
WebSphere® IBM WebSphere Application Server Version 7.0

Feature Pack for Service Component Architecture (SCA) Version 1.0.0
information center topics

���

Note
Before using this information, be sure to read the general information under Appendix A, “Notices,” on page 193.

Compilation date: December 11, 2009

© Copyright International Business Machines Corporation 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Version 1.0.0 topics 1

Chapter 2. SCA in WebSphere
Application Server: Overview 3
What is new in the Feature Pack for SCA. 5
Learn about SCA composites 6
SCA components 7
SCA composites 8
SCA domain 10
SCA contributions 10
SCA Samples 13
Feature packs. 14

Chapter 3. Specifications and API
documentation 17

Chapter 4. Unsupported SCA
specification sections 29

Chapter 5. Developing Service
Component Architecture (SCA)
services and applications 33
Developing SCA services from existing WSDL files 33
Developing SCA services with existing Java code . . 38
Developing SCA service clients 42
Using business exceptions with SCA interfaces . . 49
Considerations for developing SCA applications
using EJB bindings 53

Chapter 6. Specifying bindings in an
SCA environment 57
Configuring the SCA default binding 58
Using the SCA default binding to find and locate
SCA services 61
Configuring the SCA Web service binding 61

Configuring Web service binding custom
endpoints to support a proxy server 67
Routing requests to an SCA service exposed over
the SCA Web service binding when using
external Web servers 68

Using EJB bindings in SCA applications 70
Using EJB bindings in SCA applications in a
cluster environment 73

Resolving SCA references 75

Chapter 7. Using JAXB for XML data
binding 79
Using JAXB schemagen tooling to generate an XML
schema file from a Java class 81
Using JAXB xjc tooling to generate JAXB classes
from an XML schema file 85

Chapter 8. SCA application package
deployment. 89

Chapter 9. Creating SCA business-level
applications 91
Creating SCA business-level applications with the
console 92

Map virtual host settings for SCA composites . . 94
Attach policy set settings 95
Map security roles to users or groups collection
for SCA composites. 97
Map RunAs roles to users collection for SCA
composites 99
Composition unit settings for SCA composites 100
Provide HTTP endpoint URL information
settings for SCA composites 102
SCA composite component settings 102
SCA component reference settings 103
SCA component service settings 104
Service provider policy sets and bindings
collection for SCA composites 105
References policy sets and bindings collection
for SCA composites 107
SCA service provider settings 109
SCA service client settings 112

Example: Creating an SCA business-level
application with the console 116

Chapter 10. Updating SCA composite
artifacts 119

Chapter 11. Viewing SCA composite
definitions. 121

Chapter 12. Viewing SCA domain
information 123

Chapter 13. Deleting business-level
applications 125

Chapter 14. Administering
applications using wsadmin scripting . 127
Setting up business-level applications using
wsadmin scripting. 127

Example: Creating an SCA business-level
application with scripting 130

Deleting business-level applications using wsadmin
scripting 133

Chapter 15. Managing deployed
applications using wsadmin scripting . 135
Exporting SCA domain information using scripting 135

© Copyright IBM Corp. 2009 iii

Exporting WSDL and XSD documents using
scripting 137

Chapter 16. Authorizing access to
resources 141
Using SCA authorization and security identity
policies 141
Using the SCA RequestContext.getSecuritySubject()
API. 143

Chapter 17. Using JAXB for XML data
binding 147
Using JAXB schemagen tooling to generate an
XML schema file from a Java class 149
Using JAXB xjc tooling to generate JAXB classes
from an XML schema file 153

Chapter 18. Defining and managing
secure policy set bindings. 157
Configuring Web service binding for SCA transport
layer authentication 157
Configuring Web service binding to use SSL . . . 158
Configuring Web service binding for LTPA
authentication 159

Chapter 19. Mapping abstract intents
and managing policy sets 161
Attached deployed assets collection 164

Name 164
Type 165

Chapter 20. Administering
asynchronous beans 167
Configuring work managers 167

Configuring Work managers for one-way
operations 169
Configuring the default SCA Work manager for
the SCA layer 171

Chapter 21. Transaction support in
WebSphere Application Server 173
SCA transaction intents 175

Chapter 22. Dynamic cache service
eviction policies 179
Eviction policies using the disk cache garbage
collector 179
Example: Caching Web services 180

Chapter 23. Using PassByReference
optimization in SCA applications . . . 185

Chapter 24. Directory conventions 187

Appendix A. Notices 193

Appendix B. Trademarks and service
marks. 195

iv Feature Pack for SCA Version 1.0.0 information center topics

Chapter 1. Version 1.0.0 topics

This book contains information center topics that describe how to use Feature Pack
for SCA Version 1.0.0, which is a feature pack of the IBM® WebSphere® Application
Server Version 7.0 product.

The topics describe how to use the feature pack functionality after installation of
the feature pack. For information about installing Feature Pack for SCA Version
1.0.0 and creating a feature pack profile, see "Getting started with the Feature Pack
for Service Component Architecture (SCA) Version 1.0"
(GettingStarted_SCA_V10.pdf).

Feature Pack for SCA Version 1.0.0 is supported on AIX®, HP-UX, IBM i, Linux®,
Solaris, Windows®, and z/OS® operating systems. Users of this product on an IBM
i operating system must use Version 1.0.0. Feature Pack for SCA Version 1.0.1 is not
supported on an IBM i operating system.

© Copyright IBM Corp. 2009 1

2 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 2. SCA in WebSphere Application Server: Overview

IBM WebSphere Application Server V7 Feature Pack for SCA delivers critical
technology that enables adoption of key Service-Oriented Architecture (SOA)
principles.

As part of the larger SOA Foundation, which straddles all of IBM software brands,
this offering delivers an integrated, open implementation of Service Component
Architecture (SCA), a technology specified by IBM and other industry leaders
through the Open SOA Collaboration (OSOA).

WebSphere has taken the open source implementation from Tuscany, an Apache
project, and integrated it with WebSphere Network Deployment. This integration
ensures that all of WebSphere’s capabilities work together with SCA applications to
provide a compatible environment for both the SCA and existing applications.

IBM WebSphere Application Server V7 Feature Pack for SCA, as well as the
underlying Tuscany framework, is a ″proof-point″ delivery of SCA built using a
plug-in concept, allowing for additional plug-in capabilities in subsequent releases.

The primary objective of this release is to highlight usage of SCA as a
coarse-grained composition model that can be used to assemble and compose
existing services in your enterprise. The key principle of SOA demonstrated by this
support is the ability to use your existing services to create new ones.

Another key objective of this delivery of SCA is to highlight the ease-of-use
characteristics of SCA service development in Java™. This is accomplished by
demonstrating annotated Plain-Old Java-Object (POJO) components deployed
using simple JAR packaging schemes, an easy to use assembly model, and
powerful wiring abstractions that enable service definition over different transports
and protocols. The key principle of SOA demonstrated by this support is having
the right information to get the job done.

Service composition

Businesses today are challenged not only by competitors, but by social and
economic pressures that directly affect their information technology systems. As
businesses adopt SOA and build a growing inventory of business services, there is
a real need to be able to compose, reuse, and otherwise assemble new services
from those existing business services.

SCA offers a metadata assembly and composition model for assembling and
constructing coarse-grained services out of software components and other
services. In a sense, SCA applies the hardware circuit-board paradigm to software
programming, in that while service implementations are vital to the functioning of
the overall application, they can also be viewed as “chips” because details of their
inner workings are hidden from the assembler.

SCA assemblies provide the metadata language to describe the chips, hide certain
details, and provide wiring and binding semantics to the workings inside the
chips, as well as to those exposed outside the chip. In the hardware realm, wires
have physical constraints, such a certain voltage range or frequency of operation.
Software “wires” have similar constraints which are expressed as SCA policy.

© IBM Corporation 2007 3

Service development

SCA has a language-neutral programming model for which there are multiple
language-specific specifications defined at OSOA. The language-specific component
models include Java, Spring, and C++. Being a Java runtime environment,
WebSphere Application Server supports SCA in Java in a highly natural way.

The concepts of SCA apply broadly across both Java and non-Java application
environments. The SCA component model has at its heart a strong focus on a
proper separation of concerns. The service consumer business logic author does
not need to know the details of the service implementation. For instance, a Java
service consumer does not have to know that a target service is implemented using
C++ or COBOL.

A logical name can be used to identify a service, for example, MyStockQuoteService,
and that name can be used in SCA wires to delegate the specific details of service
connectivity to the SCA runtime environment. Essentially, the application
programmer is telling SCA to use the best connectivity alternatives available to
wire the service consumer to the service providing MyStockQuoteService.

Service agility and flexibility

One of the key reasons for SOA is to provide a set of patterns and best
practices–formalized through infrastructural concepts and products--that allows
businesses to realign and remission multiple aspects of information technology. IT
professionals expect to be able to rewire, recast, and reuse applications in flexible
ways to keep up with business needs in the dynamic business climates of today.

This release of Feature Pack for SCA highlights the flexibility and agility of
metadata bindings, and the appropriate separation of concerns. The ability to
rewire, compose, and assemble business logic without impacting the business logic
itself is key.

OSOA support

As mentioned previously, this delivery of SCA in WebSphere Application Server
follows the definition of the technology as documented by OSOA. Defining a set of
compliance test suites was not part of the OSOA charter, so the implementation
provided in this feature pack uses the following specifications as guiding
principles. However, IBM provides an implementation that adheres strictly to our
interpretation of the specifications listed below:
v SCA Assembly Model
v SCA Java Component Implementation
v SCA Java Annotations and API
v SCA Transaction Policy
v SCA Web Service Binding
v SCA EJB Binding
v SCA Policy Framework

See the ″Unsupported SCA specifications sections″ topic for restrictions and
limitations that are unsupported at this time.

4 Feature Pack for SCA Version 1.0.0 information center topics

WebSphere support for SCA

As already noted, multiple specifications are defined at OSOA, as well as Tuscany
extensions provided in open source that go beyond the basic mission of WebSphere
Application Server. Each vendor can decide which aspects of SCA apply to their
product. For WebSphere Application Server, the focus is on enabling compositions
as services, Java components, and integration of key qualities of service-like
transactions and security.

SCA can enable mediations, business rules, and business process execution
language to be treated as any other service, and while WebSphere Application
Server provides the mechanisms to wire services that are implemented in those
languages and environments, the product does not provide native support to host
those kinds of service implementations.

What is new in the Feature Pack for SCA
The Feature Pack for Service Component Architecture (SCA) Version 1.0 is an
optionally installable product extension for IBM WebSphere Application Server
Version 7.x that offers a simple and powerful way to construct applications based
on Service-Oriented Architecture (SOA). This feature pack leverages the Apache
Tuscany open-source technology to provide an implementation of the published
SCA specifications.

Benefits of the Feature Pack for SCA

Through this feature pack, your organization will be able to move quickly into the
world of SOA, as follows:

Improve flexibility in application deployment

v Adapt applications quickly to reflect changes in the business
environment

v Reuse the components you create in other business processes and
composite applications

v Easily compose services into more complex composite applications
v Adjust solutions to accommodate varying technology offerings (that is,

protocols or deployment targets) without the need to rebuild business
applications

Increase programmer productivity

v Stay focused on solving business problems, rather than getting bogged
down in the individual complexities of the technologies that connect
service consumers and service providers

v Use the same fundamental principles to uniformly represent existing
assets and newly engineered components

v Organize service components into logical modules to hasten composite
application development

v Leverage the loosely coupled service model with clear service definitions
to enable developers to work independently and in parallel, for fast
delivery of solutions

SCA support

SCA support includes the following:

Chapter 2. SCA in WebSphere Application Server: Overview 5

v POJO (Java Object) service-component implementations, including support for
annotations

v Asynchronous capability
v Recursive composition model support
v Several binding types, including Web services binding, SCA default binding, and

Enterprise JavaBeans™ (EJB) binding
v Preview of native SCA deployment
v Sample SCA composites compiled specifically for use with this feature pack

New and changed features in the Feature Pack for SCA

Notable changes to WebSphere Application Server Version 7.x provided by the
Feature Pack for SCA include the following:
v Support for SCA specifications
v Support for SCA services developed from existing WSDL files or Java code
v Support for SCA, Web service, and EJB bindings
v Support for Java Architecture for XML Binding (JAXB) data bindings in SCA

applications
v Deployment of SCA composites in business-level applications
v SCA authorization and security identity policies
v PassByReference optimization for SCA applications

:

Learn about SCA composites
Find links to Service Component Architecture (SCA) resources for learning,
including conceptual overviews, tutorials, samples, and ″How do I?...″ topics,
pending their availability.

How do I?...

Develop SCA composites

v Develop SCA service clients
v Develop SCA services with existing Java code
v Develop SCA services from existing WSDL files
v Specify bindings for SCA components

Deploy SCA composites in business-level applications

v Create SCA business-level applications using the administrative console
v Create SCA business-level applications using wsadmin scripts

Administer deployed SCA composites

v Update deployment settings for SCA composites
v Export SCA domain information
v Export WSDL and XSD documents
v Delete business-level applications

6 Feature Pack for SCA Version 1.0.0 information center topics

Conceptual overviews
v SCA overview
v SCA components
v SCA composites
v Support for SCA composite deployment

Samples

Feature Pack for SCA offers sample files that support SCA specifications. You can
use these sample SCA files in business-level applications. The sample files are
located in app_server_root/samples/SCA and app_server_root/installableApps. SCA
services are packaged in Java archive (JAR) files that you import as assets to the
product repository and then add as composition units to business-level
applications.

Each sample includes detailed deployment instructions in a readme.html file in a
app_server_root/samples/SCA subdirectory. See ″SCA Samples.″

SCA components
A Service Component Architecture (SCA) component is a configured instance of an
implementation, which is program code that implements one or more business
functions such as Java classes. Components provide and consume services. The
business functions provide services. Components consume services by referring to
services provided by other components. The component configuration sets values
for properties that are declared by the implementation and specifies references that
point to services provided by other components.

The SCA component graphic shows the parts of a component:
v The green chevron pointing towards the component represents a service, or

business function, that the component provides to its client.
v The purple chevron pointing away from the component represents a reference to

a service provided by another component.
v The yellow box on the component represents a property value for a property

that is declared by the implementation. The component reads the property value
from the configuration file when the component is instantiated.

Component

Implementation

• Java
S• CA Composite

Service

Property

Reference

Figure 1. SCA component

Chapter 2. SCA in WebSphere Application Server: Overview 7

The implementation defines the service in code that is appropriate for the chosen
language. For example, a Java component might describe its service using Java
interfaces. Supported implementations include Java Pojo and SCA composites.

More than one component can use the same implementation.

SCA composites
A Service Component Architecture (SCA) composite is a composition unit within
an SCA domain. An SCA composite can consist of components, services, references,
and wires that connect them. A composite is the unit of deployment for SCA.

The SCA composite graphic shows the parts of a composite and its components:
v The blue boxes on the composite represent components. A composite can have

one or multiple components.
v A green chevron pointing towards a component represents a service, or business

function, that a component provides to its client.
v A purple chevron pointing away from a component represents a reference to a

service provided by another component.
v The yellow box on a component represents a property value for a property that

is declared by a component implementation.
v The white solid line from the reference of one component to the service of

another component represents a wire. A wire between a Component1 reference
and a Component2 service indicates that Component1 requires the service
provided by Component2.

v An implementation defines a component service in code that is appropriate for
the chosen language. Supported implementations include Java Pojo and SCA
composites.

8 Feature Pack for SCA Version 1.0.0 information center topics

An application can contain one composite or several different composites. The
components of a composite can run in a single process on a single computer or be
distributed across multiple processes on multiple computers. The components
might all use the same implementation language, or use different languages.

An SCA composite is typically described in a configuration file, the name of which
ends in .composite. The SCA composite parts mapped to the helloworldws
composite file graphic shows the composite definition of the helloworldws
composition unit in the SCA sample application HelloWorldAsync. You can find
the composite definition for the helloworldws composition unit in the
/META-INF/sca-deployables/default.composite file.

In the Feature Pack for SCA, a composite file in a WAR file must be named
default.composite. A composite file that is not in a WAR file can have any name.

Component

Composite

Component

Wire Promote

ReferenceService

Promote

Composite

ImplementationImplementation

Property

• Java
S• CA Composite

Figure 2. SCA composite

Component

Implementation

•
•

Java
SCA Composite

Service

Property

Reference

Composite

< xmlns=”http”www.osoa.org/xmlns/sca/1.0”composite
TargetNamespace=”http://helloworld”

=” ”>name helloworldws

</Service>
< />

</component>
</composite

implementation.java class=”helloworld.HelloWorldImpl”

<interface.java interface=”helloworld.HelloWorldService”
callbackInterface=”helloworld.HelloWorldCallback”/>

<binding.ws wsdlElement=”http://websphere.ibm.com/soa/sca/hello-ws-async#
wsdl.port (HelloWorldService/HelloWorldSoapPort)”/>

<callback>
<binding.ws wsdlElement=”http://websphere.ibm.com/soa/sca/hello-ws-async#

wsdl.binding(HelloWorldCallbackSoapBinding)” />
</callback>

< ”>
< ”>

component name=”HelloWorldServiceComponent
service name=”HelloWorldService

Figure 3. SCA composite parts mapped to the helloworldws composite file

Chapter 2. SCA in WebSphere Application Server: Overview 9

The Feature Pack for SCA supports composite as an implementation, as described
in Section 1.6 of SCA Assembly Specification 1.0. See “Unsupported SCA
specification sections” for information on parts of Section 1.6 that the feature pack
does not support.

SCA domain
A Service Component Architecture (SCA) domain consists of the definitions of
composites, components, their implementations, and the nodes on which they run.
Components deployed into a domain can directly wire to other components within
the same domain. For the Feature Pack for SCA on a single server, the domain is
essentially the scope of the server. For a multiple-server configuration, the domain
is essentially the cell.

The SCA domain in which composites reside graphic shows one composite in an
SCA domain.

Component Component

Composite

Po moter PromoteWire

Component

Composite
@service {Impl.class)
public class Impl {

. . .
}

Java Composite

Implementation Implementation

SCA domain

Service Reference

Binding Binding

WSDL

Java

WSDL

Java

Web Service

SCA

EJB

- - -

Web Service

SCA

EJB

- - -

SCA contributions
A Service Component Architecture (SCA) contribution contains artifacts that are
needed for an SCA domain. Contributions are sometimes self-contained, in that all
of the artifacts necessary to run the contents of the contribution are found within
the contribution itself. However, the contents of the contribution can make one or
many references to artifacts that are not contained within the contribution. These
references might be to SCA artifacts, or to other artifacts, such as Web Services
Description Language (WSDL) files, XSD files, or to code artifacts such as Java
class files.

The SCA contribution graphic shows composites in an sca-contribution.xml file
in an SCA domain.

Figure 4. SCA domain in which composites reside

Figure 5. SCA contribution

10 Feature Pack for SCA Version 1.0.0 information center topics

Composite

Composite

Composite

sca-contribution.xml

Composite

Composite

Composite

SCA domain

C
o

n
tr

ib
u

ti
o

n

An SCA contribution is typically described in a contribution file, named
sca-contribution.xml in the META-INF directory. The contribution file for the
helloworldws composition unit in the SCA sample application HelloWorldAsync
follows:
<?xml version="1.0" encoding="ASCII"?>
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0" xmlns:ns="http://helloworld">

<deployable composite="ns:helloworldws"/>
</contribution>

The Feature Pack for SCA supports contributions, as described in Chapter 1.10 of
SCA Assembly Specification 1.0. The assembly specification defines the
contribution metadata model to describe the runnable components for a given
contribution, as well as the exported definitions and imported definitions to help
resolve artifact dependencies across multiple contributions. See “Unsupported SCA
specification sections” for information on parts of Chapter 1.10 that the feature
pack does not support.

Information about support for SCA contributions follows:
v Preconditions or inputs
v Postconditions or outputs for JAR packaged applications
v Postconditions or outputs for WAR packaged applications
v Contribution scenarios
v Scenarios for mapping multiple deployable composites to a composition unit
v Notes and limitations

Preconditions or inputs

One SCA contribution, including multiple deployable composites, and with import
or export definitions.

Postconditions or outputs for JAR packaged applications
v After successful creation of an SCA contribution as an asset, you can do the

following:
– Create a business-level application, add the asset as a composition unit, and

start and stop the application.
– Target each deployable composite to a different server or cluster.

Chapter 2. SCA in WebSphere Application Server: Overview 11

– Delete the deployable composites individually.
v Support import or export namespace:

– WSDL can be defined in another contribution. Use <import name = "name_
space"/> to declare dependencies.

– Schema XSD can be defined in another contribution. Use <import name =
"name_space"/> to declare dependencies

– Use <export name="name_space"/> to make WSDL or XSD available to other
contributions.

– Composite for recursive model can be defined in another contribution.
v Support import.java and export.java package name:

– The Java package can be in another contribution. Use <import.java
name="java_ package_ name"> to declare dependencies.

– Use <export.java name="java_ packages"> to make Java packages available
to other contributions.

Postconditions or outputs for WAR packaged applications

Successful installation of a WAR module with a single deployable composite in the
contribution.

Contribution scenarios
v There are multiple runnable deployable composites in a contribution. One

extreme case is that there is no runnable for the contribution, so the contribution
is used as a shared library for resources and classes.

v Declare an import or export namespace for resource resolution, such as WSDL,
XSD, and composite definition.

v Declare import.java and export.java for classLoader dependencies.
v Support artifact resolution for contributions targeted on the same server.
v Support artifact resolution for contributions targeted to a different server or

cluster in a multiple-server environment.
v Support the partial update of an installed contribution (asset). This can be

anything other than a change to .composite or sca-contribution.xml. You
should be able to restart the composition unit that has the assets as a dependant.

Scenarios for mapping multiple deployable composites to a
composition unit
v Scenario 1:

– A contribution can contain multiple deployable composites.
– During asset creation, each deployable composite is identified as a deployable

unit.
– When creating a composition unit, you can select only one deployable unit.

For SCA composition units, you cannot select multiple deployable composites.
This is different from non-SCA business-level applications, for which you can
select multiple deployable units.

– After composition unit creation, each composition unit is mapped to one
composite.

v Scenario 2:
A Scenario 1 variation consists of an asset with an sca-contribution.xml file
that has zero-to-many (0...n) deployable composites:

12 Feature Pack for SCA Version 1.0.0 information center topics

– Use sca-contribution.xml deployable composites to create 0...n deployable
units with the deployable composite’s QName as the deployable unit name.

– The asset is tagged as an SCA asset.
– If the composition unit is created by selecting one, and only one, of the

deployable units:
- View or edit targets the deployable unit’s composite.
- Start or stop targets the deployable unit’s composite.

– If the composition unit is created as a shared library, or no deployable unit is
selected, the default deployable unit is used:
- View or edit is not available for the composition unit.
- Start or stop is not available for the composition unit.

Notes and limitations

Currently this topic focuses on JAR-packaged SCA applications. For
WAR-packaged applications support is provided for only a single deployable
composite in the contribution.

SCA Samples
The product offers sample files that support Service Component Architecture
(SCA) specifications. You can use these sample SCA files in business-level
applications. The sample files are located in app_server_root/samples/SCA and
app_server_root/installableApps. SCA services are packaged in Java archive (JAR)
files that you import as assets to the product repository and then add as
composition units to business-level applications. Each sample includes detailed
deployment instructions in a readme.html file in a app_server_root/samples/SCA
subdirectory.

Samples installation

To use the Samples, install the Feature Pack for SCA. Installing the feature pack
adds SCA sample files to the app_server_root/installableApps directory. If you
selected to install Samples during creation of a profile enabled by the feature pack,
the product also adds several SCA sample files to the app_server_root/samples/SCA
directory. You must deploy SCA sample files as assets of a business-level
application to a Version 7.0 server or cluster that is enabled for the Feature Pack
for SCA.

Samples description

CandyStore
The CandyStore.jar file uses the default binding, Web service binding, and
EJB binding and shows the use of the recursive model, and authentication
and authorization over the default binding. The sample shows both the
bottom-up (Java to WSDL) and top-down (WSDL to Java) approaches in
developing SCA applications.

For a description of the 10 composites in CandyStore and details on
deployment, refer to app_server_root/samples/SCA/CandyStore/
documentation/readme.html.

HelloWorldAsync
The helloworld-ws-asynch.jar, helloworld-ws-client-asynch.war, and
helloworld-ws-asynchclient.jar files use Web services. One client uses a
Java ServerPages (JSP) file to obtain an SCA composite context and invoke
the HelloWorldClient service over an SCA default binding. The client

Chapter 2. SCA in WebSphere Application Server: Overview 13

service then invokes the HelloWorld service over a Web services binding.
After the service is invoked, the service does a callback to the client
service. The client JSP waits for 5 seconds for the callback to complete and
then displays the callback result.

For a description of the JAR files and details on deployment, refer to
app_server_root/samples/SCA/helloworld-ws-asynch/documentation/
readme.html. For detailed instructions on deploying the
helloworld-ws-asynch.jar file in a business-level application, refer to
″Example: Creating an SCA business-level application with the console″
and ″Example: Creating an SCA business-level application with scripting.″

JobbankTargetEJBApp
This sample shows how a Java EE client, JobbankClientApp.ear, can
invoke an SCA component, jobbankejb.jar, using a remote EJB service
binding as well as how a component with an EJB reference binding can
invoke a remote external EJB, which is in JobbankTargetEJBApp.ear. The
stateless session bean binding is a protocol binding that provides the
ability to integrate SCA with EJB based services. The SCA support is in
jobbankejb.jar.

For a description of the files and details on deployment, refer to
app_server_root/samples/SCA/jobbankejb/documentation/readme.htm.

MultiService
This sample shows service composition using existing services. The
MultiService sample wires to several existing samples:
v Stock Quote, WebServicesSamples.ear
v HelloWorldAsync, helloworld-ws-asynch.jar
v JobbankTargetEJBApp, JobbankTargetEJBApp.ear
v EJB Counter, EJB3CounterSample.ear

You can find the files in app_server_root/installableApps.

For details on deployment, refer to app_server_root/samples/SCA/
MultiService/documentation/readme.html.

MyBank
This sample shows how to create an SCA application that uses JAXB
following a top-down approach. You use AccountService.wsdl to generate
JAXB classes that provide a data binding between XML and Java files. You
then use a reference on the client side WAR file to wire to the Account
Service over the Web service binding.

For details on deployment, refer to app_server_root/samples/SCA/MyBank/
documentation/readme.html.

Feature packs
WebSphere Application Server feature packs are a mechanism for providing major
new application server function between product releases. By delivering new
functions and support for industry standards between product releases, you can
more quickly explore and implement new technologies within your business
applications in today’s rapidly changing business environments.

WebSphere Application Server feature packs are optionally installable product
extensions that offer targeted, incremental new features. WebSphere Application

14 Feature Pack for SCA Version 1.0.0 information center topics

Server customers who wish to take advantage of these features can download the
appropriate feature pack and install it on one, or all, of their entitled application
servers.

The primary characteristics of feature packs are:
v Feature packs provide production-ready function (such a new open standards)

to customers who need them, without having to wait for a new WebSphere
Application Server release. Some feature packs may be merged into later releases
of the WebSphere Application Server product.

v In WebSphere Application Server Version 7.0, feature packs are free of charge to
WebSphere Application Server Version 7.0 customers.

v Customers can choose which feature packs, if any, they wish to install. In some
cases, one feature pack may rely on the capabilities of another feature pack, in
which case both must be installed.

v Some feature packs might not be fully integrated with the WebSphere
Application Server product, therefore there are limitations on use of the feature
pack functionality.

Documentation on available feature packs can be found in the WebSphere
Application Server Version 7.0 Information Center. Using filtering, you can select
only those articles that apply to a particular platform, product or feature pack.

Chapter 2. SCA in WebSphere Application Server: Overview 15

16 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 3. Specifications and API documentation

The WebSphere Application Server product supports various industry standards.
This topic lists the specifications and application programming interface (API)
documentation supported in current and previous product releases.

Components
v Any application type
v Web applications
v Portlet applications
v SIP applications
v EJB applications
v Client applications
v Web services
v Service Component Architecture
v Service integration
v Data access resources
v Messaging resources
v Mail, URLs, and other Java EE resources
v Security
v Web services security
v Naming and directory
v Object Request Broker
v Transactions
v WebSphere extensions
v Administration

Any application type

Table 1. Supported specifications for any application type

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Platform, Enterprise Edition (Java EE)
specification

Prior to Java EE 5, the specification name was Java 2
Platform, Enterprise Edition (J2EE).

Java EE 5 New

J2EE 1.4

J2EE 1.3

J2EE 1.4

J2EE 1.3

J2EE 1.2

J2EE 1.4 New

J2EE 1.3

J2EE 1.2

J2EE 1.3

J2EE 1.2

Java Platform, Standard Edition (Java SE)
specification

Prior to Java SE 6, the specification name was Java 2
Platform, Standard Edition (J2SE).

Java SE 6 New J2SE 5 J2SE 1.4.2 J2SE 1.4.2
New

J2SE 1.3

ISO 8859 specifications ISO 8859 applies to these versions.

© IBM Corporation 2007 17

http://java.sun.com/javaee/5/docs/api/
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.3/docs/index.html#specs
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.3/docs/index.html#specs
http://java.sun.com/j2ee/1.2/docs/index.html#specs
http://java.sun.com/j2ee/1.4/docs/#specs
http://java.sun.com/j2ee/1.3/docs/index.html#specs
http://java.sun.com/j2ee/1.2/docs/index.html#specs
http://java.sun.com/j2ee/1.3/docs/index.html#specs
http://java.sun.com/j2ee/1.2/docs/index.html#specs
http://java.sun.com/javase/6/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/j2se/1.3/download.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Web applications

Table 2. Supported specifications for Web applications

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Servlet specification (JSR 154 and JSR 53) Java Servlet 2.5
New

Java Servlet 2.4

Java Servlet 2.3

Java Servlet
2.4

Java Servlet
2.3

Java Servlet
2.4 New

Java Servlet
2.3

Java Servlet
2.3

JavaServer Pages (JSP) specification (JSR 245, JSR 152,
and JSR 53)

JSP 2.1 New

JSP 2.0

JSP 1.2

JSP 2.0

JSP 1.2

JSP 2.0 New

JSP 1.2

JSP 1.2

Portlet applications

Table 3. Supported specifications for portlet applications

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Portlet specification Portlet 2.0 (JSR
286) New

Portlet 1.0
(JSR 168)

Not applicable. The product
first supports portlets in
Version 6.1.

Session Initialization Protocol applications

Table 4. Supported specifications and APIs for SIP applications

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Session Initiation Protocol (SIP) Servlet API (JSR 116)

For a complete list of SIP and SIP proxy standards,
see SIP industry standards compliance.

SIP 1.0 SIP 1.0 Not applicable. The product
first supports SIP in Version
6.1.

Enterprise bean (EJB) applications

Table 5. Supported specifications and APIs for EJB applications

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Enterprise JavaBeans (EJB) specification EJB 3.0

EJB 2.1

EJB 2.0

EJB 3.0 New
for Feature
Pack for EJB
3.0

EJB 2.1

EJB 2.0

EJB 1.1

EJB 2.1 New

EJB 2.0

EJB 1.1

EJB 2.0

EJB 1.1

Java DataBase Connectivity (JDBC) API JDBC 4.0 New

JDBC 3.0

JDBC 2.1 and
Optional
Package API
(2.0)

JDBC 3.0

JDBC 2.1 and
Optional
Package API
(2.0)

JDBC 3.0
New

JDBC 2.1 and
Optional
Package API
(2.0)

JDBC 2.0

18 Feature Pack for SCA Version 1.0.0 information center topics

http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/1.1.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/1.1.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/1.1.html
http://java.sun.com/javase/6/docs/technotes/guides/jdbc/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/products/jdbc/download.html

Table 5. Supported specifications and APIs for EJB applications (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Message Service (JMS) specification JMS 1.1 JMS 1.1 JMS 1.1 New JMS 1.02

Java Persistence API (JPA) specification JPA JPA Not
applicable

Not
applicable

Client applications

Table 6. Supported specifications and APIs for client applications

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Web Start architecture Java Web Start
1.4.2

Java Web Start
1.4.2

Java Web
Start 1.4.2
New

Not
applicable

Web services

Table 7. Supported specifications and APIs for Web services

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Architecture for XML
Binding (JAXB) specification

JAXB 2.1 New JAXB 2.0 New for
Feature Pack for Web
Services

Not applicable Not applicable

Java Architecture for XML
Binding (JAXB) Reference
Implementation Vendor
Extensions Runtime Properties
specification

JAXB 2.1 RI Vendor
Extensions New

JAXB 2.0 RI Vendor
Extensions New for
Feature Pack for Web
Services

Not applicable Not applicable

Java API for XML Processing
(JAXP) specification

1.2

Included in Java SE
6.

1.2

Included in J2SE 5.

1.1

Specification is no
longer available.

1.1

Specification is no
longer available.

Java API for XML Registries
(JAXR) specification

JAXR 1.0 JAXR 1.0 JAXR 1.0 New Not applicable

Java API for XML-based RPC
(JAX-RPC) specification

JAX-RPC 1.1 JAX-RPC 1.1 JAX-RPC 1.1 New JAX-RPC 1.0

Java API for XML Web Services
(JAX-WS) specification

JAX-WS 2.1 New JAX-WS 2.0 New for
Feature Pack for Web
Services

Not applicable Not applicable

Reliable Asynchronous
Messaging Profile (RAMP)

RAMP 1.0 RAMP 1.0 New for
Feature Pack for Web
Services

Not applicable Not applicable

SOAP SOAP 1.1

SOAP 1.2

SOAP 1.1

SOAP 1.2 New for
Feature Pack for Web
Services

SOAP 1.1 SOAP 1.1

SOAP with Attachments API
for Java (SAAJ) Specification

SAAJ 1.2

SAAJ 1.3

SAAJ 1.2

SAAJ 1.3 New for
Feature Pack for Web
Services

SAAJ 1.2 New SAAJ 1.1

Chapter 3. Specifications and API documentation 19

http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/index.jsp
http://java.sun.com/products/jms/docs.html
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jws/index.html
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/webservices/docs/2.0/jaxb/vendorProperties.html
http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/6/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxr.html
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec11
http://java.sun.com/xml/downloads/jaxrpcarchive.html#jaxrpcspec10
http://java.sun.com/webservices/jaxws/index.jsp
http://java.sun.com/webservices/jaxws/index.jsp
http://www.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.ibm.com/developerworks/webservices/library/specification/ws-ramp/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://java.sun.com/webservices/reference/api/index.html#saaj
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/reference/api/index.html#saaj
http://java.sun.com/webservices/saaj/index.jsp
http://java.sun.com/webservices/reference/api/index.html#saaj
http://java.sun.com/webservices/reference/api/index.html#saaj

Table 7. Supported specifications and APIs for Web services (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

SOAP over Java Message
Service (SOAP over JMS)

W3C SOAP over
JMS 1.0 (submission
draft)

SOAP Message Transmission
Optimization Mechanism
(MTOM)

MTOM 1.0 MTOM 1.0 New for
Feature Pack for Web
Services

Not applicable

Streaming API for XML (StAX) StAX 1.0 StAX 1.0 New for
Feature Pack for Web
Services

Not applicable

Universal Description,
Discovery and Integration
(UDDI)

UDDI 3.0 UDDI 3.0 UDDI 3.0 New UDDI 2.0

W3C XML Schema v XML Schema 1.0
v XML Schema Part

1
v XML Schema Part

2

v XML Schema 1.0
v XML Schema Part

1
v XML Schema Part

2

v XML Schema 1.0
v XML Schema Part 1
v XML Schema Part 2

Web Services Addressing
(WS-Addressing)

WS-Addressing 1.0
family of
specifications:

v 1.0 Core

v 1.0 SOAP
Binding

v 1.0 Metadata

WS-Addressing 1.0
family of
specifications:

v 1.0 Core

v 1.0 SOAP Binding

v 1.0 Metadata
(partially
supported)

Not applicable

Web Services Atomic
Transaction (WS-AT)

WS-AT 1.0

WS-AT 1.1 New

WS-AT 1.0 WS-AT 1.0 New Not applicable

Web Services Business Activity
(WS-BA)

WS-BA 1.0

WS-BA 1.1 New

WS-BA 1.0 Not applicable

Web Services Coordination
(WS-COOR)

WS-COOR 1.0

WS-COOR 1.1 New

WS-COOR 1.0 WS-COOR 1.0
New

Not applicable

Web Services Description
Language (WSDL)

WSDL 1.1 WSDL 1.1 WSDL 1.1 WSDL 1.1

Web Services for Java Platform,
Enterprise Edition (Java EE)
(JSR 109)

Prior to Web Services for Java
EE, the specification name was
Web Services for Java 2
Platform, Enterprise Edition
(J2EE).

JSR 109 1.2 New JSR 109 1.1 JSR 109 1.1 New JSR 109 1.0

20 Feature Pack for SCA Version 1.0.0 information center topics

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://schemas.xmlsoap.org/soap/mtom/SOAP11MTOM10.pdf
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/ProgrammersAPI_v2.pdf
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=109

Table 7. Supported specifications and APIs for Web services (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Web Services Interoperability
Organization (WS-I) Basic
Profile

WS-I Basic Profile
1.1

WS-I Basic Profile
1.2 (draft)

WS-I Basic Profile
2.0 (draft)

WS-I Basic Profile 1.1

WS-I Basic Profile 1.2
(draft) New for
Feature Pack for Web
Services

WS-I Basic Profile 2.0
(draft) New for
Feature Pack for Web
Services

WS-I Basic Profile
1.1 New

WS-I Basic Profile
1.0

Web Services-Interoperability
Attachments Profile

WS-I Attachments
1.0

WS-I Attachments
1.0

WS-I Attachments
1.0 New

Not applicable

Web Services Invocation
Framework (WSIF)

WSIF WSIF WSIF WSIF

Web Services Metadata for the
Java Platform (JSR 181)

Web Services
Metadata for the
Java Platform

Web Services
Metadata for the
Java Platform New
for Feature Pack for
Web Services

Not applicable

Web Services Notification
(WS-Notification)

WS-Notification 1.3
family of
specifications:
v

WS-BaseNotification
1.3

v

WS-BrokeredNotification
1.3

v WS-Topics 1.3

WS-Notification 1.3
family of
specifications:
v

WS-BaseNotification
1.3

v

WS-BrokeredNotification
1.3

v WS-Topics 1.3

Not applicable

Web Services Policy (WS-Policy)
specification

Web Services Policy
1.5 New

Web Services
Addressing 1.0 -
Metadata New

Web Services Atomic
Transaction Version
1.0 and Web Services
Atomic Transaction
Version 1.1 New

Web Services
Reliable Messaging
Policy Assertion
Version 1.0 and Web
Services Reliable
Messaging Policy
Assertion Version 1.1
New

WS-SecurityPolicy
1.2 New

Not applicable

Chapter 3. Specifications and API documentation 21

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://www.w3.org/tr/ws-policy/
http://www.w3.org/tr/ws-policy/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

Web Services Reliable
Messaging

WS-ReliableMessaging
1.0

WS-ReliableMessaging
1.1

WS-MakeConnection
Version 1.0 New

WS-ReliableMessaging
1.0 and
WS-ReliableMessaging
1.1. New for Feature
Pack for Web
Services

Not applicable

Web Services Resource
Framework (WSRF)

WSRF 1.2 WSRF 1.2 New Not applicable

XML-binary Optimized
Packaging (XOP)

XOP 1.0 XOP 1.0 New for
Feature Pack for
Web Services

Not applicable

Service Component Architecture

The Feature Pack for Service Component Architecture (SCA) supports the
following specifications. The feature pack supports most sections of the
specifications, although some sections are not supported. See Chapter 4,
“Unsupported SCA specification sections,” on page 29.

Table 8. Supported specifications and APIs for SCA applications

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

SCA Assembly Model
specification

SCA Assembly
Model 1.00 New for
Feature Pack for
SCA Version 1.0.0

Not applicable Not applicable Not applicable

SCA Policy Framework
specification

SCA Policy
Framework 1.00
New for Feature
Pack for SCA
Version 1.0.0

Not applicable Not applicable Not applicable

SCA Transaction Policy
specification

SCA Transaction
Policy 1.00 New for
Feature Pack for
SCA Version 1.0.0

Not applicable Not applicable Not applicable

SCA Java Common Annotations
and APIs specification

SCA Java Common
Annotations and
APIs 1.00 New for
Feature Pack for
SCA Version 1.0.0

Not applicable Not applicable Not applicable

SCA Java Component
Implementation specification

SCA Java
Component
Implementation 1.00
New for Feature
Pack for SCA
Version 1.0.0

Not applicable Not applicable Not applicable

SCA Web service binding
specification

SCA Web service
binding 1.00 New
for Feature Pack for
SCA Version 1.0.0

Not applicable Not applicable Not applicable

22 Feature Pack for SCA Version 1.0.0 information center topics

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.0-spec-os-01.html
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications

Table 8. Supported specifications and APIs for SCA applications (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

SCA EJB Session Bean Binding
specification

SCA EJB Session
Bean Binding 1.00
New for Feature
Pack for SCA
Version 1.0.0

Supports EJB 2.1
and 3.0 modules.

Not applicable Not applicable Not applicable

Service integration

Table 9. Supported specifications and APIs for service integration

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java DataBase Connectivity (JDBC) API JDBC 4.0 New JDBC 3.0 JDBC 3.0
New

JDBC 2.0

Data access resources

Table 10. Supported specifications and APIs for data access resources

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java DataBase Connectivity (JDBC) API JDBC 4.0 New JDBC 3.0 JDBC 3.0
New

JDBC 2.0

Java EE Connector Architecture (JCA) resource
adapter

JCA 1.5 JCA 1.5 JCA 1.5 New JCA 1.0

Service Data Objects (SDO) specification SDO 1.0 SDO 1.0 SDO 1.0 New Not
applicable

Messaging resources

Table 11. Supported specifications and APIs for messaging resources

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Message Service (JMS) JMS 1.1 JMS 1.1 JMS 1.1 New JMS 1.0.2

Java EE Connector Architecture (JCA) resource adapter JCA 1.5 JCA 1.5 JCA 1.5 New JCA 1.0

Mail, URLs, and other Java EE resources

Table 12. Supported specifications and APIs for mail, URLs, and other Java EE resources

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

JavaMail API documentation (JSR 919) JavaMail 1.4
New

JavaMail 1.3 JavaMail 1.3
New

JavaMail 1.2

URL API documentation URL 1.4.2 URL 1.4.2 URL 1.4.2
New

1.2

Specification
is no longer
available.

JavaBeans Activation Framework (JAF) Specification JAF 1.1 New JAF 1.0.2 JAF 1.0.2
New

JAF 1.0

Chapter 3. Specifications and API documentation 23

http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications
http://java.sun.com/javase/6/docs/technotes/guides/jdbc/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/javase/6/docs/technotes/guides/jdbc/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/products/jdbc/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/index.html
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://www-128.ibm.com/developerworks/library/specification/ws-sdo/
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/docs.html.
http://java.sun.com/products/jms/
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javadocs/index.html
http://java.sun.com/products/javamail/javamail-1_2.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html
http://java.sun.com/products/javabeans/jaf/index.jsp
http://java.sun.com/products/archive/javabeans/jaf102.html
http://java.sun.com/products/archive/javabeans/jaf102.html
http://java.sun.com/products/javabeans/glasgow/JAF-1.0.pdf

Table 12. Supported specifications and APIs for mail, URLs, and other Java EE resources (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

W3C Architecture - Naming and Addressing: URIs,
URLs

W3C Naming and Addressing applies to these versions.

Security

Table 13. Supported specifications and APIs for security

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java 2 Security Manager Java 2 Security
Manager 1.5

Java 2
Security
Manager 1.5

Java 2
Security
Manager 1.4
New

Java 2
Security
Manager 1.3

Java Authentication and Authorization Service (JAAS) JAAS 2.0 applies to these versions.

Java Authorization Contract for Containers (JACC) JACC 1.1 New JACC 1.0 JACC 1.0
New

Not
applicable

Common Secure Interoperability Version 2 (CSIv2)
specification

This is an Object Management Group (OMG)
CORBA/IIOP specification.

CSI 2.0 applies to these versions.

Secure Sockets Layer (SSL) configuration

The product uses Java Secure Sockets Extension (JSSE)
as the SSL implementation for secure connections. JSSE
is part of the Java 2 Standard Edition (J2SE)
specification and is included in the IBM
implementation of the Java Runtime Extension (JRE)
specification.

JSSE 5.0 JSSE 5.0 New JSSE 1.0.3 JSSE 1.0.3

Java Generic Security Service (JGSS)

Use JGSS with the Kerberos Network Authentication
Service, Version 5

JGSS 1.0.1 applies to these versions.

The Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO)

SPNEGO 1.0 applies to these versions.

Java Cryptographic Extension (JCE) specification JCE 1.0 applies to these versions.

Java Certification Path (CertPath) API CertPath 1.1 CertPath 1.1
New

CertPath 1.0

CertPath 1.0 CertPath 1.0

Web services security

Table 14. Supported specifications and APIs for Web services security

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Canonical XML Canonical XML 1.0 applies to these versions.

Decryption Transform for XML Signature Decryption Transformation for XML Signature applies to
these versions..

Exclusive XML Canonicalization Exclusive XML Canonicalization 1.0 applies to these
versions.

24 Feature Pack for SCA Version 1.0.0 information center topics

http://www.w3.org/Addressing/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt
http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
http://www.ietf.org/rfc/rfc2478.txt
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/jceDocs/api_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/142/secguides/certpathDocs/API_users_guide.html
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xmlenc-decrypt
http://www.w3.org/TR/xml-exc-c14n/

Table 14. Supported specifications and APIs for Web services security (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

OASIS Web Services Security: SOAP Message Security
(WS-Security)

WS-Security
1.0

WS-Security
1.1

WS-Security
1.0

WS-Security
1.1 New for
Feature Pack
for Web
Services

WS-Security
1.0

WS-Security
draft 13

OASIS Web Services Security: Kerberos Token Profile Kerberos
Token Profile
1.1 New

Not applicable

OASIS Web Services Security: Username Token Profile Username
Token Profile
1.0

Username
Token Profile
1.1

Username
Token Profile
1.0

Username
Token Profile
1.1 New for
Feature Pack
for Web
Services

Username
Token
Profile 1.0
New

Username
Token
Profile Draft
2

OASIS Web Services Security: X.509 Token Profile X.509 Token
Profile 1.0

X.509 Token
Profile 1.1

X.509 Token
Profile 1.0

X.509 Token
Profile 1.1
New for
Feature Pack
for Web
Services

X.509 Token
Profile 1.0
New

Not
applicable

Web Services Interoperability Organization (WS-I)
Basic Security Profile

WS-I Basic
Security
Profile 1.0

WS-I Basic
Security
Profile 1.1
New

WS-I Basic
Security
Profile 1.0

Not applicable

Web Services Interoperability Organization (WS-I)
Reliable Secure Profile

WS-I Reliable
Secure Profile
1.0 (draft)

WS-I Reliable
Secure Profile
1.0 (draft)
New for
Feature Pack
for Web
Services

Not applicable

Web Services Secure Conversation
(WS-SecureConversation)

OASIS
WS-SecureConversation
1.0
(submission
draft)

OASIS
WS-SecureConversation
1.3 New

OASIS
WS-SecureConversation
1.0 (draft
submission)
New for
Feature Pack
for Web
Services

Not applicable

Chapter 3. Specifications and API documentation 25

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf
http://www.oasis-open.org/committees/download.php/15978/oasis-wssx-ws-secureconversation-1.0.pdf

Table 14. Supported specifications and APIs for Web services security (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Web Services Trust OASIS
WS-Trust
1.1(submission
draft)

OASIS
WS-Trust 1.3
New

OASIS
WS-Trust 1.1
New for
Feature Pack
for Web
Services

Not applicable

XML Signature Syntax and Processing XML Signature Syntax and Processing applies to these
versions.

XML Encryption Syntax and Processing XML Encryption Syntax and Processing applies to these
versions.

Naming and directory

Table 15. Supported specifications and APIs for naming and directory

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Naming and Directory Interface (JNDI)
Specification

See also JNDI support.

JNDI on Java
SE 6 New

JNDI on J2SE applies to these versions.

Common Object Request Broker: Architecture and
Specification (CORBA) specification

This is an Object Management Group (OMG)
Interoperable Naming (CosNaming) specification.

CORBA 2.4 applies to these versions.

Interoperable Naming Service specification

This is an OMG CosNaming specification.

Interoperable Naming Service

Naming Service specification

This is an OMG CosNaming specification.

Naming Service applies to these versions.

Object Request Broker

The Object Request Broker (ORB) component follows the Common Object Request
Broker Architecture (CORBA) specifications supported by Java 2 Platform,
Standard Edition (J2SE). The Object Management Group (OMG) produces the
specifications.

Versions 6.1 and later use the J2SE 5.0 specifications that are listed in Official
Specifications for CORBA support in J2SE 5.0 at http://java.sun.com/j2se/1.5.0/
docs/guide/idl/compliance.html.

Versions 5.1.x and 6.0.x use the J2SE 1.4 specifications that are listed in Official
Specifications for CORBA support in J2SE 1.4 at http://java.sun.com/j2se/1.4.2/
docs/api/org/omg/CORBA/doc-files/compliance.html.

26 Feature Pack for SCA Version 1.0.0 information center topics

http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://schemas.xmlsoap.org/ws/2005/02/trust/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://java.sun.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://java.sun.com/javase/6/docs/api/index.html?javax/naming/package-summary.html
http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://java.sun.com/j2se/1.5.0/docs/guide/idl/compliance.html
http://java.sun.com/j2se/1.5.0/docs/guide/idl/compliance.html
http://java.sun.com/j2se/1.4.2/docs/api/org/omg/CORBA/doc-files/compliance.html
http://java.sun.com/j2se/1.4.2/docs/api/org/omg/CORBA/doc-files/compliance.html

Table 16. Supported specifications and APIs for ORB

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Common Object Request Broker Architecture (CORBA)
specifications

CORBA 2.3.1 applies to these versions.

Revised IDL to Java language mapping Revised IDL to Java language mapping applies to these
versions.

New IDL to Java Mapping Chapter New IDL to Java Mapping Chapter applies to these
versions.

Updated Java to IDL Mapping specification Updated Java to IDL Mapping applies to these versions.

Interoperable Naming Service revised chapters Interoperable Naming Service revised chapters applies to
these versions.

Object Reference Template Final Adopted specification Object
Reference
Template Final
Adopted
specification

Object
Reference
Template
Final
Adopted
specification
New

Not applicable

Portable Interceptors specification Not applicable Not
applicable

Portable Interceptors
specification

Transactions

Table 17. Supported specifications and APIs for transactions

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

CORBA Object Transaction Service (OTS) specification OTS 1.4 OTS 1.4 OTS 1.4
New

OTS 1.2

Java EE Connector Architecture (JCA) resource adapter JCA 1.5 JCA 1.5 JCA 1.5 New JCA 1.0

Java Transaction API (JTA) specification JTA 1.1 New JTA 1.0.1B JTA 1.0.1B
New

JTA 1.0.1

Java Transaction Service (JTS) specification JTS 1.0 applies to these versions.

Web Services Atomic Transaction (WS-AT) WS-AT 1.0

WS-AT 1.1
New

WS-AT 1.0 WS-AT 1.0
New

Not
applicable

Web Services Business Activity (WS-BA) WS-BA 1.0

WS-BA 1.1
New

WS-BA 1.0 Not applicable

Web Services Coordination (WS-COOR) WS-COOR 1.0

WS-COOR 1.1
New

WS-COOR
1.0

WS-COOR
1.0 New

Not
applicable

WebSphere extensions

Table 18. Supported specifications and APIs for WebSphere extensions

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

ActivitySession service and Last Participant Support

J2EE Activity Service for Extended Transactions (JSR
95)

JSR 95 applies to these versions.

Chapter 3. Specifications and API documentation 27

http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/00-01-08
http://www.omg.org/cgi-bin/doc?ptc/00-11-03
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-08-31
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?ptc/2001-03-04
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.omg.org/cgi-bin/doc?formal/01-05-02
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.jcp.org/en/jsr/detail?id=95

Table 18. Supported specifications and APIs for WebSphere extensions (continued)

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java Transaction API (JTA) specification JTA 1.1 New JTA 1.0.1B
New

JTA 1.0.1 JTA 1.0.1

Internationalization (i18n)

J2SE internationalization documentation J2SE
Internationalization
5.0

J2SE
Internationalization
5.0 New

J2SE
Internationalization
1.4.2

J2SE
Internationalization
1.4.2

Administration

Table 19. Supported specifications and APIs for administration

Specification or API Version 7.0 Version 6.1 Version 6.0 Version 5.1

Java EE Application Deployment specification Java EE
Deployment
1.2 New

J2EE
Deployment
1.1

J2EE
Deployment
1.1 New

Not
applicable

J2EE Extension Mechanism Architecture J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2

J2EE
Extension
Mechanism
Architecture
1.4.2 New

Not
applicable

Java Management Extensions (JMX) JSR-000003 JMX 1.2 JMX 1.2 JMX 1.2
New

JMX 1.0

Java Management Extensions (JMX) Remote API JMX Remote
API 1.0

JMX Remote
API 1.0 New

Not applicable

Java Virtual Machine (JVM) specification

See WebSphere Application Server detailed system
requirements.

JVM 6 New JVM 5.0 New JVM 1.4.2 JVM 1.4.2

Logging API specification (JSR 47) Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0

Logging API
specification
(JSR 47) 1.0
New

Not
applicable

Related information

WebSphere Application Server detailed system requirements

28 Feature Pack for SCA Version 1.0.0 information center topics

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/en/jsr/detail?id=3
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://java.sun.com/javase/6/docs/
http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/index.html
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

Chapter 4. Unsupported SCA specification sections

This topic lists the sections of Service Component Architecture (SCA) specifications
not supported in Feature Pack for SCA.
v SCA Assembly Model
v SCA Policy Framework
v SCA Transaction Policy
v SCA Java Common Annotations and APIs
v SCA Web Service Binding
v SCA EJB Session Bean Binding

The following tables list the unsupported sections of the indicated SCA
specifications. The SCA Java Component Implementation specification is fully
supported, so does not have a list of unsupported sections.

SCA Assembly Model

Table 20. Unsupported sections of the SCA Assembly Model specification

Section Not supported in Feature Pack for SCA v1.0

1.3 Component v Component attribute: constrainingType

v A component element has zero implementation elements

v Reference attribute wiredByImpl

1.4.1 Component Type constrainingType

1.5 Interface WSDL 2.0 interfaces are not supported.

1.5.2 Bidirectional
Interfaces

Callback is not supported for EJB binding.

1.5.3 Conversational
Interfaces

Conversation is not supported.

1.5.4 SCA-Specific
Aspects for WSDL
Interfaces

Conversation is not supported.

1.6 Composite v Composite Attribute: local (optional) – whether all the
components within the composite must all run in the same
operating system process. local="true" means that all the
components must run in the same process. local="false",
which is the default, means that different components within
the composite might run in different operating system
processes. Feature Pack for SCA behavior is that, local or not,
all components within the composite are deployed on the
same Java virtual machine (JVM).

v constrainingType

© Copyright IBM Corp. 2009 29

Table 20. Unsupported sections of the SCA Assembly Model specification (continued)

Section Not supported in Feature Pack for SCA v1.0

1.6.2 Reference v Composite reference attribute: wiredByImpl

v Autowire only supported for the components within the same
composite

v The bindings defined on the component reference are still in
effect for local wires within the composite that have the
component reference as their source. Feature Pack for SCA
limits the function wiring reference to outside service using
binding specific endpoint URI (or using reference target).
Wiring to local componentService is only supported for
default binding.

1.6.3 Service The bindings defined on the component service are still in effect
for local wires within the composite that target the component
service. Feature Pack for SCA limits this function. Local
component service can only be wired through default binding
from a local component reference.

1.6.4 Wire Wire is not supported.

1.6.8 ConstrainingType ConstrainingType

1.7.2.1 Constructing
Hierarchical URIs

For the default binding, the Feature Pack for SCA does not
support the @uri attribute on the service-side binding. In other
words, using a non-default URI on a service exposed over the
default binding is not supported. Specifically, the @uri attribute
should not be used on a <binding.sca> element that is a child of
a component <service> element.

1.10.2 Contributions OSGi bundle as contribution

1.10.2.2 SCA
Contribution Metadata
Document

sca-contribution-generated.xml

1.10.4.2 add Deployment
Composite & update
Deployment Composite

Update Deployment Composite.supported through the
business-level application updateAssets.command.

SCA Policy Framework

Table 21. Unsupported sections of the SCA Policy Framework specification

Section Not supported in Feature Pack for SCA v1.0

1 Policy Framework v @policySets (except for authorization policy)

v definitions.xml (except for authorization policy)

v callbacks

v <operation> element

v componentType file

1.9 Miscellaneous
Intents

The following miscellaneous intents are not supported:

v SOAP

v JMS

v NoListener

v BP.1_1

30 Feature Pack for SCA Version 1.0.0 information center topics

SCA Transaction Policy

Table 22. Unsupported sections of the SCA Transaction Policy specification

Section Not supported in Feature Pack for SCA v1.0

<operation> element

SCA Java Common Annotations and APIs

Table 23. Unsupported sections of the SCA Java Common Annotations and APIs
specification

Section Not supported in Feature Pack for SCA v1.0

1 Common Annotations,
APIs, Client and
Implementation Model

Conversation is not supported

1.2.4.2 - 1.2.4.3
Implementation
Metadata

@SCOPE("COMPOSITE") is not supported in the clustered
environment, which means that ″All service requests are
dispatched to the same implementation instance for the lifetime
of the containing composite″ is not supported in the clustered
environment.

SCA Web Service Binding

Table 24. Unsupported sections of the SCA Web service binding specification

Section Not supported in Feature Pack for SCA v1.0

2.1 Web Service Binding
Schema

v Line 47: wsdl.endpoint is not supported in
/binding.ws/@wsdlElement

v Line 55: wsdlLocation is not supported in
/binding.ws/@wsdli:wsdlLocation

2.1.1 Endpoint URI
resolution

v Lines 71-79: Ordering of implementation in Feature Pack for
SCA is shown below:

ordering for reference side: reference target-> location
in wsdl -> EndPointReference -> binding.ws uri

ordering for service side: binding.ws name -> binding.ws
uri -> implicit (component/service)

v Line 73: URI in referenced WSDL (support limited to reference
side)

v Line 76: Explicit URI in binding.ws (support limited to
reference side as absolute URI, on service side as relative URI
(contextRoot))

v Line 78: Implicit URI in binding.ws (support limited to service
only)

Chapter 4. Unsupported SCA specification sections 31

SCA EJB Session Bean Binding

Table 25. Unsupported sections of the SCA EJB Session Bean Binding specification

Section Not supported in Feature Pack for SCA v1.0

2.1 Session Bean
Binding Schema

/binding.ejb/@session-type

v Since Feature Pack for SCA does not support conversations,
although session-type is set to ″stateful″, the service still
behaves as stateless.

/binding.ejb/@uri

v Line 91: Feature Pack for SCA only supports the following
formats:

– For EJB2

corbaname:iiop:<hostName>:<port>/
NameServiceServerRoot#ejb/
sca/ejbbinding/<componentName>/<serviceName>

– For EJB3

corbaname:iiop:<hostName>:
<port>/NameServiceServerRoot#ejb/sca/ejbbinding/
<componentName>/<serviceName>#
<serviceInterfaceName>Remote or corbaname:iiop:
<hostName>:
<port>/NameServiceServerRoot#
<serviceInterfaceName>Remote

v Line 97: corbaname:rir:#ejb/MyHome

2.3.1 Conversational
Nature of Stateful
Session Beans

Lines 197-229

32 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 5. Developing Service Component Architecture (SCA)
services and applications

Developing SCA services from existing WSDL files
You can develop an Service Component Architecture (SCA) service implementation
when starting with an existing Web Services Description Language (WSDL) file.

Before you begin

Locate the WSDL file that defines the SCA service that you want to implement.
You can develop a WSDL file or obtain one from an existing SCA service. The
WSDL file describes your service interface as a WSDL portType and includes XSD
schema definitions of your business data.

About this task

There are two ways to develop an SCA service implementation:
v Top-down development starting with an existing Web Services Description

Language (WSDL)
v Bottom-up development starting from existing Java code that uses Java

Architecture for XML Binding (JAXB) data types

The top-down development approach takes advantage of the interoperable
XML-based WSDL, and XSD interface and data definitions.

This task describes the steps when using the top-down development approach to
develop an SCA service implementation in Java when starting from a WSDL
interface and XSD data definitions.

Note: It is a best practice to use the top-down methodology to develop SCA
service implementations because this approach leverages the capabilities of
the XML interface description and provides greater ease in interoperability
across platforms, bindings, and programming languages.

Use the wsimport command-line tool to generate the Java representations of your
business service interfaces and your business data when an existing WSDL file
describes the desired SCA service interface as a WSDL portType, along with XSD
schema definitions of your business data. The wsimport tool generates Java classes
that you can use to write a Java implementation that reflects your business logic.
The result is a Plain Old Java Object (POJO) implementation of the generated
interface using the generated JAXB data types. By adding the @Service annotation
to the Java implementation, the annotation defines the Java implementation as an
SCA service implementation.

The generated annotated Java classes that correspond to your business data contain
all the necessary information that the JAXB runtime environment requires to build
and parse the XML for marshaling and unmarshaling. In other words, the data
programming model is limited to object instantiation and the use of getter and
setter methods, and you do not need to write code to convert the data between the
XML wire format and the Java application.

© Copyright IBM Corp. 2009 33

Note: The Feature Pack for SCA uses XML marshalling as defined by JAXB to
marshal and unmarshal data across a remotable interface. If you start with a
remotable Java interface for your implementation rather than starting with a
WSDL portType interface, be careful when selecting the input and output
Java data types and ensure you understand which data is preserved across
JAXB marshalling and unmarshalling. However, when authoring an
implementation on a local interface, you can use any Java type because local
interfaces use pass-by-reference semantics, which implies no data is copied.

Note: The Feature Pack for Service Component Architecture (SCA) does not
support using a WSDL file when the Java mapping requires holder classes.
The Feature Pack for SCA uses the JAX-WS specification to define the
mapping between WSDL files and Java, including the mapping between a
WSDL portType object and a Java interface. When you have WSDL portType
objects with operations that use in-out parameters or operations that use
multiple output parameters, the JAX-WS specification uses instances of the
javax.xml.ws.Holder class in the mapping of the WSDL portType object to a
Java interface. When using the Feature Pack for SCA, do not use a WSDL
file when the Java mapping requires holder classes. Instead, use a WSDL file
that does not map to holder classes.

When you develop an SCA service when starting from an existing WSDL file, the
interface is considered a remotable interface. The remotable interface uses
pass-by-value semantics, which implies your data is copied.

You can use and deploy the resulting Java implementation as an SCA component
that is defined in a composite definition. The composite definition defines SCA
artifacts, such as service references, imports, and exports. The component is
defined in terms of development artifacts such as the WSDL, the Java
implementation, and bindings that are defined during deployment.
1. Use the wsimport command-line tool to develop SCA Java representations of

your business service interfaces and your business data.
The wsimport tool processes a WSDL file and generates Java classes and the
JAXB data types that are used to create the SCA service.
It is important to include all generated classes within your application archive,
including the classes that you might not directly reference in your Java
implementation. Even for the case where you have simple interfaces that pass
simple parameter types like String and Integer, or where no JAXB data types
are necessary, be sure to include all classes, including indirect references, in this
code generation step.
v Run the wsimport command to generate the artifacts.
The wsimport tool is located in the app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat -keep wsdl_URL

app_server_root/bin/wsimport.sh -keep wsdl_URL

app_server_root/bin/wsimport -keep wsdl_URL

The -keep option specifies to keep the generated Java source files and the
compiled class files.

34 Feature Pack for SCA Version 1.0.0 information center topics

2. Locate the Java interface that directly corresponds to your WSDL portType
from the generated artifacts. The interface is generated with an @WebService
annotation, and it is an interface and not a class file.

3. Complete the implementation of your SCA service. Write a Java
implementation of the generated Java interface that reflects your business logic.
The Java implementation is a Plain Old Java Object (POJO) implementation of
the generated interface using the generated JAXB data types. This
implementation is annotated based on the SCA Java component implementation
programming model.

4. Annotate the Java implementation. Add the @Service annotation to the Java
implementation to specify this is an SCA service. When you complete this step,
you have created an SCA component implementation.

5. Define a component within a composite definition using this component
implementation. In the definition of your composite, define a component that
refers back to the original WSDL portType interface and the SCA
implementation.
a. Under the <component> element, create a <implementation.java> child

element that refers to the class name of your POJO component
implementation.

b. Under the <component> element, create a <service> child element.
c. Under the <service> element, create a <interface.wsdl ..> element that

refers back to the WSDL portType. The @name attribute of the <service>
element must match the unqualified class name of your Java interface.

You now have a component with a well-defined component name and service
name with a well-defined interface.
In addition to these aspects of your component definition described by these
development procedures, there are other aspects of defining a component.
These aspects include adding bindings, configuring property values, defining
intents, attaching policy sets, and resolving references. You can create multiple
components using this same implementation, but all component definitions are
the same with respect to the <implementation.java>, <interface.wsdl> and
<service> elements described in this step.

6. Deploy the SCA service by creating the SCA business level application from a
deployable composite.
In the previous step, you defined a component providing your SCA service
within a composite definition. This composite is either a deployable composite,
or one that is used recursively as a composite implementation of a component
in a higher-level composite. To learn how to deploy the SCA service, read about
deploying and administering business-level applications.

Results

You have created an SCA implementation by starting with an existing WSDL file.

Example

The following example illustrates using an existing WSDL interface to generate a
Java interface that is used to create a Java implementation that is an SCA service.
1. Copy the following sample account.wsdl WSDL file to a temporary directory.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:account="http://www.myaccount.com/account"

Chapter 5. Developing Service Component Architecture (SCA) services and applications 35

targetNamespace="http://www.myaccount.com/account"
name="AccountService">

<wsdl:types>
<schema targetNamespace="http://www.myaccount.com/account"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:account="http://www.myaccount.com/account">

<element name="computeAccountAverage">
<complexType>

<sequence>
<element name="account" type="account:Account" />
<element name="days" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="computeAccountAverageResponse">

<complexType>
<sequence>

<element name="return" type="xsd:float" />
</sequence>

</complexType>
</element>

<complexType name="Account">
<attribute name="accountNumber" type="xsd:int" />
<attribute name="accountID" type="xsd:string" />
<attribute name="accountType" type="xsd:string" />
<attribute name="balance" type="xsd:float" />

</complexType>

</schema>
</wsdl:types>

<wsdl:message name="computeAccountAverageRequest">
<wsdl:part element="account:computeAccountAverage"

name="parameters" />
</wsdl:message>

<wsdl:message name="computeAccountAverageResponse">
<wsdl:part element="account:computeAccountAverageResponse"

name="parameters" />
</wsdl:message>

<wsdl:portType name="AccountService">
<wsdl:operation name="computeAccountAverage">

<wsdl:input message="account:computeAccountAverageRequest" name="accountReq"/>
<wsdl:output message="account:computeAccountAverageResponse" name="accountResp"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="AccountServiceSOAP" type="account:AccountService">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="computeAccountAverage">

<soap:operation
soapAction="computeAccountAverage" />

<wsdl:input name="accountReq">
<soap:body use="literal" />

</wsdl:input>
<wsdl:output name="accountResp">

<soap:body use="literal" />
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

36 Feature Pack for SCA Version 1.0.0 information center topics

<wsdl:service name="AccountWSDLService">
<wsdl:port binding="account:AccountServiceSOAP"

name="AccountServicePort">
<soap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

2. Run the wsimport command from the app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat -keep -verbose account.wsdl

Run the wsimport command,
app_server_root/bin/wsimport.sh -keep -verbose account.wsdl

app_server_root/bin/wsimport -keep -verbose account.wsdl

After generating the template files using the wsimport command, the following
Java files are generated:
com/myaccount/account/Account.java
com/myaccount/account/AccountService.java
com/myaccount/account/AccountWSDLService.java
com/myaccount/account/ComputeAccountAverage.java
com/myaccount/account/ComputeAccountAverageResponse.java
com/myaccount/account/ObjectFactory.java
com/myaccount/account/package-info.java

3. Identify the generated Java interface from the generated classes.
//
// Generated By:JAX-WS RI IBM 2.1.1 in JDK 6 (JAXB RI IBM JAXB 2.1.3 in JDK 1.6)
//
package com.myaccount.account;
...
@WebService(name = "AccountService", targetNamespace = "http://www.myaccount.com/account")
...
public interface AccountService {

/**
*
* @param days
* @param account
* @return
* returns float
*/
@WebMethod(action = "computeAccountAverage")
@WebResult(targetNamespace = "")
@RequestWrapper(localName = "computeAccountAverage", targetNamespace = "http://www.myaccount.com/account",

className = "com.myaccount.account.ComputeAccountAverage")

@ResponseWrapper(localName = "computeAccountAverageResponse", targetNamespace = "http://www.myaccount.com/account",
className = "com.myaccount.account.ComputeAccountAverageResponse")

public float computeAccountAverage(
@WebParam(name = "account", targetNamespace = "")
Account account,
@WebParam(name = "days", targetNamespace = "")
int days);

}

This code example is a Java interface, not merely a Java class. The @WebService
annotation is present in this Java interface. It is important to know that this
example is not the same as the generated @WebServiceClient class,
com.myaccount.account.AccountWSDLService, which is not an interface and is
not needed in your SCA application.

4. Complete the implementation of your SCA service by writing a Java
implementation of this generated Java interface. Be sure to add the SCA
@Service annotation to the implementation.

Chapter 5. Developing Service Component Architecture (SCA) services and applications 37

package com.myaccount.account;
import org.osoa.sca.annotations.Service;
@Service(AccountService.class)
public class AccountServiceImpl implements AccountService

public float computeAccountAverage(Account account, int days) {

// Write your business logic here. Account is a
// generated JAXB type and so use the JAXB programming model.
// For example, object instantation is performed using
// the ObjectFactory.createAccount()) method.

}
}

By completing this step, you have completed a component implementation. Not
only is this a Java implementation of a Java interface, but the @Service
annotation signifies that this is a Java component implementation of an SCA
service interface. The implementation class itself does not need all the JAX-WS
or JAXB annotations. The runtime environment loads the appropriate
annotations from the generated classes that the implementation refers to.

5. Create a component using the component implementation. You create a
component definition in a composite that references the original WSDL
portType interface and the SCA implementation. In SCA, a component is a
configured instance of a component implementation. There are other aspects of
defining a component that are not shown here such as configuring bindings,
configuring property values, defining intents, attaching policy sets, and
resolving references. Shown here are the aspects of component creation that are
common for all component definitions using the implementation developed in
this example. This example also includes bindings that you can modify or omit
for other components using this component implementation.

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://account.customer"

name="accountComposite">
<component name="BankingComponent">

<implementation.java class="com.myaccount.account.AccountServiceImpl"/>

<!-- The @name value matches the contents of the @Service which in turn
comes from the WSDL portType. -->

<service name="AccountService">

<!-- This statement specifies the QName of the WSDL portType,
“http://www.myaccount.com/account#AccountService” in the syntax as
illustrated in the interface.wsdl statement. -->

<interface.wsdl interface="http://www.myaccount.com/account#wsdl.interface(AccountService)" />
<binding.ws/>

<!-- This example uses the SCA Web service binding. However, it does not matter which SCA binding
you choose. -->

</service>
</component>

</composite>

6. After your component is defined as part of a deployable composite, either
directly or recursively through use of one or more layers of components with
composite implementation, you are ready to deploy the SCA service by creating
an SCA business level application.

Developing SCA services with existing Java code
You can develop an Service Component Architecture (SCA) service implementation
when starting with an existing Java application.

38 Feature Pack for SCA Version 1.0.0 information center topics

About this task

There are two ways to develop an SCA service implementation:
v Top-down development starting with an existing Web Services Description

Language (WSDL)
v Bottom-up development starting from existing Java code that uses Java

Architecture for XML Binding (JAXB) data types

The bottom-up development approach provides a simplified way to begin
developing SCA services for the Java developer that does not desire to work with
WSDL or XML schema (XSD) authoring or when building new SCA services that
expose existing legacy implementations with Java interfaces.

The top-down development approach takes advantage of the interoperable
XML-based WSDL, and XSD interface and data definitions.

This task describes the steps when using the bottom-up development approach to
develop an SCA service implementation when starting with Java.

When using the bottom-up development methodology, begin by writing a Java
interface and implementation that describes the desired business logic. This
implementation is then packaged into an application archive file such as a Web
application archive (WAR) file or a Java archive (JAR) file that is subsequently is
used by an SCA component that is configured with deployment information
containing the bindings when the SCA application is deployed.

Note: It is a best practice to use the top-down methodology to develop SCA
service implementations because this approach leverages the capabilities of
the XML interface description and provides a greater ease in interoperability
across platforms, bindings, and programming languages. To learn more
about using the top-down methodology, read about developing SCA services
from existing WSDL files.

Note: The Feature Pack for SCA uses XML marshalling as defined by JAXB to
marshal and unmarshal data across a remotable interface. If you start with a
remotable Java interface for your implementation rather than starting with a
WSDL portType interface, be careful when selecting the input and output
Java data types and ensure you understand which data is preserved across
JAXB marshalling and unmarshalling. However, when authoring an
implementation on a local interface, you can use any Java type because local
interfaces use pass-by-reference semantics, which implies no data is copied.

Note: The data marshalling and unmarshalling that is used to instantiate the
copying of data over remotable interfaces is defined by the JAXB
specification rather than by Java serialization or the java.io.Serializable or
java.io.Externalizable interfaces. Because of this behavior, certain existing
Java types are not suitable for use on remotable interfaces, as these types are
not serialized using Java serialization. For data types that are not annotated,
the class is introspected and its Java properties determine the data that is
preserved in the copy. For data types that take advantage of JAXB
annotations, you can customize the mapping of Java classes to XSD types
and of Java instances to XML documents. Custom Java serialization routines
such as the readObject() or writeObject() are not applicable in this scenario.
The SCA runtime environment takes an XML centric view of the business

Chapter 5. Developing Service Component Architecture (SCA) services and applications 39

data and leverages the JAXB standards to define the mappings between the
Java programming model and the XML data format on the wire.

1. Access the existing Java interface that you want to expose as an SCA service.
2. Determine if you are using a local or a remotable interface.

v If you are using a remotable interface, add the @Remotable annotation to the
Java interface. The input and output Java data types on the remotable
interface use pass-by-value semantics which implies your data is copied
using XML serialization as defined by JAXB.

3. Complete the implementation of your SCA service. Write a Java
implementation of the generated Java interface that reflects your business logic.
The Java implementation is a Plain Old Java Object (POJO) implementation of
the original interface.

4. Annotate the Java implementation. Add the @Service annotation to the Java
implementation to specify this is an SCA service. When you complete this step,
you have created an SCA component implementation.

5. Define a component within a composite definition using this component
implementation. In the deinition of your composite, define a component that
refers back to the original Java interface and the SCA implementation.
a. Under the <component> element, create a <implementation.java> child

element that refers to the class name of your POJO component
implementation.

b. Under the <component> element, create a <service> child element.
c. Under the <service> element, create a <interface.java ..> element that

refers back to the original Java interface. The @name attribute of the
<service> element must match the unqualified class name of your Java
interface.

You now have a component with a well-defined component name and service
name with a well-defined interface.
In addition to these aspects of your component definition described by these
development procedures, there are other aspects of defining a component.
These aspects include adding bindings, configuring property values, defining
intents, attaching policy sets, and resolving references. You can create multiple
components using this same implementation, but all component definitions are
the same with respect to the <implementation.java>, <imterface.java> and
<service> elements described in this step.

6. Deploy the SCA service by creating the SCA business level application from a
deployable composite.
In the previous step, you defined a component providing your SCA service
within a composite definition. This composite is either a deployable composite,
or one that is used recursively as a composite implementation of a component
in a higher-level composite. To learn how to deploy the SCA service, read about
deploying and administering business-level applications.

Results

You have developed an SCA service using the bottom-up methodology by starting
with an existing Java interface or implementation.

Example

The following example illustrates how to create a component implementation of a
remotable SCA service interface starting from existing Java code:

40 Feature Pack for SCA Version 1.0.0 information center topics

1. Start with Java interface myintf.NameGetter using type mypkg.Person.
//NameGetter.java
package myintf;
import mypkg.Person;
public interface NameGetter {

public String getName(Person p);
}

//Person.java

package mypkg;

public class Person {

protected String firstName;
protected String lastName;

public String getFirstName() {
return firstName;

}

public void setFirstName(String value) {
this.firstName = value;

}

public String getLastName() {
return lastName;

}

public void setLastName(String value) {
this.lastName = value;

}
}

In this example, the mypkg.Person class is well-suited for use over a remotable
interface, because it follows the JavaBeans pattern and contains a public getter
and setter pair for its important data fields. The XML wire format used by the
runtime environment will serialize and deserialize this class. However, other
existing Java types that do not adhere to the JavaBeans pattern can cause
problems as they dol not serialize correctly and data loss occurs. For this
reason, it is a best practice to use a top-down development approach, starting
from schema definitions and generating JAXB classes for use in the application
programming model. See the developing SCA services from existing WSDL files
to learn more about the top-down development approach.

2. Because we are creating a service with a remotable interface, add the
@Remotable annotation.
//NameGetter.java
package myintf;

import mypkg.Person;
import org.osoa.sca.annotations.Remotable;

@Remotable
public interface NameGetter {

public String getName(Person p);
}

3. Unless you have an existing Java implementation, write a Java implementation
of the generated Java interface that reflects your business logic.
package myintf;
import mypkg.Person;

public class NameGetterImpl implements NameGetter {

Chapter 5. Developing Service Component Architecture (SCA) services and applications 41

public String getName(Person p) {
// Example "business logic"
return p.getFirstName() + " " + p.getLastName();

}

}

4. Add the @Service annotation to the Java implementation.
package myintf;
import mypkg.Person;
import org.osoa.sca.annotations.Service;

@Service(NameGetter.class)
public class NameGetterImpl implements NameGetter {

public String getName(Person p) {
// Example "business logic"
return p.getFirstName() + " " + p.getLastName();

}

}

5. Create a component using the component implementation. You will create a
component definition in a composite that references the original Java
implementation class, as well as its Java interface. In SCA, a component is a
configured instance of a component implementation. There are other aspects of
defining a component that are not shown here such as configuring bindings,
configuring property values, defining intents, attaching policy sets, and
resolving references. Shown here are the aspects of component creation that are
common for all component definitions using the implementation developed in
this example. This example also includes bindings that you can modify or omit
for other components using this component implementation.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://org.services.naming"

name="NameServices">

<component name="NamingServicesComponent">
<implementation.java class="myintf.NameGetterImpl"/>
<service name="NameGetter">

<!-- The interface.java is not required because the run time can introspect it. -->

<interface.java interface=”myintf.NameGetter”/>

<!-- The choice of bindings is not important for the example. Here, both the SCA default and
Web services bindings are configured. -->

<binding.ws/>
<binding.sca/>

</service>
</component>

</composite>

6. After your component is defined as part of a deployable composite, either
directly or recursively through use of one or more layers of components with
composite implementation, you are ready to deploy the SCA service by creating
an SCA business level application.

Developing SCA service clients
You can develop an Service Component Architecture (SCA) service client starting
with either a Java interface or a WSDL file for the SCA service that you want to
invoke.

42 Feature Pack for SCA Version 1.0.0 information center topics

About this task

You can develop SCA service clients that can both access and invoke an SCA
service that are based on the Service Component Architecture specification. An
SCA client can consume a diverse set of services such as enterprise beans, Web
services, and other SCA services, through the capabilities of the respective SCA
bindings and by using the Plain Old Java Object (POJO) client programming
model.

To develop SCA service clients, you can start with either an existing Web Services
Description Language (WSDL) file and use the wsimport tool to generate the Java
interface or you can start with an existing Java interface.

Developing SCA client components starting with an existing WSDL file

When you have an existing WSDL file that describes your SCA service
interface as a WSDL portType, along with XSD schema definitions of your
business data, you can use the wsimport tool to generate the SCA Java
representations of your business service interfaces and your business data.
The wsimport tool generates Java classes that you can use to write a Java
implementation that reflects your business logic. You can use the generated
output of the proxy class and the JAXB data binding types in your Java
client to invoke the SCA service using the simple POJO programming
model.

The generated annotated Java classes that correspond to your business data
contain all the necessary information that the Java Architecture for XML
Binding (JAXB) runtime environment requires to build and parse the XML
for marshaling and unmarshaling. In other words, the data programming
model is limited to object instantiation and the use of getter and setter
methods, and you do not need to write code to convert the data between
the XML wire format and the Java application.

Now that you have the generated annotated Java classes, you must use the
Java interface and data type classes to create the reference proxy as
described in the developing SCA clients starting with a Java interface
section.

Developing SCA client components starting with a Java interface

When you have a Java interface to your SCA service, obtained either by
starting from a WSDL and generating the Java classes or by starting with
Java code, use the Java interface and data type classes to create the
reference proxy. If your client is designed so that its reference proxy is
injected from the SCA container, the Java interface is the same type as your
proxy field and this file contains the corresponding @Reference annotation.
You can only create the static reference from another SCA component
implementation that acts as a client of the original service. If your reference
proxy is created programmatically, you must create a proxy variable that
has the same type as your Java interface, and use an API such as
CompositeContext.getService(Class interfaze, ...) to create the
reference proxy. The generated Java interface type is the interface
parameter that is passed to this API. Read about locating and invoking
SCA services to learn more about creating the reference proxy dynamically.

Regardless of whether the proxy is created by injection methods or
programmatically, the Java interface is the class of the proxy and the
generated JAXB types are the parameter types which includes inputs,
outputs, and exceptions.

Chapter 5. Developing Service Component Architecture (SCA) services and applications 43

Considerations for local and remotable interfaces

It is important to understand that a remotable interface uses an XML wire
format for data. Therefore, clients must use a JAXB-based programming
model for the data types. In contrast, a local interface uses
pass-by-reference semantics, so there is no data copy. Using the local
interface, data is read and written without any special programming model
such as JAXB.

Though WSDL-based interfaces are always remotable, you can also mark a
Java interface that is not generated from a WSDL file as remotable by
annotating it with the @Remotable annotation. The @Remotable annotation
results in a data copy with XML serialization as defined by JAXB.

Defining the remotable interface is straightforward when you start with a
WSDL interface, because you use the wsimport tool to generate the JAXB
data types that you use when you write your SCA client. The remotable
interface is less apparent when starting from a remotable Java interface,
unless the Java types are decorated with JAXB annotations. XML
serialization behaves differently than Java serialization. For an POJO that is
not annotated, Java serialization preserves instance data including private
fields, whereas JAXB serialization preserves JavaBeans properties.

The focus of this topic is the use of remotable interfaces.

You can develop a component that consumes or acts as a client of the target service
using a component reference. In addition to consuming a service from another
component’s reference, the Feature Pack for SCA also provides a mechanism for
consuming an SCA service over the default binding from a non-SCA component.
1. Determine if you are developing the SCA service client starting with an existing

WSDL file or with an existing Java interface.
2. Develop the client Java interfaces and data types from a WSDL file if you are

not starting with an existing Java interface. Use the wsimport command to
generate the SCA service client Java interfaces.

3. Create the reference proxy based on the Java interface.
a. Create a reference proxy field or setter method that has the same type as

the generated Java interface
b. Annotate this field or setter with the @Reference annotation.
Now you have completed the steps required to add the reference to your Java
component implementation

4. Create a component definition using the Java implementation.
In the composite definition, add a <reference> element that refers back to the
original interface and the field or setter of your SCA implementation. The
reference is added as a child element of your component. The component is
part of a composite definition.
The <reference> name attribute must correspond to the field or setter that
contains the @Reference annotation. For a field that contains the @Reference
annotation, the name attribute must match exactly. For a setter that contains the
@Reference annotation, use the usual Java conventions for translating an
annotated setter into a corresponding field, which in turn must match the name
attribute.
For the interface:
v If your SCA client development started with an existing WSDL file, create an

<interface.wsdl> element as a child element of the <reference> element that
points to the WSDL portType.

44 Feature Pack for SCA Version 1.0.0 information center topics

v If your SCA client development started from existing Java interface, create an
<interface.java> element as a child element of the <reference> element that
points to the original Java interface. This is optional, since the runtime
environment can introspect the Java interface.

In addition to these aspects of your component definition described by these
development procedures, there are other aspects of defining a component.
These aspects include adding bindings, configuring property values, defining
intents, attaching policy sets, and resolving references. You can create multiple
components using this same implementation, but all component definitions are
the same with respect to the <implementation.wsdl> element and <reference>
element described in this step.

5. Deploy the SCA component by creating the SCA business level application
from a deployable composite.
In the previous step, you defined a component providing your SCA service
within a composite definition. This composite is either a deployable composite,
or one that is used recursively as a composite implementation of a component
in a higher-level composite. To learn how to deploy the SCA service, read about
deploying and administering business-level applications.

Results

You have created an SCA component that can consume an existing SCA service
using a WSDL or Java interface.

Example

The following example illustrates using an existing WSDL interface to generate a
Java interface that is used to create a Java implementation that is an SCA client. If
you are starting with an existing Java interface, begin with step 4 to follow this
example.
1. Copy the following sample account.wsdl WSDL file to a temporary directory.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:account="http://www.myaccount.com/account"
targetNamespace="http://www.myaccount.com/account"
name="AccountService">

<wsdl:types>
<schema targetNamespace="http://www.myaccount.com/account"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:account="http://www.myaccount.com/account">

<element name="computeAccountAverage">
<complexType>

<sequence>
<element name="account" type="account:Account" />
<element name="days" type="xsd:int" />

</sequence>
</complexType>

</element>
<element name="computeAccountAverageResponse">

<complexType>
<sequence>

<element name="return" type="xsd:float" />
</sequence>

</complexType>

Chapter 5. Developing Service Component Architecture (SCA) services and applications 45

</element>

<complexType name="Account">
<attribute name="accountNumber" type="xsd:int" />
<attribute name="accountID" type="xsd:string" />
<attribute name="accountType" type="xsd:string" />
<attribute name="balance" type="xsd:float" />

</complexType>

</schema>
</wsdl:types>

<wsdl:message name="computeAccountAverageRequest">
<wsdl:part element="account:computeAccountAverage"

name="parameters" />
</wsdl:message>

<wsdl:message name="computeAccountAverageResponse">
<wsdl:part element="account:computeAccountAverageResponse"

name="parameters" />
</wsdl:message>

<wsdl:portType name="AccountService">
<wsdl:operation name="computeAccountAverage">

<wsdl:input message="account:computeAccountAverageRequest" name="accountReq"/>
<wsdl:output message="account:computeAccountAverageResponse" name="accountResp"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="AccountServiceSOAP" type="account:AccountService">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="computeAccountAverage">

<soap:operation
soapAction="computeAccountAverage" />

<wsdl:input name="accountReq">
<soap:body use="literal" />

</wsdl:input>
<wsdl:output name="accountResp">

<soap:body use="literal" />
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="AccountWSDLService">
<wsdl:port binding="account:AccountServiceSOAP"

name="AccountServicePort">
<soap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

2. Run the wsimport command from the app_server_root\bin\ directory.

app_server_root\bin\wsimport.bat -keep -verbose account.wsdl

Run the wsimport command,
app_server_root/bin/wsimport.sh -keep -verbose account.wsdl

app_server_root/bin/wsimport -keep -verbose account.wsdl

After generating the template files using the wsimport command, the following
Java files are generated:

46 Feature Pack for SCA Version 1.0.0 information center topics

com/myaccount/account/Account.java
com/myaccount/account/AccountService.java
com/myaccount/account/AccountWSDLService.java
com/myaccount/account/ComputeAccountAverage.java
com/myaccount/account/ComputeAccountAverageResponse.java
com/myaccount/account/ObjectFactory.java
com/myaccount/account/package-info.java

3. Identify the generated Java interface from the generated classes.
//
// Generated By:JAX-WS RI IBM 2.1.1 in JDK 6 (JAXB RI IBM JAXB 2.1.3 in JDK 1.6)
//
package com.myaccount.account;
...
@WebService(name = "AccountService", targetNamespace = "http://www.myaccount.com/account")
...
public interface AccountService {

/**
*
* @param days
* @param account
* @return
* returns float
*/
@WebMethod(action = "computeAccountAverage")
@WebResult(targetNamespace = "")
@RequestWrapper(localName = "computeAccountAverage", targetNamespace = "http://www.myaccount.com/account",

className = "com.myaccount.account.ComputeAccountAverage")
@ResponseWrapper(localName = "computeAccountAverageResponse", targetNamespace = "http://www.myaccount.com/account",

className = "com.myaccount.account.ComputeAccountAverageResponse")
public float computeAccountAverage(

@WebParam(name = "account", targetNamespace = "")
Account account,
@WebParam(name = "days", targetNamespace = "")
int days);

}

This code example is a Java interface, not merely a Java class. The @WebService
annotation is present in this Java interface. It is important to know that this
example is not the same as the generated @WebServiceClient class,
com.myaccount.account.AccountWSDLService. This class is not an interface and
is actually not needed in your SCA application.

4. Now that you have Java interface either by generating the Java interface from a
WSDL file or you have an existing Java interface, you are ready to develop
your SCA client from the Java interface.

5. Place the @Reference annotation on a public or protected field or setter, with
the same type as your Java interface.
package com.myaccount.client;

import bank.process.BankProcess;
import org.osoa.sca.annotations.Reference;
import org.osoa.sca.annotations.Service;

import com.myaccount.account.*;

@Service(BankProcess.class)
public class AccountClientComponent implements BankProcess {

// Note the type, 'AccountService', is the Java interface generated from
// from the WSDL portType
private AccountService accountServiceRef;

//
// Injected by the SCA container
//
@Reference
public void setAccountServiceRef(AccountService accountServiceRef) {

this.accountServiceRef = accountServiceRef;

Chapter 5. Developing Service Component Architecture (SCA) services and applications 47

}

public String someMethod(String input) {

//... some business logic ...

// We'll show a simple example of JAXB API usage
ObjectFactory factory = new ObjectFactory();
Account account = factory.createAccount();
account.setAccountNumber(4);
account.setAccountID("CHECKING");

int days = 5;

float avg = accountServiceRef.computeAccountAverage(account, days);

//... the rest of the business logic ...
}

}

6. Create a component using the component implementation. When using a
WSDL portType interface, you must create component definitions in the
composite definition that references the original portType along with the SCA
Java implementation. In SCA, a component is a configured instance of a
component implementation. There are other aspects of defining a component
that are not shown here such as configuring bindings, configuring property
values, defining intents, attaching policy sets, and resolving references. Shown
here are the aspects of component creation that are common for all component
definitions using the implementation developed in this example. This example
also includes bindings that you can modify or omit for other components using
this component implementation.

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://bank.process/customer"

name="bpComposite">

<component name="BankProcessComponent">

<implementation.java class="com.myaccount.client.AccountClientComponent"/>
<!-- The @name attribute corresponds to the setter that is annotated with the @Reference annotation. -->

<reference name="accountServiceRef">
<!-- This statement specifies the QName of the WSDL portType,

"http://www.myaccount.com/account#AccountService" in the syntax as
illustrated in the interface.wsdl statement. -->

<interface.wsdl interface="http://www.myaccount.com/account#wsdl.interface(AccountService)" />
<binding.ws uri="http://localhost:9080/BankingComponent/AccountService"/>

<!-- This example uses the SCA Web services binding. However, it does not matter which specific binding
you choose. You can also choose to use the SCA default binding or the SCA EJB binding. -->

</reference>
</component>

</composite>

7. Configure the composite definition when starting with a Java interface.
The following snippet is another example of the syntax if you develop an SCA
client starting with a Java interface rather than with a WSDL portType. To
simplify this example, use the same AccountService Java interface from the
previous step but in this case, assume that it was not generated from a WSDL
file.

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://bank.process/customer"

name="bpComposite">

48 Feature Pack for SCA Version 1.0.0 information center topics

<component name="BankProcessComponent">

<implementation.java class="com.myaccount.client.AccountClientComponent"/>

<!-- The @name value corresponds to the setter that is annotated with the @Reference annotation. -->
<reference name="accountServiceRef">

<!-- Because the runtime can introspect the interface, it is unnecessary to specify
the interface.java in the composite definition. This is what the interface looks like if you include it.

<interface.java interface=”com.myaccount.account.AccountService”/> -->

<!-- The SCA binding type is omitted. It does not matter which specific SCA binding you choose. -->
</reference>

</component>
</composite>

8. After a component is defined as part of a deployable composite, either directly
or recursively through use of one or more layers of components with composite
implementation, you are now ready to deploy the SCA component by creating
a SCA business level application.

Using business exceptions with SCA interfaces
You can implement exceptions for remotable interfaces in the Service Component
Architecture (SCA) environment to provide additional flow of control for error
conditions to meet the needs of your business application.

About this task

To develop SCA service implementations, you can use either a top-down
development approach starting with an existing Web Services Description
Language (WSDL) file or you can use a bottom-up development approach starting
from an existing Java interface or implementation. When using either the top-down
or bottom-up development methodologies, you can use tools to map business
exceptions on remotable interfaces.

In order to achieve the SOA goal of providing an interoperable platform that is
both language and technology neutral, the SCA runtime environment takes an
XML-centric view of interfaces and data. When working with Java code, the Java
API for XML-Based Web Services (JAX-WS) standard is used to define the
mapping between Java code and the XML-based Web Services Description
Language (WSDL) file. This mapping also includes the Java programming model
with respect to exceptions. Exceptions for remotable interfaces in the SCA
environment is defined by the JAX-WS specification. This topic describes the best
practices for using business exceptions with SCA interfaces.

Differences between business exceptions and fault beans

To better understand the implications of implementing business exceptions
in an SCA environment, it is helpful to understand differences between an
exception and a fault bean.

The JAX-WS specification distinguishes between a checked exception and
the fault bean that it wrappers. However, this distinction might not be
clear because a single class can serve the checked exception and the fault
bean functions, especially when you use the bottom-up approach of
developing an SCA service starting with a Java interface. When you use
the top-down development approach of developing an SCA service starting
with a WSDL file, section 2.5 of the JAX-WS specification describes the
wrapper pattern for how the fault message maps to a Java checked
exception that wrappers a fault bean. The fault bean maps to the fault

Chapter 5. Developing Service Component Architecture (SCA) services and applications 49

element and in SCA environments, the mapping is defined by Java
Architecture for XML Binding (JAXB) data binding. The fault bean
represents the cross-platform view of the fault message data and includes a
schema description. You can use the Java exception within the Java
runtime environment and as part of the Java programming model.
However, the exception is not part of the interoperable data representation.

When developing SCA services using the bottom-up approach, the
distinction between an exception, the fault bean, and the mapping from
Java to WSDL or XSD schema is clear if you follow the wrapper pattern
described in section 2.5 of the JAX-WS specification. If you have existing
Java exceptions, use the standard mapping defined in section 3.7 of the
JAX-WS specification for service specific exceptions. In SCA environments,
these service specific exceptions are referred to as business exceptions. The
mapping for the business exceptions is different than the mapping
described in section 2.5 of the JAX-WS specification. Because this wrapper
pattern only applies for certain exceptions, this approach has limitations
when using the bottom-up development approach. The possible limitations
of using the wrapper pattern to implement error handling when using
bottom-up development of SCA applications provides additional reasons to
consider the advantages of the best practice of top-down development of
SCA applications.

Top-down development of SCA services implementing a WSDL fault method

It is a best practice to use the top-down methodology to develop SCA
service implementations because this approach leverages the capabilities of
the XML interface description and provides a greater ease in
interoperability across platforms, bindings, and programming languages.
To implement a WSDL fault method, you must obtain the WSDL portType
element and define a fault message in terms of a fault element. You can
then use the wsimport command-line tool to generate the Java code. This
tool generates Java exception code that wraps a fault element in the format
specified by the Java API for XML-Based Web Services (JAX-WS)
specification, section 2.5.

Bottom-up development of SCA services implementing a Java interface or
implementation

Bottom-up development of SCA services occurs when you start with
existing Java code. Using this development approach, do not design a
remotable interface that might cause a technology exception such as
java.sql.SQLException. This exception is more appropriate for a local
interface rather than a coarse-grained remotable interface.

1. For top-down development of SCA applications, implement a wrapper pattern
for business exceptions.
The wrapper pattern is based on section 2.5 of the JAX-WS specification.
a. Obtain your WSDL file; for example:

<wsdl:types>
...
<element name="errorCode" type="xsd:int"/>
...

</wsdl:types>

<wsdl:message name="BadInputMsg">
<wsdl:part element="tns:errorCode" name="parameters"/>

</wsdl:message>

<wsdl:portType name="GuessAndGreet">

50 Feature Pack for SCA Version 1.0.0 information center topics

<wsdl:operation name="sendGuessAndName">
<wsdl:input.../>
<wsdl:fault message="tns:BadInputMsg" name="BadInputMsg"/>

b. Generate the Java artifacts using the wsimport tool. You can define the fault
according to section 2.5 of the JAX-WS specification; for example:
Interface

public Person sendGuessAndName(...) throws BadInputMsg;

c. Use the exception wrappering fault; for example:
import javax.xml.ws.WebFault;

@WebFault(name = "errorCode", targetNamespace = "....")
public class BadInputMsg extends Exception
{

private int faultInfo;

public BadInputMsg(String message, int faultInfo) {
super(message);
this.faultInfo = faultInfo;

}

public BadInputMsg(String message, int faultInfo, Throwable cause) {
super(message, cause);
this.faultInfo = faultInfo;

}

public int getFaultInfo() {
return faultInfo;

}
}

2. For bottom-up development of SCA applications, implement or convert the
exception to follow the wrapper pattern or use the default mapping for of a
JAX-WS service specific exception.
If you have a Java business exception, the complexity of this scenario increases,
especially if your exception wraps fault data. For example, the exception wraps
data such as an error code or an object that it needs to provide to the client that
receives the exception. In this scenario, there are two options:
v Convert the Java business exception to follow the wrapper pattern as

described in section 2.5 of the JAX-WS specification.
Using the wrapper pattern for the exception enables the exception to map
easily from the WSDL to Java code format and then from the Java code to
WSDL format. If you modify the exception to follow wrapper pattern, you
can use the wsgen tool to convert from Java code to WSDL and later use the
wsimport tool to convert from WSDL to Java code, the exception is similar to
the one that you modified. To achieve this end goal, you must perform the
following steps:
a. Add constructors that take the fault bean as input parameters.
b. Implement a public getFaultInfo() method that returns the fault bean.
c. Add the @javax.xml.ws.WebFault annotation. See the exception

wrappering fault example.
v Use the default mapping of a JAX-WS service specific exception or business

exception as described in section 3.7 of the JAX-WS specification.
If you use the wsgen command-line tool to generate the WSDL, the tool uses
this pattern for business exceptions. If you do not generate the WSDL file
before deployment, the application server runtime environment implicitly
generates the business exception using this pattern.
Use this option when you:

Chapter 5. Developing Service Component Architecture (SCA) services and applications 51

– cannot change the exception class to follow the JAX-WS wrapper pattern.
– rely on the runtime environment to map the Java code into WSDL such as

declaring a <binding.ws> binding on a service that is deployed without a
WSDL file.

Either of these options work without any additional complexity as long as
the exception does not contain fault data.
For exceptions with fault data, the data is handled correctly for each field
that contains a public getter or setter method. However, data is lost without
a getter or setter pair. In other words, we will serialize or deserialize the
exception by viewing it as a Java code.
When using this second option, the following items are important:
– The supported fault pattern is not easily determined. One exception with

fault data and also with the getter and setter methods is that some are
handled correctly while others are not. Running the wsgen tool at
development time generates the schema based on the exception getter
methods without assuring that the corresponding setter methods exist in
order to populate the exception during unmarshalling.

– If you run wsimport tool against the generated WSDL, you get a different
exception class. Your client and service programming model are different
which might confuse the Java programmer. However, this generated Java
exception follows the pattern described in the JAX-WS specification in
section 2.5. You might need to add customization for JAXB data binding in
order to generate the client. The results can produce exception names
similar to MyException_Exception.

– Although the service-specific exception pattern is described in section 3.7
of the JAX-WS specification, not all details for the pattern are specified.
Other software implementing JAX-WS might implement the pattern
differently. This is not critical, since the WSDL file is interoperable across
platforms.

Example

The following examples illustrates using the bottom-up development of SCA
applications and using the business exception mapping as described in section 3.7
of the JAX-WS specification.

Example 1: No fault

The string message is the fault in this example, and it is serialized and deserialized
successfully.
public class RealSimpleException extends Exception {

public RealSimpleException(String message) {
super(message);

}
public RealSimpleException(String message, Throwable cause) {

super(message, cause);
}

}

Example 2: Exception as JavaBeans

This example works correctly because the string userdata fault has associated
public getter and setter methods. The string message is also handled correctly.

52 Feature Pack for SCA Version 1.0.0 information center topics

public class TestException extends Exception {

private String userdata;

public TestException(String message) {
super(message);

}

public TestException(String message, String userdata) {
super(message);
this.userdata = userdata;

}

public String getUserdata() {
return userdata;

}

public void setUserdata(String userdata) {
this.userdata = userdata;

}

}

Example 3: Exception does not follow pattern

This example does not work correctly because the errorCode fault data does not
have a setter method. The SCA runtime is not able to correctly determine how to
populate the exception with this fault data. The exception occurs, but it is
displayed with data loss.
package java.sql;

public class SQLException extends Exception ... {
...
public SQLException(String theReason, String theSQLState, int theErrorCode) ...

public int getErrorCode()
}

Considerations for developing SCA applications using EJB bindings
When developing Service Component Architecture (SCA) applications that you
intend to use with Enterprise JavaBeans (EJB) bindings, keep in mind that the SCA
EJB binding is architected in a Java-centric manner, in contrast to the XML-centric
implementations of the SCA default binding and the SCA Web services binding.

The EJB transports marshal and unmarshal application data into the wire format
by using Java serialization, whereas the Web services and default bindings use
XML serialization. This difference also affects the programming model in that the
SCA clients and implementations using the EJB binding must use
java.io.Serializable types, in contrast to the Java Architecture for XML Binding
(JAXB) data types-based programming model that is used for the SCA default and
Web services bindings.

SCA reference

In this case, you have an existing EJB that you want to invoke with an SCA client
using a reference that is configured with an EJB binding.

When you develop an SCA client that will invoke an existing EJB using the SCA
EJB binding, you must use a Java interface when developing the SCA client rather

Chapter 5. Developing Service Component Architecture (SCA) services and applications 53

than using a WSDL interface. The EJB binding marshalling of application data into
the wire data format is performed using Java serialization, not XML serialization as
defined by JAXB.

To learn more about SCA references, read about developing SCA service clients.
However, when you are using the SCA EJB binding, the information in this topic
takes precedence.

Because you obtain the Java interface and parameter types from the EJB provider
for use in your client, you do not have to worry about the effects of marshalling
and unmarshalling when writing your client. However, when you provide these
data types across new services, problems can occur if you pass these data types
across new services, because they might not serialize correctly over other bindings,
such as the default binding, because of the difference in Java serialization and the
JAXB XML marshalling and unmarshalling.

The following example illustrates the problematic scenario of starting with an
existing EJB interface and using a Java serializable data type that does not serialize
well using JAXB marshalling and unmarshalling.
public interface NameService extends javax.ejb.EJBObject {

public String computeName(Person p) throws RemoteException;
}

// This snippet is intended as an example of a type that is problematic.
public class Person implements java.io.Serializable {

private int code;
private String name;

// The code field must be passed into constructor. However, this causes problems for
// for SCA default and Web Services bindings that use JAXB marshalling/unmarshalling.

public Person(int code) {
this.code = code;

}

public Person() {
}

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

}

The following SCA client A example works correctly. The Person object that is
instantiated directly in the ClientAImpl implementation is correctly marshalled to
invoke the EJB with a remote interface of NameService.
// Client A ClientAImpl.java
.....
@Reference
public NameService nameService

public someClientMethod() {

54 Feature Pack for SCA Version 1.0.0 information center topics

// No problem when Person object is instantiated by client
Person person = new Person(5);
String name = nameService.computeName(person);

}

In contrast, the following example demonstrates the problem with the Person type.
The client code has been refactored so that it contains a reference to NameService,
and it obtains the Person object that is passed into the computeName method over
a new remotable interface, rather than constructing it directly.
// Problem client interface

import org.osoa.sca.annotations.Remotable;
@Remotable
public interface PersonFilter {

boolean filterPerson(Person p);
}

// Problem client implementation

@Service(PersonFilter.class)
public class PersonFilterImpl implements PersonFilter {

@Reference
public NameService nameService

boolean filterPerson(Person p) {
// ... business logic
String name = nameService.computeName(person);
// ... business logic
}

}

If the PersonFilterImpl class receives a Person object from the client over the
PersonFilter interface and the implementation is invoked using the SCA default
binding, the data is not handled correctly. The default binding does not preserve
the code field of the Person object that is passed to the PersonFilterImpl class.

For a class without JAXB annotations, JAXB marshalling and unmarshalling
preserves JavaBeans properties, but not private data such as the code field, which
does not have a setter and is only established in the constructor. When the Person
object is passed to the NameService EJB, the code value is set to the default value
of 0 regardless of what the PersonFilter client passed to the PersonFilterImpl class.

If the Person type was written in the JavaBeans style with getters and setters for all
important data, then this type works correctly in the example for the
PersonFilterImpl client. However, if you are consuming an existing EJB, you do not
have control over the types it already uses on its interface. Not all existing Java
types are optimal for SCA Java programming. To address the problems in this
example, you must create a new type for use on the PersonFilter interface and
translate the data for this type into a Person object within the PersonFilterImpl
class which directly invokes the EJB with the remote interface NameService.

In this example, if the PersonFilter interface was defined as a local interface, then
the concerns with preserving data integrity do not apply. The runtime environment
performs pass-by-reference semantics across local interfaces that are appropriate for
tightly-coupled clients and services such that no data is copied.

Chapter 5. Developing Service Component Architecture (SCA) services and applications 55

SCA service

If you write a new SCA service and intend to expose it over the SCA EJB binding
so that an EJB client can invoke the service, it is a best practice to develop the SCA
service using the top-down methodology starting with an existing WSDL file or
XSD schema and generating the JAXB classes that are used to write the service
implementation. Using this approach, you can easily address the differences
between Java serialization and JAXB marshalling and unmarshalling by specifying
that the generated JAXB classes are Java serializable.

To enable the generated JAXB classes to work correctly over the SCA EJB binding,
add the serializable customization to the schema definition so that the generated
JAXB classes are Java serializable and implement the java.io.Serializable interface.
For example:
<schema targetNamespace="http://com.mycompany/banking/" jaxb:version="2.0"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns="http://www.w3.org/2001/XMLSchema">
<annotation>

<appinfo>
<jaxb:globalBindings>

<jaxb:serializable uid="....."/>
</jaxb:globalBindings>
</appinfo>

</annotation>

<!-- Continue with the rest of the schema definition-->

</schema>

As a result, you can use your Java implementation with the generated JAXB data
types over the EJB binding, which uses Java serialization. At this point, because
you have the generated JAXB artifacts, you can also use your Java implementation
with the generated JAXB data types over the SCA default and SCA Web Service
bindings, which use XML serialization as defined by JAXB.

If you develop your SCA service using the bottom-up approach starting with Java
code, you must use types that implement the java.io.Serializable interface as
required when writing an EJB. See the developing SCA services with existing Java
code documentation for more information regarding requirements for your
user-defined types. Also, see the SCA reference section to learn how to avoid
problems with your user-defined types when using EJB bindings because of the
differences between Java serialization and JAXB marshalling and unmarshalling.

56 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 6. Specifying bindings in an SCA environment

After you develop an Service Component Architecture (SCA) component, you can
use bindings to specify how SCA services and references enable the component to
communicate with other applications.

About this task

Services and references enable a component to communicate with other
applications. By design, however, the SCA services and references say nothing
about how this communication occurs. Bindings are used to determine how a
component communicates with the world outside its domain. SCA services use
bindings to describe the access mechanism that clients must use to call the service.
SCA references use bindings to describe the access mechanism that is used to call a
service. Depending on what the SCA component is communicating with, a
component might or might not have explicitly specified bindings.

The Feature Pack for SCA supports the following binding types:
v SCA binding

The SCA binding is also referred to as the default binding. It is the binding that
is used when no other binding is specified for configuration of a component
reference or service. It is the natural binding to use when your SCA client
invokes an SCA service in the same domain. It is not intended to be
interoperable in any way with other SCA runtime implementations. Components
communicating within the same domain only need to explicitly configure a
default binding on a service or reference when there is at least one non-default
binding, such as the SCA Web service binding or the SCA EJB binding, that is
also configured.

v Web service binding
The SCA Web service binding applies to the services and references of
components. The Web service binding is designed for SOAP-based Web
Services-Interoperability (WS-I) compliant Web services. This binding defines the
manner in which a service is made available as a Web service, and in which a
reference can invoke or access a Web service. The Web service binding enables
SCA applications to expose SCA services as Web services to external clients that
might or might not be implemented as an SCA component. This binding is a
Web Services Description Language (WSDL)-based binding which means that
the Web service binding either references an existing WSDL binding or enables
you to specify enough information to generate a WSDL file. When an existing
WSDL binding is not referenced, you can generate a WSDL binding. You can
further customize a SCA Web service binding using SCA policy sets.
Web services technology plays an important role in most SOA solutions relevant
today, including SCA. The SCA Web service binding type enables SCA
applications to expose services as Web services to external clients as well as
enabling SCA components access to external Web services. External clients that
access SCA services exposed as Web services may or may not be implemented as
an SCA component. You can use the Web service binding element <binding.ws>
within either a component service or a component reference definition. When
the Web service binding is used with a component service, this binding type
enables clients to access a service offered by a particular component as a Web
service. When the Web service binding is used with a component reference,

© IBM Corporation 2008 57

components in an SCA component can consume an external Web service and
access as if it was any other SCA component. Only WSDL Version 1.1 is
supported.

v EJB binding
EJB session beans are a common technology used to implement business
services. The ability to integrate SCA with services based on session beans is
useful because it preserves the investment incurred during the creation of those
business services, while enabling the enterprise to embrace the newer SCA
technology in incremental steps. The simplest form of integration is to simply
enable SCA components to invoke session beans as SCA services. There is also a
need to expose services such that they are consumable by programmers skilled
in the EJB programming model. This enables existing session bean assets to be
enhanced to exploit newly deployed SCA services without the EJB programmers
having to learn a new programming model.
The SCA EJB binding enables SCA to integrate with existing Java EE
applications. It exposes SCA services as stateless session beans to external
clients. The binding element <binding.ejb> is used within a component service
or component reference definition. Support is provided for the EJB binding
when using both 2.x and 3.0 EJB styles for both the SCA service and reference.

1. Select a binding type to use for an SCA component.
v Use the SCA default binding when you want to invoke an SCA service from

an SCA client.
v Use the SCA Web service binding to specify that an SCA service is made

available as a Web service or an SCA reference can invoke a Web service.
v Use the SCA EJB binding to integrate SCA with services based on session

beans.
2. Configure the selected binding and use it in an SCA component or application.

Results

SCA components can use the configured bindings to communicate with other SCA
services and references.

What to do next

Deploy the SCA component or application.

Configuring the SCA default binding
You can configure the Service Component Architecture (SCA) default binding for
services and references.

About this task

Bindings determine how a component communicates with the world outside its
domain. Services use bindings to describe the access mechanism that clients must
use to call the service. References use bindings to describe the access mechanism
used to call a service. The SCA binding is also referred to as the default binding.
The default binding is the binding that is used when no other binding is specified
for a configuration of a component reference or service. Use this binding when an
SCA client invokes an SCA service in the same domain. It is not intended to be
interoperable in any way with other implementations of SCA runtime
environments.
v Configure an SCA service with the SCA default binding.

58 Feature Pack for SCA Version 1.0.0 information center topics

If the service is only exposed over the default binding, then you do not need to
explicitly add the <binding.sca> element because this binding is default binding
for SCA. If your SCA service has more than one binding and the SCA default
binding must be one of them, you must specify the <binding.sca> element in
the composite definition.

v Configure an SCA reference with the SCA default binding.
For the reference, you also do not need to specify the <binding.sca> element.
For an reference with a default binding, the reference specifies a target attribute
indicating the target service. To indicate the target at the reference, specify
target=componentName/serviceName. If only one service exists for the service
component, then you only need to specify the componentName; for example:
target=ComponentName.

Results

You have implicitly or explicitly configured the SCA default binding for your SCA
service or reference.

Example

The following examples illustrate multiple scenarios for configuring the SCA
default bindings.

Top level composite with SCA service binding
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples" name="MyComposite">

<component name="HelloWorldServiceComponent">
<implementation.java class="test.HelloWorldImpl"/>

</component>

</composite>

Top level composite with SCA reference binding
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="ClientComposite">

<component name="ClientComponent">
<implementation.java class="test.GreetingsServiceImpl"/>
<reference name="helloWorldService" target="TargetComponent"/>

</component>

</composite>

OR:

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="ClientComposite">

<component name="ClientComponent">
<implementation.java class="test.GreetingsServiceImpl"/>
<reference name="helloWorldService" target="TargetComponent/HelloWorld"/>
<!-- compName/serviceName -->
</component>

</composite>

Chapter 6. Specifying bindings in an SCA environment 59

Top level composite with SCA service binding with transaction policy attribute
defined

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://neworder/sca/jdbc"
name="NewOrderComposite">

<component name="NewOrderServiceComponent">
<service name="NewOrderService" requires="propagatesTransaction.false"/>
<implementation.java class="neworder.sca.jdbc.NewOrderServiceImpl" requires="managedTransaction.local"/>

</component>

</composite>

Top level composite with SCA service binding supporting WSDL interface
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="ClientComposite">

<component name="ClientComponent">
<service name="HelloWorldService">
<interface.wsdl interface="http://helloworld#wsdl.interface(HelloWorld)"/>

</service>
<implementation.java class="test.HelloWorldImpl"/>
</component>

</composite>

Top level composite with SCA reference binding supporting WSDL interface
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples" name="ClientComposite">

<component name="ClientComponent">
<implementation.java class="test.GreetingsServiceImpl"/>
<reference name="helloWorldService" target="MyServiceComponent">

<interface.wsdl interface="http://helloworld#wsdl.interface(HelloWorld)"/>
</reference>

</component>

</composite>

Intra composite over SCA default binding
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://mysca/samples"
name="Service1Composite">

<component name="HWServiceComponent">
<implementation.java class="test.HelloWorldImpl"/>
<reference name="component2Ref" target="Component2"/>

</component>

<component name="Component2">
<implementation.java class="test.Component2Impl"/>
</component>

</composite>

SCA Service with workManager specified for the service
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" xmlns:wm="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
targetNamespace="http://mysca/samples" name="Composite2">

<component name="Component2">
<service name="OneWayService">

60 Feature Pack for SCA Version 1.0.0 information center topics

<!-- This service uses the @oneway annotation to specify this operation only has an input message
and no output message. -->

<wm:workManager value="wm/scatest"/>
<!-- This service specifies a workManager where the jndiName is wm/scatest. -->

</service>
<implementation.java class="test.Component2Impl"/>
<reference name="component3" target="Component3"/>

</component>

<!-- component service with @oneway (non blocking operation -->
<component name="Component3">
<!-- By not defining the workManager, the SCADefaultWorkmanager that is created by the SCA

runtime environment is used here. -->
<implementation.java class="test.Component3Impl"/>

</component>

</composite>

Using the SCA default binding to find and locate SCA services
Support exists for an API that is specific to WebSphere Application Server that you
can use to find and invoke Service Component Architecture (SCA) services over
the SCA default binding.

About this task

According to the SCA Version 1.0 specification, you can only obtain a reference to
an SCA service from another component that is statically wired to the service.
However, in the Feature Pack for SCA, you can use a service proxy to invoke the
target service. This function requires a WebSphere Application Server base or
network deployment topology with at least one server that has the Feature Pack
for SCA installed. Also, SCA service must be deployed, running, and accessible
over the default binding, <binding.sca>. There is no support for a domain URI, so
all requests go to the default domain at the cell level. Using this API enables code
that is not an SCA component to use the SCA client programming model.

Use the import method in your client code to locate an SCA service.
The following method is supported for client code to locate a service that is
deployed onto a cell:
import com.ibm.websphere.sca.context.CurrentCompositeContext;
import com.ibm.websphere.sca.context.CompositeContext;
CompositeContext compositeContext = CurrentCompositeContext.getContext();
EchoService echoService = (EchoService) compositeContext
.getService(EchoService.class, "SCASimpleEchoService");

Configuring the SCA Web service binding
You can expose a Service Component Architecture (SCA) application as a Web
service by configuring the SCA Web service binding.

About this task

Web services technology plays an important role in most service-oriented
architecture (SOA) solutions relevant today, including SCA. The Web service
binding type enables SCA applications to expose services as Web services to
external clients as well as enabling SCA components access to external Web
services. External clients that access SCA services exposed as Web Services might
or might not be implemented as an SCA component. You can use the Web service
binding element <binding.ws> within either a component service or a component
reference definition. When this binding is used with a component service, the Web

Chapter 6. Specifying bindings in an SCA environment 61

service binding type enables clients to access a service that is offered by a
particular component as a Web service. In the case where the Web service binding
is used with a component reference, components in an SCA composite can
consume an external Web service and access it just like any other SCA component.
The Web service binding supports Web Services Description Language (WSDL)
Version 1.1.

The SCA Web service binding applies to the services and references of components.
The Web service binding defines the manner in which a service is made available
as a Web service, and in which a reference can invoke a Web service. This binding
is a WSDL-based binding; meaning that the binding either references an existing
WSDL document or enables you to specify enough information to generate a
WSDL document.

Note: The SCA Web service binding provides support for providing and
consuming services using the SOAP Version 1.1 over HTTP and SOAP V1.2
over HTTP protocols.

Note: The Feature Pack for Service Component Architecture (SCA) does not
support the following functions:
v Java API for XML-Based Web Services (JAX-WS) handlers when using the

SCA Web service binding
v Message Transmission Optimization Mechanism (MTOM) or SOAP with

Attachments (SwA) binary message optimizations

Use the SCA Web service binding without implementing JAX-WS handlers.
Do not use SwA binary message optimizations or MTOM optimizations for
transferring binary data between SCA clients and services that use the SCA
Web service binding. Instead of implementing MTOM or SwA binary
message optimizations to send binary data, use the base64Binary XML
Schema Definition (XSD) encoding to embed the data within the SOAP
message.

v Configure an SCA service with the SCA Web service binding.
Depending on whether you develop your SCA service using the top-down
development approach starting with an existing WSDL file or you develop your
SCA service using the bottom-up development approach starting with existing
Java code, you might or might not have a WSDL file available. Additionally, the
WSDL file might only define a portType or it might include a port definition as
well.
– For SCA applications that are developed top-down starting from a WSDL

port, you must refer to the port definition in the existing WSDL file by
adding a <binding.ws> element as a child of your <service> element. The
following provides an example of the syntax for this step:

<binding.ws wsdlElement=”<port target Namespace>#wsdl.port(<service name attr>/<port name attr>)”/>

The location attribute of the <address> element for the port is ignored by the
runtime environment in determining the URL at which your service is
invoked.
The following example demonstrates the relationship between the WSDL file
and the composite definition for this scenario:
WSDL file

<wsdl:definitions targetNamespace="http://www.ibm.com/" xmlns:tns="http://www.ibm.com/" ...>
....
<wsdl:portType name="MyPortType ">
....
<wsdl:binding name="MyBinding" type="tns:MyPortType">

62 Feature Pack for SCA Version 1.0.0 information center topics

....
<wsdl:service name="MyService">

<wsdl:port binding="tns:MyBinding" name="MyPort">
<wsdlsoap:address location=""/>

</wsdl:port>
</wsdl:service>

Composite definition
<composite...>

<component name="MyComponent">
<implementation.java class="test.MyCompImpl"/>
<service name="GuessAndGreetWrapped">

<interface.wsdl interface="http://www.ibm.com/#wsdl.interface(MyPortType)" />
<binding.ws wsdlElement="http:// www.ibm.com/#wsdl.port(MyService/MyPort)" />

</service>
</component>
...

</composite>

– For SCA applications that are developed top-down starting from a WSDL
portType, you must create an empty <binding.ws> element as the child of
your <service> element. Creating the empty <binding.ws> element directs the
runtime environment to generate a port that corresponds to your WSDL
portType definition. The generated port uses a SOAP 1.1 over HTTP WSDL
binding.
The following example demonstrates the relationship between the WSDL file
and the composite definition for this scenario:
WSDL file

<wsdl:definitions targetNamespace="http://www.ibm.com/" xmlns:tns="http://www.ibm.com/" ...>
....
<wsdl:portType name="MyPortType ">

Composite definition
<composite...>

<component name="MyComponent">
<implementation.java class="test.MyCompImpl"/>
<service name="GuessAndGreetWrapped">

<interface.wsdl interface="http://www.ibm.com/#wsdl.interface(MyPortType)" />
<binding.ws/>

</service>
</component>
...

</composite>

– For SCA applications that are developed bottom-up starting from existing
Java code, you must create an empty <binding.ws> element as the child of
your <service> element. Creating the empty <binding.ws> element directs the
runtime environment to generate a WSDL portType that corresponds to your
Java interface, and a port with a SOAP 1.1 over HTTP WSDL binding.
The following example demonstrates the <binding.ws> element within the
composite definition for this scenario:
Composite definition

<composite...>
<component name="MyComponent">
<implementation.java class="test.MyCompImpl"/>
<service name="GuessAndGreetWrapped">

<binding.ws/>
</service>

</component> ...
</composite>

v Test the endpoint for your deployed SCA service. After you configure the SCA
service with an SCA Web service binding, you can test the endpoint for your
deployed SCA service. The URL format for the endpoint is the following:
http://<host>:<port_of_default_host>/Component_name/Service_name

Chapter 6. Specifying bindings in an SCA environment 63

v Configure an SCA reference (client) with an SCA Web service binding.
1. Configure the reference with an <interface.wsdl> element that refers to the

portType of the target service. After you have obtained a WSDL portType
from the Web services provider, you can configure the <interface.wsdl>.
Read about developing SCA service clients to learn how to configure the
reference with an <interface.wsdl>.

2. Resolve the SCA reference to an actual endpoint of a deployed Web service
using one of the mechanisms provided by the SCA Web service binding
support.
– When the target Web service is deployed as an SCA component service in

the same domain as the client component, you can resolve the reference to
the target component using the <reference> @target attribute. Using this
attribute eliminates the need to know the specific URL of the deployed
target service. For example:

<!-- The composite definition for the target service. -->
<component name="TargetComponent">
<implementation.java .../>
<service name="MyService">

<interface.wsdl ... />
<binding.ws ... />

</service>
</component>

<!— The composite definition for the client when the client is in same SCA domain as the target component. -->
<component name="ClientComponent">
<implementation.java .../>

<!-- Resolution done using the @target annotation. -->
<reference name="myRef" target=”TargetComponent/MyService”>

<interface.wsdl ... />

<!-- The binding does not need endpoint-related info added. -->
<binding.ws/>

</reference>
</component>

– If the target Web service is not an SCA service in the same domain as the
client, you must use a binding-specific endpoint resolution mechanism.
You can also resolve a reference to an SCA service in the same domain by
using the binding-specific mechanisms, instead of using the @target
annotation.
a. You can define the endpoint for a deployed Web service in an existing

WSDL file that is obtained from a service provider. In this case, the
client composite definition refers to the WSDL port of the target
service which also specifies the endpoint from the <wsdlsoap:address>
@location attribute. For example:
<wsdlsoap:address location="http://host:port/ComponentName/ServiceName"/>

The client points to the WSDL port using a @wsdlElement attribute on
the <binding.ws> element using the following syntax:
<port target Namespace>#wsdl.port(<service name attr>/<port name attr>)”/>

The following example WSDL and composite definitions illustrate
defining an endpoint for a deployed Web service.

<!-- An example WSDL file. -->

<wsdl:definitions targetNamespace=”http://my.work/test/”
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" ... >
<wsdl:service name="MyService">
<wsdl:port binding="..." name="MyPort">
<wsdlsoap:address

location="http://www.mywork.com:9080/TargetComponent/MyService "/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

64 Feature Pack for SCA Version 1.0.0 information center topics

<!-- An example composite definition. -->
<component name="ClientComponent">
<implementation.java .../>
<reference name="myRef">

<interface.wsdl ... />
<binding.ws wsdlElement="http://my.work/test/#wsdl.port(MyService/MyPort)”/>

</reference>
</component>

b. You can add the endpoint to the composite definition when the
endpoint is not present in the WSDL file. In this case, add the @uri
attribute to the <binding.ws> element to specify the endpoint.

<!-- An example WSDL file. -->

<wsdl:definitions targetNamespace=”http://my.work/test/”
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" ... >
<wsdl:service name="MyService">
<wsdl:port binding="..." name="MyPort">

<!-- Here, the endpoint not specified in the WSDL. -->
<wsdlsoap:address location=""/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

<!-- An example composite definition. -->
<component name="ClientComponent">
<implementation.java .../>
<reference name="myRef">

<interface.wsdl ... />
<binding.ws wsdlElement="http://my.work/test/#wsdl.port(MyService/MyPort)”
uri=”http://www.mywork.com:9080/TargetComponent/MyService” />

</reference>
</component>

v (optional) If your service or reference interface is bidirectional such that a
callback is defined, you must also configure the Web service binding on the
callback.
– Configure callback for your SCA Web service binding using the WSDL port.

Configuring callback for your SCA Web service binding is similar to
configuring an SCA service with the SCA Web service binding; however, you
add a second service, the callback. When you configure an SCA service with
the SCA Web service binding, you define a WSDL port, either explicitly by
pointing directly to a WSDL port definition, or implicitly by giving the
runtime enough information to calculate a WSDL port. Similarly, you must
also define a WSDL port for the callback. A difference for the callback is that
the runtime environment defines the WSDL port that is used for the callback
because the runtime environment must keep this port tightly coupled to the
forward call. Therefore, the most you can do when developing your SCA
application using the top-down approach and defining a callback for this
service, is to point to a WSDL binding. For example:

<!-- Configuring a service with callback with Web service binding -->
<component name="HelloWorldServiceComponent">

<implementation.java class="..." />
<service name="HelloWorldService">

<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”
callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>

<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.port(HelloWorldService/HelloWorldSoapPort)"/>
<callback>

<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.binding(HelloWorldCallbackSoapBinding)" />
</callback>

</service>
</component>

The following is an example of a configuration of a client component with
reference to this service with callback defined. The reference and service
configuration each share the same view of which direction is the forward
direction and which is the callback direction.

Chapter 6. Specifying bindings in an SCA environment 65

<!-- Configuring a reference with callback with Web service binding. -->
<component name="HelloWorldClientComponent">

<implementation.java class="..." />
<reference name="helloWorldRef">

<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”
callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>

<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.port(HelloWorldService/HelloWorldSoapPort)"/>
<callback>

<binding.ws wsdlElement="http://www.ibm.com/sca/#wsdl.binding(HelloWorldCallbackSoapBinding)" />
</callback>

</service>
</component>

– Configure callback for your SCA Web service binding using the WSDL
portType.
Similar to the scenario of configuring a service with a Web service binding
when starting with a WSDL port, you also configure an empty <binding.ws>
element to configure callback using the WSDL portType. The following
composite definition example illustrates the scenario when starting with two
WSDL portType definitions that has such that one interface uses a forward
direction and the other interface uses callback:

<!-- Configuring a service with callback with Web service binding -->
<component name="HelloWorldServiceComponent">

<implementation.java class="..." />
<service name="HelloWorldService">

<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”
callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>
<binding.ws/>
<callback>

<binding.ws/>
</callback>

</service>
</component>

<!-- Configuring a reference with callback with Web service binding -->
<component name="HelloWorldClientComponent">

<implementation.java class="..." />
<reference name="helloWorldRef">

<interface.wsdl interface=”http://www.ibm.com/sca/#wsdl.interface(HelloWorld)”
callbackInterface=” http://www.ibm.com/sca/#wsdl.interface(HelloWorldCallback)”/>
<binding.ws/>
<callback>
<binding.ws/>

</callback>
</service>

</component>

– Configure callback for your SCA Web service binding using the Java interface.
For the bottom-up case starting with a Java interface, the composite definition
is identical to the WSDL port and portType scenarios, except that you must
replace the <interface.wsdl> elements with the <interface.java> element.
For example:

<interface.java interface="helloworld.HelloWorldService"
callbackInterface="helloworld.HelloWorldCallback"/>

Results

You have a configured SCA Web service binding service or reference.

Note:

There are additional ways for the Web service binding function to generate a
WSDL port that are not described in this topic. However, these additional
methods that rely on WSDL generation at run time add dependencies on the
runtime environment that can cause problematic results.

For an example that is not problematic, suppose you write a service using
the bottom-up style, starting from a Java interface, and deploy the service

66 Feature Pack for SCA Version 1.0.0 information center topics

with an empty element. This directs the runtime environment to generate
the WSDL port for this service. Also suppose an SCA client is developed
with access to the original Java classes used to write the service
implementation. This SCA client is used to test the SCA service using a
client-side reference with Web service binding. You can configure this
reference without any knowledge of the service WSDL. In this case, the
reference interface is the original Java interface of the service, and you can
resolve the reference using the <reference> @target mechanism. See the
resolving SCA references documentation for more information on using the
<reference> element to resolve an SCA reference using the @target attribute.
Using this approach, there is no WSDL to obtain or refer to in constructing
the client. This works because the Feature Pack for SCA runtime
environment maps the service-side Java to WSDL in an identical manner as
it maps the client-side Java to WSDL.

In contrast, the following scenario is problematic. Suppose that you write an
SCA client with a Web service binding reference to a Web service that is
hosted on a platform other than the Feature Pack for SCA. It might seem
reasonable to generate your Java client from the service provider, and then
ignore the WSDL from that point on, avoiding the additional syntax in your
client-side composite definition. To do this, you use the <binding.ws>
element @uri attribute to specify the endpoint URL where the service is
hosted. This scenario is problematic because it forces the runtime
environment to generate a WSDL port for the client which might result in
subtle mismatches between the WSDL generated for the client side and the
actual WSDL port description of the deployed Web service.

You can avoid these potential problems by ensuring that client package
references the original WSDL obtained from a Web service provider. If you
use the shortcut of omitting a client-side reference to the WSDL, be sure to
do so only in the case when you are sure the WSDL port that is generated
for the client is identical to the WSDL port of the deployed service because
the service port is generated using the same algorithm.

Configuring Web service binding custom endpoints to support
a proxy server

You can configure SCA composites that are accessed by Hypertext Transfer
Protocol (HTTP) for custom service endpoints using Web services bindings.

Before you begin

Before you begin this task, install your Service Component Architecture (SCA)
application.

About this task

When a service is exposed over the SCA Web service binding, the service endpoint
is specific to the server in which the service is hosted. Clients use this endpoint
URI to access the service. In some cases, you may want clients to indirectly
reference the service by using a proxy server as the service endpoint. For example,
a proxy server is required to implement clustered Web service binding endpoints.
To enable clients to use a proxied endpoints, there are two ways to do this:
v If your endpoints are specified in the SCA contributions composite definition or

WSDL document location attribute, you must specify the proxy server endpoint
instead of the WebSphere server specific endpoint.

Chapter 6. Specifying bindings in an SCA environment 67

v If your client resolves the endpoint by using the <reference target=””> attribute
in your client composite definition, use the administrative console to configure
the custom endpoints for SCA composites that are accessed by the Hypertext
Transfer Protocol (HTTP) protocol. This approach is the most flexible for SCA
clients within the same domain as their service providers. When using
<reference target=””> attribute, SCA references can resolve the service endpoints
without the client specifying endpoints in the composite definition or WSDL
document.

1. Open the administrative console.
2. In the navigation pane, expand Applications → Application Types →

Business-level applications → application_name → composition_unit_name →
Provide HTTP endpoint URL information.

3. Select the HTTP endpoint URL prefix. When entering custom endpoints you
must specify one and only one endpoint URL prefix each for the HTTP and
HTTPS protocols.

Results

You have configured Web services bindings custom endpoints.

What to do next

You can configure the bindings to do transport layer authentication.

Routing requests to an SCA service exposed over the SCA
Web service binding when using external Web servers

If you are using an external Web server to route requests to an SCA service that is
exposed over the SCA Web service binding, you must define the endpoints of the
SCA service to the Web Server HTTP plug-in.

About this task

Requests to services that are exposed over the SCA Web service binding that use
the proxy server type that is provided with WebSphere Application Server are
routed over the specified proxy by default.

However, if your configuration uses an external Web server with the HTTP plug-in
for WebSphere Application Server and you want requests to services that are
exposed over the SCA Web service binding to route through the external Web
server, you must define the endpoints for the SCA service by adding the service
URL patterns to the plugin-cfg.xml file for the Application Server.
1. Obtain the URL patterns for each service. You can obtain the URL patterns in

one of the following ways:
v Use the message, which is located in the server log file, that indicates the

Web application is successfully created.
During service startup, for each service that is exposed over the SCA Web
Service binding, a dynamic Web application is created and configured with
the URI of the service. This process is described as an informational message
within the server log file as shown in the following example.
In the following example message, the helloworldws composition unit
contains the AsyncTranslatorService service, which is exposed over the SCA
Web service binding. This message provides the necessary context root and
URL pattern for the service, which you must add to the plugin-cfg.xml file.

68 Feature Pack for SCA Version 1.0.0 information center topics

/AsynchTranslatorComponent/AsynchTranslatorService/*

[[11/18/08 10:10:52:156 EST] 00000070 servlet I com.ibm.ws.webcontainer.servlet.ServletWrapper init
SRVE0242I: [helloworldws]
[/AsynchTranslatorComponent/AsynchTranslatorService]
[SCA_WS_BINDING_IMPL_CLASS_PLACEHOLDER]: Initialization successful.
[11/18/08 10:10:52:156 EST] 00000070 WASAxis2Exten I
WSWS7037I: The /* URL pattern was configured for the SCA_WS_BINDING_IMPL_CLASS_PLACEHOLDER servlet located
in the SCAWSBindSERV_AsynchTranslatorComponent_AsynchTranslatorService.war Web module.

v Use the warinfo.props WebSphere configuration repository file.
For each composition unit that has at least one service or reference exposed
over the SCA Web service binding, a single warinfo.props file is generated
during deployment. This file contains configuration information for each
dynamic Web application that starts during the server startup process.
The warinfo.props file is located in the profile_root\SOAAppSrv01\config\
cells\ cell1\cus\helloworldws\cver\BASE\meta\warinfo.props directory.
The file contains an entry for each dynamic Web application. For example:
#
#Tue Nov 18 10:10:37 EST 2008
SCAWSBindSERV_AsynchTranslatorComponent_
AsynchTranslatorService.war=AsynchTranslatorComponent/
AsynchTranslatorService\:default_host\:false\:false\:false

The value immediately following the war= and ending prior to the \: is the
context root for the Web application. In this example, the context root is
AsynchTranslatorComponent/AsynchTranslatorService.

2. Add the values for each dynamic Web application to the plugin-cfg.xml file.
After obtaining all of the entries from each of the services that you want to
define to the proxy server, add the values to the plugin-cfg.xml file. It is
important that you add the URI to the specific UriGroup that contains a server
and hosts the proxied service because multiple UriGroups might exist. If this
process is not done correctly, an HTTP 404 message results.
In the following example, see the AsynchTranslatorComponent/
AsynchTranslatorService entry that has been added to the list of URI patterns:
<UriGroup Name="default_host_Cluster2_URIs">
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*.jsp" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*.jsv" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/*.jsw" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/j_security_check" />
? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/IBM_WS_SYS_RESPONSESERVLET/ibm_security_logout" />

? <Uri AffinityCookie="JSESSIONID"
AffinityURLIdentifier="jsessionid"
Name="/AsynchTranslatorComponent/AsynchTranslatorService/*" /> </UriGroup>

Chapter 6. Specifying bindings in an SCA environment 69

Results

You have configured the endpoints for SCA services to route requests through an
external Web server configured with the HTTP plug-in for WebSphere Application
Server

Using EJB bindings in SCA applications
Use this task to learn how to use Enterprise JavaBeans (EJB) bindings in SCA
applications.

Support is provided for EJB bindings in 2.x and 3.0-style beans, for both service,
reference, and reference target.

The following is an example of an composite definition that has a service exposed
over an EJB 3.0 binding:

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://neworder/sca/jdbc"
name="NewOrderComposite">

<component name="NewOrderEJB3ServiceComponent">
<implementation.java class="neworder.sca.jdbc.NewOrderServiceImpl" requires="managedTransaction.local"/>
<service name="NewOrderService" requires="suspendsTransaction">
<interface.java interface="neworder.sca.jdbc.NewOrderService"/>
<binding.ejb ejb-version="EJB3"/>
</service>
</component>
</composite>

A client that wants to invoke the resultant enterprise bean would treat it like any
other enterprise bean and not like a regular SCA service.
CompositeContext.getService is not supported for a non-SCA binding, therefore, a
getService() on the CompositeContext would not work here. The following is the
client code for the above example:

InitialContext ctxt = new InitialContext();
Object remoteObj =
ctxt.lookup("ejb/sca/ejbbinding/NewOrderEJB3ServiceComponent/NewOrderService#neworder.sca.jdbc.NewOrderServiceRemote");

NewOrderServiceRemote newOrderRemote =
(NewOrderServiceRemote) PortableRemoteObject.narrow(remoteObj, NewOrderServiceRemote.class);

The following is an example of an composite definition that contains references to
both EJB 2.x and EJB 3.0 bindings:

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://erww.workload" name="ConvertComposite">

<component name="ConvertInputOutputServiceComponent">
<implementation.java class="convert.inputoutput.sca.ConvertInputOutputServiceImpl"

<reference name="priceQuoteSessionReference">
<interface.java interface="priceQuoteSession.PriceQuoteSession"/>
<binding.ejb uri="corbaname:iiop:localhost:2809/NameServiceServerRoot#ejb/session/PriceQuoteSessionFacadeBean"/>
</reference>
</component>
</composite>

Different binding.ejb attributes can be used for service side EJB bindings or
reference side EJB bindings. The following information explains how the default
value is calculated for each side:

Service side

The service side EJB binding applies only to Java archive (JAR)-packaged SCA
applications.
v EJB 2.0-level beans: URI is the JNDI name for the home; you can define it, or it

can be calculated with the default short name in the following form:

70 Feature Pack for SCA Version 1.0.0 information center topics

/sca/ejbbinding/<Component_Name>/<Service_Name>

Therefore, the URI can be calculated as:
corbaname:iiop:localhost:2812/NameServiceServerRoot#ejb/sca/ejbbinding/<Component_Name>/<Service_Name>

You can use it to look up home.
v EJB 3.0-level beans: The URI contains the component-id, therefore, either you can

define it, or it is calculated the same as the EJB 2.0 beans as follows:
sca/ejbbinding/<Component_Name>/<Service_Name>

The URI can be calculated as:
corbaname:iiop:localhost:2812/NameServiceServerRoot#ejb/sca/ejbbinding/<Component_Name>/<Service_Name>#
<package.qualified.interface of SCA Java interface with prefix of Remote or Local to the class name

You can use it directly to get the business interface.
The following code example displays as if it were a session bean:

<session name="ServiceNameBean" component-id="sca/ejbbinding/<Component_Name>/<Service_Name>"/>

When an SCA service is exposed through an EJB service binding, the service is
exposed through an enterprise bean. During deployment, the SCA runtime
generates a session bean for the service exposed through the EJB binding. The
caller of the composite service can invoke this service by accessing the generated
enterprise bean as if they are invoking any enterprise bean.

The generated enterprise bean for the composite service is in the directory,
WAS_HOME\AppServer\profiles\PROFILE_NAME\installedApps\
CELL_NAME\COMPOSITE_NAME.ear\. Callers need to include the client
required classes, such as remote or home, of the generated bean in the classpath or
bundle the classes in the JAR file.

Reference side

The reference side EJB binding applies to both JAR-packaged applications and Web
archive (WAR)-packaged applications, if not otherwise stated.
v The URI is used to lookup either the EJB 2.x home or EJB 3.0 business interface.

Follow the naming convention of the Java Enterprise Edition (JEE) specification
if you are using an existing JEE EJB module. If you use an SCA service with the
binding.ejb attribute, use the value mentioned above. For more information
about the EJB 3.0 JNDI name, see the topic EJB 3.0 bindings overview.

v homeInterface: Not used
v ejb-link-name: Only applies to WAR-packaged SCA applications. When URI is

not defined, use it to look up an EJB module that is defined in the same
enterprise archive (EAR) as the WAR.

v session-type: default value ″stateless″

v ejb-version: default value ″EJB2″

Attention: A lookup issue for EJB 3.0 reference bindings might occur when the
URI follows the corbaname:iiop:host:port/
NameServiceServerRoot##<ejb3_binding_longform> pattern This
problem exists only for EJB 3.0 reference bindings. When the EJB 3.0
reference binding URI follows the corbaname:iiop:host:port/
NameServiceServerRoot##<ejb3_binding_longform> pattern, where
ejb_binding_longform is ejb/<component-
id#<package.qualified.interface>, and if more than one enterprise bean
that is implementing the same interface is deployed on that server,

Chapter 6. Specifying bindings in an SCA environment 71

lookup may not be directed to the correct EJB with corresponding
component ID.

An example of a URI where this problem can occur is as follows:
uri="corbaname:iiop:host:port/NameServiceServerRoot#ejb/EJB3CounterSample/EJB3Beans.jar/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter

There are two enterprise beans implementing the
com.ibm.websphere.ejb3sample.counter.RemoteCounter interface. To avoid this
issue:
v Use a URI that does not start with ″corbaname:″
v Use a binding name in the URI that is an EJB binding short form, for example,

corbaname:iiop:host:port/NameServiceServerRoot#<package.qualified.interface>.
v Use a binding name in the URI that is a unique user-defined binding name.
v Ensure that the two enterprise beans that are deployed on the server do not

implement the same interface.
v Ensure that the EJB binding URI is pointing to an EJB 2.0 bean.

To resolve this problem, follow these guidelines:
v If the EJB reference binding is accessing an enterprise bean that is located in the

same cell, the URI should not start with ″corbaname:.″
v For same cell lookup, the URI pattern should be one of the following.

uri="ejb/EJB3CounterSample/EJB3Beans.jar/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter"

or
uri="cell/clusters/<cluster_name>/ejb/EJB3CounterSample/EJB3Beans.jar/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter"

or
uri="cell/nodes/<node_name>/servers/<server_name>//ejb/EJB3CounterSample/EJB3Beans.jar/StatelessCounterBean#com.ibm.websphere.ejb3sample.counter.RemoteCounter"

v Even in cross cell access, the recommended method is to create a namespace
binding for the enterprise bean that is accessed by the EJB reference binding.
After the namespace binding is created, use the namespace binding in the URI
of the EJB reference binding as uri=″cell/persistent/
<name_in_namespace_binding>″.

Different patterns of the SCA EJB reference binding URI are based on the user
setup and configurations. If the SCA EJB reference binding is accessing a stateless
session bean on the same server, the EJB reference binding URI can be designated
as the JNDI name, uri=″ejb/com/app/resumebank/ResumeBankHome″. If the
SCA EJB reference binding is referencing another SCA service with an EJB binding
in the same server, the URI can be designated as the JNDI name,
uri=″ejb/com/app/resumebank/ResumeBankHome″ or you can use the <reference
target=<componentName/serviceName> instead of the URI.

If the EJB reference binding is accessing a stateless session bean that is deployed in
the same cell, the URI can be based on cluster/node/server setup, for example:
uri="cell/clusters/cluster2/ejb/com/app/resumebank/ResumeBankHome"
uri="cell/nodes/<node_name>/servers/<server_name>/ejb/com/app/resumebank/ResumeBankHome"

If the EJB reference binding is accessing a stateless session bean on a different cell
(cross cell) or a mixed cell, you need to create a namespace binding, either an
enterprise bean or Corba type, in the WebSphere Application Server administrative
console and use the name in namespace binding in EJB reference binding URI such
as, uri=″cell/persistent/<name_in_namespace_binding>″. For example,
uri=″cell/persistent/neworder″ where neworder is name in the namespace binding.

72 Feature Pack for SCA Version 1.0.0 information center topics

SCA EJB Session Bean Binding

Table 26. Unsupported sections of the SCA EJB Session Bean Binding specification

Section Not supported in Feature Pack for SCA v1.0

2.1 Session Bean
Binding Schema

/binding.ejb/@session-type

v Since Feature Pack for SCA does not support conversations,
although session-type is set to ″stateful″, the service still
behaves as stateless.

/binding.ejb/@uri

v Line 91: Feature Pack for SCA only supports the following
formats:

– For EJB2

corbaname:iiop:<hostName>:<port>/
NameServiceServerRoot#ejb/
sca/ejbbinding/<componentName>/<serviceName>

– For EJB3

corbaname:iiop:<hostName>:
<port>/NameServiceServerRoot#ejb/sca/ejbbinding/
<componentName>/<serviceName>#
<serviceInterfaceName>Remote or corbaname:iiop:
<hostName>:
<port>/NameServiceServerRoot#
<serviceInterfaceName>Remote

v Line 97: corbaname:rir:#ejb/MyHome

2.3.1 Conversational
Nature of Stateful
Session Beans

Lines 197-229

Using EJB bindings in SCA applications in a cluster
environment

Use this task to learn how to use Enterprise JavaBeans (EJB) bindings that are
deployed in Service Component Architecture (SCA) applications in a cluster
environment.

Service side

When an SCA service is exposed with a binding.ejb element, the service is exposed
through an enterprise bean. During deployment, the SCA runtime generates a
session bean for the service that is exposed through EJB binding. The caller of the
composite service can invoke this service by accessing the generated EJB.

If the service is exposed through an EJB 2 bean, the EJB is bound at:
ejb/sca/ejbbinding/component_name/service_name

For example:
ejb/sca/ejbbinding/CompanyComponent/Company

If the service is exposed through an EJB 3 bean, the EJB is bound at:
ejb/sca/ejbbinding/component_name/service_name#fullyQualifiedServiceInterfaceNameRemote

For example:
ejb/sca/ejbbinding/CompanyComponent/Company#com.app.jobbank.CompanyRemote

Chapter 6. Specifying bindings in an SCA environment 73

The generated EJB for the composite service will be under profile_root/
installedApps/cell_name/composite_name.ear/.

Callers need to include client required classes (such as remote or home) of this
generated bean in their classpath (or bundle the classes in their JAR file).

Lookup and invoke of this generated service EJB from a clustered environment is
the same as lookup and invoke of any EJB in a product clustered setup. Refer to
″Naming considerations in clustered and cross-server environments″ in the EJB 3.0
application bindings overview topic.

Reference side

When used on the reference side, the binding.ejb element should specify a URI
attribute with values that match the value that is typically used when an EJB client
calls the initialContext.lookup() method. The general convention is:
"corbaname:iiop:host:port/NameServiceServerRoot#JNDI_name"

where JNDI_name is the JNDI name of the target EJB.

For example:
uri="corbaname:iiop:localhost:2809/NameServiceServerRoot#ejb/session/PriceQuoteSessionFacadeBean"

JNDI name syntax differs if the target EJB is an EJB 2 or EJB 3 bean.

When the referred EJB service is in a different cell, the URI might resemble one of
the following:

uri="corbaname:iiop:localhost:2809/NameServiceServerRoot#cell/clusters/cluster1/ejb/session/PriceQuoteSessionFacadeBean"

or
uri="corbaname::/NameServiceServerRoot#cell/clusters/cluster1/ejb/session/PriceQuoteSessionFacadeBean"

or
uri="cell/clusters/cluster1/ejb/session/PriceQuoteSessionFacadeBean"

if the target EJB is on the same machine but on different cluster.

In advanced scenarios on multiple-server environments, a simpler and more
portable way to access the target EJB application from an SCA composite is to set
up a namespace binding and use the namespace binding name in the URI attribute
of the binding.ejb along with cell/persistent/. For example:
uri="cell/persistent/PriceQuote"

where PriceQuote is the name field in the namespace.

The namespace binding can be of type EJB or CORBA based on the advanced
scenario.

If the target EJB application which the composite is trying to access is on same cell,
but on a different server, node or cluster, configure an EJB namespace binding. You
can do this from the administrative console:
1. Click Environment → Naming → Name space bindings.
2. Select the cell scope.
3. Click New.
4. On the Specify binding type page, select the EJB binding type.

74 Feature Pack for SCA Version 1.0.0 information center topics

5. On the Specify basic properties page, specify the binding identifier, name in
namespace, enterprise bean location such as server cluster or single server
(with node), and JNDI name as needed. Use the Name in name space field to
construct the URI as cell/persistent/name_in_namespace.

If the composite is running on a Version 7.0 cell and the target EJB application is
running on a Version 6.1 product, configure a CORBA namespace binding with the
correct Corbaname URL of the target EJB. Example Corbaname URL syntax is:

"corbaname:iiop:host:port/NameServiceServerRoot#jndi_name"

After you configure the namespace binding, use the Name in name space field to
construct the URI; for example, uri="cell/persistent/PriceQuote" where
PriceQuote is the value in the Name in name space field of the binding.

An advantage of using a namespace binding is, even when the target EJB changes,
the composite definition does not need to change. Only the namespace binding
needs to change accordingly.

Resolving SCA references
During application assembly or deployment, a reference (a service dependency) is
typically resolved to an actual deployed SCA service.

About this task

There are two ways to resolve an Service Component Architecture (SCA) reference:
v Using the @target attribute in order to resolve a reference to a component

service within the domain
v Using a binding-specific endpoint using the @uri attribute of the binding

element

Resolving an SCA reference using the @target attribute

Use this option when the target service is another SCA service that is in
the same domain as the client component, or rather, the component with
the reference.

When you have configured the SCA default binding for your SCA service,
the @target attribute is typically used to resolve an SCA client reference to
the SCA component service. You can also use the @target attribute to
resolve an SCA reference when using the SCA non-default bindings. Using
this mechanism, the client does not need to know the endpoint of a service
that is calculated during run time in order to resolve to it. Whereas a
binding-specific endpoint can contain server-specific information such as
an Hypertext Transfer Protocol (HTTP) port for a Web service binding, the
@target attribute does not require an update when the client-service pair is
deployed to a new server with different ports. You can also redeploy a
target service within the domain from a single server to a cluster without
requiring a change to the reference-side composite definition. If you use
this approach, remember that you must use bindings of the same type,
meaning that the reference must share a common binding with the service
it is targeting.

Resolving an SCA reference using a binding-specific endpoint

You must resolve an SCA reference using a binding-specific endpoint if
you invoke non-SCA services over non-default bindings or if you have
compatible SCA services that are hosted in another domain.

Chapter 6. Specifying bindings in an SCA environment 75

In general, obtain the binding-specific endpoint from the service provider.

If your target service is another SCA service, see the documentation for
configuring the SCA Web service binding, and the SCA EJB binding to
learn more about which binding-specific endpoint is used for a given
service deployment over a particular binding.

1. Determine from the service provider whether the service that you are
consuming is an SCA service within the same domain as your client.

2. Determine the binding that your client uses to consume this service. If the
target service is an SCA service, the binding that you use is based on the
bindings over which the service is exposed. If the service is not an SCA service,
the binding depends on the technology over which the service is provided. For
example, services offered over SOAP/HTTP use the SCA Web service binding.

3. If the SCA service is hosted in the same domain as your client, use the @target
attribute to resolve a reference to a component service within the domain.
The following examples demonstrate using the @target attribute. The syntax for
the <reference> element is the same for the different SCA binding types.
v SCA default binding

Target component
<component name="TargetComponent">

<service name="BankService"/>
</component>

Client component
<component name="ClientComponent">

<reference name="myReference" target="TargetComponent"/>
</component>

v SCA Web service binding
Target component
<component name="TargetComponent">

<service name="BankService">
<interface.wsdl>
<binding.ws/>

</service>
</component>

Client component
<component name="ClientComponent">

<reference name="myReference" target="TargetComponent">
<interface.wsdl>
<binding.ws/> <!-- The client does not have to worry about endpoint details. -->

</reference>
</component>

4. Resolve the SCA reference by using a binding-specific endpoint if you are
invoking non-SCA services over non-default binding or if you have compatible
SCA services that are hosted in another domain.
The following example demonstrates using the SCA Web service binding
endpoint for the client component:
Client component
<component name="ClientComponent">

<reference name="myReference">
<!-- The exact URL is obtained from a service provider. -->
<binding.ws uri=”http://www.mybank.com:9080/MyBank/AccountService/services>

</reference>
</component>

76 Feature Pack for SCA Version 1.0.0 information center topics

See the documentation for configuring the SCA Web service binding, and the
SCA EJB binding to learn more about binding-specific endpoint resolution for
these SCA binding types.

Results

You have identified your SCA client’s reference to a target service that it will
consume.

Chapter 6. Specifying bindings in an SCA environment 77

78 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 7. Using JAXB for XML data binding

Java Architecture for XML Binding (JAXB) is a Java technology that provides an
easy and convenient way to map Java classes and XML schema for simplified Web
services development. JAXB provides the xjc schema compiler, the schemagen
schema generator and a runtime framework to support marshalling and
unmarshalling of XML documents to and from Java objects.

About this task

JAXB is an XML-to-Java binding technology that enables transformation between
schema and Java objects and between XML instance documents and Java object
instances. JAXB technology consists of a runtime API and accompanying tools that
simplify access to XML documents. You can use JAXB APIs and tools to establish
mappings between Java classes and XML schema. An XML schema defines the
data elements and structure of an XML document. JAXB technology provides
tooling to enable you to convert your XML documents to and from Java objects.
Data stored in an XML document is accessible without the need to understand the
XML data structure.

JAXB is the default data binding technology used by the Java API for XML Web
Services (JAX-WS) tooling and implementation within this product. You can
develop JAXB objects to use within your JAX-WS applications. You can also use
JAXB independently of the JAX-WS programming model as a convenient way to
leverage the XML data binding technology to manipulate XML within your Java
applications.

JAXB is also the default data binding technology used by Service Component
Architecture (SCA) applications. JAXB enables the SCA service implementation
side and the SCA client reference side to interact with Java objects without
worrying about how the data is transformed into and from XML. JAXB is
supported for the binding.sca and binding.ws binding types.

Note: WebSphere Application Server Version 7.0 supports the JAXB 2.1
specification. JAX-WS 2.1 requires JAXB 2.1 for data binding.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not
supported on the z/OS platform. This functionality is provided by the
assembly tools provided with WebSphere Application Server running on the
z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

JAXB provides the xjc schema compiler tool, the schemagen schema generator tool,
and a runtime framework. The xjc schema compiler tool enables you to start with
an XML schema definition (XSD) to create a set of JavaBeans that map to the
elements and types defined in the XSD schema. You can also start with a set of
JavaBeans and use the schemagen schema generator tool to create the XML
schema. After using either the schema compiler or the schema generator
command-line tools, you can convert your XML documents both to and from Java
objects and use the resulting Java classes to assemble a Web services application.

In addition to using the tools from the command-line, you can invoke these JAXB
tools from within the Ant build environments. Use the com.sun.tools.xjc.XJCTask

© IBM Corporation 2007 79

Ant task from within the Ant build environment to invoke the xjc schema compiler
tool. Use the com.sun.tools.jxc.SchemaGenTask Ant task from within the Ant build
environment to invoke the schemagen schema generator tool.

JAXB annotated classes and artifacts contain all the information that the JAXB
runtime API needs to process XML instance documents. The JAXB runtime API
enables marshaling of JAXB objects to XML files and unmarshaling the XML
document back to JAXB class instances. The JAXB binding package,
javax.xml.bind, defines the abstract classes and interfaces that are used directly
with content classes. In addition the package defines the marshal and unmarshal
APIs.

JAXB 2.1 provides enhancements such as improved compilation support and
support for the @XMLSeeAlso annotation. With JAXB 2.1, you can configure the xjc
schema compiler so that it does not automatically generate new classes for a
particular schema. Similarly, you can configure the schemagen schema generator to
not automatically generate a new schema. This enhancement is useful when you
are using a common schema and you do not want a new schema generated. JAXB
2.1 also introduces the @XMLSeeAlso annotation that enables JAXB to bind
additional Java classes that it might not otherwise know about when binding a
Java class with this annotation. This annotation enables JAXB to know about all
classes that are potentially involved in marshalling or unmarshalling as it is not
always possible or practical to list all of the subclasses of a given Java class.
JAX-WS 2.1 also supports the use of the @XMLSeeAlso annotation on a service
endpoint interface (SEI) or on a service implementation bean to ensure all of the
classes referenced by the annotation are passed to JAXB for processing.

You can optionally use JAXB binding customizations to customize generated JAXB
classes by overriding or extending the default JAXB bindings when the default
bindings do not meet your business application needs. In most cases, the default
binding rules are sufficient to generate a robust set of schema-derived classes.
JAXB supports binding customizations and overrides to the default binding rules
that you can make through various ways. For example, you can the overrides
inline as annotations in a source schema, as declarations in an external bindings
customization file that is used by the JAXB binding compiler, or as Java
annotations within Java class files used by the JAXB schema generator. See the
JAXB specification for information regarding binding customization options.

Using JAXB, you can manipulate data objects in the following ways:
v Generate an XML schema from a Java class. Use the schema generator

schemagen command to generate an XML schema from Java classes.
v Generate Java classes from an XML schema. Use the schema compiler xjc

command to create a set of JAXB-annotated Java classes from an XML schema.
v Marshal and unmarshal XML documents. After the mapping between XML

schema and Java classes exists, use the JAXB binding runtime to convert XML
instance documents to and from Java objects.

Results

You now have JAXB objects that your Java application can use to manipulate XML
data.

80 Feature Pack for SCA Version 1.0.0 information center topics

Using JAXB schemagen tooling to generate an XML schema file from a
Java class

Use Java Architecture for XML Binding (JAXB) schemagen tooling to generate an
XML schema file from Java classes.

Before you begin

Identify the Java classes or a set of Java objects to map to an XML schema file.

About this task

Use JAXB APIs and tools to establish mappings between Java classes and XML
schema. XML schema documents describe the data elements and relationships in
an XML document. After a data mapping or binding exists, you can convert XML
documents to and from Java objects. You can now access data stored in an XML
document without the need to understand the data structure.

To develop Web services using a bottom-up development approach starting from
existing JavaBeans or enterprise beans, use the wsgen tool to generate the artifacts
for your Java API for XML-Based Web Services (JAX-WS) applications or the
Service Component Architecture (SCA) representations of your business service
interfaces. After the Java artifacts for your application are generated, you can create
an XML schema document from an existing Java application that represents the
data elements of a Java application by using the JAXB schema generator,
schemagen command-line tool. The JAXB schema generator processes either Java
source files or class files. Java class annotations provide the capability to customize
the default mappings from existing Java classes to the generated schema
components. The XML schema file along with the annotated Java class files contain
all the necessary information that the JAXB runtime requires to parse the XML
documents for marshaling and unmarshaling.

You can create an XML schema document from an existing Java application that
represents the data elements of a Java application by using the JAXB schema
generator, schemagen command-line tool. The JAXB schema generator processes
either Java source files or class files. Java class annotations provide the capability
to customize the default mappings from existing Java classes to the generated
schema components. The XML schema file along with the annotated Java class files
contain all the necessary information that the JAXB runtime requires to parse the
XML documents for marshaling and unmarshaling.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not
supported on the z/OS platform. This functionality is provided by the
assembly tools provided with WebSphere Application Server running on the
z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen,
schemagen and xjc command-line tools are located in the
app_server_root\bin\ directory. Similar tooling is provided by the Java SE
Development Kit (JDK) 6. For the most part, artifacts generated by both the
tooling provided with WebSphere and the JDK are the same. In general,
artifacts generated by the JDK tools are portable across compliant runtime

Chapter 7. Using JAXB for XML data binding 81

environments. However, it is a best practice to use the WebSphere tools to
achieve seamless integration within the WebSphere environment.

Note: WebSphere Application Server Version 7.0 supports the JAXB 2.1
specification. JAX-WS 2.1 requires JAXB 2.1 for data binding.

JAXB 2.1 provides improvements in compilation support to enable you to
configure the schemagen schema generator so that it does not automatically
generate a new schema. This is helpful if you are using a common schema such as
the World Wide Web Consortium (W3C), XML Schema, Web Services Description
Language (WSDL), or WS-Addressing and you do not want a new schema
generated for a particular package that is referenced. The location attribute on the
@XmlSchema annotation causes the schemagen generator to refer to the URI of the
existing schema instead of generating a new one.

In addition to using the schemagen tool from the command-line, you can invoke
this JAXB tool from within the Ant build environments. Use the
com.sun.tools.jxc.SchemaGenTask Ant task from within the Ant build environment
to invoke the schemagen schema generator tool.

Note: When running the schemagen tool, the schema generator does not correctly
read the @XmlSchema annotations from the package-info class file to derive
targetNamespaces. Instead of using the @XMLSchema annotation, use one of
the following methods:
v Provide a package-info.java file with the @XmlSchema; for example:

schemagen sample.Address sample\package-info.java

v Use the @XmlType annotation namespace attribute to specify a
namespace; for example:
@XmlType(namespace="http://myNameSpace")

1. Locate the Java source files or Java class files to use in generating an XML
schema file. Ensure that all classes referenced by your Java class files are
contained in the classpath or are provided to the tool using the-classpath/-cp
options.

2. Use the JAXB schema generator, schemagen command to generate an XML
schema. The schema generator is located in the app_server_root\bin\ directory.

app_server_root\bin\schemagen.bat myObj1.java myObj2.java

app_server_root/bin/schemagen.sh myObj1.java myObj2.java

app_server_root/bin/schemagen myObj1.java myObj2.java

The parameters, myObj1.java and myObj2.java, are the names of the Java files
containing the data objects. If myObj1.java or myObj2.java refer to Java classes
that are not passed into the schemagen command, you must use the -cp option
to provide the classpath location for these Java classes.Read about the
schemagen command to learn more about this command and additional
options that you can specify.

3. (Optional) Use JAXB program annotations defined in the
javax.xml.bind.annotations package to customize the JAXB XML schema
mappings.

82 Feature Pack for SCA Version 1.0.0 information center topics

4. (Optional) Configure the location property on the @XmlSchema annotation to
indicate to the schema compiler to use an existing schema rather than
generating a new one. For example,
@XmlSchema(namespace="foo")
package foo;
@XmlType
class Foo {
@XmlElement Bar zot;
}
@XmlSchema(namespace="bar",
location="http://example.org/test.xsd")
package bar;
@XmlType
class Bar {
...
}
<xs:schema targetNamespace="foo">
<xs:import namespace="bar"
schemaLocation="http://example.org/test.xsd"/>
<xs:complexType name="foo">
<xs:sequence>
<xs:element name="zot" type="bar:Bar" xmlns:bar="bar"/>
</xs:sequence>
</xs:complex

the location="http://example.org/test.xsd" indicates the location on the
existing schema to the schemagen tool and a new schema is not generated.

Results

Now that you have generated an XML schema file from Java classes, you are ready
to marshal and unmarshal the Java objects as XML instance documents.

Note: The schemagen command does not differentiate the XML namespace
between multiple @XMLType annotations that have the same @XMLType
name defined within different Java packages. When this scenario occurs, the
following error is produced:
Error: Two classes have the same XML type name
Use @XmlType.name and @XmlType.namespace to assign different names to them...

This error indicates you have class names or @XMLType.name values that
have the same name, but exist within different Java packages. To prevent
this error, add the @XML.Type.namespace class to the existing @XMLType
annotation to differentiate between the XML types.

Example

The following example illustrates how JAXB tooling can generate an XML schema
file from an existing Java class, Bookdata.java.
1. Copy the following Bookdata.java file to a temporary directory.

package generated;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.datatype.XMLGregorianCalendar;

Chapter 7. Using JAXB for XML data binding 83

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "bookdata", propOrder = {

"author",
"title",
"genre",
"price",
"publishDate",
"description"

})
public class Bookdata {

@XmlElement(required = true)
protected String author;
@XmlElement(required = true)
protected String title;
@XmlElement(required = true)
protected String genre;
protected float price;
@XmlElement(name = "publish_date", required = true)
protected XMLGregorianCalendar publishDate;
@XmlElement(required = true)
protected String description;
@XmlAttribute
protected String id;

public String getAuthor() {
return author;

}
public void setAuthor(String value) {

this.author = value;
}
public String getTitle() {

return title;
}

public void setTitle(String value) {
this.title = value;

}

public String getGenre() {
return genre;

}

public void setGenre(String value) {
this.genre = value;

}

public float getPrice() {
return price;

}

public void setPrice(float value) {
this.price = value;

}

public XMLGregorianCalendar getPublishDate() {
return publishDate;

}

public void setPublishDate(XMLGregorianCalendar value) {
this.publishDate = value;

84 Feature Pack for SCA Version 1.0.0 information center topics

}

public String getDescription() {
return description;

}

public void setDescription(String value) {
this.description = value;

}

public String getId() {
return id;

}

public void setId(String value) {
this.id = value;

}

}

2. Open a command prompt.
3. Run the schemagen schema generator tool from the directory where you

copied the Bookdata.java file.

app_server_root\bin\schemagen.bat Bookdata.java

app_server_root/bin/schemagen.sh Bookdata.java

app_server_root/bin/schemagen Bookdata.java

4. The XML schema file, schema1.xsd is generated:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="bookdata">
<xs:sequence>

<xs:element name="author" type="xs:string"/>
<xs:element name="title" type="xs:string"/>
<xs:element name="genre" type="xs:string"/>
<xs:element name="price" type="xs:float"/>
<xs:element name="publish_date" type="xs:anySimpleType"/>
<xs:element name="description" type="xs:string"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string"/>

</xs:complexType>
</xs:schema>

Refer to the JAXB Reference implementation documentation for additional
information about the schemagen command.

Using JAXB xjc tooling to generate JAXB classes from an XML
schema file

Use Java Architecture for XML Binding (JAXB) xjc tooling to compile an XML
schema file into fully annotated Java classes.

Chapter 7. Using JAXB for XML data binding 85

Before you begin

Develop or obtain an XML schema file.

About this task

Use JAXB APIs and tools to establish mappings between an XML schema and Java
classes. XML schemas describe the data elements and relationships in an XML
document. After a data mapping or binding exists, you can convert XML
documents to and from Java objects. You can now access data stored in an XML
document without the need to understand the data structure.

To develop Web services using a top-down development approach starting with an
existing Web Services Description Language (WSDL) file, use the wsimport tool to
generate the artifacts for your Java API for XML-Based Web Services (JAX-WS)
applications or the Service Component Architecture (SCA) Java representations of
your business service interfaces when starting with a WSDL file. After the Java
artifacts for your application are generated, you can generate fully annotated Java
classes from an XML schema file by using the JAXB schema compiler, xjc
command-line tool. The resulting annotated Java classes contain all the necessary
information that the JAXB runtime requires to parse the XML for marshaling and
unmarshaling. You can use the resulting JAXB classes within Java API for XML
Web Services (JAX-WS) applications or other Java applications such as SCA
applications for processing XML data.

In addition to using the xjc tool from the command-line, you can invoke this JAXB
tool from within the Ant build environments. Use the com.sun.tools.xjc.XJCTask
Ant task from within the Ant build environment to invoke the xjc schema compiler
tool.
1. Use the JAXB schema compiler, xjc command to generate JAXB-annotated Java

classes. The schema compiler is located in the app_server_root\bin\ directory.
The schema compiler produces a set of packages containing Java source files
and JAXB property files depending on the binding options used for
compilation.

2. (Optional) Use custom binding declarations to change the default JAXB
mappings. Define binding declarations either in the XML schema file or in a
separate bindings file. You can pass custom binding files by using the -b option
with the xjc command.

3. Compile the generated JAXB objects. To compile generated artifacts, add the
Thin Client for JAX-WS with WebSphere Application Server to the classpath.

Results

Now that you have generated JAXB objects, you can write Java applications using
the generated JAXB objects and manipulate the XML content through the
generated JAXB classes.

Example

The following example illustrates how JAXB tooling can generate Java classes
when starting with an existing XML schema file.
1. Copy the following bookSchema.xsd schema file to a temporary directory.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="CatalogData">

<xsd:complexType >

86 Feature Pack for SCA Version 1.0.0 information center topics

<xsd:sequence>
<xsd:element name="books" type="bookdata" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="bookdata">

<xsd:sequence>
<xsd:element name="author" type="xsd:string"/>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="genre" type="xsd:string"/>
<xsd:element name="price" type="xsd:float"/>
<xsd:element name="publish_date" type="xsd:dateTime"/>
<xsd:element name="description" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>
</xsd:schema>

2. Open a command prompt.
3. Run the JAXB schema compiler, xjc command from the directory where the

schema file is located. The xjc schema compiler tool is located in the
app_server_root\bin\ directory.

app_server_root\bin\xjc.bat bookSchema.xsd

app_server_root/bin/xjc.sh bookSchema.xsd

Running the xjc command generates the following JAXB Java files:
generated\Bookdata.java
generated\CatalogdData.java
generated\ObjectFactory.java

4. Use the generated JAXB objects within a Java application to manipulate XML
content through the generated JAXB classes.

Refer to the JAXB 2.0 Reference implementation documentation for additional
information about the xjc command.

Chapter 7. Using JAXB for XML data binding 87

88 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 8. SCA application package deployment

The IBM Feature Pack for Service Component Architecture (SCA) supports
deployment of many types of SCA artifacts as composition units of business-level
applications. Typical artifacts include Java archive (JAR) files, compressed (ZIP)
files, and Web application archive (WAR) files.

Details about deployment of SCA artifacts in the Feature Pack for SCA follow.
v Deployment of JAR or ZIP files
v Deployment of WAR files
v Notes and limitations

Deployment of JAR or ZIP files
v The product supports one composite file for each package. The product

determines which composite file to support using the following process:
1. The SCA deployment extension looks for the META-INF/sca-contribution.xml

file, gets the name of each deployable composite defined in the file, and uses
QName values to find the actual composite file names under any directory
for that composite. If more than one composite is found in the
sca-contribution.xml file, you can select the composite to deploy.

2. If there is no META-INF/sca-contribution.xml file defined, the SCA
deployment extension looks for a composite file in the META-INF/sca-
deployables directory.

v The product validates SCA composites for inconsistencies with SCA
specifications.
One specification requirement is that the names of top-level components must be
unique. Thus, the product validates top-level component name uniqueness.

Tip: Top-level components are also called domain components, with the
top-level or domain typically the cell on multiple-server installations and
the server scope on single-server installations.

The product validates all composite files in a JAR or ZIP file, regardless of the
file location in the archive or whether the sca-contribution.xml file references
the composite file. The product does not validate all services and references.
The product writes warning and error messages resulting from the validation
tests to the SystemOut.log file. Read the log file to learn about inconsistencies
with specifications in your SCA composites.

v The product uses the following process for QName resolution:
– The product uses the QName to resolve composite files included in the

top-level composite that use the element. For example, the <include
name="mynamespace:MyService"/> statement looks for a composite file whose
composite name is MyService and whose targetNameSpace is mynamespace.
The following rules apply:
- name: Use the outer composite.
- namespace declarations: Merged into the outer composite.
- targetNamespace: Use the outer composite (must be the same).
- local: Use the composite (preferably the same but not required).
- requires(intents) and policySets: Must be compatible, and aggregated into

the outer composite.

© IBM Corporation 2008 89

Deployable composite files must have name and targetNamespace values. The
name and targetNamespace values are combined to form the QName of a
composite file.

– When a composite is used as a component implementation in the top-level
composite, the composite is also resolved using the QName. For example, the
<implementation.composite name="mynamespace:MyComposite"/> statement
causes the product administration to look for a composite file whose
composite name is MyComposite and whose targetNamespace is mynamespace.

v A JAR file can contain other JAR files at the top level. The contained JAR files
are available on the classpath. However, any archives inside those JAR files are
not available. The product supports one level of embedded JAR files.

Deployment of WAR files
v A composite file in a WAR file must be named default.composite. A composite

file that is not in a WAR file can have any name.
v The default.composite composite file must be inside a WAR file in the

META-INF/sca-deployables directory.
v The META-INF/sca-deployables directory must contain no more than one

composite file. If there is more than one composite file in the
META-INF/sca-deployables directory, then the product returns a validation error
and stops the WAR file deployment.
However, you can place other composite files in directories other than
META-INF/sca-deployables, and reference those composite files in the top-level
composite under the META-INF/sca-deployables directory.

v The product does not support having a sca-contribution.xml file inside the
WAR file under the META-INF directory. If the product finds a
sca-contribution.xml file, then the product returns a validation error and stops
the WAR file deployment.

Notes and limitations
v The product does not provide administration console pages for configuring

contributions.
v If you import a package or namepace from a different contribution, or JAR

(contribution.xml), you might need to import that contribution as an asset
before importing your own asset.
For example, suppose your Contribution A imports a JAR file from Contribution
B. You might need to import Contribution B and then Contribution A as assets.
Contribution A depends on Contribution B so you must import Contribution B
before importing Contribution A.

v You cannot use a local interface across a class loader boundary. Use a remotable
interface to cross a class loader boundary.

90 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 9. Creating SCA business-level applications

You can create an empty business-level application and then add Service
Component Architecture (SCA) assets, shared libraries, business-level applications,
and other artifacts as composition units to the empty business-level application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a
business-level application to a Version 7.0 server or cluster that is enabled for the
Feature Pack for SCA.

Optionally, determine what assets or other files that you want to add to your
business-level application and whether your application files can run on your
deployment targets.

About this task

You can create business-level applications using the administrative console, the
wsadmin tool, or programming.

Note: You create SCA business-level applications the same way as for non-SCA
business-level applications. However, when you use an SCA asset in a
business-level application, function that applies only to applications that use
SCA composites becomes available. For example, you can access
administrative console pages that apply only to applications that use SCA
composites. The Feature Pack for SCA extends the business-level application
functionality.

1. Select a way to create your business-level application.

Table 27. Ways to create SCA business-level applications

Option Method

Administrative console
business-level application
creation wizard

See “Creating SCA
business-level applications
with the console” on page
92.

Click Applications → New Application → New Business Level
Application and follow instructions in the wizard.

For example use of the console to create a business-level
application that has an SCA asset, see “Example: Creating an
SCA business-level application with the console” on page 116.

2. Create your business-level application using the administrative console,
wsadmin, or programming.

3. Save the changes to your administrative configuration.
When saving the configuration, synchronize the configuration with the nodes
where the application is expected to run.

Results

The name of the application is shown in the list on the Business-level applications
page.

© Copyright IBM Corp. 2009 91

What to do next

After you create a business-level application, you can do the following to add
composition units to it:
1. Import any SCA or other assets needed by your business-level application.
2. Add assets, shared libraries, or other business-level applications as composition

units.
When you add an asset, you must specify a target server or cluster that is
enabled with the Feature Pack for SCA.

3. Save the changes to your administrative configuration.
4. Start the business-level application.

If the application does not run as desired, edit the application configuration, then
save and run it again.

If the business-level application does not start, ensure that the deployment target
to which the application maps is running and try starting the application again. If
SCA composite assets do not start, ensure that each asset is mapped to a
deployment target that is enabled for the Feature Pack for SCA.

If an asset composition unit uses an Enterprise JavaBean (EJB) binding and does
not start because it has a non-WebSphere target of "null", delete the asset
composition unit and add it again to the business-level application. Specify a target
enabled for the Feature Pack for SCA when you add the asset to the business-level
application. You cannot change the target after deployment.

If the META-INF/sca-deployables directory has multiple SCA composite files and
the application does not start because the product cannot obtain the
CompUnitInfoLoader value, place only the file that contains the composite in the
META-INF/sca-deployables directory. You can place the other composite files
anywhere else within the archive.

If the SCA application uses security, the target server or cluster must be in the
global security domain.

In multiple-node environments, synchronize the nodes after you save changes to
the target before starting the business-level application.

Creating SCA business-level applications with the console
You can create an empty business-level application and then add Service
Component Architecture (SCA) assets, shared libraries, or business-level
applications as composition units to the empty business-level application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a
business-level application to a Version 7.0 server or cluster that is enabled for the
Feature Pack for SCA.

Also, determine an application name. Optionally, determine which assets, shared
libraries, or business-level applications that the new business-level application
needs.

92 Feature Pack for SCA Version 1.0.0 information center topics

About this task

You can create a business-level application that has SCA assets using the
administrative console. Alternatively, you can use the wsadmin scripting tool or
programming.

You can add an asset or shared library composition unit to multiple business-level
applications. However, each composition unit for the same asset must have a
unique composition unit name. You can add a business-level application
composition unit to more than one business-level application.
1. Create an empty business-level application.

a. Click Applications → New Application → New Business-level Application.
b. On the New business-level application page, specify a unique name for the

application and a description, and then click Apply.
c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the
Business-level applications page. Because the application is empty, its status is
Unknown.

2. Add one SCA asset to your business-level application. The product adds the
asset as a composition unit of your business-level application.
a. Import the SCA asset.
b. Go to the business-level application settings page.

Click Applications → Application Types → Business-level applications →
application_name.

c. On the business-level application settings page, specify the type of
composition unit to add.
Although you can add an asset, shared library, or business-level application
to your business-level application, the logic is in your SCA asset. Add the
SCA asset as a composition unit.
Under Deployed assets, click Add → Add Asset.

d. On the Add page, select one unit from the list of available units, and then
click Continue.
On the Add page, you might be able to select multiple deployable SCA
composites. However, the Feature Pack for SCA supports deploying only
one deployable composite at a time. Select only one unit and click
Continue. If you select multiple units, the product deploys only one of
those units.

e. On the Set options page, change the composition unit settings as needed,
and then click Next.
This page is not shown if you have multiple deployable unit assets.

f. On the Map composition unit to a target page, specify a target server that is
enabled for the Feature Pack for SCA, and then click Next.
The target server can be an existing cluster. To map the composition unit to
a cluster, select the existing cluster from the Available list, click Add, and
then click Next. The cluster name is shown in the Current targets list as
WebSphere:cluster=cluster_name.
If you are adding an SCA asset that uses security, specify a target server that
is in the global security domain.
This page is not shown when you add a business-level application.

Chapter 9. Creating SCA business-level applications 93

g. On the Relationship options page, specify composition unit relationship
options.
Specify a relationship if a deployable unit depends on another asset
deployed as a shared library in order to run. This page is shown only for
SCA assets that have multiple deployable or composition units.

h. On the Map security roles to users or groups page, specify security roles for
users or groups as needed, and then click Next.
This page is only shown for SCA assets that use security.

i. On the Map RunAs roles to users page, map a user identity and password to
RunAs roles as needed, and then click Next.
This page is only shown for SCA assets that use security.

j. On the Map virtual host page, specify a virtual host that hosts Web services
for each SCA composite, and then click Next. By default, composites map to
default_host.
This page is only shown for SCA assets that contain a Web service binding.

k. On the Attach policy set page, attach a policy set and assign policy set
bindings as needed, and then click Next.
This page is only shown for SCA assets that use Web services.

l. On the Summary page, click Finish. Several messages are displayed,
indicating whether the product adds the unit to the business-level
application successfully. A message having the format Completed
res=[WebSphere:cuname=unit_name] indicates that the addition is successful.
Click Manage application.
If the product adds the unit successfully, the name of the unit is shown in a
list of deployed assets on the business-level application settings page.
If the unit addition is not successful, read the messages and add the unit
again. Correct the problems noted in the messages.

m. On the Adding composition unit to the business-level application page,
click Save.

3. Optional: Add one or more assets, shared libraries, or business-level
applications to your business-level application.
Repeat Step 2 to add another asset or to add a shared library or business-level
application.

Results

A business-level application that contains the specified composition units.

What to do next

After you create the application, save the changes to your configuration and start
the application as needed.

If a composite asset is deployed to a non-SCA server or cluster, the SCA composite
does not start. You must deploy SCA assets to servers or clusters that are enabled
for the feature pack.

Map virtual host settings for SCA composites
Use this page to map Service Component Architecture (SCA) composites that use a
Web service binding to a virtual host. You must map the composites to the virtual
host that hosts the Web services.

94 Feature Pack for SCA Version 1.0.0 information center topics

This administrative console page displays in the business-level application creation
and update wizards. To view the Map virtual host page, the asset that you add to
a business-level application must contain a Web service binding. To view this page,
do the following:
1. Import an asset that contains a Web service binding.
2. Create a business-level application to which to add the asset.
3. Click Applications → Application Types → Business-level applications →

application_name → Add → Add Asset.
4. On the Add composition unit page, select the asset that contains a Web service

binding, and click Continue.
5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed

and click Next.
7. On the Define relationship with existing composition units page, change the

settings as needed and click Next.
8. Continue changing settings as needed and click Next on any other pages until

the Map virtual host page is displayed in the wizard.

Composite Name
Specifies the name of the composite that uses a Web service binding in the SCA
artifact.

Virtual Host
Specifies a virtual host to associate with the composite.

Select the virtual host that hosts the Web services for the composite. By default, the
product associates a component with the default_host virtual host.

Attach policy set settings
Use this page to attach a policy set and assign policy set bindings for the
composite defined in a Service Component Architecture (SCA) application.

This administrative console page displays in the Create new business-level
application wizard. To have the Attach policy set page in the wizard, the SCA
component in the asset that you add to a business-level application must use a
Web service binding, binding.ws, and the composite file or annotation must specify
the intents or policy sets. To view this page, do the following:
1. Import an asset that uses a Web service binding and a composite file or

annotation that specifies the intents or policy sets.
2. Create a business-level application to which to add the asset.
3. Click Applications → Application Types → Business-level applications →

application_name → Add → Add Asset.
4. On the Add composition unit page, select the asset that uses a Web service

binding, and click Continue.
5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed

and click Next.
7. On the Define relationship with existing composition units page, change the

settings as needed and click Next.
8. Continue changing settings as needed and click Next on any other pages until

the Attach policy set page is displayed in the wizard.

To attach or detach a policy set or binding, do the following:

Chapter 9. Creating SCA business-level applications 95

1. Select a composite, component, service, reference, or binding from Name. The
Name list is nested, indicating parent-child relationships. When you select a
parent, the children are automatically selected.

2. Click the desired button.

Table 28. Button descriptions

Button Resulting action

Attach Attaches a policy set to the selected composite, component, service,
reference, or binding.

When the Include default policy sets option is not enabled, the
options for this button contain user-created policy sets only.

When the Include default policy sets option is not enabled and no
user-created policy sets exist, then there are no button options. You
can select Include default policy sets to display the default policy set
options.

When the Include default policy sets option is enabled, the options
for this button include both default policy sets and any user-created
policy sets.

To attach a policy set, select a composite, component, service,
reference, or binding from Name and click Attach →
policy_set_option.

To close the menu list, click Attach.

Detach Policy Set Detaches a policy set from the selected composite, component, service,
reference, or binding.

Assign Service
Policy Set Binding

Assigns a service policy set binding to the selected composite,
component, service, reference, or binding. There are two default
options:

Default specifies to assign the default service policy set binding.

Provider Sample specifies to assign a policy set binding that is
provided with the product to the service.

If you are deploying the composition unit to a server or cluster that
belongs to a security domain, the list of policy set bindings consists of
bindings that have been defined in the security domain to which the
composition unit is being deployed.

Assign Reference
Policy Set Binding

Assigns a reference policy set binding to the selected composite,
component, service, reference, or binding. There are two default
options:

Default specifies to assign the default reference policy set binding.

Client Sample specifies to assign a policy set binding that is provided
with the product to the reference.

If you are deploying the composition unit to a server or cluster that
belongs to a security domain, the list of policy set bindings consists of
bindings that have been defined in the security domain to which the
composition unit is being deployed.

Include default policy sets
Specifies whether to include default policy sets. Default policy sets specify
common quality of service (QoS) behavior for generic message format.

96 Feature Pack for SCA Version 1.0.0 information center topics

Before selecting this option, determine whether the default policy sets provide
adequate QoS characteristics for your services.

By default, this option is not enabled.

Name
Specifies a composite, component, service, reference, or binding in the artifact.

The Name list is nested, indicating parent-child relationships. When you select a
parent, the children are automatically selected.

Intents
Specifies the aggregate of the intents from the composite file and the annotations.
SCA intents are used to describe the abstract policy requirements of a component.

The intents shown include any intents inherited from a parent.

Matched Policy Sets
Specifies policy sets that potentially satisfy the intents.

You can include default policy sets by enabling the Include default policy sets
check box. To exclude default policy sets, deselect the check box.

Attached Policy Set
Specifies attached policy sets. If no value is shown, then the composite,
component, service, reference, or binding is not attached to a policy set.

To attach a policy set, select a composite, component, service, reference, or binding
and click an Attach option.

To detach a policy set, use Detach Policy Set. You can detach any policy set,
including pre-attached policy sets.

Policy Set Binding
Specifies service and reference policy set bindings. If no value is shown, then the
composite, component, service, reference, or binding is not assigned to a policy set
binding.

To assign a policy set binding, select a composite, component, service, reference, or
binding and click an Assign Service Policy Set Binding or Assign Reference
Policy Set Binding option.

To reset the bindings, select the Default option. For example, select Assign Service
Policy Set Binding → Default or Assign Reference Policy Set Binding → Default.

Map security roles to users or groups collection for SCA
composites

Use this page to view and manage mappings of security roles to users and groups
that are used with the Service Component Architecture (SCA) composites.

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → Map security roles to users or groups.
This page is the same as the Map security roles to users or groups page in the
Create new business-level application wizard. To view this page, your composition
unit must support SCA security.

Chapter 9. Creating SCA business-level applications 97

Different roles can have different security authorizations. Mapping users or groups
to a role authorizes those users or groups to access applications defined by the
role. Users, groups, and roles are defined when an application is installed or
configured.

To map a role to a user or group, enable the Select check box beside the role name
in the list and click a button. On the displayed page, specify one or more users or
groups to map to the role.

Table 29. Button descriptions

Button Resulting action

Map Users Displays the Map users or groups page on which you can specify the
users to have the selected security role.

Map Groups Displays the Map users or groups page on which you can specify the
groups to have the selected security role.

Map Special
Subjects

Maps special subjects according to the option that you select:

None specifies to map none of the special subjects to the role.

All Authenticated in Application’s Realm specifies to map all of the
authenticated users to a specified role. When you map all
authenticated users to a specified role, all of the valid users in the
current registry who have been authenticated can access resources
that are protected by this role.

All Authenticated in Trusted Realms specifies to map all of the
authenticated users in the trusted realms to a specified role. This
option gives all authenticated users who belong to the user registry
access to the application’s realm and all authenticated users who
belong to user registries access to realms which are trusted by the
current security domain.

Everyone specifies to map everyone to a specified role. When you
map everyone to a role, anyone can access the resources that are
protected by this role and, essentially, there is no security.

Role
Specifies a security role.

Special Subjects
Specifies which special subjects are mapped to the security role. This option
applies only when an application uses multiple realms.

None Specifies to map none of the special subjects to the role.

All Authenticated in Application’s Realm
Specifies to map all of the authenticated users to a specified role. When
you map all authenticated users to a specified role, all of the valid users in
the current registry who have been authenticated can access resources that
are protected by this role.

All Authenticated in Trusted Realms
Specifies to map all of the authenticated users in the trusted realms to a
specified role. All authenticated users who belong to the user registry that
is mapped to the application’s realm and all authenticated users who
belong to user registries that are mapped to realms which are trusted by
the current security domain are successfully authorized.

98 Feature Pack for SCA Version 1.0.0 information center topics

Everyone
Specifies to map everyone to a specified role. When you map everyone to a
role, anyone can access the resources that are protected by this role and,
essentially, there is no security.

To change the value, select the role, click Map Special Subjects, and select an
option.

Users
Lists the users that are mapped to the specified role within this application.

Users from the non-default realm are displayed as user@realm.

Groups
Lists the groups that are mapped to this specified role within this application.

Map RunAs roles to users collection for SCA composites
Use this page to map a specified user identity and password to a RunAs role for a
Service Component Architecture (SCA) composite. This page enables you to specify
application-specific privileges for individual users to run specific tasks using
another user identity.

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → Map RunAs roles to users. This page is
the same as the Map RunAs roles to users page in the Create new business-level
application wizard.

To view this page, the components in your composition unit must contain
predefined RunAs roles and support SCA security. RunAs roles are used by
components that need to run as a particular role for recognition while interacting
with another component.

Username
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to
roles page. You can map the user to its appropriate role by either mapping the user
to that role directly or mapping a group that contains the user to that role. After
you specify the user name and password for the user and select a RunAs role, click
Apply.

Password
Specifies the password for the RunAs user.

Role
Specifies a security role for a user within this application.

The authorization policy is only enforced when security is enabled.

User
Lists the user that is mapped to the specified role within this application.

Chapter 9. Creating SCA business-level applications 99

Composition unit settings for SCA composites
Use this page to view composition unit settings and to change the properties of a
Service Component Architecture (SCA) composite.

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name → deployed_asset_name. The
deployed asset is a composition unit of the business-level application.

To view this page, your composition unit must support SCA.

Name
Specifies a logical name for the composition unit. You cannot change the name on
this page.

Description
Specifies a description for the composition unit.

Backing identifier
Specifies a unique identifier for a composition unit that is registered in the
application management domain.

The identifier has the format: WebSphere:unit_typename=unit_name. For example,
for the MyApp.jar asset, the backing identifier might be
WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

Data type String
Units Configuration unit identifier

Starting weight
Specifies the order in which composition units are started when the server starts.
The starting weight is like the startup order. The composition unit with the lowest
starting weight is started first.

The value that you set for Starting weight determines the importance or weight of
a composition unit within the business level application. For example, for the most
important composition unit within a business-level application, specify 1 for
Starting weight. For the next most important composition unit within the
business-level application, specify 2 for Starting weight, and so on.

Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution
Specifies whether to start the composition unit when the product distributes the
composition unit to other locations.

The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does
not apply when the composition unit is a business-level application.

Data type Boolean

100 Feature Pack for SCA Version 1.0.0 information center topics

Default false

Recycle behavior on update
Specifies whether the product restarts the composition unit after the composition
unit is updated.

The default is to restart the composition unit after partial updating of the
composition unit.

This setting applies to asset or shared library composition units. This setting does
not apply when the composition unit is a business-level application.

Table 30. Option descriptions

Option Description

ALL Restarts the composition unit after the entire composition unit is updated

DEFAULT Restarts the composition unit after part of the composition unit is updated

NONE Does not restart the composition unit after the composition unit is updated

Target mapping
Specifies one or more current targets for the composition unit.

To change the existing deployment targets, click Modify Targets and select
different deployment targets from the list of available clusters and servers.

SCA composite components
Specifies the component names and component implementations of SCA
composites in the application.

Table 31. Column descriptions

Column Description

Component Name Specifies the name of a component associated with the SCA
composite.

Component
Implementation

Specifies the name of the class or code implementing the
component.

None indicates that the SCA composite does not have defined components.

SCA composite properties
Specifies the names and values of SCA composite properties in the application.

Table 32. Column descriptions

Column Description

Property Name Specifies the name of an SCA composite property.

Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value
properties.

SCA composite wires
Specifies the sources and targets of wires in the SCA composite.

Chapter 9. Creating SCA business-level applications 101

Table 33. Column descriptions

Column Description

Wire Source Specifies the source of a wire in the SCA composite.

Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.

Provide HTTP endpoint URL information settings for SCA
composites

Use this page to specify endpoint Universal Resource Locator (URL) prefix
information for Service Component Architecture (SCA) composites accessed by
Web service bindings. The information is used to form complete endpoint
addresses.

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → Provide HTTP endpoint URL
information.

SCA HTTP URL Prefixes
Specifies whether to use an existing default URL prefix or a custom endpoint URL
prefix for SCA composites that are accessed by Hypertext Transfer Protocol (HTTP)
for service endpoints.

Options to specify a URL prefix include the following:

Select default HTTP URL prefix
To specify an existing default endpoint URL prefix, choose Select default
HTTP URL prefix and use the menu to select either the secure HTTPS or
unsecure HTTP endpoint URL value.

Select custom HTTP URL prefix
You use a custom endpoint URL prefix when the service has a proxied
front end. The endpoint URL prefixes are those of the proxy server. You
must specify proxied endpoints when deploying services that use the Web
service binding in a clustered configuration.

To specify a custom endpoint URL prefix, do the following:
1. Choose Select custom HTTP URL prefix

2. In the field, specify both a secure and an unsecure custom endpoint
URL value. Separate each URL by a space. For example, specify:
http://myHost:9081 https://myHost:9044

For each endpoint URL prefix, the format is protocol://
host_name:port_number. Specify the protocol (either http or https),
host_name, and port_number to use in the endpoint URL.

3. Click Apply.

SCA composite component settings
Use this page to view and edit the attributes associated with a Service Component
Architecture (SCA) component.

102 Feature Pack for SCA Version 1.0.0 information center topics

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name → deployed_asset_name →
SCA_composite_component_name.

Components are configured instances of implementations. Components provide
and consume services. More than one component can use and configure the same
implementation, where each component configures the implementation differently.
For example each component might configure a reference of the same
implementation to consume a different service.

An implementation defines the aspects configurable by a component in the form of
a component type. The component type is in effect a description of the contract
honored by the implementation.

A reference represents a requirement that the implementation has on a service
provided by another component.

Component name
Specifies the component name of the attribute.

Implementation
Specifies the Java class or configuration file that contains the component
implementation.

Type
Specifies the type of attribute. In this case, the type is Component.

SCA component services
Specifies the names of the services.

SCA component references
Specifies the names and targets of component references. You can edit the reference
target for customization.

SCA component properties
Specifies the Property Input Source and Property Value for each property.

Options for Property Input Source include the following:
v XPath indicates the source attribute of the property.
v File indicates the file attribute of the property.
v Value indicates the property element value.

SCA component reference settings
Use this page to view and edit the attributes associated with a Service Component
Architecture (SCA) component reference.

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → SCA_composite_component_name →
reference_name.

SCA component references within an implementation represent links to services the
implementation uses that must be provided by other components in the SCA
system. For a composite, you can wire references of components within the

Chapter 9. Creating SCA business-level applications 103

composite (component references) to references of the composite (composite
references), indicating that the component references must be resolved by services
outside the composite.

References use bindings to describe the access methods used to invoke the services.

Under Additional Properties, click View domain to view a list of services
available in the current cell or domain. This can be helpful when updating the
Target setting value, for example.

Reference name
Specifies the reference name of the attribute.

Type
Specifies the type of attribute. In this case, it is Reference.

Target
Specifies one or more target service uniform resource identifiers (URIs), depending
on the multiplicity setting. Each target wires the reference to a component service
that resolves the reference. Targets can contain a list of targets separated by a
space, in the form target1 target2.

Binding
Specifies the URI of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB)
binding, and Web service binding.

SCA component service settings
Use this page to view and edit the attributes associated with a component service.

To view this administrative console page, click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → SCA_composite_component_name →
service_name.

Services are used to publish services provided by implementations, so that they are
addressable by other components.

A service published by a component can be provided by a service of a component
defined within the component, or it can be provided by a component reference.
The latter case allows the republication of a service with a new address or new
bindings.

Service name
Specifies the service name of the attribute.

Type
Specifies the type of attribute. In this case, Service.

Binding
Specifies the uniform resource identifier (URI) of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB)
binding, and Web service binding.

104 Feature Pack for SCA Version 1.0.0 information center topics

Work manager JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the work
manager.

Service provider policy sets and bindings collection for SCA
composites

Use this page to attach and detach policy sets to a composition unit, a service
provider, its endpoints, or operations of a Service Component Architecture (SCA)
composite. You can select the default bindings, create new application-specific
bindings, or use bindings that you created for an attached policy set. You can view
or change whether the service provider can share its current policy configuration.

To view this administrative console page, your composition unit must use Web
services and support SCA. Click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → Service provider policy sets and
bindings .

Depending on your assigned security role when security is enabled, you might not
have access to text entry fields or buttons to create or edit configuration data.
Review the administrative roles documentation to learn more about the valid roles
for the application server.

To attach or detach a policy set or binding, do the following:
1. Select a composition unit, service, endpoint, or operation. The Composition

unit/Service/Endpoint/Operation list is nested, indicating parent-child
relationships.

2. Click the desired button.

Table 34. Button descriptions

Button Resulting action

Attach Attaches a policy set to the selected composition unit, service, endpoint, or
operation. To attach a policy set, select a unit, service, endpoint, or
operation and click Attach → policy_set_option.

To close the menu list, click Attach.

Detach
Policy Set

Detaches a policy set from the selected composition unit, service, endpoint,
or operation.

After the policy set is detached, if there is no policy set attached to an
upper-level service resource, the Attached Policy Set column displays None
and the Binding column displays Not applicable.

If there is a policy set attached to an upper-level service resource, the
Attached Policy Set column displays policy_set_name (inherited) and the
binding used for the upper-level attachment is applied. The binding name is
displayed followed by (inherited).

Chapter 9. Creating SCA business-level applications 105

Table 34. Button descriptions (continued)

Button Resulting action

Assign
Binding

Assigns a policy set binding to the selected composition unit, service,
endpoint, or operation. The options include the following:

Default
Specifies the default binding for the selected composition unit,
service, endpoint, or operation. You can specify client and provider
default bindings to be used at the cell level or global security
domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has
not been assigned to the attachment. When you attach a policy set
to a service resource, the binding is initially set to the default. If
you do not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the
nearest scope is used.

For any policy set attachment, the run time checks to see if the
attachment includes a binding. If so, it uses that binding. If not, the
run time checks in the following order and uses the first available
default binding:
1. Default general bindings for the server
2. Default general bindings for the domain in which the server

resides
3. Default general bindings for the global security domain

New Application Specific Binding
Opens a page on which you can create a new application-specific
binding for the policy set attachments. The new binding you create
is used for the selected resources. If you select more than one
resource, ensure that all selected resources have the same policy set
attached.

Provider Sample
Specifies to use a sample binding provided with the artifact.

Composition unit/Service/Endpoint/Operation
Specifies the name of the composition unit and the associated service providers,
endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the composition
unit and the service providers, endpoints, or operations that the composition unit
contains.

Attached Policy Set
Specifies the policy set that is attached to a composition unit, service provider,
endpoint, or operation.

The Attached Policy Set column can contain the following values:
v None. No policy set is attached, either directly or to a higher-level service

resource.
v Policy_set_name. The name of the policy set that is attached directly to the

service resource, for example, WS-I RSP.
v Policy_set_name (inherited). The name of the policy set that is not attached

directly to a service resource, but that is attached to a higher-level service
resource.

106 Feature Pack for SCA Version 1.0.0 information center topics

When the value in the column is a link, click the link to view or change settings
about the attached policy set.

Binding
Specifies the binding configuration that is available for a service provider,
endpoint, or operation.

The Binding column can contain the following values:
v Not applicable. No policy set is attached, either directly or to a higher-level

service resource.
v Binding_name or Default. The binding name is displayed if a policy set is

attached directly and an application-specific binding or a general binding is
assigned, for example, MyBindings1. Default is displayed if a policy set is
attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the
bindings from an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change
settings about the binding.

References policy sets and bindings collection for SCA
composites

Use this page to attach and detach policy sets to a composition unit, a service
reference, its endpoints, or operations of a Service Component Architecture (SCA)
composite. You can select the default bindings, create new application-specific
bindings, or use bindings that you created for an attached policy set. You can view
or change whether the service reference can share its current policy configuration.

To view this administrative console page, your composition unit must use Web
services and support SCA. Click Applications → Application Types →
Business-level applications → application_name →
deployed_asset_composition_unit_name → References policy sets and bindings.

Depending on your assigned security role when security is enabled, you might not
have access to text entry fields or buttons to create or edit configuration data.
Review the administrative roles documentation to learn more about the valid roles
for the application server.

To attach or detach a policy set or binding, do the following:
1. Select a composition unit, service, endpoint, or operation. The Composition

unit/Service/Endpoint/Operation list is nested, indicating parent-child
relationships.

2. Click the desired button.

Table 35. Button descriptions

Button Resulting action

Attach Client
Policy Set

Attaches a client policy set to the selected composition unit, service,
endpoint, or operation. To attach a policy set, select a composition
unit, service, endpoint, or operation and click Attach Client Policy
Set → policy_set_option.

To close the menu list, click Attach Client Policy Set.

Chapter 9. Creating SCA business-level applications 107

Table 35. Button descriptions (continued)

Button Resulting action

Detach Client
Policy Set

Detaches a client policy set from the selected composition unit,
service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an
upper-level service resource, the Attached Client Policy Set column
displays None and the Binding column displays Not applicable.

If there is a policy set attached to an upper-level service resource, the
Attached Client Policy Set column displays policy_set_name
(inherited) and the binding used for the upper-level attachment is
applied. The binding name is displayed followed by (inherited).

Assign Binding Assigns a policy set binding to the selected composition unit, service,
endpoint, or operation. There are three options:

Default
Specifies the default binding for the selected composition
unit, service, endpoint, or operation. You can specify client
and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a
security domain. The default bindings are used when an
application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service
resource, the binding is initially set to the default. If you do
not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the
nearest scope is used.

For any policy set attachment, the run time checks to see if
the attachment includes a binding. If so, it uses that binding.
If not, the run time checks in the following order and uses
the first available default binding:
1. Default general bindings for the server
2. Default general bindings for the domain in which the

server resides
3. Default general bindings for the global security domain

New Application Specific Binding
Opens a page on which you can create a new
application-specific binding for the policy set attachments.
The new binding you create is used for the selected
resources. If you select more than one resource, ensure that
all selected resources have the same policy set attached.

Client Sample
Specifies to use a sample binding provided with the artifact.

Composition unit/Service/Endpoint/Operation
Specifies the name of the composition unit and the associated service references,
endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the service
composition unit and the service references, endpoints, or operations that the
composition unit contains.

Attached Client Policy Set
Specifies the policy set that is attached to a composition unit, service reference,
endpoint, or operation.

108 Feature Pack for SCA Version 1.0.0 information center topics

The Attached Client Policy Set column can contain the following values:
v None. No policy set is attached, either directly or to a higher-level service

resource.
v Policy_set_name. The name of the policy set that is attached directly to the

service resource, for example, WS-I RSP.
v Policy_set_name (inherited). The name of the policy set that is not attached

directly to a service resource, but that is attached to a higher-level service
resource.

When the value in the column is a link, click the link to view or change settings
about the attached policy set.

Binding
Specifies the binding configuration that is available for a service reference,
endpoint, or operation.

The Binding column can contain the following values:
v Not applicable. No policy set is attached, either directly or to a higher-level

service resource.
v Binding_name or Default. The binding name is displayed if a policy set is

attached directly and an application-specific binding or a general binding is
assigned, for example, MyBindings1. Default is displayed if a policy set is
attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the
bindings from an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change
settings about the binding.

SCA service provider settings
Use this page to manage policy sets for a Service Component Architecture (SCA)
Web service provider. You can attach and detach policy sets to a service provider,
its endpoints, or operations. You can select the default bindings, create new
application-specific bindings, or use bindings that you created for an attached
policy set. You can view or change whether the service provider can share its
current policy configuration.

To view this administrative console page, your composition unit must use Web
services and support SCA. Click Services → Service providers →
service_provider_name.

Service provider
Specifies the full QName of the service provider. The QName must be in a format
that supports the Java class javax.xml.namespace.QName.

For the SCA sample business-level application HelloWorldAsync, the service
provider name resembles the following:
{http://websphere.ibm.com/HelloWorldServiceComponent/HelloWorldService}HelloWorldService

Policy Set Attachments
Specifies the attached policy sets and assigned bindings for services, endpoints, or
operations in the service provider.

Chapter 9. Creating SCA business-level applications 109

To attach or detach a policy set or to assign bindings with system-specific
configurations, do the following:
1. Select a service, endpoint, or operation. The Service/Endpoint/Operation list is

nested, indicating parent-child relationships.
2. Click the desired button.

Table 36. Button descriptions

Button Resulting action

Attach Attaches a policy set to the selected service, endpoint, or operation. To
attach a policy set, select a service, endpoint, or operation and click Attach →
policy_set_option.

To close the menu list, click Attach.

Detach
Policy Set

Detaches a policy set from the selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an
upper-level service resource, the Attached Policy Set column displays None
and the Binding column displays Not applicable.

If there is a policy set attached to an upper-level service resource, the
Attached Policy Set column displays policy_set_name (inherited) and the
binding used for the upper-level attachment is applied. The binding name is
displayed followed by (inherited).

Assign
Binding

Assigns a policy set binding to the selected service, endpoint, or operation.
The options include the following:

Default
Specifies the default binding for the selected service, endpoint, or
operation. You can specify client and provider default bindings to
be used at the cell level or global security domain level, for a
particular server, or for a security domain. The default bindings are
used when an application-specific binding has not been assigned to
the attachment. When you attach a policy set to a service resource,
the binding is initially set to the default. If you do not specifically
assign a binding to the attachment point using this Assign Binding
action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the
attachment includes a binding. If so, it uses that binding. If not, the
run time checks in the following order and uses the first available
default binding:
1. Default general bindings for the server
2. Default general bindings for the domain in which the server

resides
3. Default general bindings for the global security domain

New Application Specific Binding
Opens a page on which you can create a new application-specific
binding for the policy set attachments. The new binding you create
is used for the selected resources. If you select more than one
resource, ensure that all selected resources have the same policy set
attached.

Provider Sample
Specifies to use a sample binding provided with the artifact.

110 Feature Pack for SCA Version 1.0.0 information center topics

Depending on your assigned security role when security is enabled, you might not
have access to text entry fields or buttons to create or edit configuration data.
Review the administrative roles documentation to learn more about the valid roles
for the application server.

Service/Endpoint/Operation
Specifies the name of the service and the associated service providers,
endpoints or operations.

The Service/Endpoint/Operation column lists the service and the service
providers, endpoints, or operations that the service contains.

Attached Policy Set
Specifies the policy set that is attached to a service provider, endpoint, or
operation.

The Attached Policy Set column can contain the following values:
v None. No policy set is attached, either directly or to a higher-level

service resource.
v Policy_set_name. The name of the policy set that is attached directly to

the service resource, for example, WS-I RSP.
v Policy_set_name (inherited). The name of the policy set that is not

attached directly to a service resource, but that is attached to a
higher-level service resource.

When the value in the column is a link, click the link to view or change
settings about the attached policy set.

Binding
Specifies the binding configuration that is available for a service provider,
endpoint, or operation.

The Binding column can contain the following values:
v Not applicable. No policy set is attached, either directly or to a

higher-level service resource.
v Binding_name or Default. The binding name is displayed if a policy set

is attached directly and an application-specific binding or a general
binding is assigned, for example, MyBindings1. Default is displayed if a
policy set is attached directly but the service resource uses the default
bindings.

v Binding_name (inherited) or Default (inherited). A service resource
inherits the bindings from an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or
change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and
general bindings. Composition units can use both application-specific bindings and
general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point.
These bindings are specific to, and constrained by, the characteristics of the defined
policy. Application-specific bindings can provide configuration for advanced policy

Chapter 9. Creating SCA business-level applications 111

requirements such as multiple signatures; however, these bindings are reusable
only within an application. Also, application-specific bindings have very limited
reuse across policy sets.

When you create an application-specific binding for a policy set attachment, the
binding begins in a completely unconfigured state. You must add each policy, such
as WS-Security or HTTP transport, that you want to override the default binding,
and fully configure the bindings for each policy that you add. For WS-Security
policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default
bindings if they are not configured in the application-specific bindings.

For service providers, you can create application-specific bindings only by selecting
Assign Binding → New Application Specific Binding, on the Service providers
policy sets and bindings collection page, for service provider resources that have
an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding → New Application
Specific Binding, on the Service clients policy sets and bindings collection page,
for service client resources that have an attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and
they can be reused across applications and for trust service attachments. Although
general bindings are highly reusable, they cannot provide configuration for
advanced policy requirements such as multiple signatures. There are two types of
general bindings: general provider policy set bindings and general client policy set
bindings.

You can create general provider policy set bindings by clicking Services → Policy
sets → General provider policy set bindings → New in the general provider policy
sets panel, or by clicking Services → Policy sets > General client policy set
bindings → New in the general client policy set and bindings panel. For details
about defining and managing service client or provider bindings, see the related
links. General provider policy set bindings might also be used for trust service
attachments.

SCA service client settings
Use this page to manage policy sets for a Service Component Architecture (SCA)
Web service client. You can attach and detach policy sets to a service reference, its
endpoints, or operations. You can select the default bindings, create new
application-specific bindings, or use bindings that you created for an attached
policy set. You can view or change whether the service reference can share its
current policy configuration.

To view this administrative console page, your composition unit must use Web
services and support SCA. Click Services → Service clients → service_client_name.

Service client
Specifies the full QName of the service client. The QName must be in a format that
supports the Java class javax.xml.namespace.QName.

For the SCA sample business-level application HelloWorldAsync, the service client
name resembles the following:

{http://websphere.ibm.com/HelloWorldServiceComponent/HelloWorldService}HelloWorldCallbackService

112 Feature Pack for SCA Version 1.0.0 information center topics

This SCA application has the product Web service namespace,
http://websphere.ibm.com/, and the service name in its service client name.

Policy Set Attachments
Specifies the attached policy sets and assigned bindings for services, endpoints, or
operations in the service client.

To attach or detach a policy set or to assign bindings with system-specific
configurations, do the following:
1. Select a service, endpoint, or operation. The Service/Endpoint/Operation list is

nested, indicating parent-child relationships.
2. Click the desired button.

Table 37. Button descriptions

Button Resulting action

Attach Client
Policy Set

Attaches a client policy set to the selected service, endpoint, or
operation. To attach a policy set, select a service, endpoint, or
operation and click Attach Client Policy Set → policy_set_option.

To close the menu list, click Attach Client Policy Set.

Detach Client
Policy Set

Detaches a client policy set from the selected service, endpoint, or
operation.

After the policy set is detached, if there is no policy set attached to an
upper-level service resource, the Attached Client Policy Set column
displays None and the Binding column displays Not applicable.

If there is a policy set attached to an upper-level service resource, the
Attached Client Policy Set column displays policy_set_name
(inherited) and the binding used for the upper-level attachment is
applied. The binding name is displayed followed by (inherited).

Chapter 9. Creating SCA business-level applications 113

Table 37. Button descriptions (continued)

Button Resulting action

Assign Binding Assigns a policy set binding to the selected service, endpoint, or
operation. The options include the following:

Default
Specifies the default binding for the selected service,
endpoint, or operation. You can specify client and provider
default bindings to be used at the cell level or global security
domain level, for a particular server, or for a security
domain. The default bindings are used when an
application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service
resource, the binding is initially set to the default. If you do
not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the
nearest scope is used.

For any policy set attachment, the run time checks to see if
the attachment includes a binding. If so, it uses that binding.
If not, the run time checks in the following order and uses
the first available default binding:
1. Default general bindings for the server
2. Default general bindings for the domain in which the

server resides
3. Default general bindings for the global security domain

New Application Specific Binding
Opens a page on which you can create a new
application-specific binding for the policy set attachments.
The new binding you create is used for the selected
resources. If you select more than one resource, ensure that
all selected resources have the same policy set attached.

Client Sample
Specifies to use a sample binding provided with the artifact.

Depending on your assigned security role when security is enabled, you might not
have access to text entry fields or buttons to create or edit configuration data.
Review the administrative roles documentation to learn more about the valid roles
for the application server.

Service/Endpoint/Operation
Specifies the name of the service and the associated service references,
endpoints or operations.

The Service/Endpoint/Operation column lists the service and the service
references, endpoints, or operations that the service contains.

Attached Client Policy Set
Specifies the policy set that is attached to a service reference, endpoint, or
operation.

The Attached Client Policy Set column can contain the following values:
v None. No policy set is attached, either directly or to a higher-level

service resource.
v Policy_set_name. The name of the policy set that is attached directly to

the service resource, for example, WS-I RSP.

114 Feature Pack for SCA Version 1.0.0 information center topics

v Policy_set_name (inherited). The name of the policy set that is not
attached directly to a service resource, but that is attached to a
higher-level service resource.

When the value in the column is a link, click the link to view or change
settings about the attached policy set.

Binding
Specifies the binding configuration that is available for a service reference,
endpoint, or operation.

The Binding column can contain the following values:
v Not applicable. No policy set is attached, either directly or to a

higher-level service resource.
v Binding_name or Default. The binding name is displayed if a policy set

is attached directly and an application-specific binding or a general
binding is assigned, for example, MyBindings1. Default is displayed if a
policy set is attached directly but the service resource uses the default
bindings.

v Binding_name (inherited) or Default (inherited). A service resource
inherits the bindings from an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or
change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and
general bindings. Composition units can use both application-specific bindings and
general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point.
These bindings are specific to, and constrained by, the characteristics of the defined
policy. Application-specific bindings can provide configuration for advanced policy
requirements such as multiple signatures; however, these bindings are reusable
only within an application. Also, application-specific bindings have very limited
reuse across policy sets.

When you create an application-specific binding for a policy set attachment, the
binding begins in a completely unconfigured state. You must add each policy, such
as WS-Security or HTTP transport, that you want to override the default binding,
and fully configure the bindings for each policy that you add. For WS-Security
policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default
bindings if they are not configured in the application-specific bindings.

For service providers, you can create application-specific bindings only by selecting
Assign Binding → New Application Specific Binding, on the Service providers
policy sets and bindings collection page, for service provider resources that have
an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding → New Application
Specific Binding, on the Service clients policy sets and bindings collection page,
for service client resources that have an attached policy set.

General bindings

Chapter 9. Creating SCA business-level applications 115

You can configure general bindings to be used across a range of policy sets and
they can be reused across applications and for trust service attachments. Although
general bindings are highly reusable, they cannot provide configuration for
advanced policy requirements such as multiple signatures. There are two types of
general bindings: general provider policy set bindings and general client policy set
bindings.

You can create general provider policy set bindings by clicking Services → Policy
sets → General provider policy set bindings → New in the general provider policy
sets panel, or by clicking Services → Policy sets → General client policy set
bindings → New in the general client policy set and bindings panel. For details
about defining and managing service client or provider bindings, see the related
links. General provider policy set bindings might also be used for trust service
attachments.

Example: Creating an SCA business-level application with the console
You can add many different types of artifacts to business-level applications. For
example, you can add applications or modules, Java archives (JAR files), data in
compressed files, and other business-level applications. This example describes
how to create an empty business-level application and then add a Service
Component Architecture (SCA) JAR file to the application using the administrative
console.

Before you begin

Install the Feature Pack for SCA. Installing the feature pack adds SCA sample files
to the app_server_root/installableApps directory. If you selected to install Samples
during creation of a profile enabled by the feature pack, the product also adds
several SCA sample files to the app_server_root/samples/SCA directory.

Also, verify that the target server is configured. As part of configuring the server,
determine whether your application files can run on your deployment target. You
must deploy SCA composite assets of a business-level application to a Version 7.0
server or cluster that is enabled for the Feature Pack for SCA.

About this task

For this example, use the administrative console to create a business-level
application named HelloWorldAsync that has an SCA JAR file,
helloworld-ws-asynch.jar, as an asset. The JAR file is available in
app_server_root/installableApps.
1. Create an empty business-level application named HelloWorldAsync.

a. Click Applications → New Application → New Business Level Application.
b. On the New application page, specify the name HelloWorldAsync, optionally

add a description, and then click Apply.
c. On the page that is displayed, click the Save link.

The name is shown in the list of applications on the Business-level applications
page. Because the application is empty, its status is Unknown.

2. Import the SCA JAR asset.
a. Click Applications → New Application → New Asset in the console

navigation tree.
b. On the Upload asset page, specify the asset package to import,

helloworld-ws-asynch.jar, and click Next.

116 Feature Pack for SCA Version 1.0.0 information center topics

The JAR file is in the app_server_root/installableApps directory.
c. On the Select options for importing an asset page, click Next to accept the

default values.
d. On the Summary page, click Finish.
e. On the Adding asset to repository page, if messages show that the

operation completed, click Manage assets.
f. On the Assets page, click the Save link.

The file name displays in the list of assets.
3. Add the SCA JAR asset as a composition unit of the business-level application.

a. Click Applications → Application Types → Business-level applications.
b. On the Business-level applications page, click the HelloWorldAsync

application name.
c. On the business-level application settings page, click Add → Add Asset.
d. On the Add page, select the helloworld-ws-asynch.jar asset composition

unit from the list of available units, and then click Continue.
e. On the Set options page, click Next to accept the default values.
f. On the Map composition unit to a target page, specify a target server that is

enabled for the Feature Pack for SCA, and then click Next.
The target server can be an existing cluster. To map the composition unit to
a cluster, select the existing cluster from the Available list, click Add, and
then click Next. The cluster name is shown in the Current targets list as
WebSphere:cluster=cluster_name.

g. On the Define relationship with existing composition units page, click Next
to accept the default values.

h. On the Map virtual host page, click Next to accept the default values.
i. On the Summary page, click Finish.

Several messages are displayed. A message having the format Completed
res=[WebSphere:cuname=helloworldws] indicates that the addition is
successful.
During deployment of the composition unit, you can view the Uniform
Resource Identifier (URI) for composite level service of some bindings, along
with the service name and binding type. Only the URI is editable. The
product does not validate the URI.

j. If the addition is successful, click Manage application.
k. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets. If you click on
the asset name, the Composition unit settings page displays, with the asset
name in the SCA Composite Components list.

4. Start the HelloWorldAsync business-level application.
a. Click Applications → Application Types → Business-level applications.
b. On the Business-level applications page, select the check box beside

HelloWorldAsync.
c. Click Start.

When the business-level application is running, a green arrow displays for
Status. If the business-level application does not start, ensure that the
deployment target to which the application maps is running and try starting
the application again.

Chapter 9. Creating SCA business-level applications 117

What to do next

Optionally examine, and possibly use in applications, other SCA sample files in
app_server_root/installableApps or app_server_root/samples/SCA.

If the business-level application does not start, ensure that the deployment target
to which the application maps is running and try starting the application again. If
SCA composite assets do not start, ensure that each asset is mapped to a
deployment target that is enabled for the Feature Pack for SCA.

If an asset composition unit uses an Enterprise JavaBean (EJB) binding and does
not start because it has a non-WebSphere target of "null", delete the asset
composition unit and add it again to the business-level application. Specify a target
enabled for the Feature Pack for SCA when you add the asset to the business-level
application. You cannot change the target after deployment.

If the SCA application uses security, the target server or cluster must be in the
global security domain.

In multiple-node environments, synchronize the nodes after you save changes to
the target before starting the business-level application.

118 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 10. Updating SCA composite artifacts

You can view and update Service Component Architecture (SCA) composite
artifacts in business-level applications.

Before you begin

Add an SCA artifact as a composition unit to a business-level application.

About this task

You can view and update the following SCA composite artifacts:
v Composite level property definition
v Composite level component property definition
v Composite level component reference definition

You can view and update SCA composite artifacts using the administrative console
or the wsadmin tool. This topic describes how to view and update SCA composite
artifacts using the administrative console.
1. Go to the composition unit settings page for an SCA composite artifact in a

business-level application.
Click Applications → Application Types → Business-level applications →
application_name → SCA_deployed_asset_composition_unit_name.
The composition unit settings page for an SCA composite artifact has fields that
are not shown on the composition unit settings page for a non-SCA artifact:
v SCA composite components
v SCA composite properties
v SCA composite wires

2. Click on a name link in one of these SCA fields to view the settings for an SCA
artifact.
The SCA fields display None instead of a name link if the composition unit does
not have that particular type of SCA composite.

3. Optional: Update a SCA composite setting value.
a. Change an existing setting value for the SCA artifact.
b. Click OK.

The setting value is updated.

Viewing and updating SCA composites in HelloWorldAsync

“Example: Creating an SCA business-level application with the console” on page
116 describes how to create the HelloWorldAsync business-level application. This
application contains an SCA artifact, helloworldws, as a composition unit. You can
view and update settings for SCA composites in the helloworldws composition
unit using the console.
1. Go to the composition unit settings page for the helloworldws composition unit

in the HelloWorldAsync business-level application.
Click Applications → Application Types → Business-level applications →
HelloWorldAsync → helloworldws.
From the composition unit settings page, you can view information associated
with helloworldws, as well as update composite settings.

© IBM Corporation 2008 119

2. Click on a link for the SCA artifact to be viewed or updated.
For example, click on the HelloWorldServiceComponent link under SCA
composite components and, in the page that displays, click on the
HelloWorldService link under Service. In the Component service settings page
that displays, you can specify a setting value for the service.

3. If you update a setting value for the SCA artifact, click OK.

What to do next

Save the changes to your administrative configuration.

On multiple-server products, when saving the configuration, synchronize the
configuration with the nodes where the application is expected to run.

120 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 11. Viewing SCA composite definitions

You can view information on the definition of a Service Component Architecture
(SCA) composite in the administrative console.

Before you begin

The SCA composite must be a composition unit in a business-level application.

About this task

The composite definition provides data on the composite, such as component
names and service references. The View composite page displays the composite
definition of an SCA deployed asset composition unit.
1. Go to the View composite page.

Click Applications → Application Types → Business-level applications →
application_name → SCA_deployed_asset_name → View composite.

2. Optional: Click Expand All or Collapse All to more easily browse the page.

Results

The View composite page displays the contents of the composition unit definition.

Example

Suppose the HelloWorldAsync business-level application provided as a sample
with the Feature Pack for SCA is installed. Click Applications → Application Types
→ Business-level applications → HelloWorldAsync → helloworldws → View
composite.

The View composite page displays configuration information resembling the
following:
<composite targetNamespace="http://helloworld" name="helloworldws" >

<component name="AsynchTranslatorComponent" >
<service name="HelloWorldService" >

<implementation.java class="helloworld.impl.AsynchTranslatorComponent" />
<service name="AsynchTranslatorService">

<interface.java interface="helloworld.AsynchTranslatorService"
callbackInterface="helloworld.HelloWorldCallback" />

<binding.ws/>
<callback>

<binding.ws/>
</callback>

</service>
</component>

</composite>

What to do next

Browse the page to ensure that it contains the intended configuration information.

© IBM Corporation 2008 121

122 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 12. Viewing SCA domain information

You can view information on Service Component Architecture (SCA) composites in
an SCA domain in the administrative console.

Before you begin

The SCA composite must be a composition unit in a business-level application.

About this task

Viewing SCA domain information enables you to see on one console page
information on all components in an SCA domain. The View domain page displays
information on available services in the current domain.
1. Go to the View domain page.

Click Applications → Application Types → Business-level applications →
application_name → SCA_deployed_asset_name → View domain.

2. Optional: Click Expand All or Collapse All to more easily browse the page.

Results

The View domain page lists information on components in the current domain.

Example

Suppose the HelloWorldAsync business-level application provided as a sample
with the Feature Pack for SCA is installed. Click Applications → Application Types
→ Business-level applications → HelloWorldAsync → helloworldws → View
domain.

The View domain page displays information resembling the following:
<domain name="myCell02">

<component name = "HelloWorldServiceComponent"
mapTarget = "WebSphere:cell=myCell02,node=myNode02,server=server1">

<service name = "HelloWorldService">
<interface.java interface = "helloworld.HelloWorldService"/>

</service>
<httpurlendpoints name = "endpoints" uri = ""/>

</component>
</domain>

What to do next

Browse the page to ensure that it contains the intended information.

You can export the same domain information to a file using the
exportCompositeToDomain command. See “Exporting SCA domain information
using scripting.”

© IBM Corporation 2008 123

124 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 13. Deleting business-level applications

After an application no longer is needed, you can delete it.

About this task

Deleting a business-level application removes the application from the product
configuration repository and it deletes the application binaries from the file system
of all nodes where the application files are installed.
1. Go to the Business-level applications page.

Click Applications → Application Types → Business-level applications in the
console navigation tree.

2. If you need to retain a copy of the application, back up composition units of
the application.

3. Delete composition units of the application.
a. On the Business-level applications page, click the name of the business-level

application that you want to delete.
b. On the business-level application settings page, delete each composition

unit of the application. Deployed assets and business-level applications can
be composition units of a business-level application.
Select one or more composition units and click Delete.

c. On the Delete composition unit from Business-level application panel,
confirm the deletion and click OK.

d. Repeat steps b and c until the business-level application that you want to
delete has no more composition units.

Deleting a composition unit removes the configuration from the
profile_root/config/cells/cell_name/cus directory.

4. Delete the business-level application.
a. Select the application that you want to delete.
b. Click Delete.

Unless the application is used by another business-level application, deleting a
business-level application removes the configuration from the
profile_root/config/cells/cell_name/blas directory.

5. On the Delete business-level application panel, confirm the deletion and click
OK.

6. Save changes made to the administrative configuration.

Results

On single-server products, application binaries are deleted after you save the
changes.

On multiple-server products, application binaries are deleted when configuration
changes on the deployment manager synchronize with configurations for
individual nodes.

© IBM Corporation 2007 125

Deleting the HelloWorldAsync business-level application

“Example: Creating an SCA business-level application with the console” on page
116 describes how to create the HelloWorldAsync business-level application. You
can delete this application using the console.
1. Go to the business-level applications page and, if HelloWorldAsync is running,

change its status to Stopped.
a. Click Applications → Application Types → Business-level applications.
b. Select HelloWorldAsync.
c. Click Stop.

2. Go to the business-level applications settings page for HelloWorldAsync and
delete the helloworldws composition unit.
a. Click Applications → Application Types → Business-level applications →

HelloWorldAsync.
b. From Deployed assets, select helloworldws.
c. Click Delete.
d. On the Delete composition unit from Business-level application panel,

confirm the deletion and click OK.
e. Click the Save link to save the changes.

3. From the business-level applications page, delete the HelloWorldAsync
application.
a. Click Applications → Application Types → Business-level applications.
b. Select HelloWorldAsync.
c. Click Delete.
d. On the Delete business-level application panel, click OK.
e. Click the Save link to save the changes.

4. Optionally, from the Assets page, delete the helloworld-ws-asynch.jar asset
from the asset repository.
a. Click Applications → Application Types → Assets.
b. Select helloworld-ws-asynch.jar.
c. Click Delete.
d. On the Delete asset panel, click OK.
e. Click the Save link to save the changes.

What to do next

If using the administrative console Delete options does not fully delete a
business-level application or its composition units, you can delete the
business-level application and its composition units manually from a deployment
manager or stand-alone server. Suppose you want to delete a business-level
application named ExampleBLA, and ExampleBLA is not used by another
business-level application. Complete the following steps to manually delete the
ExampleBLA configurations from the blas and cus directories:
1. Delete the profile_root/config/cells/cell_name/blas/ExampleBLA directory.
2. Delete the profile_root/config/cells/cell_name/cus/ExampleBLA directory.
3. Save changes made to the administrative configuration.
4. On multiple-server products, synchronize the deployment manager with node

configurations.

126 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 14. Administering applications using wsadmin
scripting

You can use administrative scripts and the wsadmin tool to install, uninstall, and
manage applications.

About this task

There are two methods you can use to install, uninstall, and manage applications.
You can use the commands for the AdminApp and AdminControl objects to
invoke operations on your application configuration.

Alternatively, you can use the AdminApplication and BLAManagement Jython
script libraries to perform specific operations to configure your enterprise and
business-level applications.

The scripting library provides a set of procedures to automate the most common
administration functions. You can run each script procedure individually, or
combine several procedures to quickly develop new scripts.

You might need to complete one or more of the following topics to administer
your application configurations with the wsadmin tool.
v Install enterprise applications. Use the AdminApp object or the

AdminApplication script library to install an application to the application
server runtime. You can install an enterprise archive file (EAR), Web archive
(WAR) file, servlet archive (SAR), or Java archive (JAR) file.

v Install business-level applications. Use the BLAManagement command group for
the AdminTask object or the AdminBLA script library to install business-level
applications.

v Manage enterprise applications using pattern matching. Use the AdminApp
object or the AdminApplication script library to implement pattern matching
when installing, updating, or editing an application. Pattern matching simplifies
the task of supplying required values for certain complex options by allowing
you to pass in asterisk (*) to all of the required values that cannot be edited.

v Manage Integrated Solutions Console applications. Use the AdminApp object to
deploy or remove portlet-based Integration Solutions Console applications.

v Uninstall enterprise applications. Use the AdminApp object or the
AdminApplication script library to uninstall applications.

v Uninstall business-level applications. Use the BLAManagement command group
for the AdminTask object or the AdminBLA script library to uninstall
business-level applications.

v Switch JavaServer Faces implementations. Use the modifyJSFImplementation
command to set the Sun Reference Implementation or the Apache MyFaces
project as the JSF implementation for Web applications.

Setting up business-level applications using wsadmin scripting
You can create an empty business-level application, and then add assets, shared
libraries, or business-level applications as composition units to the empty
business-level application.

© Copyright IBM Corp. 2009 127

Before you begin

Before you can create a business-level application, determine the assets or other
files to add to your application.

Also, verify that the target application server is configured. As part of configuring
the server, determine whether your application files can run on your deployment
targets.

About this task

You can use the wsadmin tool to create business-level applications in your
environment. This topic demonstrates how to use the AdminTask object to import
and register assets, create empty business-level applications, and add assets to the
business-level application as composition units. Alternatively, you can use the
scripts in the AdminBLA script library to set up and administer business-level
applications.
1. Start the wsadmin scripting tool using the Jython scripting language.
2. Import assets to your configuration.

Assets represent application binaries that contain business logic that runs on
the target runtime environment and serves client requests. An asset can contain
an archive of files such as a compressed (zip) or Java archive (JAR) file, or an
archive of archive files such as a Java Platform, Enterprise Edition (Java EE)
enterprise archive (EAR) file. Examples of assets include EAR files, shared
library JAR files, and custom advisors for proxy servers.
Use the importAsset command to import assets to the application server
configuration repository. See the documentation for the BLAManagement
command group for the AdminTask object for additional parameter and step
options.
For this example, the commands add three assets to the asset repository. Two of
the assets are non-Java EE assets and one is an enterprise asset. The following
command imports the asset1.zip asset to the asset repository and sets the
returned configuration ID to the asset1 variable:

asset1 = AdminTask.importAsset('-source c:/ears/asset1.zip')

asset1 = AdminTask.importAsset('-source \ears\asset1.zip')

The following command imports the asset2.zip asset metadata only, sets the
asset name as testAsset.zip, sets the deployment directory, specifies that the
asset is used for testing, and sets the returned configuration ID to the
testasset variable:

testasset = AdminTask.importAsset('-source c:/ears/asset2.zip -storageType
METADATA –AssetOptions [[.* testAsset.zip .* "asset for testing"
c:/installedAssets/testAsset.zip/BASE/testAsset.zip "" "" "" false]]')

testasset = AdminTask.importAsset('-source \ears\asset2.zip -storageType
METADATA –AssetOptions [[.* testAsset.zip .* "asset for testing"
c:/installedAssets/testAsset.zip/BASE/testAsset.zip "" "" "" false]]')

The following command imports the defaultapp.ear asset, storing all
application binaries, and sets the returned configuration ID to the J2EEAsset
variable:

J2EEAsset = AdminTask.importAsset('-source c:/ears/defaultapplication.ear
–storageType FULL –AssetOptions [[.* defaultapp.ear .* "desc" "" "" "" "" false]]')

128 Feature Pack for SCA Version 1.0.0 information center topics

J2EEAsset = AdminTask.importAsset('-source \ears\defaultapplication.ear
–storageType FULL –AssetOptions [[.* defaultapp.ear .* "desc" "" "" "" "" false]]')

The assets of interest are registered as named configuration artifacts in the
application server configuration repository, which is referred to as the asset
registry. Use the listAssets command to display a list of registered assets and
verify that the settings are correct, as the following example demonstrates:

AdminTask.listAssets('-includeDescription true -includeDeplUnit
true')

3. Create an empty business-level application.
Use the createEmptyBLA command to create a new business-level application
and set the returned configuration ID to the myBLA variable, as the following
example demonstrates:

myBLA = AdminTask.createEmptyBLA('-name myBLA -description "BLA that contains
asset1, asset2, and J2EEAsset"')

The system creates the business-level application. Use the listBLAs command to
display a list of each business-level application in the cell, as the following
example demonstrates:

AdminTask.listBLAs()

4. Add the assets, as composition units, to the business-level application.
Composition units can represent deployed assets, other business-level
applications, or external artifacts that are deployed on non-Application Server
run times without backing assets. Business-level applications contain zero or
more composition units. You cannot add the same composition unit to more
than one business-level application, but you can use one asset to create more
than one composition unit.
The following command adds the asset1.zip asset as a composition unit in the
myBLA business-level application, and maps the deployment to the server1
server:

AdminTask.addCompUnit('-blaID myBLA –cuSourceID asset1 -CUOptions [[.* .*
compositionUnit1 "composition unit that is backed by asset1" 0]] -MapTargets [[.* server1]]
–ActivationPlanOptions [[.* specname=actplan0+specname=actplan1]]')

The following command adds the testAsset.zip asset as a composition unit in
the myBLA business-level application, and maps the deployment to the server1
and testServer servers:

AdminTask.addCompUnit('-blaID myBLA –cuSourceID asset2 -CUOptions [[.* .*
compositionUnit2 "composition unit that is backed by asset2" 0]] -MapTargets [[.*
server1+testServer]] –ActivationPlanOptions [.* specname=actplan0+specname=actplan1]')

The following command adds the defaultapp.ear asset as a composition unit
in the myBLA business-level application, and maps the deployment to the
server1 and testServer servers:

AdminTask.addCompUnit('[-blaID bla1 -cuSourceID ' + J2EEAsset + '
-defaultBindingOptions
defaultbinding.ejbjndi.prefix=ejb#defaultbinding.virtual.host=default_host#defaultbinding.force=yes
-AppDeploymentOptions [-appname defaultapp] -MapModulesToServers [["Default Web Application" .*
WebSphere:cell=cellName,node=nodeName,server=server1] ["Increment EJB module" .*
Websphere:cell=cellName,node=nodeName,server=testServer]] -CtxRootForWebMod [["Default Web Application" .*
myctx/]]]')

5. Save your configuration changes.
Use the following command example to save your configuration changes:
AdminConfig.save()

6. Synchronize the nodes.
Use the syncActiveNodes script in the AdminNodeManagement script library
to synchronize each active node in your environment, as the following example
demonstrates:

AdminNodeManagement.syncActiveNodes()

7. Start the business-level application.

Chapter 14. Administering applications using wsadmin scripting 129

Use the startBLA command to start each composition unit of the business-level
application on the deployment targets for which the composition units are
configured, as the following example demonstrates:

AdminTask.startBLA('-blaID myBLA')

Results

The system adds three composition units backed by assets to a new business-level
application. Each of the three assets are deployed and started on the server1
server. The testAsset.zip and defaultapp.ear assets are also deployed and started
on the testServer server.

Example: Creating an SCA business-level application with
scripting

You can add many different types of artifacts to business-level applications. For
example, you can add applications or modules, Java archives (JAR files), data in
compressed files, and other business-level applications. This example describes
how to create an empty business-level application and then add a Service
Component Architecture (SCA) JAR file to the application using scripting.

Before you begin

Install the Feature Pack for SCA. Installing the feature pack adds SCA sample files
to the app_server_root/installableApps directory. If you selected to install Samples
during creation of a profile enabled by the feature pack, the product also adds
several SCA sample files to the app_server_root/samples/SCA directory.

Also, verify that the target server is configured. As part of configuring the server,
determine whether your application files can run on your deployment target. You
must deploy SCA composite assets of a business-level application to a Version 7.0
server or cluster that is enabled for the Feature Pack for SCA.

About this task

For this example, use wsadmin scripts in the Jython or Jacl language to create a
business-level application named HelloWorldAsync that has an SCA JAR file,
helloworld-ws-asynch.jar, as an asset. The JAR file is available in
app_server_root/installableApps.
1. Start the wsadmin scripting tool using the Jython scripting language.
2. Create an empty business-level application named HelloWorldAsync.

Use the createEmptyBLA command to create the business-level application.
Using Jython:
AdminTask.createEmptyBLA('-name HelloWorldAsync')

Using Jacl:
$AdminTask createEmptyBLA {-name HelloWorldAsync}

After the command runs, the blaID output displays in the command window:
WebSphere:blaname=HelloWorldAsync

You can run the listBLAs command to view a list of all business-level
applications in the cell and to confirm that the HelloWorldAsync business-level
application exists.
Using Jython:
AdminTask.listBLAs()

130 Feature Pack for SCA Version 1.0.0 information center topics

To view a more readable list of business-level applications, try print before the
command:
print AdminTask.listBLAs()

Using Jacl:
$AdminTask listBLAs

3. Import the SCA JAR asset.
Use the importAsset command to import the JAR file to the product
configuration repository.
Using Jython:
AdminTask.importAsset('-source app_server_root/installableApps/helloworld-ws-asynch.jar')

Using Jacl:
$AdminTask importAsset {-source app_server_root/installableApps/helloworld-ws-asynch.jar}

After the command runs, the assetID output displays in the command window:
WebSphere:assetname=helloworld-ws-asynch.jar

You can run the listAssets command to view a list of all assets in the cell and
to confirm that the helloworld-ws-asynch.jar asset exists:
Using Jython:
AdminTask.listAssets()

To view a more readable list of assets, try print before the listAssets command:
print AdminTask.listAssets()

Using Jacl:
$AdminTask listAssets

4. Add the SCA JAR asset as a composition unit of the business-level application.
Use the addCompUnit command to add the asset to the business-level
application.
Using Jython:
AdminTask.addCompUnit('[-blaID HelloWorldAsync -cuSourceID helloworld-ws-asynch.jar

-MapTargets [[.* SCA_server_name]]]')

Using Jacl:
$AdminTask addCompUnit {-blaID HelloWorldAsync -cuSourceID helloworld-ws-asynch.jar

-MapTargets {{ .* SCA_server_name }} }

SCA_server_name is the name of the target server or cluster; for example,
server1. The target must be enabled for the Feature Pack for SCA.
After the command runs, the composition unit ID output displays in the
command window:
WebSphere:cuname=helloworldws

During deployment of the composition unit, you can view the Uniform
Resource Identifier (URI) for composite level service of some bindings, along
with the service name and binding type. Only the URI is editable. The product
does not validate the URI.
You can run the listCompUnits command to view a list of all composition units
in a specified business-level application and to confirm that the helloworldws
composition unit exists in HelloWorldAsync.
Using Jython:
AdminTask.listCompUnits('-blaID HelloWorldAsync')

Using Jacl:
$AdminTask listCompUnits {-blaID HelloWorldAsync}

5. Save the configuration changes.

Chapter 14. Administering applications using wsadmin scripting 131

Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

6. Start the HelloWorldAsync business-level application.
Use the startBLA command to start the application.
Using Jython:
AdminTask.startBLA('-blaID HelloWorldAsync')

Using Jacl:
$AdminTask startBLA {-blaID HelloWorldAsync}

Verify that you see the following message indicating that the application started
successfully:
CWWMH0196I: BLA "WebSphere:blaname=HelloWorldAsync" was started successfully.

Optionally, query the status to see whether the application is running with the
getBLAStatus command.
Using Jython:
AdminTask.getBLAStatus('-blaID HelloWorldAsync')

Using Jacl:
$AdminTask getBLAStatus {-blaID HelloWorldAsync}

The following message indicates that the application is started:
BLA: WebSphere:blaname=HelloWorldAsync State of BLA WebSphere:blaname=HelloWorldAsync

is Started.

7. Exit the wsadmin command shell.
exit

What to do next

Optionally examine, and possibly use in applications, other SCA sample files in
app_server_root/installableApps or app_server_root/samples/SCA.

If the business-level application does not start, ensure that the deployment target
to which the application maps is running and try starting the application again. If
SCA composite assets do not start, ensure that each asset is mapped to a
deployment target that is enabled for the Feature Pack for SCA.

If an asset composition unit uses an Enterprise JavaBean (EJB) binding and does
not start because it has a non-WebSphere target of "null", delete the asset
composition unit and add it again to the business-level application. Specify a target
enabled for the Feature Pack for SCA when you add the asset to the business-level
application. You cannot change the target after deployment.

If the SCA application uses security, the target server or cluster must be in the
global security domain.

In multiple-node environments, synchronize the nodes after you save changes to
the target before starting the business-level application.

132 Feature Pack for SCA Version 1.0.0 information center topics

Deleting business-level applications using wsadmin scripting
You can use the wsadmin tool to remove business-level applications from your
environment. Deleting a business-level application removes the application from
the product configuration repository and it deletes the application binaries from
the file system of all nodes where the application files are installed.

Before you begin

There are two ways to complete this task. This topic uses the commands in the
BLAManagement command group for the AdminTask object to remove
business-level applications from your configuration. Alternatively, you can use the
scripts in the AdminBLA script library to configure, administer, and remove
business-level applications

About this task
1. Start the wsadmin scripting tool using the Jython scripting language.
2. Verify that the business-level application is ready to be deleted.

Before deleting a business-level application, use the deleteCompUnit command
to remove each configuration unit that is associated with the business-level
application. Also, verify that no other business-level applications reference the
business-level application to delete.
Use the following example to delete the composition units for the
business-level application of interest:

AdminTask.deleteCompUnit('-blaID myBLA –cuID compositionUnit1')

Repeat this step for each composition unit that is associated with the
business-level application of interest.

3. Delete the business-level application.
Use the deleteBLA command to remove a business-level application from your
configuration, as the following example demonstrates:

AdminTask.deleteBLA('-blaID myBLA')

If the system successfully deletes the business-level application, the command
returns the configuration ID of the deleted business-level application, as the
following example displays:

WebSphere:blaname=myBLA

4. Save your configuration changes.
Use the following command example to save your configuration changes:
AdminConfig.save()

5. Synchronize the node.
Use the syncActiveNodes script in the AdminNodeManagement script library
to propagate the changes to each active node, as the following example
demonstrates:

AdminNodeManagement.syncActiveNodes()

Deleting the HelloWorldAsync business-level application

“Example: Creating an SCA business-level application with scripting” on page 130
describes how to create the HelloWorldAsync business-level application. You can
delete this application using wsadmin commands in the Jython scripting language.
1. Start the wsadmin scripting tool using the Jython scripting language.
2. Stop the HelloWorldAsync business-level application.

AdminTask.stopBLA('-blaID WebSphere:appName=HelloWorldAsync')

Chapter 14. Administering applications using wsadmin scripting 133

3. Delete the helloworldws composition unit associated with the
HelloWorldAsync.
AdminTask.deleteCompUnit('-blaID HelloWorldAsync -cuID helloworldws')

4. Delete the HelloWorldAsync application.
AdminTask.deleteBLA('-blaID HelloWorldAsync')

5. Optionally, delete the helloworld-ws-asynch.jar asset from the asset repository.
AdminTask.deleteAsset('-assetID helloworld-ws-asynch.jar')

6. Save the configuration changes.
AdminConfig.save()

7. Exit the wsadmin command shell.
exit

134 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 15. Managing deployed applications using wsadmin
scripting

Use these topics to learn more about managing deployed applications with the
wsadmin tool and scripting.
v Start enterprise applications and stop enterprise applications. You can use the

wsadmin tool and the AdminControl object to start an application that is not
running (has a status of Stopped) or stop an application that is running (has a
status of Started).

v Start business-level applications and stop business-level applications. You can
use the wsadmin tool and the BLAManagement command group to start and
stop business-level applications.

v Update applications. Use the wsadmin tool to update installed applications on
an application server.

v Manage assets. Use the wsadmin tool and commands in the BLAManagement
command group to manage your asset configuration. This topic provides
examples for listing assets, viewing asset configuration data, removing assets
from the asset repository, updating one or more files for assets, and exporting
assets.

v Manage composition units. Use the wsadmin tool and commands in the
BLAManagement command group to manage composition units. This topic
provides examples for adding, removing, editing, exporting, and viewing
composition units.

v List application modules. Use the wsadmin tool and the AdminApp object
listModules command to list the modules in an installed application.

v Query the application state. Use the wsadmin tool and scripting to determine if
an application is running.

v Disable application loading. You can use the wsadmin tool and the
AdminConfig object to disable application loading in deployed targets.

v Export applications. You can use the wsadmin tool and the AdminApp object to
export your applications.

Exporting SCA domain information using scripting
You can export information on Service Component Architecture (SCA) composites
in an SCA domain to a file of your choice.

Before you begin

An SCA composite must be a composition unit in a business-level application.

About this task

Note: You can view information on components in an SCA domain. The SCA
domain is typically the cell on multiple-server installations and the server
scope on single-server installations. You can view SCA domain information
in the administrative console or by exporting it to a file using scripting.
Exporting SCA domain information enables you to preserve information on
components.

© Copyright IBM Corp. 2009 135

This topic describes how to export domain information using scripting.

You might export domain information before updating SCA business-level
applications or before migrating to a later version of the product.
1. Start the wsadmin scripting tool using the Jython scripting language.
2. Optional: View online help for the exportCompositeToDomain command.

Using Jython:
print AdminTask.help('exportCompositeToDomain')

Using Jacl:
$AdminTask help exportCompositeToDomain

3. Export information on SCA composites in a domain to a file of your choice.
Use the exportCompositeToDomain command to export the information. The
command has two parameters, -domainName and -fileName, both of type
String. The -domainName parameter is optional. The -fileName parameter is
required.
Using Jython:

AdminTask.exportCompositeToDomain('[-domainName SCA_domain_name -fileName C:/my_file]')

AdminTask.exportCompositeToDomain('[-domainName SCA_domain_name -fileName /my_file]')

Using Jacl:

$AdminTask exportCompositeToDomain {-domainName SCA_domain_name -fileName C:/my_file}

$AdminTask exportCompositeToDomain {-domainName SCA_domain_name -fileName /my_file}

Table 38. exportCompositeToDomain command elements

$ is a Jacl operator for substituting a variable name with
its value

AdminTask is an object to run administrative commands with the
wsadmin tool

exportCompositeToDomain is an AdminTask command

SCA_domain_name is the name of SCA domain whose information is
exported

/my_file is the name of the file to which domain information is
written

Results

After the exportCompositeToDomain command runs, information on components
in the SCA domain is written to the specified file. The product displays the
following message:
SCA_domain_name exported to /my_file.

You can view the same domain information in the administrative console. Click
Applications → Application Types → Business-level applications →
application_name → deployed_asset_name → View domain.

136 Feature Pack for SCA Version 1.0.0 information center topics

Example

Suppose the HelloWorldAsync business-level application provided as a sample
with the Feature Pack for SCA is installed. Run the exportCompositeToDomain
command to export the composites:

Using Jython:

AdminTask.exportCompositeToDomain('[-fileName C:/my_file]')

AdminTask.exportCompositeToDomain('[-fileName /my_file]')

Using Jacl:

$AdminTask exportCompositeToDomain { -fileName C:/my_file }

$AdminTask exportCompositeToDomain { -fileName /my_file }

Running the exportCompositeToDomain command writes domain information
resembling the following to the specified file:
<?xml version="1.0" encoding="UTF-8"?>
<domain name="myDomain">
<component name = "HelloWorldServiceComponent"

mapTarget = "WebSphere:cell=myCell02,node=myNode02,server=server1">
<service name = "HelloWorldService">
<interface.java interface = "helloworld.HelloWorldService"/>
</service>
<httpurlendpoints name = "endpoints" uri = ""/>
</component>
</domain>

What to do next

Examine the exported file to ensure that it contains the intended information.

Exporting WSDL and XSD documents using scripting
You can export Web Services Description Language (WSDL) and XML schema
definition (XSD) documents used by a Service Component Architecture (SCA)
composition unit to a location of your choice.

Before you begin

Your SCA business-level application must contain one or more composition units
that use a WSDL or XSD document.

A WSDL document is a file that provides a set of definitions that describe a Web
service in WSDL, an Extensible Markup Language (XML)-based description
language.

An XSD document is an instance of an XML schema written in the XML schema
definition language. The document has the extension .xsd. The prefix xsd in the
XML elements of an XSD document indicates the XML schema namespace.

Chapter 15. Managing deployed applications using wsadmin scripting 137

About this task

Note: You can export WSDL and XSD documents used by an SCA composition
unit using the exportWSDLArtifacts command.

Run the exportWSDLArtifacts command to extract from a specified composition
unit the WSDL and XSD files that are required for Web services client
development. The command extracts files for the services exposed by the Web
service binding, binding.ws.
1. Start the wsadmin scripting tool using the Jython scripting language.
2. Optional: View online help for the exportWSDLArtifacts command.

Using Jython:
AdminTask.help('exportWSDLArtifacts')

Using Jacl:
$AdminTask help exportWSDLArtifacts

3. Export the WSDL and XSD documents to a location of your choice.
Use the exportWSDLArtifacts command to export the WSDL and XSD
documents. The command has two required parameters, -cuName and
-exportDir, both of type String.
Using Jython:

AdminTask.exportWSDLArtifacts('[-cuName composition_unit_name -exportDir C:/my_directory]')

AdminTask.exportWSDLArtifacts('[-cuName composition_unit_name -exportDir /my_directory]')

Using Jacl:

$AdminTask exportWSDLArtifacts {-cuName composition_unit_name -exportDir C:/my_directory}

$AdminTask exportWSDLArtifacts {-cuName composition_unit_name -exportDir /my_directory}

Table 39. exportWSDLArtifacts command elements

$ is a Jacl operator for substituting a variable name with
its value

AdminTask is an object to run administrative commands with the
wsadmin tool

exportWSDLArtifacts is an AdminTask command

composition_unit_name is the name of the composition unit whose WSDL or
XSD documents are exported

/my_directory is the absolute path of the directory to which the WSDL
or XSD documents are exported

Results

After the exportWSDLArtifacts command runs, the following message displays in
the command window:
'CWSAM0503I: WSDL Artifacts have been exported successfully.'

138 Feature Pack for SCA Version 1.0.0 information center topics

Example

Suppose you want to export WSDL or XSD documents in the HelloWorldAsync
business-level application provided as a sample with the Feature Pack for SCA.
Run the following command in the Jython scripting language to export documents
in the helloworldws composition unit:
AdminTask.exportWSDLArtifacts('[-cuName helloworldws -exportDir C:/my_directory]')

AdminTask.exportWSDLArtifacts('[-cuName helloworldws -exportDir /my_directory]')

To run the command, the my_directory directory must exist on the computer.

Running the exportWSDLArtifacts command adds the
helloworldws_WSDLArtifacts.zip file to the specified directory. The
helloworldws_WSDLArtifacts.zip file has two WSDL files, one in the main file
directory and one in the /WEB-INF/wsdl/ subdirectory:
HelloWorldService_wsdlgen.wsdl
/WEB-INF/wsdl/helloworld.wsdl

What to do next

Examine the exported files to ensure that they contain the intended WSDL and
XSD documents.

Chapter 15. Managing deployed applications using wsadmin scripting 139

140 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 16. Authorizing access to resources

WebSphere Application Server provides many different methods for authorizing
accessing resources. For example, you can assign roles to users and configure a
built-in or external authorization provider.

About this task

You can create an application, an Enterprise JavaBeans (EJB) module, or a Web
module and secure them using assembly tools.

To authorize user or group access to resources, read the following articles:
1. Secure you application during assembly and deployment. For more information

on how to create a secure application using an assembly tool, such as the IBM
Rational® Application Developer, see the information about securing
applications during assembly and deployment.

2. Authorize access to Java Platform, Enterprise Edition (Java EE) resources.
WebSphere Application Server supports authorization that is based on the Java
Authorization Contract for Containers (JACC) specification in addition to the
default authorization. When security is enabled in WebSphere Application
Server, the default authorization is used unless a JACC provider is specified.

3. Authorize access to administrative resources. You can assign users and groups
to predefined administrative roles such as the monitor, configurator, operator,
administrator, auditor and iscadmins roles. These roles determine which tasks a
user can perform in the administrative console.

What to do next

After authorizing access to resources, configure the Application Server for secure
communication. .

Using SCA authorization and security identity policies
Use two Service Component Architecture (SCA) declarative policies (authorization
and security identity) to protect SCA components and operations and to declare the
security identity under which the SCA components or operations are executed.

Before you begin

A user registry must be configured and an SCA component must first have been
developed. You must also enable application security.

About this task

Note: An authorization policy controls who can access protected SCA components
and operations. A security identity policy declares the security identity
under which an SCA component or operation is executed. You can limit
access to an SCA component or to an operation to particular users or
groups, You can also delegate access to another user when executing an SCA
component or an operation.

Note the following limitations:

© IBM Corporation 2005, 2006 141

v SCA authorization policy is not supported for composites packaged in Web
application archives (WAR files).

v The definitions.xml file must be packaged in the same asset as the composites
that reference its policy sets.

v Role assignments are scoped to a configuration unit, and are required for all of
the roles used in all of the composites within the configuration unit. These role
assignments are completely independent of any role assignments made for other
configuration units in the same business-level application.

v The target namespace of the policy set and the name of the policy set do not
contribute to the name of a role. They are used solely to resolve the policy set
reference. This implies that within the same configuration unit,
identically-named roles that are defined within different policy sets or different
name spaces are treated as the same role.

v If authorization policy is not attached to a given component and operation, the
operation runs unprotected.

v It is possible to create conflicts by specifying multiple policy sets in the
@policySets attribute or by inheriting policy sets across elements. In this case,
the following rules are used:
– The <denyAll> element takes precedence over <permitAll>, which takes

precedence over <allow>.
– Roles from multiple <allow> elements are aggregated.

v SCA authorization policy does not support authorizing users in foreign realms.

Access to an SCA component is permitted or denied by using the following steps:
1. The policy administrator creates one or more policy sets in the file named

definitions.xml as shown in the following example:
<definitions xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://smallvilleBank"
xmlns:sca="http://www.osoa.org/xmlns/sca/1.0">
<policySet name="StaffAuthorizationPolicy"
appliesTo="sca:implementation"
xmlns="http://www.osoa.org/xmlns/sca/1.0">

<authorization>
<allow roles="staff"/>

</authorization>
</policySet>
<policySet name="SupervisorAuthorizationPolicy"
appliesTo="sca:implementation"
xmlns="http://www.osoa.org/xmlns/sca/1.0">

<authorization>
<allow roles="supervisor manager specialist"/>

</authorization>
<securityIdentity>

<runAs role="specialist"/>
</securityIdentity>

</policySet>
</definitions>

2. The assembler attaches the policy to the SCA composite as in the following
example:
<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:bank="http://smallvilleBank"
name="AccountServices">
<component name="AccountAccess">

<implementation.java class="smallvilleBank.AccountAccessImpl"
policySets="bank:staffAuthorizationPolicy"/>

</component>
<component name="AccountAudit">

142 Feature Pack for SCA Version 1.0.0 information center topics

<implementation.java class="smallvilleBank.AccountAuditImpl"
policySets="bank:supervisorAuthorizationPolicy"/>

</component>
</composite>

3. The deployer assigns users and or groups to the roles that are defined in the
composite.

4. The deployer assigns a user to the runAs roles that are defined in the
composite.

What to do next

Access to the SCA component is permitted or denied according to the
authorization policy.

Using the SCA RequestContext.getSecuritySubject() API
The Service Component Architecture (SCA) Version 1.0 Java Common Annotations
and APIs Specification RequestContext.getSecuritySubject() API programming
interface returns a Java Authentication and Authorization (JAAS) subject that
represents an authenticated user who accesses the protected SCA service.

Before you begin

Note: SCA service developers can use the RequestContext.getSecuritySubject() API
to obtain a JAAS Subject that represents the requester.

If one or more of the following preconditions are not met the SCA request is not
authenticated, and the RequestContext.getSecuritySubject API returns a null
Subject:
v Administrative security must be enabled to initialize the security infrastructure.
v Application security must be enabled to enforce security policy and

authentication.
v SCA service either has an authentication intent or a PolicySet that requires

authentication prior to deployment.
v The SCA deployment process must associate a PolicySet that contains

authentication policy configuration to the SCA service.

About this task

When using the RequestContext.getSecuritySubject() API, perform the following
steps:
1. Add an authentication intent or specify a PolicySet in the binding element of an

SCA service composite file to enforce SCA request authentication, as shown in
the following example. The following example uses the
″authentication.transport″ intent.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:dbsdo="http://tuscany.apache.org/xmlns/sca/databinding/sdo/1.0"
xmlns:wsdli="http://www.w3.org/2004/08/wsdl-instance"
xmlns:qos="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
name="EchoServiceWithIdentityWSComposite">

<component name="EchoServiceWithIdentityWSComponent">
<implementation.java class="test.ws.soa.sca.qos.policy.echoRelayServiceTest.echoService.EchoServiceWithIdentityComponentImpl"/>
<service name="EchoService">

<binding.ws uri="EchoServiceWithIdentity"
wsdlElement="http://echo#wsdl.port(EchoServiceWithIdentity/EchoServiceWithIdentitySoapPort)"
requires="authentication.transport" />

</service>
</component>

</composite>

Chapter 16. Authorizing access to resources 143

2. Specify the ″WSHTTPS default″ PolicySet in the SCA client composite file. A
user name and password are configured for use in outbound requests of the
″HTTP Transport″ default PolicySet binding.
The following example utilizes the RequestContext.getSecuritySubject API:

import org.osoa.sca.CompositeContext;
import org.osoa.sca.CurrentCompositeContext;
import org.osoa.sca.RequestContext;
import javax.security.auth.Subject;
import java.security.Principal;
import java.util.Iterator;
import com.ibm.websphere.security.cred.WSCredential;

. . .
try {

CompositeContext compositeContext = CurrentCompositeContext.getContext();
RequestContext requestContext = null;
Subject subject = null;
String securityName = null;

if (compositeContext != null) {
requestContext = compositeContext.getRequestContext();

}
if (requestContext != null) {

subject = requestContext.getSecuritySubject();
}

if (subject != null) {
java.util.Set principalSet = subject.getPrincipals();
if (principalSet != null && principalSet.size() > 0) {

Iterator principalIterator = principalSet.iterator();
if (principalIterator.hasNext()) {

Principal principal = (java.security.Principal) principalIterator.next();
securityName = principal.getName();

}
}

}

3. The principal identity consists of a realm name followed by the identity of the
requester as shown in the example below. WebSphere Application Server is
configured to use an Lightweight Directory Access Protocol (LDAP) server for
authentication. The realm name is the LDAP server host name and the port
number:
security name = ldap1.austin.ibm.com:389/user2

You can obtain various security attributes of the request from the WSCredential
object in the subject as shown in the following example:

if (subject != null) {
java.util.Set credSet = subject.getPublicCredentials();
if (credSet != null && credSet.size() > 0)
{

Iterator credIterator = credSet.iterator();
while (credIterator.hasNext()) {

Object o = credIterator.next();
WSCredential cred = null;
if (o instanceof WSCredential) {

cred = (WSCredential) o;
} else {

if (securityName == null) {
securityName = new StringBuffer();

}
securityName.append("\n>> Found a public credential: " + o.getClass().getName());

}
if (cred != null) {

if (securityName == null) {
securityName = new StringBuffer();

}
securityName.append("\n>> WSCredential security attributes . . .");
securityName.append("\n>> getAccessId = \t\t" + cred.getAccessId());
securityName.append("\n>> getGroupIds = \t\t" + cred.getGroupIds());
securityName.append("\n>> getPrimaryGroupId = \t\t" + cred.getPrimaryGroupId());
securityName.append("\n>> getRealmName = \t\t" + cred.getRealmName());
securityName.append("\n>> getRealmSecurityName = \t\t" + cred.getRealmSecurityName());
securityName.append("\n>> getRealmUniqueSecurityName = \t\t" + cred.getRealmUniqueSecurityName());
securityName.append("\n>> getSecurityName = \t\t" + cred.getSecurityName());
securityName.append("\n>> getUniqueSecurityName = \t\t" + cred.getUniqueSecurityName());

}
}

}
}

Sample output is shown below:
>> WSCredential security attributes . . .
>> getAccessId = user:ldap1.austin.ibm.com:389/cn=user2,o=ibm,c=us
>> getGroupIds = [group:ldap1.austin.ibm.com:389/CN=GROUP2,O=IBM,C=US]

144 Feature Pack for SCA Version 1.0.0 information center topics

>> getPrimaryGroupId = group:ldap1.austin.ibm.com:389/CN=GROUP2,O=IBM,C=US
>> getRealmName = ldap1.austin.ibm.com:389
>> getRealmSecurityName = ldap1.austin.ibm.com:389/user2
>> getRealmUniqueSecurityName = ldap1.austin.ibm.com:389/cn=user2,o=ibm,c=us
>> getSecurityName = user2
>> getUniqueSecurityName = cn=user2,o=ibm,c=us

Chapter 16. Authorizing access to resources 145

146 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 17. Using JAXB for XML data binding

Java Architecture for XML Binding (JAXB) is a Java technology that provides an
easy and convenient way to map Java classes and XML schema for simplified Web
services development. JAXB provides the xjc schema compiler, the schemagen
schema generator and a runtime framework to support marshalling and
unmarshalling of XML documents to and from Java objects.

About this task

JAXB is an XML-to-Java binding technology that enables transformation between
schema and Java objects and between XML instance documents and Java object
instances. JAXB technology consists of a runtime API and accompanying tools that
simplify access to XML documents. You can use JAXB APIs and tools to establish
mappings between Java classes and XML schema. An XML schema defines the
data elements and structure of an XML document. JAXB technology provides
tooling to enable you to convert your XML documents to and from Java objects.
Data stored in an XML document is accessible without the need to understand the
XML data structure.

JAXB is the default data binding technology used by the Java API for XML Web
Services (JAX-WS) tooling and implementation within this product. You can
develop JAXB objects to use within your JAX-WS applications. You can also use
JAXB independently of the JAX-WS programming model as a convenient way to
leverage the XML data binding technology to manipulate XML within your Java
applications.

JAXB is also the default data binding technology used by Service Component
Architecture (SCA) applications. JAXB enables the SCA service implementation
side and the SCA client reference side to interact with Java objects without
worrying about how the data is transformed into and from XML. JAXB is
supported for the binding.sca and binding.ws binding types.

Note: WebSphere Application Server Version 7.0 supports the JAXB 2.1
specification. JAX-WS 2.1 requires JAXB 2.1 for data binding.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not
supported on the z/OS platform. This functionality is provided by the
assembly tools provided with WebSphere Application Server running on the
z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

JAXB provides the xjc schema compiler tool, the schemagen schema generator tool,
and a runtime framework. The xjc schema compiler tool enables you to start with
an XML schema definition (XSD) to create a set of JavaBeans that map to the
elements and types defined in the XSD schema. You can also start with a set of
JavaBeans and use the schemagen schema generator tool to create the XML
schema. After using either the schema compiler or the schema generator
command-line tools, you can convert your XML documents both to and from Java
objects and use the resulting Java classes to assemble a Web services application.

In addition to using the tools from the command-line, you can invoke these JAXB
tools from within the Ant build environments. Use the com.sun.tools.xjc.XJCTask

© Copyright IBM Corp. 2009 147

Ant task from within the Ant build environment to invoke the xjc schema compiler
tool. Use the com.sun.tools.jxc.SchemaGenTask Ant task from within the Ant build
environment to invoke the schemagen schema generator tool.

JAXB annotated classes and artifacts contain all the information that the JAXB
runtime API needs to process XML instance documents. The JAXB runtime API
enables marshaling of JAXB objects to XML files and unmarshaling the XML
document back to JAXB class instances. The JAXB binding package,
javax.xml.bind, defines the abstract classes and interfaces that are used directly
with content classes. In addition the package defines the marshal and unmarshal
APIs.

JAXB 2.1 provides enhancements such as improved compilation support and
support for the @XMLSeeAlso annotation. With JAXB 2.1, you can configure the xjc
schema compiler so that it does not automatically generate new classes for a
particular schema. Similarly, you can configure the schemagen schema generator to
not automatically generate a new schema. This enhancement is useful when you
are using a common schema and you do not want a new schema generated. JAXB
2.1 also introduces the @XMLSeeAlso annotation that enables JAXB to bind
additional Java classes that it might not otherwise know about when binding a
Java class with this annotation. This annotation enables JAXB to know about all
classes that are potentially involved in marshalling or unmarshalling as it is not
always possible or practical to list all of the subclasses of a given Java class.
JAX-WS 2.1 also supports the use of the @XMLSeeAlso annotation on a service
endpoint interface (SEI) or on a service implementation bean to ensure all of the
classes referenced by the annotation are passed to JAXB for processing.

You can optionally use JAXB binding customizations to customize generated JAXB
classes by overriding or extending the default JAXB bindings when the default
bindings do not meet your business application needs. In most cases, the default
binding rules are sufficient to generate a robust set of schema-derived classes.
JAXB supports binding customizations and overrides to the default binding rules
that you can make through various ways. For example, you can the overrides
inline as annotations in a source schema, as declarations in an external bindings
customization file that is used by the JAXB binding compiler, or as Java
annotations within Java class files used by the JAXB schema generator. See the
JAXB specification for information regarding binding customization options.

Using JAXB, you can manipulate data objects in the following ways:
v Generate an XML schema from a Java class. Use the schema generator

schemagen command to generate an XML schema from Java classes.
v Generate Java classes from an XML schema. Use the schema compiler xjc

command to create a set of JAXB-annotated Java classes from an XML schema.
v Marshal and unmarshal XML documents. After the mapping between XML

schema and Java classes exists, use the JAXB binding runtime to convert XML
instance documents to and from Java objects.

Results

You now have JAXB objects that your Java application can use to manipulate XML
data.

148 Feature Pack for SCA Version 1.0.0 information center topics

Using JAXB schemagen tooling to generate an XML schema file from a
Java class

Use Java Architecture for XML Binding (JAXB) schemagen tooling to generate an
XML schema file from Java classes.

Before you begin

Identify the Java classes or a set of Java objects to map to an XML schema file.

About this task

Use JAXB APIs and tools to establish mappings between Java classes and XML
schema. XML schema documents describe the data elements and relationships in
an XML document. After a data mapping or binding exists, you can convert XML
documents to and from Java objects. You can now access data stored in an XML
document without the need to understand the data structure.

To develop Web services using a bottom-up development approach starting from
existing JavaBeans or enterprise beans, use the wsgen tool to generate the artifacts
for your Java API for XML-Based Web Services (JAX-WS) applications or the
Service Component Architecture (SCA) representations of your business service
interfaces. After the Java artifacts for your application are generated, you can create
an XML schema document from an existing Java application that represents the
data elements of a Java application by using the JAXB schema generator,
schemagen command-line tool. The JAXB schema generator processes either Java
source files or class files. Java class annotations provide the capability to customize
the default mappings from existing Java classes to the generated schema
components. The XML schema file along with the annotated Java class files contain
all the necessary information that the JAXB runtime requires to parse the XML
documents for marshaling and unmarshaling.

You can create an XML schema document from an existing Java application that
represents the data elements of a Java application by using the JAXB schema
generator, schemagen command-line tool. The JAXB schema generator processes
either Java source files or class files. Java class annotations provide the capability
to customize the default mappings from existing Java classes to the generated
schema components. The XML schema file along with the annotated Java class files
contain all the necessary information that the JAXB runtime requires to parse the
XML documents for marshaling and unmarshaling.

Note: The wsimport, wsgen, schemagen and xjc command-line tools are not
supported on the z/OS platform. This functionality is provided by the
assembly tools provided with WebSphere Application Server running on the
z/OS platform. Read about these command-line tools for JAX-WS
applications to learn more about these tools.

Note: WebSphere provides Java API for XML-Based Web Services (JAX-WS) and
Java Architecture for XML Binding (JAXB) tooling. The wsimport, wsgen,
schemagen and xjc command-line tools are located in the
app_server_root\bin\ directory. Similar tooling is provided by the Java SE
Development Kit (JDK) 6. For the most part, artifacts generated by both the
tooling provided with WebSphere and the JDK are the same. In general,
artifacts generated by the JDK tools are portable across compliant runtime

Chapter 17. Using JAXB for XML data binding 149

environments. However, it is a best practice to use the WebSphere tools to
achieve seamless integration within the WebSphere environment.

Note: WebSphere Application Server Version 7.0 supports the JAXB 2.1
specification. JAX-WS 2.1 requires JAXB 2.1 for data binding.

JAXB 2.1 provides improvements in compilation support to enable you to
configure the schemagen schema generator so that it does not automatically
generate a new schema. This is helpful if you are using a common schema such as
the World Wide Web Consortium (W3C), XML Schema, Web Services Description
Language (WSDL), or WS-Addressing and you do not want a new schema
generated for a particular package that is referenced. The location attribute on the
@XmlSchema annotation causes the schemagen generator to refer to the URI of the
existing schema instead of generating a new one.

In addition to using the schemagen tool from the command-line, you can invoke
this JAXB tool from within the Ant build environments. Use the
com.sun.tools.jxc.SchemaGenTask Ant task from within the Ant build environment
to invoke the schemagen schema generator tool.

Note: When running the schemagen tool, the schema generator does not correctly
read the @XmlSchema annotations from the package-info class file to derive
targetNamespaces. Instead of using the @XMLSchema annotation, use one of
the following methods:
v Provide a package-info.java file with the @XmlSchema; for example:

schemagen sample.Address sample\package-info.java

v Use the @XmlType annotation namespace attribute to specify a
namespace; for example:
@XmlType(namespace="http://myNameSpace")

1. Locate the Java source files or Java class files to use in generating an XML
schema file. Ensure that all classes referenced by your Java class files are
contained in the classpath or are provided to the tool using the-classpath/-cp
options.

2. Use the JAXB schema generator, schemagen command to generate an XML
schema. The schema generator is located in the app_server_root\bin\ directory.

app_server_root\bin\schemagen.bat myObj1.java myObj2.java

app_server_root/bin/schemagen.sh myObj1.java myObj2.java

app_server_root/bin/schemagen myObj1.java myObj2.java

The parameters, myObj1.java and myObj2.java, are the names of the Java files
containing the data objects. If myObj1.java or myObj2.java refer to Java classes
that are not passed into the schemagen command, you must use the -cp option
to provide the classpath location for these Java classes.Read about the
schemagen command to learn more about this command and additional
options that you can specify.

3. (Optional) Use JAXB program annotations defined in the
javax.xml.bind.annotations package to customize the JAXB XML schema
mappings.

150 Feature Pack for SCA Version 1.0.0 information center topics

4. (Optional) Configure the location property on the @XmlSchema annotation to
indicate to the schema compiler to use an existing schema rather than
generating a new one. For example,
@XmlSchema(namespace="foo")
package foo;
@XmlType
class Foo {
@XmlElement Bar zot;
}
@XmlSchema(namespace="bar",
location="http://example.org/test.xsd")
package bar;
@XmlType
class Bar {
...
}
<xs:schema targetNamespace="foo">
<xs:import namespace="bar"
schemaLocation="http://example.org/test.xsd"/>
<xs:complexType name="foo">
<xs:sequence>
<xs:element name="zot" type="bar:Bar" xmlns:bar="bar"/>
</xs:sequence>
</xs:complex

the location="http://example.org/test.xsd" indicates the location on the
existing schema to the schemagen tool and a new schema is not generated.

Results

Now that you have generated an XML schema file from Java classes, you are ready
to marshal and unmarshal the Java objects as XML instance documents.

Note: The schemagen command does not differentiate the XML namespace
between multiple @XMLType annotations that have the same @XMLType
name defined within different Java packages. When this scenario occurs, the
following error is produced:
Error: Two classes have the same XML type name
Use @XmlType.name and @XmlType.namespace to assign different names to them...

This error indicates you have class names or @XMLType.name values that
have the same name, but exist within different Java packages. To prevent
this error, add the @XML.Type.namespace class to the existing @XMLType
annotation to differentiate between the XML types.

Example

The following example illustrates how JAXB tooling can generate an XML schema
file from an existing Java class, Bookdata.java.
1. Copy the following Bookdata.java file to a temporary directory.

package generated;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.datatype.XMLGregorianCalendar;

Chapter 17. Using JAXB for XML data binding 151

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "bookdata", propOrder = {

"author",
"title",
"genre",
"price",
"publishDate",
"description"

})
public class Bookdata {

@XmlElement(required = true)
protected String author;
@XmlElement(required = true)
protected String title;
@XmlElement(required = true)
protected String genre;
protected float price;
@XmlElement(name = "publish_date", required = true)
protected XMLGregorianCalendar publishDate;
@XmlElement(required = true)
protected String description;
@XmlAttribute
protected String id;

public String getAuthor() {
return author;

}
public void setAuthor(String value) {

this.author = value;
}
public String getTitle() {

return title;
}

public void setTitle(String value) {
this.title = value;

}

public String getGenre() {
return genre;

}

public void setGenre(String value) {
this.genre = value;

}

public float getPrice() {
return price;

}

public void setPrice(float value) {
this.price = value;

}

public XMLGregorianCalendar getPublishDate() {
return publishDate;

}

public void setPublishDate(XMLGregorianCalendar value) {
this.publishDate = value;

152 Feature Pack for SCA Version 1.0.0 information center topics

}

public String getDescription() {
return description;

}

public void setDescription(String value) {
this.description = value;

}

public String getId() {
return id;

}

public void setId(String value) {
this.id = value;

}

}

2. Open a command prompt.
3. Run the schemagen schema generator tool from the directory where you

copied the Bookdata.java file.

app_server_root\bin\schemagen.bat Bookdata.java

app_server_root/bin/schemagen.sh Bookdata.java

app_server_root/bin/schemagen Bookdata.java

4. The XML schema file, schema1.xsd is generated:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="bookdata">
<xs:sequence>

<xs:element name="author" type="xs:string"/>
<xs:element name="title" type="xs:string"/>
<xs:element name="genre" type="xs:string"/>
<xs:element name="price" type="xs:float"/>
<xs:element name="publish_date" type="xs:anySimpleType"/>
<xs:element name="description" type="xs:string"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string"/>

</xs:complexType>
</xs:schema>

Refer to the JAXB Reference implementation documentation for additional
information about the schemagen command.

Using JAXB xjc tooling to generate JAXB classes from an XML
schema file

Use Java Architecture for XML Binding (JAXB) xjc tooling to compile an XML
schema file into fully annotated Java classes.

Chapter 17. Using JAXB for XML data binding 153

Before you begin

Develop or obtain an XML schema file.

About this task

Use JAXB APIs and tools to establish mappings between an XML schema and Java
classes. XML schemas describe the data elements and relationships in an XML
document. After a data mapping or binding exists, you can convert XML
documents to and from Java objects. You can now access data stored in an XML
document without the need to understand the data structure.

To develop Web services using a top-down development approach starting with an
existing Web Services Description Language (WSDL) file, use the wsimport tool to
generate the artifacts for your Java API for XML-Based Web Services (JAX-WS)
applications or the Service Component Architecture (SCA) Java representations of
your business service interfaces when starting with a WSDL file. After the Java
artifacts for your application are generated, you can generate fully annotated Java
classes from an XML schema file by using the JAXB schema compiler, xjc
command-line tool. The resulting annotated Java classes contain all the necessary
information that the JAXB runtime requires to parse the XML for marshaling and
unmarshaling. You can use the resulting JAXB classes within Java API for XML
Web Services (JAX-WS) applications or other Java applications such as SCA
applications for processing XML data.

In addition to using the xjc tool from the command-line, you can invoke this JAXB
tool from within the Ant build environments. Use the com.sun.tools.xjc.XJCTask
Ant task from within the Ant build environment to invoke the xjc schema compiler
tool.
1. Use the JAXB schema compiler, xjc command to generate JAXB-annotated Java

classes. The schema compiler is located in the app_server_root\bin\ directory.
The schema compiler produces a set of packages containing Java source files
and JAXB property files depending on the binding options used for
compilation.

2. (Optional) Use custom binding declarations to change the default JAXB
mappings. Define binding declarations either in the XML schema file or in a
separate bindings file. You can pass custom binding files by using the -b option
with the xjc command.

3. Compile the generated JAXB objects. To compile generated artifacts, add the
Thin Client for JAX-WS with WebSphere Application Server to the classpath.

Results

Now that you have generated JAXB objects, you can write Java applications using
the generated JAXB objects and manipulate the XML content through the
generated JAXB classes.

Example

The following example illustrates how JAXB tooling can generate Java classes
when starting with an existing XML schema file.
1. Copy the following bookSchema.xsd schema file to a temporary directory.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="CatalogData">

<xsd:complexType >

154 Feature Pack for SCA Version 1.0.0 information center topics

<xsd:sequence>
<xsd:element name="books" type="bookdata" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="bookdata">

<xsd:sequence>
<xsd:element name="author" type="xsd:string"/>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="genre" type="xsd:string"/>
<xsd:element name="price" type="xsd:float"/>
<xsd:element name="publish_date" type="xsd:dateTime"/>
<xsd:element name="description" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>
</xsd:schema>

2. Open a command prompt.
3. Run the JAXB schema compiler, xjc command from the directory where the

schema file is located. The xjc schema compiler tool is located in the
app_server_root\bin\ directory.

app_server_root\bin\xjc.bat bookSchema.xsd

app_server_root/bin/xjc.sh bookSchema.xsd

Running the xjc command generates the following JAXB Java files:
generated\Bookdata.java
generated\CatalogdData.java
generated\ObjectFactory.java

4. Use the generated JAXB objects within a Java application to manipulate XML
content through the generated JAXB classes.

Refer to the JAXB 2.0 Reference implementation documentation for additional
information about the xjc command.

Chapter 17. Using JAXB for XML data binding 155

156 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 18. Defining and managing secure policy set bindings

You can specify abstract intents in the Service Component Architecture (SCA)
composite file to achieve a quality of service for a service, reference, or secure
connection by mapping intents to policy sets. You can also configure Web Service
bindings to perform authentication using Lightweight Third-Party Authentication
(LTPA) tokens.

Configuring Web service binding for SCA transport layer
authentication

Use this task to specify abstract intents in the Service Component Architecture
(SCA) composite file to achieve a quality of service for a service or reference. These
intents must be mapped to policy sets that can satisfy the intents during
deployment.

Before you begin

Before you begin this task, install Service Component Architecture (SCA)
application.

About this task

Intents and policy sets can be used to configure Web service bindings to achieve
quality of services (QoS).
1. Configure administrative and application security for the server.

In order to secure the service so that it only accepts secure requests, and for the
service to require authentication, administrative and application security must
be enabled for the server. See Securing JAX-WS Web services using
message-level security.

2. Configure the service to require transport authentication by specifying the
authentication.transport intent on the <binding.ws> element.
A component service can be configured to require transport authentication by
specifying the ″authentication.transport″ intent on the <binding.ws> element.
<service name="AccountService">

<binding.ws
requires="authentication.transport"
... />

</service>

3. Configure the client to send a username and password by attaching the
WSHTTPS default policy set to the <binding.ws> element.
The wsPolicySet attribute can be used to specify policy sets at the composite,
component, service, reference, and binding.ws levels in the SCA composite file.
The actual attachment happens only at the binding.ws level and policy sets
specified at other levels are inherited down to the binding level. For additional
information on attaching policy sets to the <binding.ws> element and the
inheritance rules, refer to mapping abstract intent to policy sets.
After the policy set is attached to the client reference, it also requires assigning
a client policy binding with the username and password provided in the HTTP
transport binding to send with the request. Complete this task using the topic,
configuring the HTTP transport policy, to configure the HTTP transport binding

© Copyright IBM Corp. 2009 157

to provide username and password. To assign policy set bindings, see the topic,
defining and managing policy set bindings.

Results

When you finish this task, you have configured Web service binding to do SCA
transport layer authentication.

What to do next

You can proceed to configuring other application specific bindings for your policy
sets.

Configuring Web service binding to use SSL
Use this task to specify abstract intents in the Service Component Architecture
(SCA) composite file to achieve a quality of service for secure connection using
Secure Sockets Layer (SSL). The default SCA composite file is called
default.composite and it is located in the META-INF level of the application
structure. These intents must be mapped to policy sets that can satisfy the intents
during deployment.

Before you begin

Before you begin this task, install a service application.

About this task

Intents and policy sets can be used to configure Web service bindings to achieve a
secure connection.
1. Configure administrative and application security for the server.

In order to secure the service so that it only accepts secure requests, and for the
service to require authentication, administrative and application security must
be enabled for the server. See Securing JAX-WS Web services using
message-level security.

2. Configure the service to require a secure transport by attaching the WSHTTPS
default policy set.
Policy sets and bindings can be specified for SCA services and references using
one of three different methods.
v Specify a policy set and bindings directly in the composite file.
v Attach a policy set during deployment using the addCompUnit command.
v Attached or update a policy set during post deployment using the Web

services policy set management panels in the administrative console.
For additional information on each of the methods for attaching a policy set,
see mapping abstract intents and managing policy sets. The code examples that
are included in this task step and the next step use the composite file method
to specify the WSHTTPS Default policy set.
Attach the WSHTTPS default policy set and define the quality of service (QoS)
namespace in the composite file.
<service name="AccountService">

<binding.ws
qos:wsPolicySet="WSHTTPS default"
... />

</service>

158 Feature Pack for SCA Version 1.0.0 information center topics

3. Configure the client to use SSL connection by attaching a policy set to the
<binding.ws> element.
The wsPolicySet attribute can be used to specify policy sets at the composite,
component, service, reference, and binding.ws levels in the SCA composite file.
The actual attachment happens only at the binding.ws level and policy sets
specified at other levels are inherited down to the binding level. For additional
information on attaching policy sets and the inheritance rules, refer to mapping
abstract intent to policy sets. The following example illustrates the attachment
of WSHTTPS default policy set to the <binding.ws> element.
<reference name="AccountService">

<binding.ws
qos:wsPolicySet="WSHTTPS Default"
... />

</reference>

The WSHTTPS default policy set is a default policy set available in every server
profile and it provides client-side SSL transport configuration. For additional
information, see WSHTTPS default policy set.

Important: The client must use an endpoint address of the form
https://<host>:<secure-port> to contact the service.

Results

When you finish this task, you have configured Web service bindings to use SSL.

What to do next

You can proceed to configuring other application specific bindings for your policy
sets.

Configuring Web service binding for LTPA authentication
Use this task to configure Web Service binding to perform authentication using
Lightweight Third-Party Authentication (LTPA) tokens.

Before you begin

Before you begin this task, install Service Component Architecture (SCA)
application.

About this task

Policy sets can be used to configure Web service bindings to perform
authentication using LTPA tokens.
1. Configure the administrative and application security for the server.

In order to secure the service so that it only accepts secure requests, and for the
service to require authentication, administrative and application security must
be enabled for the server. See Securing JAX-WS Web services using
message-level security.

2. Configure the service to require message layer authentication by attaching the
LTPA WSSecurity default policy set.
To attach the LTPA WSSecurity default policy set, perform the task, mapping
abstract intent to policy sets and policy management.
In addition to attaching the policy set, you must configure the WS-Security
policy to add a caller binding in order for the received subject to be propagated

Chapter 18. Defining and managing secure policy set bindings 159

to the thread. To update the default binding to support the caller function, open
the administrative console and navigate to Services > Policy sets > General
provider policy set bindings > Provider sample > WS-Security > Callers.
Create a new Caller with the following values:

Name: Specify any name for this configuration
Caller identity local part: LTPAv2
Caller identity namespace URI: http://www.ibm.com/websphere/appserver/tokentype

For additional information on LTPA WSSecurity default policy set review the
topic, WSSecurity default policy sets. Read also the article about configuring
the WS-Security policy.
The following code is an example of configuring the service to support LTPA
authentication.
<service name="AccountService">

<binding.ws
qos:wsPolicySet="LTPA WSSecurity default" qos:wsServicePolicySetBinding="Provider sample"
... />

</service>

3. Configure the client by attaching the LTPA WSSecurity default policy set to a
reference.
An example of how to attach the LTPA WSSecurity default policy set to a
reference is shown in the code block in this task step. Attaching the LTPA
WSSecurity default policy set to a reference by default propagates any existing
LTPA tokens on the thread with the request. It is also possible to configure the
policy set to create a token for a specific user and send that token with all
requests. Refer to the article, WSSecurity default policy sets for detail
information.
<reference name="AccountService">

<binding.ws
qos:wsPolicySet="LTPA WSSecurity default"
... />

</reference>

Results

When you finish this task, you have configured Web service bindings to do LTPA
authentication.

What to do next

You can proceed to configuring other application specific bindings.

160 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 19. Mapping abstract intents and managing policy
sets

Use this task topic to specify abstract intents in the Service Component
Architecture (SCA) composite file or with annotations to achieve a quality of
service (QoS) for a service or reference when you are working with Web services
policy sets and bindings. The intents in the composite file must be mapped to
policy sets that can satisfy those intents during deployment to achieve the QoS that
is required.

Before you begin

Before you begin this task, install an Service Component Architecture (SCA)
application.

About this task

Use the composite file to specify intents and policy sets for Web services bindings
to achieve quality of services (QoS).
1. Specify abstract intents at the <binding.ws> element of the service or reference

level of the component.
You can specify intents at any level in the composite file using a required
attribute. The intent inheritance rules specified in the SCA Policy specification
is enforced in the product. The following code example illustrates how to
specify intents in a composite file.
Specifying intents in a composite file
<service name="AccountService" requires=”authentication”>

<binding.ws
requires="confidentiality.transport"
... />

</service>

Valid intents that can be mapped to a policy set are:

confidentiality
confidentiality.message
confidentiality.transport
integrity
integrity.message
integrity.transport
authentication
authentication.message
authentication.transport
propagatesTransaction
The table provides a list of intents and the supported bindings to achieve QoS.

Table 40. Intents supported by different types of bindings

Intent binding.ws binding.ejb and binding.sca

authentication.message Intent requires the attachment of a Web service
policy set and policy binding that contains the
WS–Security policy type

Not supported; CSIv2 can be
configured to use basic auth or
security token (LTPA, Kerberos)

© IBM Corporation 2008 161

Table 40. Intents supported by different types of bindings (continued)

Intent binding.ws binding.ejb and binding.sca

confidentiality.message
and integrity.message

Both intents require the attachment of a Web service
policy set and policy binding that contains the
WS–Security policy type

Not supported

authentication.transport Basic auth only. Reference requires the attachment of
a Web service policy set that contains the
HTTPTransport policy type. Service does not require
any attachments.

Intent is not supported. CSIv2 can
be configured to use client
certificates for authentication.

confidentiality.transport
and integrity.transport

Requires the attachment of a Web service policy set
that contains the SSLTransport policy type

Intent is not supported. CSIv2 can
be configured to require SSL.

propagatesTransaction Requires the attachment of a Web service policy set
that contains the WS–Transaction policy type

Supported; no configuration
required

Mapping of these intents to a policy set can be done during deployment using
the interactive addCompUnit command or the administrative console. The
Policy Set column in the administrative console page provides hints as to which
policy sets might best satisfy the intents. You can choose to attach one of the
suggested default policy sets or attach any other policy set that is defined in
the product. Attaching no policy set is a valid choice. This might be the case
when there are no satisfying policy sets or the intents are not valid.

2. Attach policy sets and bindings.

Important:

Annotations are not supported with Web services policy sets.

The policy sets referenced in this article are defined for Web
services and apply to Web service bindings. For an overview of
policy sets, read Web services policy sets.

You can attach policy sets and bindings at any of the levels in a composite file.
The product provides some default policy sets, as well as a sample service and
reference binding for the client. You can create additional policy sets and
bindings using the Web services administrative console or scripting
functionality. Refer to creating policy sets using the administrative console or
creating policy set attachments using the wsadmin tool.
Policy sets and bindings can be specified for SCA services and references using
one of three different methods.
v Specify a policy set and bindings directly in the composite file.
v Attach a policy set during deployment using the addCompUnit command.
v Attached or update a policy set during post deployment using the Web

services policy set management panels in the administrative console.
Policy set management using commands

The addCompUnit command can be run in interactive mode to attach policy
sets. After navigating to the AttachPolicySet step, the policy set to be attached
can be specified for different resource ID’s.
When running the addCompUnit command in batch mode, the policy set can
be directly attached to a resource ID by using the -AttachPolicySet step. The
syntax of the command is:

AdminTask.addCompUnit('[-blaID ... -AttachPolicySet[[<resourceID> .* .* .* <Policy set to attach>]]]')

The following are the valid resource ID’s:

162 Feature Pack for SCA Version 1.0.0 information center topics

<composite name>
<composite name>/<component name>
<composite name>/<component name>/<service name>
<composite name>/<component name>/<service name>/binding.ws
<composite name>/<component name>/<reference name>
<composite name>/<component name>/<reference name>/binding.ws

The following is an example of the command:
AdminTask.addCompUnit ('[-blaID myBLA -cuSourceID echoService.jar -AttachPolicySet
[[EchoServiceWSComposite/EchoServiceWSComponent/EchoService/binding.ws .* .* .* "WSHTTPS default"]]]')

The command above attaches the WSHTTPS default policy set to the
binding.ws under EchoService. The policy is fine tuned using the provider
sample binding. The policy set attached during deployment can be changed at
post-deployment using the administrative console or commands.
Policy set management using the administrative console

You can also attach policy sets to your business level applications using the
administrative console during deployment and post deployment. During
deployment, the policy set can be configured in the Attach policy set panel that
shows up when you are adding a composition unit. To view the Attach policy
set panel, you must be deploying a business-level application that uses Web
services. This panel does not exist in post deployment. During post
deployment, the policy can be configured using the service provider and the
service client panels under the Services menu. For additional information on
using the administrative console to attach policy sets, see attach policy set
settings document.
Policy set management using composite file

You can specify wsPolicySet attribute for policy sets at the composite,
component, service, reference, and binding.ws levels. The actual attachment
happens only at the binding.ws level and policy sets specified at the other
levels are inherited down to the bindings level. The inheritance rules are
described in the next task step. Similar to the wsPolicySet, you can specify the
wsServicePolicySetBinding and wsReferencePolicySetBinding attributes. First
create the policy sets and the bindings using Web services administrative tools,
and then attach the policy set using one of the three methods described in this
task step.
The following is an example of a composite file with a wsPolicySet mapping.

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

...
xmlns:qos="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
name="EchoServiceWSComposite">

<component name="EchoServiceWSComponent">
...
<service name="EchoService">

<binding.ws
qos:wsPolicySet="WSHTTPS default" qos:wsServicePolicySetBinding="Provider sample"

... />
</service>

</component>
</composite>

3. Define policy set inheritance.
Policy sets are inherited in a top down format. However, a policy set specified
at a lower level has precedence over what it inherits. For example, in the
sample composite file shown in this task step, the policy set attached for the

Chapter 19. Mapping abstract intents and managing policy sets 163

binding for EchoService1 is LTPA WSSecurity default but the bindings at
EchoService2 inherits the WSHTTPS default policy set from the composite level.
Defining policy set inheritance

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

...
xmlns:qos="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"

name="EchoServiceWSComposite" qos:wsPolicySet="WSHTTPS default">
<component name="EchoServiceWSComponent">

...
<service name="EchoService1">

<binding.ws
qos:wsPolicySet="LTPA WSSecurity default"
... />

</service>
<service name="EchoService2">

<binding.ws
... />

</service>
</component>

</composite>

Results

When you finish this task, you have mapped abstract intents to policy sets and
attached policy sets to your SCA service artifact.

What to do next

You can proceed to configure application specific bindings.

Attached deployed assets collection
Use this page to view assets that are attached to a policy set, detach or replace a
policy set.

To view this administrative console page, complete the following actions:
1. Click Services → Policy sets → Application policy sets → policy_set_name.
2. Click Attached deployed assets link in the Additional Properties section.

Name
Specifies a list of deployed assets. The deployed asset names that are displayed in
the Name column are either attached explicitly to the specified policy set or have
service resources attached to this policy set.

To alter the policy set that is attached to a deployed asset, select a deployed asset,
and click a button to enable the following actions:

Table 41. Button descriptions

Button Resulting action

Detach Policy
Set

Detaches the current policy set from the selected deployed asset or
deployed assets. This action also detaches any attached deployed asset
service resources. This action does not detach other policy sets from the
deployed asset or deployed asset service resources. To perform this
action, select a resource in the Name column, and click Detach Policy
Set. This action detaches the policy set from the selected asset.

164 Feature Pack for SCA Version 1.0.0 information center topics

Table 41. Button descriptions (continued)

Button Resulting action

Replace Policy
Set

Displays a list of policy sets that can be attached to the selected deployed
asset or deployed assets and any contained attached service resources.
The policy set is replaced with the one selected. This action does not
replace other policy sets that are attached to resources in the deployed
asset that you select. To perform this action, select a resource in the
Name column, and click Replace Policy Set. This action enables you to
select a different policy set to attach to the selected deployed asset in
place of the current policy set.

Type
Specifies the type of deployed asset, such as a composition unit (CU) or a Java
Platform, Enterprise Edition (Java EE) application.

Chapter 19. Mapping abstract intents and managing policy sets 165

166 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 20. Administering asynchronous beans

Configuring work managers
A work manager acts as a thread pool for application components that use
asynchronous beans. Use the administrative console to configure work managers.

Before you begin

If you are not familiar with work managers, refer to the Work managers conceptual
topic.

About this task

The work manager service is always enabled. In previous versions of the product,
the work manager service could be disabled using the administration console or
configuration service. The work manager service configuration objects are still
present in the configuration service, but the enabled attribute is ignored.

You can define multiple work managers for each cell. Each work manager is bound
to a unique place in Java Naming and Directory Interface (JNDI).

Important: The work manager service is only supported from within the
Enterprise Java Beans (EJB) Container or Web Container. Looking up
and using a configured work manager from a Java Platform, Enterprise
Edition (Java EE) application client container is not supported.

1. Start the administrative console.
2. Select Resources > Asynchronous beans > Work managers.
3. Specify a Scope value and click New.
4. Specify the required properties for work manager settings.

Scope The scope of the configured resource. This value indicates the location
for the configuration file.

Name The display name for the work manager.
JNDI Name

The Java Naming and Directory Interface (JNDI) name for the work
manager. This name is used by asynchronous beans that need to look
up the work manager. Each work manager must have a unique JNDI
name within the cell.

Number of Alarm Threads
The maximum number of threads to use for processing alarms. A single
thread is used to monitor pending alarms and dispatch them. An
additional pool of threads is used for dispatching the threads. All alarm
managers on the asynchronous beans associated with this work
manager share this set of threads. A single alarm thread pool exists for
each work manager, and all of the asynchronous beans associated with
the work manager share this pool of threads.

Minimum Number Of Threads
The number of threads to be kept in the thread pool, created as needed.

Maximum Number Of Threads
The maximum number of threads to be created in the thread pool. The
maximum number of threads can be exceeded temporarily if the

© Copyright IBM Corp. 2009 167

Growable check box is selected. These additional threads are discarded
when the work on the thread completes.

Thread Priority
The priority to assign to all threads in the thread pool.

Every thread has a priority. Threads with higher priority are run before
threads with lower priority. For more information about how thread
priorities are used, see the javadoc for the setPriority method of the
java.lang.Thread class in the Java Standard Edition specification.

5. [Optional] Specify a Description and a Category for the work manager.
6. [Optional] Select the Service Names (Java EE contexts) on which you want this

work manager to be made available. Any asynchronous beans that use this
work manager then inherit the selected Java EE contexts from the component
that creates the bean. The list of selected services also is known as the ″sticky″
context policy for the work manager. Selecting more services than are actually
required might impede performance.
Other optional fields include:

Work timeout
Specifies the number of milliseconds to wait before a scheduled work
object is released. If a value is not specified, then the timeout is
disabled.

Work request queue size
Specifies the size of the work request queue. The work request queue is
a buffer that holds scheduled work objects and can be a value of 1 or
greater. The thread pool pulls work from this queue. If you do not
specify a value or the value is 0, the queue size is managed
automatically. When the queue size is managed automatically, it is
computed as the (minimum_number_of_threads +
maximum_number_of_threads) / 2. If this value computes to a zero value,
a queue size of 1 is used. Large values can consume significant system
resources.

Work request queue full action
Specifies the action taken when the thread pool is exhausted, and the
work request queue is full. This action starts when you submit
non-daemon work to the work manager. If set to FAIL, the work
manager API methods creates an exception instead of blocking.

Default transaction class
Specifies the transaction class name used to classify work run by this
work manager instance when the z/OS Work Load Manager Service
class information is not contained in the work context information.

Daemon transaction class
Specifies the transaction class name used to classify ″daemon″ work
initiated by this work manager instance.

7. Save your configuration.

Results

The work manager is now configured and ready for access by application
components that need to manage the start of asynchronous code.

168 Feature Pack for SCA Version 1.0.0 information center topics

Configuring Work managers for one-way operations
You can configure Work managers for one-way operations. In Feature Pack for
SCA, Work manager configuration is supported only at the component service
level. This capability is supported for default and Web services binding.

Before you begin

Asynchronous service dispatches run on a different thread than the service invoker.
The thread pool that services these dispatches must be configurable so that the
service thread pool can be adjusted, based on workload variations or some other
policy. The application server has configurable thread pools, called Work managers,
that can be used as the means for providing an asynchronous thread pool to an
SCA service.

This topic applies to non-blocking (one-way) operations only. The Java composite
definition (.composite file) for the component service that has the one-way
operation, enabling the Work manager to be configured independently.

Specifying one Work manager per component service is optional. If you do not
specify a Work manager component service that has the one-way operation, the
runtime environment uses a default Work manager that is configured at the server,
node, or cell level.

Important:

v Work manager configuration is supported only at the component
service level.

v This feature is supported for default and Web services bindings.
1. Configure Asynchronous beans Work manager. In the administrative console,

click Resources → Asynchronous beans → Work managers. Create a new Work
manager. Remember the JNDI name provided.

2. Restart the server.
3. Assemble a composite with one-way operation.
4. Define the composite definition by adding the WorkManager namespace

definition, http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06, and
specify the JNDI name of the Work manager configured previously under
component service, <workManager ../>, element.

5. Use the administrative console to define a Work manager and assign it a JNDI
name.

6. Restart the server.
7. Develop a service component with a non-blocking, one-way operation:
8. Specify Work manager for component service.

a. Add the WorkManager namespace definition, http://www.ibm.com/xmlns/
prod/websphere/sca/1.0/2007/06, to the composite definition (.composite
file), for example:
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" xmlns:dbsdo=
"http://tuscany.apache.org/xmlns/sca/databinding/sdo/1.0"
xmlns:wm="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"
name="ExampleComposite">

b. Add the JNDI name of the Work manager to the component service, <work
manager..../>, element, for example:

Chapter 20. Administering asynchronous beans 169

<component name="Example_Component">
<service name="Example_Service">

<wm:workManager value="sca/example"/>
</service>
<implementation.java class="test.sca.binding.sca.ExampleImpl"/>

</component>

9. Deploy the service component.
10. Change the deployed service Work manager setting to a different JNDI name.
11. Restart the business application.
12. Change the configuration of the Work manager that you created.
13. Restart the business application.

Results

Service operation dispatches occur in the thread pool of the configured Work
manager.

Example

Sample composite definition with Work manager configuration: In this sample,
the first component runs with the configured Work manager, which has JNDI
name sca/test2. The second component does not have a Work manager setting,
even though it is one-way, hence the second component runs with the default
Work manager, which is configured per server, node, or cell level. The third
component runs with its Work manager with JNDI name sca/test4.
<?xml version="1.0" encoding="UTF-8"?>
http://www.osoa.org/xmlns/sca/1.0
targetNamespace="http://samples.myco.com/oneway"
xmlns:wm="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06" name="Composite_2">

<component name="Component_2">
<service name="Component_2">

<wm:workManager value="sca/test2"/>
</service>
<implementation.java class="test.sca.binding.sca.oneway.Component_2Impl"/>
<reference name="component_3" target="Component_3"/>

</component>
<component name="Component_3">

<implementation.java class="test.sca.binding.sca.oneway.Component_3Impl"/>
<reference name="component_4" target="Component_4"/>

</component>
<component name="Component_4">

<service name="Component_4">
<wm:workManager value="sca/test4"/>

</service>
<implementation.java class="test.sca.binding.sca.oneway.Component_4Impl"/>

</component>
</composite>

Sample service interface with one-way operation:
import org.osoa.sca.annotations.OneWay;
import org.osoa.sca.annotations.Remotable;

@Remotable
public interface Component_2 {
@OneWay
public void test(Message inputText);
}

170 Feature Pack for SCA Version 1.0.0 information center topics

Configuring the default SCA Work manager for the SCA layer
This topic describes how to configure the default SCA Work manager for the entire
SCA layer. Create this Work manager if you need to tune or monitor the thread
pool for asynchronous invocation at the entire SCA layer level. If this Work
manager is not configured, SCA layer creates one automatically.

About this task

Create the SCA Work manager, as follows:
1. Create a new Work manager. In the administrative console, click Resources >

Asynchronous beans > Work managers. Remember the JNDI name provided.
2. Configure SCA to use the newly-created work manager. In the administrative

console, click Application servers > server > Process definition > Java virtual
machine > Custom properties.

3. Add a new property named SCAWorkManager with the value as the JNDI name
that was provided in step one.

4. Save and restart the server.

Results

Service operation dispatches occur in the thread pool of the configured Work
manager.

Chapter 20. Administering asynchronous beans 171

172 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 21. Transaction support in WebSphere Application
Server

Support for transactions is provided by the transaction service within WebSphere
Application Server. The way that applications use transactions depends on the type
of application component.

A transaction is unit of activity, within which multiple updates to resources can be
made atomic (as an indivisible unit of work) such that all or none of the updates
are made permanent. For example, during the processing of an SQL COMMIT
statement, the database manager atomically commits multiple SQL statements to a
relational database. In this case, the transaction is contained entirely within the
database manager and can be thought of as a resource manager local transaction
(RMLT). In some contexts, a transaction is referred to as a logical unit of work
(LUW). If a transaction involves multiple resource managers, for example multiple
database managers, an external transaction manager is required to coordinate the
individual resource managers. A transaction that spans multiple resource managers
is referred to as a global transaction. WebSphere Application Server is a transaction
manager that can coordinate global transactions, can be a participant in a received
global transaction, and can also provide an environment in which resource
manager local transactions can run.

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can use either container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (component-managed transactions where the bean manages
transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) and application client components use

component-managed transactions.

WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through their XAResource interface, and
participates in distributed global transactions with transaction managers that
support the CORBA Object Transaction Service (OTS) protocol or Web Service
Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere Application
Server also participates in transactions imported through Java EE Connector 1.5
resource adapters. You can also configure WebSphere applications to interact with
databases, JMS queues, and JCA connectors through their local transaction support,
when you do not require distributed transaction coordination.

In addition to supporting the coordination of XAResource-based resource
managers, WebSphere Application Server for z/OS supports the coordination of
resource managers through RRS (z/OS resource recovery services). RRS-compliant
resource managers include DB2®, WebSphere MQ, IMS™, and CICS®. IBM
WebSphere Application Server for z/OS can coordinate a mix of RRSTransactional
resource managers and XA capable resource managers under the same global
transaction.

Resource managers that offer transaction support can be categorized into those
that support two-phase coordination (by offering an XAResource interface or by

© IBM Corporation 2002, 2009 173

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/

supporting RRS) and those that support only one-phase coordination (for example
through a LocalTransaction interface). The WebSphere Application Server
transaction support provides coordination, within a transaction, for any number of
two-phase capable resource managers. It also enables a single one-phase capable
resource manager to be used within a transaction in the absence of any other
resource managers, although a WebSphere transaction is not necessary in this case.

Resource managers that offer transaction support can be categorized into those
that support two-phase coordination (by offering an XAResource interface) and
those that support only one-phase coordination (for example through a
LocalTransaction interface). The WebSphere Application Server transaction support
provides coordination, within a transaction, for any number of two-phase capable
resource managers. It also enables a single one-phase capable resource manager to
be used within a transaction in the absence of any other resource managers,
although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources
and two-phase commit capable resources in the same global transaction, because
one-phase commit resources cannot support the prepare phase of two-phase
commit. There are some special circumstances where it is possible to include
mixed-capability resources in the same global transaction:
v In scenarios where there is only a single one-phase commit resource provider

that participates in the transaction and where all the two-phase commit
resource-providers that participate in the transaction are used in a read-only
fashion. In this case, the two-phase commit resources all vote read-only during
the prepare phase of two-phase commit. Because the one-phase commit resource
provider is the only provider to complete any updates, the one-phase commit
resource does not have to be prepared.

v In scenarios where there is only a single one-phase commit resource provider
that participates in the transaction with one or more two-phase commit resource
providers and where last participant support is enabled. Last participant support
enables the use of a single one-phase commit capable resource with any number
of two-phase commit capable resources in the same global transaction. For more
information about last participant support, see Using one-phase and two-phase
commit resources in the same transaction.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to
that provided by global transaction contexts. It is a distributed context that can be
used to coordinate multiple one-phase resource managers. The WebSphere EJB
container and deployment tooling support ActivitySessions as an extension to the
Java EE programming model. Enterprise beans can be deployed with lifecycles that
are influenced by ActivitySession context, as an alternative to transaction context.
An application can then interact with a resource manager for the period of a
client-scoped ActivitySession, rather than only the duration of an EJB method, and
have the resource manager local transaction outcome directed by the
ActivitySession. For more information about ActivitySessions, see Using the
ActivitySession service.

You can use transaction classes to classify client workload for workload
management. The workload is different WebSphere transactions targeted to
separate servant regions, each with goals defined by appropriate service classes.
Each transaction is dispatched in its own WLM enclave in a servant region process,
and is managed according to the goals of its service class. The server controller,
which workload management views as a queue manager, uses the enclave
associated with a client request to manage the priority of the work. If the work has

174 Feature Pack for SCA Version 1.0.0 information center topics

a high priority, workload management can direct the work to a high-priority
servant in the server. If the work has a low priority, workload management can
direct the work to a low-priority servant. The effect is to partition the work
according to priority within the same server.

SCA transaction intents
Service Component Architecture (SCA) provides declarative mechanisms in the
form of intents for describing the transactional environment required by
components.

This topic covers:
v “Using a global transaction”
v “Using local transaction containment” on page 176
v “Transaction intent default behavior” on page 177
v “Managed local or global transactions with JDBC data sources and IBM i” on

page 178

Using a global transaction

Components that use a synchronous interaction style can be part of a single,
distributed ACID transaction within which all transaction resources are
coordinated to either atomically commit or roll back. This is specified by using the
managedTransaction.global intent in the requires attribute of the
<implementation.java> element as shown below.

<component name="DataAccessComponent">
<implementation.java class="example.DataAccessImpl"

requires="managedTransaction.global"/>
</component>

It is possible to control whether a component’s service runs under its client’s global
transaction by specifying either the propagatesTransaction or suspendsTransaction
intent on the component’s <service> element.
v propagatesTransaction - The service runs under its client’s global transaction. If

the client is not running in a global transaction or chose not to propagate its
global transaction, the service runs in its own global transaction.

v suspendsTransaction - The service runs in its own global transaction separate
from the client transaction.

It is also possible to control whether a component global transaction is propagated
to a referenced service by specifying either the propagatesTransaction or
suspendsTransaction intent on the component <reference> element.
v propagatesTransaction - The component’s global transaction is made available

to the referenced service. The referenced service might or may not use this
transaction depending on how it is configured.

v suspendsTransaction - The component’s global transaction is not made available
to the referenced service.

Transaction context is never propagated on @OneWay methods. The SCA run time
ignores propagatesTransaction for OneWay methods.

The following example shows the use of the managedTransaction.global,
propagatesTransaction, and suspendsTransaction intents. The
DataUpdateComponent runs in its own global transaction, not in its client’s
transaction, because suspendsTransaction is specified on its <service> element. Its

Chapter 21. Transaction support in WebSphere Application Server 175

global transaction is propagated to the referenced service DataAccessComponent
because propagatesTransaction is specified on its <reference> element.

<component name="DataUpdateComponent">
<implementation.java class="example.DataUpdateImpl"

requires="managedTransaction.global"/>
<service name="DataUpdateService"

requires="suspendsTransaction"/>
<reference name="myDataAccess" target="DataAccessComponent"

requires="propagatesTransaction"/>
</component>

Propagating transactions over the Web service binding requires the use of a
WebSphere policy set that contains the WS-Transaction policy type. You can set up
this policy set in one of the following ways:
v You can import the WSTransaction policy set that is provided with the product.
v You can create your own policy set and include the WS-Transaction policy type.

The following example assumes the use of the WSTransaction policy set.
<composite name="WSDataUpdateComposite"
xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:ws="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06">

<component name="WSDataUpdateComponent">
<implementation.java class="example.DataUpdateImpl"

requires="managedTransaction.global"/>
<service name="DataUpdateService"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</service>
<reference name="myDataBuddy" target="DataBuddyComponent"

requires="propagatesTransaction">
<binding.ws ws:wsPolicySet="WSTransaction"/>

</reference>
</component>

</composite>

Tip: Transaction propagating might not result in a managed connection. Use a
qualifying Java EE module for a managed connection and connection sharing.

Using local transaction containment

Business logic might have to access transactional resource managers without the
presence of a global transaction. A component can be configured to run under local
transaction containment (LTC). The SCA runtime starts an LTC before dispatching
a method on the component and completes the LTC at the end of the method
dispatch. The component’s interactions with resource providers (such as databases)
are managed within resource manager local transactions (RMLTs). A resource
manager local transaction (RMLT) represents a unit of recovery on a single
connection that is managed by the resource manager.

The local transaction containment policy is configured by using an intent. There
are two choices:
v managedTransaction.local - Use this intent when each interaction with a

resource manager should be part of an extended local transaction that is
committed at the end of the method. The SCA runtime wraps interactions with
each resource manager in a resource manager local transaction (RMLT). The SCA
runtime commits each RMLT at the end of method dispatch, unless an
unchecked exception occurs, in which case the SCA runtime aborts each RMLT.
The component might not use resource manager commit/rollback interfaces or
set AutoCommit to true. If multiple resource managers are used, the RMLTs are
committed independently so it is possible for some to fail and some to succeed.
If this behavior is not what you want, use a global transaction.

176 Feature Pack for SCA Version 1.0.0 information center topics

v noManagedTransaction - The SCA runtime does not wrap interactions with
resource managers in a RMLT. The component implementation manages the start
and end of its own RMLTs or gets AutoCommit behavior (which commits after
each use of a resource) by default. The component must complete any RMLTs
before the end of the method dispatch otherwise the SCA runtime will abort
them.

The intent is specified by using the requires attribute on the <implementation.java>
element. An example is shown below.

<component name="DataAccessLocalComponent">
<implementation.java class="example.DataAccessImpl"

requires="managedTransaction.local"/>
</component>

A local transaction cannot be propagated from one component to another. It is an
error to specify propagatesTransaction on a component’s <service> if the
component uses the managedTransaction.local or noManagedTransaction intent.

Rollback

The SCA run time performs a rollback under the following circumstances:
v When managedTransaction.global is used, the SCA run time performs a rollback

if the component method that started the global transaction throws an
unchecked exception. An unchecked exception is a subclass of
java.lang.RuntimeException or java.lang.Error. A checked exception does not
force a rollback.

v When managedTransaction.local is used, the SCA run time performs a rollback
if the component method throws an unchecked exception. An unchecked
exception is a subclass of java.lang.RuntimeException or java.lang.Error. A
checked exception does not force a rollback.

v When noManagedTransaction is used, the SCA run time performs a rollback of
any RMLT that has not been committed by the component method, regardless of
whether the method throws an exception or not.

When managedTransaction.global or managedTransaction.local is used, the
business logic can force a rollback by using the UOWSynchronization interface.

com.ibm.websphere.uow.UOWSynchronizationRegistry uowSyncRegistry =
com.ibm.wsspi.uow.UOWManagerFactory.getUOWManager();

uowSyncRegistry.setRollbackOnly();

Transaction intent default behavior

If transactional intents are not specified, the default behavior is vendor-specific. If a
transactional intent in not specified for the implementation, the default is
managedTransaction.global. If a transactional intent is not specified for a service
or reference, the default is suspendsTransaction. It is recommended to specify the
required intents rather than to rely on default behavior so that the application is
portable.

Using @Requires annotation to specify transaction intents

You can also specify transaction intents in the implementation class by using the
@Requires annotation. The general form of the annotation is:

@Requires("{http://www.osoa.org/xmlns/sca/1.0}intent")

For example, you can use the following in the implementation class:

Chapter 21. Transaction support in WebSphere Application Server 177

@Requires("{http://www.osoa.org/xmlns/sca/1.0}managedTransaction.global")

You can specify required intents on various elements, including the composite,
component, implementation, service and reference elements. An element inherits
the required intents of its parent element except when they conflict. For example, if
a composite element requires managedTranaction.global and a component element
requires managedTransaction.local, then the component uses
managedTransaction.local.

Managed local or global transactions with JDBC data sources
and IBM i

If you use managed local transaction intent or global transaction intent in SCA
composites, this will turn off autocommit when you use JDBC on the IBM i
platform. If multiple SQL jobs need to lock the same table for an update, the
following exception will appear:

SQLException: com.ibm.db2.jdbc.app.DB2DBException: Row or object WAREHOUSE in CBIVP type *FILE in use

The first SQL job that locks the table never commits the transaction, and the lock is
never released. Global and local transactions for SCA are not supported when you
use JDBC to connect to resources, so you must use noManagedTransaction intents.
Change the following in the SCA composite files to switch to the
noManagedTransaction intent:
1. Change

requires="managedTransaction.local"

and
requires="managedTransaction.global"

to requires=″noManagedTransaction″

2. Change
requires="propagatesTransaction"

to
requires="suspendsTransaction"

178 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 22. Dynamic cache service eviction policies

Eviction policies using the disk cache garbage collector
The disk cache garbage collector is responsible for evicting objects out of the disk
cache, based on a specified eviction policy.

The garbage collector keeps a certain amount of space on disk available, which is
governed by the configuration attribute that limits the amount of disk space that is
used for caching objects. To enable the eviction policy, enable the Limit disk cache
size in GB and/or Limit disk cache size in entries options in the administrative
console.

The garbage collector is triggered when the disk space reaches a specified high
threshold (a percentage of the Limit disk cache size in entries or in GB) and evicts
objects, based on the eviction policy, from the disk in the background until the disk
cache size reaches a specified low threshold (a percentage of the Limit disk cache
size in entries or in GB). Eviction triggers when one or both of the high thresholds
is reached for Limit disk cache size in GB and Limit disk cache size in entries. The
supported policies are:
v None: This is the default policy. Objects are evicted only when they expire, or if

they are invalidated.
v Random: The expired objects are removed first. If the disk size still has not

reached the low threshold limit, objects are picked from the disk cache in
random order and removed until the disk size reaches a low threshold limit.

v Size: The expired objects are removed first. If the disk size still has not reached
the low threshold limit, then largest-sized objects are removed until the disk size
reaches a low threshold limit.

Limit disk cache size in GB and High Threshold determines when to trigger
eviction and when the disk cache is considered near full. It is computed as a
function of the user-specified limit. If the specified limit is 10 GB (3 GB is the
minimum), the cache subsystem initially creates three files that can grow to 1 GB
in size for cache data, dependency ID information, and template information. Each
time more space is needed to contain cache data, dependency ID information, or
template information, a new file is created. Each of these files grow in 1 GB
increments until the total number of files that are created is equal to disk cache in
size in GB (in this case ten). Although the initial size of the new file may be much
smaller than 1 GB, the dynamic cache service always rounds up to the next GB.

Eviction triggers when the cache data size reaches the high threshold and
continues until the cache data size reaches the low threshold. Calculation of cache
data size is dynamic. The following formula describes how to calculate the actual
cache data size limit:

cache data size limit = disk cache size (in GB) - number of dependency files per GB - number of template files

When the cache data size limit is defined, the trigger point is calculated as follows:
eviction trigger point = cache data size limit * high threshold
size of evicted entries = cache data size * (high threshold - low threshold)

Consider the following scenarios:
v Scenario 1

© Copyright IBM Corp. 2009 179

– Disk cache size in GB = 10 GB
– High threshold = 90%
– Low Threshold = 80%
Initially, there is one file for dependency ID and template ID.
cache data size limit = 10-(1+1) = 8 GB
eviction trigger point = 8 * 90% = 7.2 GB
size of evicted entries = 8 * (90% - 80%) = 0.8 GB

In the above scenario, eviction starts when the data cache size reaches 7.2 GB
and continues until the cache size is 6.4 GB (7.2 - 0.8).

v Scenario 2

In scenario 1, if the dependency files grow to more than 1 GB, an additional
dependency file generates. The eviction trigger point launches dynamically as
follows:
cache data size limit = 10 - (2+1) = 7GB
eviction trigger point = 7 * 90% = 6.3GB
size of evicted entries = 7 * (90% - 80%) = 0.7GB

In the above scenario, eviction starts when the data cache size reaches 6.3 GB,
and continues until the cache size in 5.6 GB (6.3 - 0.7).

Disk cache eviction for limit disk cache size in entries. Consider the following
scenario:
v Disk cache size in entries = 100000
v High threshold = 90%
v Low threshold = 80%
eviction trigger point = 100000 * 90% = 90000
number of entries evicted = 100000 * (90% - 80%) = 10000

In this scenario, eviction starts when the number of cache entries reaches 90000
and 10000 entries are evicted from the cache.

Example: Caching Web services
This topic includes examples of building a set of cache policies and SOAP
messages for a Web services application.

The following is a example of building a set of cache policies for a simple Web
services application. The application in this example stores stock quotes and has
operations to read, update the price of, and buy a given stock symbol.

Following are two SOAP message examples that the application can receive, with
accompanying HTTP Request headers.

The first message sample contains a SOAP message for a GetQuote operation,
requesting a quote for IBM. This is a read-only operation that gets its data from the
back end, and is a good candidate for caching. In this example the SOAP message
is cached and a timeout is placed on its entries to guarantee the quotes it returns
are current.

Message example 1
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8"

180 Feature Pack for SCA Version 1.0.0 information center topics

SOAPAction: urn:stockquote-lookup
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:getQuote xmlns:m="urn:stockquote">
<symbol>IBM</symbol>
</m:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification
and is used by HTTP proxy servers to dispatch requests to particular HTTP
servers. WebSphere Application Server dynamic cache can use this header in its
cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While
message 1 is cacheable, this message is not, because it updates the back end
database.

Message example 2
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8"
SOAPAction: urn:stockquote-update
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:buyStock xmlns:m="urn:stockquote">
<symbol>IBM</symbol>
</m:buyStock>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The following graphic illustrates how to invoke methods with the SOAP messages.
In Web services terms, especially Web Service Definition Language (WSDL), a
service is a collection of operations such as getQuote and buyStock. A body
element namespace (urn:stockquote in the example) defines a service, and the
name of the first body element indicates the operation.

buyStock

getQuote

SOAP Router

Servlet

Another

Service

StockQuote

Service

SOAP/HTTP

The following is an example of WSDL for the getQuote operation:
<?xml version="1.0"?>
<definitions name="StockQuoteService-interface"
targetNamespace="http://www.getquote.com/StockQuoteService-interface"
xmlns:tns="http://www.getquote.com/StockQuoteService-interface"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"

Chapter 22. Dynamic cache service eviction policies 181

xmlns="http://schemas.xmlsoap.org/wsdl/"
<message name="SymbolRequest">
<part name="return" type="xsd:string"/>
</message>
<portType name="StockQuoteService">
<operation name="getQuote">
<input message="tns:SymbolRequest"/>
<output message="tns:QuoteResponse"/>
</operation>
</portType>
<binding name="StockQuoteServiceBinding"
type="tns:StockQuoteService">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getQuote">
<soap:operation soapAction="urn:stockquote-lookup"/>
<input>
<soap:body use="encoded" namespace="urn:stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded" namespace="urn:stockquotes"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
</definition>

To build a set of cache policies for a Web services application, configure WebSphere
Application Server dynamic cache to recognize cacheable service operation of the
operation.

WebSphere Application Server inspects the HTTP request to determine whether or
not an incoming message can be cached based on the cache policies defined for an
application. In this example, buyStock and stock-update are not cached, but
stockquote-lookup is cached. In the cachespec.xml file for this Web application, the
cache policies need defining for these services so that the dynamic cache can
handle both SOAPAction and service operation.

WebSphere Application Server uses the operation and the message body in Web
services cache IDs, each of which has a component associated with them.
Therefore, each Web services <cache-id> rule contains only two components. The
first is for the operation. Because you can perform the stockquote-lookup operation
by either using a SOAPAction header or a service operation in the body, you must
define two different <cache-id> elements, one for each method. The second
component is of type ″body″, and defines how WebSphere Application Server
should incorporate the message body into the cache ID. You can use a hash of the
body, although it is legal to use the literal incoming message in the ID.

The incoming HTTP request is analyzed by WebSphere Application Server to
determine which of the <cache-id> rules match. Then, the rules are applied to
form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and
servicesOperation rules:
<cache>
<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<sharing-policy>not-shared</sharing-policy>
<cache-id>
<component id="" type="SOAPAction">

182 Feature Pack for SCA Version 1.0.0 information center topics

<value>urn:stockquote-lookup</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>1<priority>
</component>
</cache-id>
<cache-id>
<component id="" type="serviceOperation">
<value>urn:stockquote:getQuote</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>1</priority>
</component>
</cache-id>
</cache-entry>
</cache>

Chapter 22. Dynamic cache service eviction policies 183

184 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 23. Using PassByReference optimization in SCA
applications

Support exists for the @AllowsPassByReference annotation, which can be used to
bypass marshaling and unmarshaling when a client invokes a service located in the
same JVM over a remote interface.

About this task

Typically, a performance intensive aspect of service invocations is data marshaling
and unmarshaling. Though invocation over a local interface always results in
pass-by-reference semantics so that no data is copied, an invocation over a
remotable interface entails pass-by-value semantics, which typically results in
copying of the data which can be expensive.

Note: The SCA default binding provides the @AllowsPassByReference as an
optimization that you can use on your service implementation at the class
level or at the individual method level.

In placing the @AllowsPassByReference annotation on the service implementation
class or methods, the implementor agrees not to modify the data in a way that
would violate the pass-by-value semantics. This allows both client and service to
assume they are working with their own copy of the data even though the runtime
environment has optimized to not perform the actual data serialization and
deserialization, to save this expense.

Parameters, return types, and business exceptions are passed by reference if the
service implementation class has the @AllowsPassByReference annotation defined
at the class level or individual method level.

More specifically, the PassByReference optimization is performed when all of the
following are true:
v Client and service have been targeted to the same JVM.
v The invocation is over the default binding.
v Both client and service are part of the same business-level application
v @AllowsPassByReference is present. Either the service implementation is a Java

implementation with an appropriate @AllowsPassByReference annotation, or a
composite implementation, ultimately recursively implemented in terms of such
an @AllowsPassByReference-annotated Java implementation.

v All input, output, and exception types have the same package-qualified class
names and can be loaded by a classloader common to or shared by both client
and service.

1. To enable PassByReference optimization for SCA applications, ensure all classes
that you want to optimize are loaded by the same classloader. This is enabled
in the Feature Pack for SCA by using the SCA contribution import and export
support.

2. Create a Java archive (JAR) file that contains all classes that are loaded by the
same classloader during both client and service execution.

3. Add an sca-contribution.xml file to the META-INF directory in the JAR.

© Copyright IBM Corp. 2009 185

See the OSOA Assembly specification for information on sca-contribution.xml.
The contribution definition must contain an export.java statement that exports
all packages contained in the JAR that are accessed by either the client or
service JAR file. For example:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared/java">
<export.java package="com.ibm.sample.interface"/>
<export.java package="com.ibm.sample.types"/>

</contribution>

If the client and service JAR files are not already using an sca-contribution.xml
file, update these files to use a contribution definition that imports the packages
that are exported by the shared library. For example, the contribution files for
the client and service that access the previous shared contribution might look
like this:
Client:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared"
xmlns:pbr="http://test.sca.scafp/pbr/shared">
<deployable composite="pbr:PassByRef.SharedClient"/>
<import.java package="com.ibm.sample.interface"/>
<import.java package="com.ibm.sample.types"/>

</contribution>

Service:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared"
xmlns:pbrsh="http://test.sca.scafp/pbr/shared">
<deployable composite="pbrsh:PassByRef.SharedService"/>
<import.java package="com.ibm.sample.interface"/>
<import.java package="com.ibm.sample.types"/>

</contribution>

4. Deploy the SCA application
Add the client, service, and shared contributions as an asset into the WebSphere
repository. This can occur in any order, however you must add the shared
contribution as an asset before you can add either the client or service asset as
a composition unit to a business-level application. Only the client and service
assets need to be added as composition units to your business-level
applications. During the add composition unit operation for both the client and
the service, the shared asset is automatically added to the business-level
application as a shared library.
Clients that are deployed outside of a business-level application cannot use the
PassByReference optimization to invoke SCA services deployed inside a
business-level application. For example, a user-created Web archive (WAR) file
using the default binding cannot be installed into a business-level application,
and therefore a WAR-hosted client might not participate in the PassByReference
optimization. The PassByReference optimization is supported only between JAR
files. You must install both service JAR files on the same business-level
application.

Results

You have enabled PassByReference optimization for SCA applications.

186 Feature Pack for SCA Version 1.0.0 information center topics

Chapter 24. Directory conventions

References in product information to app_server_root, profile_root, and other
directories infer specific default directory locations. This topic describes the
conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or
unmanaged for example. Each node has its own app_server_root.
Corresponding product variables are was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are
configuration_root/AppServer and configuration_root/
DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the
configuration HFS) in WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and
certain symbolic links associated with them. Each different node type
under the configuration_root requires its own cataloged procedures under
z/OS.

The default is /wasv7config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere
Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On
z/OS, this will be always be app_server_root/profiles/default because
only the profile name ″default″ is used in WebSphere Application Server
for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V7R0.

Default product locations - IBM i

These file paths are default locations. You can install the product and other
components in any directory where you have write access. You can create profiles
in any valid directory where you have write access. Multiple installations of
WebSphere Application Server products or components require multiple locations.

© IBM Corporation 2005, 2009 187

app_client_root
The default installation root directory for the Java EE WebSphere
Application Client is the /QIBM/ProdData/WebSphere/AppClient/V7/client
directory.

app_client_user_data_root
The default Java EE WebSphere Application Client user data root is the
/QIBM/UserData/WebSphere/AppClient/V7/client directory.

app_client_profile_root
The default Java EE WebSphere Application Client profile root is the
/QIBM/UserData/WebSphere/AppClient/V7/client/profiles/profile_name
directory.

app_server_root
The default installation root directory for WebSphere Application Server
Network Deployment is the /QIBM/ProdData/WebSphere/AppServer/V7/ND/
QIBM/ProdData/WebSphere/AppServer/V7/product directory.

cip_app_server_root
The default installation root directory is the /QIBM/ProdData/WebSphere/
AppServer/V7/ND/QIBM/ProdData/WebSphere/AppServer/V7/product
directory for a customized installation package (CIP) produced by the
Installation Factory.

A CIP is a WebSphere Application Server Network Deployment product
bundled with optional maintenance packages, an optional configuration
archive, one or more optional enterprise archive files, and other optional
files and scripts.

cip_profile_root
The default profile root directory is the /QIBM/UserData/WebSphere/
AppServer/V7/ND/cip/cip_uid/profiles/profile_name/QIBM/UserData/
WebSphere/AppServer/V7/product/cip/cip_uid/profiles/profile_name
directory for a customized installation package (CIP) produced by the
Installation Factory.

cip_user_data_root
The default user data root directory is the /QIBM/UserData/WebSphere/
AppServer/V7/ND/cip/cip_uid/QIBM/UserData/WebSphere/AppServer/V7/
product/cip/cip_uid directory for a customized installation package (CIP)
produced by the Installation Factory.

if_root This directory represents the root directory of the IBM WebSphere
Installation Factory. Because you can download and unpack the Installation
Factory to any directory on the file system to which you have write access,
this directory’s location varies by user. The Installation Factory is an
Eclipse-based tool which creates installation packages for installing
WebSphere Application Server in a reliable and repeatable way, tailored to
your specific needs.

iip_root
This directory represents the root directory of an integrated installation
package (IIP) produced by the IBM WebSphere Installation Factory. Because
you can create and save an IIP to any directory on the file system to which
you have write access, this directory’s location varies by user. An IIP is an
aggregated installation package created with the Installation Factory that
can include one or more generally available installation packages, one or
more customized installation packages (CIPs), and other user-specified files
and directories.

188 Feature Pack for SCA Version 1.0.0 information center topics

java_home

Table 42. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

Classic JVM /QIBM/ProdData/Java400/jdk6

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web server plug-ins profile root is the /QIBM/UserData/
WebSphere/Plugins/V7/webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web server plug-ins is the
/QIBM/ProdData/WebSphere/Plugins/V7/webserver directory.

plugins_user_data_root
The default Web server plug-ins user data root is the /QIBM/UserData/
WebSphere/Plugins/V7/webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for
each Version 7.0 installation on the system contains the program and
service program objects (similar to .exe, .dll, .so objects) for the installed
product. The product library name is QWAS7x (where x is A, B, C, and so
on). The product library for the first WebSphere Application Server Version
7.0 product installed on the system is QWAS7A. The app_server_root/
properties/product.properties file contains the value for the product
library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere
Application Server Network Deployment is the /QIBM/UserData/WebSphere/
AppServer/V7/ND/profiles/profile_name/QIBM/UserData/WebSphere/
AppServer/V7/product/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all
installations on the system, is QWAS7. This library contains objects such as
the product definition, the subsystem description, the job description, and
the job queue.

updi_root
The default installation root directory for the Update Installer for
WebSphere Software is the /QIBM/ProdData/WebSphere/UpdateInstaller/
V7/updi directory.

user_data_root
The default user data directory for WebSphere Application Server Network
Deployment is the /QIBM/UserData/WebSphere/AppServer/V7/ND/QIBM/
UserData/WebSphere/AppServer/V7/product directory.

The profiles and profileRegistry subdirectories are created under this
directory when you install the product.

web_server_root
The default web server path is /www/web_server_name.

Chapter 24. WebSphere Application Server default directories 189

Default product locations (distributed)

The following file paths are default locations. You can install the product and other
components or create profiles in any directory where you have write access.
Multiple installations of WebSphere Application Server Network Deployment
products or components require multiple locations. Default values for installation
actions by root and non-root users are given. If no non-root values are specified,
then the default directory values are applicable to both root and non-root users.

app_client_root

Table 43. Default installation root directories for the WebSphere Application Client.

This table shows the default installation root directories for the WebSphere Application
Client.
User Directory

Root /usr/IBM/WebSphere/AppClient (Java EE Application client only)

/opt/IBM/WebSphere/AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Non-root user_home/IBM/WebSphere/AppClient (Java EE Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

Table 44. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server
Network Deployment.
User Directory

Root /usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Non-root user_home/IBM/WebSphere/AppServer

C:\IBM\WebSphere\AppServer

cip_app_server_root
A customized installation package (CIP) is an installation package created
with IBM WebSphere Installation Factory that contains a WebSphere
Application Server or feature pack product bundled with one or more
maintenance packages, an optional configuration archive, one or more
optional enterprise archive files, and other optional files and scripts.

Table 45. Default installation root directories for a CIP.

This table shows the default installation root directories for a CIP.
User Directory

Root /usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

C:\Program Files\IBM\WebSphere\AppServer

Non-root user_home/IBM/WebSphere/AppServer

C:\IBM\WebSphere\AppServer

190 Feature Pack for SCA Version 1.0.0 information center topics

component_root
The component installation root directory is any installation root directory
described in this topic. Some programs are for use across multiple
components. In particular, the Update Installer for WebSphere Software is
for use with WebSphere Application Server Network Deployment, Web
server plug-ins, the Application Client, and the IBM HTTP Server. All of
these components are part of the product package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is
installed locally inside the installing product’s directory structure and is no
longer installed in a global location on the target system. The following list
shows the default installation root directory for Version 7 of the GSKit,
where product_root is the root directory of the product that is installing
GSKit, for example IBM HTTP Server or the Web server plug-in.

product_root/gsk7

product_root\gsk7

if_root This directory represents the root directory of the IBM WebSphere
Installation Factory. Because you can download and unpack the Installation
Factory to any directory on the file system to which you have write access,
this directory’s location varies by user. IBM WebSphere Installation Factory
is an Eclipse-based tool which creates installation packages for installing
WebSphere Application Server in a reliable and repeatable way, tailored to
your specific needs.

iip_root
This directory represents the root directory of an integrated installation
package (IIP) produced by the IBM WebSphere Installation Factory. Because
you can create and save an IIP to any directory on the file system to which
you have write access, this directory’s location varies by user. An IIP is an
aggregated installation package that can include one or more generally
available installation packages, one or more customized installation
packages (CIPs), and other user-specified files and directories.

profile_root

Table 46. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed
operating system.
User Directory

Root /usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

Non-root user_home/IBM/WebSphere/AppServer/profiles/

C:\IBM\WebSphere\AppServer\profiles\

Chapter 24. WebSphere Application Server default directories 191

plugins_root

Table 47. Default installation root directories for the Web server plug-ins.

This table shows the default installation root directories for the Web server plug-ins for
WebSphere Application Server.
User Directory

Root /usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/Plugins

C:\Program Files\IBM\WebSphere\Plugins

Non-root user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

Note: If the Web server plug-ins are installed as part of the IBM HTTP
Server installation, the installation location is inside the IBM HTTP
Server installation location. For example:
/opt/IBM/HTTPServer/Plugins

updi_root

Table 48. Default installation root directories for the Update Installer for WebSphere
Software.

This table shows the default installation root directories for the Update Installer for
WebSphere Software.
User Directory

Root /usr/IBM/WebSphere/UpdateInstaller

/opt/IBM/WebSphere/UpdateInstaller

C:\Program Files\IBM\WebSphere\UpdateInstaller

Non-root user_home/IBM/WebSphere/UpdateInstaller

C:\IBM\WebSphere\UpdateInstaller

web_server_root

Table 49. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root /usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Non-root user_home/IBM/HTTPServer

C:\IBM\HTTPServer

192 Feature Pack for SCA Version 1.0.0 information center topics

Appendix A. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the following address:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594
USA

© Copyright IBM Corp. 2009 193

194 Feature Pack for SCA Version 1.0.0 information center topics

Appendix B. Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. For a current list of IBM trademarks, visit the
IBM Copyright and trademark information Web site (www.ibm.com/legal/
copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Other company, product, or service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2009 195

	Contents
	Chapter 1. Version 1.0.0 topics
	Chapter 2. SCA in WebSphere Application Server: Overview
	What is new in the Feature Pack for SCA
	Learn about SCA composites
	SCA components
	SCA composites
	SCA domain
	SCA contributions
	SCA Samples
	Feature packs

	Chapter 3. Specifications and API documentation
	Chapter 4. Unsupported SCA specification sections
	Chapter 5. Developing Service Component Architecture (SCA) services and applications
	Developing SCA services from existing WSDL files
	Developing SCA services with existing Java code
	Developing SCA service clients
	Using business exceptions with SCA interfaces
	Considerations for developing SCA applications using EJB bindings

	Chapter 6. Specifying bindings in an SCA environment
	Configuring the SCA default binding
	Using the SCA default binding to find and locate SCA services
	Configuring the SCA Web service binding
	Configuring Web service binding custom endpoints to support a proxy server
	Routing requests to an SCA service exposed over the SCA Web service binding when using external Web servers

	Using EJB bindings in SCA applications
	Using EJB bindings in SCA applications in a cluster environment

	Resolving SCA references

	Chapter 7. Using JAXB for XML data binding
	Using JAXB schemagen tooling to generate an XML schema file from a Java class
	Using JAXB xjc tooling to generate JAXB classes from an XML schema file

	Chapter 8. SCA application package deployment
	Chapter 9. Creating SCA business-level applications
	Creating SCA business-level applications with the console
	Map virtual host settings for SCA composites
	Composite Name
	Virtual Host

	Attach policy set settings
	Include default policy sets
	Name
	Intents
	Matched Policy Sets
	Attached Policy Set
	Policy Set Binding

	Map security roles to users or groups collection for SCA composites
	Role
	Special Subjects
	Users
	Groups

	Map RunAs roles to users collection for SCA composites
	Username
	Password
	Role
	User

	Composition unit settings for SCA composites
	Name
	Description
	Backing identifier
	Starting weight
	Start on distribution
	Recycle behavior on update
	Target mapping
	SCA composite components
	SCA composite properties
	SCA composite wires

	Provide HTTP endpoint URL information settings for SCA composites
	SCA HTTP URL Prefixes

	SCA composite component settings
	Component name
	Implementation
	Type
	SCA component services
	SCA component references
	SCA component properties

	SCA component reference settings
	Reference name
	Type
	Target
	Binding

	SCA component service settings
	Service name
	Type
	Binding
	Work manager JNDI name

	Service provider policy sets and bindings collection for SCA composites
	Composition unit/Service/Endpoint/Operation
	Attached Policy Set
	Binding

	References policy sets and bindings collection for SCA composites
	Composition unit/Service/Endpoint/Operation
	Attached Client Policy Set
	Binding

	SCA service provider settings
	Service provider
	Policy Set Attachments

	SCA service client settings
	Service client
	Policy Set Attachments

	Example: Creating an SCA business-level application with the console

	Chapter 10. Updating SCA composite artifacts
	Chapter 11. Viewing SCA composite definitions
	Chapter 12. Viewing SCA domain information
	Chapter 13. Deleting business-level applications
	Chapter 14. Administering applications using wsadmin scripting
	Setting up business-level applications using wsadmin scripting
	Example: Creating an SCA business-level application with scripting

	Deleting business-level applications using wsadmin scripting

	Chapter 15. Managing deployed applications using wsadmin scripting
	Exporting SCA domain information using scripting
	Exporting WSDL and XSD documents using scripting

	Chapter 16. Authorizing access to resources
	Using SCA authorization and security identity policies
	Using the SCA RequestContext.getSecuritySubject() API

	Chapter 17. Using JAXB for XML data binding
	Using JAXB schemagen tooling to generate an XML schema file from a Java class
	Using JAXB xjc tooling to generate JAXB classes from an XML schema file

	Chapter 18. Defining and managing secure policy set bindings
	Configuring Web service binding for SCA transport layer authentication
	Configuring Web service binding to use SSL
	Configuring Web service binding for LTPA authentication

	Chapter 19. Mapping abstract intents and managing policy sets
	Attached deployed assets collection
	Name
	Type

	Chapter 20. Administering asynchronous beans
	Configuring work managers
	Configuring Work managers for one-way operations
	Configuring the default SCA Work manager for the SCA layer

	Chapter 21. Transaction support in WebSphere Application Server
	SCA transaction intents

	Chapter 22. Dynamic cache service eviction policies
	Eviction policies using the disk cache garbage collector
	Example: Caching Web services

	Chapter 23. Using PassByReference optimization in SCA applications
	Chapter 24. Directory conventions
	Appendix A. Notices
	Appendix B. Trademarks and service marks

