started. There should be no errors displayed in the administrative 

console at this point. If there are any errors, check the SystemOut log for more information about the 

problem. 

 

62 Migrating WebSphere applications



Chapter  8.  Security  

Migrating, coexisting, and interoperating – Security considerations 

Use this topic to migrate the security configuration of previous WebSphere Application Server releases and 

its applications to the new installation of WebSphere Application Server. 

Before you begin 

This information addresses the need to migrate your security configurations from a previous release of 

IBM WebSphere Application Server to WebSphere Application Server 7.0 or later. Complete the following 

steps to migrate your security configurations: 

v    If security is enabled in the previous release, obtain the administrative server ID and password of the 

previous release. This information is needed in order to run certain migration jobs. 

v   You can optionally disable security in the previous release before migrating the installation. No logon is 

required during the installation.

Use the First steps wizard to access and run the Migration wizard. 

1.   Start the First steps wizard by launching the firststeps.bat  or the firststeps.sh  file. The first steps 

file is located in the following directory: 

v   

Linux
   

AIX
   

HP�UX
   

Solaris
   

UNIX
   

./app_server_root/profiles/profile_name/
firststeps/firststeps.sh  

v   

Windows
   

app_server_root\profiles\profile_name\firststeps\firststeps.bat

2.   On the First steps wizard panel, click Migration  wizard. 

3.   Follow the instructions provided in the First steps wizard to complete the migration.

Results 

The security configuration of previous WebSphere Application Server releases and its applications are 

migrated to the new installation of WebSphere Application Server Version 7.0. 

What to do next 

If a custom user registry is used in the previous version, the migration process does not migrate the class 

files that are used by the standalone custom registry in the previous app_server_root/classes  directory. 

Therefore, after migration, copy your custom user registry implementation classes to the 

app_server_root/classes  directory. 

If you upgrade from WebSphere Application Server, Version 5.x  to WebSphere Application Server Version 

7.0, the data that is associated with Version 5.x trust associations is not automatically migrated. To migrate 

trust associations, see “Migrating trust association interceptors” on page 70. 

Interoperating with previous product versions 

IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to 

configure this behavior. 

Before you begin 

The current release of the Application Server distinguishes the identities of the user who acts as an 

administrator, managing the Application Server environment, from the identity of the user that is used for 

authenticating between servers. In prior releases, the end user had to specify a server user ID and 

password as the user identity for authenticating between servers. In the current release of the Application 

Server, the server user ID is generated automatically and internally; however, the end user can specify that 

 

© Copyright IBM Corp. 2008 63



the server user ID and password not be automatically generated. This option is especially important in the 

case of a mixed-release cell, where the server user ID and password are specified in a down-level version 

of the Application Server. In such a scenario, the end user should opt out of automatically generating the 

server user ID and instead use the server user ID and password that is specified in the down-level version 

of the Application Server, in order to ensure backwards compatibility. 

Interoperability is achieved only when the Lightweight Third Party Authentication (LTPA) authentication 

mechanism and a distributed user registry is used such as Lightweight Directory Access Protocol (LDAP) 

or a distributed Custom user registry. LocalOS on most platforms is not considered a distributed user 

registry (except on z/OS® within the z/OS environment). Also, the Simple WebSphere Authentication 

Mechanism (SWAM) cannot be used for interoperability as it does not contain credentials that can be 

forwarded outside of the existing process.

Note:   SWAM was deprecated in WebSphere Application Server. Version 7.0 and will be removed in a 

future release. 

1.   Configure WebSphere Application Server Version 7.0 with the same distributed user registry (that is, 

LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user 

registry is shared by all of the product versions. 

a.   In the administrative console, select Security  > Global  security. 

b.   Choose an available Realm definition and click Configure. 

c.   Enter a Primary  administrative  user  name. This identity is the user with administrative privileges 

that is defined in your local operating system. If you are not using the local OS ad the user registry, 

select the Server  identity  that  is  stored  in  the  user  repository, enter the Server user ID, and the 

associated password. The user name is used to log on to the administrative console when 

administrative security is enabled. WebSphere Application Server Version 6.1 requires an 

administrative user that is distinct from the server user identity so that administrative actions can be 

audited.

Note:   In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required 

for both administrative access and internal process communication. When migrating to 

Version 7.0, this identity is used as the server user identity. You need to specify another 

user for the administrative user identity. 

d.   When interoperating with Version 6.0.x or previous versions, you must select the Server identity 

that is stored in the user repository. Enter the Server  user  id  and the associated Password.

2.   Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be 

disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from 

WebSphere Application Server Version 7.0 and import them into the previous release. 

a.   In the administrative console select Security  > Global  security. 

b.   From Authentication mechanisms and expiration, click LTPA. 

c.   Click the Key  set  groups  link , then click the key set group that displays in the Key set groups 

panel. 

d.   Clear the Automatically  generate  keys  check box. 

e.   Click OK, then click Authentication  mechanisms  and  expiration  in the path at the top of the Key 

set groups panel. 

f.   Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the 

LTPA keys when adding them to the file. 

g.   Enter the password again to confirm the password. 

h.   Enter the Fully  qualified  key  file  name  that contains the exported keys. 

i.   Click Export  keys. 

j.   Follow the instructions provided in the previous release to import the exported LTPA keys into that 

configuration.

 

64 Migrating WebSphere applications



3.   If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere 

Application Server Version 7.0 common trust store. Otherwise, extract signers where necessary to 

import them into the previous release. 

a.   In the administrative console, click Security  > SSL  certificate  and  key  management. 

b.   Click Key  stores  and  certificates. 

c.   Click NodeDefaultTrustStore. 

d.   Click Signer  certificates. 

e.   Select one signer and click Extract. 

f.   Enter a unique path and filename for the signer. For example, /tmp/signer1.arm. 

g.   Click OK. Repeat for all of the signers in the trust store. 

h.   Check other trust stores for other signers that might need to be shared with the other server. 

Repeat steps e through h to extract the other signers.

You can also import a signer certificate, which is also called a certificate authority (CA) certificate, from 

a truststore on a non-z/OS platform server to a z/OS keyring. the z/OS keyring contains the signer 

certificates that originated on the non-z/OS platform server. For more information, see 

4.   Add the exported signers to DummyServerTrustFile.jks  and DummyClientTrustFile.jks  in the /etc  

directory of the back-level product version. If the previous release is not using the dummy certificate, 

the signer certificate(s) from the previous release must be extracted and added into the WebSphere 

Application Server Version 7.0 release to enable SSL connectivity in both directions. 

a.   Open the key management utility, iKeyman, for that product version. 

b.   Start ikeyman.bat  or ikeyman.sh  from the ${USER_INSTALL_ROOT}/bin  directory. 

c.   Select Key  Database  File  >  Open. 

d.   Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks. 

e.   Enter WebAS for the password. 

f.   Select Add  and enter one of the files extracted in step 2. Continue until you have added all of the 

signers. 

g.   Repeat steps c through f for the DummyClientTrustFile.jks  file.

5.   Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and 

naming bootstrap port for performing a naming lookup. 

6.   Stop and restart all of the servers.

Interoperating with a C++ common object request broker architecture 

client 

WebSphere Application Server supports security in the CORBA C++ client to access-protected enterprise 

beans. If configured, C++ CORBA clients can access protected enterprise bean methods using a client 

certificate to achieve mutual authentication on WebSphere Application Server applications. 

About this task 

You can achieve interoperability of Security Authentication Service between the C++ Common Object 

Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure 

Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet 

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and 

transport layers. Among the three layers, transport authentication is conceptually simple, however, 

cryptographically based transport authentication is the strongest. WebSphere Application Server has 

implemented the transport authentication layer, so that C++ secure CORBA clients can use it effectively in 

making CORBA clients and protected enterprise bean resources work together. 

Security  authentication  from  non-Java  based  C++  client  to  enterprise  beans. WebSphere Application 

Server supports security in the CORBA C++ client to access-protected enterprise beans. If configured, 

 

Chapter 8. Security 65



C++ CORBA clients can access protected enterprise bean methods using a client certificate to achieve 

mutual authentication on WebSphere Application Server applications. 

To support the C++ CORBA client in accessing protected enterprise beans, complete the following steps: 

v   Create an environment file for the client, such as current.env. Set the variables presented in the 

following list in the file: 

 C++  security  setting  Description  

client_protocol_password Specifies the password for the user ID. 

client_protocol_user Specifies the user ID to authenticate at the target server. 

security_sslKeyring Specifies the name of the RACF® keyring for the client to 

use. The keyring must be defined under the user ID that 

is issuing the command to run the client.
  

v   Point to the environment file using the fully qualified path name through the WAS_CONFIG_FILE 

environment variable. For example, in the test.sh  test shell script, export: 

/WebSphere/V6R0M0/DeploymentManager/profiles/default/config/cells  

  /PLEX1Network/nodes/PLEX1Manager/servers/dmgr  

Some of the environment file terms are explained below: 

default  

profile name 

PLEX1Network  

cell name 

PLEX1Manager  

node name 

dmgr  server name

1.   Obtain a valid certificate to represent the client and export its public key to the target enterprise bean 

server. 

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate 

authority (CA) or create a self-signed certificate for testing purposes. 

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the 

personal certificate and save it in the .arm  format. 

2.   Prepare a truststore file for WebSphere Application Server. 

Add the extracted client public key in the .arm  file from the client to the server key truststore file. The 

server can now authenticate the client. 

Note:   This is done by invoking the Key Management Utility through ikeyman.bat  or ikeyman.sh  from 

WebSphere Application Server installation. 

3.   Configure WebSphere Application Server to support Secure Sockets Layer (SSL) as the authentication 

mechanism. 

a.   Start the administrative console. 

b.   Locate the application server that has the target enterprise bean deployed and configure it to use 

SSL client certificate authentication. 

If it is a base installation, complete the following steps: 

1)   Click Security  > Global  security. Under RMI/IIOP security, click CSIv2  inbound  

communications. Select Supported  for the Basic authentication and Client certificate 

authentication options. Leave the rest of the options as defaults. 

2)   Click OK. 

 

66 Migrating WebSphere applications



3)   Click Security  > Global  security. Under RMI/IIOP security, click CSIv2  inbound  

communications  and verify that the SSL-supported  option is selected under Transport. 

If it is a Network Deployment setting, complete the following steps: 

1)   Click Servers  > Application  Servers  > server_name_where_the_EJB_resides. 

2)   Under Security, click Server  security. 

3)   Select the RMI/IIOP  security  for  this  server  overrides  cell  settings  option. 

4)   Under Additional properties, click CSIv2  inbound  communications. 

5)   Select Supported  for the Basic authentication and Client certificate authentication options. 

Leave the rest of the options as defaults. 

6)   Click Servers  > Application  Servers  > server_name_where_the_EJB_resides. 

7)   Under Security, click Server  security. 

8)   Under Additional properties, click CSIv2  inbound  communications. 

9)   Verify that the SSL-Supported  option is selected.

c.   Restart the application server. 

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually 

authenticated server and client by using SSL in the transport layer.

4.   Configure the C++ CORBA client to use a certificate in performing the mutual authentication. 

Client users are accustomed to using property files in their applications because they are helpful in 

specifying configuration settings. The following list presents important C++ security settings: 

 C++ security  setting  Description  

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name. 

com.ibm.CORBA.securityEnabled=yes Enables security. 

com.ibm.CSI.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual authentication by 

certificate 

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB Specifies which key database file to use. 

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key database file. 

WebSphere Application Server supports a utility called 

PasswordEncode4cpp  to encode the plain password. 

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.
  

To use the property files in running a C++ client, an environment variable WASPROPS, is used to 

indicate where a property file or a list of property files exists. 

For the complete set of C++ client properties, see the sample property file scclient.props, which is 

shipped with the product located in the app_server_root/profiles/profile_name/etc directory.

Migrating custom user registries 

If you built your own custom user registry, consider the migration items listed below. If you have a custom 

user registry that was provided by a Security Solution Provider, you must contact that provider to ensure 

that you have the correct version of their custom user registry to support WebSphere Application Server. 

Before you begin 

In WebSphere Application Server, in addition to the UserRegistry interface, the custom user registry 

requires the Result object to handle user and group information. This file is already provided in the 

package and you are expected to use it for the getUsers, getGroups, and the getUsersForGroup methods. 

You cannot use other WebSphere Application Server components, for example, data sources, to initialize 

the custom registry because other components, like the containers, are initialized after security and are not 

available during the registry initialization. A custom registry implementation is a pure custom 

implementation, independent of other WebSphere Application Server components. 

 

Chapter 8. Security 67



The getCallerPrincipal enterprise bean method and the getUserPrincipal and getRemoteUser servlet 

methods return the security name instead of the display name. For more information, see the API 

documentation. 

If the migration tool is used to migrate the WebSphere Application Server Version 5 configuration to 

WebSphere Application Server Version 6.0.x and later, this migration does not change your existing code. 

Because the WebSphere Application Server Version 5 custom registry works in WebSphere Application 

Server Version 6.0.x and later without any changes to the implementation, except when using data 

sources, you can use the Version 5-based custom registry after the migration without modifying the code. 

In WebSphere Application Server Version 6.0.x and later, a case-insensitive authorization can occur when 

using an enabled custom user registry. 

Setting this flag does not have any effect on the user names or passwords. Only the unique IDs that are 

returned from the registry are changed to lower-case before comparing them with the information in the 

authorization table, which is also converted to lowercase during runtime. 

Before proceeding, look at the UserRegistry interface. See Developing standalone custom registries for a 

description of each of these methods in detail. 

About this task 

The following steps go through all the changes that are required to move your WebSphere Application 

Server Version 4.x  custom user registry that implemented the old 

com.ibm.websphere.security.CustomRegistry interface to the com.ibm.websphere.security.UserRegistry 

interface. 

Note:   The sample implementation file is used as an example  when describing the following steps. 

 1.   Change your implementation to UserRegistry  instead of CustomRegistry. Change: 

public  class  FileRegistrySample  implements  CustomRegistry  

to: 

public  class  FileRegistrySample  implements  UserRegistry  

 2.   Create the java.rmi.RemoteException exception in the constructors: 

public  FileRegistrySample()  throws  java.rmi.RemoteException  

 3.   Change the mapCertificate method to take a certificate chain instead of a single certificate. Change 

public  String  mapCertificate(X509Certificate  cert)  

to: 

public  String  mapCertificate(X509Certificate[]cert)  

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you 

are interested only in the first certificate, take the first certificate in the chain before processing. In 

WebSphere Application Server Version 6.0.x and later, the mapCertificate method is called to map the 

user in a certificate to a valid user in the registry when certificates are used for authentication by the 

Web or the Java clients. 

 4.   Remove the getUsers method. 

 5.   Change the signature of the getUsers(String) method to return a Result object and accept an 

additional parameter (int). Change: 

public  List  getUsers(String  pattern)  

to: 

public  Result  getUsers(String  pattern,  int  limit)  

 

68 Migrating WebSphere applications



In your implementation, construct the Result object from the list of the users that is obtained from the 

user registry (whose number is limited to the value of the limit parameter) and call the setHasMore 

method on the Result object if the total number of users in the registry exceeds the limit value. 

 6.   Change the signature of the getUsersForGroup(String) method to return a Result object and accept 

an additional parameter (int) and throw a new exception called NotImplementedException exception. 

Change the following code: 

public  List  getUsersForGroup(String  groupName)  

          throws  CustomRegistryException,  

                 EntryNotFoundException  { 

to: 

public  Result  getUsersForGroup(String  groupSecurityName,  int  limit)  

          throws  NotImplementedException,  

                 EntryNotFoundException,  

                 CustomRegistryException  { 

In WebSphere Application Server Version 6.0.x and later, this method is not called directly by the 

WebSphere Application Server security component. However, other components of WebSphere 

Application Server, like the WebSphere Business Integration Server Foundation process 

choreographer, use this method when staff assignments are modeled using groups. Because this 

implementation is supported in WebSphere Application Server Version 6.0.x and later, it is 

recommended that you change the implementation similar to the getUsers method as explained in 

step 5. 

 7.   Remove the getUniqueUserIds(String) method. 

 8.   Remove the getGroups method. 

 9.   Change the signature of the getGroups(String) method to return a Result object and accept an 

additional parameter (int). Change the following code: 

public  List  getGroups(String  pattern)  

to: 

public  Result  getGroups(String  pattern,  int  limit)  

In your implementation, construct the Result object from the list of the groups that is obtained from 

the user registry whose number is limited to the value of the limit parameter. Call the setHasMore 

method on the Result object if the total number of groups in the registry exceeds the limit value. 

10.   Add the createCredential method. This method is not called at this time, so return as null. 

public  com.ibm.websphere.security.cred.WSCredential  

   createCredential(String  userSecurityName)  

         throws  CustomRegistryException,  

                NotImplementedException,  

                EntryNotFoundException  { 

         return  null;  

   } 

The first and second lines of the previous code example are split onto two lines for illustrative 

purposes only. 

11.   To build the WebSphere Application Server Version 6.0.x and later implementation, make sure you 

have the com.ibm.ws.runtime.jar  file in your class path. 

To set the files in your class path, use the following code as a sample and substitute your 

environment values for the variables that are used in the example: 

app_server_root/java/bin/javac  -classpath  

app_server_root/plugins/com.ibm.ws.runtime.jar   FileRegistrySample.java  

Type the previous lines as one continuous line. 

To build the WebSphere Application Server Version 5 custom registry (CustomRegistry) in WebSphere 

Application Server Version 6.0.x and later, only the com.ibm.ws.runtime.jar  file is required. 

12.   Copy the implementation classes to the product class path. 

 

Chapter 8. Security 69



The %install_root%/lib/ext  directory is the preferred location. 

13.   Use the administrative console to set up the custom registry. 

Follow the instructions in Configuring standalone custom registries to set up the custom registry, 

including the Ignore  case  for  authorization  option. Make sure that you add the 

WAS_UseDisplayName properties if required.

Results 

WebSphere Application Server Version 4.x  based custom user registry that implemented the old 

com.ibm.websphere.security.CustomRegistry interface is migrated to the 

com.ibm.websphere.security.UserRegistry interface. 

What to do next 

If you are enabling security, see Enabling security to complete the remaining steps. When completed, save 

the configuration and restart all the servers. Try accessing some Java Platform, Enterprise Edition (Java 

EE) resources to verify that the custom registry migration is successful. 

Migrating trust association interceptors 

Use this topic to manually migrate trust associations. 

Before you begin 

Note:   Data sources are not supported for use within a Trust Association Interceptor (TAI). Data sources 

are intended for use within J2EE applications and designed to operate within the EJB and Web 

containers. Trust Association Interceptors do not run within a container, and while data sources may 

function in the TAI environment, they are untested and not guaranteed to function properly. 

The following topics are addressed in this document: 

v   Changes to the product-provided trust association interceptors 

v   Migrating product-provided trust association interceptors 

v   Changes to the custom trust association interceptors 

v   Migrating custom trust association interceptors

Changes  to  the  product-provided  trust  association  interceptors  

For the product-provided implementation for the WebSEAL server, a new optional 

com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true  or yes, 

the implementation does not check for the proxy host names and the proxy ports to match any of the host 

names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the 

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains 

the following information: 

HTTP/1.1  Fred  (Proxy),  1.1  Sam  (Apache/1.1),  

HTTP/1.1  webseal1:7002,  1.1  webseal2:7001  

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true  or yes, the host name 

Fred, is not used when matching the host names. By default, this property is not set, which implies that 

any proxy host names and ports that are expected in the VIA header are listed in the host names and the 

ports properties to satisfy the isTargetInterceptor method. 

The previous VIA header information was split onto two lines for illustrative purposes only. 

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article 

in the information center on configuring single signon using trust association interceptor ++. 

 

70 Migrating WebSphere applications



Migrating  product-provided  trust  association  interceptors  

The properties that are located in the webseal.properties  and trustedserver.properties  files are not 

migrated from previous versions of WebSphere Application Server. You must migrate the appropriate 

properties to WebSphere Application Server Version 6.0.x using the trust association panels in the 

administrative console. For more information, see Configuring trust association interceptors. 

Changes  to  the  custom  trust  association  interceptors  

If the custom interceptor extends the 

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor property, implement the following 

new method to initialize the interceptor: 

public  int  init  (java.util.Properties  props);  

WebSphere Application Server checks the return status before using the trust association implementation. 

Zero (0) is the default value for indicating that the interceptor is successfully initialized. 

However, if a previous implementation of the trust association interceptor returns a different error status, 

you can either change your implementation to match the expectations or make one of the following 

changes: 

Method  1:  

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association 

interceptor custom properties. Set the property to the value that indicates the interceptor is 

successfully initialized. All of the other possible values imply failure. In case of failure, the 

corresponding trust association interceptor is not used. 

Method  2:  

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust 

association interceptor custom properties. Set the value of this property to true, which tells 

WebSphere Application Server to ignore the status of this method. If you add this property to the 

custom properties, WebSphere Application Server does not check the return status, which is 

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method. 

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that 

is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method. 

The interceptor can then use these properties to initialize itself. For example, in the product-provided 

implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming 

in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the 

interceptor initialization is successful. Any other value implies that the initialization is not successful and 

the interceptor is not used. 

The init(String) method still works if you want to use it instead of implementing the init(Properties) method. 

The only requirement is that you enter the file name containing the custom trust association properties 

using the Custom  Properties  link of the interceptor in the administrative console or by using scripts. You 

can enter the property using either of the following methods. The first method is used for backward 

compatibility with previous versions of WebSphere Application Server. 

Method  1:  

The same property names used in the previous release are used to obtain the file name. The file 

name is obtained by concatenating .config  to the 

com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties  file is 

located in the app_server_root/properties  directory, set the following properties: 

v   com.ibm.websphere.security.trustassociation.types  = myTAItype  

v   com.ibm.websphere.security.trustassociation.myTAItype.config  = app_server_root/
properties/myTAI.properties

 

Chapter 8. Security 71



Method  2:  

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust 

association custom properties to the location of the file. For example, set the following property: 

com.ibm.websphere.security.trustassociation.initPropsFile=  

app_server_root/properties/myTAI.properties  

The previous line of code is split into two lines for illustrative purposes only. Type as one 

continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties) 

method instead of relying on the init (String propsfile) method. 

Migrating  custom  trust  association  interceptors  

The trust associations from previous versions of WebSphere Application Server are not automatically 

migrated to WebSphere Application Server Version 6.0.x and later. You can manually migrate these trust 

associations using the following steps: 

1.   Recompile the implementation file, if necessary. 

For more information, refer to the ″Changes to the custom trust association interceptors″ section 

previously discussed in this document. 

To recompile the implementation file, type the following code: 

%WAS_HOME%/java/bin/javac  -classpath  %WAS_HOME%/plugins/com.ibm.ws.runtime.jar;  

%WAS_HOME%/lib/j2ee.jar  your_implementation_file.java 

The previous line of code is broken into two lines for illustrative purposes only. Type the code as one 

continuous line. 

2.   Copy the custom trust association interceptor class files to a location in your product class path. Copy 

these class files into the %WAS_HOME%/lib/ext  directory. 

3.   Start WebSphere Application Server. 

4.   Enable security to use the trust association interceptor. The properties that are located in your custom 

trust association properties file and in the trustedserver.properties  file are not migrated from 

previous versions of WebSphere Application Server. You must migrate the appropriate properties to 

WebSphere Application Server Version 6.0.x and later using the trust association panels in the 

administrative console. 

For more information, see Configuring trust association interceptors.

Migrating Common Object Request Broker Architecture programmatic 

login to Java Authentication and Authorization Service (CORBA and 

JAAS) 

Use this topic as an example of how to perform programmatic login using the CORBA-based 

programmatic login APIs. 

Before you begin 

This document outlines the deprecated Common Object Request Broker Architecture (CORBA) 

programmatic login APIs and the alternatives that are provided by JAAS. WebSphere Application Server 

fully supports the Java Authentication and Authorization Service (JAAS) as programmatic login application 

programming interfaces (API). Refer to the Securing  applications  and  their  environment  PDF for more 

details on JAAS support. 

The following list includes the deprecated CORBA programmatic login APIs. 

v   ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
LoginHelper.java. 

 

72 Migrating WebSphere applications



v   ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator.java. 

v   org.omg.SecurityLevel2.Credentials. This API is included with the product, but it is not recommended 

that you use the API.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs 

and a product implementation of standard JAAS interfaces. 

The following information is only a summary; refer to the JAAS documentation for your platform located at: 

http://www.ibm.com/developerworks/java/jdk/security/ . 

v   Programmatic login APIs: 

–   javax.security.auth.login.LoginContext 

–   javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product 

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface: 

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl  

Provides a non-prompt CallbackHandler handler when the application pushes basic 

authentication data (user ID, password, and security realm) or token data to product login 

modules. This API is recommended for server-side login. 

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl  

Provides a login prompt CallbackHandler handler to gather basic authentication data (user 

ID, password, and security realm). This API is recommended for client-side login. 

 If this API is used on the server side, the server is blocked for input.
–   javax.security.auth.callback.Callback interface: 

javax.security.auth.callback.NameCallback  

Provided by JAAS to pass the user name to the LoginModules interface. 

javax.security.auth.callback.PasswordCallback  

Provided by JAAS to pass the password to the LoginModules interface. 

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl  

Provided by the product to perform a token-based login. With this API, an application can 

pass a token-byte array to the LoginModules interface.
–   javax.security.auth.spi.LoginModule  interface  

WebSphere Application Server provides a LoginModules implementation for client and server-side 

login. Refer to the Securing  applications  and  their  environment  PDF for details.
v    javax.security.Subject: 

com.ibm.websphere.security.auth.WSSubject  

An extension provided by the product to invoke remote J2EE resources using the credentials in 

the javax.security.Subject 

com.ibm.websphere.security.cred.WSCredential  

After a successful JAAS login with the WebSphere Application Server LoginModules interfaces, 

a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the 

Subject. 

com.ibm.websphere.security.auth.WSPrincipal  

An authenticated principal that is created and stored in a Subject that is authenticated by the 

WebSphere Application Server LoginModules interface.

1.   Use the following as an example of how to perform programmatic login using the CORBA-based 

programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login. 

Note:   The LoginHelper application programming interface (API) that is used in the following example 

is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future 

release. It is recommended that you use the JAAS programmatic login APIs that are shown in 

the next step.
public class TestClient { 

... 

private void performLogin() { 

// Get the ID and password of the user. 

String userid = customGetUserid();

 

Chapter 8. Security 73

http://www.ibm.com/developerworks/java/jdk/security/


String password = customGetPassword(); 

  

// Create a new security context to hold authentication data. 

LoginHelper loginHelper = new LoginHelper(); 

try { 

// Provide the ID and password of the user for authentication. 

org.omg.SecurityLevel2.Credentials credentials = 

loginHelper.login(userid, password); 

  

// Use the new credentials for all future invocations. 

loginHelper.setInvocationCredentials(credentials); 

// Retrieve the name of the user from the credentials 

// so we can tell the user that login succeeded. 

  

String username = loginHelper.getUserName(credentials); 

System.out.println("Security context set for user: "+username); 

} catch (org.omg.SecurityLevel2.LoginFailed e) { 

// Handle the LoginFailed exception. 

} 

} 

... 

} 

2.   Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS 

programmatic login APIs. 

The following example assumes that the application code is granted for the required Java 2 security 

permissions. For more information, see the Securing  applications  and  their  environment  PDF and the 

JAAS documentation located at http://www.ibm.com/developerworks/java/jdk/security/. 

public class TestClient { 

... 

private void performLogin() { 

// Create a new JAAS LoginContext. 

javax.security.auth.login.LoginContext lc = null; 

  

try { 

// Use GUI prompt to gather the BasicAuth data. 

lc = new javax.security.auth.login.LoginContext("WSLogin", 

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl()); 

  

// create a LoginContext and specify a CallbackHandler implementation 

// CallbackHandler implementation determine how authentication data is collected 

// in this case, the authentication date is collected by  login prompt 

//   and pass to the authentication mechanism implemented by the LoginModule. 

} catch (javax.security.auth.login.LoginException e) { 

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: " 

+ e.getMessage()); 

e.printStackTrace(); 

  

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted 

//   to the application, or the JAAS Login Configuration is not defined. 

} 

  

if (lc != null) 

try { 

lc.login();  // perform login 

javax.security.auth.Subject s = lc.getSubject(); 

// get the authenticated subject 

  

// Invoke a J2EE resources using the authenticated subject 

com.ibm.websphere.security.auth.WSSubject.doAs(s, 

new java.security.PrivilegedAction() { 

public Object run() { 

try { 

bankAccount.deposit(100.00);  // where bankAccount is an protected EJB 

} catch (Exception e) { 

System.out.println("ERROR: error while accessing EJB resource, exception: " 

+ e.getMessage()); 

e.printStackTrace(); 

} 

return null; 

} 

} 

);

 

74 Migrating WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/


// Retrieve the name of the principal from the Subject 

// so we can tell the user that login succeeded, 

// should only be one WSPrincipal. 

java.util.Set ps = 

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class); 

java.util.Iterator it = ps.iterator(); 

while (it.hasNext()) { 

com.ibm.websphere.security.auth.WSPrincipal p = 

(com.ibm.websphere.security.auth.WSPrincipal) it.next(); 

System.out.println("Principal: " + p.getName()); 

} 

} catch (javax.security.auth.login.LoginException e) { 

System.err.println("ERROR: login failed with exception: " + e.getMessage()); 

e.printStackTrace(); 

  

// login failed, might want to provide relogin logic 

} 

} 

... 

} 

Migrating from the CustomLoginServlet class to servlet filters 

Use this topic to allow migration in an application that uses form-based login and servlet filters without the 

use of the CustomLoginServlet class. 

Before you begin 

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those 

applications using the CustomLoginServlet class to perform authentication now need to use form-based 

login. Using the form-based login mechanism, you can control the look and feel of the login screen. In 

form-based login, a login page is specified and displays when retrieving the user ID and password 

information. You also can specify an error page that displays when authentication fails. 

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters. 

Servlet filters can dynamically intercept requests and responses to transform or use the information that is 

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of 

servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached 

servlet filters are called before invoking the servlet. 

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web 

container. A form login servlet performs the authentication and servlet filters can perform additional 

authentication, auditing, or logging tasks. 

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either 

form login page or for /j_security_check URL. The j_security_check is posted by the form login page with 

the j_username parameter that contains the user name and the j_password parameter that contains the 

password. A servlet filter can use user name and password information to perform more authentication or 

meet other special needs. 

1.   Develop a form login page and error page for the application. 

Refer to the Securing  applications  and  their  environment  PDF for details. 

2.   Configure the form login page and the error page for the application as described in . 

Refer to the Securing  applications  and  their  environment  PDF for details. 

3.   Develop servlet filters if additional processing is required before and after form login authentication. 

Refer to the Securing  applications  and  their  environment  PDF for details. 

4.   Configure the servlet filters that are developed in the previous step for either the form login page URL 

or for the /j_security_check URL. Use an assembly tool or development tools like Rational® Application 

Developer to configure filters. After configuring the servlet filters, the web-xml  file contains two stanzas. 

 

Chapter 8. Security 75



The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class. 

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL. 

For more information, see the Securing  applications  and  their  environment  PDF.

Results 

This migration results in an application that uses form-based login and servlet filters without the use of the 

CustomLoginServlet class. 

What to do next 

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class. 

Servlet filters also are used to perform additional authentication, auditing, and logging. 

Migrating Java 2 security policy 

Use this topic for guidance pertaining to migrating Java 2 security policy. 

About this task 

Previous  WebSphere  Application  Server  releases  

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent 

enterprise applications from calling the System.exit and the System.setSecurityManager methods. These 

two Java application programming interfaces (API) have undesirable consequences if called by enterprise 

applications. The System.exit API, for example, causes the Java virtual machine (application server 

process) to exit prematurely, which is not a beneficial operation for an application server. 

To support Java 2 security properly, all the server runtime must be marked as privileged  (with 

doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy. 

Application code is not privileged and subject to the permissions that are defined in the policy files. The 

doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the 

application code must be granted the permissions that are required by the server runtime. This situation is 

due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the 

Java 2 security check permission algorithm. 

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere 

Application Server: 

v    java.lang.RuntimePermission(exitVM) 

v   java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy. 

However, the server runtime is granted these permissions. All the other permission checks are not 

enforced. 

Only two permissions are supported: 

v   java.net.SocketPermission 

v   java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the 

application code all the other permissions besides the two listed previously or the enterprise application 

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal. 

What  changed  

 

76 Migrating WebSphere applications



Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are 

enforced. The default Java 2 security policy for an enterprise application is the recommended permission 

set defined by the Java Platform, Enterprise Edition (Java EE) Version 1.4 specification. Refer to the 

profile_root/config/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security 

policy that is granted to enterprise applications. This policy is a much more stringent compared to previous 

releases. 

All policy is declarative. The product security manager honors all policy that is declared in the policy files. 

There is an exception to this rule: enterprise applications are denied access to permissions that are 

declared in the profile_root/config/cells/cell_name/filter.policy  file. 

Note:   The default Java 2 security policy for enterprise applications is much more stringent and all the 

permissions are enforced in WebSphere Application Server Version 6.0.x and later. The security 

policy might fail because the application code does not have the necessary permissions granted 

where system resources, such as file I/O, can be programmatically accessed and are now subject 

to the permission checking. 

In application code, do not use the setSecurityManager permission to set a security manager. When an 

application uses the setSecurityManager permission, there is a conflict with the internal security manager 

within WebSphere Application Server. If you must set a security manager in an application for RMI 

purposes, you also must enable the Use  Java  2 security  to  restrict  application  access  to  local  

resources  option on the Global security page within the WebSphere Application Server administrative 

console. WebSphere Application Server then registers a security manager. The application code can verify 

that this security manager is registered by using System.getSecurityManager() application programming 

interface (API). 

Migrating  system  properties  

The following system properties are used in previous releases in relation to Java 2 security: 

v   java.security.policy. The absolute path of the policy file (action required). This system property 

contains both system permissions (permissions granted to the Java virtual machine (JVM) and the 

product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the 

enterprise application to WebSphere Application Server Version 6.0.x. For Java 2 security policy 

migration, see the steps for migrating Java 2 security policy. 

v   enableJava2Security. Used to enable Java 2 security enforcement (no action required). This system 

property is deprecated; a flag in the WebSphere configuration application programming interface (API) is 

used to control whether to enable Java 2 security. Enable this option through the administrative console. 

v   was.home. Expanded to the installation directory of WebSphere Application Server (action might be 

required). This system property is deprecated; superseded by the ${user.install.root} and 

${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is 

used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere 

Application Server or the Network Deployment environments. See the steps for migrating Java 2 

security policy.

Migrating  the  Java  2 Security  Policy  

No easy way exists to migrate the Java policy file to WebSphere Application Server Version 6.0.x and later 

automatically because of a mixture of system permissions and application permissions in the same policy 

file. Manually copy the Java 2 security policy for enterprise applications to a was.policy  or app.policy  file. 

However, migrating the Java 2 security policy to a was.policy  file is preferable because symbols or 

relative code base is used instead of an absolute code base. This process has many advantages. Grant 

the permissions that are defined in the was.policy  to the specific enterprise application only, while 

permissions in the app.policy  file apply to all the enterprise applications that run on the node where the 

app.policy  file belongs. 

Refer to the Securing  applications  and  their  environment  PDF for more details on policy management. 

 

Chapter 8. Security 77



The following example illustrates the migration of a Java 2 security policy from a previous release. The 

contents include the Java 2 security policy file for the app1.ear  enterprise application and the system 

permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product 

server runtime. 

The default location for the Java 2 security policy file is profile_root/properties/java.policy. Default 

permissions are omitted for clarity: 

// For product Samples 

   grant codeBase "file:${app_server_root}/installedApps/app1.ear/-" { 

     permission java.security.SecurityPermission "printIdentity"; 

     permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt", 

       "read"; 

   }; 

For clarity of illustration, all the permissions are migrated as the application level permissions in this 

example. However, you can grant permissions at a more granular level at the component level (Web, 

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to 

a particular component. 

1.   Ensure that Java 2 security is disabled on the application server. 

2.   Create a new was.policy  file, if the file is not present, or update the was.policy  file for migrated 

applications in the configuration repository with the following contents: 

grant  codeBase  "file:${application}"  { 

     permission  java.security.SecurityPermission  "printIdentity";  

     permission  java.io.FilePermission  " 

             ${user.install.root}${/}temp${/}somefile.txt",  "read";  

   };  

The third and fourth lines in the previous code sample are presented on two lines for illustrative 

purposes only. 

The was.policy  file is located in the profile_root/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/  directory. 

3.   Use an assembly tool to attach the was.policy  file to the enterprise archive (EAR) file. 

You also can use an assembly tool to validate the contents of the was.policy  file. For more 

information, see the Securing  applications  and  their  environment  PDF. 

4.   Validate that the enterprise application does not require additional permissions to the migrated Java 2 

security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy  file. This validation requires code review, code 

inspection, application documentation review, and sandbox testing of migrated enterprise applications 

with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by 

Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party 

libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that 

the application is granted all the required permissions, or it might fail to run when Java 2 security is 

enabled. 

5.   Perform preproduction testing of the migrated enterprise application with Java 2 security enabled. 

Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing 

environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled. 

This trace function can be helpful in debugging the AccessControlException exception that is created 

when an application is not granted the required permission or some system code is not properly 

marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes 

on the call stack when the exception is created. 

For more information, see the Securing  applications  and  their  environment  PDF.

Note:   Because the Java 2 security policy is much more stringent compared with previous releases, 

the administrator or deployer must review their enterprise applications to see if extra 

 

78 Migrating WebSphere applications



permissions are required before enabling Java 2 security. If the enterprise applications are not 

granted the required permissions, they fail to run.

Migrating with Tivoli  Access Manager for authentication enabled 

When Tivoli® Access Manager security is configured for your existing environment and security is enabled, 

you can migrate to WebSphere Application Server, Version 7.0. 

Before you begin 

Your profiles must be migrated using the migration tools to migrate product configurations. 

Note:   Do not restart the WebSphere Application Server Version 7.0 server until after performing the 

following procedure. The migration tools omit some files that enable the server to start correctly. 

About this task 

After migrating your profiles additional steps are required when Tivoli Access Manager security is 

configured. 

1.   Copy the following files from the existing directory to the same directory for Version 7.0. 

%WAS_HOME%\java\jre\PDPerm.properties  

%WAS_HOME%\java\jre\lib\security\PdPerm.ks  

%WAS_HOME%\java\jre\PolicyDirector\PDCA.ks  

2.   Edit the PD.properties  file, and change the following configuration settings: 

appsvr-plcysvrs=null\:0:\:1  

config_type=standalone  

Make the appropriate changes to point to your Tivoli Access Manager Policy Server, for example: 

appsvr-plcysvrs=pdmgrd.test.gc.au.ibm.com\:7135\:1  

config_type=full  

3.   Edit the PdPerm.properties  file, and change all path names to the correct path name. Change the 

following configuration settings: 

pdvar-home=C\:\\Program  

Files\\WebSphere\\AppServer\\java\\jre\\PolicyDirector  

baseGroup.PDJv1dugong-v2dugongMessageFileHandler.fileName=C\:\\Program  

Files\\WebSphere\\AppServer\\java\\jre\\PolicyDirector\\log/msg__v1dugong-v2dugong.log  

  

pdcert-url=file\:/c\:/progra~1/WebSphere/AppServer/java/jre/lib/security/PdPerm.ks  

  

baseGroup.PDJv1dugong-v2dugongTraceFileHandler.fileName=C\:\\Program  

Files\\WebSphere\\AppServer\\java\\jre\\PolicyDirector\\log/trace__v1dugong-v2dugong.log  

  

pd-home=C\:\\Program  Files\\WebSphere\\AppServer\\java\\jre\\PolicyDirector  

  

java-home=C\:\\Program  Files\\WebSphere\\AppServer\\java\\jre  

Enabling embedded Tivoli  Access Manager 

Embedded Tivoli Access Manager is not enabled by default, and you need to configure it for use. 

About this task 

Enabling Tivoli Access Manager security within WebSphere Application Server requires: 

v   A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This 

user registry contains the user and group information for both Tivoli Access Manager and WebSphere 

Application Server. 

 

Chapter 8. Security 79



v   Tivoli Access Manager server exists and is configured to use the user registry. For details on the 

installation and configuration of Tivoli Access Manager, refer to the IBM Tivoli Access Manager for 

e-business information center. 

Note:   WebSphere Application Server contains an embedded client for Tivoli Access Manager. To use 

Tivoli Access Manager, you must also configure the Tivoli Access Manager server. 

However, the server version must be the same version or later as the client version. For 

information on the supported version of Tivoli Access Manager, see WebSphere Application 

Server - Supported Prerequisites. 

v   WebSphere Application Server is installed either in a single server model or as WebSphere Application 

Server Network Deployment. 

v   When administrative security is configured with a Federal Information Processing Standard (FIPS) 

provider, the Tivoli Access Manager server must be configured for FIPS as well

Complete the following steps to enable embedded Tivoli Access Manager security: 

1.   Create the security administrative user. 

For more information, see the Securing  applications  and  their  environment  PDF. 

2.   Configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager . 

For more information, see the Securing  applications  and  their  environment  PDF. 

3.   Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must 

configure LDAP as the user registry. 

For more information, see the Securing  applications  and  their  environment  PDF. 

4.   Enable the JACC provider for Tivoli Access Manager. 

For more information, see the Securing  applications  and  their  environment  PDF.

Propagating security policy of installed applications to a JACC 

provider using wsadmin scripting 

It is possible that you have applications installed prior to enabling the Java Authorization Contract for 

Containers (JACC)-based authorization. You can start with default authorization and then move to an 

external provider-based authorization using JACC later. 

Before you begin 

Note:   Use the wsadmin tool to propagate information to the JACC provider independent of the application 

installation process, avoiding the need to reinstall applications. Also, during application installation 

or modification you might have had problems propagating the security policy information to the 

JACC provider. For example, network problems might occur, the JACC provider might not be 

available, and so on. For these cases, the security policy of the previously installed applications 

does not exist in the JACC provider to make the access decisions. One choice is to reinstall the 

applications involved. However, you can avoid reinstalling by using the wsadmin scripting tool. Use 

this tool to propagate information to the JACC provider independent of the application installation 

process. The tool eliminates the need for reinstalling the applications. 

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor 

of any installed application to the JACC provider. You can invoke this tool using wsadmin at the base 

application server for base and deployment manager level for Network Deployment. Note that the 

SecurityAdmin MBean is available only when the server is running. 

Use propagatePolicyToJACCProvider{-appNames  appNames}  to propagate the policy information in the 

deployment descriptor or annotations of the enterprise archive (EAR) files to the JACC provider. If the 

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the 

 

80 Migrating WebSphere applications

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm


authorization table information in the binding file of the EAR files is also propagated to the provider. See 

the Securing  applications  and  their  environment  PDF for more information about these interfaces. 

The appNames  String  contains the list of application names, delimited by a colon (:), whose policy 

information must be stored in the provider. If appNames is not present, the policy information of all the 

deployed applications is propagated to the provider. 

Also, be aware of the following items: 

v   Before migrating applications to the Tivoli Access Manager JACC provider, create or import the users 

and groups that are in the applications to Tivoli Access Manager. 

v   Depending on the application or the number of applications that are propagated, you might have to 

increase the request time-out period either in the soap.client.props  file in the directory 

profile_root/properties  (if using SOAP) or in the sas.client.props  file (if using RMI) for the 

command to complete. You can set the request time-out value to 0 to avoid the timeout problem, and 

change it back to the original value after the command is run.

1.   Configure your JACC provider in WebSphere Application Server. 

See the Securing  applications  and  their  environment  PDF for more information. 

2.   Restart the server. 

3.   Enter the following commands: 

wsadmin>$AdminTask  propagatePolicyToJACCProvider  {-appNames  appNames}  

JACCUtilityCommands command group for the AdminTask  object 

Use this topic as a reference for the commands for the JACCUtilityCommands group for the AdminTask 

object. Use these commands to determine whether Java Authorization Contract for Containers (JACC) is 

enabled and whether the runtime uses a single security domain. You can also use these commands to 

propagate the security policies for application to the JACC provider. 

The following commands are available for the JACCUtilityCommands group of the AdminTask object. 

v   “isJACCEnabled” 

v   “isSingleSecurityDomain” on page 82 

v   “propagatePolicyToJACCProvider ” on page 82

isJACCEnabled 

The isJACCEnabled command displays whether JACC is enabled or disabled in the global security domain 

when the server was started. The command does not indicate dynamic changes. Instead, it displays the 

JACC status at server startup. 

Target object 

None. 

Required parameters 

None. 

Return value 

The command returns true  if JACC is enabled. The command returns false  if JACC is disabled. 

Batch mode example usage 

Using Jython string: 

 

Chapter 8. Security 81



AdminTask.isJACCEnabled() 

Interactive mode example usage 

Using Jython: 

AdminTask.isJACCEnabled(’-interactive’) 

isSingleSecurityDomain 

The isSingleSecurityDomain command displays whether the environment is configured to use a single 

security domain when the server was started. The command does not indicate dynamic changes. Instead, 

it displays the security domain status at server startup. 

Target object 

None. 

Required parameters 

None. 

Return value 

The command returns true  if the environment uses a single security domain. The command returns the 

false  string if the environment uses multiple security domains. 

Batch mode example usage 

Using Jython: 

AdminTask.isSingleSecurityDomain() 

Interactive mode example usage 

Using Jython: 

AdminTask.isSingleSecurityDomain(’-interactive’) 

propagatePolicyToJACCProvider 

The propagatePolicyToJACCProvider command propagates the security policies of the applications of 

interest to the JACC provider. This command is supported in a single security domain environment only. 

Target object 

None. 

Required parameters 

None. 

Optional parameters 

-appNames  

Specifies a list of application names delimited with a colon character (:). (String, optional) 

 The command uses all applications if you do not specify a value for this parameter, as the following 

syntax demonstrates: AdminTask.propagatePolicyToJACCProvider()

 

82 Migrating WebSphere applications



Return value 

The command does not return output. 

Batch mode example usage 

Using Jython string: 

AdminTask.propagatePolicyToJACCProvider (’–appNames "app1:app2:app3"’) 

Using Jython list: 

AdminTask.propagatePolicyToJACCProvider (’–appNames’, ’"app1:app2:app3"’) 

Interactive mode example usage 

Using Jython: 

AdminTask.propagatePolicyToJACCProvider (’-interactive’) 

 

Chapter 8. Security 83



84 Migrating WebSphere applications



Chapter  9.  Naming  and  directory  

Migrating to Java Platform, Standard Edition (Java SE) 6 

This product version supports the Java Platform, Standard Edition (Java SE) 6 specification. Its Java 

virtual machine provides a Java language compiler and runtime environment. Decide whether your new 

and existing applications will take advantage of the capabilities added by Java SE 6, adjust the just-in-time 

(JIT) mode if necessary, and begin the transition from deprecated functions. 

About this task 

The following JSRs are new in Java SE 6: 

v   JSR 105: XML Digital Signature Application Programming Interfaces (APIs) 

v   JSR 173: Streaming API for XML (StAX) 

v   JSR 181: Web Services Metadata 

v   JSR 199: Java Compiler API 

v   JSR 202: Java Class-File Specification Update 

v   JSR 221: Java DataBase Connectivity (JDBC) 4.0 

v   JSR 222: Java Architecture for XML Binding (JAXB) 2.0 

v   JSR 223: Scripting for the Java Platform 

v   JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0 

v   JSR 250: Common Annotations 

v   JSR 269: Pluggable Annotation-Processing API

The new virtual machine specification adds several features and functions to benefit application 

developers, such as interfaces for integrating the Java and scripting languages, password prompting, file 

input-output enhancements, and parsing of streaming XML documents. 

v   

Solaris
   

Determine whether to use the default just-in-time (JIT) mode. 

For Java SE 6, the default JIT mode for the Solaris virtual machine depends on the hardware 

configuration. It is not always client. With Java SE 6, for server class hardware (meaning 2+ CPU and 

greater than 2 GB RAM), the virtual machine automatically switches to server  JIT mode. 

To configure the -server  or -client  parameter to your liking, set the generic Java virtual machine 

arguments of the server process definition. 

v   Decide whether to take advantage of new Java SE 6 capabilities in your applications. 

You can deploy applications using Java SE 6 features only to Version 7 nodes, as earlier product 

versions do not provide the Java SE 6 virtual machine. 

Applications that access classes and APIs internal to the Java virtual machine might produce errors. 

These classes and APIs are not covered by the Java SE 6 specification and are therefore subject to 

change. Packages with prefixes such as com.sun.* are considered internal. Additionally, direct use of 

implementations of XML and XSL parsers is strongly discouraged, such as direct use of Xerces and 

Xalan classes that provide the Java API for XML Processing (JAXP) implementation for the virtual 

machine. The direct parser APIs also are considered internal and subject to change. Applications should 

rely only on the JAXP APIs defined in the Java SE 6 API documentation. If your application requires a 

specific version of Xerces or Xalan, or some other XML/XSL parser package, then embed the parser 

within your application’s WEB-INF/lib  directory and set the appropriate class loading mode in your 

application deployment so that for your application the XML parser APIs are loaded from the application 

class path, not the Java virtual machine bootstrap class path. Failure to follow this guideline can cause 

significant errors when you try to migrate to a new Java SE 6 level. 

v   Compile Java SE 6 applications to run on previous Java virtual machine levels by setting the compiler 

modes. 

 

© Copyright IBM Corp. 2008 85



When compiling applications that are built with Java SE 6 that are intended for running on previous 

specifications, specify -source  and -target  modes for the Java SE 6 compiler. Doing so ensures that 

the bytecode generated is compatible with the earlier Java virtual machine. 

For example, if the target Java virtual machine is at 1.4.2 level, when you compile applications with 

Java SE 6, you should specify -source  1.4, and target  1.4  to generate bytecode compatible with 

1.4.2. This does not handle the usage of packages, classes, or functions new to Java SE 6. It only 

addresses bytecode output. Developers must take care in what APIs they are using from the J2SE 

packages if they intend to run the application on multiple Java virtual machine specification levels. 

v   Address incompatibilities in previously compiled Java 2 Standard Edition (J2SE) 1.4 and 5.0 

applications. 

Java SE 6 is upwards binary-compatible with Java 2 Technology Edition, Version 5.0 and Java 2 

Technology Edition, Version 1.4.2, except for the incompatibilities documented by Sun Microsystems at 

http://java.sun.com/javase/technologies/compatibility.jsp. 

v   Transition from deprecated Java Virtual Machine Debug Interface (JVMDI) and Java Virtual Machine 

Profiler Interface (JVMPI) functions to Java Virtual Machine Tool Interface (JVMTI). 

JVMDI and JVMPI functions were deprecated in J2SE 5.0. They have been removed from Java SE 6. 

v   Update your use of the Java command line interface. 

The command-line interfaces for the Java SE 6 level have not changed extensively from J2SE 5, 

although they vary among virtual machine vendors. You can find them in the JAVA_HOME/bin  directory. 

Here are some notable command line options that are standard to all Java SE 6 implementations. 

–   For JVMTI, use -agentlib  to load a native agent library that you specify. 

–   For JVMTI, use -agentpath  to load the native agent library by the full path name. 

–   For JVMTI, use -javaagent  to load the Java programming language agent (see java.lang.instrument 

for details). 

–   See apt  -help  for information about this new command line supporting the annotations capability. 

–   See javac  -help  for information and updates to that command line.

v    Update ANT tasks. 

If you have created ANT tasks based on the idltojava ANT task shipped with prior versions of this 

product, ensure that it passes the proper parameters for Java SE 6 as it does for J2SE 1.4 or 5, to 

ensure the stubs, ties and skeletons that it generates are compatible with earlier product releases.

JNDI interoperability considerations 

You must take extra steps to enable your programs to interoperate with non-product JNDI clients and to 

bind resources from MQSeries® to a namespace. 

EJB clients running in an environment other than WebSphere Application Server 

accessing EJB applications running on WebSphere Application Server servers 

When an enterprise bean (EJB) application running in WebSphere Application Server is accessed by a 

non-product EJB client, the JNDI initial context factory is presumed to be a non-product implementation. In 

this case, the default initial context is the cell root. If the JNDI service provider being used supports 

CORBA object URLs, the corbaname format can be used to look up the EJB home. 

Single  server  

Following is a URL that has the bootstrap host myHost, the port 2809, and the enterprise bean 

installed in the server server1  in node node1  and bound in that server under the name myEJB: 

initialContext.lookup(  

  "corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB"); 

 

86 Migrating WebSphere applications

http://java.sun.com/javase/technologies/compatibility.jsp


Without  CORBA  object  URL  support  

If the JNDI initial context factory being used does not support CORBA object URLs, the initial 

context can be obtained from the server, and the lookup can be performed on the initial context as 

follows: 

Hashtable  env  = new  Hashtable();  

env.put(CONTEXT.PROVIDER_URL,  "iiop://myHost:2809");  

Context  ic = new  InitialContext(env);  

Object  o = ic.lookup("cell/clusters/myCluster/myEJB");  

Binding resources from MQSeries 5.2 

In releases previous to WebSphere Application Server Version 5.0, the MQSeries jmsadmin tool could be 

used to bind resources to the namespace. When used with a WebSphere Application Server namespace, 

the resource is bound within a transient partition in the namespace and does not persist past the life of the 

server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them from the 

administrative console, under Resources  in the console navigation tree. 

 

Chapter 9. Naming and directory 87



88 Migrating WebSphere applications



Chapter  10.  Learn  about  WebSphere  programming  extensions  

Use this section as a starting point to investigate the WebSphere programming model extensions for 

enhancing your application development and deployment. 

See the Developing  and  deploying  applications  PDF book for a brief description of each WebSphere 

extension. 

Your applications can use the Eclipse extension framework. Your applications are extensible as soon as 

you define an extension point and provide the extension processing code for the extensible area of the 

application. You can also plug an application into another extensible application by defining an extension 

that adheres to the target extension point requirements. The extension point can find the newly added 

extension dynamically and the new function is seamlessly integrated in the existing application. It works on 

a cross Java Platform, Enterprise Edition (Java EE) module basis. 

The application extension registry uses the Eclipse plug-in descriptor format and application programming 

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that 

build WebSphere application modules can use WebSphere Application Server extensions to implement 

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items, 

and links at predefined extension points in the WebSphere application. 

Application profiling 

Running Version 5 Application Profiles on Version 7.0 

Java 2 platform, Enterprise Edition (J2EE) 1.3 applications created using WebSphere Application Server 

Version 5.x have an application profile configuration formatted for Version 5.x. Although, you can use 

applications with an application profile configuration from Version 5.x on WebSphere Application Server 

Version 7.0, you must change a setting. Also, there are several implications to using version 5.x 

application profiles on version 7.0. 

About this task 

The product application profiling function works under the unit  of work  concept. This gives it a more 

predictable data access pattern based on the active unit of work, which could be either a transaction or an 

ActivitySession. See the Developing  and  deploying  applications  PDF for more information. 

v   Set the Application Profile service on your server to enable the Application Profiling 5.x Compatibility 

Mode as the default. 

See the Developing  and  deploying  applications  PDF. 

Note:   This setting is necessary to support Java 2 platform, Enterprise Edition (J2EE) 1.3 applications 

with an application profile configuration from WebSphere Application Server Version 5.x. The 5.x 

compatibility mode has a fair amount of performance overhead on a Version 7.0 server. Because 

of this, if there is no J2EE 1.3 application with an application profile V5.x configuration installed, 

the server does  not  load  the support for the 5.x compatibility mode during startup, even when the 

5.x compatibility mode is turned on. 

After the server starts without loading the 5.x compatibility mode support, if a J2EE 1.3 application with 

an application profile V5.x configuration installs on the server and attempts to start, the following 

message is displayed, and the server must be restarted: 

ACIN0031E:  The  J2EE  1.3  application  <ApplicationName>  is configured  for  application  

profiling  and  is installed  and  starting  on a running  server  that  enables  Application  Profiling  

 5.x  Compatibility  Mode.  You  must  re-start  the server.  

This situation only happens when: 

 

© IBM Corporation 2003 89



1.   the server started with the Application Profile service enabled and 5.x compatibility mode turned on, 

but no J2EE 1.3 applications were installed at server start up. Therefore, the server run time 

automatically ignores the 5.x compatibility in order to avoid performance costs associated with it. 

2.   you try to install and start a J2EE 1.3 application with an application profile configured in Version 

5.x, but the 5.x compatibility mode is turned off.

To avoid this situation, you must install at least one J2EE 1.3 application with an application profile 

Version 5.x configuration before  starting the server, or restart the server after installing a J2EE 1.3 

application with the application profile configured in Version 5.x. 

v   Ideally, upgrade your J2EE 1.3 applications to use the Version 6.x application profiling configuration and 

turn off the Application Profiling 5.x Compatibility Mode through the administrative console. 

See the Developing  and  deploying  applications  PDF. 

v   Migrate any application you have configured with application profiling in Version 5. 

Application profiles migration requires you to re-configure your applications in the assembly tool. See 

the Developing  and  deploying  applications  PDF for more information. 

v   Rework the usage of the TaskNameManager API if it is used in your applications. The 

TaskNameManager API is not supported in container-managed transaction beans, and the setTaskName 

method must be called before beginning a new unit of work. 

See the Developing  and  deploying  applications  PDF for more information.

Application profiling interoperability 

Using application profiling with 5.x compatibility mode or in a clustered environment with mixed product 

versions and mixed platforms can affect its behavior in different ways. 

The effect of 5.x Compatibility Mode 

Application profiling supports forward  compatibility. Application profiles created in previous versions of 

WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server 

Foundation 5.1) can only run in WebSphere Application Server Version 6 or later if the Application Profiling 

5.x Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5 

application profiles might display unexpected behavior. 

Similarly, application profiles that you create using the latest version of WebSphere Application Server are 

not compatible with Version 5 or earlier versions. Even applications configured with application profiles run 

on Version 6.x servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot 

interact with applications configured with profiles run on Version 5 servers. 

Note:   If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page, 

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work 

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and 

can lead to unexpected deadlocks during database access. Tasks are not communicated on 

requests between applications that are running under the Application Profiling 5.x Compatibility 

Mode and applications that are not running under the compatibility mode. 

For a Version 6.x client to interact with applications run under the Application Profiling 5.x Compatibility 

Mode, you must set the appprofileCompatibility  system property to true  in the client process. You can do 

this by specifying the -CCDappprofileCompatibility=true  option when invoking the launchClient  command. 

WebSphere Application Server Enterprise Edition Version 5.0.2 

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application 

Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability. 

 

90 Migrating WebSphere applications



Asynchronous beans 

Interoperating with asynchronous beans 

Asynchronous beans support Serialized WorkWithExecutionContext interoperability with objects that are 

serialized in 5.0.2 or later. 

Before you begin 

For more information on migrating to WebSphere Application Server Version 7 from previous product 

releases, read the Migrating product configurations topic. 

1.   Install the Version 7 product. Installing the product creates a stand-alone application server. 

2.   Start the First  steps  console. 

3.   Select the Migration  wizard  on the First  steps  console. 

4.   Migrate the previous release to the Version 7 product. 

Read the Using the Migration wizard to migrate product configurations topic.

 

Chapter 10. Learn about WebSphere programming extensions 91



92 Migrating WebSphere applications



Appendix.  Directory  conventions  

References in product information to app_server_root, profile_root, and other directories infer specific 

default directory locations. This topic describes the conventions in use for WebSphere Application Server. 

Default product locations (distributed) 

The following file paths are default locations. You can install the product and other components or create 

profiles in any directory where you have write access. Multiple installations of WebSphere Application 

Server - Express products or components require multiple locations. Default values for installation actions 

by root and non-root users are given. If no non-root values are specified, then the default directory values 

are applicable to both root and non-root users. 

app_client_root  

The following list shows default installation root directories for the WebSphere Application Client. 

  User Directory 

Root AIX
   

/usr/IBM/WebSphere/AppClient (Java EE Application client 

only) 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/WebSphere/AppClient 

(Java EE Application client only) 

Windows
   

C:\Program Files\IBM\WebSphere\AppClient 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/WebSphere/AppServer/AppClient (Java EE Application 

client only) 

Windows
   

C:\IBM\WebSphere\AppClient

  

app_server_root  

The following list shows the default installation directories for WebSphere Application Server - 

Express. 

  User Directory 

Root AIX
   

/usr/IBM/WebSphere/AppServer 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/WebSphere/
AppServer 

Windows
   

C:\Program Files\IBM\WebSphere\AppServer 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/WebSphere/AppServer 

Windows
   

C:\IBM\WebSphere\AppServer 

  

cip_app_server_root  

A customized  installation  package  (CIP) is an installation package created with IBM WebSphere 

Installation Factory that contains a WebSphere Application Server - Express product bundled with 

one or more maintenance packages, an optional configuration archive, one or more optional 

enterprise archive files, and other optional files and scripts. 

 The following list shows the default installation root directories for a CIP where cip_uid  is the CIP 

unique ID generated during creation of the build definition file. 

 

© IBM Corporation 2005, 2007 93



User Directory 

Root AIX
   

/usr/IBM/WebSphere/AppServer/cip/cip_uid 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/WebSphere/
AppServer/cip/cip_uid 

Windows
   

C:\Program Files\IBM\WebSphere\AppServer\cip\cip_uid 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/WebSphere/AppServer/cip/cip_uid 

Windows
   

C:\IBM\WebSphere\AppServer\cip\cip_uid

  

component_root  

The component installation root directory is any installation root directory described in this topic. 

Some programs are for use across multiple components. In particular, the Update Installer for 

WebSphere Software is for use with WebSphere Application Server - Express, Web server 

plug-ins, the Application Client, and the IBM HTTP Server. All of these components are part of the 

product package. 

gskit_root  

IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside 

the installing product’s directory structure and is no longer installed in a global location on the 

target system. The following list shows the default installation root directory for Version 7 of the 

GSKit, where product_root  is the root directory of the product that is installing GSKit, for example 

IBM HTTP Server or the Web server plug-in. 

  Directory 

AIX
   

HP�UX
   

Linux
   

Solaris
   

product_root/gsk7 

Windows
   

product_root\gsk7

  

if_root  This directory represents the root directory of the IBM WebSphere Installation Factory. Because 

you can download and unpack the Installation Factory to any directory on the file system to which 

you have write access, this directory’s location varies by user. IBM WebSphere Installation Factory 

is an Eclipse-based tool which creates installation packages for installing WebSphere Application 

Server in a reliable and repeatable way, tailored to your specific needs. 

iip_root  

This directory represents the root directory of an integrated  installation  package  (IIP) produced by 

theIBM WebSphere Installation Factory. Because you can create and save an IIP to any directory 

on the file system to which you have write access, this directory’s location varies by user. An IIP is 

an aggregated installation package that can include one or more generally available installation 

packages, one or more customized installation packages (CIPs), and other user-specified files and 

directories. 

 profile_root  

The following list shows the default directory for a profile named profile_name  on each distributed 

operating system. 

  User Directory 

Root AIX
   

/usr/IBM/WebSphere/AppServer/profiles/profile_name 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/WebSphere/
AppServer/profiles/profile_name 

Windows
   

C:\Program Files\IBM\WebSphere\AppServer\profiles\
profile_name 

 

94 Migrating WebSphere applications



User Directory 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/WebSphere/AppServer/profiles/ 

Windows
   

C:\IBM\WebSphere\AppServer\profiles\

  

plugins_root  

The following default installation root is for the Web server plug-ins for WebSphere Application 

Server. 

  User Directory 

Root AIX
   

/usr/IBM/WebSphere/Plugins 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/WebSphere/Plugins 

Windows
   

C:\Program Files\IBM\WebSphere\Plugins 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/WebSphere/Plugins 

Windows
   

C:\IBM\WebSphere\Plugins

  

updi_root  

The following list shows the default installation root directories for the Update Installer for 

WebSphere Software. 

  User Directory 

Root AIX
   

/usr/IBM/WebSphere/UpdateInstaller 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/WebSphere/
UpdateInstaller 

Windows
   

C:\Program Files\IBM\WebSphere\UpdateInstaller 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/WebSphere/UpdateInstaller 

Windows
   

C:\IBM\WebSphere\UpdateInstaller

  

web_server_root  

The following default installation root directories are for the IBM HTTP Server. 

  User Directory 

Root AIX
   

/usr/IBM/HTTPServer 

HP�UX
   

Linux
   

Solaris
   

/opt/IBM/HTTPServer 

Windows
   

C:\Program Files\IBM\HTTPServer 

Non-root AIX
   

HP�UX
   

Linux
   

Solaris
   

user_home/IBM/HTTPServer 

Windows
   

C:\IBM\HTTPServer

 

 

Appendix. WebSphere Application Server default directories 95



96 Migrating WebSphere applications



Notices  

References in this publication to IBM products, programs, or services do not imply that IBM intends to 

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or 

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any 

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property 

rights may be used instead of the IBM product, program, or service. Evaluation and verification of 

operation in conjunction with other products, except those expressly designated by IBM, is the user’s 

responsibility. 

IBM may have patents or pending patent applications covering subject matter in this document. The 

furnishing of this document does not give you any license to these patents. You can send license inquiries, 

in writing, to: 

    IBM Director of Intellectual Property & Licensing 

    IBM Corporation 

    North Castle Drive 

    Armonk, NY 10504-1785 

    USA 

 

© Copyright IBM Corp. 2008 97



98 Migrating WebSphere applications



Trademarks  and  service  marks  

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business 

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked 

terms are marked on their first occurrence in this information with a trademark symbol (® or 

™), these 

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information 

was published. Such trademarks may also be registered or common law trademarks in other countries. For 

a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site 

(www.ibm.com/legal/copytrade.shtml). 

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or 

both. 

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both. 

Other company, product, or service names may be trademarks or service marks of others. 

 

© Copyright IBM Corp. 2008 99

http://www.ibm.com/legal/copytrade.shtml

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Web applications
	Migrating to Java Platform, Standard Edition (Java SE) 6
	JavaServer Pages migration best practices and considerations
	Migrating Web application components from WebSphere Application Server Version 5.x
	HTTP session migration

	Chapter 2. EJB applications
	Migrating to Java Platform, Standard Edition (Java SE) 6
	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.1 to Version 2.1
	Adjusting exception handling for EJB wrapped applications migrating from version 5 to version 7

	Container interoperability

	Chapter 3. Client applications
	clientUpgrade command

	Chapter 4. Web services
	Web Services-Interoperability Basic Profile
	Web services migration best practices
	Migrating Apache SOAP Web services to JAX-RPC Web Services based on Java EE standards
	Migrating the UDDI registry
	Migrating to Version 3 of the UDDI registry
	Setting up a UDDI migration data source


	Chapter 5. Service integration
	Adding unique names to the bus authorization policy
	Migrating a messaging engine based on a data store

	Chapter 6. Data access resources
	Migrating applications to use data sources of the current Java EE Connector Architecture (JCA)
	Connection considerations when migrating servlets, JavaServer Pages, or enterprise session beans

	Verifying the Cloudscape automatic migration
	Upgrading Cloudscape manually

	Chapter 7. Messaging resources
	Migrating from WebSphere Application Server Version 5 embedded messaging
	General considerations for migrating from Version 5 embedded messaging
	Migrating Version 5.1 messages using the message migration utility
	WebSphere Application Server message migration utility
	Installing the message migration utility
	Running the message migration utility
	Reversing the migration of messages using the message migration utility
	XA recovery
	Migration of message fields

	Migrating a stand-alone application server from Version 5 embedded messaging
	Example: Migrating a message-driven bean from Version 5 embedded messaging - stage 1
	Example: Migrating a message-driven bean from Version 5 embedded messaging - stage 2


	Chapter 8. Security
	Migrating, coexisting, and interoperating – Security considerations
	Interoperating with previous product versions
	Interoperating with a C++ common object request broker architecture client
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service (CORBA and JAAS)
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy
	Migrating with Tivoli Access Manager for authentication enabled

	Enabling embedded Tivoli Access Manager
	Propagating security policy of installed applications to a JACC provider using wsadmin scripting
	JACCUtilityCommands command group for the AdminTask object


	Chapter 9. Naming and directory
	Migrating to Java Platform, Standard Edition (Java SE) 6
	JNDI interoperability considerations

	Chapter 10. Learn about WebSphere programming extensions
	Application profiling
	Running Version 5 Application Profiles on Version 7.0
	Application profiling interoperability

	Asynchronous beans
	Interoperating with asynchronous beans


	Appendix. Directory conventions
	Notices
	Trademarks and service marks

