
Load Balancer Administration Guide

���

ii Load Balancer Administration Guide

Contents

Chapter 1. Product overview 1
New in this release 2
Functions that provide load balancing 3
High availability with Load Balancer 5
Managing servers. 7

Types of cluster, port, and server configurations . 8

Chapter 2. Installing Load Balancer . . 11
Installing Load Balancer 11

Installing Load Balancer on AIX systems. . . . 11
Installing Load Balancer on HP-UX systems . . 14
Installing Load Balancer on Linux operating
systems. 16
Installing Load Balancer on Solaris operating
systems. 19
Installing Load Balancer on Windows operating
systems. 21

Uninstalling Load Balancer 22
Updating Load Balancer 26

Updating Load Balancer for AIX, HP-UX, Linux,
or Solaris operating systems 27
Updating Load Balancer for Windows operating
systems. 29

Directory conventions 30

Chapter 3. Configuring Load Balancer 31
Methods of configuration 31
Configuring the Load Balancer machine 34
Configuring the server machines 38

Aliasing the network interface card or loopback
device 40
Configuring loopbacks with alternative methods 43

Quick start configuration 45
Load balancing a private network 48

Chapter 4. Administering Load
Balancer 49
Enabling advisors to manage load balancing . . . 50

Advisors 53
List of advisors 53
Getting service-specific advice with the advisor
request or response option 57
Configuring the LDAP URI advisor 58
Getting advice with Metric Server 59
The Workload Management Advisor 62
Creating a custom advisor 63

Configuring high availability 84
How high availability works 86
Detecting server failures with heartbeats and
reach targets 87
High Availability recovery strategy for failed
servers 88
Scripts to run with high availability 88

Use encapsulation forwarding to forward traffic
across network segments 89

Quiesce servers for server maintenance windows . . 90
Optimize connections with client-to-server affinity 91
Restricting incoming traffic with ipchains and
iptables 93
Logging with Load Balancer 94

Logging server statistics with binary logging . . 95
Support for ICMP forwarding and messaging . . . 97
Configure rules to manage traffic to busy or
unavailable servers 97
Sample scripts to generate alerts and record server
failure 99

Chapter 5. Tuning Load Balancer . . . 101
The manager report 102
Optimizing the manager interval 104
Tuning the proportion of importance given to
status information 104
Managing traffic with server weights 105
Optimizing the sensitivity threshold 106
Optimizing the smoothing index 107
Controlling connection records with the
staletimeout value 107

Chapter 6. Troubleshooting Load
Balancer 109
Problem: Load Balancer will not run. 113
Problem: Load Balancer requests are not being
balanced 113
Problem: Extra routes (Windows 2000) 113
Problem: Dispatcher, Microsoft IIS, and SSL do not
work (Windows platform) 114
Problem: dscontrol or lbadmin command fails . . 114
Problem: Advisors not working correctly 114
Problem: “Cannot find the file...″ error message
when trying to view online Help (Windows
platform) 115
Problem: Graphical user interface (GUI) does not
start correctly 115
Problem: Graphical user interface (GUI) does not
display correctly 115
Problem: On Windows platform, help windows
sometimes disappear behind other open windows . 115
Problem: GUI hangs (or unexpected behavior)
when trying to load a large configuration file. . . 115
Problem: Korean Load Balancer interface displays
overlapping or undesirable fonts on AIX and Linux
systems 116
Problem: On Windows platform, unexpected GUI
behavior when using Matrox AGP video cards . . 117
Problem: Slow response time running commands
on Dispatcher machine 117
Problem: SSL or HTTPS advisor not registering
server loads 117
Problem: Socket pooling is enabled and the Web
server is binding to 0.0.0.0 117

iii

Problem: On Windows systems, corrupted Latin-1
national characters appear in command prompt
window 118
Problem: On Windows systems, advisors and reach
targets mark all servers down 118
Problem: On Windows systems, after network
outage, advisors not working in a high availability
setup 119
Problem: On Linux systems, do not use ″IP address
add″ command when aliasing multiple clusters on
the loopback device 119
Problem: On Solaris systems, Load Balancer
processes end when you exit the terminal window
from which they started 119
Problem: Delay occurs while loading a Load
Balancer configuration 120
Problem: On Windows systems, an IP address
conflict error message appears. 120
Problem: On Windows systems, ″Server not
responding″ error occurs when issuing dscontrol or
lbadmin 120
Problem: On Linux, Dispatcher configuration
limitations when using zSeries or S/390 servers
that have Open System Adapter (OSA) cards . . . 121
Problem: Linux iptables can interfere with the
routing of packets 122
Problem: Unable to add an IPv6 server to the Load
Balancer configuration on Solaris systems 123
Problem: Java warning message appears when
installing service fixes 123
Upgrading the Java file set provided with the Load
Balancer installation 123
Problem: Client requests fail when using IPv6
MAC forwarding with HP-UX back-end servers . . 123
Problem: On AIX systems, Load Balancer conflicts
with IP security (IPsec) 124
Problem: Installing WebSphere Edge Server using
./install on the 32-bit Linux operating system for
zSeries produces a ″JVM Not Found″ message . . 124

Problem: The uninstall process for WebSphere
Edge Server hangs on Linux operating systems . . 124
Problem: The serverUp script might run when you
issue commands for Load Balancer that affect the
status of servers 125

Chapter 7. Reference 127
Advanced configuration 127

Directory conventions 127
Types of cluster, port, and server configurations 128
Custom advisor methods and function calls . . 128
List of advisors 133
Sample scripts to generate alerts and record
server failure 136
High Availability recovery strategy for failed
servers 137
Scripts to run with high availability 138

Commands 138
dscontrol advisor 139
dscontrol binlog 143
dscontrol cluster 144
dscontrol executor 145
dscontrol file 146
dscontrol help 147
dscontrol highavailability 148
dscontrol logstatus 150
dscontrol manager. 151
dscontrol metric 154
dscontrol port 155
dscontrol rule 158
dscontrol server 160
dscontrol set. 163
dscontrol status. 163

Examples 164
Example: Sample advisor 164
Example: Implementing custom advisors . . . 167

iv Load Balancer Administration Guide

Chapter 1. Product overview

Load Balancer is a software solution for distributing incoming client requests
across servers. It boosts the performance of servers by directing TCP/IP session
requests to different servers within a group of servers; in this way, it balances the
requests among all the servers. This load balancing is transparent to users and
other applications. Load Balancer is useful for applications such as e-mail servers,
World Wide Web servers, distributed parallel database queries, and other TCP/IP
applications.

When used with Web servers, Load Balancer can help maximize the potential of
your site by providing a powerful, flexible, and scalable solution to peak-demand
problems. If visitors to your site can not get through at times of greatest demand,
use Load Balancer to automatically find the optimal server to handle incoming
requests, thus enhancing your customers’ satisfaction and your profitability.

What are the advantages to using Load Balancer?

The number of users and networks connected to the global Internet is growing
exponentially. This growth is causing scalability problems that can limit users’
access to popular sites. Currently, network administrators are using numerous
methods to try to maximize access. With some of these methods, you can choose a
different server at random if an earlier choice is slow or not responding. This
approach is cumbersome, annoying, and inefficient. Another method is standard
round-robin, in which the domain name server selects servers in turn to handle
requests. This approach is better, but still inefficient because it forwards traffic
without any consideration of the server workload. In addition, even if a server
fails, requests continue to be sent to it. The need for a more powerful solution has
resulted in Load Balancer. It offers numerous benefits over earlier and competing
solutions:
v Scalability: As the number of client requests increases, you can add servers

dynamically, providing support for tens of millions of requests per day, on tens
or even hundreds of servers.

v Efficient use of equipment: Load balancing ensures that each group of servers
makes optimum use of its hardware by minimizing the hot-spots that frequently
occur with a standard round-robin method.

v Easy integration: Load Balancer uses standard TCP/IP protocols. You can add it
to your existing network without making any physical changes to the network.
It is simple to install and configure.

v Low overhead Using a simple MAC level forwarding method, the Dispatcher
component looks at the inbound client-to-server flows only. It does not need to
see the outbound server-to-client flows. This significantly reduces its impact on
the application compared with other approaches and can result in improved
network performance.

v High availability: The Dispatcher component offers built-in high availability,
utilizing a backup machine that remains ready at all times to take over load
balancing if the primary server machine fails. When one of the servers fails,
requests continue to be serviced by the other server. This process eliminates any
server as a single point of failure and makes the site highly available.

© IBM Corporation 2003, 2005 1

v Client to server affinity: The affinity feature maps a client IP address to a
back-end server, providing a higher level of efficiency by decreasing the memory
and CPU utilization when compared to traditional connection forwarding.

v Load balancing a private network: You can set up Dispatcher and the TCP
server machines using a private network. This configuration can reduce the
contention on the public or external network that can affect performance.

v Learn how you can manage servers using Load Balancer.
Load Balancer balances traffic among your servers through a unique
combination of load balancing and management software. All client requests
sent to the Dispatcher machine are directed to the �best� server according to
weights that are set dynamically. You can use the default values for those
weights or change the values during the configuration process.
Dispatcher can also detect a failed server and forward traffic around it.
Dispatcher supports HTTP, FTP, SSL, SMTP, NNTP, IMAP, POP3, Telnet, SIP, and
any other TCP based application.

Load Balancer is the key to stable, efficient management of a large, scalable
network of servers. You can link many individual servers into what seems to be a
single, virtual server. Your site is presented as a single IP address to the world.
Dispatcher functions independently of a domain name server; all requests are sent
to the IP address of the Dispatcher machine.

Dispatcher brings distinct advantages in balancing traffic load to clustered servers,
resulting in stable and efficient management of your site.
Related tasks

“Managing servers” on page 7
You can load balance traffic to existing server topologies without changing the
physical configuration of the machines or how clients will connect to your site.
Related reference

“Types of cluster, port, and server configurations” on page 8
There are many ways that you can configure Load Balancer to support your site.

New in this release
Load Balancer for IBM WebSphere Application Server Version 7.0 contains a
number of new features.

The most significant new features are:
v Load Balancer can detect changes in your network configuration without

requiring you to restart the system.
v “Configuring the LDAP URI advisor” on page 58. The LDAP URI advisor allows

you better gauge Lightweight Directory Access Protocol (LDAP) availability by
processing a complete request to the LDAP server. The LDAP URI advisor opens
a connection to the LDAP serve and sends a BIND request that is based on the
advisorrequest field that you define on the server object. The advisor then waits
for a response from the LDAP server and returns the elapsed time as a load.

v “Use encapsulation forwarding to forward traffic across network segments” on
page 89. Use encapsulation forwarding when the back-end server is not located
on the same network segment or if you are using virtualization technology and
need to forward packets that are otherwise unable to be forwarded.

v There are now three options for the selection algorithm that Load Balancer uses
to route traffic:

2 Load Balancer Administration Guide

– connection (default): specifies that the server selection is based on simple
round-robin selection.

– affinity: specifies that the server selection is based on client affinity.
– conn+affin: specifies that server selection is based on an existing connection.

For new connections, the server selection is based on affinity.

Read dscontrol port for more information on this command and the available
options.

v Quiesce a server on a daily schedule. You can now quiesce servers on a
scheduled time to perform upgrades or general maintenance. Read more about
this feature in “Quiesce servers for server maintenance windows” on page 90.

v “Support for ICMP forwarding and messaging” on page 97. Load Balancer now
supports forwarding and processing ICMP messages to improve the robustness
of connection protocols and permit Load Balancer to receive ICMP
fragmentation messages.

v Crossport affinity allows you to expand the affinity feature across multiple ports
so that client requests received on different ports can still be sent to the same
server for subsequent requests. In order to use this feature, the ports must:
– Share the same cluster address.
– Share the same servers.
– Use the affinity or conn+aff selection algorithm.

Refer to the “dscontrol port” on page 155 command for more information.
v Forward UDP packets. Load Balancer includes an improved algorithm for

handling connectionless UDP packets.
v Configure rules for servers or ports. You can configure rules to route connections

for the following scenarios:
– active: based on the number of active connections total for the port. This rule

will work only if the manager is running.
– true: specifies that this rule will always evaluate as true.

Related concepts

Product overview

Functions that provide load balancing
The primary functions of Load Balancer interact with each other and your server
configuration to balance network traffic in your environment.

Dispatcher consists of the following functions:
v dsserver handles requests from the command line to the executor, manager, and

advisors.
v The executor supports port-based load balancing of TCP connections. It is able

to forward connections to servers based on the type of request received (for
example, HTTP, FTP, SSL, and so forth). The executor always runs when the
Dispatcher component is being used for load balancing.

v The manager sets weights used by the executor based on:
– Internal counters in the executor
– Feedback from the servers provided by the advisors
– Feedback from a system-monitoring program, such as Metric Server or WLM.

Using the manager is optional. However, if the manager is not used, load
balancing is performed using weighted round-robin scheduling based on the
current server weights, and advisors are not available.

Chapter 1. Product overview 3

welcome_overview.html

v The advisors query the servers and analyze results by protocol before calling the
manager to set weights as appropriate. Currently there are advisors available for
the following protocols: HTTP, FTP, SSL, SMTP, NNTP, IMAP, POP3, SIP, and
Telnet. Dispatcher also offers advisors that do not exchange protocol-specific
information, such as the DB2 advisor that reports on the health of DB2 servers
and the ping advisor that reports whether the server responds to a ping. For a
complete list of advisors, see “List of advisors” on page 53. You also have the
option of writing your own advisors (see “Creating a custom advisor” on page
63). Using the advisors is optional but recommended.

v To configure and manage the executor, advisors, and manager, use the command
line (dscontrol) or the graphical user interface (lbadmin).

The three key functions of Dispatcher (executor, manager, and advisors) interact to
balance and dispatch the incoming requests between servers. Along with load
balancing requests, the executor monitors the number of new connections, active
connections, and connections in a finished state. The executor also does garbage
collection of completed or reset connections and supplies this information to the
manager.

The manager collects information from the executor, the advisors, and a
system-monitoring program, such as Metric Server. Based on the information the
manager receives, it adjusts how the server machines are weighted on each port
and gives the executor the new weighting for use in its balancing of new
connections.

The advisors monitor each server on the assigned port to determine the server’s
response time and availability and then give this information to the manager. The
advisors also monitor whether a server is up or down. Without the manager and
the advisors, the executor does round-robin scheduling based on the current server
weights.

4 Load Balancer Administration Guide

Related concepts

“High availability with Load Balancer”
The Dispatcher component offers a built-in high availability feature, eliminating
Dispatcher as a single point of failure from your network. This feature involves the
use of a second Dispatcher machine that monitors the main, or primary, machine
and stands by to take over the task of load balancing should the primary machine
fail at any time.
Chapter 1, “Product overview,” on page 1
Load Balancer is a software solution for distributing incoming client requests
across servers. It boosts the performance of servers by directing TCP/IP session
requests to different servers within a group of servers; in this way, it balances the
requests among all the servers. This load balancing is transparent to users and
other applications. Load Balancer is useful for applications such as e-mail servers,
World Wide Web servers, distributed parallel database queries, and other TCP/IP
applications.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.

High availability with Load Balancer
The Dispatcher component offers a built-in high availability feature, eliminating
Dispatcher as a single point of failure from your network. This feature involves the
use of a second Dispatcher machine that monitors the main, or primary, machine
and stands by to take over the task of load balancing should the primary machine
fail at any time.

Functioning in conjunction with content hosts, such as WebSphere Application
Server, the Load Balancer Dispatcher component enables you to enhance your
network’s availability and scalability. Load Balancer is used by enterprise networks
and is installed between the Internet and the enterprise’s back-end servers.

Load Balancer acts as the enterprise’s single point-of-presence on the Internet, even
if the enterprise uses multiple back-end servers because of high demand or a large
amount of content. Availability is achieved through load balancing multiple
content hosts and failover support..

Load balancing multiple content hosts

You can satisfy high demand by duplicating content on multiple hosts, but then
you need a way to balance the load among them. Domain Name Service (DNS)
can provide basic round-robin load balancing, but there are several situations in
which it does not perform well.

A more sophisticated solution for load balancing multiple content hosts is to use
the Dispatcher component as depicted below.

Legend: 1--Client 2--Internet 3--Router/Gateway 4--Dispatcher 5--Content host

In this configuration, all of the content hosts (the machines marked 5) store the
same content. They are defined to form a load-balanced cluster, and one of the

Chapter 1. Product overview 5

network interfaces of the Load Balancer machine (4) is assigned a host name and
IP address dedicated to the cluster. When an end user working on one of the
machines marked 1 requests file X, the request crosses the Internet (2) and enters
the enterprise’s internal network through its Internet gateway (3). The Dispatcher
intercepts the request because its URL is mapped to the Dispatcher’s host name
and IP address. The Dispatcher determines which of the content hosts in the
cluster is currently best able to service the request, and forwards the request to that
host, which returns file X directly to the client (that is, file X does not pass through
Load Balancer).

By default, the Dispatcher uses weighted round-robin load balancing, and it
addresses many of DNS’s inadequacies. Unlike DNS, it tracks whether a content
host is unavailable or inaccessible and does not continue to direct clients to an
unavailable content host. Further, it considers the current load on the content hosts
by tracking new, active, and finished connections. You can further optimize load
balancing by activating Load Balancer’s optional advisor and manager
components, which track a content host’s status even more accurately and
incorporate the additional information into the load-balancing decision process.
The manager enables you to assign different weights to the different factors used
in the decision process, further customizing load balancing for your site.

Failover support

Load Balancer acts as a single point-of-presence for your enterprise’s content hosts.
This is beneficial because you advertise the cluster host name and address in DNS,
rather than the host name and address of each content host, which provides a level
of protection against casual attacks and provides a unified feel for your enterprise’s
Web site. To further enhance Web site availability, configure another Load Balancer
to act as a backup for the primary Load Balancer, as depicted in below. If one Load
Balancer fails or becomes inaccessible due to a network failure, end users can still
reach the content hosts.

Legend: 1--Client 2--Internet 3--Router/Gateway 4--Primary Dispatcher 5--Backup
Dispatcher 6--Content host

In the normal case, a browser running on one of the machines marked 1 directs its
request for a file X to the cluster host name that is mapped to the primary Load
Balancer (4). The Dispatcher routes the request to the content host (6) selected on
the basis of the Dispatcher’s load-balancing criteria. The content host sends file X
directly to the browser, routing it through the enterprise’s gateway (3) across the
Internet (2) but bypassing Load Balancer. The backup Dispatcher (5) does not
perform load balancing as long as the primary one is operational. The primary and
backup Dispatchers track each other’s status by periodically exchanging messages
called heartbeats. If the backup Dispatcher detects that the primary has failed, it
automatically takes over the responsibility for load balancing by intercepting
requests directed to the primary’s cluster host name and IP address.

6 Load Balancer Administration Guide

Related concepts

“Managing servers”
You can load balance traffic to existing server topologies without changing the
physical configuration of the machines or how clients will connect to your site.

Managing servers
You can load balance traffic to existing server topologies without changing the
physical configuration of the machines or how clients will connect to your site.

The figure below shows a physical representation of the site using an Ethernet
network configuration.

The Dispatcher machine can be installed without making any physical changes to
the network. After a client request is directed to the optimal server by the
Dispatcher, the response is then sent directly from server to client with no
involvement by the Dispatcher.

Read “Types of cluster, port, and server configurations” on page 8 for examples of
the different types of configurations you can use with Load Balancer.

Managing servers with Load Balancer and Metric Server

The figure below illustrates a site in which all servers are on a local network. The
Dispatcher component is used to forward requests, and the Metric Server is used
to provide system load information to the Dispatcher machine.

In this example, the Metric Server daemon is installed on each back-end server.
You can use Metric Server with the Dispatcher component.

For more information on Metric Server refer to “Getting advice with Metric Server”
on page 59

Chapter 1. Product overview 7

Related concepts

Chapter 1, “Product overview,” on page 1
Load Balancer is a software solution for distributing incoming client requests
across servers. It boosts the performance of servers by directing TCP/IP session
requests to different servers within a group of servers; in this way, it balances the
requests among all the servers. This load balancing is transparent to users and
other applications. Load Balancer is useful for applications such as e-mail servers,
World Wide Web servers, distributed parallel database queries, and other TCP/IP
applications.
“High availability with Load Balancer” on page 5
The Dispatcher component offers a built-in high availability feature, eliminating
Dispatcher as a single point of failure from your network. This feature involves the
use of a second Dispatcher machine that monitors the main, or primary, machine
and stands by to take over the task of load balancing should the primary machine
fail at any time.
Related tasks

“Getting advice with Metric Server” on page 59
Metric Server provides server load information to the Load Balancer in the form of
system-specific metrics, reporting on the health of the servers.

Types of cluster, port, and server configurations
There are many ways that you can configure Load Balancer to support your site.

1 cluster with 2 ports

If you have only one host name for your site to which all of your customers will
connect, you can define a single cluster of servers. For each of these servers,
configure a port through which Load Balancer communicates.

In this example for the Dispatcher component, one cluster is defined at
www.productworks.com. This cluster has two ports: port 80 for HTTP and port 443
for SSL. A client making a request to http://www.productworks.com (port 80)
goes to a different server than a client requesting https://www.productworks.com
(port 443).

2 clusters, each with 1 port

Another way of configuring Load Balancer might be appropriate if you have a
very large site with many servers dedicated to each protocol supported. In this
case, you might want to define a cluster for each protocol with a single port but
with many servers.

In this example for the Dispatcher component, two clusters are defined:
www.productworks.com for port 80 (HTTP) and www.testworks.com for port 443
(SSL). A third way of configuring Load Balancer might be necessary if your site
does content hosting for several companies or departments, each one coming into
your site with a different URL. In this case, you might want to define a cluster for
each company or department and then define any ports to which you want to
receive connections at that URL, as shown in the configuration for 2 clusters, each
with two ports.

8 Load Balancer Administration Guide

2 clusters, each with 2 ports

In this example for the Dispatcher component, two clusters are defined with port
80 for HTTP and port 23 for Telnet for each of the sites at www.productworks.com
and www.testworks.com.
Related tasks

“Quick start configuration” on page 45
This quick start example shows how to configure three locally attached
workstations to load-balance Web traffic between two Web servers.

Chapter 1. Product overview 9

10 Load Balancer Administration Guide

Chapter 2. Installing Load Balancer

This section describes how to establish load balancing capability in new and
existing environments. The information includes planning, preparing for,
completing, and maintaining product installations.

“Installing Load Balancer”
This section provides an overview of how to install and customize the
product on a variety of distributed operating systems.

“Uninstalling Load Balancer” on page 22
This section provides an overview of how to uninstall the product.

Installing Load Balancer
Install Load Balancer using system packaging tools or the command line for all
operating systems.

Before you begin

For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

It is important to note that any previous Load Balancer must be uninstalled before
installing Load Balancer for IPv4 and IPv6. Two Load Balancers cannot be installed
on the same machine. If you have an earlier version installed, uninstall that copy
before installing the current version. Refer to “Uninstalling Load Balancer” on page
22 for more information.
v For AIX operating systems, read “Installing Load Balancer on AIX systems.”
v For HP-UX operating systems, read “Installing Load Balancer on HP-UX

systems” on page 14.
v For Linux operating systems, read “Installing Load Balancer on Linux operating

systems” on page 16.
v For Solaris operating systems, read “Installing Load Balancer on Solaris

operating systems” on page 19.
v For Windows operating systems, read “Installing Load Balancer on Windows

operating systems” on page 21.
Related tasks

“Uninstalling Load Balancer” on page 22

Installing Load Balancer on AIX systems
This topic instructs you on Load Balancer installation using system packaging tools
and requirements for AIX operating systems.

Before you begin

For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

11

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

You cannot have two installations of the Dispatcher component installed on the
same system. If you have a previous version of the Edge components installed,
uninstall the Dispatcher component before starting the installation process for Load
Balancer for IPv4 and IPv6. Refer to “Uninstalling Load Balancer” on page 22 for
more information.

About this task

The Java 2 SDK automatically installs with Load Balancer on all platforms. If you
are migrating from a previous version of Load Balancer, or reinstalling the
operating system, prior to installation you can save any of your previous
configuration files or script files for Load Balancer.
v After installation, place your configuration files in the install_root/

configurations/dispatcher directory.
v After installation, place your script files in the install_root/servers/bin directory

in order to run them.
1. Log in as root, or ensure that you have root authority to install the software.
2. Insert the product media, or if you are installing from the Web, copy the

installation images to a directory.
3. Install the installation image.

The following is the list of packages:

Table 1. AIX Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch-rte

Dispatcher ibmulb-disp-7.0.0-0.noarch.rte

License ibmulb-lic-7.0.0-0.noarch-rte

Metric Server ibmulb-ms-7.0.0-0.noarch.rte

Native ibmulb-7.0.0-0.ppc64.rte

Substitute ppc for ppc64 when it is
appropriate for your system.

Messages ibmulb-lang_language.7.0.0-0.noarch.rte

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

12 Load Balancer Administration Guide

You can choose to install some of the packages if you do not want the entire
product installated. If you want to install Dispatcher, install the following
packages:
v Base
v Dispatcher
v License
v Native

If you want to install Metric Server, install the following packages:
v Base
v Metric Server
v Native

Note: Use SMIT to install Load Balancer for AIX because SMIT will ensure that
all messages are installed automatically.
a. Using SMIT:

1) Select Install and Update Software
2) Select Install and update from latest Available Software
3) Enter the device or directory containing the install images
4) Select Software Installation and Maintenance
5) Enter on the *SOFTWARE to Install line, the appropriate information to

specify options (or select List)
6) Press OK.

When the command completes, press Done, and then select Exit Smit from
the Exit menu or press F12. If using SMITTY, press F10 to exit the program.

b. Using the Command Line:

1) If installing from a CD, you must enter the following commands to
mount the CD:
mkdir /cdrom
mount -v cdrfs -p -r /dev/cd0 /cdrom

2) Enter the following command to install the desired Load Balancer
packages for AIX systems:
installp -acXgd device install_image

where install_image corresponds to an install image name from the table
above, and device is:
v /cdrom if you are installing from a CD.
v /dir (the directory containing the install images) if you are installing

from a file system.
Ensure that the result column in the summary contains SUCCESS for
each part of Load Balancer that you are installing. Do not continue until
all of the parts you want to install are successfully applied.

Note: To generate a list of file sets in any install image, including all
available message catalogs, enter the following command:
installp -ld device

where device is:
v /cdrom if you are installing from a CD.

Chapter 2. Installing Load Balancer 13

v /dir (the directory containing the install images) if you are installing
from a file system.

c. Unmount the CD-ROM. Enter the following command:
unmount /cdrom

4. Verify that the product is installed. Enter the following command:
lslpp -h | grep ibmulb

If you successfully installed the full product, this command returns a list of all
the packages.

What to do next

The installation process does not add the command directories for Load Balancer
into the PATH environment variable. To run Load Balancer commands from the
system root, add the command directories to the PATH environment variable.

Note: If you had previous installation of the Dispatcher component installed, be
aware that Load Balancer for IPv4 versions of the Dispatcher component used
commands in the /usr/bin directory, which might be in the PATH variable. Load
Balancer for IPv4 and IPv6 has commands in the install_root/bin directory, so be
aware that the directory entries point to the appropriate directories for the dsserver
and dscontrol command.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Uninstalling Load Balancer” on page 22

Installing Load Balancer on HP-UX systems
This topic instructs you on Load Balancer installation using system packaging tools
and requirements for HP-UX operating systems.

Before you begin

For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

You cannot have two installations of the Dispatcher component installed on the
same system. If you have a previous version of the Edge components installed,
uninstall the Dispatcher component before starting the installation process for Load
Balancer for IPv4 and IPv6. Refer to “Uninstalling Load Balancer” on page 22 for
more information.

About this task

The Java 2 SDK automatically installs with Load Balancer on all platforms. If you
are migrating from a previous version of Load Balancer, or reinstalling the
operating system, prior to installation you can save any of your previous
configuration files or script files for Load Balancer.
v After installation, place your configuration files in the install_root/

configurations/dispatcher directory.

14 Load Balancer Administration Guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

v After installation, place your script files in the install_root/servers/bin directory
in order to run them.

1. Ensure that you have root level access, and login as the local superuser root.
Enter the following command:
su - root
Password: password

2. Issue the install command:
swinstall -s /source package_name

where source is the absolute directory path for the location of the package, and
package_name is the name of the package.
The following is the list of packages:

Table 2. HP-UX Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch.depot

Dispatcher ibmulb-disp-7.0.0-0.noarch.depot

License ibmulb-lic-7.0.0-0.noarch.depot

Metric Server ibmulb-ms-7.0.0-0.noarch.depot

Native ibmulb-native-7.0.0-0.parisc.depot

Substitute ia64 for parisc when it is
appropriate for your system.

Messages ibmulb-lang_language.7.0.0-0.noarch.depot

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

You can choose to install some of the packages if you do not want the entire
product installated. If you want to install Dispatcher, install the following
packages:
v Base
v Dispatcher
v License
v Native

If you want to install Metric Server, install the following packages:
v Base

Chapter 2. Installing Load Balancer 15

v Metric Server
v Native
The following command installs just the base package for Load Balance,
ibmulb.base, if you are installing the packages from the root of the CD:
swinstall -s /source ibmulb.base

To install all the packages for Load Balancer issue the following command, if
you are installing the packages from the root of the CD:
swinstall -s /source ibmulb

3. Verify the installation of the Load Balancer packages. Issue the swlist
command to list all the packages that you installed. For example:
swlist -l fileset ibmulb

What to do next

The installation process does not add the command directories for Load Balancer
into the PATH environment variable. To run Load Balancer commands from the
system root, add the command directories to the PATH environment variable.

Note: If you had previous installation of the Dispatcher component installed, be
aware that Load Balancer for IPv4 versions of the Dispatcher component used
commands in the /usr/bin directory, which might be in the PATH variable. Load
Balancer for IPv4 and IPv6 has commands in the install_root/bin directory, so be
aware that the directory entries point to the appropriate directories for the dsserver
and dscontrol command.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Uninstalling Load Balancer” on page 22

Installing Load Balancer on Linux operating systems
This topic instructs you on Load Balancer installation using system packaging tools
and requirements for Linux operating systems.

Before you begin

For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

You cannot have two installations of the Dispatcher component installed on the
same system. If you have a previous version of the Edge components installed,
uninstall the Dispatcher component before starting the installation process for Load
Balancer for IPv4 and IPv6. Refer to “Uninstalling Load Balancer” on page 22 for
more information.

About this task

The Java 2 SDK automatically installs with Load Balancer on all platforms. If you
are migrating from a previous version of Load Balancer, or reinstalling the
operating system, prior to installation you can save any of your previous
configuration files or script files for Load Balancer.

16 Load Balancer Administration Guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

v After installation, place your configuration files in the install_root/
configurations/dispatcher directory.

v After installation, place your script files in the install_root/servers/bin directory
in order to run them.

Special Considerations for Linux systems

v Linux on zSeries systems require libstdc++.so.5: There is a requirement that
Linux on zSeries systems must have rpm package libstdc++.so.5 in order to
install correctly, otherwise the install will fail.

v Restriction when using qeth/OSA interface: For Linux on zSeries systems, there
is a restrictions when using a qeth/OSA interface. Forwarding out of a
qeth/OSA interface natively is not supported. However, there is a workaround
because Linux systems run in user space and can support Linux tunneling.

v Use layer2 OSA with Load Balancer for IPv4 and IPv6 protocols, if available:
When you use Load Balancer for the IPv4 and IPv6 protocols on Linux for
zSeries (s390x) operating system, use an OSA/qeth device and layer2 to possibly
improve performance, reduce overhead, and simplify some configuration
settings.
Non-ethernet, non-Address Resolution Protocol (ARP) interface types present
specific challenges to Load Balancer because Load Balancer uses ARP and
ICMP6 (Internet Control Message Protocol for IPv6) to advertise and move
cluster addresses in high availability mode. The most effective way to deploy the
Load Balancer Dispatcher component on the Linux for zSeries operating system
is to deploy in an ethernet-like environment. Using OSA/qeth in layer2 mode
provides this capability.
Special configuration steps are not required when you use Load Balancer for
IPv4 and IPv6 with layer-2 OSA on the Linux for zSeries operating system.

v Linux tunneling support: Load Balancer for IPv4 and IPv6 installations can
forward across tunnels such as IPIP and IPGRE. When using Linux on zSeries
machines with a qeth/OSA interface, a Linux tunnel may be defined to traverse
the qeth/OSA interface. Linux systems can forward between machines located
on the same or other qeth/OSA devices, or anywhere else on the network.

1. Prepare to install. Log in as root.
2. Issue the install command from the same directory where the RPM files reside.

Issue the following command to install each package:
rpm -i package.rpm

The following is the list of packages:

Table 3. Linux Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch.rpm

Dispatcher ibmulb-disp-7.0.0-0.noarch.rpm

License ibmulb-lic-7.0.0-0.noarch.rpm

Metric Server ibmulb-ms-7.0.0-0.noarch.rpm

Chapter 2. Installing Load Balancer 17

Table 3. Linux Install Images (continued)

Package Name Install Image

Native ibmulb-native-7.0.0-0.i386.rpm

where i386 can be

v i386

v ppc

v ppc64

v s390

v s390x

v x86_64

Messages ibmulb-lang_language.7.0.0-0.noarch.rpm

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

You can choose to install some of the packages if you do not want the entire
product installated. If you want to install Dispatcher, install the following
packages:
v Base
v Dispatcher
v License
v Native

If you want to install Metric Server, install the following packages:
v Base
v Metric Server
v Native
Red Hat Linux systems: Due to a known Red Hat Linux problem, you will also
need to delete the _db* RPM files, or an error might occur.

3. Verify that the product is installed. Enter the following command:
rpm -qa | grep ibmulb

Installing the full product produces a listing like the following example:

18 Load Balancer Administration Guide

ibmulb-base-7.0.0-0.noarch.rpm
ibmulb-disp-7.0.0-0.noarch.rpm
ibmulb-lic-7.0.0-0.noarch.rpm
ibmulb-ms-7.0.0-0.noarch.rpm
ibmulb-native-7.0.0-0.i386.rpm
ibmulb-lang_language.7.0.0-0.noarch.rpm

What to do next

The installation process does not add the command directories for Load Balancer
into the PATH environment variable. To run Load Balancer commands from the
system root, add the command directories to the PATH environment variable.

Note: If you had previous installation of the Dispatcher component installed, be
aware that Load Balancer for IPv4 versions of the Dispatcher component used
commands in the /usr/bin directory, which might be in the PATH variable. Load
Balancer for IPv4 and IPv6 has commands in the install_root/bin directory, so be
aware that the directory entries point to the appropriate directories for the dsserver
and dscontrol command.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Uninstalling Load Balancer” on page 22

Installing Load Balancer on Solaris operating systems
This topic instructs you on Load Balancer installation using system packaging tools
and requirements for Solaris operating systems.

Before you begin

For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

You cannot have two installations of the Dispatcher component installed on the
same system. If you have a previous version of the Edge components installed,
uninstall the Dispatcher component before starting the installation process for Load
Balancer for IPv4 and IPv6. Refer to “Uninstalling Load Balancer” on page 22 for
more information.

About this task

The Java 2 SDK automatically installs with Load Balancer on all platforms. If you
are migrating from a previous version of Load Balancer, or reinstalling the
operating system, prior to installation you can save any of your previous
configuration files or script files for Load Balancer.
v After installation, place your configuration files in the install_root/

configurations/dispatcher directory.
v After installation, place your script files in the install_root/servers/bin directory

in order to run them.
1. Prepare to install.

a. Log in as root user.

Chapter 2. Installing Load Balancer 19

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

b. Insert the CD-ROM that contains the Load Balancer software into the
appropriate drive.

2. Display the list of packages to install and choose which ones you would like to
install.
a. At the command prompt, enter the command to display the list of

packages. Enter the following:
pkgadd -d /path_name/xxx.pkg

where path_name is the device name of the CD-ROM drive or the directory
on the hard drive where the package is located. To use the CD-ROM, for
example, enter the following: pkgadd -d /cdrom/cdrom0/xxx.pkg. The
following is a list of packages:

Table 4. Solaris Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch.pkg

Dispatcher ibmulb-disp-7.0.0-0.noarch.pkg

License ibmulb-lic-7.0.0-0.noarch.pkg

Metric Server ibmulb-ms-7.0.0-0.noarch.pkg

Native ibmulb-native-7.0.0-0.sparc.pkg

Substitute sparcv9 for sparc when it is
appropriate for your system.

Messages ibmulb-lang_language.7.0.0-0.noarch.pkg

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

b. Optional: If you want to install some of the components, enter the names
corresponding to the packages to be installed separated by a space or
comma and press return.
You can choose to install some of the packages if you do not want the entire
product installated. If you want to install Dispatcher, install the following
packages:
v Base
v Dispatcher
v License

20 Load Balancer Administration Guide

v Native

If you want to install Metric Server, install the following packages:
v Base
v Metric Server
v Native

3. Verify that the product is installed. Issue the following command:
pkginfo | grep ibm

What to do next

The installation process does not add the command directories for Load Balancer
into the PATH environment variable. To run Load Balancer commands from the
system root, add the command directories to the PATH environment variable.

Note: If you had previous installation of the Dispatcher component installed, be
aware that Load Balancer for IPv4 versions of the Dispatcher component used
commands in the /usr/bin directory, which might be in the PATH variable. Load
Balancer for IPv4 and IPv6 has commands in the install_root/bin directory, so be
aware that the directory entries point to the appropriate directories for the dsserver
and dscontrol command.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Uninstalling Load Balancer” on page 22

Installing Load Balancer on Windows operating systems
This topic instructs you on Load Balancer installation using system packaging tools
and requirements for Windows operating systems.

Before you begin

For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

It is important to note that any previous Load Balancer must be uninstalled before
installing Load Balancer. Two Load Balancers cannot be installed on the same
machine. If you have an earlier version installed, uninstall that copy before
installing the current version. Refer to “Uninstalling Load Balancer” on page 22 for
more information.

About this task

The Java 2 SDK automatically installs with Load Balancer on all platforms. If you
are migrating from a previous version of Load Balancer, or reinstalling the
operating system, prior to installation you can save any of your previous
configuration files or script files for Load Balancer.
v After installation, place your configuration files in the install_root/

configurations/dispatcher directory.
v After installation, place your script files in the install_root/servers/bin directory

in order to run them.

Chapter 2. Installing Load Balancer 21

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

1. Insert the product CD-ROM, and the installation launchpad will appear. To
manually start the installation program:
a. Click Start.
b. Select Run.
c. Specify the CD-ROM disk drive, followed by launchpad.exe, for example,

type:
E:\launchpad.exe

2. Select the option to install Edge components for IPv4 and IPv6.
3. Follow the instructions of the setup program.

a. Optional: If you want to change the drive or directory in which Load
Balancer will be installed click Browse

b. Optional: Choose to install Typical to install all of the components, or
choose Custom to choose the packages based on your preferences and
system requirements.

4. Reboot the system when you are prompted by the setup program.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Uninstalling Load Balancer”

Uninstalling Load Balancer

About this task

You might want to uninstall Load Balancer before upgrading to a newer version,
or if you think the current installation is corrupted.
v First, ensure that you have stopped all the executors and the servers. Uninstall

the product by issuing the following command: installp -u package.
– To uninstall the entire product, enter the following command:

installp -u ibmulb

Use the previous name when it is applicable, for example intnd.
– To uninstall specific file sets, list them instead of specifying the package

name. Uninstall the packages in the reverse order in which they were
installed (reverse the order of the table below):

Table 5. AIX Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch-rte

Dispatcher ibmulb-disp-7.0.0-0.noarch.rte

License ibmulb-lic-7.0.0-0.noarch-rte

Metric Server ibmulb-ms-7.0.0-0.noarch.rte

Native ibmulb-7.0.0-0.ppc64.rte

Substitute ppc for ppc64 when it is
appropriate for your system.

22 Load Balancer Administration Guide

Table 5. AIX Install Images (continued)

Package Name Install Image

Messages ibmulb-lang_language.7.0.0-0.noarch.rte

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

v First, ensure that you have stopped all the executors and the servers. Use the
swremove command to uninstall the packages.
– To uninstall all the Load Balancer packages:

swremove ibmulb

– To uninstall an individual package, for example the Dispatcher component,
enter:
swremove ibmulb.disp

The package names are:

Table 6. HP-UX Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch.depot

Dispatcher ibmulb-disp-7.0.0-0.noarch.depot

License ibmulb-lic-7.0.0-0.noarch.depot

Metric Server ibmulb-ms-7.0.0-0.noarch.depot

Native ibmulb-native-7.0.0-0.parisc.depot

Substitute ia64 for parisc when it is
appropriate for your system.

Chapter 2. Installing Load Balancer 23

Table 6. HP-UX Install Images (continued)

Package Name Install Image

Messages ibmulb-lang_language.7.0.0-0.noarch.depot

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

v First, ensure that all the executors and all the servers are stopped. To uninstall
the entire product, enter:
rpm -e pkgname

The package names are:

Table 7. Linux Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch.rpm

Dispatcher ibmulb-disp-7.0.0-0.noarch.rpm

License ibmulb-lic-7.0.0-0.noarch.rpm

Metric Server ibmulb-ms-7.0.0-0.noarch.rpm

Native ibmulb-native-7.0.0-0.i386.rpm

where i386 can be

v i386

v ppc

v ppc64

v s390

v s390x

v x86_64

24 Load Balancer Administration Guide

Table 7. Linux Install Images (continued)

Package Name Install Image

Messages ibmulb-lang_language.7.0.0-0.noarch.rpm

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

v First, ensure that you have stopped all the executors and the servers. Then, to
uninstall Load Balancer enter the pkgrm command. Enter the following:
pkgrm package

The package names are:

Table 8. Solaris Install Images

Package Name Install Image

Base ibmulb-base-7.0.0-0.noarch.pkg

Dispatcher ibmulb-disp-7.0.0-0.noarch.pkg

License ibmulb-lic-7.0.0-0.noarch.pkg

Metric Server ibmulb-ms-7.0.0-0.noarch.pkg

Native ibmulb-native-7.0.0-0.sparc.pkg

Substitute sparcv9 for sparc when it is
appropriate for your system.

Chapter 2. Installing Load Balancer 25

Table 8. Solaris Install Images (continued)

Package Name Install Image

Messages ibmulb-lang_language.7.0.0-0.noarch.pkg

where language can be:

v cs_CZ

v en_US

v de_DE

v es_ES

v fr_FR

v hu_HU

v it_IT

v ja_JP

v ko_KR

v pl_PL

v pt_BR

v ru_RU

v zh_CN

v zh_TW

v To uninstall using the Add/Remove Programs option:
1. Click Start > Settings > Control Panel.
2. Double-click Add/Remove Programs.
3. Select IBM WebSphere Edge Components (or previous name, for example, IBM

Edge Server).
4. Click Change/Remove button.

Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.

Updating Load Balancer
Use these instructions for obtaining and installing updates to installations of Load
Balancer for IPv4 and IPv6.

Before you begin

If you are installing refreshes and fix packs for Load Balancer, the only prerequisite
that is required for Edge Components Version 7.0 is the license file, which is
nd70Full.LIC, because the refresh or fix pack does not provide the license. You can
obtain the license by installing the Load Balancer license package.

About this task

You can obtain a fix pack in the following mediums:
v Product CDs for newly supported operating systems. If you are installing Load

Balancer on operating systems that are newly supported in Version 7.0, install
the product from the product CD or DVD.

v Downloadable fix packs for existing installations on operating systems that were
previously supported. You can find the link to the refresh packs or fix packs for

26 Load Balancer Administration Guide

Edge Components in the Support & downloads web site. Find the corrective
service release to which you are upgrading and follow the link to the download
site. Follow the instructions on the site to download the Edge Components
refresh pack. You also can download the latest Edge components fix packs from
the FTP server for the Edge Components.

v For information on hardware and software requirements, including supported
browsers, refer to the following Web page: http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

v Install the update packages for AIX, HP-UX, Linux, or Solaris operating systems.
v Install the update packages for Windows operating systems.

Updating Load Balancer for AIX, HP-UX, Linux, or Solaris
operating systems

Use these instructions for obtaining and installing updates to installations of Load
Balancer for IPv4 and IPv6 on AIX, HP-UX, Linux, or Solaris operating systems.

Before you begin

Before installing the refresh or fix pack, stop and uninstall any existing versions of
Load Balancer that are earlier than Version 7.0. Refer to “Uninstalling Load
Balancer” on page 22 for more information.
1. Ensure that you have the license package installed from the CD. You don’t have

to have the entire product installed; you only need to have the license installed.
The license package only comes on the CD, so you need the CD to install the
license package.

2. Go to a command prompt with root authority.
3. Obtain the Load Balancer refresh or fix pack and place it in a temporary

directory.
4. Uncompress and untar the build package. This results in a number of separate

file sets.
5. Install the software using the system-specific commands in the following table.

Use the following table for the commands to use for your operating system:

Operating system Update commands

AIX 1. If a .toc file is not already present,
generate a .toc file by issuing the
command:

inutoc

2. Install the packages for Load Balancer.
For example, to install the base package
from the current directory, issue the
following command:

installp -acXd . package_name

Chapter 2. Installing Load Balancer 27

http://www.ibm.com/products/finder/us/en/finders?sid=015761221216268767909
ftp://ftp.software.ibm.com/software/websphere/edgeserver
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

Operating system Update commands

HP-UX swinstall -s /source package_name

where source is the directory for the location
of the package, and package_name is the
name of the package.

For example, to install the base package
from the current directory, issue the
following command:

swinstall -s /lb package_name

Linux rpm -iv package_name

where package_name is the name of the
package.

For example, the following command installs
all of the packages for Load Balancer when
the packages reside in the current directory:

rpm -iv ibmulb*.rpm

Note: You can use the nodeps option to
successfully install all of the packages in any
order.

Solaris pkgadd -d source package_name

where source is the directory for the location
of the package, and package_name is the
name of the package.

For example, to install the administration
package from the current directory, issue the
following command:

pkgadd -d . ibmulbadm

6. Restore any configuration files and start scripts that you saved or modified
during a previous uninstall.

What to do next

After you install an update for Edge Components, the previous configuration for
Edge Components is maintained. When new functions or enhancements are
delivered with a refresh or fix pack, it might be necessary to add directives to the
configuration files to enable the features.

Note: When you update the Load Balancer component, you must manually save
and restore configuration files to maintain the previous configuration for Load
Balancer. See “Installing Load Balancer” on page 11 for more information.

Rejecting an update

v On HP-UX, Linux, or Solaris operating systems, to remove a refresh or fix pack
and return to a prepatched state, uninstall the product and reinstall the previous
version.

v The mechanism that the AIX operating system provides for rejecting a patch
requires that the patch be produced in refresh or fix pack format. The Edge
Components refresh or fix pack is provided with product format packaging only,

28 Load Balancer Administration Guide

not refresh or fix pack format packaging. Therefore, you cannot use the AIX
SMIT mechanisms for installing and removing patches. To reject a patch on an
AIX system, you must uninstall the file sets and reinstall the previous version.

Related tasks

“Updating Load Balancer for Windows operating systems”
Use these instructions for obtaining and installing updates to installations of Load
Balancer for IPv4 and IPv6 on Windows operating systems.

Updating Load Balancer for Windows operating systems
Use these instructions for obtaining and installing updates to installations of Load
Balancer for IPv4 and IPv6 on Windows operating systems.

Before you begin

Before installing the refresh or fix pack, stop and uninstall any existing versions of
Load Balancer that are earlier than Version 7.0. Refer to “Uninstalling Load
Balancer” on page 22 for more information.
1. To prevent the currently installed Load Balancer from starting, edit any start

scripts that you have created to temporarily suppress any commands that will
start Load Balancer upon reboot.

2. Use the Add or Remove Programs option to uninstall the current Load
Balancer, if it is present.

3. Download the Edge Components refresh or fix pack.
4. Run the installation program.

v From a command prompt:
– For a refresh pack, change to the /ulb directory, and enter the following:

setup

– For a fix pack, the Load balancer fix pack only contains Load balancer
installation files and does not include the /ulb folder. Unzip the
downloaded package to a folder and enter setup from that folder. For
example, navigate to the unzipped files, and enter the following:
setup

v From the Start menu:
a. Click Run.
b. Click Browse.

– For a refresh pack, change to the /ulb directory, and select setup.
– For a fix pack, the Load balancer fix pack only contains Load balancer

installation files and does not include the /ulb folder. Select the
installation files for your operating system, and select setup.

c. Click Open.
d. Click OK.
e.

5. Enter information as requested by the installation program.
6. Restart the system.

Chapter 2. Installing Load Balancer 29

What to do next

After you install an update for Edge Components, the previous configuration for
Edge Components is maintained. When new functions or enhancements are
delivered with a refresh or fix pack, it might be necessary to add directives to the
configuration files to enable the features.

Note: When you update the Load Balancer component, you must manually save
and restore configuration files to maintain the previous configuration for Load
Balancer. See “Installing Load Balancer” on page 11 for more information.

Rejecting an update

1. Use the Add or Remove Programs option to uninstall the current Load
Balancer.

2. Select Remove on the Maintenance Options window for the setup program.
3. Use the setup program for Edge Components to reinstall the previous version.
Related tasks

“Updating Load Balancer for Windows operating systems” on page 29
Use these instructions for obtaining and installing updates to installations of Load
Balancer for IPv4 and IPv6 on Windows operating systems.

Directory conventions
References in product information to install_root and other directories infer specific
default directory locations. This topic describes the conventions in use for IBM
WebSphere Edge Components.

These file paths are default locations. You can install the product and other
components in any directory where you have write access. You can create profiles
in any valid directory where you have write access.

install_root - the root directory in which the product was installed
Load Balancer install paths include the following:
v Administration - /opt/ibm/edge/ulb/admin
v Load Balancer - /opt/ibm/edge/ulb/servers
v Metric Server - /opt/ibm/edge/ulb/ms
v Documentation - /opt/ibm/edge/ulb/docs/

install_root - the root directory in which the product was installed
Load Balancer install paths include the following:
v Administration - C:\Program Files\IBM\edge\ulb\admin
v Load Balancer - C:\Program Files\IBM\edge\ulb\servers
v Metric Server - C:\Program Files\IBM\edge\ulb\ms
v Documentation - C:\Program Files\IBM\edge\ulb\docs

30 Load Balancer Administration Guide

Chapter 3. Configuring Load Balancer

This section focuses on configuring production environments and realistic test
environments.

“Methods of configuration”
There are four methods you can use to configure Load Balancer: the
command line, scripts, the graphical user interface (GUI), and the
configuration wizard. The Information Center assumes use of the
command line.

“Configuring the Load Balancer machine” on page 34
Configure Load Balancer for IPv4 and IPv6 on the machine that you will
use to load balance server traffic.

“Configuring the server machines” on page 38
You need to configure each of the back-end server machines in your
topology before Load Balancer will be able to properly work in your
environment.

“Quick start configuration” on page 45
This quick start example shows how to configure three locally attached
workstations to load-balance Web traffic between two Web servers.

“Logging with Load Balancer” on page 94
You can set up Dispatcher and the TCP server machines using a private
network. This configuration can reduce the contention on the public or
external network that can affect performance.

Methods of configuration
There are four methods you can use to configure Load Balancer: the command
line, scripts, the graphical user interface (GUI), and the configuration wizard. The
Information Center assumes use of the command line.

There are four basic methods of configuring the Dispatcher:
v “Command line”
v “Scripts” on page 32
v Graphical User Interface (GUI)
v “The configuration wizard” on page 33.

Command line

This is the most direct means of configuring the Dispatcher. The command
parameter values must be entered in English characters. The only exceptions are
host names (used in cluster, server, and high availability commands) and file
names (used in file commands).

To start the Dispatcher from the command line:
1. Start dsserver:

v From the command prompt, issue the following:
dsserver

To stop the service, type:

31

dsserver stop

v Click Start > Control Panel > Administrative Tools > Services. Right-click
IBM Dispatcher (ULB) and select Start. To stop the service, follow the same
steps and select Stop.

2. Issue the Dispatcher control commands you want in order to set up your
configuration. The command is dscontrol. For more information about
commands, see “Commands” on page 138.

You can use a minimized version of the dscontrol command parameters by typing
the unique letters of the parameters. For example, to get help on the file save
command, you can type
dscontrol he f

instead of
dscontrol help file

To start up the command line interface issue dscontrol to receive an dscontrol
command prompt. To end the command line interface issue the commands exit or
quit.

Scripts

You can enter commands for configuring Dispatcher into a configuration script file
and run them together. See Sample Load Balancer configuration files. To quickly
run the content of a script file (for example, myscript), use either of the following
commands:
v To update the current configuration, run the following executable commands

from your script file:
dscontrol file appendload myscript

v To completely replace the current configuration, run the following executable
commands from your script file:
dscontrol file newload myscript

To save the current configuration into a script file (for example, savescript), run the
following command:
dscontrol file save savescript

This command will save the configuration script file in the install_root/servers/
configurations/dispatcher directory.

GUI

To start the GUI, follow these steps:
1. Ensure dsserver is running:

v Run the following as root user:
dsserver

v dsserver runs as a service that starts automatically.
2. Start the Load Balancer GUI:

v Run the following:
lbadmin

v Click Start > Programs > IBM WebSphere > Edge Components > IBM
Load Balancer > Load Balancer

32 Load Balancer Administration Guide

To configure the Dispatcher component from the GUI, you must first select
Dispatcher in the tree structure. You can start the executor and manager after you
connect to a Host. You can also create clusters containing ports and servers, and
start advisors for the manager.

The GUI can be used to do anything that you would do with the dscontrol
command. For example, to define a cluster using the command line, you would
enter dscontrol cluster add cluster command. To define a cluster from the GUI,
right-click Executor, then in the popup menu, left-click Add Cluster. Enter the
cluster address in the popup window, then click OK.

Pre-existing Dispatcher configuration files can be loaded using the Load New
Configuration (for completely replacing the current configuration) and Append to
Current Configuration (for updating the current configuration) options presented
in the Host popup menu. You should save your Dispatcher configuration to a file
periodically using the Save Configuration File As option also presented in the
Host popup menu. The File menu located at the top of the GUI will allow you to
save your current host connections to a file or restore connections in existing files
across all Load Balancer components.

In order to run a command from the GUI:
1. Highlight the Host node from the GUI tree and select Send command... from

the Host pop-up menu.
2. In the command entry field, type the command that you want to run, for

example:
executor report

The results and history of the commands run in the current session and appear
in the window provided.

You can access Help by clicking the question mark icon in the upper right corner
of the Load Balancer window.
v Help: Field level -- describes each field, default values
v Help: How do I -- lists tasks that can be done from that screen
v InfoCenter -- provides centralized access to product information

The configuration wizard

The wizard guides you step by step through the process of creating a basic
configuration for the Dispatcher component. You will be asked questions about
your network. You will be guided through the setup of a cluster for Dispatcher to
load balance traffic between a group of servers.

If you are using the configuration wizard, follow these steps:
1. Start the dsserver on Dispatcher:

v Run the following as root user:
dsserver

v dsserver runs as a service that starts automatically.
2. Start the wizard function of Dispatcher by issuing the following command:

dswizard

Chapter 3. Configuring Load Balancer 33

Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.

Configuring the Load Balancer machine
Configure Load Balancer for IPv4 and IPv6 on the machine that you will use to
load balance server traffic.

Before you begin

Before setting up the Dispatcher machine, you must be the root user (for AIX,
HP-UX, Linux, or Solaris systems) or the Administrator on Windows systems.

For the Dispatcher machine you will need at least two valid IP addresses.

The figure below shows an example of Load Balancer set up with a single cluster,
two ports, and three servers.

About this task

You must configure the machine on which Load Balancer is installed before you
can load balance traffic in your network environment.

Review the new features section for what’s been added and improved in this
release.

Note: Maximize your load-balancing by being aware of explicit addressing in
links, and avoid it where possible.

If your pages specify links that point to individual servers for your site, you are in
effect forcing a client to go to a specific machine, thus bypassing any load
balancing function that might otherwise be in effect.

In general, the load balancing function works independently of the content of the
sites on which you use the product, but link addressing is one area in which the
site content can be important. Decisions that you make regarding the site’s content
can have a significant impact upon the Load Balancer’s efficiency. Use the address
of Load Balancer in any links contained in your pages. Note that the kind of
addressing used might not always be apparent if your site uses automated
programming that dynamically creates HTML.

Note: Be aware of the following back-end server restrictions:

Solaris back-end server
There is no support for load balancing IPv6 traffic to back-end Solaris 5.8
servers. On Solaris 5.8, there is an incompatibility with a MAC-forwarded
IPv6 packet and the Solaris IPv6 stack. When the cluster is configured on a
Solaris 5.8 back-end server using the ifconfig lo0 (loopback) command, the
packet arrives at the Solaris 5.8 node, but is not accepted. However, you
can use Load Balancer for IPv4 and IPv6 installations to load balance IPv4
traffic to back-end Solaris 5.8 servers.

34 Load Balancer Administration Guide

z/OS back-end servers
There is no support for load-balancing IPv6 traffic to back-end z/OS
servers. However, you can load balance IPv4 traffic to back-end z/OS
servers using Load Balancer for IPv4 and IPv6 installations.

1. Start the server function. To start the server function, type the following at
a command prompt:
dsserver

Note: A default configuration file (default.cfg) gets automatically loaded when
starting dsserver. If the user decides to save the Dispatcher configuration in
default.cfg, then everything saved in this file is automatically loaded next time
dsserver gets started.

2. Start the executor function.
a. Optional: If you are using IPv6 addresses, enable the processing of IPv6

packets.
Prior to starting the executor (dscontrol executor start), the following

must be issued from the command line as root:
v

autoconf6

To enable uninterrupted processing of IPv6 packets, even after a system
reboot, edit the etc/rc.tcpip file and uncomment the following line, and
add the -A flag:
start usr/bin/autoconf6 " " -A

v

modprobe ipv6

v

netsh interface ipv6 install

These commands enable processing of IPv6 packets in the respective
operating systems. Issue this command only once. Thereafter, you can start
and stop the executor as often as you need. If you do not issue the
command to enable processing of IPv6 packets on these systems, the
executor will not start.

Using the ifconfig command, IPv6 addresses must be plumbed and an
interface configured in order for Dispatcher to inspect IPv6 packets. If you
do not issue these commands, the executor will start, but no IPv6 packets
can be viewed. Prior to starting the executor (dscontrol executor start), issue
the following from the command line as root:
v

ifconfig device inet6 up

v Change the device to your device name, and change the IPv6 IP address
and prefix to your address and prefix values:
ifconfig device inet6 plumb
ifconfig device inet6 address/prefix up

b. To start the executor function, enter the dscontrol executor start command.
You may also change various executor settings at this time.

3. Optional: Define the non-forwarding address if it is different from the host
name. The non-forwarding address is used to connect to the machine for
administrative purposes, such as using Telnet or SMTP to this machine.
By default, this address is the hostname. To define the non-forwarding address,
enter the following command, or edit the configuration file:
dscontrol executor set nfa IP_address

Chapter 3. Configuring Load Balancer 35

where IP_address is either the symbolic name or the IP address.
4. Define a cluster and set cluster options. Dispatcher will balance the requests

sent to the cluster address to the servers configured on the ports for that
cluster. The cluster is either the symbolic name, the dotted decimal address, or
the special address 0.0.0.0 that defines a wildcard cluster. Wildcard clusters can
be used to match multiple IP addresses for incoming packets to be load
balanced.
a. To define a cluster, issue the dscontrol cluster add command:

dscontrol cluster add cluster

b. To set cluster options, use the dscontrol cluster set command. Issue the
following command:
dscontrol cluster set options

c. If you use a qeth/OSA implementation on Linux on zSeries, the following
additional configuration steps are required to setup Load Balancer:
1) 1. Configure the cluster address using ip or ifconfig command:

ip -version addr add cluster_address/prefix_length dev device

For example:
ip -4 addr add 12.42.38.125/24 dev eth0
ip -6 addr add 3ffe:34::24:45/64 dev eth0

2) Add an iptables rule to drop incoming packets destined to the cluster
address:
For IPv4 addresses:
iptables -t filter -A INPUT -d cluster_address -j DROP

For IPv6 addresses:
ip6tables -t filter -A INPUT -d cluster_address -j DROP

For example:
iptables -t filter -A INPUT -d 12.42.38.125 -j DROP
ip6tables -t filter -A INPUT -d 3ffe:34::24:45 -j DROP

3) To undo the above configuration, use the following commands:
ip -version addr del cluster_address/prefix_length dev device
iptables -t filter -D INPUT -d cluster_address -j DROP
ip6tables -t filter -D INPUT -d cluster_address -j DROP

5. Define ports and set port options with the dscontrol port add command. You
must define and configure all servers for a port.
a. Define a port. Enter the following command:

dscontrol port add cluster@port

v cluster is either the symbolic name or the IP address
v port is the number of the port you are using for that protocol

b. Change various port settings. Read “dscontrol port” on page 155 for more
information on this command and the available options.

Note: You can select a new option for the selection algorithm that Load
Balancer uses to route traffic:
v conn+affinity: Specifies that server selection is based on an existing

connection. For new connections, the server selection is based on affinity.

You can also edit the sample configuration file or use the GUI.
6. Define the load-balanced server machines. To define a load-balanced server

machine, enter the following command:

36 Load Balancer Administration Guide

dscontrol server add cluster@port@server

You can also edit the sample configuration file or use the GUI. Cluster is either
the symbolic name or the IP address, and port is the number of the port you
are using for that protocol. You must define more than one server to a port on
a cluster in order to perform load balancing.
a. Configure IPv6 link-local address: With IPv6 addressing, each machine in

the Load Balancer configuration must have an IPv6 link-local address. The
link-local address is the address used for neighbor discovery traffic for IPv6,
and without this address on the Load Balancer machine and on the
back-end servers neighbor discovery does not occur, and the machines are
not known to each other. Load Balancer for IPv6 cannot forward traffic
without a link-local IPv6 address configured on an interface of each
machine in the Load Balancer configuration.

b. Optional: Bind-specific servers: If the Dispatcher component is load
balancing to bind-specific servers, then the servers must be configured to
bind to the cluster address. Because the Dispatcher forwards packets
without changing the destination IP address, when the packets reach the
server, the packets will still contain the cluster address as the destination. If
a server has been configured to bind to an IP address other than the cluster
address, then the server will be unable to accept requests destined for the
cluster.
To determine if the server is bind specific, issue the netstat -an command
and look for the server@port. If the server is not bind specific, the result
from this command will be 0.0.0.0@80. If the server is bind specific, you will
see an address such as 192.168.15.103@80.

7. Optional: Start the manager function. The manager function improves load
balancing. To start the manager, enter the dscontrol manager start command,
edit the sample configuration file, or use the GUI. For example:
dscontrol manager start

8. Optional: Start the advisor function. The advisors give the manager more
information about the ability of the load-balanced server machines to respond
to requests. An advisor is specific to a protocol. For example, to start the HTTP
advisor, issue the following command:
dscontrol advisor start http port

For a list of advisors along with their default ports, see “List of advisors” on
page 53.
a. Set cluster proportions, as required. If you start advisors, you may modify

the proportion of importance given to advisor information being included
in the load balancing decisions. To set the cluster proportions, issue the
dscontrol cluster set cluster proportions command. For more information,
see “Tuning the proportion of importance given to status information” on
page 104

9. Configure the server machines.

Chapter 3. Configuring Load Balancer 37

Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Configuring the server machines”

Configuring the server machines

About this task

You need to configure each of the back-end server machines in your topology
before Load Balancer will be able to properly work in your environment.

Dispatcher will only load balance across servers that allow the loopback adapter to
be configured with an additional IP address, for which the back-end server will
never respond to ARP (address resolution protocol) requests.
1. Alias the loopback device.

If you are using certain types of Linux operating systems, you may need to use
an alternative method for aliasing the network card and loopback devices. Read
“Configuring loopbacks with alternative methods” on page 43 for more
information.

2. Check for an extra route. On some operating systems, a default route may have
been created and needs to be removed. If problems are encountered with
routing after aliasing, remove the alias and add it back using a different
netmask.

Note: Any extra routes should be ignored on Windows 2003.
v Check for an extra route on Windows operating systems with the following

command:
route print

For example:
a. After route print is entered, a table similar to the following example will

be displayed. This example shows finding and removing an extra route to
cluster 9.67.133.158 with a default netmask of 255.0.0.0.
Active Routes:

Network Address Netmask Gateway Address Interface Metric
0.0.0.0 0.0.0.0 9.67.128.1 9.67.133.67 1
9.0.0.0 255.0.0.0 9.67.133.158 9.67.133.158 1
9.67.128.0 255.255.248.0 9.67.133.67 9.67.133.67 1
9.67.133.67 255.255.255.255 127.0.0.1 127.0.0.1 1
9.67.133.158 255.255.255.255 127.0.0.1 127.0.0.1 1
9.255.255.255 255.255.255.255 9.67.133.67 9.67.133.67 1
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
224.0.0.0 224.0.0.0 9.67.133.158 9.67.133.158 1
224.0.0.0 224.0.0.0 9.67.133.67 9.67.133.67 1
255.255.255.255 255.255.255.255 9.67.133.67 9.67.133.67 1

b. Find your cluster address under the “Gateway Address” column. If you
have an extra route, the cluster address will appear twice. In the example
given, the cluster address (9.67.133.158) appears in row 2 and row 8.

c. Find the network address in each row in which the cluster address
appears. You need one of these routes and will need to delete the other
route, which is extraneous. The extra route to be deleted is the one whose
network address begins with the first digit of the cluster address,

38 Load Balancer Administration Guide

followed by three zeroes. In the example shown, the extra route is the one
in row two, which has a network address of 9.0.0.0:
Network Address Netmask Gateway Address Interface Metric
9.0.0.0 255.0.0.0 9.67.133.158 9.67.133.158 1

v Check for an extra route on all Linux and UNIX systems with the
following command:
netstat -nr

3. Delete any extra route. You must delete the extra route. Use the command for
your operating system shown below:
v

route delete -net network_address cluster_address

v

route delete cluster_address cluster_address

v

route delete network_address cluster_address

Note: You must delete the extra route every time you reboot the server.
To delete the extra route as shown in the �Active Routes� example above,
enter:
route delete 9.0.0.0 9.67.133.158

On Windows 2003, it is not possible to delete routes. Any extra routes should
be ignored on Windows 2003. If problems are encountered with routing after
aliasing, remove the alias and add it back using a different netmask.

4. Verify server is properly configured. To verify if a back-end server is properly
configured, perform the following steps from a different machine on the same
subnet when the Load Balancer is not running and cluster is unconfigured:
a. Issue the arp command. For example:

arp -d cluster

b. Issue the ping command. For example:
ping cluster

There should be no response. If there is a response to the ping, ensure that
you did not ifconfig the cluster address to the interface. Ensure that no
machine has a published arp entry to the cluster address.

c. Ping the back-end server, then immediately issue the arp -a command For
example:
arp -a

In the output from the command, you should see the MAC address of your
server. Issue the command:
arp -s cluster server_MAC_address

d. Ping the cluster. You should get a response. Issue a http, telnet, or other
request that is addressed to the cluster that you expect your back-end server
to handle. Ensure that it works properly.

e. Issue the arp -d command. For example:
arp -d cluster

f. Ping the cluster. There should be no response. If there is a response, issue an
arp cluster instruction to get the MAC address of the machine that is not
configured correctly, and repeat steps 1 through 6.

Chapter 3. Configuring Load Balancer 39

Related tasks

Configuring
“Configuring the Load Balancer machine” on page 34
Configure Load Balancer for IPv4 and IPv6 on the machine that you will use to
load balance server traffic.
“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.

Aliasing the network interface card or loopback device

About this task

To alias the loopback device on servers that are being load-balanced, you must use
the operating system’s adapter configure commands. For the load-balanced server
machines to work, you must set, or preferably alias, the loopback device, which is
often called lo0, to the cluster address. By setting or aliasing the loopback device to
the cluster address, the load balanced server machines will accept a packet that
was addressed to the cluster address.

If you have an operating system that supports network interface aliasing (such as
AIX, HP-UX, Linux, Solaris, or Windows systems), you should alias the loopback
device to the cluster address. The benefit of using an operating system that
supports aliases is that you have the ability to configure the load-balanced server
machines to serve multiple cluster addresses.

Note: See “Configuring loopbacks with alternative methods” on page 43. If you
have a server with an operating system that does not support aliases you must set
the loopback device to the cluster address.
v Use the following commands to alias the network interface and the loopback

device (interface_name) for AIX systems :
– For IPv4 addresses:

- AIX 4.3 or earlier:
ifconfig lo0 alias cluster_address netmask netmask

Note: Use the netmask of the primary adapter
- AIX 5.x:

ifconfig lo0 alias cluster_address netmask 255.255.255.255

– For IPv6 addresses:
ifconfig interface_name inet6 cluster_address/prefix_length alias

For example, to alias the loopback device on servers that are being
load-balanced:
ifconfig lo0 inet6 2002:4a::541:56/128 alias

v Use these commands to alias the network interface and the loopback device
(interface_name) for HP-UX systems:
– For IPv4 addresses:

ifconfig lo0:1 cluster_address up

– For IPv6 addresses:
ifconfig interface_name:alias inet6 cluster_address up prefix prefix_length

For example, to alias the loopback device on servers that are being
load-balanced:

40 Load Balancer Administration Guide

welcome_config.html

ifconfig lo0:1 inet6 3ffe:34::24:45 up prefix 128

Note: When using bind-specific server applications that bind to a list of IP
addresses that do not contain the server’s IP, use the arp publish command
instead of ifconfig to dynamically set an IP address on the Load Balancer
machine. For example:
arp -s <cluster> <Load Balancer's MAC address> pub

v Use these commands to alias the network interface and the loopback device
(interface_name) for Linux systems:
– For IPv6 or IPv4 addresses:

ip -version addr add cluster_address/prefix_length dev lo

For example, to alias the loopback device on servers that are being
load-balanced:
ip -6 addr add 3ffe:34::24:45/128 dev lo
ip -4 addr add 12.42.38.125/32 dev lo

Note: You can also use the ifconfig command. See below to alias the loopback
device using the ifconfig command. Once you issue one of the configuration
commands on your machine, it is important to consistently use the same
configuration command (ip or ifconfig), or unexpected results can occur.

– Using the ifconfig command:
ifconfig lo:1 cluster_address netmask 255.255.255.255 up

v Use these commands to alias the network interface and the loopback device
(interface_name for an OS2 system).
ifconfig lo cluster_address

v Use these commands to alias the network interface and the loopback device
(interface_name) for OS390 systems.
– In the IP parameter member (file), an Administrator will need to create an

entry in the Home address list. For example
HOME
;Address Link
192.168.252.11 tr0
192.168.100.100 1tr1
192.168.252.12 loopback

– Several addresses can be defined for the loopback.
– The loopback address of 127.0.0.1 is configured by default.

v The following commands can be used to alias the network interface and the
loopback device (interface_name) for Solaris systems.
– For IPv4 addresses:

- For Solaris 7:
ifconfig lo0:1 cluster_address 127.0.0.1 up

- For Solaris 8, 9, and 10:
ifconfig lo0:1 plumb cluster_address netmask netmask up

– For IPv6 addresses:
ifconfig interface_name inet6 addif cluster_address/prefix_length up

For example, to alias the loopback device on servers that are being
load-balanced:
ifconfig lo0 inet6 addif 3ffe:34::24:45/128 up

Chapter 3. Configuring Load Balancer 41

Note: When using bind-specific server applications that bind to a list of IP
addresses that do not contain the server’s IP, use the arp publish command
instead of ifconfig to dynamically set an IP address on the Load Balancer
machine. For example:
arp -s <cluster> <Load Balancer's MAC address> pub

v Use these commands to alias the network interface and the loopback device for
Windows operating systems.
1. Use the ipconfig /all command to determine the interface name for the

loopback device. This command locates the connection with a description of
the Microsoft Loopback Adapter. The following example is the output from
the ipconfig /all command, where the Microsoft Loopback Adapter is
Ethernet adapter Local Area Connection 2, so the connection is Local Area
Connection 2:
Windows IP Configuration

Host Name : ndserv10
Primary Dns Suffix : rtp.raleigh.ibm.com
Node Type : Unknown
IP Routing Enabled. : No
WINS Proxy Enabled. : No
DNS Suffix Search List. : rtp.raleigh.ibm.com

Ethernet adapter Local Area Connection 2:

Connection-specific DNS Suffix . :
Description : Microsoft Loopback Adapter
Physical Address. : 02-00-4C-4F-4F-50
DHCP Enabled. : No
IP Address. : 9.42.92.158
Subnet Mask : 255.255.252.0
IP Address. : 9.42.92.159
Subnet Mask : 255.255.252.0
IP Address. : 2002:92a:8f7a:162:9:42:92:160
IP Address. : 2002:92a:8f7a:162:9:42:92:159
IP Address. : fe80::4cff:fe4f:4f50%4
Default Gateway :
DNS Servers : 127.0.0.1

fec0:0:0:ffff::1%1
fec0:0:0:ffff::2%1
fec0:0:0:ffff::3%1

2. Add the cluster address to the loopback using the netsh command. For
example:
netsh interface ipv6 add address "Local Area Connection 2"

2002:92a:8f7a:162:9:42:92:161

Note: If you are using a high-availability configuration, and the machine is
running as the primary machine, do not alias to the loopback device because
this scenario prevents traffic to the cluster address from being routed by the
Load Balancer machine.

3. Issue the following ipconfig /all command again, and you should see the
address added on the loopback adapter. For example, issue the following
command:
ipconfig /all

You should see output that is similar to the following:
Ethernet adapter Local Area Connection 2:

Connection-specific DNS Suffix . :
Description : Microsoft Loopback Adapter

42 Load Balancer Administration Guide

Physical Address. : 02-00-4C-4F-4F-50
DHCP Enabled. : No
IP Address. : 9.42.92.158
Subnet Mask : 255.255.252.0
IP Address. : 9.42.92.159
Subnet Mask : 255.255.252.0
IP Address. : 2002:92a:8f7a:162:9:42:92:161
IP Address. : 2002:92a:8f7a:162:9:42:92:160
IP Address. : 2002:92a:8f7a:162:9:42:92:159
IP Address. : fe80::4cff:fe4f:4f50%4
Default Gateway :
DNS Servers : 127.0.0.1

fec0:0:0:ffff::1%1
fec0:0:0:ffff::2%1
fec0:0:0:ffff::3%1

4. Enable forwarding for all the interfaces in the machine using the netsh
interface ipv6 show interface command. Any interfaces listed with a name
of Local Area Connection must have IP forwarding enabled. For example:
netsh interface ipv6>show interface
Querying active state...

Idx Met MTU State Name
--- ---- ----- ------------ -----
6 2 1280 Disconnected Teredo Tunneling Pseudo-Interface
5 0 1500 Connected Local Area Connection
4 0 1500 Connected Local Area Connection 2
3 1 1280 Connected 6to4 Pseudo-Interface
2 1 1280 Connected Automatic Tunneling Pseudo-Interface
1 0 1500 Connected Loopback Pseudo-Interface

netsh interface ipv6>set interface "Local Area Connection"
forwarding=enabled

Ok.

netsh interface ipv6>set interface "Local Area Connection 2"
forwarding=enabled

Ok.

5. Verify that the forward packets for each Local Area Connection is set to
″Yes.″ Use the following commands:
netsh interface ipv6>show interface "Local Area Connection"

netsh interface ipv6>show interface "Local Area Connection 2"

Related concepts

“Configuring loopbacks with alternative methods”
Related tasks

“Configuring the Load Balancer machine” on page 34
Configure Load Balancer for IPv4 and IPv6 on the machine that you will use to
load balance server traffic.
“Configuring the server machines” on page 38

Configuring loopbacks with alternative methods

About this task

Some versions of Linux systems issue ARP responses for any IP address configured
on the machine on any interface present on the machine. It may also choose an
ARP source IP address for ARP who-has queries based on all IP addresses present

Chapter 3. Configuring Load Balancer 43

on the machine, regardless of the interfaces on which those addresses are
configured. This causes all cluster traffic to be directed to a single server in an
indeterminate manner.

With Dispatcher’s forwarding method, a mechanism must be employed to ensure
that cluster-addressed traffic can be accepted by the stacks of the back-end servers.

In most cases, you must alias the cluster address on the loopback; therefore,
back-end servers must have the cluster aliased on the loopback. To ensure that
Linux systems do not advertise addresses on the loopback, you can use any of
these four solutions to make Linux systems compatible.
v Use a kernel that does not advertise the addresses. This is the preferred option,

as it does not incur a per-packet overhead and it does not require per-kernel
reconfiguration.
– United Linux 1 / SLES8 with SP2(x86) or SP3 (all other architectures) and

higher contains the Julian ARP hidden patch. Ensure that it is always in effect
before aliasing the cluster address with the command:
sysctl -w net.ipv4.conf.all.hidden=1 net.ipv4.conf.lo.hidden=1

Clusters can then be aliased in the normal way, such as:
ifconfig lo:1 $CLUSTER_ADDRESS netmask 255.255.255.255 up

– Use the arp_ignore sysctl available in 2.4.25 and 2.6.5 and higher, but note
that distributions sometimes backport features. Ensure that it is enabled
before aliasing the cluster addresses with the commands:
sysctl -w net.ipv4.conf.all.arp_ignore=3
net.ipv4.conf.all.arp_announce=2

Clusters must then be aliased with the following command:
ip addr add $CLUSTER_ADDRESS/32 scope host dev lo

Note: When using sysctl, ensure that these settings survive reboot by adding
the settings to the install_root/etc/sysctl.conf file.

v Use IP tables to redirect all incoming cluster traffic to the localhost. If you use
this method, do not configure the loopback adapter with an alias. Instead, use
the command:
iptables -t nat -A PREROUTING -d $CLUSTER_ADDRESS -j REDIRECT

This command causes Linux systems to do destination NAT on each packet,
converting the cluster address to the interface address. This method has about a
6.4% connections-per-second throughput penalty. This method works on any
supported stock distribution; no kernel module or kernel patch+build+install is
needed.

v Apply the noarp module version 1.2.0 or higher. The kernel source must be
available and properly configured, and development tools (gcc, gnu make, and
so forth) must be available. You must build and install the module every time
the kernel is upgraded. It is available at http://www.masarlabs.com/noarp/.
Because the kernel code itself is not modified, it is much less intrusive than
solution 4, and it is much less prone to error. It also must be configured before
any cluster address is aliased on the loopback. For example:
modprobe noarp # noarpctl add $CLUSTER_ADDRESS nic-primary-addr

where nic-primary-addr is an address in the same subnet as the cluster address.
Clusters can then be aliased in the normal way, such as:
ifconfig lo:1 cluster address netmask 255.255.255.255 up

v Obtain the Julian patch from the following Web site: http://www.ssi.bg/~ja/
#hidden. Follow your distribution instructions for patching and compiling a

44 Load Balancer Administration Guide

http://www.masarlabs.com/noarp/
http://www.ssi.bg/~ja/#hidden
http://www.ssi.bg/~ja/#hidden

kernel suitable for use with that distribution. After you build, install, and run
your kernel with the Julian hidden patch, following the instructions under the
first solution listed for enabling the patch.

Note: Distribution support implications might exist for running a custom kernel.
Related tasks

“Installing Load Balancer” on page 11
Install Load Balancer using system packaging tools or the command line for all
operating systems.
“Configuring the Load Balancer machine” on page 34
Configure Load Balancer for IPv4 and IPv6 on the machine that you will use to
load balance server traffic.
“Configuring the server machines” on page 38

Quick start configuration
This quick start example shows how to configure three locally attached
workstations to load-balance Web traffic between two Web servers.

Before you begin

For the quick start example, you need three workstations and four IP addresses.
One workstation is the Dispatcher machine; the other two workstations are the
Web servers. Each Web server requires one IP address. The Dispatcher workstation
requires two addresses: the non-forwarding address (NFA), and the cluster address
(the address which is load balanced) that you provide to clients to access your Web
site.

Note: The NFA is the address that is returned by the hostname command. This
address is used for administrative purposes.

For more information on the different ways Load Balancer can be setup, read
“Types of cluster, port, and server configurations” on page 8 to help you design
your topology.

About this task

Use this configuration method for a quick way to establish a connection between
servers and the dispatcher machine. This method does not include configuring
advisors or tuning performance. For a full configuration, read “Configuring the
Load Balancer machine” on page 34 and “Configuring the server machines” on
page 38.
1. Prepare your servers.

a. For this locally attached configuration example, set up your workstations on
the same LAN segment. Ensure that network traffic between the three
machines does not have to pass through any routers or bridges.

b. Configure the network adapters of the three workstations. For this example,
we will assume you have the following network configuration, and each of
the workstations contains only one standard Ethernet network interface
card:

Chapter 3. Configuring Load Balancer 45

Table 9. Sample network configuration

Workstation Name IP Address

1 server1.Intersplashx.com 2002:92a:8f7a:162:9:42:92:160

2 server2.Intersplashx.com 2002:92a:8f7a:162:9:42:92:161

3 server3.Intersplashx.com 9.47.47.103

Netmask = 255.255.255.0

c. 3. Ensure that all the servers can communicate with each other.
1) Ensure that server1.Intersplashx.com can ping both

server2.Intersplashx.com and server3.Intersplashx.com.
2) Ensure that server2.Intersplashx.com and server3.Intersplashx.com can

ping server1.Intersplashx.com.
d. Ensure that content is identical on the two Web servers (Server 2 and Server

3). This can be done by replicating data on both workstations, by using a
shared file system such as NFS, AFS®, or DFS™, or by any other means
appropriate for your site.

e. Ensure that Web servers on server2.Intersplashx.com and
server3.Intersplashx.com are operational. Use a Web browser to request
pages directly from http://server2.Intersplashx.com and
http://server3.Intersplashx.com.

f. Obtain another valid IP address for this LAN segment. This is the address
you will provide to clients who wish to access your site. For this example
we will use:
Name= www.Intersplashx.com
IP=9.47.47.104

g. Configure the two Web server workstations to accept traffic for
www.Intersplashx.com. Add an alias for www.Intersplashx.com to the
loopback interface on server2.Intersplashx.com and
server3.Intersplashx.com:
v

ifconfig lo0 alias www.Intersplashx.com netmask 255.255.255.255

v

ifconfig lo0:1 plumb www.Intersplashx.com netmask 255.255.255.0 up

v For other operating systems see your operating system’s instructions in
“Aliasing the network interface card or loopback device” on page 40.

h. Delete any extra route that may have been created as a result of aliasing the
loopback interface. See Step 2 in Configuring the server machines.

i.

2. Configure Load Balancer using the command line, the GUI, or the
configuration wizard.
v Configuring with the command line:

a. Start the dsserver on Dispatcher:
– Run the following command as root user:

dsserver

– dsserver runs as a service that starts automatically
b. Start the executor function of Dispatcher. Enter the command

dscontrol executor start

c. Add the cluster address to the Dispatcher configuration:
dscontrol cluster add www.Intersplashx.com

46 Load Balancer Administration Guide

d. Add the HTTP protocol port to the Dispatcher configuration:
dscontrol port add www.Intersplashx.com@80

e. Add each of the Web servers to the Dispatcher configuration:
dscontrol server add www.Intersplashx.com@80@server2.Intersplashx.com
dscontrol server add www.Intersplashx.com@80@server3.Intersplashx.com

f. Start the manager function of Dispatcher:
dscontrol manager start

Dispatcher will now do load balancing based on server performance.
g. Start the advisor function of Dispatcher:

dscontrol advisor start http 80

Dispatcher will now make sure that client requests are not sent to a failed
Web server.

v Configuring with the configuration wizard:

a. Start the dsserver on Dispatcher:
– Run the following command as root user: dsserver
– dsserver runs as a service that starts automatically

b. Start the wizard function of Dispatcher:
dswizard

The wizard guides you step-by-step through the process of creating a
basic configuration for the Dispatcher component. It asks questions about
your network and guides you through the setup of a cluster for
Dispatcher to load balance the traffic for a group of servers. The
configuration wizard contains the following panels:
– Introduction to the wizard
– What is going to happen
– Preparing for the setup
– Defining a cluster
– Adding a port
– Adding a server
– Starting an advisor
– Server machine setup

v Configuring with the GUI:

– At a command prompt, enter the following:
lbadmin

– Click Start > Programs > IBM WebSphere > Edge Components > IBM
Load Balancer > Load Balancer.

3. Test your configuration.
a. From a Web browser, go to location http://www.Intersplashx.com. If a page

is displayed, the configuration is working.
b. Reload the page in the Web browser.
c. Look at the results of the following command:

dscontrol server report www.Intersplashx.com@80@

The total connections column of the two servers should add up to “2.”

Chapter 3. Configuring Load Balancer 47

http://www.Intersplashx.com

Related tasks

“Configuring the Load Balancer machine” on page 34
Configure Load Balancer for IPv4 and IPv6 on the machine that you will use to
load balance server traffic.
“Configuring the server machines” on page 38
Related reference

“Types of cluster, port, and server configurations” on page 8
There are many ways that you can configure Load Balancer to support your site.

Load balancing a private network
You can set up Dispatcher and the TCP server machines using a private network.
This configuration can reduce the contention on the public or external network that
can affect performance.

Before you begin

To create a private network, each machine must have at least two LAN cards, with
one of the cards connected to the private network. You must also configure the
second LAN card on a different subnet.

About this task

When you configure a private network, the Load Balancer machine will then send
the client requests to the TCP server machines through this network.

For AIX systems, this configuration can also take advantage of the fast speeds of
the SP™ High Performance Switch if you are running Dispatcher and the TCP
server machines on nodes in an SP Frame.

The servers added using the dscontrol server add command must be added
using the private network addresses. For example, a sample command could be
coded as:
dscontrol server add cluster_address@80@10.0.0.1

not as
dscontrol server add cluster_address@80@9.67.131.18

48 Load Balancer Administration Guide

Chapter 4. Administering Load Balancer

This section focuses on administering production environments and realistic test
environments.

“Enabling advisors to manage load balancing” on page 50
Tuning is a critical part of getting the best performance from your Web
site, but tuning involves analyzing performance data and determining the
optimal server configuration. This determination requires considerable
knowledge about the various components in the application server and
their performance characteristics. The performance advisors encapsulate
this knowledge, analyze the performance data and provide configuration
recommendations to improve the application server performance.
Therefore, the performance advisors provide a starting point to the
application server tuning process and help you without requiring that you
become an expert.

“Configuring high availability” on page 84
The high availability feature involves the use of a second Dispatcher
machine. The first Dispatcher machine performs load balancing for all the
client traffic as it does in a single Dispatcher configuration. The second
Dispatcher machine monitors the ″health″ of the first, and takes over the
task of load balancing if it detects that the first Dispatcher machine has
failed.

“Use encapsulation forwarding to forward traffic across network segments” on
page 89

Use encapsulation forwarding when the back-end server is not located on
the same network segment or if you are using virtualization technology
and need to forward packets that are otherwise unable to be forwarded.

“Quiesce servers for server maintenance windows” on page 90
To remove a server from the Load Balancer configuration for any reason
(updates, upgrades, service, etc.), you can use the dscontrol manager
quiesce command.

“Optimize connections with client-to-server affinity” on page 91
The Load Balancer affinity feature maps a client IP address to a back-end
server. Affinity is established once a packet’s destination IP address
matches the cluster, the destination port matches the Load Balancer port,
and the source IP address matches.

“Restricting incoming traffic with ipchains and iptables” on page 93
Built into the Linux kernel is a firewall facility called ipchains. When Load
Balancer and ipchains run concurrently, Load Balancer sees packets first,
followed by ipchains. This allows the use of ipchains to harden a Linux
Load Balancer machine, which could be, for example, a Load Balancer
machine that is used to load balance firewalls.

“Logging with Load Balancer” on page 94
Load Balancer posts entries to a server log, a manager log, a metric
monitor log (logging communications with Metric Server agents), and a log
for each advisor you use.

“Support for ICMP forwarding and messaging” on page 97
Load Balancer now supports forwarding and processing ICMP messages to

49

improve the robustness of connection protocols and permit Load Balancer
to receive ICMP fragmentation messages.

“Configure rules to manage traffic to busy or unavailable servers” on page 97
Use rules-based load balancing to fine tune when and why packets are sent
to which servers. Load Balancer reviews any rules you add from first
priority to last priority, stopping on the first rule that it finds to be true,
then load balancing the traffic between any servers associated with the
rule. It already balances the load based on the destination and port, but
using rules expands your ability to distribute connections.

“Sample scripts to generate alerts and record server failure” on page 99
Load Balancer provides user exits that trigger scripts that you can
customize. You can create the scripts to perform automated actions, such as
alerting an Administrator when servers are marked down by the manager
or simply record the event of the failure.

Enabling advisors to manage load balancing
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.

Before you begin

Advisors are agents within Load Balancer. Their purpose is to assess the health
and loading of server machines. They do this with a proactive client-like exchange
with the servers. Advisors can be considered as lightweight clients of the
application servers.

By writing your own advisors for the Load Balancer, you can customize how your
server machines’ load is determined.

For more information on how advisors work, read “Advisors” on page 53.

When using IPv6 protocols: If you are using IPv6 protocol on your machine and
want to use advisors, you must modify the protocol file. To enable IPv6, insert the
following line in the protocol file:
ipv6-icmp 58 IPv6-ICMP # IPv6 interface control message protocol

The protocol file is in the following directory:
v

/etc/protocols
v

C:\windows\system32\drivers\etc\

The product provides several protocol-specific advisors for the most popular
protocols. However, it does not make sense to use all of the provided advisors
with Load Balancer. Load Balancer also supports the concept of a “custom advisor”
that allows users to write their own advisors.

Limitation on using advisors with bind-specific server applications:

50 Load Balancer Administration Guide

v In order to use advisors on bind specific servers, start two instances of the
server: One instance to bind on the cluster@port and the other instance to bind
on the server@port. To determine if the server is bind specific, issue the netstat
-an command and look for the server@port. If the server is not bind specific, the
result from this command will be 0.0.0.0:80. If the server is bind specific, you
will see an address such as 192.168.15.103:80.

v If using arp publish instead of the ifconfig alias command, Load Balancer
will support the use of advisors when load-balancing servers with bind-specific
server applications when they are binding to the cluster IP address.

About this task

You can start an advisor for a particular port across all clusters (group advisor). Or,
you can choose to run different advisors on the same port, but on different clusters
(cluster specific advisor).

Note: If Load Balancer is running on a computer with multiple network adapter
cards, you cannot force the source IP address of the packet to a specific address
when you want the advisor traffic to flow over a particular adapter.
1. Start the advisor of your choice. For a list of possible advisors, refer to the list

of advisors, or create a custom advisor.
v Cluster specific advisor: To start an advisor on port 80 for clusterA, for

example, specify both the cluster and port:
dscontrol advisor start ADV_name clusterA@80

This command will start an advisor on port 80 for clusterA. This advisor will
advise on all servers attached to port 80 for clusterA.

v Group advisor: To start an advisor on port 80 for all other clusters, simply
specify the port:
dscontrol advisor start ADV_name 80

This command will start the advisor on port 80 for all clusters and sites that
do not currently have a cluster or site specific advisor. Your advisor will
advise on all servers attached to port 80.

a. Optional: If you are starting the HTTP or HTTPS advisor, you might want
to define a unique client URL string to allow the advisor to monitor
individual services in the server. For more information on this option, refer
to “Getting service-specific advice with the advisor request or response
option” on page 57.

b. Optional: If you are using the self advisor in two-tiered WAN configuration,
read rprf_selfadv2tier.dita for more information on how the self advisor
garners information.

2. Optional: Set the advisor interval. The advisor interval sets how often an
advisor asks for status from the servers on the port it is monitoring and then
reports the results to the manager. If the advisor interval is too low, it can mean
poor performance as a result of the advisor constantly interrupting the servers.
If the advisor interval is too high, it can mean that the manager’s decisions
about weighting will not be based on accurate, up-to-date information.

Note: The advisor defaults should work efficiently for the great majority of
possible scenarios. Be careful when entering values other than the defaults.
For example, to set the interval to 3 seconds for the HTTP advisor for port 80,
enter the following command:
dscontrol advisor interval http 80 3

Chapter 4. Administering Load Balancer 51

It does not make sense to specify an advisor interval that is smaller than the
manager interval. The default advisor interval is 7 seconds.

3. Optional: Set the advisor report timeout. To make sure that out-of-date
information is not used by the manager in its load-balancing decisions, the
manager will not use information from the advisor whose time stamp is older
than the time set in the advisor report timeout. The advisor report timeout
should be larger than the advisor polling interval. If the timeout is smaller, the
manager will ignore reports that logically should be used. By default, advisor
reports do not timeout — the default value is unlimited.
For example, to set the advisor report timeout to 30 seconds for the HTTP
advisor for port 80, enter the following command:
dscontrol advisor timeout http 80 30

For more information on setting the advisor report timeout, see “dscontrol
advisor” on page 139.

4. Optional: Set the advisors connect and receive timeout values. For Load
Balancer, you can set the advisor’s timeout values at which it detects a
particular port on the server (a service) is failed. The failed-server timeout
values (connecttimeout and receivetimeout) determine how long an advisor
waits before reporting that either a connect or receive has failed.
To obtain the fastest failed-server detection, set the advisor connect and receive
timeouts to the smallest value (one second), and set the advisor and manager
interval time to the smallest value (one second).

Note: If your environment experiences a moderate to high volume of traffic
such that server response time increases, be careful not to set the
connecttimeout and receivetimeout values too small, or the advisor may
prematurely mark a busy server as failed.
For example, to set the connecttimeout and receivetimeout to 9 seconds for the
HTTP advisor on port 80, type the following command:
dscontrol advisor connecttimeout http 80 9

dscontrol advisor receivetimeout http 80 9

The default for connect and receive timeout is 3 times the value specified for
the advisor interval time.

5. Optional: Set the advisor retry value. Advisors have the ability to retry a
connection before marking a server down. The advisor will not mark a server
down until the server query has failed the number of retries plus 1. The retry
value should be no larger than 3.
The following command sets a retry value of 2 for the LDAP advisor on port
389:
dscontrol advisor retry ldap 389 2

52 Load Balancer Administration Guide

Related tasks

“Getting advice with Metric Server” on page 59
Metric Server provides server load information to the Load Balancer in the form of
system-specific metrics, reporting on the health of the servers.

Advisors

Advisors periodically open a TCP connection with each server and send a request
message to the server. The content of the message is specific to the protocol
running on the server. For example, the HTTP advisor sends an HTTP “HEAD”
request to the server.

Advisors then listen for a response from the server. After getting the response, the
advisor makes an assessment of the server. To calculate this “load” value, most
advisors measure the time for the server to respond, and then use this value (in
milliseconds) as the load.

Advisors then report the load value to the manager function, where it appears in
the manager report in the “Port” column. The manager then calculates aggregate
weight values from all its sources, per its proportions, and sets these weight values
into the executor function. The Executor will then use these weights for load
balancing new incoming client connections.

If the advisor determines that a server is alive and functioning properly, it will
report a positive, non-zero load number to the Manager. If the advisor determines
that a server is not active, it will return a special load value of negative one (-1).
The Manager and the Executor will not forward any further connections to that
server until that server has come back up.

Note: Before sending the initial request message, the advisor will ping the server.
This is intended to provide quick status to determine if the machine is online.
After the server responds to the ping, no more pings are sent. To disable the pings,
add -DLB_ADV_NB_PING to the Load Balancer start script file.
Related tasks

“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.

List of advisors
Advisors are agents within Load Balancer. Their purpose is to assess the health
and loading of server machines. This list of advisors are already provided with
Load Balancer, but you can also write a custom advisor to suit specific needs.

Chapter 4. Administering Load Balancer 53

Table 10. List of advisors

Advisor Name Description

connect The connect advisor does not exchange any
protocol-specific data with the server. It
simply measures the time it takes to open
and close a TCP connection with the server.
This advisor is useful for server applications
which use TCP, but with a higher-level
protocol for which an IBM-supplied or
custom advisor is not available.

Custom advisors Dispatcher provides the ability for a
customer to write a custom (customizable)
advisor. This enables support for proprietary
protocols (on top of TCP) for which IBM has
not developed a specific advisor. For more
information, see “Creating a custom
advisor” on page 63.

db2 The DB2 advisor works in conjunction with
the DB2 servers. Dispatcher has the built in
capability of checking the health of DB2
servers without the need for customers to
write their own custom advisors. The DB2
advisor communicates with the DB2
connection port only, not the Java connection
port.

dns The DNS advisor opens a connection, sends
a pointer query for DNS, waits for a
response, closes the connection and returns
the elapsed time as a load.

ftp The FTP advisor opens a connection, sends a
SYST request, waits for a response, closes
the connection, and returns the elapsed time
as a load.

http The HTTP advisor opens a connection, sends
a HEAD request by default, waits for a
response connection, and returns the elapsed
time as a load. See “Getting service-specific
advice with the advisor request or response
option” on page 57for more information on
how to change the type of request sent by
the HTTP advisor.

https The HTTPS advisor is a �heavyweight�
advisor for SSL connections. It performs a
full SSL socket connection with the server.
The HTTPS advisor opens an SSL
connection, sends an HTTPS request, waits
for a response, closes the connnection, and
returns the elapsed time as a load. (See also
the SSL advisor, which is a �lightweight�
advisor for SSL connections.)
Note: The HTTPS advisor has no
dependency upon server key or certificate
content, but they must not be expired.

54 Load Balancer Administration Guide

Table 10. List of advisors (continued)

Advisor Name Description

imap The IMAP advisor opens a connection, waits
for an initial message from the server, sends
a quit command, closes the connection, and
returns the elapsed time as a load.

ldap The LDAP advisor opens a connection,
sends an anonymous BIND request, waits
for a response, closes the connection, and
returns the elapsed time as a load.

ldapuri Note: The LDAP URI advisor allows you
better gauge LDAP availability by
processing a complete request to the LDAP
server.

The advisor:

1. Opens a connection.

2. Sends a BIND request, which is based on
the advisorrequest field that you define
on the server object.

3. Waits for a response.

4. Closes the connection.

5. Returns the elapsed time as a load.

Read “Configuring the LDAP URI advisor”
on page 58 for more information on
configuring this advisor.

nntp The NNTP advisor opens a connection,
waits for an initial message from the server,
sends a quit command, closes the
connection, and returns the elapsed time as
a load.

ping The ping advisor does not open a TCP
connection with the servers, but instead
reports whether the server responds to a
ping. While the ping advisor may be used
on any port, it is also designed for
configurations using the wildcard port, over
which multiple protocol traffic may be
flowing. It is also useful for configurations
using non-TCP protocols with their servers.

pop3 The POP3 advisor opens a connection, waits
for an initial message from the server, sends
a quit command, closes the connection, and
returns the elapsed time as a load.

reach The reach advisor pings its target machines.
This advisor is also designed for the
Dispatcher’s high availability components to
determine reachability of its reach targets. Its
results flow to high availability component
and do not appear in the manager report.
Unlike the other advisors, the reach advisor
starts automatically by the manager function
of the Dispatcher component.

Chapter 4. Administering Load Balancer 55

Table 10. List of advisors (continued)

Advisor Name Description

sip The SIP advisor opens a connection, sends
an OPTIONS request, waits for a response,
closes the connection, and returns the
elapsed time as a load. The SIP advisor that
is supported runs on TCP only and requires
an application to be installed on a server
that responds to an OPTIONS request.

smtp The SMTP advisor opens a connection, waits
for an initial message from the server, sends
a quit, closes the connection, and returns the
elapsed time as a load.

ssl The SSL advisor is a �lightweight� advisor
for SSL connections. It does not establish a
full SSL socket connection with the server.
The SSL advisor opens a connection, sends
an SSL CLIENT_HELLO request, waits for a
response, closes the connection, and returns
the elapsed time as a load. (See also the
HTTPS advisor, which is a �heavyweight�
advisor for SSL connections.)
Note: The SSL advisor has no dependency
upon key management or certificates.

ssl2http The ssl2http advisor starts and advises on
the servers listed under port 443, but the
advisor will open a socket to the “mapport�
for HTTP requests.

self The self advisor collects load status
information on back-end servers. You can
use the self advisor when using Dispatcher
in a two–tiered configuration, where the
Dispatcher furnishes information from the
self advisor to the top-tiered Load Balancer.
The self advisor specifically measures the
connections per second rate on back-end
servers of the Dispatcher at the executor
level. See rprf_selfadv2tier.dita for more
information.

telnet The Telnet advisor opens a connection, waits
for an initial message from the server, closes
the connection, and returns the elapsed time
as a load.

was The WAS (WebSphere Application Server)
advisor works in conjunction with the
WebSphere Application servers.
Customizable sample files for this advisor
are provided in the installation directory. For
more information, see “Example:
Implementing the WAS advisor” on page 81.

56 Load Balancer Administration Guide

Table 10. List of advisors (continued)

Advisor Name Description

wlm The WLM (Workload Manager) advisor is
designed to work in conjunction with
servers on OS/390 mainframes running the
MVS™ Workload Manager (WLM)
component. For more information, see “The
Workload Management Advisor” on page
62.

Related tasks

“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.
“Configuring the LDAP URI advisor” on page 58
The LDAP URI advisor allows you better gauge Lightweight Directory Access
Protocol (LDAP) availability by processing a complete request to the LDAP server.
The LDAP URI advisor opens a connection to the LDAP serve and sends a BIND
request that is based on the advisorrequest field that you define on the server
object. The advisor then waits for a response from the LDAP server and returns
the elapsed time as a load.

Getting service-specific advice with the advisor request or
response option

After you have started an HTTP or HTTPS advisor, you can define a unique client
HTTP URL string, specific for the service that you want to query on the server.
This allows the advisor to assess the health of the individual services within a
server.

About this task

For each defined logical server under the HTTP port you can specify a unique
client HTTP URL string, specific for the service that you want to query on the
server. The HTTP or HTTPS advisor uses the advisorrequest string to query the
health of the servers. The default value is ″HEAD / HTTP/1.0.″

The advisorresponse string is the response that the advisor scans for in the HTTP
response. The advisor uses the advisorresponse string to compare to the real
response that is received from the server. The default value is null.
v Issue the server set command with the advisorrequest and advisorresponse

parameters.
– When issuing the command from the dscontrol>> shell prompt, you must

place quotes around the string if a blank is contained within the string. For
example:
server set cluster@port@server advisorrequest "head / http/1.0"

server set cluster@port@server advisorresponse "HTTP 200 OK"

– When issuing the dscontrol command from the operating system prompt,
you must precede the text with �\� and follow the text with \″″. For
example:

Chapter 4. Administering Load Balancer 57

dscontrol server set cluster@port@server advisorrequest "\"head / http/1.0\""

dscontrol server set cluster@port@server advisorresponse "\"HTTP 200 OK\""

When you create the request that the HTTP or HTTPS advisor sends to back-end
servers to see if they are functioning, you type the start of the HTTP request and
Load Balancer completes the end of the request with the following:
\r\nAccept:
/\r\nUser-Agent:IBM_Network_Dispatcher_HTTP_Advisor\r\n\r\n

v Optional: If you want to add other HTTP header fields before Load Balancer
appends this string to the end of the request, you can do so by including your
own \r\n string in the request. The following is an example of what you might
type to add the HTTP host header field to your request:
GET /pub/WWW/TheProject.html HTTP/1.0 \r\nHost: www.w3.org

Note: After starting an HTTP or HTTPS advisor for a specified HTTP port
number, the advisor request and response value is enabled for servers under
that HTTP port. See “dscontrol server” on page 160 for more information.

Related tasks

“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.

Configuring the LDAP URI advisor
The LDAP URI advisor allows you better gauge Lightweight Directory Access
Protocol (LDAP) availability by processing a complete request to the LDAP server.
The LDAP URI advisor opens a connection to the LDAP serve and sends a BIND
request that is based on the advisorrequest field that you define on the server
object. The advisor then waits for a response from the LDAP server and returns
the elapsed time as a load.

About this task

In situations in which you cannot perform an anonymous bind request to an LDAP
server, you can use the LDAP URI advisor to bind with an LDAP server that
requires a user name and password. The LDAP URI advisor might provide a more
precise measurement of workload, since the LDAP server will be required to
process a complete request rather perform only an anonymous bind.
1. Set the advisorrequest field for the server that will use the LDAP URI advisor.

a. Set the advisorrequest field on the server object with the dscontrol server
command. Use the following guidelines for setting the advisorrequest field:
v Set the advisorrequest field to an LDAP:// URL request that is compliant

with the RFC2255 - The LDAP URL Format.
v Use the bindname extension to perform a bind request that is not

anonymous.
v Load Balancer extends the LDAP URL base with the bindpass extension,

allowing you to supply the password for the LDAP server on the URL
line. This password must be provided as an optional extension to
preserve the portability of the URL.

For example:
dscontrol server set cluster@server@port advisorrequest "ldap://ldap1.mycompany.com:389/ou=development,o=mycompany.com??sub?(mail=user@mycompany.

58 Load Balancer Administration Guide

http://www.ietf.org/rfc/rfc2255.txt

Note: Be aware of the ?!bindpass=MYPASS extension that is used above.
Replace MYPASS with the password that is used to authenticate the LDAP
request.

b. Optional: Set the advisorresponse field on the server object. If you set this
field, you must set the value to a substring that is expected to be present in
the response from the LDAP server.

2. Start the LDAP URI advisor. To start the LDAP URI advisor, use the dscontrol
advisor command:
dscontrol advisor start ldapuri cluster@port

Note: Verify that you are using the LDAP URI advisor, and not the LDAP
advisor. The LDAP advisor only supports anonymous bind requests to LDAP
servers.

Related concepts

“Advisors” on page 53
Related reference

“Getting service-specific advice with the advisor request or response option” on
page 57
After you have started an HTTP or HTTPS advisor, you can define a unique client
HTTP URL string, specific for the service that you want to query on the server.
This allows the advisor to assess the health of the individual services within a
server.
“List of advisors” on page 53
Advisors are agents within Load Balancer. Their purpose is to assess the health
and loading of server machines. This list of advisors are already provided with
Load Balancer, but you can also write a custom advisor to suit specific needs.
“dscontrol advisor” on page 139
Use this command to control various features of the advisor function.
Related information

“dscontrol server” on page 160
Configure servers and modify existing server configurations with the dscontrol
server command.

Getting advice with Metric Server
Metric Server provides server load information to the Load Balancer in the form of
system-specific metrics, reporting on the health of the servers.

Before you begin

The Metric Server agent must be installed and running on all servers that are being
load balanced.

If you are using IPv6 protocol on your machine and want to use Metric Server, you
must check to see if protocol 58 is defined to be ICMPv6 in the protocol file.

When using IPv6 protocols: If you are using IPv6 protocol on your machine and
want to use advisors, you must modify the protocol file. To enable IPv6, insert the
following line in the protocol file:
ipv6-icmp 58 IPv6-ICMP # IPv6 interface control message protocol

The protocol file is in the following directory:
v

Chapter 4. Administering Load Balancer 59

/etc/protocols
v

C:\windows\system32\drivers\etc\

Metric Server Restriction: Like the Metric Server agent, the WLM agent reports on
server systems as a whole, rather than on individual protocol-specific server
daemons. Metric Server and WLM place their results into the system column of the
manager report. As a consequence, running both the WLM advisor and Metric
Server at the same time is not supported.

About this task

The Load Balancer manager queries the Metric Server agent residing on each of the
servers, assigning weights to the load balancing process using the metrics gathered
from the agents. The results are also placed into the manager report.

Note: When two or more metrics are gathered and normalized for each server into
a single system load value, rounding errors may occur.
1. Configure Metric Server on the Load Balancer machine.

a. Start dsserver. Start the executor, and add clusters, ports and servers to
your configuration.

b. Start the manager. Issue the command:
dscontrol manager start manager.log port

where port is the RMI port chosen for all the Metric Server agents to run on.
The default RMI port that is set in the metricserver.cmd file is 10004.

c. Add the system metric script to the cluster. Issue the command:
dscontrol metric add cluster@systemMetric

systemMetric is the name of the script (residing on the back-end server)
which should run on each of the servers in the configuration under the
specified cluster. Two scripts are provided for the customer - cpuload and
memload - or you can create custom system metric scripts.
The script contains a command which should return a numeric value in the
range of 0-100 or a value of -1 if the server is down. This numeric value
should represent a load measurement, not an availability value.

Note: If the name of your System Metric script has an extension other
than �.exe�, you must specify the full name of the file (for example,
�mysystemscript.bat�). This is due to a Java limitation.

d. Add to the configuration only servers that contain a Metric Server agent
running on the port specified in the metricserver.cmd file. The port should
match the port value specified in the manager start command.

Note: To ensure security:
v On the Load Balancer machine, create a key file (using the lbkeys create

command).
v On the back-end server machine, copy the resulting key file, for the

component you are using, to the install_root/admin/keys directory. Verify
that the key file’s permissions enable the file to be readable by the root.

2. Configure Metric Server on the server machines.
a. Install the Metric Server package from the Load Balancer installation files.

60 Load Balancer Administration Guide

b. Check the metric server script in the install_root/ms/bin directory to verify
that the desired RMI port is being used. The default RMI port is 10004.

Note: The RMI port value specified must be the same value as the RMI
port value that was specified in the manager start command in Step 1b.

c. Optional: You can write their own customized metric script files which
define the command that the Metric Server will issue on the server
machines. Ensure that any custom scripts are executable and located in the
install_root/ms/script directory. Custom scripts must return a numeric load
value in the range of 0-100.

Note: A custom metric script must be a valid program or script with a
�.bat� or �.cmd� extension.

Specifically, for Linux and other UNIX-based systems, scripts must
begin with the shell declaration, otherwise they may not properly run.
The following two scripts are provided for the customer in the
install_root/ms/script directory:
v cpuload: returns the percentage of cpu in use ranging from 0-100
v memload: returns the percentage of memory in use ranging from 0-100.

d. Start the metric server agent. On a command line of each server machine
where Metric Server resides, type
metricserver start

Click Start > Control Panel > Administrative Tools > Services. Right-click
IBM Metric Server (ULB) and select Start.

e. Optional: Stop the metric server agent.
To stop the Metric Server agent, issue this command on every server

machine where Metric Server resides:
metricserver stop

Click Start > Control Panel > Administrative Tools > Services. Right-click
IBM Metric Server (ULB) and select Stop.

3. Optional: Change the log level in the Metric Server startup script. You can
specify a log level range of 0 through 5, similar to the log level range in Load
Balancer logs. This will generate an agent log in the install_root/ms/logs
directory.

4. Optional: To have Metric Server run on an address other than the local host,
you need to edit the metricserver file on the load balanced server machine.

Note: When gathering metrics across different domains, you must explicitly set
the java.rmi.server.hostname in the server script (dsserver, etc) to the fully
qualified domain name (FQDN) of the machine that is requesting the metrics.
This is necessary because InetAddress.getLocalHost.getHostName() might not
return the FQDN.
a. After the occurrence of �java� in the metricserver file, insert the following:

-Djava.rmi.server.hostname=OTHER_ADDRESS

b. Before the �if� statements in the metricserver file, add the following line:
hostname OTHER_ADDRESS

c. You will also need to alias the OTHER_ADDRESS on the Microsoft stack
of the Metric Server machine. For example:
call netsh interface ip add address "Local Area Connection"

addr=9.37.51.28 mask=255.255.240.0

Chapter 4. Administering Load Balancer 61

5. Optional: Configure Metric Server for IPv4 only or IPv6 only. In a Load
Balancer configuration that supports both IPv4 and IPv6 clusters, servers that
run the Metric Server function can be configured as an IPv4 server only or as
an IPv6 server only, but not both. To force Metric Server to use a particular IP
protocol, specify the Java property java.rmi.server.hostname in the metricserver
script.

Note: The host name specified in the Java property must be the physical IP
address of the Metric Server.
v For Metric Server to communicate over the IPv6 address

2002:92a:8f7a:162:9:42:92:67, specify the Java property after $LB_CLASSPATH
in the metricserver startup script, in the install_root/bin directory, as follows:
install_root/java/jre/bin/java $ULB_CLASSPATH
-Djava.rmi.server.hostname=2002:92a:8f7a:162:9:42:92:67
com.ibm.internet.nd.sma.SMA_Agent $LB_RMIPORT $LOG_LEVEL $LOG_SIZE $LOG_DIRECTORY $KEYS_DIRECTORY
$SCRIPT_DIRECTORY &

v For Metric Server to communicate over the IPv6 address
2002:92a:8f7a:162:9:42:92:67, you must edit the metricserver.cmd file, in the
install_root/bin directory, as follows:
start
/min /wait %IBMULBPATH%\java\jre\bin\java
-Djava.rmi.server.hostname=2002:92a:8f7a:162:9:42:92:67
-Djava.net.preferIPv4Stack=false
-Djava.net.preferIPv6Stack=true -Xrs -cp
%LB_CLASSPATH% com.ibm.internet.nd.sma.SMA_Agent
%RMI_PORT% %LOG_LEVEL% %LOG_SIZE% %LOG_DIRECTORY% %KEYS_DIRECTORY%
%SCRIPT_DIRECTORY%
goto done

:stop
%IBMLBPATH%\java\jre\bin\java
-Djava.rmi.server.hostname=2002:92a:8f7a:162:9:42:92:67
-Djava.net.preferIPv4Stack=false
-Djava.net.preferIPv6Stack=true -cp %LB_CLASSPATH% com.ibm.internet.nd.sma.SMA_AgentStop %RMI_PORT%
:done

Related tasks

Tuning
“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.

The Workload Management Advisor
WLM is code that runs on MVS mainframes. It can be queried to ask about the
load on the MVS machine. When MVS Workload Management has been configured
on your OS/390 system, Dispatcher can accept capacity information from WLM
and use it in the load balancing process.

Using the WLM advisor, Dispatcher will periodically open connections through the
WLM port on each server in the Dispatcher host table and accept the capacity
integers returned. Because these integers represent the amount of capacity that is
still available and Dispatcher expects values representing the loads on each
machine, the capacity integers are inverted by the advisor and normalized into

62 Load Balancer Administration Guide

welcome_tuning.html

load values (that is, a large capacity integer but a small load value both represent a
healthier server). The resulting loads are placed into the System column of the
manager report.

There are several important differences between the WLM advisor and other
Dispatcher advisors:
v Other advisors open connections to the servers using the same port on which

flows normal client traffic. The WLM advisor opens connections to the servers
using a port different from normal traffic. The WLM agent on each server
machine must be configured to listen on the same port on which the Dispatcher
WLM Advisor is started. The default WLM port is 10007.

v Other advisors only assess those servers defined in the Dispatcher
cluster@port@server configuration for which the server’s port matches the
advisor’s port. The WLM advisor advises upon every server in the Dispatcher
configuration (regardless of the cluster@port). Therefore you must not define any
non-WLM servers when using the WLM advisor.

v Other advisors place their load information into the manager report under its
“Port” column. The WLM advisor places its load information into the manager
report under its system column.

v It is possible to use both protocol-specific advisors along with the WLM advisor.
The protocol-specific advisors will poll the servers on their normal traffic ports,
and the WLM advisor will poll the system load using the WLM port.

Metric Server Restriction: Like the Metric Server agent, the WLM agent reports on
server systems as a whole, rather than on individual protocol-specific server
daemons. Metric Server and WLM place their results into the system column of the
manager report. As a consequence, running both the WLM advisor and Metric
Server at the same time is not supported.
Related tasks

“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.

Creating a custom advisor
A custom advisor is a small piece of Java code, provided as a class file, that is
called by the Load Balancer base code to determine the load on a server. The base
code provides all necessary administrative services, including starting and
stopping an instance of the custom advisor, providing status and reports, recording
history information in a log file, and reporting advisor results to the manager
component.

About this task

Custom advisors are called after native, or standard, advisors have been searched.
If the Load Balancer does not find a specified advisor among the list of standard
advisors, it consults the list of custom advisors. When the Load Balancer base code
calls a custom advisor, the following steps happen:
1. The Load Balancer base code opens a connection with the server machine.
2. If the socket opens, the base code calls the specified advisor’s GetLoad

function.

Chapter 4. Administering Load Balancer 63

3. The advisor’s GetLoad function performs the steps that the user has defined for
evaluating the server’s status, including waiting for a response from the server.
The function terminates execution when the response is received.

4. The Load Balancer base code closes the socket with the server and reports the
load information to the manager. Depending on whether the custom advisor
operates in normal mode or in replace mode, the base code sometimes does
additional calculations after the GetLoad function terminates.

Custom advisors can be designed to interact with the Load Balancer in either
normal mode or replace mode. The choice for the mode of operation is specified in
the custom advisor file as a parameter in the constructor method. (Each advisor
operates in only one of these modes, based on its design.)
v Normal mode: the custom advisor exchanges data with the server, and the base

advisor code times the exchange and calculates the load value. The base code
then reports this load value to the manager. The custom advisor returns the
value zero to indicate success, or negative one to indicate an error.
To specify normal mode, set the replace flag in the constructor to false.

v Replace mode: the base code does not perform any timing measurements. The
custom advisor code performs whatever operations are specified, based on its
unique requirements, and then returns an actual load number. The base code
accepts the load number and reports it, unaltered, to the manager. For best
results, normalize your load numbers between 10 and 1000, with 10 representing
a fast server and 1000 representing a slow server.
To specify replace mode, set the replace flag in the constructor to true.

Like all advisors, a custom advisor extends the functionality of the advisor base
class, which is called ADV_Base. The advisor base performs most of the advisor’s
functions, such as reporting loads back to the manager for use in the manager’s
weight algorithm. The advisor base also performs socket connect and close
operations and provides send and receive methods for use by the advisor. The
advisor is used only for sending and receiving data on the specified port for the
server that is being investigated. The TCP methods provided within the advisor
base are timed to calculate load. A flag within the constructor of the advisor base
overwrites the existing load with the new load returned from the advisor, if
desired.

Note: Based on a value set in the constructor, the advisor base supplies the load to
the weight algorithm at specified intervals. If the advisor has not completed
processing and cannot return a valid load, the advisor base uses the previously
reported load.
1. Name your advisor. Custom advisor file names must follow the form

ADV_name.java, where name is the name that you choose for your advisor.

Note:

v You must use the ADV_ prefix for the advisor name.
v You must name the custom advisor using lower-case alphabetic characters to

eliminate case sensitivity when an operator types commands on a command
line.

v The custom advisor class must be located within the install_root/lib/
CustomAdvisors subdirectory.

v According to Java conventions, the name of the class defined within the file
must match the name of the file.

64 Load Balancer Administration Guide

2. Write your custom advisor. Read “Custom advisor methods and function calls”
on page 66 for a list of methods and function calls to use in your advisor. Be
aware that custom advisors need to have all the required routines. Advisors
must have the following base class methods:
v A constructor routine. The constructor calls the base class constructor.
v An ADV_AdvisorInitialize method. This method provides a way to perform

additional steps after the base class completes its initialization.
v A getLoad routine. The base advisor class performs the socket opening; the

getLoad function only needs to issue the appropriate send and receive
requests to complete the advising cycle.

3. Compile the advisor.
v You must write custom advisors in the Java language and compile them with

a Java compiler that is at the same level as the Load Balancer code. To check
the version of Java on your system, run the following command from the
install_root/java/bin directory:
java -fullversion

If the current directory is not part of your path, you will need to specify that
Java should be run from the current directory to ensure you are getting the
correct version information. In this case, run the following command from
the install_root/java/bin directory:
./java -fullversion

v The following files are referenced during compilation:
– The custom advisor file.
– The base classes file, ibmnd.jar, which is found in the

install_root/servers/lib directory.
v Your classpath environment variable must point to both the custom advisor

file and the base classes file during the compilation. A compile command
might have the following format, if your advisor is in the current directory:
install_path/java/bin/javac -classpath install_root/servers/lib/ibmlb.jar ADV_name.java

v The output of the compilation is a class file, for example, ADV_name.class.
Before starting the advisor, copy the class file to the install_root/servers/
lib/CustomAdvisors/ directory.

Note: You can compile custom advisors on one operating system and run on
another operating system. For example, you can compile your advisor on a
Windows system, copy the resulting class file, in binary format, to a Linux
machine, and run the custom advisor there. For AIX, HP-UX, Linux, and Solaris
operating systems, the syntax is similar.

4. Run your custom advisor. Custom advisors are called after native, or standard,
advisors are searched. If Load Balancer does not find a specified advisor among
the list of standard advisors, it consults the list of custom advisors.
a. If you have not already done so, copy the advisor’s class file to the

CustomAdvisors subdirectory on the Load Balancer machine. For example,
for a custom advisor named myping, the file path is install_root/servers/
lib/CustomAdvisors/ADV_myping.class.

b. Configure the Load Balancer, start its manager function, and issue the
command to start your custom advisor. The custom advisor is specified by
its name, excluding the ADV_ prefix and the file extension:
dscontrol advisor start name.ext port

The port number specified in the command is the port on which the advisor
will open a connection with the target server.

Chapter 4. Administering Load Balancer 65

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Custom advisor methods and function calls
Use the following advisor methods and function calls in your custom advisors.

Be aware that custom advisors need to have all the required routines. Advisors
must have the following base class methods:
v A constructor routine. The constructor calls the base class constructor.
v An ADV_AdvisorInitialize method. This method provides a way to perform

additional steps after the base class completes its initialization.
v A getLoad routine. The base advisor class performs the socket opening; the

getLoad function only needs to issue the appropriate send and receive requests
to complete the advising cycle.

Constructor (provided by advisor base)
public <advisor_name> {

String sName;
String sVersion;
int iDefaultPort;
int iInterval;
String sDefaultLogFileName;
boolean replace

)

sName
The name of the custom advisor

sVersion
The version of the custom advisor.

iDefaultPort
The port number on which to contact the server if no port number is specified
in the call.

iInterval
The interval at which the advisor will query the servers.

sDefaultLogFileName
This parameter is required but not used. The only acceptable value is a null
string, ″″

replace
Whether or not this advisor functions in replace mode. Possible values are the
following:
v true – Replace the load calculated by the advisor base code with the value

reported by the custom advisor.
v false – Add the load value reported by the custom advisor to the load value

calculated by the advisor base code.

ADV_AdvisorInitialize() method
void ADV_AdvisorInitialize()

This method is provided to perform any initialization that might be required for
the custom advisor. This method is called after the advisor base module starts. In
many cases, including the standard advisors, this method is not used and its code

66 Load Balancer Administration Guide

consists of a return statement only. This method can be used to call the
“suppressBaseOpeningSocket()” on page 70 method, which is valid only from
within this method.

In many cases, including the standard advisors, this method is not used and its
code consists of a return statement only. You can use this method to call the
suppressBaseOpeningSocket method, which is valid only from within the
ADV_AdvisorInitialize method.

ADVLOG() method

The ADVLOG function allows a custom advisor to write a text message to the
advisor base log file. The format follows:
void ADVLOG (int logLevel, String message)

This command has the following parameters:

logLevel
The status level at which the message is written to the log file. The advisor log
file is organized in stages; the most urgent messages are given status level 0
and less urgent messages receive higher numbers. The most verbose type of
message is given status level 5. These levels are used to control the types of
messages that the user receives in real time (The dscontrol command is used to
set verbosity). Catastrophic errors should always be logged at level 0.

message
The message to write to the log file. The value for this parameter is a standard
Java string.

getAdvisorName function

The getAdvisorName function returns a Java string with the suffix portion of your
custom advisor name. For example, for an advisor named ADV_cdload.java, this
function returns the value cdload.

This function does not take parameters.

Note: It is not possible for this value to change during one instantiation of an
advisor.

caller.getCurrentServerId()

The getCurrentServerId function returns a Java string which is a unique
representation for the current server. Typically, this value changes each time you
call your custom advisor, because the advisor base code queries all server
machines in series.

This function takes no parameters.

caller.getCurrentClusterId()

The getCurrentClusterId function call returns a Java string which is a unique
representation for the current cluster. Typically, this value changes each time you
call your custom advisor, because the advisor base queries all clusters in series.

This function takes no parameters.

Chapter 4. Administering Load Balancer 67

caller.getSocket()

The getSocket function call returns a Java socket which represents the socket
opened to the current server for communication.

This function takes no parameters.

caller.getLatestLoad()

The getLatestLoad function allows a custom advisor to obtain the latest load value
for a given server object. The load values are maintained in internal tables by the
advisor base code and the manager daemon. This function call is useful if you
want to make the behavior of one protocol or port dependent on the behavior of
another. For example, you might use this function call in a custom advisor that
disabled a particular application server if the Telnet server on that same machine
was disabled.

The syntax is:
int caller.getLatestLoad (String clusterId, int port, String serverId)

The three arguments together define one server object.

This command has the following parameters:

clusterId
The cluster identifier of the server object for which to obtain the current load
value. This argument must be a Java string.

port
The port number of the server object for which to obtain the current load
value.

serverId
The server identifier of the server object for which to obtain the current load
value. This argument must be a Java string. The return value is an integer.
v A positive return value represents the actual load value assigned for the

object that was queried.
v The value -1 indicates that the server asked about is down.
v The value -2 indicates that the status of the server asked about is unknown.

caller.receive()

The receive function gets information from the socket connection. The syntax is:
caller.receive(StringBuffer *response)

This command has the following parameters:

response
This is a string buffer into which the retrieved data is placed. Additionally, the
function returns an integer value with the following significance:
v 0 indicates data was sent successfully.
v A negative number indicates an error.

68 Load Balancer Administration Guide

caller.send()

The send function uses the established socket connection to send a packet of data
to the server, using the specified port. The syntax is as follows:
caller.send(String command)

This command has the following parameters:

command
This is a string containing the data to send to the server. The function returns
an integer value with the following significance:
v 0 indicates data was sent successfully.
v A negative number indicates an error.

getLoad()
int getLoad(int iConnectTime; ADV_Thread *caller)

This function has the following parameters:

iConnectTime
The length of time, in milliseconds, that it took the connection to complete.
This load measurement is performed by the advisor base code and passed to
the custom advisor code, which can use or ignore the measurement when
returning the load value. If the connection fails, this value is set to -1.

caller
The instance of the advisor base class where advisor base methods are
provided.Function calls available to custom advisors: The methods, or
functions, described in the following sections can be called from custom
advisors. These methods are supported by the advisor base code. Some of
these function calls can be made directly, for example, function_name(), but
others require the prefix caller. Caller represents the base advisor instance that
supports the custom advisor that is being executed.

getAdviseOnPort()

The getAdviseOnPort function returns the port number on which the calling
custom advisor is running.

The return value is a Java integer (int), and the function does not take parameters.

Note: It is not possible for this value to change during one instantiation of an
advisor.

getAdvisorName()

The getAdvisorName function returns a Java string with the suffix portion of your
custom advisor’s name. For example, for an advisor named ADV_cdload.java, this
function returns the value cdload. This function takes no parameters. Note that it
is not possible for this value to change during one instantiation of an advisor.

getInterval()

The getInterval function returns the advisor interval, that is, the number of seconds
between advisor cycles. This value is equal to the default value set in the custom
advisor’s constructor, unless the value has been modified at run time by using the
dscontrol command. The return value is a Java integer (int).

Chapter 4. Administering Load Balancer 69

The function takes no parameters.

suppressBaseOpeningSocket()

The suppressBaseOpeningSocket function call allows a custom advisor to specify
whether the base advisor code opens a TCP socket to the server on the custom
advisor’s behalf. If your advisor does not use direct communication with the
server to determine its status, it might not be necessary to open this socket. This
function call can be issued only once, and it must be issued from the
“ADV_AdvisorInitialize() method” on page 66 routine.

The function takes no parameters.
Related tasks

“Creating a custom advisor” on page 63
A custom advisor is a small piece of Java code, provided as a class file, that is
called by the Load Balancer base code to determine the load on a server. The base
code provides all necessary administrative services, including starting and
stopping an instance of the custom advisor, providing status and reports, recording
history information in a log file, and reporting advisor results to the manager
component.
Related reference

“Example: Sample advisor”
This is a sample advisor file called ADV_sample.

Example: Sample advisor
This is a sample advisor file called ADV_sample.
/ * *
* ADV_sample: The Load Balancer HTTP advisor
*
*
* This class defines a sample custom advisor for Load Balancer. Like all
* advisors, this custom advisor extends the function of the advisor base,
* called ADV_Base. It is the advisor base that actually performs most of
* the advisor's functions, such as reporting loads back to the Load Balancer
* for use in the Load Balancer's weight algorithm. The advisor base also
* performs socket connect and close operations and provides send and receive
* methods for use by the advisor. The advisor itself is used only for
* sending and receiving data to and from the port on the server being
* advised. The TCP methods within the advisor base are timed to calculate
* the load. A flag within the constructor in the ADV_base overwrites the
* existing load with the new load returned from the advisor if desired.
*
* Note: Based on a value set in the constructor, the advisor base supplies
* the load to the weight algorithm at specified intervals. If the actual
* advisor has not completed so that it can return a valid load, the advisor
* base uses the previous load.
*
* NAMING
*
* The naming convention is as follows:
*
* - The file must be located in the following Load Balancer directory:
*
* ulb/servers/lib/CustomAdvisors/ (ulb\servers\lib\CustomAdvisors on Windows)
*
* - The Advisor name must be preceded with "ADV_". The advisor can be
* started with only the name, however; for instance, the "ADV_sample"
* advisor can be started with "sample".
*
* - The advisor name must be in lowercase.
*

70 Load Balancer Administration Guide

* With these rules in mind, therefore, this sample is referred to as:
*
* <base directory="">/lib/CustomAdvisors/ADV_sample.class
*
*
* Advisors, as with the rest of Load Balancer, must be compiled with the
* prerequisite version of Java. To ensure access to Load Balancer classes, make
* sure that the ibmlb.jar file (located in the lib subdirectory of the base
* directory) is included in the system's CLASSPATH.
*
* Methods provided by ADV_Base:
*
* - ADV_Base (Constructor):
*
* - Parms
* - String sName = Name of the advisor
* - String sVersion = Version of the advisor
* - int iDefaultPort = Default port number to advise on
* - int iInterval = Interval on which to advise on the servers
* - String sDefaultName = Unused. Must be passed in as "".
* - boolean replace = True - replace the load value being calculated
* by the advisor base
* False - add to the load value being calculated
* by the advisor base
* - Return
* - Constructors do not have return values.
*
* Because the advisor base is thread based, it has several other methods
* available for use by an advisor. These methods can be referenced using
* the CALLER parameter passed in getLoad().
*
* These methods are as follows:
*
* - send - Send a packet of information on the established socket connection
* to the server on the specified port.
* - Parms
* - String sDataString - The data to be sent in the form of a string
* - Return
* - int RC - Whether the data was sucessfully sent or not: zero indicates
* data was sent; a negative integer indicates an error.
*
* - receive - Receive information from the socket connection.
* - Parms
* - StringBuffer sbDataBuffer - The data received during the receive call
* - Return
* - int RC - Whether the data was successfully received or not; zero
* indicates data was sent; a negative integer indicates
* an error.
*
* If the function provided by the advisor base is not sufficient,
* you can create the appropriate function within the advisor and
* the methods provided by the advisor base will then be ignored.
*
* An important question regarding the load returned is whether to apply
* it to the load being generated within the advisor base,
* or to replace it; there are valid instances of both situations.
*
* This sample is essentially the Load Balancer HTTP advisor. It functions
* very simply: a send request--an http head request--is issued. Once a
* response is received, the getLoad method terminates, flagging the advisor
* base to stop timing the request. The method is then complete. The
* information returned is not parsed; the load is based on the time
* required to perform the send and receive operations.
*/

package CustomAdvisors;
import com.ibm.internet.nd.advisors.*;

Chapter 4. Administering Load Balancer 71

public class ADV_sample extends ADV_Base implements ADV_MethodInterface
{

String COPYRIGHT =
"(C) Copyright IBM Corporation 1997, All Rights Reserved.\n";

static final String ADV_NAME = "Sample";
static final int ADV_DEF_ADV_ON_PORT = 80;
static final int ADV_DEF_INTERVAL = 7;

// Note: Most server protocols require a carriage return ("\r") and line
// feed ("\n") at the end of messages. If so, include them in
// your string here.

static final String ADV_SEND_REQUEST =
"HEAD / HTTP/1.0\r\nAccept: */ *\r\nUser-Agent: " +
"IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";

/**
* Constructor.
*
* Parms: None; but the constructor for ADV_Base has several parameters
* that must be passed to it.
*
*/
public ADV_sample()
{

super(ADV_NAME,
"2.0.0.0-03.27.98",

ADV_DEF_ADV_ON_PORT,
ADV_DEF_INTERVAL,
"", // not used false);

super.setAdvisor(this);
}

/**
* ADV_AdvisorInitialize
*
* Any Advisor-specific initialization that must take place after the
* advisor base is started. This method is called only once and is
* typically not used.
*/
public void ADV_AdvisorInitialize()
{

return;
}

/**
* getLoad()
*
* This method is called by the advisor base to complete the advisor's
* operation, based on details specific to the protocol. In this sample
* advisor, only a single send and receive are necessary; if more complex
* logic is necessary, multiple sends and receives can be issued. For
* example, a response might be received and parsed. Based on the
* information learned thereby, another send and receive could be issued.
*
* Parameters:
*
* - iConnectTime - The current load as it refers to the length of time it
* took to complete the connection to the server through
* the specified port.
*
* - caller - A reference to the advisor base class where the Load
* Balancer-supplied methods are to perform simple TCP requests,
* mainly send and receive.
*
* Results:

72 Load Balancer Administration Guide

*
* - The load - A value, expressed in milliseconds, that can either be added
* to the existing load, or that can replace the existing load, as
* determined by the constructor's "replace" flag.
*
* The larger the load, the longer it took the server to respond;
* therefore, the lower the weight will become within the Load Balancer.
*
* If the value is negative, an error is assumed. An error from an
* advisor indicates that the server the advisor is trying to reach is not
* accessible and has been identified as being down. Load Balancer will
* not attempt to load balance to a server that is down. Load Balancer will
* resume load balancing to the server when a positive value is received.
*
*/
public int getLoad(int iConnectTime, ADV_Thread caller)
{

int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1

// Send tcp request iRc = caller.send(ADV_SEND_REQUEST);
if (iRc >= 0)
{

// Perform a receive
StringBuffer sbReceiveData = new StringBuffer("");
iRc = caller.receive(sbReceiveData);

/**
* In the normal advisor mode ("replace" flag is false), the load
* returned is either 0 or 1 indicating the server is up or down.
* If the receive is successful, a load of zero is returned
* indicating that the load built within the base advisor is to be used.
*
* Otherwise ("replace" flag is true), return the desired load value.
*/

if (iRc >= 0)
{

iLoad = 0;
}

}
return iLoad;

}
} // End - ADV_sample

Example: Implementing standard advisors:

The following example demonstrates how to use a standard custom advisor.

This sample source code is similar to the standard Load Balancer HTTP advisor. It
functions as follows:
1. A send request, a ″HEAD/HTTP″ command, is issued.
2. A response is received. The information is not parsed, but the response causes

the getLoad method to terminate.
3. The getLoad method returns 0 to indicate success or -1 to indicate a failure.

This advisor operates in normal mode, so the load measurement is based on the
elapsed time in milliseconds required to perform the socket open, send, receive,
and close operations.
package CustomAdvisors;
import com.ibm.internet.lb.advisors.*;
public class ADV_sample extends ADV_Base implements ADV_MethodInterface {

static final String ADV_NAME ="Sample";

Chapter 4. Administering Load Balancer 73

static final int ADV_DEF_ADV_ON_PORT = 80;
static final int ADV_DEF_INTERVAL = 7;
static final String ADV_SEND_REQUEST =

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";

//--------
// Constructor

public ADV_sample() {
super(ADV_NAME, "3.0.0.0-03.31.00",

ADV_DEF_ADV_ON_PORT, ADV_DEF_INTERVAL, "",
false);

super.setAdvisor(this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize() {
return; // usually an empty routine

}

//--------
// getLoad

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // initialize to inaccessible

iRc = caller.send(ADV_SEND_REQUEST); // send the HTTP request to
// the server

if (0 <= iRc) { // if the send is successful
StringBuffer sbReceiveData = new StringBuffer(""); // allocate a buffer

// for the response
iRc = caller.receive(sbReceiveData); // receive the result

// parse the result here if you need to

if (0 <= iRc) { // if the receive is successful
iLoad = 0; // return 0 for success

} // (advisor's load value is ignored by
} // base in normal mode)
return iLoad;

}
}

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing a side stream advisor:

The following example demonstrates how a side stream advisor can be
implemented. This sample illustrates suppressing the standard socket opened by
the advisor base. Instead, this advisor opens a side stream Java socket to query a
server. This procedure can be useful for servers that use a different port from
normal client traffic to listen for an advisor query.

In this example, a server is listening on port 11999 and when queried returns a
load value with a hexadecimal int ″4″. This sample runs in replace mode, that is,
the last parameter of the advisor constructor is set to true and the advisor base
code uses the returned load value rather than the elapsed time.

Note the call to supressBaseOpeningSocket() in the initialization routine.
Suppressing the base socket when no data will be sent is not required. For

74 Load Balancer Administration Guide

example, you might want to open the socket to ensure that the advisor can contact
the server. Examine the needs of your application carefully before making this
choice.
package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.lb.advisors.*;
import com.ibm.internet.lb.common.*;
import com.ibm.internet.lb.server.SRV_ConfigServer;

public class ADV_sidea extends ADV_Base implements ADV_MethodInterface {
static final String ADV_NAME = "sidea";
static final int ADV_DEF_ADV_ON_PORT = 12345;
static final int ADV_DEF_INTERVAL = 7;

// create an array of bytes with the load request message
static final byte[] abHealth = {(byte)0x00, (byte)0x00, (byte)0x00,

(byte)0x04};

public ADV_sidea() {
super(ADV_NAME, "3.0.0.0-03.31.00", ADV_DEF_ADV_ON_PORT,

ADV_DEF_INTERVAL, "",
true); // replace mode parameter is true

super.setAdvisor(this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize()
{

suppressBaseOpeningSocket(); // tell base code not to open the
// standard socket

return;
}

//--------
// getLoad

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1
int iControlPort = 11999; // port on which to communicate

// with the server
String sServer = caller.getCurrentServerId(); // address of server to query
try {

socket soServer = new Socket(sServer, iControlPort); // open socket to
// server

DataInputStream disServer = new DataInputStream(
soServer.getInputStream());

DataOutputStream dosServer = new DataOutputStream(
soServer.getOutputStream());

int iRecvTimeout = 10000; // set timeout (in milliseconds)
// for receiving data

soServer.setSoTimeout(iRecvTimeout);
dosServer.writeInt(4); // send a message to the server
dosServer.flush();
iLoad = disServer.readByte(); // receive the response from the server

} catch (exception e) {
system.out.println("Caught exception " + e);

}
return iLoad; // return the load reported from the server

}
}

Chapter 4. Administering Load Balancer 75

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing a two-port advisor:

The following example shows how to implement a two-port advisor. This custom
advisor sample demonstrates the capability to detect failure for one port of a
server based upon both its own status and on the status of a different server
daemon that is running on another port on the same server machine.

For example, if the HTTP daemon on port 80 stops responding, you might also
want to stop routing traffic to the SSL daemon on port 443.

This advisor is more aggressive than standard advisors, because it considers any
server that does not send a response to have stopped functioning, and marks it as
down. Standard advisors consider unresponsive servers to be very slow. This
advisor marks a server as down for both the HTTP port and the SSL port based on
a lack of response from either port.

To use this custom advisor, the administrator starts two instances of the advisor:
one on the HTTP port, and one on the SSL port. The advisor instantiates two static
global hash tables, one for HTTP and one for SSL. Each advisor tries to
communicate with its server daemon and stores the results of this event in its hash
table. The value that each advisor returns to the base advisor class depends on
both the ability to communicate with its own server daemon and the ability of the
partner advisor to communicate with its daemon.

The following custom methods are used.
v ADV_nte() is a simple container object to hold information about a server. These

objects are stored in the hash table as table elements. Each object has a time
stamp that is used to determine whether the element is current.

v putNte() and getNte() are synchronized methods that ensure that the two
advisor instances access the hash table in a controlled fashion.

v getLoadHTTP is a method that queries the responsiveness of an HTTP server. It
is a low-level routine and does not gather or use information about SSL.

v getLoadSSL() is a method that queries the responsiveness of an SSL server. It is a
low-level routine and does not gather or use information about HTTP.

v getLoad() is the entry point routine for this custom advisor. It can handle both
protocols and can store and fetch information from the hash table. This is the
routine that links the two ports.

The following error conditions are detected:
v Unresponsive server machine - The base advisor classes periodically send a ping

signal to the server address. If the address is not reachable, the base advisor
classes marks the server down. Neither of the two instances of the custom
advisor is called, and both servers on that machine are marked down.

v One daemon on a server machine becomes unresponsive, but the other is
working - When the base code attempts to open a socket with the server, the
connection is refused, and the base advisor for this protocol marks the server as
down. The custom advisor code for that protocol is not called. Although the
custom advisor for the other protocol continues communicating with its server, it

76 Load Balancer Administration Guide

learns from the hash table that the other custom advisor cannot communicate
with its server daemon. Therefore, the second protocol’s advisor also marks its
server as down.

v One daemon does not send a response, but the other daemon does - The custom
advisor for the unresponsive protocol detects the failure to communicate, marks
the server as down, and stores the data in the hash table. The custom advisor for
the other port learns that information from the hash table and marks its server
as down.

This sample is written to link ports 80 for HTTP and 443 for SSL, but it can be
tailored to any combination of ports:
package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.lb.advisors.*;
import com.ibm.internet.lb.common.*;
import com.ibm.internet.lb.manager.*;
import com.ibm.internet.lb.server.SRV_ConfigServer;

//--------
// Define the table element for the hash tables used in this custom advisor

class ADV_nte implements Cloneable {
private String sCluster;
private int iPort;
private String sServer;
private int iLoad;
private Date dTimestamp;

//--------
// constructor

public ADV_nte(String sClusterIn, int iPortIn, String sServerIn,
int iLoadIn) {

sCluster = sClusterIn;
iPort = iPortIn;
sServer = sServerIn;
iLoad = iLoadIn;
dTimestamp = new Date();

}

//--------
// check whether this element is current or expired

public boolean isCurrent(ADV_twop oThis) {
boolean bCurrent;
int iLifetimeMs = 3 * 1000 * oThis.getInterval(); // set lifetime as

// 3 advisor cycles
Date dNow = new Date();
Date dExpires = new Date(dTimestamp.getTime() + iLifetimeMs);

if (dNow.after(dExpires)) {
bCurrent = false;

} else {
bCurrent = true;

} return bCurrent;
}

//--------
// value accessor(s)

public int getLoadValue() { return iLoad; }

Chapter 4. Administering Load Balancer 77

//--------
// clone (avoids corruption between threads)

public synchronized Object Clone() {
try {

return super.clone();
} catch (cloneNotSupportedException e) {

return null;
}

}

}

//--------
// define the custom advisor

public class ADV_twop extends ADV_Base
implements ADV_MethodInterface, ADV_AdvisorVersionInterface {
static final int ADV_TWOP_PORT_HTTP = 80;
static final int ADV_TWOP_PORT_SSL = 443;

//--------
// define tables to hold port-specific history information

static HashTable htTwopHTTP = new Hashtable();
static HashTable htTwopSSL = new Hashtable();
static final String ADV_TWOP_NAME = "twop";
static final int ADV_TWOP_DEF_ADV_ON_PORT = 80;
static final int ADV_TWOP_DEF_INTERVAL = 7;
static final String ADV_HTTP_REQUEST_STRING =

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_LB_Custom_Advisor\r\n\r\n";

//--------
// create byte array with SSL client hello message

public static final byte[] abClientHello = {
(byte)0x80, (byte)0x1c,
(byte)0x01, // client hello
(byte)0x03, (byte)0x00, // SSL version
(byte)0x00, (byte)0x03, // cipher spec len (bytes)
(byte)0x00, (byte)0x00, // session ID len (bytes)
(byte)0x00, (byte)0x10, // challenge data len (bytes)
(byte)0x00, (byte)0x00, (byte)0x03, // cipher spec
(byte)0x1A, (byte)0xFC, (byte)0xE5, (byte)Ox20, // challenge data
(byte)0xFD, (byte)0x3A, (byte)0x3C, (byte)0x18,
(byte)0xAB, (byte)0x67, (byte)0xB0, (byte)0x52,
(byte)0xB1, (byte)0x1D, (byte)0x55, (byte)0x44, (byte)0x0D, (byte)0x0A };

//--------
// constructor

public ADV_twop() {
super(ADV_TWOP_NAME, VERSION, ADV_TWOP_DEF_ADV_ON_PORT,

ADV_TWOP_DEF_INTERVAL, "",
false); // false = load balancer times the response

setAdvisor (this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize() {
return; }

//--------
// synchronized PUT and GET access routines for the hash tables

78 Load Balancer Administration Guide

synchronized ADV_nte getNte(Hashtable ht, String sName, String sHashKey) {
ADV_nte nte = (ADV_nte)(ht.get(sHashKey));
if (null != nte) {

nte = (ADV_nte)nte.clone();
}
return nte;

}
synchronized void putNte(Hashtable ht, String sName, String sHashKey,

ADV_nte nte) { ht.put(sHashKey,nte); return;
}

//--------
// getLoadHTTP - determine HTTP load based on server response

int getLoadHTTP(int iConnectTime, ADV_Thread caller) {
int iLoad = ADV_HOST_INACCESSIBLE;
int iRc = caller.send(ADV_HTTP_REQUEST_STRING); // send request message

// to server
if (0 <= iRc) { // did the request return a failure?

StringBuffer sbReceiveData = new StringBuffer("") // allocate a buffer
// for the response

iRc = caller.receive(sbReceiveData); // get response from server

if (0 <= iRc) { // did the receive return a failure?
if (0 < sbReceiveData.length()) { // is data there?

iLoad = SUCCESS; // ignore retrieved data and
// return success code

}
}

}
return iLoad;

}

//--------
// getLoadSSL() - determine SSL load based on server response

int getLoadSSL(int iConnectTime, ASV_Thread caller) {
int iLoad = ADV_HOST_INACCESSIBLE;
int iRc;

CMNByteArrayWrapper cbawClientHello = new CMNByteArrayWrapper(
abClientHello);

Socket socket = caller.getSocket();

try {
socket.getOutputStream().write(abClientHello); // Perform a receive.
socket.getInputStream().read(); // If receive is successful,

// return load of 0. We are not
// concerned with data's contents,
// and the load is calculated by
// the ADV_Thread thread.

iLoad = 0;
} catch (IOException e) { // Upon error, iLoad will default to it.
}
return iLoad;

}

//--------
// getLoad - merge results from the HTTP and SSL methods

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iLoadHTTP;
int iLoadSSL;

Chapter 4. Administering Load Balancer 79

int iLoad;
int iRc;

String sCluster = caller.getCurrentClusterId(); // current cluster address
int iPort = getAdviseOnPort();
String sServer = caller.getCurrentServerId();
String sHashKey = sCluster = ":" + sServer; // hash table key

if (ADV_TWOP_PORT_HTTP == iPort) { // handle an HTTP server
iLoadHTTP = getLoadHTTP(iConnectTime, caller); // get the load for HTTP

ADV_nte nteHTTP = newADV_nte(sCluster, iPort, sServer, iLoadHTTP);
putNte(htTwopHTTP, "HTTP", sHashKey, nteHTTP); // save HTTP load

// information
ADV_nte nteSSL = getNte(htTwopSSL, "SSL", sHashKey); // get SSL

// information
if (null != nteSSL) {

if (true == nteSSL.isCurrent(this)) { // check the time stamp
if (ADV_HOST_INACCESSIBLE != nteSSL.getLoadValue()) { // is SSL

// working?
iLoad = iLoadHTTP;

} else { // SSL is not working, so mark the HTTP server down
iLoad= ADV_HOST_INACCESSIBLE;

}
} else { // SSL information is expired, so mark the

// HTTP server down
iLoad = ADV_HOST_INACCESSIBLE;

}
} else { // no load information about SSL, report

// getLoadHTTP() results
iLoad = iLoadHTTP;

}
}
else if (ADV_TWOP_PORT_SSL == iPort) { // handle an SSL server

iLoadSSL = getLoadSSL(iConnectTime, caller); // get load for SSL

ADV_nte nteSSL = new ADV_nte(sCluster, iPort, sServer, iLoadSSL);
putNte(htTwopSSL, "SSL", sHashKey, nteSSL); // save SSL load info.

ADV_nte nteHTTP = getNte(htTwopHTTP, "SSL", sHashKey); // get HTTP
// information

if (null != nteHTTP) {
if (true == nteHTTP.isCurrent(this)) { // check the timestamp

if (ADV_HOST_INACCESSIBLE != nteHTTP.getLoadValue()) { // is HTTP
// working?

iLoad = iLoadSSL;
} else { // HTTP server is not working, so mark SSL down

iLoad = ADV_HOST_INACCESSIBLE;
}

} else { // expired information from HTTP, so mark SSL down
iLoad = ADV_HOST_INACCESSIBLE;

}
} else { // no load information about HTTP, report

// getLoadSSL() results
iLoad = iLoadSSL;

}
}

//--------
// error handler

else {
iLoad = ADV_HOST_INACCESSIBLE;

}
return iLoad;
}

}

80 Load Balancer Administration Guide

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing the WAS advisor:

The following examples show how custom advisors can be implemented.

A sample custom advisor for WebSphere Application Server is included in the
install_root/servers/samples/CustomAdvisors/ directory. The full code is not
duplicated in this document. Ensure that the following will be implemented:
v ADV_was.java is the advisor source code file that is compiled and run on the

Load Balancer machine.
v LBAdvisor.java.servlet is the servlet source code that must be renamed to

LBAdvisor.java, compiled, and run on the WebSphere Application Server
machine.

The complete advisor is only slightly more complex than the sample. It adds a
specialized parsing routine that is more compact than the StringTokenizer example
shown in the topic “Example: Using data returned from advisors” on page 82.

The more complex part of the sample code is in the Java servlet. Among other
methods, the servlet contains two methods required by the servlet specification:
init() and service(), and one method, run(), that is required by the Java.lang.thread
class.
v init() is called once by the servlet engine at initialization time. This method

creates a thread named _checker that runs independently of calls from the
advisor and sleeps for a period of time before resuming its processing loop.

v service() is called by the servlet engine each time the servlet is invoked. In this
case, the method is called by the advisor. The service() method sends a stream of
ASCII characters to an output stream.

v run() contains the core of the code execution. It is called by the start() method
that is called from within the init() method.

The relevant fragments of the servlet code appear below:
...

public void init(ServletConfig config) throws ServletException {
super.init(config);
...
_checker = new Thread(this);
_checker.start();

}

public void run() {
setStatus(GOOD);

while (true) {
if (!getKeepRunning())

return;
setStatus(figureLoad());
setLastUpdate(new java.util.Date());

try {
_checker.sleep(_interval * 1000);

} catch (Exception ignore) { ; }
}

}

Chapter 4. Administering Load Balancer 81

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

ServletOutputStream out = null;
try {

out = res.getOutputStream();
} catch (Exception e) { ... }
...
res.setContentType("text/x-application-LBAdvisor");
out.println(getStatusString());
out.println(getLastUpdate().toString());
out.flush(); return;

}
...

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Using data returned from advisors:

Whether you use a standard call to an existing part of the application server or
add a new piece of code to be the server-side counterpart of your custom advisor,
you possibly want to examine the load values returned and change server
behavior.

The Java StringTokenizer class, and its associated methods, make this investigation
easy to do. The content of a typical HTTP command might be
GET /index.html HTTP/1.0 90

A typical response to this command might be the following:
HTTP/1.1 200 OK
Date: Mon, 20 November 2000 14:09:57 GMT
Server: Apache/1.3.12 (Linux and UNIX)
Content-Location: index.html.en
Vary: negotiate
TCN: choice
Last-Modified: Fri, 20 Oct 2000 15:58:35 GMT
ETag: "14f3e5-1a8-39f06bab;39f06a02"
Accept-Ranges: bytes
Content-Length: 424
Connection: close
Content-Type: text/html
Content-Language: en

<!DOCTYPE HTML PUBLIC "-//w3c//DTD HTML 3.2 Final//EN">
<HTML><HEAD><TITLE>Test Page</TITLE></HEAD>
<BODY><H1>Apache server</H1>
<HR>
<P><P>This Web server is running Apache 1.3.12.
</P>
<P>
</P></P>
</HR>
</BODY></HTML>

The items of interest are contained in the first line, specifically the HTTP return
code. The HTTP specification classifies return codes that can be summarized as
follows:
v 2xx return codes are successes
v 3xx return codes are redirections
v 4xx return codes are client errors

82 Load Balancer Administration Guide

v 5xx return codes are server errors

If you know precisely what codes the server can possibly return, your code might
not need to be as detailed as this example. However, keep in mind that limiting
the return codes you detect might limit the future flexibility of your program.

The following example is a stand-alone Java program that contains a minimal
HTTP client. The example invokes a simple, general-purpose parser for examining
HTTP responses.
import java.io.*;
import java.util.*;
import java.net.*;

public class ParseTest {
static final int iPort = 80;
static final String sServer = "www.ibm.com";
static final String sQuery = "GET /index.html HTTP/1.0\r\n\r\n";
static final String sHTTP10 = "HTTP/1.0";
static final String sHTTP11 = "HTTP/1.1";

public static void main(String[] Arg) {
String sHTTPVersion = null;
String sHTTPReturnCode = null;
String sResponse = null; int iRc = 0;
BufferedReader brIn = null;
PrintWriter psOut = null;
Socket soServer= null;
StringBuffer sbText = new
StringBuffer(40);

try {
soServer = new Socket(sServer, iPort);
brIn = new BufferedReader(new InputStreamReader(

soServer.getInputStream()));
psOut = new PrintWriter(soServer.getOutputStream());
psOut.println(sQuery);
psOut.flush();
sResponse = brIn.readLine();
try {

soServer.close();
} catch (Exception sc) {;}

} catch (Exception swr) {;}

StringTokenizer st = new StringTokenizer(sResponse, " ");
if (true == st.hasMoreTokens()) {

sHTTPVersion = st.nextToken();
if (sHTTPVersion.equals(sHTTP110) || sHTTPVersion.equals(sHTTP11)) {

System.out.println("HTTP Version: " + sHTTPVersion);
} else {

System.out.println("Invalid HTTP Version: " + sHTTPVersion);
}

} else {
System.out.println("Nothing was returned");
return;

}

if (true == st.hasMoreTokens()) {
sHTTPReturnCode = st.nextToken();
try {

iRc = Integer.parseInt(sHTTPReturnCode);
} catch (NumberFormatException ne) {;}

switch (iRc) {
case(200):

System.out.println("HTTP Response code: OK, " + iRc);

Chapter 4. Administering Load Balancer 83

break;
case(400): case(401): case(402): case(403): case(404):

System.out.println("HTTP Response code: Client Error, " + iRc);
break;

case(500): case(501): case(502): case(503):
System.out.println("HTTP Response code: Server Error, " + iRc);
break;

default:
System.out.println("HTTP Response code: Unknown, " + iRc);
break;

}
}

if (true == st.hasMoreTokens()) {
while (true == st.hasMoreTokens()) {

sbText.append(st.nextToken());
sbText.append(" ");
}

System.out.println("HTTP Response phrase: " + sbText.toString());
}
}

}

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Configuring high availability
The high availability feature involves the use of a second Dispatcher machine. The
first Dispatcher machine performs load balancing for all the client traffic as it does
in a single Dispatcher configuration. The second Dispatcher machine monitors the
″health″ of the first, and takes over the task of load balancing if it detects that the
first Dispatcher machine has failed.

About this task

When you configure high availability, each of the two machines is assigned a
specific role, either primary or backup. The primary machine sends connection
data to the backup machine on an ongoing basis. While the primary is active (load
balancing), the backup is in a standby state, continually updated and ready to take
over, if necessary.

The communication sessions between the two machines are referred to as
heartbeats. The heartbeats allow each machine to monitor the health of the other. If
the backup machine detects that the active machine has failed, it will take over and
begin load balancing. At that point the statuses of the two machines are reversed:
the backup machine becomes active and the primary becomes standby.

Note: In the high availability configuration, both primary and backup machines
must be on the same subnet with identical configuration.

For the complete syntax see “dscontrol highavailability” on page 148. For a more
complete discussion of many of the tasks below, see “Configuring the Load
Balancer machine” on page 34.

Tips for configuring high availability:

1. To configure a single Dispatcher machine to route packets without a backup, do
not issue any of the high availability commands at startup.

84 Load Balancer Administration Guide

2. To convert two Dispatcher machines configured for high availability to one
machine running alone, stop the executor on one of the machines, then delete
the high availability features (the heartbeats, reach, and backup) on the other.

3. Linux for s/390: In both of the two cases above, you must alias the network
interface card with cluster addresses, as required.

4. When running two Dispatcher machines in a high availability configuration,
unexpected results can occur if you set any of the parameters for the executor,
cluster, port, or server (for example, port stickytime) to different values on the
two machines.

1. If you are running Linux for s/390 operating systems, create alias script files
on each of the two Dispatcher machines. See “Scripts to run with high
availability” on page 88 for more information.

2. Start the server on both Dispatcher server machines.
3. Start the executor on both machines.
4. Ensure that the non-forwarding address (NFA) of each Dispatcher machine is

configured, and is a valid IP address for the subnet of the Dispatcher
machines.

5. Add the heartbeat information on both machines:
dscontrol highavailability heartbeat add source_address destination_address

Source_address and destination_address are the IP addresses (either DNS names
or IP addresses) of the Dispatcher machines. The values will be reversed on
each machine. For example:
Primary - highavailability heartbeat add 9.67.111.3 9.67.186.8
Backup - highavailability heartbeat add 9.67.186.8 9.67.111.3

At least one heartbeat pair must have the NFAs of the pair as the source and
destination address. If possible, at least one of the heartbeat pairs should be
across a separate subnet than the regular cluster traffic. Keeping the heartbeat
traffic distinct will help prevent false takeovers during very heavy network
loads and also improve complete recovery times after a failover.
a. Optional: Set the number of seconds that the executor uses to timeout high

availability heartbeats. The default is 2 seconds. For example:
dscontrol executor set hatimeout 3

6. On both machines, configure the list of IP addresses that the Dispatcher must
be able to reach in order to ensure full service, using the reach add command.
Reach targets are recommended but not required. See “Detecting server
failures with heartbeats and reach targets” on page 87 for more information.
For example:
dscontrol highavailability reach add 9.67.125.18

7. Add the backup information to each machine:
a. For the primary machine:

dscontrol highavailability backup add primary [auto | manual] port

b. For the backup machine:
dscontrol highavailability backup add backup [auto | manual] port

Note: Select an unused port on your machines as the port. The port
number entered will be used as a key to ensure the correct host is
receiving the packet.

8. Check the high availability status on each machine:
dscontrol highavailability status

Chapter 4. Administering Load Balancer 85

The machines should each have the correct role (backup or primary) and
states. The primary should be active; the backup should be in standby mode.
The recovery strategies must be the same.

9. Set up the cluster, port, and server information on both machines.
10. Start the manager and advisors on both machines.

How high availability works

To improve Dispatcher availability, the Dispatcher high availability functions as
follows:
1. Two Dispatchers with connectivity to the same clients, and the same cluster of

servers, as well as connectivity between the Dispatchers. Both Dispatchers must
run on the same type of operating system and platform.

2. A “heartbeat” mechanism between the two Dispatchers detects a Dispatcher
failure. At least one heartbeat pair must have the NFAs of the pair as the
source and destination address. If possible, at least one of the heartbeat pairs
should be across a separate subnet than the regular cluster traffic. Keeping the
heartbeat traffic distinct will help prevent false takeovers during very heavy
network loads and also improve complete recovery times after a failover.

3. A list of reach targets, addresses that both Dispatcher machines must be able to
contact in order to load balance traffic normally. For more information, see
“Detecting server failures with heartbeats and reach targets” on page 87.

4. Synchronization of the Dispatcher information
5. Logic to elect the active Dispatcher which is in charge of a given cluster of

servers, and the standby Dispatcher which continuously gets synchronized for
that cluster of servers.

6. A mechanism to perform IP takeover, when the logic or an operator decides to
switch active and standby.

Planning for high availability

When configuring for high availability, consider that the Load Balancer machine is
supported with the following limitations or special considerations:
v If you are using IPv6 protocol on your machine and want to use high

availability, you must check to see if protocol 58 is defined to be ICMPv6 in the
protocol file.

v In the high availability configuration, both primary and backup machines must
be on the same subnet with identical configuration.

v The heartbeat pairs (which is the mechanism between the primary and standby
Dispatchers to detect Dispatcher failure) must be both IPv4 format or both IPv6
format.

v In a high availability or a stand-alone environment, you must not alias the
cluster address against the network adaptor.

v The HighAvailChange script can be moved from the install_root/servers/
samples directory to the install_root/servers/bin directory to log high
availability state changes for the Dispatcher machine, but this script does not
need to be changed.

86 Load Balancer Administration Guide

Related tasks

“Configuring high availability” on page 84
The high availability feature involves the use of a second Dispatcher machine. The
first Dispatcher machine performs load balancing for all the client traffic as it does
in a single Dispatcher configuration. The second Dispatcher machine monitors the
″health″ of the first, and takes over the task of load balancing if it detects that the
first Dispatcher machine has failed.

Detecting server failures with heartbeats and reach targets
Configure heartbeats and reach targets to detect server failures and control when
failovers can occur.

About this task

Besides the basic criteria of failure detection (the loss of connectivity between
active and standby Dispatchers, detected through the heartbeat messages), there is
another failure detection mechanism named reachability criteria. When you
configure the Dispatcher you can provide a list of hosts that each of the
Dispatchers should be able to reach in order to work correctly. The two high
availability partners continually communicate with each other through heartbeats,
and they update one another on how many reach targets either one of them can
ping. If the standby pings more reach targets than the active, a failover occurs.

Heartbeats:Heartbeats are sent by the active Dispatcher and are expected to be
received by the standby Dispatcher every half second. If the standby Dispatcher
fails to receive a heartbeat within 2 seconds, a failover begins. All heartbeats must
break for a takeover from the standby Dispatcher to occur. In other words, when
two heartbeat pairs are configured, both heartbeats must break. To stabilize a high
availability environment and to avoid failover, add more than one heartbeat pair.

Reach target considerations: For reach targets, you should choose at least one host
for each subnet your Dispatcher machine uses. The hosts could be routers, IP
servers or other types of hosts. Host reachability is obtained by the reach advisor,
which pings the host. Failover takes place either if the heartbeat messages cannot
go through, or if the reachability criteria are met better by the standby Dispatcher
than by the primary Dispatcher. To make the decision based on all available
information, the active Dispatcher regularly sends the standby Dispatcher its
reachability capabilities. The standby Dispatcher then compares those capabilities
with its own and decides whether to switch.

Note: When you configure the reach target, the reach advisor must also be started.
The reach advisor starts automatically when you start the manager function. For
more information on the reach advisor, see “List of advisors” on page 53.
v Use the dscontrol highavailability command to add or delete a reach target to a

server:
dscontrol highavailability reach add|delete address mask

v Use the dscontrol highavailability command with the heartbeat option to add a
heartbeat:
dscontrol highavailability heartbeat add srcaddress dstaddress

To delete a heartbeat, use the following:
dscontrol highavailability heartbeat delete address

Chapter 4. Administering Load Balancer 87

Related tasks

“Scripts to run with high availability”

High Availability recovery strategy for failed servers
The recovery strategy dictates how Load Balancer behaves when one Dispatcher
machine fails and there is another configured as a backup.

Two Dispatcher machines are configured: the primary machine, and a second
machine called the backup. At startup, the primary machine sends all the
connection data to the backup machine until that machine is synchronized. The
primary machine becomes active, that is, it begins load balancing. The backup
machine, meanwhile, monitors the status of the primary machine, and is said to be
in standby state.

If the backup Load Balancer machine detects that the primary machine has failed,
it performs a takeover load balancing functions and becomes the active machine.
After the primary machine has once again become operational, the machines
respond according to how the recovery strategy has been configured by the user.

There are two kinds of strategy:
v Automatic - The primary machine resumes routing packets as soon as it

becomes operational again.
v Manual - intervention is required to return the primary machine to active state

and reset the backup machine to standby. The manual recovery strategy allows
you to force the routing of packets to a particular machine, using the takeover
command. Manual recovery is useful when maintenance is being performed on
the other machine

Note: The strategy parameter must be the same for both machines.
Related tasks

“Configuring high availability” on page 84
The high availability feature involves the use of a second Dispatcher machine. The
first Dispatcher machine performs load balancing for all the client traffic as it does
in a single Dispatcher configuration. The second Dispatcher machine monitors the
″health″ of the first, and takes over the task of load balancing if it detects that the
first Dispatcher machine has failed.
“Detecting server failures with heartbeats and reach targets” on page 87
Configure heartbeats and reach targets to detect server failures and control when
failovers can occur.
“Scripts to run with high availability”

Scripts to run with high availability

The following sample script can be used:
v HighAvailChange

The HighAvailChange script runs whenever the high availability state changes
within the Dispatcher. You can create this script to use state change information,
for instance, to alert an Administrator or simply record the event.

On Linux for s/390: Dispatcher issues a gratuitous ARP to move IP addresses from
one Dispatcher to another. This mechanism is therefore tied to the underlying
network type. When running Linux for s/390, Load Balancer can natively do high
availability takeovers, complete with IP address moves, only on those interfaces

88 Load Balancer Administration Guide

which can issue a gratuitous ARP and configure the address on the local interface.
This mechanism will not work properly on point-to-point interfaces such as IUCV
and CTC and will not work properly in certain configurations of qeth/QDIO.
Related tasks

“Configuring high availability” on page 84
The high availability feature involves the use of a second Dispatcher machine. The
first Dispatcher machine performs load balancing for all the client traffic as it does
in a single Dispatcher configuration. The second Dispatcher machine monitors the
″health″ of the first, and takes over the task of load balancing if it detects that the
first Dispatcher machine has failed.
“Detecting server failures with heartbeats and reach targets” on page 87
Configure heartbeats and reach targets to detect server failures and control when
failovers can occur.
Related reference

“High Availability recovery strategy for failed servers” on page 88
The recovery strategy dictates how Load Balancer behaves when one Dispatcher
machine fails and there is another configured as a backup.

Use encapsulation forwarding to forward traffic across network
segments

Use encapsulation forwarding when the back-end server is not located on the same
network segment or if you are using virtualization technology and need to forward
packets that are otherwise unable to be forwarded.

About this task

In a typical configuration, Load Balancer receives a packet, P, and forwards it as
packet P’, where only the time-to-live (TTL) has been decremented. When you
enable encapsulation, Load Balancer receives a packet P, and forwards it as E(P’),
where the encapsulated packet E contains P’. The outer packet E has a unique IP
header, which permits Load Balancer to forward packets across routers and across
some types of virtualization technology that you could not otherwise forward
packets across.

Encapsulation forwarding:
v Is implemented like MAC forwarding:

– Packets from server to client do not go through the load balancer
– Alias the loopback device to cluster address on back-end server

v Requires that you configure an IPIP or GRE tunnel only on the back-end server.
v Does not require you to add routes while configuring the tunnel.

Load Balancer will act as the tunnel on the other end.

Client LB Backend Server

tunnel

GRE TCP/IP Stack

Chapter 4. Administering Load Balancer 89

Additionally, this functionality allows you to forward packets to Solaris zones or
AIX workload partitions that are on the same host, since Load Balancer can use the
existing stack configuration instead of bypassing it entirely.
1. On the Load Balancer machine, add a server with encapsulation enabled. When

this server is selected to forward the packet, it is encapsulated. Use the
dscontrol server command:
dscontrol server set encap_source_IP encapforward [yes/no] encaptype [ipip/gre] encapcond [auto/always]

For example, you can type the following at the prompt:
dscontrol server set 1.2.3.4@80@1.2.3.5 encapforward yes encaptype ipip encapcond always

2. Configure the IPIP or GRE tunnel on the back-end server for network traffic.
For example, you can type the following:
v

ifconfig gre0 tunnel 9.184.119.242 9.184.118.200 # The IP address of the server and Load Balancer
ifconfig gre0 inet 9.184.114.25 # Some IP address on this subnet
loopback...
ifconfig lo0 alias 9.184.114.24 netmask 255.255.255.255

v To set up a GRE tunnel, use the following:
sysctl -w net.ipv4.conf.all.arp_ignore=3 net.ipv4.conf.all.arp_announce=2

for gre
modprobe ipgre
ip link set gre0 up
ip addr add <clusterip> scope host dev gre0

To set up an IPIP tunnel, use the following:
sysctl -w net.ipv4.conf.all.arp_ignore=3 net.ipv4.conf.all.arp_announce=2
modprobe ipip
ip link set tunl0 up
ip addr add <clusterip> scope host dev tunl0

v

/sbin/ifconfig ip.tun0 plumb 9.184.114.25 netmask 255.255.255.255 up # Some free IP address on this subnet
/sbin/ifconfig ip.tun0 9.184.114.25 9.184.114.222 up # Some free IP address on this subnet
/sbin/ifconfig ip.tun0 up /sbin/ifconfig ip.tun0 tsrc 9.184.112.183 tdst 9.184.118.203 # The IP address of this machine and that of the server.
loopback...
ifconfig lo0:1 plumb 9.184.114.24 netmask 255.0.0.0 up

v Tunneling is not supported on Windows operating systems.
Related tasks

Tuning

Quiesce servers for server maintenance windows
To remove a server from the Load Balancer configuration for any reason (updates,
upgrades, service, etc.), you can use the dscontrol manager quiesce command.

About this task

The quiesce subcommand allows existing connections to complete without being
severed and disallows any new connections to the server.

Note: You can quiesce servers on a scheduled time to perform upgrades or general
maintenance. The daily option specifies to quiesce the server at a time that you
specify.
v Quiesce a server immediately. Use the following command:

dscontrol manager quiesce server

90 Load Balancer Administration Guide

welcome_tuning.html

The following is an example of using the option to quiesce server 9.40.25.67:
dscontrol manager quiesce 9.40.25.67

v Quiesce a server on a daily schedule. Use the following command:
dscontrol manager quiesce server daily start_hour end_hour

Note:

– start hour and end hour are values from 0 to 23. For example, (0 0) indicates to
quiesce the server from 12:00 AM to 12:59 AM. (12 13) indicates to quiesce the
server from 12:00 PM to 1:59 PM, which is a 2 hour period.

– Specify (-1 -1) to disable the daily quiesce for a particular server.

The following is an example of using the daily option to quiesce server
9.40.25.67 from 2:00 AM to 5:59 AM:
dscontrol manager quiesce 9.40.25.67 daily 2 5

Related information

Administering
Tuning

Optimize connections with client-to-server affinity
The Load Balancer affinity feature maps a client IP address to a back-end server.
Affinity is established once a packet’s destination IP address matches the cluster,
the destination port matches the Load Balancer port, and the source IP address
matches.

About this task

When affinity is established, subsequent packets are sent to the same back-end
server. When affinity is broken, due to a server down or a server removal, all
affinity and thus connections to that server are broken. Also, there is no
″connection″ information reported in the command line or GUI clients. Only the
number of active affinity records are used.

This approach has the advantages of providing a hard affinity and of being more
efficient for Load Balancer. The affinity method that is used decreases memory and
CPU utilization as compared to connection forwarding.

Note: Because the removal of an affinity record also breaks connections, when you
migrate from Load Balancer for IPv4 to Load Balancer for IPv4 and IPv6, the
maximum staletimeout value should be used as the new staletimeout for Load
Balancer.
v Behavior when affinity is enabled:

With the affinity feature enabled, if a subsequent request is received from the
same client, the request is directed to the same server.
Over time, the client will finish sending transactions, and the affinity record will
go away. Each affinity record lives for the ″staletimeout″ in seconds. When
subsequent connections are received within the staletimeout, the affinity record
is still valid and the request will go to the same server. If a subsequent
connection is not received within staletimeout, the record is purged; a
connection that is received after that time will have a new server selected for it.
The server down command (dscontrol server down) is used to bring a server
offline. The server is not taken down until after the staletimeout value expires.

v Behavior when affinity is disabled:

Chapter 4. Administering Load Balancer 91

welcome_administering.html
welcome_tuning.html

With the affinity feature disabled, whenever a new TCP connection is received
from a client, Load Balancer picks the right server at that moment in time and
forwards the packets to it. If a subsequent connection comes in from the same
client, Load Balancer treats it as an unrelated new connection, and again picks
the right server at that moment in time.

v Optional: Enable affinity by adding a port and setting the selection algorithm
and stickytime at the port level to some number of seconds using the dscontrol
port command.

Note: There are now three selections you can choose from for selection
algorithm:
– affinity: specifies that the server selection is based on client affinity.
– connection: specifies that the server selection is based on weighted

round-robin selection (default).
– conn+affin: specifies that server selection is based on the relationship to an

existing connection. For new connections, the server selection is based on
affinity.

For example, use the following command to set the selection algorithm to
affinity and stickytime to 60 seconds:
dscontrol port add cluster@port selectionalgorithm affinity stickytime 60

Note: When you enable affinity, it cannot be disabled unless you completely
remove the port and add it again without affinity configured.

v Optional: Enable cross-port affinity. Cross port affinity is the affinity feature that
has been expanded to cover multiple ports. For example, if a client request is
first received on one port and the next request is received on another port, cross
port affinity allows Load Balancer to send the client request to the same server.
To use this feature, the ports must:
– Share the same cluster address.
– Share the same servers.
– Use the same selection algorithm, which must be affinity or conn+affin.
– Have the same stickytime value, which is not zero. After cross port affinity

has been established, you have the flexibility to modify the stickytime value
for the port. However, it is recommended that you change the stickytime
values for all shared ports to the same value, otherwise results might occur
that are not expected.

More than one port can link to the same crossport. When subsequent
connections arrive from the same client on the same port or a shared port, the
same server will be accessed. Configure the crossport value with the dscontrol
port add command. The following is an example of configuring multiple ports
with:
– a selection algorithm of conn+affin
– a stickytime value of 60 seconds
– cross port affinity set to port 10

Enter the following:
dscontrol port add cluster@20 selectionalgorithm conn+affin stickytime 60 crossport 10
dscontrol port add cluster@30 selectionalgorithm conn+affin stickytime 60 crossport 10
dscontrol port add cluster@40 selectionalgorithm conn+affin stickytime 60 crossport 10

Note: You can only specify a value for crossport with the dscontrol port add
command and cannot be modified afterwards. You cannot use the dscontrol port

92 Load Balancer Administration Guide

set command to configure the crossport value.
See dscontrol port for detailed information on command syntax for the crossport
option.

Related information

Tuning

Restricting incoming traffic with ipchains and iptables
Built into the Linux kernel is a firewall facility called ipchains. When Load
Balancer and ipchains run concurrently, Load Balancer sees packets first, followed
by ipchains. This allows the use of ipchains to harden a Linux Load Balancer
machine, which could be, for example, a Load Balancer machine that is used to
load balance firewalls.

About this task

In general, an appropriate ipchains strategy for the Load Balancer machines is to
disallow all traffic, except that which is to or from the back-end servers, the
partner high availability Load Balancer, any reach targets, or any configuration
hosts.

It is not recommended to activate iptables when running Load Balancer on Linux
kernel version 2.4.10.x. Activation on this Linux kernel version can result in
performance degradation over time.
v To activate iptables or ipchains, configure them to be completely restricted, so no

inbound or outbound traffic permitted. The packet-forwarding portion of Load
Balancer continues to function normally.
Some additional traffic must be permitted for all of Load Balancer to function
properly. Some examples of this communication are:
– Advisors communicate between the Load Balancer machine and the back-end

servers.
– Load Balancer pings back-end servers, reach targets, and high availability

partner Load Balancer machines.
– User interfaces (graphical user interface, command line, and wizards) use

RMI.
– Back-end servers must respond to pings from the Load Balancer machine.

v To deactivate iptables:
1. List the modules which are using ip_tables and ip_conntrack. Issue the

following command:
lsmod

2. Remove them by issuing the following commands:
rmmod ip_tables
rmmod ip_conntrack

When you reboot the machine these modules will be added again, so you
need to repeat these steps each time you reboot.

Chapter 4. Administering Load Balancer 93

welcome_tuning.html

Related concepts

Administering
This section focuses on administering production environments and realistic test
environments.
Related information

tadm_startstop.dita

Logging with Load Balancer
Load Balancer posts entries to a server log, a manager log, a metric monitor log
(logging communications with Metric Server agents), and a log for each advisor
you use.

About this task

You can set the logging level to define the expansiveness of the messages written
to the log. At level 0, errors are logged and Load Balancer also logs headers and
records of events that happen only once (for example, a message about an advisor
starting to be written to the manager log). Level 1 includes ongoing information,
and so on, with level 5 including every message produced to aid in debugging a
problem if necessary. The default for the manager, advisor, server, or subagent logs
is 1.

You can also set the maximum size of a log. When you set a maximum size for the
log file, the file will wrap; when the file reaches the specified size, the subsequent
entries are written at the top of the file, overwriting the previous log entries.

Note: You cannot set the log size to a value that is smaller than the current one.
The higher you set the log level, the more carefully you should choose the log size.
At level 0, it is probably safe to leave the log size to the default of 1MB; however,
when logging at level 3 and above, you should limit the size without making it too
small to be useful.

Log entries are time stamped so you can tell the order in which they were written.
v Display the current settings for the server log, Use the dscontrol logstatus

command:
dscontrol logstatus

v Configure the logging level or maximum log size for a server log. Use the
dscontrol set command:
dscontrol set loglevel level logsize size

where:
– level is 0-5.
– size is unlimited or a file size in bytes.

v Configure the logging level or maximum log size for a manager log. Use the
dscontrol manager command:
dscontrol manager loglevel level

dscontrol manager logsize size

where:
– level is 0-5.
– size is unlimited or a file size in bytes.

94 Load Balancer Administration Guide

v Configure the logging level or maximum log size for the metric monitor log that
logs communication with Metric Server agents. Use the dscontrol manager
metric set command:
dscontrol manager metric set loglevel level

dscontrol manager metric set logsize size

v Configure the logging level or maximum log size for an advisor log. Use the
dscontrol advisor command:
dscontrol advisor loglevel name cluster@port level

dscontrol advisor logsize name cluster@port size

where:
– cluster@port the cluster is the address in IP address format or symbolic name.

The port is the number of the port that the advisor is monitoring. The cluster
value is optional on the advisor commands, but the port value is required. If
the cluster value is not specified, then the advisor will start running on the
port for all clusters. If you specify a cluster, then the advisor will start
running on the port, but only for the cluster you have specified. See
“Enabling advisors to manage load balancing” on page 50 for more
information.

Related tasks

“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.
Related reference

“dscontrol logstatus” on page 150
Use this command to display the log settings for a server.
“dscontrol metric” on page 154
You can configure system metrics with the dscontrol metric command.
“dscontrol manager” on page 151
You can control the manager function with the dscontrol manager command.

Logging server statistics with binary logging
The binary logging feature allows server information to be stored in binary files.
These files can then be processed to analyze the server information that has been
gathered over time.

About this task

The following information is stored in the binary log for each server defined in the
configuration.
v cluster address
v port number
v serverID
v server address
v server weight
v server total connections
v server active connections
v server port load

Chapter 4. Administering Load Balancer 95

v server system load

Some of this information is retrieved from the executor as part of the manager
cycle. Therefore the manager must be running in order for the information to be
logged to the binary logs.

A sample Java program and command file have been provided in the
install_root/servers/samples/BinaryLog directory. This sample shows how to
retrieve all the information from the log files and print it to the screen. It can be
customized to do any type of analysis you want with the data. An example using
the supplied script and program to get a report of the Load Balancer’s server
information from 8:00 AM to 5:00 PM on May 1, 2001:
dslogreport 2001/05/01 8:00 2001/05/01 17:00

Use dscontrol binlog command set to configure binary logging
v Start binary logging:

dscontrol binlog start

The start option starts logging server information to binary logs in the logs
directory. One log is created at the start of every hour with the date and time as
the name of the file.

v Stop binary logging:
dscontrol binlog stop

The stop option stops logging server information to the binary logs. The log
service is stopped by default.

v Set the interval value to control how often information is written to the logs.
dscontrol binlog interval seconds

The manager will send server information to the log server every manager
interval. The information is written to the logs only if the specified log interval
seconds have elapsed since the last record was written to the log. By default, the
log interval is set to 60 seconds. There is some interaction between the settings
of the manger interval and the log interval. Since the log server is provided with
information no faster than manager interval seconds setting the log interval less
than the manager interval effectively sets it to the same as the manager interval.
This logging technique allows you to capture server information at any
granularity. You can capture all changes to server information that are seen by
the manager for calculating server weights. However, this amount of information
is probably not required to analyze server usage and trends. Logging server
information every 60 seconds gives you snapshots of server information over
time. Setting the log interval very low can generate huge amounts of data.

v Set the retention option to control how long log files are kept.
dscontrol binlog retention hours

Log files older than the retention hours specified are deleted by the log server.
This will only occur if the log server is being called by the manager, so stopping
the manager will cause old log files not to be deleted.

v View the current status for binary logging:
dscontrol binlog status

The status option returns the current settings of the log service. These settings
are whether the service is started, what the interval is, and what the retention
hours are.

96 Load Balancer Administration Guide

Related tasks

“Logging with Load Balancer” on page 94
Load Balancer posts entries to a server log, a manager log, a metric monitor log
(logging communications with Metric Server agents), and a log for each advisor
you use.
Related reference

“dscontrol binlog” on page 143
You can control the settings and operation of the binary log file with the dscontrol
binlog command.

Support for ICMP forwarding and messaging
Load Balancer now supports forwarding and processing ICMP messages to
improve the robustness of connection protocols and permit Load Balancer to
receive ICMP fragmentation messages.

Load Balancer will forward an ICMP message based on the following guidelines:
v For ICMP packets that contain headers with IP and TCP/UDP fragments, Load

Balancer will forward to packets to the correct back-end server.
v For ICMP packets that do not contain TCP/UDP fragments, Load Balancer will

forward the packets in a round robin manner.
v For ICMP messages that are for an IPGRE or an IPIP message that Load

Balancer generated, Load Balancer will limit the outbound size appropriately for
future packets.

v If Load Balancer forwards an IP packet, but the time to live (TTL) for the packet
becomes zero when the TTL is decremented, Load Balancer will send an ″ICMP
Time Exceeded″ message to the client.

v When Load Balancer cannot forward an packet, it will generate an ICMP
message and send the appropriate message back to the client:
– The outbound interface MTU is too small, or you need to use encapsulation.
– Load Balancer cleaned up a connection record. For example, the cluster and

port designation match, but the server is not present.
Related reference

Administering

Configure rules to manage traffic to busy or unavailable servers
Use rules-based load balancing to fine tune when and why packets are sent to
which servers. Load Balancer reviews any rules you add from first priority to last
priority, stopping on the first rule that it finds to be true, then load balancing the
traffic between any servers associated with the rule. It already balances the load
based on the destination and port, but using rules expands your ability to
distribute connections.

About this task

In most cases when configuring rules, you should configure a default always true
rule in order to catch any request that is passed by other higher priority rules. This
default can be a ″Sorry, the site is currently down, try again later″ response when
all other servers fail for the client request.

All rules have a name, type, priority, and might have a begin range and end range,
along with a set of servers. Rules are evaluated in priority order. A rule with a

Chapter 4. Administering Load Balancer 97

welcome_administering.html

priority of 1 (lower number) is evaluated before a rule with a priority of 2 (higher
number). The first rule that is satisfied will be used. When a rule has been
satisfied, no further rules are evaluated. For a rule to be satisfied, it must meet two
conditions:
1. The predicate of the rule must be true. That is, the value it is evaluating must

be between the begin and end ranges, or the content must match the regular
expression that is specified in the rule’s pattern. For rules of type ″true,″ the
predicate is always satisfied, regardless of the begin and end ranges. If a rule
has no servers that are associated with it, the rule only needs to meet this first
condition to be satisfied. In this case, Load Balancer will drop the connection
request.

2. If there are servers associated with the rule, at least one server must have a
weight greater than 0 to forward packets so Load Balancer will have a server to
which connections can be forwarded.

If a connection request does not satisfy any rules, Load Balancer will select a server
from the full set of servers available on the port.
v Configure a rule that is based on the total active connections. You may want to

use rules based on active connections total on a port if your servers get
overloaded and start throwing packets away. Certain Web servers will continue
to accept connections even though they do not have enough threads to respond
to the request. As a result, the client requests time out and the customer coming
to your Web site is not served. You can use rules based on active connections to
balance capacity within a pool of servers. For example, you know from
experience that your servers will stop serving after they have accepted 250
connections.

Note: The manager must be running for the rules to work.
Create a rule using the dscontrol rule command. You would then add to the rule
your current servers plus some additional servers, which will otherwise be used
for other processing. For example:
dscontrol rule add 130.40.52.153:80:pool2 type active beginrange 250 endrange 500

v Create a rule that always evaluates as true. Such a rule will always be selected,
unless all the servers associated with it are down. Therefore, this rule should
ordinarily be at a lower priority than other rules. You can even have multiple
″always true″ rules, each with a set of servers that are associated with it. Load
Balancer will choose a rule based on the first rule that is true and has an
available server.
For example, assume you have six servers. You want two of them to handle
your traffic under all circumstances, unless they are both down. If the first two
servers are down, you want a second set of servers to handle the traffic. If all
four of these servers are down, then you will use the final two servers to handle
the traffic. You could set up three ″always true″ rules, then the first set of servers
will always be chosen as long as at least one is up. If both servers are down, one
from the second set is chosen, and so forth.
As another example, you might want an ″always true″ rule to ensure that if
incoming clients do not match any of the rules you have set, they will not be
served. Then you would not add any servers to the rule, causing the clients
packets to be dropped with no response. You can define more than one ″always
true″ rule, and thereafter adjust which one gets run by changing their priority
levels. Create a rule using the dscontrol rule command:
dscontrol rule add 130.40.52.153:80:jamais type true priority 100

You do not need to set a beginrange or endrange values when you create an
always true rule.

98 Load Balancer Administration Guide

v Add one or more servers to a rule set. You can use the dscontrol rule useserver
command to add one or more servers to a rule set that is already defined. For
example:
dscontrol rule useserver 130.40.52.153:80:jamais server1

dscontrol rule useserver 130.40.52.153:80:jamais server1+server2+server3

Related reference

“dscontrol rule” on page 158
Control the executor function with the dscontrol rule command.
Related information

Tuning

Sample scripts to generate alerts and record server failure
Load Balancer provides user exits that trigger scripts that you can customize. You
can create the scripts to perform automated actions, such as alerting an
Administrator when servers are marked down by the manager or simply record
the event of the failure.

Sample scripts, which you can customize, are in the install_root/servers/samples
directory. In order to run the files, you must move them to the
install_root/servers/bin directory and remove the �sample� file extension. The
following sample scripts are provided:
v serverDown — a server is marked down by the manager.
v serverUp — a server is marked back up by the manager.
v managerAlert — all servers are marked down for a particular port.
v managerClear — at least one server is now up, after all were marked down for

a particular port.

If all servers on a cluster are marked down (either by the user or by the advisors),
the managerAlert (if configured) starts, and Load Balancer attempts to route traffic
to the servers using a round-robin technique. The serverDown script does not start
when the last server in the cluster is detected as offline. By design, Load Balancer
attempts to continue to route the traffic in case a server comes back online and
responds to the request. If Load Balancer instead dropped all traffic, the client
would receive no response. When Load Balancer detects that the first server of a
cluster is back online, the managerClear script (if configured) starts, but the
serverUp script (if configured) is not run until an additional server is brought back
online.

Here are some considerations for using the serverUp and serverDown scripts:
v If you define the manager cycle to be less than 25% of the advisor time, false

reports of servers up or down can result. By default, the manager runs every 2
seconds, but the advisor runs every 7 seconds. Therefore, the manager expects
new advisor information within 4 cycles. However, removing this restriction
(that is, defining the manager cycle to be greater than 25% of the advisor time)
significantly decreases performance because multiple advisors can advise on a
single server.

v When a server goes down, the serverDown script starts. However, if you issue a
serverUp command, it is assumed that the server is up until the manager
obtains new information from the advisor cycle. If the server is still down, the
serverDown script runs again.

Chapter 4. Administering Load Balancer 99

welcome_tuning.html

100 Load Balancer Administration Guide

Chapter 5. Tuning Load Balancer

How well a Web site performs while receiving heavy user traffic is an essential
factor in the overall success of an organization. This topic highlights a few main
ways you can improve performance through a combination of product features and
application development considerations.

“The manager report” on page 102
The manager function of Load Balancer calculates a weight for each server.
These weights are used to determine how many connections a server
should receive as compared with the other servers in the same cluster and
port configuration. Understanding the manager report is critical to
understanding how the network traffic is distributed.

“Optimizing the manager interval” on page 104
To optimize overall performance, the manager is restricted in how often it
can interact with the executor. You can make changes to this interval by
entering the dscontrol manager interval and dscontrol manager refresh
commands.

“Tuning the proportion of importance given to status information” on page 104
The manager uses ratios to determine the importance of status information
coming from advisors and Load Balancer. You can change the default ratios
that the manager uses to weight this information.

“Managing traffic with server weights” on page 105
Weights are applied to all servers on a port. For any particular port, the
requests are distributed between servers based on their weights relative to
each other. For example, if one server is set to a weight of 10, and the
other to 5, the server set to 10 should get twice as many requests as the
server set to 5.

“Optimizing the sensitivity threshold” on page 106
To work at top speed, updates to the weights for the servers are only made
if the weights have changed significantly. Constantly updating the weights
when there is little or no change in the server status could create
unnecessary overhead.

“Optimizing the smoothing index” on page 107
The smoothing index limits the amount that a server’s weight can change,
effectively smoothing the change in the distribution of requests.

“Controlling connection records with the staletimeout value” on page 107
Connections are considered stale when there has been no activity on that
connection for the number of seconds specified in stale timeout. When the
number of seconds has been exceeded with no activity, Load Balancer will
remove that connection record from its tables, and subsequent traffic for
that connection is discarded. The staletimeout command controls the way
Load Balancer handles idle connections and the associated connection
records.

101

The manager report
The manager function of Load Balancer calculates a weight for each server. These
weights are used to determine how many connections a server should receive as
compared with the other servers in the same cluster and port configuration.
Understanding the manager report is critical to understanding how the network
traffic is distributed.

The manager report contains a list of each cluster, port, and server that is defined
to that cluster:port combination. Each server shows two weights, now and new,
and four columns that are used to calculate the weight:
v Active connections (ACTV)
v New connections (NEWC)
v Port Load (PORT)
v System load (SYS)

Each of the four columns is assigned a percentage that is used to calculate the
weight for the server. The percentages are set with the cluster set proportion
command. By default, only the active connections and new connections are
considered when calculating the weight of the server. When an advisor is started,
the proportion for the port load is set to 1% so that the port load is used in the
weight calculation. Similarly, when a metric is added the proportion for the system
load is set to 1%. The manager function returns the following values for each
server:

Active connections (ACTV)
Active connections are TCP connections that are closed at the start of the
manager cycle.

New connections (NEWC)
New connections represent the increase in total connections from the start
of the manager cycle to the start of the last manager cycle.

Port Load (PORT)
The port load is the value that is obtained from an advisor that is defined
on this cluster:port combination. If an advisor is not started, the port load
is always zero. When an advisor is defined, the port load typically
represents the number of milliseconds for the advisor to receive a response
from the server.

When the port load is shown as -1, the advisor did not receive a successful
response to its query. Increase the log level and log size for the advisor to
investigate why the server did not respond. If the server never responds to
the connection request, complete the following steps:
1. Ensure that you can successfully ping the server from the Load

Balancer machine.
2. Verify that the server application is started and listening on the port

that is defined. The server should be listening on the wildcard address
(0.0.0.0), or both the cluster IP address and the real server IP address to
successfully respond to the advisor requests.

If the server responds to the connection, then it might be responding to the
query in a manner that is different from what Load Balancer is expecting
to see. Check the advisorresponse string that is defined to ensure it
matches what the server has transmitted. This scenario applies to both http
and https advisors.

102 Load Balancer Administration Guide

System load (SYS)
The system load represents the value that is returned from the metric
server. If metrics have not been added for this cluster:port combination, the
system load is zero (0). When metrics are defined, the system load is a
value in between -1 and 100, which represents the status of the server. 100
is very busy and zero (0) is idle.

If the system load shows -1, Load Balancer cannot communicate with the
metric server on the back-end machine. Ensure Load Balancer keys are
properly distributed to the server, that the server can be pinged from the
Load Balancer, and that metric server is started on the machine. If the
problem persists, complete the following steps:
1. Edit the script for the metric server on the back-end machine and

increase both the log level and log size.
2. Restart the metric server.
3. Increase the the log size and the log level for the metric monitor at the

Load Balancer.
4. Examine the log files on both the Load Balancer machine and the

back-end machine to determine why communication is failing.

The number of active connections and new connections are determined based upon
the number of connections that the executor has forwarded within the last cycle of
the last manager function. The manager cycle is two seconds, by default.

Configuring server weights

Under normal circumstances, Load Balancer uses all of the values that have
proportions that are not zero to calculate the new weight. For example, if the
proporations are 40 40 20 0, the active connections and new connections are 40% of
the weight calculation each and the port load is 20%.

As an example, assume the manager function returns the following values:
ACTV NEWC PORT SYS

Server1 50 200 25 0
Server2 25 100 50 0

The initial weight calculations will be:
v Server1 = .40(50) + .40(200) + .2(25) = 20 + 80 + 5 = 105
v Server2 = .40(25) + .40(100) + .2(50) = 10 + 40 + 10 = 60

The initial weights are scaled to be proportional to the weightbound for the
cluster:port. By default, the weightbound is 10. Thus, in the previous example, the
final weights, which are rounded to the nearest whole number, are:
v Server1 = (105/165) * 10 = 6
v Server2 = (60/165) * 10 = 4

The calculated weight is shown as the NEW weight in the manager report. The
weight is only pushed to the executor function if it exceeds the sensitivity level
that is configured for the cluster:port combination. The NOW weight represents the
weight that is obtained from the executor at the start of this manager cycle.

If the port load or the system load is -1, and the respective proportion for the port
or system column is greater than 0, the calculated weight is zero (0). Zero (0)
indicates that the server is not active and new requests are not sent to the server.

Chapter 5. Tuning Load Balancer 103

If you quiesce a server, you will see that the weight is also shown as zero (0), but
the port load is positive if the server is still online. If a quiesced server goes offline,
the port load is -1.

If a user issues a ″server down″ function on a server to prevent Load Balancer
from sending requests to that server, the weight is -1 regardless of the value for the
port load and system load.
Related tasks

Tuning

Optimizing the manager interval
To optimize overall performance, the manager is restricted in how often it can
interact with the executor. You can make changes to this interval by entering the
dscontrol manager interval and dscontrol manager refresh commands.

About this task

The manager interval specifies how often the manager will update the server
weights that the executor uses in routing connections. If the manager interval is
too low, it can mean poor performance as a result of the manager constantly
interrupting the executor. If the manager interval is too high, it can mean that the
executor’s request routing will not be based on accurate, up-to-date information.

The manager refresh cycle specifies how often the manager will ask the executor
for status information. The refresh cycle is based on the interval time.
1. Set the manager interval time, in seconds. For example, to set the manager

interval to 1 second, enter the following command:
dscontrol manager interval 1

2. Set the manager refresh time, in seconds. For example, to set the manager
refresh cycle to 3, enter the following command:
dscontrol manager refresh 3

This will cause the manager to wait for 3 intervals before asking the executor
for status.

Related tasks

Tuning

Tuning the proportion of importance given to status information
The manager uses ratios to determine the importance of status information coming
from advisors and Load Balancer. You can change the default ratios that the
manager uses to weight this information.

About this task

The manager can use some or all of the following external factors in its weighting
decisions:
v Active connections: The number of active connections on each load balanced

server machine (as tracked by the executor).
v New connections: The number of new connections on each load balanced server

machine (as tracked by the executor).
v Port-specific: The input from advisors listening on the port.

104 Load Balancer Administration Guide

welcome_tuning.html
welcome_tuning.html

v System metric: The input from the system monitoring tools, such as Metric Server
or WLM.

Along with the current weight for each server and some other information
required for its calculations, the manager gets the first two values (active and new
connections) from the executor. These values are based on information that is
generated and stored internally in the executor.

You can change the relative proportion of importance of the four values on a per
cluster basis. Think of the proportions as percentages; the sum of the relative
proportions must equal 100%. The default ratio is 50/50/0/0, which ignores the
advisor and system information. In your environment, you may need to try
different proportions to find the combination that gives the best performance.

Note:

v When adding an advisor (other than WLM), if the port proportion is zero, then
the manager increases this value to 1. Because the sum of the relative
proportions must total 100, the highest value is then decreased by 1.

v When adding the WLM advisor, if the system metric proportion is zero, then the
manager increases this value to 1. Because the sum of the relative proportions
must total 100, the highest value is then decreased by 1.

The number of active connections is dependent upon the number of clients as well
as the length of time necessary to use the services that are being provided by the
load balanced server machines. If the client connections are quick (such as small
Web pages served using HTTP GET), then the number of active connections are
fairly low. If the client connections are slower (such as a database query), then the
number of active connections are higher.

You should avoid setting active and new connections proportions values too low.
You will disable load balancing and smoothing unless you have these first two
values set to at least 20 each.

To set the proportion of importance that is given to the different factors, use the
“dscontrol cluster” on page 144 command. For example:
dscontrol cluster set cluster proportions value

See the topic on the “dscontrol cluster” on page 144 command for more
information.

Managing traffic with server weights
Weights are applied to all servers on a port. For any particular port, the requests
are distributed between servers based on their weights relative to each other. For
example, if one server is set to a weight of 10, and the other to 5, the server set to
10 should get twice as many requests as the server set to 5.

About this task

Weights are set by the manager function based upon internal counters in the
executor, feedback from the advisors, and feedback from a system-monitoring
program, such as Metric Server. If you want to set weights manually while running
the manager, specify the fixedweight option on the dscontrol server command. For
a description of the fixedweight option, see “dscontrol manager” on page 151.

Chapter 5. Tuning Load Balancer 105

The maximum weight boundary affects how much difference there can be between
the number of requests each server will get. If you set the maximum weightbound
to 1, then all the servers can have a weight of 1, 0 if quiesced, or -1 if marked
down. As you increase this number, the difference in how servers can be weighted
is increased. At a maximum weightbound of 2, one server could get twice as many
requests as another. At a maximum weightbound of 10, one server could get 10
times as many requests as another. The default maximum weightbound is 20.

If an advisor finds that a server has gone down, it tells the manager, which sets the
weight for the server to zero. As a result, the executor will not send any additional
connections to that server as long as that weight remains zero. If there were any
active connections to that server before the weight changed, they will be left to
complete normally.

If all the servers are down, the manager sets the weights to half the weightbound.
v To specify the maximum weight boundary that any server can have, use the

following command:
dscontrol port set port weightbound weight

v Configure fixed weights for servers.
1. Turn on the fixedweight option. For more information, see “dscontrol server”

on page 160.
dscontrol server set cluster@port@server fixedweight yes

The server weight value remains fixed while the manager is running until
you issue another dscontrol server command with fixedweight set to no.

2. After fixedweight is set to yes, use the dscontrol server set weight command
to set the weight to the value you desire. For example:
dscontrol server set cluster@port@server weight value

Related reference

“dscontrol manager” on page 151
You can control the manager function with the dscontrol manager command.
Related information

Tuning

Optimizing the sensitivity threshold
To work at top speed, updates to the weights for the servers are only made if the
weights have changed significantly. Constantly updating the weights when there is
little or no change in the server status could create unnecessary overhead.

About this task

When the percentage weight change for the total weight for all servers on a port is
greater than the sensitivity threshold, the manager updates the weights used by
the executor to distribute connections. Consider, for example, that the total weight
changes from 100 to 105. The change is 5%. With the default sensitivity threshold
of 5, the manager will not update the weights used by the executor, because the
percentage change is not above the threshold. If, however, the total weight changes
from 100 to 106, the manager will update the weights.

Note: In most cases, you will not need to change this value.

To set the manager’s sensitivity threshold to a value other than the default (for
example, 6), enter the following command:

106 Load Balancer Administration Guide

welcome_tuning.html

dscontrol manager sensitivity 6

Related information

tprf_optimizing.dita

Optimizing the smoothing index
The smoothing index limits the amount that a server’s weight can change,
effectively smoothing the change in the distribution of requests.

About this task

The manager calculates the server weights dynamically. As a result, an updated
weight can be very different from the previous one. Under most circumstances, this
will not be a problem. Occasionally, however, it may cause an oscillating effect in
the way the requests are load balanced. For example, one server can end up
receiving most of the requests due to a high weight. The manager will see that the
server has a high number of active connections and that the server is responding
slowly. It will then shift the weight over to the free servers and the same effect will
occur there too, creating an inefficient use of resources.

To alleviate this problem, the manager uses a smoothing index. A higher
smoothing index will cause the server weights to change less drastically. A lower
index will cause the server weights to change more drastically. The default value
for the smoothing index is 1.5. At 1.5, the server weights can be rather dynamic.
An index of 4 or 5 will cause the weights to be more stable.

Note: In most cases, you will not need to change this value.

Set the smoothing index, in seconds. For example, to set the smoothing index to 4
enter the following command:
dscontrol manager smoothing 4

Related information

Tuning

Controlling connection records with the staletimeout value
Connections are considered stale when there has been no activity on that
connection for the number of seconds specified in stale timeout. When the number
of seconds has been exceeded with no activity, Load Balancer will remove that
connection record from its tables, and subsequent traffic for that connection is
discarded. The staletimeout command controls the way Load Balancer handles idle
connections and the associated connection records.

About this task

Use the staletimeout command to control the period during which Load Balancer
should keep connections in the ″Established″ state and accept traffic when no
active traffic has been seen in the Dispatcher tables.

A client sends a FIN packet after it has sent all its packets so that the server will
know that the transaction is finished. When Dispatcher receives the FIN packet, it
marks the transaction from active state to FIN state. When a transaction is marked
FIN, the memory that is reserved for the connection can be cleared.

Chapter 5. Tuning Load Balancer 107

welcome_tuning.html

To change the staletimeout value, use the dscontrol executor set command. Type
the following at a command prompt:
dscontrol executor set staletimeout time

where the value for time is in seconds.

Note: Some services might have staletimeout values of their own.

Note: For example, LDAP (Lightweight Directory Access Protocol) has a
configuration parameter called idletimeout. When idletimeout seconds have been
exceeded, an idle client connection will be forcibly closed. Idletimeout may also be
set to 0, which means that the connection will never be forcibly closed.

Connectivity problems can occur when Load Balancer’s stale timeout value is
smaller than the service’s timeout value. In the case of LDAP, for example, if the
Load Balancer staletimeout value defaults to 6400 seconds, and there is no activity
on the connection for 6400 seconds, Load Balancer will remove the connection
record from its tables. Furthermore, if the idletimeout value at the LDAP server is
larger than 6400 seconds (or set to 0), the client might still believe that it has a
connection to the server. When the client sends packets, the packets will be
discarded by Load Balancer. This causes the LDAP client to hang when a request is
made to the server.

To avoid this problem, set the LDAP idletimeout to a nonzero value that is the
same or smaller than the Load Balancer staletimeout value.
Related information

Administering

108 Load Balancer Administration Guide

welcome_administering.html

Chapter 6. Troubleshooting Load Balancer

Use the information that is provided to help you solve problems that can occur in
Load Balancer.

Click a link in the table to go to a full description and possible solution for the
problem that you are experiencing.

Table 11. Troubleshooting table for Load Balancer

Symptom Possible Cause Go to...

Dispatcher not running
correctly

Conflicting port numbers “Problem: Load Balancer will
not run” on page 113

Connections from client
machines not being served or
connections timing out

v Wrong routing
configuration

v Server does not have
loopback device aliased to
the cluster address

v Extra route not deleted

v Port not defined for each
cluster

“Problem: Load Balancer
requests are not being
balanced” on page 113

Server not serving requests
(Windows® platform)

An extra route has been
created in the routing table

“Problem: Extra routes
(Windows 2000)” on page
113

Dispatcher, Microsoft® IIS,
and SSL are not working or
will not continue

Unable to send encrypted
data across protocols

“Problem: Dispatcher,
Microsoft IIS, and SSL do not
work (Windows platform)”
on page 114

The dscontrol or lbadmin
command fails with ‘Server
not responding’ or ‘unable to
access RMI server’ message

1. Commands fail due to
socksified stack. Or
commands fail due to not
starting dsserver

2. RMI ports are not set
correctly

3. Host file has incorrect
local host

“Problem: dscontrol or
lbadmin command fails” on
page 114

Advisors not working
correctly

Advisors are not running “Problem: Advisors not
working correctly” on page
114

“Cannot Find the File...″
error message, when running
Netscape as default browser
to view online help
(Windows platform)

Incorrect setting for HTML
file association

“Problem: “Cannot find the
file...″ error message when
trying to view online Help
(Windows platform)” on
page 115

Graphical user interface does
not start correctly

Insufficient paging space “Problem: Graphical user
interface (GUI) does not start
correctly” on page 115

Graphical user interface does
not display correctly.

Resolution is incorrect. “Problem: Graphical user
interface (GUI) does not
display correctly” on page
115

109

Table 11. Troubleshooting table for Load Balancer (continued)

Symptom Possible Cause Go to...

Help panels sometimes
disappear behind other
windows

Java™ limitation “Problem: On Windows
platform, help windows
sometimes disappear behind
other open windows” on
page 115

GUI hangs (or unexpected
behavior) when trying to
load a large configuration
file.

Java does not have access to
enough memory to handle
such a large change to the
GUI

“Problem: GUI hangs (or
unexpected behavior) when
trying to load a large
configuration file” on page
115

Korean Load Balancer
interface displays
overlapping or undesirable
fonts on AIX® and Linux®

systems

Default fonts must be
changed

“Problem: Korean Load
Balancer interface displays
overlapping or undesirable
fonts on AIX and Linux
systems” on page 116

Unexpected GUI behavior
when using Windows
platform paired with Matrox
AGP video card

Problem occurs when using
Matrox AGP video cards
while running the Load
Balancer GUI

“Problem: On Windows
platform, unexpected GUI
behavior when using Matrox
AGP video cards” on page
117

Slow response time when
running commands on the
Dispatcher machine

Slow response time can be
due to machine overloading
from a high volume of client
traffic

“Problem: Slow response
time running commands on
Dispatcher machine” on page
117

SSL or HTTPS advisor not
registering server loads

Problem occurs because the
SSL server application not
configured with the cluster
IP address

“Problem: SSL or HTTPS
advisor not registering server
loads” on page 117

Socket pooling is enabled
and the Web server is
binding to 0.0.0.0

Configure the Microsoft IIS
server to be bind specific

“Problem: Socket pooling is
enabled and the Web server
is binding to 0.0.0.0” on page
117

On Windows platform,
corrupted Latin-1 national
characters appear in
command prompt

Change font properties of
command prompt window

“Problem: On Windows
systems, corrupted Latin-1
national characters appear in
command prompt window”
on page 118

On Windows platform,
advisors and reach targets
mark all servers down

Task offloading is not
disabled or may need to
enable ICMP.

“Problem: On Windows
systems, advisors and reach
targets mark all servers
down” on page 118

On Windows platform,
advisors not working in a
high availability setup after a
network outage

When the system detects a
network outage, it clears its
Address Resolution Protocol
(ARP) cache

“Problem: On Windows
systems, after network
outage, advisors not working
in a high availability setup”
on page 119

On Linux systems, ″IP
address add″ command and
multiple cluster loopback
aliases are incompatible

When aliasing more than one
address on the loopback
device, should use ifconfig
command, not ip address
add

“Problem: On Linux systems,
do not use ″IP address add″
command when aliasing
multiple clusters on the
loopback device” on page
119

110 Load Balancer Administration Guide

Table 11. Troubleshooting table for Load Balancer (continued)

Symptom Possible Cause Go to...

On Solaris systems, Load
Balancer processes end when
you exit the terminal session
window from which they
started

Use the nohup command to
prevent the processes that
you started from receiving a
hangup signal when you exit
the terminal session.

“Problem: On Solaris
systems, Load Balancer
processes end when you exit
the terminal window from
which they started” on page
119

Slow down occurs when
loading Load Balancer
configurations

The delay might be due to
Domain Name System (DNS)
calls that are made to resolve
and verify the server
address.

“Problem: Delay occurs
while loading a Load
Balancer configuration” on
page 120

On Windows systems, the
following error message
appears: There is an IP
address conflict with another
system on the network

If high availability is
configured, cluster addresses
may be configured on both
machines for a brief period
which causes this error
message to appear.

“Problem: On Windows
systems, an IP address
conflict error message
appears” on page 120

On Windows systems,
″Server not responding″ error
occurs when issuing a
dscontrol or lbadmin
command

When more than one IP
address exists on a Windows
system and the host file does
not specify the address to
associate with the hostname.

“Problem: On Windows
systems, ″Server not
responding″ error occurs
when issuing dscontrol or
lbadmin” on page 120

Dispatcher MAC forwarding
configuration limitations
with zSeries and S/390
platforms

On Linux, there are
limitations when using
zSeries or S/390 servers that
have Open System Adapter
(OSA) cards. Possible
workarounds are provided.

“Problem: On Linux,
Dispatcher configuration
limitations when using
zSeries or S/390 servers that
have Open System Adapter
(OSA) cards” on page 121

On Linux systems, iptables
can interfere with the routing
of packets

Linux iptables can interfere
with load balancing of traffic
and must be disabled on the
Load Balancer machine.

“Problem: Linux iptables can
interfere with the routing of
packets” on page 122

On Solaris systems, when
you try to configure an IPv6
server on the Dispatcher
machine, the message
″unable to add server″
appears

This can be caused by the
way the Solaris operating
system handles the ping
request for an IPv6 address.

“Problem: Unable to add an
IPv6 server to the Load
Balancer configuration on
Solaris systems” on page 123

A Java fileset warning
message appears when
installing service fixes or
installing natively, using
system packaging tools

The product installation
consists of several packages
which are not required to be
installed on the same
machine, so each of these
packages installs a Java
fileset. When installed on the
same machine a warning
messages stating that the
Java fileset is also owned by
another fileset.

“Problem: Java warning
message appears when
installing service fixes” on
page 123

Chapter 6. Troubleshooting Load Balancer 111

Table 11. Troubleshooting table for Load Balancer (continued)

Symptom Possible Cause Go to...

Upgrading the Java fileset
provided with the Load
Balancer installations

If a problem is found with
the Java file set, you should
report the problem to IBM
Service so that you can
receive an upgrade for the
Java file set that was
provided with the Load
Balancer installation.

“Upgrading the Java file set
provided with the Load
Balancer installation” on
page 123

Client requests fail when
forwarding to HP-UX
back-end servers

After setting up Load
Balancer for IPv6 on the
HP-UX operating system,
client requests to the cluster
address fail. This error is a
result of the interaction
between the neighbor
discovery function for the
operating system and the
Load Balancer.

“Problem: Client requests fail
when using IPv6 MAC
forwarding with HP-UX
back-end servers” on page
123

Load Balancer for IPv4 and
IPv6 conflicts with IP
security (IPsec)

If you are using the Load
Balancer for IPv4 and IPv6
with IP security (IPsec)
enabled, output packets
might be incorrect and
dispatcher configuration
information might display
incorrectly in the command
line interface and
administrative console for
WebSphere Application
Server.

Load Balancer reports that it
is forwarding connections,
but clients do not receive
responses.

“Problem: On AIX systems,
Load Balancer conflicts with
IP security (IPsec)” on page
124

Install program will not run
on the 32-bit Linux operating
system for zSeries

Installing Load Balancer
using ./install on the 32-bit
Linux operating system for
zSeries produces a ″JVM Not
Found″ message.

“Problem: Installing
WebSphere Edge Server
using ./install on the 32-bit
Linux operating system for
zSeries produces a ″JVM Not
Found″ message” on page
124

The uninstall process does
not complete successfully on
Linux operating systems

The uninstall process for
WebSphere Edge Server
hangs on Linux operating
systems.

“Problem: The uninstall
process for WebSphere Edge
Server hangs on Linux
operating systems” on page
124

112 Load Balancer Administration Guide

Table 11. Troubleshooting table for Load Balancer (continued)

Symptom Possible Cause Go to...

The serverUp script might
run when you issue
commands for Load Balancer
that affect the status of
servers

You might experience
problems if you run a
command that affects the
status of a server, such as the
dscontrol server up and
dscontrol server down
commands, after a manager
cycle has already retrieved
the weights of the servers. If
you run these commands, it
might overwrite the values
that are saved during the
manager cycle and cause the
serverUp script to run
unexpectedly.

“Problem: The serverUp
script might run when you
issue commands for Load
Balancer that affect the status
of servers” on page 125

Problem: Load Balancer will not run
This problem can occur when another application is using one of the ports used by
the Load Balancer. For more information, go to “Configuring the Load Balancer
machine” on page 34.

Problem: Load Balancer requests are not being balanced
This problem has symptoms such as connections from client machines not being
served or connections timing out. Check the following to diagnose this problem:
1. Have you configured the nonforwarding address, clusters, ports, and servers

for routing? Check the configuration file.
2. Does the loopback device on each server have the alias set to the cluster

address?
Use netstat -ni to check.

3. Is the extra route deleted?
Use netstat -nr to check.

4. Use the dscontrol cluster status command to check the information for each
cluster you have defined. Make sure you have a port defined for each cluster.

5. Use the dscontrol server report :: command to make sure that your servers are
neither down nor set to a weight of zero.

Problem: Extra routes (Windows 2000)
After setting up server machines, you may find that you have inadvertently
created one or more extra routes. If not removed, these extra routes will prevent
the Load Balancer from operating.

Chapter 6. Troubleshooting Load Balancer 113

Problem: Dispatcher, Microsoft IIS, and SSL do not work (Windows
platform)

When using Dispatcher, Microsoft IIS, and SSL, if they do not work together, there
may be a problem with enabling SSL security. For more information about
generating a key pair, acquiring a certificate, installing a certificate with a key pair,
and configuring a directory to require SSL, see the Microsoft Information and Peer
Web Services documentation.

Problem: dscontrol or lbadmin command fails
1. The dscontrol command returns: Error: Server not responding. Or, the lbadmin

command returns: Error: unable to access RMI server. These errors can result
when your machine has a socksified stack. To correct this problem, edit the
socks.cnf file to contain the following lines:
EXCLUDE-MODULE java
EXCLUDE-MODULE javaw

2. The administration consoles for Load Balancer interfaces (command line,
graphical user interface, and wizards) communicate with dsserver using remote
method invocation (RMI). The default communication uses three ports; each
port is set in the dsserver start script:
v 10099 to receive commands from dscontrol
v 10004 to send metric queries to Metric Server
v 10199 for the RMI server port
This can cause problems when one of the administration consoles runs on the
same machine as a firewall or through a firewall. For example, when Load
Balancer runs on the same machine as a firewall, and you issue dscontrol
commands, you might see errors such as Error: Server not responding.
To avoid this problem, edit the dsserver script file to set the port used by RMI
for the firewall (or other application). Change the line:
LB_RMISERVERPORT=10199 to LB_RMISERVERPORT=yourPort. Where
yourPort is a different port.
When complete, restart dsserver and open traffic for ports 10099, 10004, 10199,
and 10100, or for the chosen port for the host address from which the
administration console will be run.

3. These errors can also occur if you have not already started dsserver.
4. If there are multiple adapters on the machine, you must designate which

adapter that dsserver is to use by adding the following in the dsserver
script:java.rmi.server.hostname=<host_name or IPaddress>

For example: java -Djava.rmi.server.hostname=″10.1.1.1″

Problem: Advisors not working correctly
An ICMP ping is issued to the servers before the advisor request. If a firewall
exists between Load Balancer and the servers, ensure that pings are supported
across the firewall. If this setup poses a security risk to your network, modify the
java statement in dsserver to turn off all pings to the servers by adding the java
property:
LB_ADV_NO_PING="true"
java -DLB_ADV_NO_PING="true"

114 Load Balancer Administration Guide

Problem: “Cannot find the file...″ error message when trying to view
online Help (Windows platform)

For Windows platforms, when using Netscape as your default browser, the
following error message may result: “Cannot find the file ’<filename>.html’ (or one
of its components). Make sure the path and filename are correct and that all
required libraries are available.″

The problem is due to an incorrect setting for HTML file association. The solution
is the following:
1. Click My Computer, click Tools, select Folder Options, and click File Types

tab
2. Select “Netscape Hypertext Document″
3. Click Advanced button, select open, click Edit button
4. Enter NSShell in the Application: field (not the Application Used to Perform

Action: field), and click OK

Problem: Graphical user interface (GUI) does not start correctly
The graphical user interface (GUI), which is lbadmin, requires a sufficient amount
of paging space to function correctly. If insufficient paging space is available, the
GUI might not start up completely. If this occurs, check your paging space and
increase it if necessary.

Problem: Graphical user interface (GUI) does not display correctly
If you experience a problem with the appearance of the Load Balancer GUI, check
the setting for the operating system’s desktop resolution. The GUI is best viewed
at a resolution of 1024x768 pixels.

Problem: On Windows platform, help windows sometimes disappear
behind other open windows

On Windows platform, when you first open help windows, they sometimes
disappear into the background behind existing windows. If this occurs, click on the
window to bring it forward again.

Problem: GUI hangs (or unexpected behavior) when trying to load a
large configuration file

When using lbadmin or Web administration (lbwebaccess) to load a large
configuration file (roughly 200 or more add commands), the GUI may hang or
display unexpected behavior, such as responding to screen changes at an extremely
slow rate of speed.

This occurs because Java does not have access to enough memory to handle such a
large configuration.

There is an option on the runtime environment that can be specified to increase the
memory allocation pool available to Java.

The option is -Xmxn where n is the maximum size, in bytes, for the memory
allocation pool. n must be a multiple of 1024 and must be greater than 2MB. The

Chapter 6. Troubleshooting Load Balancer 115

value n may be followed by k or K to indicate kilobytes, or m or M to indicate
megabytes. For example, -Xmx128M and -Xmx81920k are both valid. The default
value is 64M. Solaris 8 has a maximum value of 4000M.

For example, to add this option, edit the lbadmin script file, modifying ″javaw″ to
″javaw -Xmxn″ as follows. For AIX systems, modify ″java″ to ″java -Xmxn″.
v AIX systems

java -Xmx256m -cp $LB_CLASSPATH $LB_INSTALL_PATH $LB_CLIENT_KEYS
com.ibm.internet.nd.framework.FWK_Main 1>/dev/null 2>&1 &

v HP-UX systems
java -Xmx256m -cp $LB_CLASSPATH $LB_INSTALL_PATH $LB_CLIENT_KEYS
com.ibm.internet.nd.framework.FWK_Main 1>/dev/null 2>&1 &

v Linux systems
javaw -Xmx256m -cp $LB_CLASSPATH $LB_INSTALL_PATH $LB_CLIENT_KEYS
com.ibm.internet.nd.framework.FWK_Main 1>/dev/null 2>&1 &

v Solaris systems
java -Xmx256m -cp $LB_CLASSPATH $LB_INSTALL_PATH $LB_CLIENT_KEYS
com.ibm.internet.nd.framework.FWK_Main 1>/dev/null 2>&1 &

v Windows systems
START javaw -Xmx256m -cp %LB_CLASSPATH% %LB_INSTALL_PATH%
%LB_CLIENT_KEYS% com.ibm.internet.nd.framework.FWK_Main

There is no recommended value for n , but it should be greater than the default
option. A good place to start would be with twice the default value.

Problem: Korean Load Balancer interface displays overlapping or
undesirable fonts on AIX and Linux systems

To correct overlapping or undesirable fonts in the Korean Load Balancer interface:
v On AIX systems

1. Stop all Java processes on the AIX system.
2. Open the font.properties.ko file in an editor. This file is located in

home/jre/lib where home is the Java home.
3. Search for this string:

-Monotype-TimesNewRomanWT-medium-r-normal
--*-%d-75-75-*-*-ksc5601.1987-0

4. Replace all instances of the string with:
-Monotype-SansMonoWT-medium-r-normal
--*-%d-75-75-*-*-ksc5601.1987-0

5. Save the file.
v On Linux systems

1. Stop all Java processes on the system.
2. Open the font.properties.ko file in an editor. This file is located in

home/jre/lib where home is the Java home.
3. Search for this string (with no spaces):

-monotype-
timesnewromanwt-medium-r-normal--*-%d-75-75-p-*-microsoft-symbol

4. Replace all instances of the string with:
-monotype-sansmonowt-medium-r-normal--*-%d-75-75-p-*-microsoft-symbol

5. Save the file.

116 Load Balancer Administration Guide

Problem: On Windows platform, unexpected GUI behavior when using
Matrox AGP video cards

On Windows platform when using a Matrox AGP card, unexpected behavior can
occur in the Load Balancer GUI. When clicking the mouse, a block of space slightly
larger than the mouse pointer can become corrupted causing possible highlighting
reversal or images to shift out of place on the screen. Older Matrox cards have not
shown this behavior. There is no known fix when using Matrox AGP cards.

Problem: Slow response time running commands on Dispatcher
machine

If you are running the Dispatcher component for load balancing, it is possible to
overload the computer with client traffic. The Load Balancer kernel module has the
highest priority, and if it is constantly handling client packets, the rest of the
system may become unresponsive. Running commands in user space may take a
very long time to complete, or may never complete.

If this happens, you should begin to restructure your setup to avoid overloading
the Load Balancer machine with traffic. Alternatives include spreading the load
across several Load Balancer machines, or replacing the machine with a stronger
and faster computer.

When trying to decide if the slow response time on the machine is due to high
client traffic, consider whether this occurs during client peak traffic times.
Misconfigured systems that cause routing loops can also cause the same
symptoms. But before changing the Load Balancer setup, determine whether the
symptoms may be due to high client load.

Problem: SSL or HTTPS advisor not registering server loads
Load Balancer will send packets to the servers using the cluster address that is
aliased on the loopback. Some server applications (such as SSL) require that
configuration information, such as certificates, are based on the IP address. The IP
address must be the cluster address which is configured on the loopback in order
to match the contents of the incoming packets. If the IP address of the cluster is
not used when configuring the server application, then the client request will not
get properly forwarded to the server.

Problem: Socket pooling is enabled and the Web server is binding to
0.0.0.0

When running Microsoft IIS server, version 5.0 on Windows back-end servers, you
must configure the Microsoft IIS server to be bind specific. Otherwise, socket
pooling is enabled as the default, and the Web server binds to 0.0.0.0 and listens
for all traffic, rather than binding to the virtual IP addresses configured as multiple
identities for the site. If an application on the local host goes down while socket
pooling is enabled, AIX or Windows ND server advisors detect this; however, if an
application on a virtual host goes down while the local host stays up, the advisors
do not detect the failure and Microsoft IIS continues to respond to all traffic,
including that of the downed application.

To determine whether socket pooling is enabled and the Web server is binding to
0.0.0.0, issue the following command:

Chapter 6. Troubleshooting Load Balancer 117

netstat -an

The instructions for how to configure the Microsoft IIS server to be bind-specific
(disable socket pooling), are located on the Microsoft Product Support Services
Web site. You can also go to one of these URLs for this information:

IIS5: Hardware Load Balance Does Not Detect a Stopped Web Site (Q300509)
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q300509

How to Disable Socket Pooling (Q238131)
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q238131

Problem: On Windows systems, corrupted Latin-1 national characters
appear in command prompt window

In a command prompt window on the Windows operating system, some national
characters of the Latin-1 family might appear corrupted. For example, the letter ″a″
with a tilde may display as a pi symbol. To fix this, you must change the font
properties of the command prompt window. To change the font, do the following:
1. Click the icon in the upper left corner of the command prompt window
2. Select Properties, then click the Font tab
3. The default font is Raster fonts; change this to Lucida Console and click OK

Problem: On Windows systems, advisors and reach targets mark all
servers down

When configuring your adapter on a Load Balancer machine, you must ensure that
the following two settings are correct for the advisor to work:
v Disable Task Offloading.

– To disable Task offloading: Go to Start > Settings > Control Panel > Network
and Dial-up Connections, then select the adapter.

– In the pop-up window, click Properties.
– Click Configure, then select the Advanced tab.
– In the property pane, select the Task Offload property, then select disable in

the value field.
v Enable Protocol 1 (ICMP) for IP protocols if you are enabling TCP/IP filtering. If

ICMP is not enabled, the ping test to the back-end server will not succeed. To
check whether ICMP is enabled:
– Go to Start > Settings > Control Panel > Network and Dial-up Connections,

then select the adapter.
– In the pop-up window, click Properties.
– From the components pane, select Internet Protocol (TCP/IP), then click

Properties.
– Click Advanced, then select the Options tab.
– Select TCP/IP filtering in the options pane, then click Properties.
– If you have selected Enable TCP/IP Filtering and permit only for IP

protocols, you must add IP Protocol 1. This must be added in addition to the
existing TCP and UDP ports that you enabled.

118 Load Balancer Administration Guide

Problem: On Windows systems, after network outage, advisors not
working in a high availability setup

By default, when the Windows operating system detects a network outage, it clears
its address resolution protocol (ARP) cache, including all static entries. After the
network is available, the ARP cache is repopulated by ARP requests sent on the
network.

With a high availability configuration, both servers take over primary operations
when a loss of network connectivity affects one or both. When the ARP request is
sent to repopulate the ARP cache, both servers respond, which causes the ARP
cache to mark the entry as not valid. Therefore, the advisors are not able to create
a socket to the backup servers.

Preventing the Windows operating system from clearing the ARP cache when there
is a loss of connectivity solves this problem. Microsoft has published an article that
explains how to accomplish this task. This article is on the Microsoft Web site,
located in the Microsoft Knowledge Base, article number 239924:
http://support.microsoft.com/default.aspx?scid=kb;en-us;239924.

The following is a summary of the steps, described in the Microsoft article, to
prevent the system from clearing the ARP cache:
1. Use the Registry editor (regedit or regedit32) to open the registry.
2. View the following key in the registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters

3. Add the following registry value: Value Name: DisableDHCPMediaSense Value
Type: REG_DWORD.

4. After the key is added, edit the value and set it to 1.
5. Reboot the machine for the change to take effect.

Note: This affects the ARP cache regardless of the DHCP setting.

Problem: On Linux systems, do not use ″IP address add″ command
when aliasing multiple clusters on the loopback device

Certain considerations must be taken when using Linux kernel 2.4.x servers. If the
server has a cluster address configured on the loopback device using the ip
address add command, only one cluster address can be aliased.

When aliasing multiple clusters to the loopback device use the ifconfig command,
for example:
ifconfig lo:num clusterAddress netmask 255.255.255.255 up

Additionally, there are incompatibilities between the ifconfig method of configuring
interfaces and the ip method of configuring interfaces. Best practice suggests that a
site choose one method and use that method exclusively.

Problem: On Solaris systems, Load Balancer processes end when you
exit the terminal window from which they started

On Solaris systems, after starting Load Balancer scripts (such as dsserver or
lbadmin) from a terminal window, if you exit from that window, the Load Balancer
process also exits.

Chapter 6. Troubleshooting Load Balancer 119

To resolve this problem, start the Load Balancer scripts with the nohup command.
For example: nohup dsserver. This command prevents the processes started from
the terminal session from receiving a hangup signal from the terminal when it
exits, allowing the processes to continue even after the terminal session has ended.
Use the nohup command in front of any Load Balancer scripts that you want to
continue to process beyond the end of a terminal session.

Problem: Delay occurs while loading a Load Balancer configuration
Loading a Load Balancer configuration might take a long time due to Domain
Name System (DNS) calls that are made to resolve and verify the server address.

If the DNS of the Load Balancer machine is configured incorrectly, or if DNS in
general takes a long time, this will cause a slow down in loading the configuration
due to the Java processes that are sending DNS requests on the network.

A workaround for this is to add your server addresses and hostnames to your local
/etc/hosts file.

Problem: On Windows systems, an IP address conflict error message
appears

If high availability is configured, the cluster addresses may be configured on both
machines for a brief period and cause the following error message to occur: There
is an IP address conflict with another system on the network. In this case, you can
safely ignore the message. It is possible for a cluster address to be briefly
configured on both high availability machines at the same time, especially during
startup of either machine, or when a takeover has been initiated.

Problem: On Windows systems, ″Server not responding″ error occurs
when issuing dscontrol or lbadmin

When more than one IP address is on a Windows system and the hosts file does
not specify the address to associate with the host name, the operating system
chooses the smallest address to associate with the host name.

To resolve this problem, update the c:\Windows\system32\drivers\etc\hosts file
with your machine host name and the IP address that you want to associate with
the host name.

If you are using dscontrol, you can specify the connection address using the
following command:
dscontrol host::<ip_address or host_name> <command>

IMPORTANT: The IP address cannot be a cluster address.

120 Load Balancer Administration Guide

Problem: On Linux, Dispatcher configuration limitations when using
zSeries or S/390 servers that have Open System Adapter (OSA) cards

In general, servers in the Load Balancer configuration must all be on the same
network segment regardless of the platform. Active network devices such as router,
bridges, and firewalls interfere with Load Balancer. This is because Load Balancer
functions as a specialized router, modifying only the link-layer headers to its next
and final hop. Any network topology in which the next hop is not the final hop is
not valid for Load Balancer.

Note: Tunnels, such as channel-to-channel (CTC) or inter-user communication
vehicle (IUCV), are often supported. However, Load Balancer must forward across
the tunnel directly to the final destination, it cannot be a network-to-network
tunnel.

There is a limitation for zSeries and S/390 servers that share the OSA card, because
this adapter operates differently than most network cards. The OSA card has its
own virtual link layer implementation, which has nothing to do with ethernet, that
is presented to the Linux and z/OS hosts behind it. Effectively, each OSA card
looks just like ethernet-to-ethernet hosts (and not to the OSA hosts), and hosts that
use it will respond to it as if it is ethernet.

The OSA card also performs some functions that relate to the IP layer directly.
Responding to ARP (address resolution protocol) requests is one example of a
function that it performs. Another is that shared OSA routes IP packets based on
destination IP address, instead of on ethernet address as a layer 2 switch.
Effectively, the OSA card is a bridged network segment unto itself.

Load Balancer that runs on an S/390 Linux or zSeries Linux host can forward to
hosts on the same OSA or to hosts on the ethernet. All the hosts on the same
shared OSA are effectively on the same segment.

Load Balancer can forward out of a shared OSA because of the nature of the OSA
bridge. The bridge knows the OSA port that owns the cluster IP. The bridge knows
the MAC address of hosts directly connected to the ethernet segment. Therefore,
Load Balancer can MAC-forward across one OSA bridge.

However, Load Balancer cannot forward into a shared OSA. This includes the Load
Balancer on an S/390 Linux when the back-end server is on a different OSA card
than the Load Balancer. The OSA for the back-end server advertises the OSA MAC
address for the server IP, but when a packet arrives with the ethernet destination
address of the server’s OSA and the IP of the cluster, the server’s OSA card does
not know which of its hosts, if any, should receive that packet. The same principles
that permit OSA-to-ethernet MAC-forwarding to work out of one shared OSA do
not hold when trying to forward into a shared OSA.

Workaround:

In Load Balancer configurations that use zSeries or S/390 servers that have OSA
cards, there are two approaches you can take to work around the problem that has
been described.
1. Using platform features

If the servers in the Load Balancer configuration are on the same zSeries or
S/390 platform type, you can define point-to-point (CTC or IUCV) connections
between Load Balancer and each server. Set up the endpoints with private IP

Chapter 6. Troubleshooting Load Balancer 121

addresses. The point-to-point connection is used for Load Balancer-to-server
traffic only. Then add the servers with the IP address of the server endpoint of
the tunnel. With this configuration, the cluster traffic comes through the Load
Balancer OSA card and is forwarded across the point-to-point connection where
the server responds through its own default route. The response uses the
server’s OSA card to leave, which might or might not be the same card.

2. Using Load Balancer’s encapsulation feature.
If the servers in the Load Balancer configuration are not on the same zSeries or
S/390 platform type, or if it is not possible to define a point-to-point connection
between Load Balancer and each server, it is recommended that you use Load
Balancer’s encapsulation feature, which is a protocol that permits Load Balancer
to forward across routers.
When using encapsulation, the client->cluster IP packet is received by Load
Balancer, encapsulated, and sent to the server. At the server, the original
client->cluster IP packet is excapsulated, and the server responds directly to the
client. The advantage with using GRE is that Load Balancer sees only the
client-to-server traffic, not the server-to-client traffic. The disadvantage is that it
lowers the maximum segment size (MSS) of the TCP connection due to
encapsulation overhead.
Refer to the topic “Use encapsulation forwarding to forward traffic across
network segments” on page 89 for more information on how to configure Load
Balancer to forward with encapsulation.

Problem: Linux iptables can interfere with the routing of packets
Linux iptables can interfere with load balancing of traffic and must be disabled on
the Dispatcher machine.

Issue the following command to determine if iptables are loaded:
lsmod | grep ip_tables

The output from the preceding command might be similar to this:
ip_tables 22400 3
iptable_mangle,iptable_nat,iptable_filter

Issue the following command for each iptable listed in the output to display the
rules for the tables:
iptables -t <short_name> -L

For example:
iptables -t mangle -L
iptables -t nat -L
iptables -t filter -L

If iptable_nat is loaded, it must be unloaded. Because iptable_nat has a
dependency on iptable_conntrack, iptable_conntrack also must be removed. Issue
the following command to unload these two iptables:
rmmod iptable_nat iptable_conntrack

122 Load Balancer Administration Guide

Problem: Unable to add an IPv6 server to the Load Balancer
configuration on Solaris systems

On Solaris systems, when you try to configure an IPv6 server on a installation, the
message unable to add server appears. This can be caused by the way the Solaris
operating system handles the ping request for an IPv6 address.

On Solaris systems, when adding a server to the configuration, Load Balancer tries
to ping the server to obtain the MAC address of the server. The Solaris machine
might choose a configured cluster address as the source address of the ping
request, instead of using the NFA address of the machine. If the cluster address is
configured on the server loopback, the ping response is not received at the Load
Balancer machine; therefore, it does not add the server to the configuration.

The solution is to configure another IPv6 address on the Load Balancer machine
either before or after configuring the IPv6 cluster address. This address must be an
address that is not aliased on the loopback of the back-end server on which you
are trying to add to the Load Balancer configuration. Then add the server to the
Load Balancer configuration.

Problem: Java warning message appears when installing service fixes
Load Balancer provides a Java file set along with the product installation. The
product installation consists of several packages that are not required to be
installed on the same machine. Examples of this are the Metric Server package, the
administration package, and the base package. All of these code packages require a
Java file set to operate but each of the three packages could be installed on
separate machines. As such, each of these packages installs a Java file set. When
installed on the same machine, the Java file set will be owned by each of these file
sets. When you install the second and third Java file set, you will receive a
warning messages stating that the Java file set is also owned by another file set.

When installing code using the native installation methods (for example, installp
on AIX), you should ignore the warning messages that the Java file set is owned
by another fileset.

Upgrading the Java file set provided with the Load Balancer
installation

During the Load Balancer installation process, a Java file set also gets installed.
Load Balancer will be the only application that uses the Java version which installs
with the product. You should not upgrade this version of the Java file set on your
own. If there are problem which requires an upgrade for the Java file set, you
should report the problem to IBM Service so the Java file set which is shipped
within Load Balancer will be upgraded with an official fix level.

Problem: Client requests fail when using IPv6 MAC forwarding with
HP-UX back-end servers

After setting up Load Balancer for IPv6 on the HP-UX operating system, client
requests to the cluster address fail. This error is a result of the interaction between
the neighbor discovery function for the operating system and the Load Balancer.

Chapter 6. Troubleshooting Load Balancer 123

When a back-end server is added to the configuration, Load Balancer tries to ping
the new server for the MAC address. The HP-UX server might choose a configured
cluster address as the source address of the ping request, instead of using the
nonforwarding address (NFA) of the machine. In this case, a new entry is created
for the cluster address in the routing table of the back-end HP-UX server in
addition to the local loopback entry. The new entry has a higher routing priority
than the local loopback. Thus, the client requests that reach the back-end server are
then redirected back to the Load Balancer server, which does not respond.

To work around this problem, after Load Balancer is set up completely, configure
the loopback alias on the back-end server as a final step. If the cluster address is
aliased on the loopback when the Load Balancer configuration is loaded, remove
the cluster loopback alias on the back-end server completely and then re-alias it. To
bring down the loopback alias, use the ifconfig lo0:1 inet6 command from the
terminal window. Re-alias the loopback alias.

Problem: On AIX systems, Load Balancer conflicts with IP security
(IPsec)

If you are using Load Balancer with IP security (IPsec) enabled, output packets
might be incorrect and dispatcher configuration information might display
incorrectly in the command line interface and administrative console for
WebSphere Application Server. Load Balancer reports that it is forwarding
connections, but clients do not receive responses.

If you are using Load Balancer function and IP security on the same host, there
might be communication problems between Load Balancer and the application
server. The Load Balancer component is not fully compatible with IPsec features
and it transmits data from both sides of the security layer. Load Balancer receives
packets below IPsec and, as a result, receives encrypted packets that it does not
decrypt. When sending data, Load Balancer transmits them above IPsec, so it sends
unencrypted packets to the application server that are encrypted on the other end
by IPsec. The application server, therefore, receives encrypted data that cannot be
used.

Problem: Installing WebSphere Edge Server using ./install on the 32-bit
Linux operating system for zSeries produces a ″JVM Not Found″
message

This problem is caused by a limitation of the Edge Installer on zSeries 32-bit Linux
operating systems.

You can work around this problem by performing a manual installation for 32-bit
zSeries Linux operating system. See “Installing Load Balancer on Linux operating
systems” on page 16 for more information.

Problem: The uninstall process for WebSphere Edge Server hangs on
Linux operating systems

This problem is the result of a limitation in the Edge Installer on Linux operating
systems.

124 Load Balancer Administration Guide

To uninstall WebSphere Edge Server on a Linux operating system, you need to
manually uninstall the product. To uninstall the entire product, enter the
command:
rpm -e 'rpm -qa | grep ibmlb'

To uninstall an individual package, enter the command rpm -e <package name>.
The package names can be found in “Installing Load Balancer on Linux operating
systems” on page 16. Remember to uninstall the packages in the reverse order of
which they were installed.

Problem: The serverUp script might run when you issue commands
for Load Balancer that affect the status of servers

Weights are set by the manager during a manager cycle. At the start of the
manager cycle, the manager retrieves the current weights from the executor
function. The manager uses these values as the last known weight to determine if
the status of a server has changed.

If you issue a server down command, for example, dscontrol server down, the
executor function saves the current weight of the server and associates a new
weight to the server with a value of -1. When you issue a server up command, for
example, dscontrol server up, a call is made to the executor function to revert the
weight of the server to the saved value. The system sets a flag to indicate that the
server is no longer marked down by the user.

If the server up command occurs after the manager has retrieved the weights, the
executor function overwrites the weight that is used to determine if the server state
has changed. This process does not cause any side effects unless the server is also
quiesced.

A quiesced server has a weight of 0, which is the same value as a server that is
detected down by the advisor. If you run a server up command on a quiesced
server, the executor function saves a value of 0 for the weight that determines if
the state of the server has changed. When the server is unquiesced, the serverUp
script might run because of this saved value.

The chances of experiencing this problem increase with larger configurations
because the manager cycle takes longer to run. Also, there is a higher probability
that the manager cycle will be in progress when the server up command is issued.

Chapter 6. Troubleshooting Load Balancer 125

126 Load Balancer Administration Guide

Chapter 7. Reference

Reference information is organized to help you locate particular facts quickly.

“Advanced configuration”
Settings are properties that you can configure using configuration files, or
by other means.

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

“Examples” on page 164
Examples of code snippets, command syntax, and configuration values that
are relevant to performing tasks with Load Balancer.

Advanced configuration
Settings are properties that you can configure using the configuration files, or by
other means..

To open the information center table of contents to the location of this reference
information, click the Show in Table of Contents button () on your information
center border.

Directory conventions
References in product information to install_root and other directories infer specific
default directory locations. This topic describes the conventions in use for IBM
WebSphere Edge Components.

These file paths are default locations. You can install the product and other
components in any directory where you have write access. You can create profiles
in any valid directory where you have write access.

install_root - the root directory in which the product was installed
Load Balancer install paths include the following:
v Administration - /opt/ibm/edge/ulb/admin
v Load Balancer - /opt/ibm/edge/ulb/servers
v Metric Server - /opt/ibm/edge/ulb/ms
v Documentation - /opt/ibm/edge/ulb/docs/

install_root - the root directory in which the product was installed
Load Balancer install paths include the following:
v Administration - C:\Program Files\IBM\edge\ulb\admin
v Load Balancer - C:\Program Files\IBM\edge\ulb\servers
v Metric Server - C:\Program Files\IBM\edge\ulb\ms
v Documentation - C:\Program Files\IBM\edge\ulb\docs

© IBM Corporation 2008 127

Types of cluster, port, and server configurations
There are many ways that you can configure Load Balancer to support your site.

1 cluster with 2 ports

If you have only one host name for your site to which all of your customers will
connect, you can define a single cluster of servers. For each of these servers,
configure a port through which Load Balancer communicates.

In this example for the Dispatcher component, one cluster is defined at
www.productworks.com. This cluster has two ports: port 80 for HTTP and port 443
for SSL. A client making a request to http://www.productworks.com (port 80)
goes to a different server than a client requesting https://www.productworks.com
(port 443).

2 clusters, each with 1 port

Another way of configuring Load Balancer might be appropriate if you have a
very large site with many servers dedicated to each protocol supported. In this
case, you might want to define a cluster for each protocol with a single port but
with many servers.

In this example for the Dispatcher component, two clusters are defined:
www.productworks.com for port 80 (HTTP) and www.testworks.com for port 443
(SSL). A third way of configuring Load Balancer might be necessary if your site
does content hosting for several companies or departments, each one coming into
your site with a different URL. In this case, you might want to define a cluster for
each company or department and then define any ports to which you want to
receive connections at that URL, as shown in the configuration for 2 clusters, each
with two ports.

2 clusters, each with 2 ports

In this example for the Dispatcher component, two clusters are defined with port
80 for HTTP and port 23 for Telnet for each of the sites at www.productworks.com
and www.testworks.com.
Related tasks

“Quick start configuration” on page 45
This quick start example shows how to configure three locally attached
workstations to load-balance Web traffic between two Web servers.

Custom advisor methods and function calls
Use the following advisor methods and function calls in your custom advisors.

Be aware that custom advisors need to have all the required routines. Advisors
must have the following base class methods:
v A constructor routine. The constructor calls the base class constructor.

128 Load Balancer Administration Guide

v An ADV_AdvisorInitialize method. This method provides a way to perform
additional steps after the base class completes its initialization.

v A getLoad routine. The base advisor class performs the socket opening; the
getLoad function only needs to issue the appropriate send and receive requests
to complete the advising cycle.

Constructor (provided by advisor base)
public <advisor_name> {

String sName;
String sVersion;
int iDefaultPort;
int iInterval;
String sDefaultLogFileName;
boolean replace

)

sName
The name of the custom advisor

sVersion
The version of the custom advisor.

iDefaultPort
The port number on which to contact the server if no port number is specified
in the call.

iInterval
The interval at which the advisor will query the servers.

sDefaultLogFileName
This parameter is required but not used. The only acceptable value is a null
string, ″″

replace
Whether or not this advisor functions in replace mode. Possible values are the
following:
v true – Replace the load calculated by the advisor base code with the value

reported by the custom advisor.
v false – Add the load value reported by the custom advisor to the load value

calculated by the advisor base code.

ADV_AdvisorInitialize() method
void ADV_AdvisorInitialize()

This method is provided to perform any initialization that might be required for
the custom advisor. This method is called after the advisor base module starts. In
many cases, including the standard advisors, this method is not used and its code
consists of a return statement only. This method can be used to call the
“suppressBaseOpeningSocket()” on page 70 method, which is valid only from
within this method.

In many cases, including the standard advisors, this method is not used and its
code consists of a return statement only. You can use this method to call the
suppressBaseOpeningSocket method, which is valid only from within the
ADV_AdvisorInitialize method.

Chapter 7. Reference 129

ADVLOG() method

The ADVLOG function allows a custom advisor to write a text message to the
advisor base log file. The format follows:
void ADVLOG (int logLevel, String message)

This command has the following parameters:

logLevel
The status level at which the message is written to the log file. The advisor log
file is organized in stages; the most urgent messages are given status level 0
and less urgent messages receive higher numbers. The most verbose type of
message is given status level 5. These levels are used to control the types of
messages that the user receives in real time (The dscontrol command is used to
set verbosity). Catastrophic errors should always be logged at level 0.

message
The message to write to the log file. The value for this parameter is a standard
Java string.

getAdvisorName function

The getAdvisorName function returns a Java string with the suffix portion of your
custom advisor name. For example, for an advisor named ADV_cdload.java, this
function returns the value cdload.

This function does not take parameters.

Note: It is not possible for this value to change during one instantiation of an
advisor.

caller.getCurrentServerId()

The getCurrentServerId function returns a Java string which is a unique
representation for the current server. Typically, this value changes each time you
call your custom advisor, because the advisor base code queries all server
machines in series.

This function takes no parameters.

caller.getCurrentClusterId()

The getCurrentClusterId function call returns a Java string which is a unique
representation for the current cluster. Typically, this value changes each time you
call your custom advisor, because the advisor base queries all clusters in series.

This function takes no parameters.

caller.getSocket()

The getSocket function call returns a Java socket which represents the socket
opened to the current server for communication.

This function takes no parameters.

130 Load Balancer Administration Guide

caller.getLatestLoad()

The getLatestLoad function allows a custom advisor to obtain the latest load value
for a given server object. The load values are maintained in internal tables by the
advisor base code and the manager daemon. This function call is useful if you
want to make the behavior of one protocol or port dependent on the behavior of
another. For example, you might use this function call in a custom advisor that
disabled a particular application server if the Telnet server on that same machine
was disabled.

The syntax is:
int caller.getLatestLoad (String clusterId, int port, String serverId)

The three arguments together define one server object.

This command has the following parameters:

clusterId
The cluster identifier of the server object for which to obtain the current load
value. This argument must be a Java string.

port
The port number of the server object for which to obtain the current load
value.

serverId
The server identifier of the server object for which to obtain the current load
value. This argument must be a Java string. The return value is an integer.
v A positive return value represents the actual load value assigned for the

object that was queried.
v The value -1 indicates that the server asked about is down.
v The value -2 indicates that the status of the server asked about is unknown.

caller.receive()

The receive function gets information from the socket connection. The syntax is:
caller.receive(StringBuffer *response)

This command has the following parameters:

response
This is a string buffer into which the retrieved data is placed. Additionally, the
function returns an integer value with the following significance:
v 0 indicates data was sent successfully.
v A negative number indicates an error.

caller.send()

The send function uses the established socket connection to send a packet of data
to the server, using the specified port. The syntax is as follows:
caller.send(String command)

This command has the following parameters:

command
This is a string containing the data to send to the server. The function returns
an integer value with the following significance:

Chapter 7. Reference 131

v 0 indicates data was sent successfully.
v A negative number indicates an error.

getLoad()
int getLoad(int iConnectTime; ADV_Thread *caller)

This function has the following parameters:

iConnectTime
The length of time, in milliseconds, that it took the connection to complete.
This load measurement is performed by the advisor base code and passed to
the custom advisor code, which can use or ignore the measurement when
returning the load value. If the connection fails, this value is set to -1.

caller
The instance of the advisor base class where advisor base methods are
provided.Function calls available to custom advisors: The methods, or
functions, described in the following sections can be called from custom
advisors. These methods are supported by the advisor base code. Some of
these function calls can be made directly, for example, function_name(), but
others require the prefix caller. Caller represents the base advisor instance that
supports the custom advisor that is being executed.

getAdviseOnPort()

The getAdviseOnPort function returns the port number on which the calling
custom advisor is running.

The return value is a Java integer (int), and the function does not take parameters.

Note: It is not possible for this value to change during one instantiation of an
advisor.

getAdvisorName()

The getAdvisorName function returns a Java string with the suffix portion of your
custom advisor’s name. For example, for an advisor named ADV_cdload.java, this
function returns the value cdload. This function takes no parameters. Note that it
is not possible for this value to change during one instantiation of an advisor.

getInterval()

The getInterval function returns the advisor interval, that is, the number of seconds
between advisor cycles. This value is equal to the default value set in the custom
advisor’s constructor, unless the value has been modified at run time by using the
dscontrol command. The return value is a Java integer (int).

The function takes no parameters.

suppressBaseOpeningSocket()

The suppressBaseOpeningSocket function call allows a custom advisor to specify
whether the base advisor code opens a TCP socket to the server on the custom
advisor’s behalf. If your advisor does not use direct communication with the
server to determine its status, it might not be necessary to open this socket. This
function call can be issued only once, and it must be issued from the
“ADV_AdvisorInitialize() method” on page 66 routine.

132 Load Balancer Administration Guide

The function takes no parameters.
Related tasks

“Creating a custom advisor” on page 63
A custom advisor is a small piece of Java code, provided as a class file, that is
called by the Load Balancer base code to determine the load on a server. The base
code provides all necessary administrative services, including starting and
stopping an instance of the custom advisor, providing status and reports, recording
history information in a log file, and reporting advisor results to the manager
component.
Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

List of advisors
Advisors are agents within Load Balancer. Their purpose is to assess the health
and loading of server machines. This list of advisors are already provided with
Load Balancer, but you can also write a custom advisor to suit specific needs.

Table 12. List of advisors

Advisor Name Description

connect The connect advisor does not exchange any
protocol-specific data with the server. It
simply measures the time it takes to open
and close a TCP connection with the server.
This advisor is useful for server applications
which use TCP, but with a higher-level
protocol for which an IBM-supplied or
custom advisor is not available.

Custom advisors Dispatcher provides the ability for a
customer to write a custom (customizable)
advisor. This enables support for proprietary
protocols (on top of TCP) for which IBM has
not developed a specific advisor. For more
information, see “Creating a custom
advisor” on page 63.

db2 The DB2 advisor works in conjunction with
the DB2 servers. Dispatcher has the built in
capability of checking the health of DB2
servers without the need for customers to
write their own custom advisors. The DB2
advisor communicates with the DB2
connection port only, not the Java connection
port.

dns The DNS advisor opens a connection, sends
a pointer query for DNS, waits for a
response, closes the connection and returns
the elapsed time as a load.

ftp The FTP advisor opens a connection, sends a
SYST request, waits for a response, closes
the connection, and returns the elapsed time
as a load.

Chapter 7. Reference 133

Table 12. List of advisors (continued)

Advisor Name Description

http The HTTP advisor opens a connection, sends
a HEAD request by default, waits for a
response connection, and returns the elapsed
time as a load. See “Getting service-specific
advice with the advisor request or response
option” on page 57for more information on
how to change the type of request sent by
the HTTP advisor.

https The HTTPS advisor is a �heavyweight�
advisor for SSL connections. It performs a
full SSL socket connection with the server.
The HTTPS advisor opens an SSL
connection, sends an HTTPS request, waits
for a response, closes the connnection, and
returns the elapsed time as a load. (See also
the SSL advisor, which is a �lightweight�
advisor for SSL connections.)
Note: The HTTPS advisor has no
dependency upon server key or certificate
content, but they must not be expired.

imap The IMAP advisor opens a connection, waits
for an initial message from the server, sends
a quit command, closes the connection, and
returns the elapsed time as a load.

ldap The LDAP advisor opens a connection,
sends an anonymous BIND request, waits
for a response, closes the connection, and
returns the elapsed time as a load.

ldapuri Note: The LDAP URI advisor allows you
better gauge LDAP availability by
processing a complete request to the LDAP
server.

The advisor:

1. Opens a connection.

2. Sends a BIND request, which is based on
the advisorrequest field that you define
on the server object.

3. Waits for a response.

4. Closes the connection.

5. Returns the elapsed time as a load.

Read “Configuring the LDAP URI advisor”
on page 58 for more information on
configuring this advisor.

nntp The NNTP advisor opens a connection,
waits for an initial message from the server,
sends a quit command, closes the
connection, and returns the elapsed time as
a load.

134 Load Balancer Administration Guide

Table 12. List of advisors (continued)

Advisor Name Description

ping The ping advisor does not open a TCP
connection with the servers, but instead
reports whether the server responds to a
ping. While the ping advisor may be used
on any port, it is also designed for
configurations using the wildcard port, over
which multiple protocol traffic may be
flowing. It is also useful for configurations
using non-TCP protocols with their servers.

pop3 The POP3 advisor opens a connection, waits
for an initial message from the server, sends
a quit command, closes the connection, and
returns the elapsed time as a load.

reach The reach advisor pings its target machines.
This advisor is also designed for the
Dispatcher’s high availability components to
determine reachability of its reach targets. Its
results flow to high availability component
and do not appear in the manager report.
Unlike the other advisors, the reach advisor
starts automatically by the manager function
of the Dispatcher component.

sip The SIP advisor opens a connection, sends
an OPTIONS request, waits for a response,
closes the connection, and returns the
elapsed time as a load. The SIP advisor that
is supported runs on TCP only and requires
an application to be installed on a server
that responds to an OPTIONS request.

smtp The SMTP advisor opens a connection, waits
for an initial message from the server, sends
a quit, closes the connection, and returns the
elapsed time as a load.

ssl The SSL advisor is a �lightweight� advisor
for SSL connections. It does not establish a
full SSL socket connection with the server.
The SSL advisor opens a connection, sends
an SSL CLIENT_HELLO request, waits for a
response, closes the connection, and returns
the elapsed time as a load. (See also the
HTTPS advisor, which is a �heavyweight�
advisor for SSL connections.)
Note: The SSL advisor has no dependency
upon key management or certificates.

ssl2http The ssl2http advisor starts and advises on
the servers listed under port 443, but the
advisor will open a socket to the “mapport�
for HTTP requests.

Chapter 7. Reference 135

Table 12. List of advisors (continued)

Advisor Name Description

self The self advisor collects load status
information on back-end servers. You can
use the self advisor when using Dispatcher
in a two–tiered configuration, where the
Dispatcher furnishes information from the
self advisor to the top-tiered Load Balancer.
The self advisor specifically measures the
connections per second rate on back-end
servers of the Dispatcher at the executor
level. See rprf_selfadv2tier.dita for more
information.

telnet The Telnet advisor opens a connection, waits
for an initial message from the server, closes
the connection, and returns the elapsed time
as a load.

was The WAS (WebSphere Application Server)
advisor works in conjunction with the
WebSphere Application servers.
Customizable sample files for this advisor
are provided in the installation directory. For
more information, see “Example:
Implementing the WAS advisor” on page 81.

wlm The WLM (Workload Manager) advisor is
designed to work in conjunction with
servers on OS/390 mainframes running the
MVS™ Workload Manager (WLM)
component. For more information, see “The
Workload Management Advisor” on page
62.

Related tasks

“Enabling advisors to manage load balancing” on page 50
Advisors are software agents that work within Load Balancer to provide
information about the load on a given server. A different advisor exists for each
standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base
code performs an advisor cycle, during which it individually evaluates the status
of all servers in its configuration.
“Configuring the LDAP URI advisor” on page 58
The LDAP URI advisor allows you better gauge Lightweight Directory Access
Protocol (LDAP) availability by processing a complete request to the LDAP server.
The LDAP URI advisor opens a connection to the LDAP serve and sends a BIND
request that is based on the advisorrequest field that you define on the server
object. The advisor then waits for a response from the LDAP server and returns
the elapsed time as a load.

Sample scripts to generate alerts and record server failure
Load Balancer provides user exits that trigger scripts that you can customize. You
can create the scripts to perform automated actions, such as alerting an
Administrator when servers are marked down by the manager or simply record
the event of the failure.

136 Load Balancer Administration Guide

Sample scripts, which you can customize, are in the install_root/servers/samples
directory. In order to run the files, you must move them to the
install_root/servers/bin directory and remove the �sample� file extension. The
following sample scripts are provided:
v serverDown — a server is marked down by the manager.
v serverUp — a server is marked back up by the manager.
v managerAlert — all servers are marked down for a particular port.
v managerClear — at least one server is now up, after all were marked down for

a particular port.

If all servers on a cluster are marked down (either by the user or by the advisors),
the managerAlert (if configured) starts, and Load Balancer attempts to route traffic
to the servers using a round-robin technique. The serverDown script does not start
when the last server in the cluster is detected as offline. By design, Load Balancer
attempts to continue to route the traffic in case a server comes back online and
responds to the request. If Load Balancer instead dropped all traffic, the client
would receive no response. When Load Balancer detects that the first server of a
cluster is back online, the managerClear script (if configured) starts, but the
serverUp script (if configured) is not run until an additional server is brought back
online.

Here are some considerations for using the serverUp and serverDown scripts:
v If you define the manager cycle to be less than 25% of the advisor time, false

reports of servers up or down can result. By default, the manager runs every 2
seconds, but the advisor runs every 7 seconds. Therefore, the manager expects
new advisor information within 4 cycles. However, removing this restriction
(that is, defining the manager cycle to be greater than 25% of the advisor time)
significantly decreases performance because multiple advisors can advise on a
single server.

v When a server goes down, the serverDown script starts. However, if you issue a
serverUp command, it is assumed that the server is up until the manager
obtains new information from the advisor cycle. If the server is still down, the
serverDown script runs again.

High Availability recovery strategy for failed servers
The recovery strategy dictates how Load Balancer behaves when one Dispatcher
machine fails and there is another configured as a backup.

Two Dispatcher machines are configured: the primary machine, and a second
machine called the backup. At startup, the primary machine sends all the
connection data to the backup machine until that machine is synchronized. The
primary machine becomes active, that is, it begins load balancing. The backup
machine, meanwhile, monitors the status of the primary machine, and is said to be
in standby state.

If the backup Load Balancer machine detects that the primary machine has failed,
it performs a takeover load balancing functions and becomes the active machine.
After the primary machine has once again become operational, the machines
respond according to how the recovery strategy has been configured by the user.

There are two kinds of strategy:
v Automatic - The primary machine resumes routing packets as soon as it

becomes operational again.

Chapter 7. Reference 137

v Manual - intervention is required to return the primary machine to active state
and reset the backup machine to standby. The manual recovery strategy allows
you to force the routing of packets to a particular machine, using the takeover
command. Manual recovery is useful when maintenance is being performed on
the other machine

Note: The strategy parameter must be the same for both machines.
Related tasks

“Configuring high availability” on page 84
The high availability feature involves the use of a second Dispatcher machine. The
first Dispatcher machine performs load balancing for all the client traffic as it does
in a single Dispatcher configuration. The second Dispatcher machine monitors the
″health″ of the first, and takes over the task of load balancing if it detects that the
first Dispatcher machine has failed.
“Detecting server failures with heartbeats and reach targets” on page 87
Configure heartbeats and reach targets to detect server failures and control when
failovers can occur.
“Scripts to run with high availability” on page 88

Scripts to run with high availability

The following sample script can be used:
v HighAvailChange

The HighAvailChange script runs whenever the high availability state changes
within the Dispatcher. You can create this script to use state change information,
for instance, to alert an Administrator or simply record the event.

On Linux for s/390: Dispatcher issues a gratuitous ARP to move IP addresses from
one Dispatcher to another. This mechanism is therefore tied to the underlying
network type. When running Linux for s/390, Load Balancer can natively do high
availability takeovers, complete with IP address moves, only on those interfaces
which can issue a gratuitous ARP and configure the address on the local interface.
This mechanism will not work properly on point-to-point interfaces such as IUCV
and CTC and will not work properly in certain configurations of qeth/QDIO.
Related tasks

“Configuring high availability” on page 84
The high availability feature involves the use of a second Dispatcher machine. The
first Dispatcher machine performs load balancing for all the client traffic as it does
in a single Dispatcher configuration. The second Dispatcher machine monitors the
″health″ of the first, and takes over the task of load balancing if it detects that the
first Dispatcher machine has failed.
“Detecting server failures with heartbeats and reach targets” on page 87
Configure heartbeats and reach targets to detect server failures and control when
failovers can occur.
Related reference

“High Availability recovery strategy for failed servers” on page 88
The recovery strategy dictates how Load Balancer behaves when one Dispatcher
machine fails and there is another configured as a backup.

Commands
Look up a command by its name to find detailed syntax and usage of the
command.

138 Load Balancer Administration Guide

To open the information center table of contents to the location of this reference
information, click the Show in Table of Contents button () on your information
center border.

Note: You need to follow different syntax conventions depending upon the
location from which you issue the command. In most cases, you can use one of the
following options:
v Issue the command from within the dscontrol shell. For example,

enter dscontrol

Press Enter, and you will enter the command shell.
v Issue the command through a configuration file.
v Enter the command from the command prompt. For example, enter:

dscontrol rule add

The following syntax is applicable for any rule add command if you are using the
dscontrol shell:
v If you are entering the command from the dscontrol shell or a configuration file,

place quotation marks around the special characters, as shown in the reference
topics. The following example is for a configuration file:
dscontrol rule add 10.1.203.4@80@true type true

v If you are entering the same the same command from a Windows prompt,
surround the entire command with quotation marks. For example:
dscontrol "rule add 10.1.203.4@80@true type true"

dscontrol advisor
Use this command to control various features of the advisor function.

Syntax

�� dscontrol advisor connecttimeout name port seconds
cluster@port

interval name port seconds
cluster@port

list
loglevel name port level

cluster@port
logsize name port unlimited

cluster@port number of records
receivetimeout name port seconds

cluster@port
report name port

cluster@port
retries name port number of retries

cluster@port
start name port

cluster@port
status name port

cluster@port log file
stop name port

cluster@port
timeout name port unlimited

cluster@port seconds
version name port

cluster@port

��

Chapter 7. Reference 139

Parameters

connecttimeout
Set how long an advisor waits before reporting that a connect to a server for a
particular port on a server (a service) fails. For more information, see
“Enabling advisors to manage load balancing” on page 50.
v name

The name of the advisor. Possible values include connect, db2, dns, ftp,
http, https, cachingproxy, imap, ldap, ldapuri, nntp, ping, pop3, self, sip,
smtp, ssl, ssl2http, telnet, and wlm.
See the topic “List of advisors” on page 53 for more information on the
advisors that Load Balancer provides.
Names of customized advisors are of the format ADV_xxxx, where xxxx is
the name of the class that implements the custom advisor. See “Creating a
custom advisor” on page 63 for more information.

v port

The number of the port that the advisor is monitoring.
v cluster@port

The cluster value is optional on the advisor commands, but the port value is
required. If the cluster value is not specified, then the advisor will start
running on the port for all clusters. If you specify a cluster, then the advisor
will start running on the port, but only for the cluster you have specified.
See the topic “Enabling advisors to manage load balancing” on page 50 for
more information on starting and stopping advisors.
The cluster is the address in IP address format or symbolic name. The port is
the number of the port that the advisor is monitoring.

v seconds

A positive integer representing the timeout in seconds at which the advisor
waits before reporting that a connect to a server fails. The default is 3 times
the value specified for the advisor interval.

interval
Set how often the advisor will query the servers for information.
v seconds

A positive integer representing the number of seconds between requests to
the servers about their current status. The default is 7.

list
Show list of advisors that are currently providing information to the manager.

loglevel
Set the logging level for an advisor log.
v level

The number of the level (0 to 5). The default is 1. The higher the number,
the more information that is written to the advisor log. The following are the
possible values: 0 is None, 1 is Minimal, 2 is Basic, 3 is Moderate, 4 is
Advanced, 5 is Verbose.

logsize
Set the maximum size of an advisor log. When you set a maximum size for the
log file, the file will wrap; when the file reaches the specified size, the
subsequent entries are written from the top of the file, overwriting the
previous log entries. Log size cannot be set smaller than the current size of the
log. Log entries are time–stamped so you can tell the order in which they were

140 Load Balancer Administration Guide

written. The higher you set the log level, the more carefully you should choose
the log size, because you can quickly run out of space when logging at the
higher levels.
v number of records

The maximum size in bytes for the advisor log file. You can specify either a
positive number greater than zero, or the word unlimited. The log file may
not reach the exact maximum size before overwriting because the log entries
themselves vary in size. The default value is 1 MB.

receivetimeout
Set how long an advisor waits before reporting that a receive from a particular
port on a server (a service) fails. For more information, see “Enabling advisors
to manage load balancing” on page 50.
v seconds

A positive integer representing the timeout in seconds at which the advisor
waits before reporting that a receive from a server fails. The default is 3
times the value specified for the advisor interval.

report
Display a report on the state of the advisor.

retry
Retry sets the number of retries that an advisor can make before marking a
server down.
v number of retries

An integer greater than or equal to zero. This value should be no larger than
3. If retries keyword is not configured, the number of retries defaults to zero.

start
Start the advisor. There are advisors for each protocol. The default ports are as
follows:

Table 13. Default ports for advisors

Advisor Name Protocol Port

connect ICMP 12345

db2 private 50000

dns DNS 53

ftp FTP 21
Note: The FTP advisor
should advise only on the
FTP control port (21). Do not
start an FTP advisor on the
FTP data port (20).

http HTTP 80

https SSL 443

imap IMAP 143

ldap LDAP 389

ldapuri LDAP 389

nntp NNTP 119

ping PING 0

pop3 POP3 110

self private 12345

Chapter 7. Reference 141

Table 13. Default ports for advisors (continued)

Advisor Name Protocol Port

sip SIP 5060

smtp SMTP 25

ssl SSL 443

ssl2http SSL 443

telnet Telnet 23

WLM private 10007

v log file

File name to which the management data is logged. Each record in the log is
time–stamped.
The default file is advisorname_port.log, for example, http_80.log. To change
the directory where the log files are kept, see “Logging with Load Balancer”
on page 94. The default log files for cluster (or site) specific advisors are
created with the cluster address, for example, http_127.40.50.1_80.log.

status
Display the current status of all the values in an advisor that can be set
globally and their defaults.

stop
Stop the advisor.

timeout
Set the number of seconds for which the manager will consider information
from the advisor as valid. If the manager finds that the advisor information is
older than this timeout period, the manager will not use that information in
determining weights for the servers on the port the advisor is monitoring. An
exception to this timeout is when the advisor has informed the manager that a
specific server is down. The manager will use that information about the
server even after the advisor information has timed out.
v seconds

A positive number representing the number of seconds, or the word
unlimited. The default value is unlimited.

version
Display the current version of the advisor.

Samples
v To start the http advisor on port 80 for cluster 127.40.50.1:

dscontrol advisor start http 127.40.50.1@80

v To start the http advisor on port 88 for all clusters:
dscontrol advisor start http 88

v To stop the http advisor at port 80 for cluster 127.40.50.1:
dscontrol advisor stop http 127.40.50.1@80

v To set the time (30 seconds) an HTTP advisor for port 80 waits before reporting
that a connect to a server fails:
dscontrol advisor connecttimeout http 80 30

v To set the time (20 seconds) an HTTP advisor for port 80 on cluster 127.40.50.1
waits before reporting that a connect to a server fails:
dscontrol advisor connecttimeout http 127.40.50.1@80 20

142 Load Balancer Administration Guide

v To set the interval for the FTP advisor (for port 21) to 6 seconds:
dscontrol advisor interval ftp 21 6

v To display the list of advisors currently providing information to the manager:
dscontrol advisor list

v To change the log level of the advisor log to 0 for better performance:
dscontrol advisor loglevel http 80 0

v To change the ftp advisor log size for port 21 to 5000 bytes:
dscontrol advisor logsize ftp 21 5000

v To set the time (60 seconds) an HTTP advisor (for port 80) waits before reporting
that a receive from a server fails:
dscontrol advisor receivetimeout http 80 60

v To display a report on the state of the ftp advisor (for port 21):
dscontrol advisor report ftp 21

v To display the current status of values associated with the http advisor for port
80:
dscontrol advisor status http 80

v To set the timeout value for the ftp advisor information on port 21 to 5 seconds:
dscontrol advisor timeout ftp 21 5

v To display the current version number of the ssl advisor for port 443:
dscontrol advisor version ssl 443

This command produces output similar to the following:
Version: 04.00.00.00 - 07/12/2001-10:09:56-EDT

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol binlog
You can control the settings and operation of the binary log file with the dscontrol
binlog command.

Syntax

�� dscontrol binlog start
stop
set retention hours

interval seconds
status

��

Parameters

start
Starts the binary log.

stop
Stops the binary log.

set

v retention hours

The number of hours that binary log files are kept. The default value for
retention is 24.

Chapter 7. Reference 143

v interval seconds

The number of seconds between log entries. The default value for interval is
60.

status
Shows the retention and intervals of the binary log.

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol cluster
Configure clusters and cluster properties with the dscontrol cluster command.

Syntax

�� dscontrol cluster add cluster + c2... address address
proportions active new port system

set cluster + c2... proportions active new port system
remove cluster
report cluster
status cluster

��

Parameters

add

v cluster

The cluster name or address to which clients connect. The cluster value is
either a symbolic name or in IP address format.
With the exception of the dscontrol cluster add command, you can use the
colon (:) symbol to act as a wild card. For example, the following command,
dscontrol cluster set : weightbound 80

will result in setting a weightbound of 80 to all clusters.

Note: Additional clusters are separated by a plus sign (+).
v address address

The unique IP address of the TCP machine as either a host name or in IP
address format. If the cluster value is unresolvable, you must provide the IP
address of the physical machine.

v proportions

At the cluster level, set the proportion of importance for active connections
(active), new connections (new), information from any advisors (port), and
information from a system monitoring program such as Metric Server
(system) that are used by the manager to set server weights. Each of these
values, described below, is expressed as a percentage of the total and they
therefore always total 100. For more information see “Tuning the proportion
of importance given to status information” on page 104.
– active

A number from 0–100 representing the proportion of weight to be given
to the active connections. The default is 50.

– new

A number from 0–100 representing the proportion of weight to be given
to new connections. The default is 50.

144 Load Balancer Administration Guide

– port

A number from 0–100 representing the proportion of weight to be given
to the information from the advisors. The default is 0.

Note: When an advisor is started and if the port proportion is 0, Load
Balancer automatically sets this value to 1 in order for the manager to use
the advisor information as input for calculating server weight.

– system

A number from 0–100 representing the proportion of weight to be given
to the information from the system metrics, such as from Metric Server.
The default is 0.

set
Set the properties of the cluster.

remove
Remove this cluster.

report
Show the internal fields of the cluster.

status
Show current status of a specific cluster.

Samples
v To add cluster address 130.40.52.153:

dscontrol cluster add 130.40.52.153

v To remove cluster address 130.40.52.153:
dscontrol cluster remove 130.40.52.153

v To set the relative importance placed on input (active, new, port, system)
received by the manager for servers residing on cluster 9.6.54.12:
dscontrol cluster set 9.6.54.12 proportions 60 35 5 0

v To show the status for cluster address 9.67.131.167:
dscontrol cluster status 9.67.131.167

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol executor
Control the executor function with the dscontrol executor command.

Syntax

�� dscontrol executor report
set nfa IP address

hatimeout time
start
status
stop

��

Chapter 7. Reference 145

Parameters

report
Display a statistics snapshot report.

set
Set the fields of the executor.
v nfa IP address

Set the non-forwarding address. Any packet sent to this address will not be
forwarded by the Dispatcher machine.
The Internet Protocol address as either a symbolic name or in dotted decimal
format.

v hatimeout seconds

The number of seconds that the executor uses to timeout high availability
heartbeats. The default value is 2.

start
Start the executor.

status
Display the current status of the values in the executor that can be set and
their defaults.

stop
Stop the executor.

Samples
v To display the internal counters for Dispatcher:

dscontrol executor status

v To set the non-forwarding address to 130.40.52.167:
dscontrol executor set nfa 130.40.52.167

v To start the executor:
dscontrol executor start

v To stop the executor:
dscontrol executor stop

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol file
Manage your configuration files with the dscontrol file command.

Syntax

�� dscontrol file appendload file[.ext]
delete file[.ext]
newload file[.ext]
report
save file[.ext]

force

��

146 Load Balancer Administration Guide

Parameters

appendload
To update the current configuration, the appendload command runs the
executable commands from your script file.
v file[.ext]

A configuration file consisting of dscontrol commands. The file extension
(.ext) can be anything you like and can be omitted.

delete
Delete the file.

newload
Loads and runs a new configuration file into the Load Balancer. The new
configuration file replaces the current configuration.

report
Report on the available file or files.

save
Save the current configuration for Load Balancer to the file.

Note: Files are saved into and loaded from the install_root/servers/
configurations/dispatcher directory.
v force

To save your file to an existing file of the same name, use force to delete the
existing file before saving the new file. If you do not use the force option,
the existing file is not overwritten.

Samples
v To delete a file:

dscontrol file delete file3

v To load a new configuration file to replace the current configuration:
dscontrol file newload file1.sv

v To append a configuration file to the current configuration and load:
dscontrol file appendload file2.sv

v To view a report of your files (files that you saved earlier):
dscontrol file report

v To save your configuration into a file named file3:
dscontrol file save file3

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol help
Display or print help for any dscontrol command with the dscontrol help
command.

Syntax

Chapter 7. Reference 147

�� dscontrol help advisor
binlog
cluster
executor
file
help
highavailability
logstatus
manager
metric
port
rule
server
set
status

��

Sample

To get help on the dscontrol command:
dscontrol help

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol highavailability
You can control high availability functions with the dscontrol highavailability
command.

Syntax

�� dscontrol highavailability backup add primary auto port
backup manual

delete
heartbeat add srcaddress dstaddress

delete address
reach add address

delete
status
takeover

address

��

Parameters

backup
Specify information for either the primary or backup machine.
v add

Defines and runs the high availability functions for this machine.
– primary

Identifies the Dispatcher machine that has a primary role.
– backup

Identifies the Dispatcher machine that has a backup role.
– auto

Specifies an automatic recovery strategy, in which the primary machine
will resume routing packets as soon as it comes back into service.

148 Load Balancer Administration Guide

– manual

Specifies a manual recovery strategy, in which the primary machine does
not resume routing packets until the administrator issues a takeover
command.

v delete

Removes this machine from high availability, so that it will no longer be
used as a backup or primary machine.

v port

An unused TCP port on both machines, to be used by Dispatcher for its
heartbeat messages. The port must be the same for both the primary and
backup machines.

heartbeat
Defines a communication session between the primary and backup Dispatcher
machines.
v add

Tell the source Dispatcher the address of its partner (destination address).
– source_address

Source address. The address (IP or symbolic) of this Dispatcher machine.
– destination_address

Destination address. The address (IP or symbolic) of the other Dispatcher
machine.

The source_address and destination_address must be the NFAs of the machines
for at least one heartbeat pair.

v delete address

Removes the address pair from the heartbeat information. You can specify
either the destination or source address of the heartbeat pair. The address (IP
or symbolic) of either the destination or the source.

reach
Add or delete target address for the primary and backup Dispatchers, the
reach advisor sends out pings from both the backup and the primary
Dispatchers to determine how reachable their targets are.
v add address

Adds a target address for the reach advisor. address is the IP address, format
or symbolic, of the target node.

v delete address

Removes a target address from the reach advisor. address is the IP address,
format or symbolic, of the target node.

Note: When configuring the reach target, you must also start the reach advisor.
The reach advisor starts automatically when you use the dscontrol manager
reach command.

status
Return a report on high availability. Machines are identified as having one of
three status conditions or states:
v Active: A given machine (either a primary, backup, or both) is routing

packets.
v Standby: A given machine (either a primary, backup, or both) is not routing

packets; it is monitoring the state of an active Dispatcher.

Chapter 7. Reference 149

v Idle: A given machine is routing packets, and is not trying to establish
contact with its partner Dispatcher.

takeover
Simple high availability configuration (role of the Dispatcher machines are
either primary or backup).

Takeover instructs a standby Dispatcher to become active and to begin routing
packets. This will force the currently active Dispatcher to become standby. The
takeover command must be issued on the standby machine and works only
when the strategy is manual. The substate must be synchronized.
v address

The takeover address value is optional. It should only be used when the role
of the machine is both primary and backup (mutual high availability
configuration). The address specified is the NFA of the Dispatcher machine
which normally routes this cluster’s traffic. When there is a takeover of both
clusters, specify the Dispatcher’s own NFA address.

Note:

v The roles of the machines (primary and backup) do not change. Only their
relative status (active or standby) changes.

v There are three possible takeover scripts, which are goActive, goStandby,
and goInOp. See “Scripts to run with high availability” on page 88 for more
information on these scripts.

Samples
v To check the high availability status of a machine:

dscontrol highavailability status

v To add the backup information to the primary machine using the automatic
recovery strategy and port 80:
dscontrol highavailability backup add primary auto 80

v To add an address that the Dispatcher must be able to reach:
dscontrol highavailability reach add 9.67.125.18

v To add heartbeat information for the primary and backup machines
Primary - highavailability heartbeat add 9.67.111.3 9.67.186.8

Backup - highavailability heartbeat add 9.67.186.8 9.67.111.3

v To tell the standby Dispatcher to become active, forcing the active machine to
become standby:
dscontrol highavailability takeover

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol logstatus
Use this command to display the log settings for a server.

Syntax

�� dscontrol logstatus ��

150 Load Balancer Administration Guide

Parameters

There are no parameters for this command.

Sample

To display the log status:
dscontrol logstatus

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol manager
You can control the manager function with the dscontrol manager command.

Syntax

�� dscontrol manager interval seconds
loglevel level
logsize unlimited

bytes
metric set loglevel level

logsize unlimited
bytes

quiesce server
daily start_hour end_hour

reach set interval seconds
loglevel level
logsize unlimited

bytes
refresh refresh cycle
report

cluster+cluster2...
restart Message
sensitivity weight
smoothing index
start log file metric_port
status
stop
unquiesce server
version

��

Parameters

interval
Set how often the manager will update the weights of the servers to the
executor, updating the criteria that the executor uses to route client requests.
v seconds

A positive number representing in seconds how often the manager will
update weights to the executor. The default is 2.

loglevel
Set the logging level for the manager log.
v level

The number of the level (0 to 5). The higher the number, the more
information that is written to the manager log. The default is 1. The

Chapter 7. Reference 151

following are the possible values: 0 is None, 1 is Minimal, 2 is Basic, 3 is
Moderate, 4 is Advanced, 5 is Verbose.

logsize
Set the maximum size of the manager log. When you set a maximum size for
the log file, the file will wrap; when the file reaches the specified size, the
subsequent entries are written from the top of the file, overwriting the
previous log entries. Log size cannot be set smaller than the current size of the
log. Log entries are time stamped so you can tell the order in which they were
written. The higher you set the log level, the more carefully you should choose
the log size, because you can quickly run out of space when logging at the
higher levels.
v bytes

The maximum size in bytes for the manager log file. You can specify either a
positive number greater than zero, or the word unlimited. The log file may
not reach the exact maximum size before overwriting because the log entries
themselves vary in size. The default value is 1 MB.

metric set
Sets the loglevel and logsize for the metric monitor log. The loglevel is the
metric monitor logging level (0 - None,1 - Minimal,2 - Basic,3 - Moderate, 4 -
Advanced, or 5 - Verbose). The default log level is 1. The log size is the
maximum number of bytes to be logged in the metric monitor log file. You can
specify either a positive number greater than zero, or unlimited. The default
logsize is 1 MB.

quiesce
Specify no more connections to be sent to a server except subsequent new
connections from the client to the quiesced server if the connection is
designated as sticky and stickytime has not expired. The manager sets the
weight for that server to 0 in every port to which it is defined. Use this
command if you want to do some quick maintenance on a server and then
unquiesce it. If you delete a quiesced server from the configuration and then
add it back, it will not retain its status prior to being quiesced. For more
information, see “Quiesce servers for server maintenance windows” on page
90.
v server

The IP address of the server as either a symbolic name or in dotted decimal
format.

v daily start_hour end_hour

Note: This setting specifies to quiesce the server at a time of day, start_hour,
and unquiesce the server at a later point, end_hour. The values for start_hour
and end_hour are can range from 0 to 23. For example, (0 0) indicates to
quiesce the server from 12:00 AM to 12:59 AM. (12 13) indicates to quiesce
the server from 12:00 PM to 1:59 PM, which is a 2 hour period. Specify (-1
-1) to disable the daily quiesce for a particular server.

reach set
Sets the interval, loglevel, and logsize for the reach advisor.

refresh
Set the number of intervals before querying the executor for a refresh of
information about new and active connections.
v refresh cycle

A positive number representing the number of intervals. The default is 2.

152 Load Balancer Administration Guide

report
Display a statistics snapshot report.
v cluster

The address of the cluster you want displayed in the report. The address can
be either a symbolic name or in IP address format. The default is a manager
report display for all the clusters.

Note: Additional clusters are separated by a plus sign (+).

restart
Restart all servers (that are not down) to normalized weights (1/2 of maximum
weight).
v message

A message that you want written to the manager log file.

sensitivity
Set minimum sensitivity to which weights update. This setting defines when
the manager should change its weighting for the server based on external
information.
v weight

A number from 1 to 100 to be used as the weight percentage. The default of
5 creates a minimum sensitivity of 5%.

smoothing
Set an index that smooths the variations in weight when load balancing. A
higher smoothing index will cause server weights to change less drastically as
network conditions change. A lower index will cause server weights to change
more drastically.
v index

A positive floating point number. The default is 1.5.

start
Start the manager.
v log file

File name to which the manager data is logged. Each record in the log is
time stamped. The default file is installed in the logs directory. See
“Examples” on page 164. To change the directory where the log files are
kept, see “Logging with Load Balancer” on page 94.

v metric_port

Port that Metric Server will use to report system loads. If you specify a
metric port, you must specify a log file name. The default metric port is
10004.

status
Display the current status of all the values in the manager that can be set
globally and their defaults.

stop
Stop the manager.

unquiesce
Specify that the manager can begin to give a weight higher than 0 to a server
that was previously quiesced, in every port to which it is defined.
v server

The IP address of the server as either a symbolic name or in dotted decimal
format.

Chapter 7. Reference 153

version
Display the current version of the manager.

Samples
v To set the updating interval for the manager to every 5 seconds:

dscontrol manager interval 5

v To set the level of logging to 0 for better performance:
dscontrol manager loglevel 0

v To set the manager log size to 1,000,000 bytes:
dscontrol manager logsize 1000000

v To specify that no more connections be sent to the server at 130.40.52.153:
dscontrol manager quiesce 130.40.52.153

v To set the number of updating intervals before the weights are refreshed to 3:
dscontrol manager refresh 3

v To get a statistics snapshot of the manager:
dscontrol manager report

v To restart all the servers to normalized weights and write a message to the
manager log file:
dscontrol manager restart Restarting the manager to update code

v To set the sensitivity to weight changes to 10:
dscontrol manager sensitivity 10

v To set the smoothing index to 2.0:
dscontrol manager smoothing 2.0

v To start the manager and specify the log file named ndmgr.log (paths cannot be
set):
dscontrol manager start ndmgr.log

v To display the current status of the values associated with the manager:
dscontrol manager status

v To stop the manager:
dscontrol manager stop

v To specify that no more new connections be sent to a server at 130.40.52.153
between 2:00 AM and 4:59 PM:
dscontrol manager quiesce 130.40.52.153 daily 2 16

v To specify that the manager can begin to give a weight higher than 0 to a server
at 130.40.52.153 that was previously quiesced:
dscontrol manager unquiesce 130.40.52.153

v To display the current version number of the manager:
dscontrol manager version

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol metric
You can configure system metrics with the dscontrol metric command.

154 Load Balancer Administration Guide

Syntax

�� dscontrol metric add cluster1 + cluster2 + c3...cN @ metric1 + metric2 + metricN
remove cluster1 + cluster2 + c3...cN @ metric1 + metric2 + metricN
proportions cluster1 + cluster2 + c3...cN @ proportion1 + proportion2 + propN
status cluster1 + cluster2 + c3...cN @ metric1 + metric2 + metricN

��

Parameters

add
Add the specified metric.
v cluster

The address to which clients connect. The address can be either the host
name of the machine, or the IP address notation format. Additional clusters
are separated by a plus sign (+).

v metric

The system metric name. This must be the name of an executable or script
file in the metric server’s script directory.

remove
Remove the specified metric.

proportions
Set the proportions for all the metrics associated with this object.

status
Display the current values of this metric.

Samples
v To add a system metric:

dscontrol metric add site1@metric1

v To set proportions for a sitename with two system metrics:
dscontrol metric proportions site1 0 100

v To display the current status of values associated with the specified metric:
dscontrol metric status site1@metric1

Related reference

Commands
Browse the subtopics for a quick reference to all the dscontrol commands, syntax
diagrams for each, and examples for their use.

dscontrol port
Configure ports and port settings with the dscontrol port command.

Syntax

Chapter 7. Reference 155

�� dscontrol port add crossport other_port
stickytime value
staletimeout value
weightbound value
selectionalgorithm connection

affinity
conn+affin

set stickytime value
staletimeout value
weightbound value

remove cluster@port
report cluster@port
status cluster@port

��

Parameters

add
Add a port to a cluster. You must add a port to a cluster before you can add
any servers to that port. If there are no ports for a cluster, all client requests are
processed locally. You can add more than one port at one time using this
command.
v crossport

Crossport affinity allows you to expand the affinity feature across multiple
ports so that client requests received on different ports can still be sent to
the same server for subsequent requests. For the crossport value, specify the
other_port number for which you want to share the cross port affinity feature.
In order to use this feature, the ports must:
– Share the same cluster address
– Share the same servers
– Use the affinity or conn+aff selection algorithm
– Have the same stickytime value, which is not zero
To remove the crossport feature, set the crossport value back to its own port
number.
– other_port: specifies the value of crossport. The default value is the same

as its own port number.
v stickytime value

The interval between the opening of one connection and the opening of a
new connection, during which a client will be sent back to the same server
that was used for the first connection. After the stickytime value has elapsed,
the client might be sent to a server different from the server that was used
for the first connection. If you use affinity as the selection algorithm, the
stickytime value is the interval between any two successive packets from the
same client.

Note: stickytime is only valid for the conn+aff and affinity selection
algorithms.
– value is the value of stickytime in seconds.

v staletimeout

The number of seconds during which there can be no activity on a
connection before that connection is removed. The default value is 900 for
port 21 (FTP) and 259,200 for port 23 (Telnet).

156 Load Balancer Administration Guide

Note: staletimeout is only valid for the connection and conn+affin selection
algorithms.
– value

The value of staletimeout in number of seconds.

weightbound
Set the maximum weight for servers on this port. This affects how much
difference there can be between the number of requests the executor will give
each server. The default value is 20.
v weight

A number from 1–100 representing the maximum weight bound.

selectionalgorithm
Defines the method for selecting the next server.
v affinity

Specifies that the server selection is based on client affinity.
v connection

Specifies that the server selection is based on simple round-robin selection
(default).

v conn+affin

Note: Specifies that server selection is based on an existing connection. For
new connections, the server selection is based on affinity.

set
Set the fields of a port.

remove
Remove this port.

report
Report on this port.

status
Show status of servers on this port. If you want to see the status on all ports,
do not specify a port with this command, but remember to still include the @
symbol.

Sample
v To set the selection algorithm for a port:

dscontrol port add cluster@port selectionalgorithm affinity

v To add port 80 and 23 to a cluster address 130.40.52.153:
dscontrol port add 130.40.52.153@80+23

v To set the maximum weight of 10 to port 80 at a cluster address of 130.40.52.153:
dscontrol port set 130.40.52.153@80 weightbound 10

v To set the stickytime value to 60 seconds for port 80 and port 23 at a cluster
address of 130.40.52.153:
dscontrol port set 130.40.52.153@80+23 stickytime 60

v To set the cross port affinity of port 80 to port 23 at a cluster address of
130.40.52.153:
dscontrol port add 130.40.52.153@80 crossport 23

v To remove port 23 from a cluster address of 130.40.52.153:
dscontrol port remove 130.40.52.153@23

v To get the status of port 80 at a cluster address of 9.67.131.153:

Chapter 7. Reference 157

dscontrol port status 9.67.131.153@80

v To get the report of port 80 at a cluster address of 9.62.130.157:
dscontrol port report 9.62.130.157@80

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol rule
Control the executor function with the dscontrol rule command.

Syntax

�� dscontrol rule add cluster@port@rule type active options
true

dropserver cluster@port@rule server
remove cluster@port@rule
report cluster@port@rule
set cluster@port@rule options
status
useserver cluster@port@rule server+s2+

��

The following options are available for this command:

�� beginrange endrange
priority value
evaluate port

rule

��

Parameters

add
Add this rule to a port.
v cluster: specifies the address of the cluster as either a symbolic name or in IP

address format. You can use a colon (:) to act as a wild card. For instance,
the following command will result in adding RuleA to port 80 for all
clusters:
dscontrol rule add :80:RuleA type type

Separate additional clusters with a plus sign (+).
v port: specifies the number of the port. You can use a colon (:) to act as a wild

card. For instance, the following command, dscontrol rule add
clusterA::RuleA type type, will result in adding RuleA to all ports for
ClusterA. Separate additional ports with a plus sign (+).

v rule: specifies the name that you choose for the rule. This name can contain
any alphanumeric character, underscore, hyphen, or period. It can be from 1
to 20 characters and cannot contain any blanks. Separate additional rules
with a plus sign (+).

v type value

– active: based on the number of active connections total for the port. This
rule will work only if the manager is running.

– true: specifies that this rule will always evaluate as true.

158 Load Balancer Administration Guide

v beginrange: specifies the lower value in the range used to determine whether
or not the rule is true. This is an integer with a default value of 0.

v endrange: specifies the higher value in the range used to determine whether
or not the rule is true. This is an integer with a default value of 2 to the
32nd power minus 1.

v priority value: The order in which the rules are reviewed, where value is an
integer.
If you do not specify the priority of the first rule you add, Load Balancer
will set it to 1 by default. When a subsequent rule is added, by default its
priority is calculated to be 10 + the current lowest priority of any existing
rule. For example, assume you have an existing rule whose priority is 30.
You add a new rule and set its priority at 25 (which, remember, is a higher
priority than 30). Then you add a third rule without setting a priority. The
priority of the third rule is calculated to be 40 (30 + 10).

v evaluate value: specifies whether to evaluate the rule’s condition across all
servers within the port or across servers within the rule. Value can be:
– port: specifies to evaluate rule’s condition across all the servers on the

port. This is the default value.
– rule: specifies to evaluate the rule’s condition across the servers within

the rule.
Evaluate servers within the rule

The option to measure the rule’s condition across the servers within the rule
allows you to configure two rules with the following characteristics:
1. The first rule that gets evaluated contains all the servers maintaining the

Web site content, and the evaluate option is set to rule (evaluate the
rule’s condition across the servers within the rule).

2. The second rule is an always true rule that contains a single server that
responds with a ″site busy″ type response.

The result is that when traffic exceeds the threshold of the servers within the
first rule, traffic is sent to the ″site busy″ server within the second rule.
When traffic falls below the threshold of the servers within the first rule,
new traffic continues once again to the servers in the first rule.
Evaluate servers on the port

Using the two rules described above, if you set the evaluate option to port
for the first rule (evaluate rule’s condition across all the servers on the port),
when traffic exceeds the threshold of that rule, traffic is sent to the ″site
busy″ server associated to the second rule. The first rule measures all server
traffic (including the ″site busy″ server) on the port to determine whether
the traffic exceeds the threshold. As congestion decreases for the servers
associated to the first rule, an unintentional result may occur where traffic
continues to the ″site busy″ server because traffic on the port still exceeds
the threshold of the first rule.

dropserver
Remove a server from a rule set.
v server: specifies the name of the server to remove. This is the IP address of

the TCP server machine as either a symbolic name or in IP address format.
Or, if you used server partitioning, use the logical server’s unique name. See
cprf_serverpart.dita for more information. Separate additional servers with a
plus sign (+).

remove
Remove one or more rules, separated from one another by plus signs.

Chapter 7. Reference 159

report
Display the internal values of one or more rules.

set
Set values for this rule.

useserver
Insert servers into a rule set.

status
Display the values that are configured of one or more rules.

Samples
v For example, to route a range of connections to a certain cluster and port:

dscontrol rule add 130.40.52.153@80@pool2 type active beginrange 250 endrange 500

v Create a rule that always evaluates as true with a priority of 100:
dscontrol rule add 130.40.52.153@80@jamais type true priority 100

Related tasks

“Configure rules to manage traffic to busy or unavailable servers” on page 97
Use rules-based load balancing to fine tune when and why packets are sent to
which servers. Load Balancer reviews any rules you add from first priority to last
priority, stopping on the first rule that it finds to be true, then load balancing the
traffic between any servers associated with the rule. It already balances the load
based on the destination and port, but using rules expands your ability to
distribute connections.
Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol server
Configure servers and modify existing server configurations with the dscontrol
server command.

Syntax

�� dscontrol server add cluster@port@server address address
advisorrequest string
advisorresponse string
encapforward yes encaptype ipip encapcond always

no gre auto
fixedweight value
weight value

set cluster@port@server advisorrequest string
advisorresponse string
encapforward yes encaptype ipip encapcond always

no gre auto
fixedweight value
weight value

remove cluster@port@server
report cluster@port@server
status cluster@port@server

��

Parameters

add
Add this server.
v cluster

160 Load Balancer Administration Guide

The address of the cluster as either a symbolic name or in IP address format.
You can use a colon (:) to act as a wild card. For instance, the following
command, dscontrol server add :80:ServerA, will result in adding ServerA to
port 80 on all clusters.

Note: Additional clusters are separated by a plus sign (+)
.

v port

The number of the port. You can use a colon (:) to act as a wild card. For
instance, the following command, dscontrol server add ::ServerA, will result
in adding ServerA to all clusters on all ports.

Note: Additional ports are separated by a plus sign (+).
v server

The server is the unique IP address of the TCP server machine as either a
symbolic name or in IP address format. Or, if you use a unique name that
does not resolve to an IP address, you must provide the server address
parameter on the dscontrol server add command.

Note: Additional servers are separated by a plus sign (+).
v address

The unique IP address of the TCP server machine as either a host name or in
IP address format. If the server is not able to be resolved, you must provide
the address of the physical server machine.
– address

Value of the address of the server.
v advisorrequest

String
v advisorresponse

String
v encapforward value

Specifies to enable encapsulation forwarding. Value can be yes or no.

Note: Use encapsulation forwarding when the back-end server is not located
on the same network segment or if you are using virtualization technology
and need to forward packets that are otherwise unable to be forwarded.
– encaptype value

Specifies the type of encapsulation forwarding. Value can be:
- ipip
- gre

– encapcond value

Specifies the conditions in which to enable encapsulation forwarding.
Value can be:
- always
- auto

v fixedweight

The fixedweight option allows you to specify whether you want the
manager to modify the server weight or not. If you set the fixedweight value

Chapter 7. Reference 161

to yes, when the manager runs it will not be allowed to modify the server
weight. For more information, see “Managing traffic with server weights” on
page 105.
– value

Specifies the value of fixedweight. The value can be yes or no. Default is
no.

– portvalue

Value of the map port number. The default is the client request’s
destination port number.

v weight

A number from 0–100 (but not to exceed the specified port’s weightbound
value) representing the weight for this server. Setting the weight to zero will
prevent any new requests from being sent to the server, but will not end any
currently active connections to that server. The default is one-half the
specified port’s maximum weightbound value. If the manager is running,
this setting will be quickly overwritten.
– value

Value of the server weight.

remove
Remove this server.

report
Report on this server. The report contains the following information per server:
current number of connections per second (CPS), kilobytes transferred in a one
second interval (KBPS), total number of connections (Total), number of
connections that are in the active state (Active), number of connections that are
in the FIN state (FINed), and number of completed connections (Comp).

set
Set values for this server.

status
Show status of the servers.

Samples
v To add the server at 27.65.89.42 to port 80 on a cluster address 130.40.52.153:

dscontrol server add 130.40.52.153@80@27.65.89.42

v To remove the server at 27.65.89.42 on all ports on all clusters:
dscontrol server remove @@27.65.89.42

v To set the weight to 10 for server 27.65.89.42 at port 80 on cluster address
130.40.52.153:
dscontrol server set 130.40.52.153@80@27.65.89.42 weight 10

v To allow the HTTP advisor to query an HTTP URL request HEAD / HTTP/1.0
for server 27.65.89.42 on HTTP port 80:
dscontrol server set 130.40.52.153@80@27.65.89.42 advisorrequest "\"HEAD / HTTP/1.0\""

v To show the status for server 9.67.143.154 on port 80:
dscontrol server status 9.67.131.167@80@9.67.143.154

162 Load Balancer Administration Guide

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol set
Configure the settings for the server log file with the dscontrol set command.

Syntax

�� dscontrol set loglevel level
logsize unlimited

size

��

Parameters

loglevel
The level at which the dsserver logs its activities.
v level

The default value of loglevel is 0. The range is 0–5. The following are the
possible values: 0 is None, 1 is Minimal, 2 is Basic, 3 is Moderate, 4 is
Advanced, 5 is Verbose.

logsize
The maximum number of bytes to be logged in the log file.
v size

The default value of logsize is 1 MB.
Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

dscontrol status
You can display status for the managers or advisors with the dscontrol status
command.

Syntax

�� dscontrol status ��

Parameters

There are no parameters for this command.

Sample

To see which managers and advisors are running:
dscontrol status

Chapter 7. Reference 163

Related reference

“Commands” on page 138
Look up a command by its name to find detailed syntax and usage of the
command.

Examples
This section provides examples of code snippets, command syntax, and
configuration values that are relevant to performing tasks with Load Balancer.

To open the information center table of contents to the location of this reference
information, click the Show in Table of Contents button () on your information
center border.

Example: Sample advisor
This is a sample advisor file called ADV_sample.
/ * *
* ADV_sample: The Load Balancer HTTP advisor
*
*
* This class defines a sample custom advisor for Load Balancer. Like all
* advisors, this custom advisor extends the function of the advisor base,
* called ADV_Base. It is the advisor base that actually performs most of
* the advisor's functions, such as reporting loads back to the Load Balancer
* for use in the Load Balancer's weight algorithm. The advisor base also
* performs socket connect and close operations and provides send and receive
* methods for use by the advisor. The advisor itself is used only for
* sending and receiving data to and from the port on the server being
* advised. The TCP methods within the advisor base are timed to calculate
* the load. A flag within the constructor in the ADV_base overwrites the
* existing load with the new load returned from the advisor if desired.
*
* Note: Based on a value set in the constructor, the advisor base supplies
* the load to the weight algorithm at specified intervals. If the actual
* advisor has not completed so that it can return a valid load, the advisor
* base uses the previous load.
*
* NAMING
*
* The naming convention is as follows:
*
* - The file must be located in the following Load Balancer directory:
*
* ulb/servers/lib/CustomAdvisors/ (ulb\servers\lib\CustomAdvisors on Windows)
*
* - The Advisor name must be preceded with "ADV_". The advisor can be
* started with only the name, however; for instance, the "ADV_sample"
* advisor can be started with "sample".
*
* - The advisor name must be in lowercase.
*
* With these rules in mind, therefore, this sample is referred to as:
*
* <base directory="">/lib/CustomAdvisors/ADV_sample.class
*
*
* Advisors, as with the rest of Load Balancer, must be compiled with the
* prerequisite version of Java. To ensure access to Load Balancer classes, make
* sure that the ibmlb.jar file (located in the lib subdirectory of the base
* directory) is included in the system's CLASSPATH.
*
* Methods provided by ADV_Base:
*

164 Load Balancer Administration Guide

* - ADV_Base (Constructor):
*
* - Parms
* - String sName = Name of the advisor
* - String sVersion = Version of the advisor
* - int iDefaultPort = Default port number to advise on
* - int iInterval = Interval on which to advise on the servers
* - String sDefaultName = Unused. Must be passed in as "".
* - boolean replace = True - replace the load value being calculated
* by the advisor base
* False - add to the load value being calculated
* by the advisor base
* - Return
* - Constructors do not have return values.
*
* Because the advisor base is thread based, it has several other methods
* available for use by an advisor. These methods can be referenced using
* the CALLER parameter passed in getLoad().
*
* These methods are as follows:
*
* - send - Send a packet of information on the established socket connection
* to the server on the specified port.
* - Parms
* - String sDataString - The data to be sent in the form of a string
* - Return
* - int RC - Whether the data was sucessfully sent or not: zero indicates
* data was sent; a negative integer indicates an error.
*
* - receive - Receive information from the socket connection.
* - Parms
* - StringBuffer sbDataBuffer - The data received during the receive call
* - Return
* - int RC - Whether the data was successfully received or not; zero
* indicates data was sent; a negative integer indicates
* an error.
*
* If the function provided by the advisor base is not sufficient,
* you can create the appropriate function within the advisor and
* the methods provided by the advisor base will then be ignored.
*
* An important question regarding the load returned is whether to apply
* it to the load being generated within the advisor base,
* or to replace it; there are valid instances of both situations.
*
* This sample is essentially the Load Balancer HTTP advisor. It functions
* very simply: a send request--an http head request--is issued. Once a
* response is received, the getLoad method terminates, flagging the advisor
* base to stop timing the request. The method is then complete. The
* information returned is not parsed; the load is based on the time
* required to perform the send and receive operations.
*/

package CustomAdvisors;
import com.ibm.internet.nd.advisors.*;

public class ADV_sample extends ADV_Base implements ADV_MethodInterface
{

String COPYRIGHT =
"(C) Copyright IBM Corporation 1997, All Rights Reserved.\n";

static final String ADV_NAME = "Sample";
static final int ADV_DEF_ADV_ON_PORT = 80;
static final int ADV_DEF_INTERVAL = 7;

// Note: Most server protocols require a carriage return ("\r") and line
// feed ("\n") at the end of messages. If so, include them in
// your string here.

Chapter 7. Reference 165

static final String ADV_SEND_REQUEST =
"HEAD / HTTP/1.0\r\nAccept: */ *\r\nUser-Agent: " +
"IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";

/**
* Constructor.
*
* Parms: None; but the constructor for ADV_Base has several parameters
* that must be passed to it.
*
*/
public ADV_sample()
{

super(ADV_NAME,
"2.0.0.0-03.27.98",

ADV_DEF_ADV_ON_PORT,
ADV_DEF_INTERVAL,
"", // not used false);

super.setAdvisor(this);
}

/**
* ADV_AdvisorInitialize
*
* Any Advisor-specific initialization that must take place after the
* advisor base is started. This method is called only once and is
* typically not used.
*/
public void ADV_AdvisorInitialize()
{

return;
}

/**
* getLoad()
*
* This method is called by the advisor base to complete the advisor's
* operation, based on details specific to the protocol. In this sample
* advisor, only a single send and receive are necessary; if more complex
* logic is necessary, multiple sends and receives can be issued. For
* example, a response might be received and parsed. Based on the
* information learned thereby, another send and receive could be issued.
*
* Parameters:
*
* - iConnectTime - The current load as it refers to the length of time it
* took to complete the connection to the server through
* the specified port.
*
* - caller - A reference to the advisor base class where the Load
* Balancer-supplied methods are to perform simple TCP requests,
* mainly send and receive.
*
* Results:
*
* - The load - A value, expressed in milliseconds, that can either be added
* to the existing load, or that can replace the existing load, as
* determined by the constructor's "replace" flag.
*
* The larger the load, the longer it took the server to respond;
* therefore, the lower the weight will become within the Load Balancer.
*
* If the value is negative, an error is assumed. An error from an
* advisor indicates that the server the advisor is trying to reach is not
* accessible and has been identified as being down. Load Balancer will
* not attempt to load balance to a server that is down. Load Balancer will

166 Load Balancer Administration Guide

* resume load balancing to the server when a positive value is received.
*
*/
public int getLoad(int iConnectTime, ADV_Thread caller)
{

int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1

// Send tcp request iRc = caller.send(ADV_SEND_REQUEST);
if (iRc >= 0)
{

// Perform a receive
StringBuffer sbReceiveData = new StringBuffer("");
iRc = caller.receive(sbReceiveData);

/**
* In the normal advisor mode ("replace" flag is false), the load
* returned is either 0 or 1 indicating the server is up or down.
* If the receive is successful, a load of zero is returned
* indicating that the load built within the base advisor is to be used.
*
* Otherwise ("replace" flag is true), return the desired load value.
*/

if (iRc >= 0)
{

iLoad = 0;
}

}
return iLoad;

}
} // End - ADV_sample

Example: Implementing custom advisors
The following examples show how custom advisors can be implemented.

Examples for the following types of custom advisors are provided:
v Standard advisor
v Side stream advisor
v Two-port advisor
v WebSphere Application Server (WAS) advisor
Related tasks

“Creating a custom advisor” on page 63
A custom advisor is a small piece of Java code, provided as a class file, that is
called by the Load Balancer base code to determine the load on a server. The base
code provides all necessary administrative services, including starting and
stopping an instance of the custom advisor, providing status and reports, recording
history information in a log file, and reporting advisor results to the manager
component.

Example: Using data returned from advisors
Whether you use a standard call to an existing part of the application server or
add a new piece of code to be the server-side counterpart of your custom advisor,
you possibly want to examine the load values returned and change server
behavior.

The Java StringTokenizer class, and its associated methods, make this investigation
easy to do. The content of a typical HTTP command might be
GET /index.html HTTP/1.0 90

Chapter 7. Reference 167

A typical response to this command might be the following:
HTTP/1.1 200 OK
Date: Mon, 20 November 2000 14:09:57 GMT
Server: Apache/1.3.12 (Linux and UNIX)
Content-Location: index.html.en
Vary: negotiate
TCN: choice
Last-Modified: Fri, 20 Oct 2000 15:58:35 GMT
ETag: "14f3e5-1a8-39f06bab;39f06a02"
Accept-Ranges: bytes
Content-Length: 424
Connection: close
Content-Type: text/html
Content-Language: en

<!DOCTYPE HTML PUBLIC "-//w3c//DTD HTML 3.2 Final//EN">
<HTML><HEAD><TITLE>Test Page</TITLE></HEAD>
<BODY><H1>Apache server</H1>
<HR>
<P><P>This Web server is running Apache 1.3.12.
</P>
<P>
</P></P>
</HR>
</BODY></HTML>

The items of interest are contained in the first line, specifically the HTTP return
code. The HTTP specification classifies return codes that can be summarized as
follows:
v 2xx return codes are successes
v 3xx return codes are redirections
v 4xx return codes are client errors
v 5xx return codes are server errors

If you know precisely what codes the server can possibly return, your code might
not need to be as detailed as this example. However, keep in mind that limiting
the return codes you detect might limit the future flexibility of your program.

The following example is a stand-alone Java program that contains a minimal
HTTP client. The example invokes a simple, general-purpose parser for examining
HTTP responses.
import java.io.*;
import java.util.*;
import java.net.*;

public class ParseTest {
static final int iPort = 80;
static final String sServer = "www.ibm.com";
static final String sQuery = "GET /index.html HTTP/1.0\r\n\r\n";
static final String sHTTP10 = "HTTP/1.0";
static final String sHTTP11 = "HTTP/1.1";

public static void main(String[] Arg) {
String sHTTPVersion = null;
String sHTTPReturnCode = null;
String sResponse = null; int iRc = 0;
BufferedReader brIn = null;
PrintWriter psOut = null;
Socket soServer= null;
StringBuffer sbText = new
StringBuffer(40);

168 Load Balancer Administration Guide

try {
soServer = new Socket(sServer, iPort);
brIn = new BufferedReader(new InputStreamReader(

soServer.getInputStream()));
psOut = new PrintWriter(soServer.getOutputStream());
psOut.println(sQuery);
psOut.flush();
sResponse = brIn.readLine();
try {

soServer.close();
} catch (Exception sc) {;}

} catch (Exception swr) {;}

StringTokenizer st = new StringTokenizer(sResponse, " ");
if (true == st.hasMoreTokens()) {

sHTTPVersion = st.nextToken();
if (sHTTPVersion.equals(sHTTP110) || sHTTPVersion.equals(sHTTP11)) {

System.out.println("HTTP Version: " + sHTTPVersion);
} else {

System.out.println("Invalid HTTP Version: " + sHTTPVersion);
}

} else {
System.out.println("Nothing was returned");
return;

}

if (true == st.hasMoreTokens()) {
sHTTPReturnCode = st.nextToken();
try {

iRc = Integer.parseInt(sHTTPReturnCode);
} catch (NumberFormatException ne) {;}

switch (iRc) {
case(200):

System.out.println("HTTP Response code: OK, " + iRc);
break;

case(400): case(401): case(402): case(403): case(404):
System.out.println("HTTP Response code: Client Error, " + iRc);
break;

case(500): case(501): case(502): case(503):
System.out.println("HTTP Response code: Server Error, " + iRc);
break;

default:
System.out.println("HTTP Response code: Unknown, " + iRc);
break;

}
}

if (true == st.hasMoreTokens()) {
while (true == st.hasMoreTokens()) {

sbText.append(st.nextToken());
sbText.append(" ");
}

System.out.println("HTTP Response phrase: " + sbText.toString());
}
}

}

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing a side stream advisor
The following example demonstrates how a side stream advisor can be
implemented. This sample illustrates suppressing the standard socket opened by
the advisor base. Instead, this advisor opens a side stream Java socket to query a

Chapter 7. Reference 169

server. This procedure can be useful for servers that use a different port from
normal client traffic to listen for an advisor query.

In this example, a server is listening on port 11999 and when queried returns a
load value with a hexadecimal int ″4″. This sample runs in replace mode, that is,
the last parameter of the advisor constructor is set to true and the advisor base
code uses the returned load value rather than the elapsed time.

Note the call to supressBaseOpeningSocket() in the initialization routine.
Suppressing the base socket when no data will be sent is not required. For
example, you might want to open the socket to ensure that the advisor can contact
the server. Examine the needs of your application carefully before making this
choice.
package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.lb.advisors.*;
import com.ibm.internet.lb.common.*;
import com.ibm.internet.lb.server.SRV_ConfigServer;

public class ADV_sidea extends ADV_Base implements ADV_MethodInterface {
static final String ADV_NAME = "sidea";
static final int ADV_DEF_ADV_ON_PORT = 12345;
static final int ADV_DEF_INTERVAL = 7;

// create an array of bytes with the load request message
static final byte[] abHealth = {(byte)0x00, (byte)0x00, (byte)0x00,

(byte)0x04};

public ADV_sidea() {
super(ADV_NAME, "3.0.0.0-03.31.00", ADV_DEF_ADV_ON_PORT,

ADV_DEF_INTERVAL, "",
true); // replace mode parameter is true

super.setAdvisor(this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize()
{

suppressBaseOpeningSocket(); // tell base code not to open the
// standard socket

return;
}

//--------
// getLoad

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // -1
int iControlPort = 11999; // port on which to communicate

// with the server
String sServer = caller.getCurrentServerId(); // address of server to query
try {

socket soServer = new Socket(sServer, iControlPort); // open socket to
// server

DataInputStream disServer = new DataInputStream(
soServer.getInputStream());

DataOutputStream dosServer = new DataOutputStream(
soServer.getOutputStream());

int iRecvTimeout = 10000; // set timeout (in milliseconds)
// for receiving data

170 Load Balancer Administration Guide

soServer.setSoTimeout(iRecvTimeout);
dosServer.writeInt(4); // send a message to the server
dosServer.flush();
iLoad = disServer.readByte(); // receive the response from the server

} catch (exception e) {
system.out.println("Caught exception " + e);

}
return iLoad; // return the load reported from the server

}
}

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing standard advisors
The following example demonstrates how to use a standard custom advisor.

This sample source code is similar to the standard Load Balancer HTTP advisor. It
functions as follows:
1. A send request, a ″HEAD/HTTP″ command, is issued.
2. A response is received. The information is not parsed, but the response causes

the getLoad method to terminate.
3. The getLoad method returns 0 to indicate success or -1 to indicate a failure.

This advisor operates in normal mode, so the load measurement is based on the
elapsed time in milliseconds required to perform the socket open, send, receive,
and close operations.
package CustomAdvisors;
import com.ibm.internet.lb.advisors.*;
public class ADV_sample extends ADV_Base implements ADV_MethodInterface {

static final String ADV_NAME ="Sample";
static final int ADV_DEF_ADV_ON_PORT = 80;
static final int ADV_DEF_INTERVAL = 7;
static final String ADV_SEND_REQUEST =

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";

//--------
// Constructor

public ADV_sample() {
super(ADV_NAME, "3.0.0.0-03.31.00",

ADV_DEF_ADV_ON_PORT, ADV_DEF_INTERVAL, "",
false);

super.setAdvisor(this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize() {
return; // usually an empty routine

}

//--------
// getLoad

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iRc;
int iLoad = ADV_HOST_INACCESSIBLE; // initialize to inaccessible

iRc = caller.send(ADV_SEND_REQUEST); // send the HTTP request to
// the server

Chapter 7. Reference 171

if (0 <= iRc) { // if the send is successful
StringBuffer sbReceiveData = new StringBuffer(""); // allocate a buffer

// for the response
iRc = caller.receive(sbReceiveData); // receive the result

// parse the result here if you need to

if (0 <= iRc) { // if the receive is successful
iLoad = 0; // return 0 for success

} // (advisor's load value is ignored by
} // base in normal mode)
return iLoad;

}
}

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing the WAS advisor
The following examples show how custom advisors can be implemented.

A sample custom advisor for WebSphere Application Server is included in the
install_root/servers/samples/CustomAdvisors/ directory. The full code is not
duplicated in this document. Ensure that the following will be implemented:
v ADV_was.java is the advisor source code file that is compiled and run on the

Load Balancer machine.
v LBAdvisor.java.servlet is the servlet source code that must be renamed to

LBAdvisor.java, compiled, and run on the WebSphere Application Server
machine.

The complete advisor is only slightly more complex than the sample. It adds a
specialized parsing routine that is more compact than the StringTokenizer example
shown in the topic “Example: Using data returned from advisors” on page 82.

The more complex part of the sample code is in the Java servlet. Among other
methods, the servlet contains two methods required by the servlet specification:
init() and service(), and one method, run(), that is required by the Java.lang.thread
class.
v init() is called once by the servlet engine at initialization time. This method

creates a thread named _checker that runs independently of calls from the
advisor and sleeps for a period of time before resuming its processing loop.

v service() is called by the servlet engine each time the servlet is invoked. In this
case, the method is called by the advisor. The service() method sends a stream of
ASCII characters to an output stream.

v run() contains the core of the code execution. It is called by the start() method
that is called from within the init() method.

The relevant fragments of the servlet code appear below:
...

public void init(ServletConfig config) throws ServletException {
super.init(config);
...
_checker = new Thread(this);
_checker.start();

}

public void run() {
setStatus(GOOD);

172 Load Balancer Administration Guide

while (true) {
if (!getKeepRunning())

return;
setStatus(figureLoad());
setLastUpdate(new java.util.Date());

try {
_checker.sleep(_interval * 1000);

} catch (Exception ignore) { ; }
}

}

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

ServletOutputStream out = null;
try {

out = res.getOutputStream();
} catch (Exception e) { ... }
...
res.setContentType("text/x-application-LBAdvisor");
out.println(getStatusString());
out.println(getLastUpdate().toString());
out.flush(); return;

}
...

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

Example: Implementing a two-port advisor
The following example shows how to implement a two-port advisor. This custom
advisor sample demonstrates the capability to detect failure for one port of a
server based upon both its own status and on the status of a different server
daemon that is running on another port on the same server machine.

For example, if the HTTP daemon on port 80 stops responding, you might also
want to stop routing traffic to the SSL daemon on port 443.

This advisor is more aggressive than standard advisors, because it considers any
server that does not send a response to have stopped functioning, and marks it as
down. Standard advisors consider unresponsive servers to be very slow. This
advisor marks a server as down for both the HTTP port and the SSL port based on
a lack of response from either port.

To use this custom advisor, the administrator starts two instances of the advisor:
one on the HTTP port, and one on the SSL port. The advisor instantiates two static
global hash tables, one for HTTP and one for SSL. Each advisor tries to
communicate with its server daemon and stores the results of this event in its hash
table. The value that each advisor returns to the base advisor class depends on
both the ability to communicate with its own server daemon and the ability of the
partner advisor to communicate with its daemon.

The following custom methods are used.
v ADV_nte() is a simple container object to hold information about a server. These

objects are stored in the hash table as table elements. Each object has a time
stamp that is used to determine whether the element is current.

v putNte() and getNte() are synchronized methods that ensure that the two
advisor instances access the hash table in a controlled fashion.

Chapter 7. Reference 173

v getLoadHTTP is a method that queries the responsiveness of an HTTP server. It
is a low-level routine and does not gather or use information about SSL.

v getLoadSSL() is a method that queries the responsiveness of an SSL server. It is a
low-level routine and does not gather or use information about HTTP.

v getLoad() is the entry point routine for this custom advisor. It can handle both
protocols and can store and fetch information from the hash table. This is the
routine that links the two ports.

The following error conditions are detected:
v Unresponsive server machine - The base advisor classes periodically send a ping

signal to the server address. If the address is not reachable, the base advisor
classes marks the server down. Neither of the two instances of the custom
advisor is called, and both servers on that machine are marked down.

v One daemon on a server machine becomes unresponsive, but the other is
working - When the base code attempts to open a socket with the server, the
connection is refused, and the base advisor for this protocol marks the server as
down. The custom advisor code for that protocol is not called. Although the
custom advisor for the other protocol continues communicating with its server, it
learns from the hash table that the other custom advisor cannot communicate
with its server daemon. Therefore, the second protocol’s advisor also marks its
server as down.

v One daemon does not send a response, but the other daemon does - The custom
advisor for the unresponsive protocol detects the failure to communicate, marks
the server as down, and stores the data in the hash table. The custom advisor for
the other port learns that information from the hash table and marks its server
as down.

This sample is written to link ports 80 for HTTP and 443 for SSL, but it can be
tailored to any combination of ports:
package CustomAdvisors;
import java.io.*;
import java.net.*;
import java.util.*;
import java.util.Date;
import com.ibm.internet.lb.advisors.*;
import com.ibm.internet.lb.common.*;
import com.ibm.internet.lb.manager.*;
import com.ibm.internet.lb.server.SRV_ConfigServer;

//--------
// Define the table element for the hash tables used in this custom advisor

class ADV_nte implements Cloneable {
private String sCluster;
private int iPort;
private String sServer;
private int iLoad;
private Date dTimestamp;

//--------
// constructor

public ADV_nte(String sClusterIn, int iPortIn, String sServerIn,
int iLoadIn) {

sCluster = sClusterIn;
iPort = iPortIn;
sServer = sServerIn;
iLoad = iLoadIn;
dTimestamp = new Date();

}

174 Load Balancer Administration Guide

//--------
// check whether this element is current or expired

public boolean isCurrent(ADV_twop oThis) {
boolean bCurrent;
int iLifetimeMs = 3 * 1000 * oThis.getInterval(); // set lifetime as

// 3 advisor cycles
Date dNow = new Date();
Date dExpires = new Date(dTimestamp.getTime() + iLifetimeMs);

if (dNow.after(dExpires)) {
bCurrent = false;

} else {
bCurrent = true;

} return bCurrent;
}

//--------
// value accessor(s)

public int getLoadValue() { return iLoad; }

//--------
// clone (avoids corruption between threads)

public synchronized Object Clone() {
try {

return super.clone();
} catch (cloneNotSupportedException e) {

return null;
}

}

}

//--------
// define the custom advisor

public class ADV_twop extends ADV_Base
implements ADV_MethodInterface, ADV_AdvisorVersionInterface {
static final int ADV_TWOP_PORT_HTTP = 80;
static final int ADV_TWOP_PORT_SSL = 443;

//--------
// define tables to hold port-specific history information

static HashTable htTwopHTTP = new Hashtable();
static HashTable htTwopSSL = new Hashtable();
static final String ADV_TWOP_NAME = "twop";
static final int ADV_TWOP_DEF_ADV_ON_PORT = 80;
static final int ADV_TWOP_DEF_INTERVAL = 7;
static final String ADV_HTTP_REQUEST_STRING =

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +
"IBM_LB_Custom_Advisor\r\n\r\n";

//--------
// create byte array with SSL client hello message

public static final byte[] abClientHello = {
(byte)0x80, (byte)0x1c,
(byte)0x01, // client hello
(byte)0x03, (byte)0x00, // SSL version
(byte)0x00, (byte)0x03, // cipher spec len (bytes)
(byte)0x00, (byte)0x00, // session ID len (bytes)
(byte)0x00, (byte)0x10, // challenge data len (bytes)
(byte)0x00, (byte)0x00, (byte)0x03, // cipher spec
(byte)0x1A, (byte)0xFC, (byte)0xE5, (byte)Ox20, // challenge data

Chapter 7. Reference 175

(byte)0xFD, (byte)0x3A, (byte)0x3C, (byte)0x18,
(byte)0xAB, (byte)0x67, (byte)0xB0, (byte)0x52,
(byte)0xB1, (byte)0x1D, (byte)0x55, (byte)0x44, (byte)0x0D, (byte)0x0A };

//--------
// constructor

public ADV_twop() {
super(ADV_TWOP_NAME, VERSION, ADV_TWOP_DEF_ADV_ON_PORT,

ADV_TWOP_DEF_INTERVAL, "",
false); // false = load balancer times the response

setAdvisor (this);
}

//--------
// ADV_AdvisorInitialize

public void ADV_AdvisorInitialize() {
return; }

//--------
// synchronized PUT and GET access routines for the hash tables

synchronized ADV_nte getNte(Hashtable ht, String sName, String sHashKey) {
ADV_nte nte = (ADV_nte)(ht.get(sHashKey));
if (null != nte) {

nte = (ADV_nte)nte.clone();
}
return nte;

}
synchronized void putNte(Hashtable ht, String sName, String sHashKey,

ADV_nte nte) { ht.put(sHashKey,nte); return;
}

//--------
// getLoadHTTP - determine HTTP load based on server response

int getLoadHTTP(int iConnectTime, ADV_Thread caller) {
int iLoad = ADV_HOST_INACCESSIBLE;
int iRc = caller.send(ADV_HTTP_REQUEST_STRING); // send request message

// to server
if (0 <= iRc) { // did the request return a failure?

StringBuffer sbReceiveData = new StringBuffer("") // allocate a buffer
// for the response

iRc = caller.receive(sbReceiveData); // get response from server

if (0 <= iRc) { // did the receive return a failure?
if (0 < sbReceiveData.length()) { // is data there?

iLoad = SUCCESS; // ignore retrieved data and
// return success code

}
}

}
return iLoad;

}

//--------
// getLoadSSL() - determine SSL load based on server response

int getLoadSSL(int iConnectTime, ASV_Thread caller) {
int iLoad = ADV_HOST_INACCESSIBLE;
int iRc;

CMNByteArrayWrapper cbawClientHello = new CMNByteArrayWrapper(
abClientHello);

176 Load Balancer Administration Guide

Socket socket = caller.getSocket();

try {
socket.getOutputStream().write(abClientHello); // Perform a receive.
socket.getInputStream().read(); // If receive is successful,

// return load of 0. We are not
// concerned with data's contents,
// and the load is calculated by
// the ADV_Thread thread.

iLoad = 0;
} catch (IOException e) { // Upon error, iLoad will default to it.
}
return iLoad;

}

//--------
// getLoad - merge results from the HTTP and SSL methods

public int getLoad(int iConnectTime, ADV_Thread caller) {
int iLoadHTTP;
int iLoadSSL;
int iLoad;
int iRc;

String sCluster = caller.getCurrentClusterId(); // current cluster address
int iPort = getAdviseOnPort();
String sServer = caller.getCurrentServerId();
String sHashKey = sCluster = ":" + sServer; // hash table key

if (ADV_TWOP_PORT_HTTP == iPort) { // handle an HTTP server
iLoadHTTP = getLoadHTTP(iConnectTime, caller); // get the load for HTTP

ADV_nte nteHTTP = newADV_nte(sCluster, iPort, sServer, iLoadHTTP);
putNte(htTwopHTTP, "HTTP", sHashKey, nteHTTP); // save HTTP load

// information
ADV_nte nteSSL = getNte(htTwopSSL, "SSL", sHashKey); // get SSL

// information
if (null != nteSSL) {

if (true == nteSSL.isCurrent(this)) { // check the time stamp
if (ADV_HOST_INACCESSIBLE != nteSSL.getLoadValue()) { // is SSL

// working?
iLoad = iLoadHTTP;

} else { // SSL is not working, so mark the HTTP server down
iLoad= ADV_HOST_INACCESSIBLE;

}
} else { // SSL information is expired, so mark the

// HTTP server down
iLoad = ADV_HOST_INACCESSIBLE;

}
} else { // no load information about SSL, report

// getLoadHTTP() results
iLoad = iLoadHTTP;

}
}
else if (ADV_TWOP_PORT_SSL == iPort) { // handle an SSL server

iLoadSSL = getLoadSSL(iConnectTime, caller); // get load for SSL

ADV_nte nteSSL = new ADV_nte(sCluster, iPort, sServer, iLoadSSL);
putNte(htTwopSSL, "SSL", sHashKey, nteSSL); // save SSL load info.

ADV_nte nteHTTP = getNte(htTwopHTTP, "SSL", sHashKey); // get HTTP
// information

if (null != nteHTTP) {
if (true == nteHTTP.isCurrent(this)) { // check the timestamp

if (ADV_HOST_INACCESSIBLE != nteHTTP.getLoadValue()) { // is HTTP
// working?

Chapter 7. Reference 177

iLoad = iLoadSSL;
} else { // HTTP server is not working, so mark SSL down

iLoad = ADV_HOST_INACCESSIBLE;
}

} else { // expired information from HTTP, so mark SSL down
iLoad = ADV_HOST_INACCESSIBLE;

}
} else { // no load information about HTTP, report

// getLoadSSL() results
iLoad = iLoadSSL;

}
}

//--------
// error handler

else {
iLoad = ADV_HOST_INACCESSIBLE;

}
return iLoad;
}

}

Related reference

“Example: Sample advisor” on page 70
This is a sample advisor file called ADV_sample.

178 Load Balancer Administration Guide

	Contents
	Chapter 1. Product overview
	New in this release
	Functions that provide load balancing
	High availability with Load Balancer
	Managing servers
	Types of cluster, port, and server configurations

	Chapter 2. Installing Load Balancer
	Installing Load Balancer
	Installing Load Balancer on AIX systems
	Installing Load Balancer on HP-UX systems
	Installing Load Balancer on Linux operating systems
	Installing Load Balancer on Solaris operating systems
	Installing Load Balancer on Windows operating systems

	Uninstalling Load Balancer
	Updating Load Balancer
	Updating Load Balancer for AIX, HP-UX, Linux, or Solaris operating systems
	Updating Load Balancer for Windows operating systems

	Directory conventions

	Chapter 3. Configuring Load Balancer
	Methods of configuration
	Configuring the Load Balancer machine
	Configuring the server machines
	Aliasing the network interface card or loopback device
	Configuring loopbacks with alternative methods

	Quick start configuration
	Load balancing a private network

	Chapter 4. Administering Load Balancer
	Enabling advisors to manage load balancing
	Advisors
	List of advisors
	Getting service-specific advice with the advisor request or response option
	Configuring the LDAP URI advisor
	Getting advice with Metric Server
	The Workload Management Advisor
	Creating a custom advisor
	Custom advisor methods and function calls
	Example: Sample advisor

	Configuring high availability
	How high availability works
	Detecting server failures with heartbeats and reach targets
	High Availability recovery strategy for failed servers
	Scripts to run with high availability

	Use encapsulation forwarding to forward traffic across network segments
	Quiesce servers for server maintenance windows
	Optimize connections with client-to-server affinity
	Restricting incoming traffic with ipchains and iptables
	Logging with Load Balancer
	Logging server statistics with binary logging

	Support for ICMP forwarding and messaging
	Configure rules to manage traffic to busy or unavailable servers
	Sample scripts to generate alerts and record server failure

	Chapter 5. Tuning Load Balancer
	The manager report
	Optimizing the manager interval
	Tuning the proportion of importance given to status information
	Managing traffic with server weights
	Optimizing the sensitivity threshold
	Optimizing the smoothing index
	Controlling connection records with the staletimeout value

	Chapter 6. Troubleshooting Load Balancer
	Problem: Load Balancer will not run
	Problem: Load Balancer requests are not being balanced
	Problem: Extra routes (Windows 2000)
	Problem: Dispatcher, Microsoft IIS, and SSL do not work (Windows platform)
	Problem: dscontrol or lbadmin command fails
	Problem: Advisors not working correctly
	Problem: “Cannot find the file..." error message when trying to view online Help (Windows platform)
	Problem: Graphical user interface (GUI) does not start correctly
	Problem: Graphical user interface (GUI) does not display correctly
	Problem: On Windows platform, help windows sometimes disappear behind other open windows
	Problem: GUI hangs (or unexpected behavior) when trying to load a large configuration file
	Problem: Korean Load Balancer interface displays overlapping or undesirable fonts on AIX and Linux systems
	Problem: On Windows platform, unexpected GUI behavior when using Matrox AGP video cards
	Problem: Slow response time running commands on Dispatcher machine
	Problem: SSL or HTTPS advisor not registering server loads
	Problem: Socket pooling is enabled and the Web server is binding to 0.0.0.0
	Problem: On Windows systems, corrupted Latin-1 national characters appear in command prompt window
	Problem: On Windows systems, advisors and reach targets mark all servers down
	Problem: On Windows systems, after network outage, advisors not working in a high availability setup
	Problem: On Linux systems, do not use "IP address add" command when aliasing multiple clusters on the loopback device
	Problem: On Solaris systems, Load Balancer processes end when you exit the terminal window from which they started
	Problem: Delay occurs while loading a Load Balancer configuration
	Problem: On Windows systems, an IP address conflict error message appears
	Problem: On Windows systems, "Server not responding" error occurs when issuing dscontrol or lbadmin
	Problem: On Linux, Dispatcher configuration limitations when using zSeries or S/390 servers that have Open System Adapter (OS
	Problem: Linux iptables can interfere with the routing of packets
	Problem: Unable to add an IPv6 server to the Load Balancer configuration on Solaris systems
	Problem: Java warning message appears when installing service fixes
	Upgrading the Java file set provided with the Load Balancer installation
	Problem: Client requests fail when using IPv6 MAC forwarding with HP-UX back-end servers
	Problem: On AIX systems, Load Balancer conflicts with IP security (IPsec)
	Problem: Installing WebSphere Edge Server using ./install on the 32-bit Linux operating system for zSeries produces a "JVM No
	Problem: The uninstall process for WebSphere Edge Server hangs on Linux operating systems
	Problem: The serverUp script might run when you issue commands for Load Balancer that affect the status of servers

	Chapter 7. Reference
	Advanced configuration
	Directory conventions
	Types of cluster, port, and server configurations
	Custom advisor methods and function calls
	List of advisors
	Sample scripts to generate alerts and record server failure
	High Availability recovery strategy for failed servers
	Scripts to run with high availability

	Commands
	dscontrol advisor
	dscontrol binlog
	dscontrol cluster
	dscontrol executor
	dscontrol file
	dscontrol help
	dscontrol highavailability
	dscontrol logstatus
	dscontrol manager
	dscontrol metric
	dscontrol port
	dscontrol rule
	dscontrol server
	dscontrol set
	dscontrol status

	Examples
	Example: Sample advisor
	Example: Implementing custom advisors
	Example: Using data returned from advisors
	Example: Implementing a side stream advisor
	Example: Implementing standard advisors
	Example: Implementing the WAS advisor
	Example: Implementing a two-port advisor

