L[[2RIIET (N Application Server for z/0S, Version 7.0

oS <=n 2
oS
@@ . N ‘

M
or Y

Securing WebSphere applications

SA23-2256-00

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 761

Compilation date: September 24, 2008

© Copyright International Business Machines Corporation 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments .
Changes to serve you more quickly .

Chapter 1. Web applications .
Securing Web applications using an assembly tooI
Security constraints .
Security settings
Security role references .
Securing applications during assembly and deponment .
Assigning users and groups to roles .
Updating and redeploying secured applications
Deploying secured applications

Chapter 2. SIP applications .
Securing SIP applications
Configuring security for the SIP contamer

Chapter 3. EJB applications .

Securing enterprise bean applications . .
Configuring security for message-driven beans that use Ilstener ports .
Configuring security for EJB 2.1 message-driven beans

Chapter 4. Client applications .
Accessing secure resources using SSL and applet cllents
Applet client security requirements .

Chapter 5. Web services
Configuring a Web services client to access resources usmg a Web proxy
Provide HTTP endpoint URL information . .
Specify endpoint URL prefixes for Web services .
Select default HTTP URL prefix .
Select custom HTTP URL prefix .
Securing Web services applications at the transport IeveI .
HTTP transport custom properties for Web services applications . .
Configuring HTTP outbound transport level security with the admrnrstratwe console .
Configuring HTTP outbound transport level security using Java properties
Configuring additional HTTP transport properties using the JVM custom property panel in the
administrative console . .o
Configuring additional HTTP transport propertles usrng the wsadmln command I|ne tooI
Configuring additional HTTP transport properties for JAX-RPC Web services with an assembly tooI
Configuring HTTP outbound transport level security with an assembly tool
Authenticating Web services clients using HTTP basic authentication
Configuring HTTP basic authentication for JAX-RPC Web services with the admrnrstratrve console
Configuring HTTP basic authentication for JAX-RPC Web services programmatically
Configuring HTTP basic authentication for JAX-RPC Web services with an assembly tool .
Custom property settings.
Name. .
Value .
Securing Web services appllcatlons usmg message IeveI securlty
What is new for securing Web services .
Web services security configuration consrderatrons .
Default bindings and runtime properties for Web services securlty

© Copyright IBM Corp. 2008

Noooohph~,wWw=-=

—_

. Vi

.19
.19

. 23
. 23
. 25
. 26

. 29
. 29
. 29

. 31
. 31
.32
. 33
. 33
. 33
. 33
. 35
. 40
. 42

. 43
. 44

46

. 47
. 48

49

. 50
. 51
. 52
. 52
. 52
. 52
. 54
. 83
. 85

Web services security provides message integrity, confidentiality, and authentication .
Securing JAX-WS Web services using message-level security
Securing JAX-RPC Web services using message level security .
Enabling hardware cryptographic devices for Web Services Security .
Securing Web services for Version 5.x applications based on WS-Security .
Enabling security for WSIF
Configuring UDDI registry security .
Configuring the UDDI registry to use WebSphere Appl|cat|on Server secunty
Configuring the UDDI registry to use UDDI security e
Access control for UDDI registry interfaces
UDDI registry security additional considerations .
Security API for the UDDI Version 3 registry .

Chapter 6. Service integration.
Security .
Securing buses. .
Enabling client SSL authentlcatlon
Adding unique names to the bus authonzatlon pollcy
Administering authorization permissions.
Administering permitted transports for a bus .
Securing messages between messaging buses .
Securing access to a foreign bus . .
Securing links between messaging engines .
Controlling which foreign buses can link to your bus .
Securing database access.
Securing mediations .
Auditing the service integration securlty mfrastructure
Securing bus-enabled Web services .

Configuring bus-enabled Web services to use an authentlcatlon ahas to access a secure service

integration bus .
Configuring secure transmlsslon of SOAP messages usmg WS Secunty
Working with password-protected components .o
Invoking outbound services over HTTPS
Securing WS-Notification .
Configuring secure access to WS Notlflcatlon service pomts usmg SOAP over HTTPS

Chapter 7. Messaging resources.

Configuring authorization security for a VerS|on 5 default messagmg prowder
Authorization settings for Version 5 default JMS resources . .

Configuring security for message-driven beans that use listener ports.

Configuring security for EJB 2.1 message-driven beans .

Chapter 8. Mail, URLs, and other J2EE resources .
JavaMail security permissions best practices .

Chapter 9. Learn about WebSphere programming extensions .
Scheduler .

Securing scheduler tasks .
Appendix. Directory conventions

Notices

Trademarks and service marks .

iv Securing WebSphere applications

. 87
. 147
. 330
. 514
. 517
. 677
. 677
. 678
. 679
. 681
. 682
. 683

. 685
. 685
. 685
. 694
. 695
. 696
. 722
. 725
. 726
. 726
. 727
. 727
. 727
. 729
. 731

. 732
. 734
. 736
. 742
. 743
. 745

. 747
. 747
. 749
. 751
. 753

. 755
. 755

. 757
. 757
. 757
. 759
. 761

. 763

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
» To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 \"

Vi Securing WebSphere applications

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

+ Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2008 vii

Viii Securing WebSphere applications

Chapter 1. Web applications

Securing Web applications using an assembly tool

You can use three types of Web login authentication mechanisms to configure a Web application: basic
authentication, form-based authentication and client certificate-based authentication. Protect Web
resources in a Web application by assigning security roles to those resources.

About this task

To secure Web applications, determine the Web resources that need protecting and determine how to
protect them.

Note: This procedure might not match the steps that are required when using your jassembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

The following steps detail securing a Web application using an assembly tool:

1. In an assembly tool, import your Web archive (WAR) file or an application archive (EAR) file that
contains one or more Web modules.

2. In the Project Explorer folder, locate your Web application.

3. Right-click the deployment descriptor and click Open With > Deployment Descriptor Editor. The
Deployment Descriptor window opens. To see online information about the editor, press F1 and click
the editor name. If you select a Web archive (WAR) file, a Web deployment descriptor editor opens. If
you select an enterprise application (EAR) file, an application deployment descriptor editor opens.

4. Create security roles either at the application level or at the Web module level. If a security role is
created at the Web module level, the role also displays in the application level. If a security role is
created at the application level, the role does not display in all of the Web modules. You can copy and
paste a security role at the application level to one or more Web module security roles.

» Create a role at a Web-module level. In a Web deployment descriptor editor, click the Security tab.
Under Security Roles, click Add.. Enter the security role name, describe the security role, and click
Finish.

« Create a role at the application level. In an application deployment descriptor editor, click the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role and then click Finish.

5. Create security constraints. Security constraints are a mapping of one or more Web resources to a set
of roles.

a. On the Security tab of a Web deployment descriptor editor, click Security Constraints. On the
Security Constraints tab, you can do the following actions:
» Add or remove security constraints for specific security roles.
* Add or remove Web resources and their HTTP methods.
» Define which security roles are authorized to access the Web resources.
» Specify None, Integral, or Confidential constraints on user data.
None The application does not require transport guarantees.
Integral
Data cannot be changed in transit between the client and the server.
Confidential
Data content cannot be observed while it is in transit.

Integral and Confidential usually require the use of SSL. When deploying applications that are
available over public networks, specify Confidential for your Web Applications constraints

Under Security Constraints, click Add.
Under Constraint name, specify a display name for the security constraint and click Next.

© Copyright IBM Corp. 2008 1

d. Type a name and description for the Web resource collection.

Select one or more HTTP methods. The HTTP method options are: GET, PUT, HEAD, TRACE,
POST, DELETE, and OPTIONS.

f. Beside the Patterns field, click Add.

g. Specify a URL Pattern. For example, type - /*, *.jsp, /hello. Consult the Servlet specification
Version 2.4 for instructions on mapping URL patterns to servlets. The security runtime uses the
exact match first to map the incoming URL with URL patterns. If the exact match is not present, the
security runtime uses the longest match. The wild card (x.,*.jsp) URL pattern matching is used
last.

h. Click Finish.
i. Repeat these steps to create multiple security constraints.

6. Map security-role-ref and role-name elements to the role-link element. During the development of a
Web application, you can create the security-role-ref element. The security-role-ref element contains
only the role-name field. The role-name field contains the name of the role that is referenced in the
servlet or JavaServer Pages (JSP) code to determine if the caller is in a specified role. Because
security roles are created during the assembly stage, the developer uses a logical role name in the
Role-name field and provides enough description in the Description field for the assembler to map the
role actual. The Security-role-ref element is at the servlet level. A servlet or JavaServer Pages (JSP)
file can have zero or more security-role-ref elements.

a. Go to the References tab of a Web deployment descriptor editor. On the References tab, you can
add or remove the name of an enterprise bean reference to the deployment descriptor. You can
define five types of references on this tab:

» EJB reference

» Service reference

* Resource reference

* Message destination reference

» Security role reference

* Resource environment reference

Under the list of Enterprise JavaBeans™ (EJB) references, click Add.
Specify a name and a type for the reference in the Name and Ref Type fields.
Select either Enterprise Beans in the workplace or Enterprise Beans not in the workplace.

Optional: If you select Enterprise Beans not in the workplace, select the type of enterprise bean
in the Type field. You can specify either an entity bean or a session bean.

f. Optional: Click Browse to specify values for the local home and local interface in the Local home
and Local fields before you click Next.

g. Map every role-name that is used during development to the role using the previous steps. Every
role name that is used during development maps to the actual role.

7. Specify the RunAs identity for servlets and JSP files. The RunAs identity of a servlet is used to invoke
enterprise beans from within the servlet code. When enterprise beans are invoked, the RunAs identity
is passed to the enterprise bean for performing an authorization check on the enterprise beans. If the
RunAs identity is not specified, the client identity is propagated to the enterprise beans. The RunAs
identity is assigned at the servlet level.

a. On the Servlets tab of a Web deployment descriptor editor, under Servlets and JSP, click Add.
The Add Servlet or JSP wizard opens.

b. Specify the servlet or JavaServer Pages (JSP) file settings, including the name, initialization
parameters, and URL mappings and click Next.

Specify the class file destination.

Click Next to specify additional settings or click Finish.

Click Run As on the Servlets tab, select the security role and describe the role.

Specify a RunAs identity for each servlet and JSP file that is used by your Web application.

© a0 0o

~® oo

2 Securing WebSphere applications

8. Configure the login mechanism for the Web module. This configured login mechanism applies to all the
servlets, JavaServer Pages (JSP) files and HTML resources in the Web module.

a. Click the Pages tab of a Web deployment descriptor editor and click Login. Select the required
authentication method. Available method values include: Unspecified, Basic, Digest, Form, and
Client-Cert.

Specify a realm name.

If you select the Form authentication method, select a login page and an error page Web address.
For example, you might use /1ogin.jsp or /error.jsp. The specified login and error pages are
present in the .war file.

d. Install the client certificate on the browser Web Client and place the client certificate in the server
trust keyring file, if ClientCert certificate is selected. The public certificate of the clients certificate
authority must be placed in the servers RACF® keyring. If the registry is a local OS registry, use
the RACDCERT MAP or the equivalent System Authorization Facility (SAF) command to enable an
MVS™ identity creation using the client certificate.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.
Results

After securing a Web application, the resulting Web archive (WAR) file contains security information in its
deployment descriptor. The Web module security information is stored in the web.xm1 file. When you work
in the Web deployment descriptor editor, you also can edit other deployment descriptors in the Web
project, including information on bindings and IBM® extensions in the ibm-web-bnd.xmi and
ibm-web-ext.xmi files.

What to do next

After using an assembly tool to secure a Web application, you can install the Web application using the
administrative console. During the Web application installation, complete the steps in [‘Deploying secured|
lapplications” on page 17]to finish securing the Web application.

Security constraints

Security constraints determine how Web content is to be protected.

These properties associate security constraints with one or more Web resource collections. A constraint

consists of a Web resource collection, an authorization constraint and a user data constraint.

* A Web resource collection is a set of resources (URL patterns) and HTTP methods on those resources.
All requests that contain a request path that matches the URL pattern described in the Web resource
collection are subject to the constraint. If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

» An authorization constraint is a set of roles that users must be granted in order to access the resources
described by the Web resource collection. If a user who requests access to a specified Uniform
Resource Identifier (URI) is not granted at least one of the roles specified in the authorization constraint,
the user is denied access to that resource.

Previously the http-methodType schema limited HTTP methods to DELETE, GET, HEAD, OPTIONS,
POST, PUT and TRACE. The http-methodType schema has changed. The http-methodType schema
has been changed as follows:

<xsd:simpleType name="http-methodType">

<xsd:annotation>

<xsd:documentation>

A HTTP method type as defined in HTTP 1.1 section 2.2.

</xsd:documentation>

</xsd:annotation>

Chapter 1. Web applications 3

<xsd:restriction base="xsd:token">
<xsd:pattern value="[\p{L}-[\p{Cc}\p{Z}1]+"/>
</xsd:restriction>

</xsd:simpleType>

This requires elements to be a token. Based upon the pattern value, tokens can contain any character
except for control characters and separators.

» A user data constraint indicates that the transport layer of the client or server communications process
must satisfy the requirement of either guaranteeing content integrity (preventing tampering in transit) or
guaranteeing confidentiality (preventing reading while in transit).

Security settings

Use the administrative console to modify the security settings for all applications.

You can enable security for applications by selecting the Enable application security option on the
Global security panel.

The default settings are used as a template or starting point for configuring individual applications. The
administrator should still explicitly configure security settings for each application.

The following security settings are specified during application assembly:

Security role settings
When using the |JAssembly Toolkit|at an application level (Enterprise Archive (EAR) file), security
roles are synchronized with the security roles defined for the embedded modules of the
application.

If a security role is manually added to the EAR file, it can be automatically removed when the file
is saved if an embedded module does not reference the role, or the role is in conflict with an
existing role. In this case, remove the manually added role, but then all roles with the same name
are removed.

The role is automatically added again when the file is saved if it is still referenced in an embedded
module file. If a duplicate role is added in an embedded module file, delete all roles with the same
name and manually read the correct role.

Security constraints
Security constraints declare how to protect Web content. These properties associate security
constraints with one or more Web resource collections. A constraint consists of a Web resource
collection, an authorization constraint, and a user data constraint.

Security constraints are set when configuring a Web application in the [Assembly Toolkit

Security role references

Web application developers or Enterprise JavaBeans (EJB) providers must use a role-name in the code
when using the available programmatic security Java™ Platform, Enterprise Edition (Java EE) application
programming interfaces (APIs) isUserinRole(String roleName) and isCallerinRole(String roleName).

The roles used in the deployed run-time environment might not be known until the Web application and
EJB components (for example, Web archive (WAR) files and ejb-jar.xml files) are assembled into an
enterprise archive (EAR) file. Therefore, the role names used in the Web application or EJB component
code are logical role names which the application assembler maps to the actual run-time environment
roles during application assembly. The security role references provide a level of indirection that insulate
Web application component and EJB developers from having to know the actual roles in the run-time
environment.

The definition of the logical roles and the mapping to the actual run-time environment roles are specified in
the security-role-ref element of both the Web application and the EJB JAR file deployment descriptors,

4 Securing WebSphere applications

web.xml and ejb-jar.xml respectively. Use the assembly tools to define the role names and map them to
the actual run-time roles in the environment with the role-link element.

The following code sample is an example of a security-role-ref from an EJB ejb-jar.xml deployment
descriptor.
. <enterprise-beans>
. <entity>
<ejb-name>AardvarkPayrol1</ejb-name>
<ejb-class>com.aardvark.payroll.Payrol1Bean</ejb-class>

<security-role-ref>
<description>

This role should be assigned to the employees of the payroll department. Members of this role have
access to the payroll record of everyone. The role has been linked to the payroll-department role. This role
should be assigned to the employees of the payroll department. Members of this role have access to all
payroll records. The role has been linked to the payroll-department role.

</description> <role-name>payroll</role-name>

<role-link>payroll-department</role-1link>

</security-role-ref>

</entity>
</enterprise-beans>

In the previous example, the string payrol1, which appears in the <role-name> element, is what the EJB
provider uses as the argument to the isCallerinRole() API. The <role-link> element is what ties the logical
role to the actual role used in the run-time environment.

Note that for enterprise beans, the security-role-ref element must appear in the deployment descriptor
even if the logical role name is the same as the actual role name in the environment.

The rules Web application components are slightly different. If no security-role-ref element matching a
security-role element is declared, the container must default to checking the role-name element argument
against the list of security-role elements for the Web application. The isUserlnRole method references the
list to determine whether the caller is mapped to a security role. The developer must be aware that the
use of this default mechanism can limit the flexibility in changing role names in the application without
having to recompile the servlet making the call.

See the EJB Version 2.0 and Servlet Version 2.3 specification in the Security: Resources for Learning
article for complete details on this specification.

Securing applications during assembly and deployment

Several assembly tools exist that are graphical user interfaces for assembling enterprise or Java Platform,
Enterprise Edition (Java EE) applications. You can use these tools to assemble an application and secure
Enterprise JavaBeans (EJB) and Web modules in that application.

About this task

An EJB module consists of one or more beans. You can enforce security at the EJB method level. A Web
module consists of one or more Web resources: an HTML page, a JavaServer Pages (JSP) file, or a
servlet. You can also enforce security for each Web resource.

Note: For information about the tools that WebSphere® Application Server supports, see [Assembly tools.

To secure an EJB module, a Java archive (JAR) file, a Web module, a Web archive (WAR) file, or an
application enterprise archive (EAR) file, you can use an assembly tool. You can create an application, an

Chapter 1. Web applicatons 5

EJB module, or a Web module and secure them using an assembly tool or development tools such as the
IBM Rational® Application Developer.

1. Secure EJB applications using an assembly tool. For more information, see[“Securing enterprise bean|
fapplications” on page 23.|

2. Secure Web applications using an assembly tool. For more information, see|“‘Securing Web
lapplications using an assembly tool” on page 1)

3. Add users and groups-to-roles while assembling a secured application using an assembly tool. For
more information, see |“Adding users and groups to roles using an assembly tool” on page 8.|

4, Map users to RunAs roles using an assembly tool. For more information, see |“Mapping users to|
[RunAs roles using an assembly tool” on page 13)

5. |Adding the was.policy file to applications]

6. Assemble the application components that you secured using an assembly tool. For more information,
see[Assembling applications]
Results

After securing an application, the resulting .ear file contains security information in its deployment
descriptor. The EJB module security information is stored in the ejb-jar.xml file and the Web module
security information is stored in the web.xm1 file. The application.xml file of the application EAR file
contains all the roles that are used in the application. The user and group-to-roles mapping is stored in the
ibm-application-bnd.xmi file of the application EAR file.

This task is required to secure EJB modules and Web modules in an application. This task is also required
for applications to run properly when Java 2 security is enabled. If the was.policy file is not created and it
does not contain required permissions, the application might not be able to access system resources.

What to do next

After securing an application, you can install an application using the administrative console. When you
install a secured application, refer to ['Deploying secured applications” on page 17|to complete this task.

Assigning users and groups to roles

This topic describes how to assign users and groups to roles if you are using WebSphere Application
Server authorization for Java Platform, Enterprise Edition (Java EE) roles.

Before you begin
Note: If you are using System Authorization Facility (SAF) authorization for Java2 EE (J2EE) roles, this

task is done independently of the application deployment process. Refer to [System Authorization|
[Facility for role-based authorization| for more information.

Before you perform this task:

» Secure the Web applications and Enterprise JavaBeans (EJB) applications where new roles are created
and assigned to Web and enterprise bean resources.

» Create all the roles in your application.

» Verify that you have properly configured the user registry that contains the users that you want to
assign. It is preferable to have security turned on with the user registry of your choice before beginning
this process.

* Make sure that if you change anything in the security configuration you save the configuration and
restart the server before the changes become effective. For example, enable security or change the
user registry.

6 Securing WebSphere applications

About this task

These steps are common for both installing an application and modifying an existing application. If the
application contains roles, you see the Security role to user/group mapping link during application
installation and also during application management, as a link in the Additional properties section.

1.

10.

Access the administrative console.
Type http://Tocalhost:port_number/ibm/console in a Web browser.

Click Applications > Application Types > WebSphere enterprise applications >
application_name .

Under Detail properties, click Security role to user/group mapping. A list of all the roles that belong
to this application is displayed. If the roles already have users or All Authentication or Everyone
special subjects assigned, they display here.

To assign the special subjects, select either the Everyone or the All Authenticated in Application’s
Realm option for the appropriate roles.

To assign users or groups, select the role. You can select multiple roles at the same time, if the same
users or groups are assigned to all the roles.

Click Look up users or Look up groups.

Get the appropriate users and groups from the user registry by completing the Limit and the Search
string fields and by clicking Search. The Limit field limits the number of users that are obtained and
displayed from the user registry. The pattern is a searchable pattern matching one or more users and
groups. For example, user= lists users like user1, user2. A pattern of asterisk (*) indicates all users or
groups.

Use the limit and the search strings cautiously so as not to overwhelm the user registry. When you
use large user registries such as Lightweight Directory Access Protocol (LDAP) where information on
thousands of users and groups resides, a search for a large number of users or groups can make the
system slow and can make it fail. When more entries exist than requests for entries, a message
displays on top of the panel. You can refine your search until you have the required list.

If the search string you are using has no matches, a NULL error message is displayed. This message
is informational and does not necessarily indicate an error, as it is valid to have no entries matching
your selected criteria.

Select the users and groups to include as members of these roles from the Available field and click
>> to add them to the roles.

To remove existing users and groups, select them from the Selected field and click <<. When
removing existing users and groups from roles, use caution if those same roles are used as RunAs
roles.

For example, if the user1 user is assigned to the role1 RunAs role and you try to remove the user1
user from the role1 role, the administrative console validation does not delete the user. A user can
only be part of a RunAs role if the user is already in a role either directly or indirectly through a
group. In this case, the user1 user is in the role1 role. For more information on the validation checks
that are performed between RunAs role mapping and user and group mapping to roles, see
[‘Assigning users to RunAs roles” on page 11|

Click OK. If any validation problems exist between the role assignments and the RunAs role
assignments, the changes are not committed and an error message that indicates the problem
displays at the top of the panel. If a problem exists, make sure that the user in the RunAs role is also
a member of the regular role. If the regular role contains a group that contains the user in the RunAs
role, make sure that the group is assigned to the role using the administrative console. Follow steps 4
and 5. Avoid using any process where the complete name of the group, host nhame, group name, or
distinguished name (DN) is not used.

Chapter 1. Web applications 7

Results

The user and group information is added to the binding file in the application. This information is used later
for authorization purposes.

What to do next

This task is required to assign users and groups to roles, which enables the correct users and groups to
access a secured application. If you are installing an application, complete your installation. After the
application is installed and running you can access your resources according to the user and group
mapping that you did in this task. If you manage applications and modify the users and groups to role
mapping, make sure you save, stop, and restart the application so that the changes become effective. Try
accessing the Java EE resources in the application to verify that the changes are effective.

Adding users and groups to roles using an assembly tool
After creating new roles and assigning them to enterprise bean and Web resources, use this task to add
users and groups to roles with an assembly tool.

Before you begin

Before you perform this task, you already completed the steps in|[‘Securing Web applications using an|
lassembly tool” on page 1| and [‘Securing enterprise bean applications” on page 23 where you created new
roles and assigned those roles to enterprise bean and Web resources. Complete these steps during
application installation. The environment user registry under which the application is running is not known
until deployment.

About this task

If you already know the environment in which the application is running and the user registry that is used,
you can use an assembly tool to assign users and groups to roles. Using the administrative console to
assign users and groups to roles is recommended.

The following information applies to authorization using WebSphere Application Server bindings. If you
create WebSphere Application Server bindings, but specify System Authorization Facility (SAF)
authorization, the WebSphere Application Server bindings are ignored. If SAF authorization is to be used,
you must create a SAF EJBROLE profile for each Java Platform, Enterprise Edition (Java EE) role in your
application, and permit users and groups to that role. Refer to [System Authorization Facility for role-based|

authorization| for reference.

Note: This procedure might not match the steps that are required when using your jassembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the
tool and version that you are using.

To add users and groups to roles using an assembly tool, follow these steps:

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project, or
Enterprise Archive (EAR) file, and click Open With > Deployment Descriptor Editor. An application
deployment descriptor editor opens on the EAR file. To access information about the editor, press F1
and click Application deployment descriptor editor.

2. Click the Security tab and, under the main panel, click Add.
In the Add Security Role wizard, name and describe the security role. Click Finish.

4. Under WebSphere Bindings, select the user or group extension properties for the security role.
Available values include: Everyone, All authenticated users, and Users/Groups.

5. If you selected Users/Groups, click Add beside the Users or Groups panes. In the wizard that opens,
specify a user or group name and click Finish. Repeat this step until you added all the users and
groups to which the security role applies.

w

8 Securing WebSphere applications

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.
Results

The ibm-application-bnd.xmi or ibm-application-bnd.xml file in the application contains the users and
groups-to-roles mapping table, which is the authorization table. For Java EE Version 5 applications, the

ibm-application-bnd.xml file contains the authorization table.

What to do next

After securing an application, finstall the application| using the administrative console.

Security role to user or group mapping
Use this page to specify the users and groups that are mapped to the security roles that are used with the
enterprise application.

To view this administrative console page, click Applications > Application types > WebSphere
enterprise applications >application_name. Under Detail Properties, click Security role to user/group

mapping.

Button Resulting action
Map Users Lists the users that are mapped to the specified role within this application.
Map Groups Lists the groups that are mapped to this specified role within this application.

Map Special Subjects | This choice appears if multiple realms are being used. It enables you to map any of the

following Special Subjects to a selected role:

= All authenticated in application’s realm: All authenticated users that are in the
applications’s realm, which specifies whether to map all of the authenticated users to a
specified role. When you map all authenticated users to a specified role, all of the valid
users in the current registry who have been authenticated can access resources that
are protected by this role.

This selection also applies to all authenticated users regardless of the realm.

« Everyone: map everyone to the selected role. When you map everyone to a role,
anyone can access the resources that are protected by this role and, essentially, there
is no security.

* None: Do not map anyone to the selected role

Note:
* For all users in the trusted realms.

If trusted realms are configured, a drop-down list of realms to search is displayed.
Users from the non-default realm are displayed as user@realm.

» If the secured realm cannot be reached, the left list is replaced with 3 text fields (that
is, name, realm, and uid). You can add the user when the secured realm is not
available.

It is not possible to map two subjects to the same role in this release of WebSphere
Application Server.

Role:

Lists the specific capabilities to a user. Role privileges give users and groups permission to run as
specified.

For example, you might map the user Joe to the administrator role, which enables user Joe to perform all
of the tasks associated with the administrator role.

The authorization policy is only enforced when global security is enabled.

Chapter 1. Web applications 9

Mapped users:

Lists the users that are mapped to the specified role within this application.

Special subjects:

Lists which special subjects are mapped to the security role when an application uses multiple realms.
Mapped groups:

Lists the groups that are mapped to this specified role within this application.

Look up users
Use this page to select and to map users, groups and special subjects for security roles.

To view this administrative console page, complete the following steps:

1. Click Applications > Application types > WebSphere enterprise applications > application_name.
2. Under Detail Properties, click Security role to user/group mapping.

3. Select the role and click either Map users..., Map groups... or Map Special Subjects.

Note: Once you click OK after making any changes, you must also click OK on the previous panel for the
changes to be accepted.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes
those users or groups to access applications defined by the role. Users and groups are associated with
roles defined in an application when the application is installed or configured. Use the Search pattern field
to display users in the Available list. Click >> to add users from the Available list to the Selected list.

Map users...:

Lists the users that are mapped to the specified role within this application.
Map groups...:

Lists the groups that are mapped to this specified role within this application.
Map Special Subjects:

This choice appears if multiple realms are being used. It enables you to map any of the following to
selected roles:

» All authenticated users that are in the applications’s realm, which specifies whether to map all of the
authenticated users to a specified role. When you map all authenticated users to a specified role, all of
the valid users in the current registry who have been authenticated can access resources that are
protected by this role.

» All authenticated users regardless of the realm.

» Everyone, which specifies whether to map everyone to a specified role. When you map everyone to a
role, anyone can access the resources that are protected by this role and, essentially, there is no
security.

e All users in the trusted realms.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users from the
non-default realm are displayed as user@realm.

Note: If the secured realm cannot be reached, the left list is replaced with 3 text fields (that is, name,
realm, and uid). You can add the user when the secured realm is not available.

10 Securing WebSphere applications

It is not possible to map two subjects to the same role in this release of WebSphere Application Server.
Limit:

Specifies the maximum number of users or groups that can be returned when assigning users/groups to
roles.

A value of 0 implies a return of all users or groups that match the pattern. You can either increase the limit
or refine the search pattern to get all the entries.

Data type Integer
Units User name
Default 20

Range 0 or more

Search string:
Indicates the search pattern used to search for the entries in a user registry.

The Search string field contains the search pattern that is used to search for the user or group entries. For
example, bob* will search all users or groups starting with bob. A limit of zero (0) retrieves all of the entries
that match the pattern. Use a limit of zero (0) only when a small number users or groups match that
pattern in the user registry. If the user registry contains more entries that match the pattern than requested
for, a message shows in the administrative console to indicate that there are more entries in the user

registry.

Data type String

Units Number of users
Default 20

Range A-Z with *

Assigning users to RunAs roles
This article explains how to assign users to the RunAs roles for your application.

Before you begin

Complete the following tasks:

» Secure the Web applications and the EJB applications where new RunAs roles are created and
assigned to Web and EJB resources.

» Create all the RunAs roles in your application. The user in the RunAs role can only be entered if that
user or a group to which that user belongs is already part of the regular role.

» Assign users and groups to security roles. Refer to r‘Assigning users and groups to roles” on page 6|for
more information.

» Verify that the user registry requirements are met. These requirements are the same as those discussed
in ['Assigning users and groups to roles” on page 6. For example, if the role1 role is a role that is also
used as a RunAs role, then the user1 user can be added to the RunAs role. The administrative console
checks this logic when Apply or OK is clicked. If the check fails, the change is not made and an error
message is displayed at the top of the panel.

When a user ID and password is assigned to a RunAs role, validation occurs using the current active user
registry that is configured. By default, the local operating system registry is set as the active user registry.
Therefore, when an application is installed and security is disabled on the server, the local operating
system registry is used to validate the user ID and password that is assigned to the RunAs Role. If the
intended registry for the application is not local operative system, the validation fails. Therefore, map

Chapter 1. Web applications 11

RunAs roles to users when the security is enabled on the server. However, if the active user registry and
the intended registry after enabling security are the same, you can assign the user to a RunAs role when
security is disabled.

If the Everyone or All Authenticated special subjects are assigned to a role, validation does not occur for
that role.

Validation is done every time you click Apply in this panel or when you click OK in the Security role to
user/group mapping panel. The check verifies that all the users in all the RunAs roles do exist directly or
indirectly through a group in those roles in the Security role to user/group mappings panel. If a role is
assigned both a user and a group to which that user belongs, you can delete either the user or the group
from the Security role to user/group mapping panel.

If the RunAs role user belongs to a group and if that group is assigned to that role, make sure that the
assignment of this group to the role is done through the administrative console and not through an
assembly tool or other method. When using the administrative console, the full name of the group is used
(for example, hostname\groupName in Windows® systems and distinguished names (DN) in Lightweight
Directory Access Protocol (LDAP)). During the check, all the groups to which the RunAs role user belongs
are obtained from the user registry. Because the list of groups that are obtained from the user registry are
the full names of the groups, the check works correctly. If the short name of a group is entered using an
assembly tool, for example groupl instead of CN=groupl, o=myCompany.com, this check fails.

About this task

These steps are common to both installing an application and modifying an existing application. If the

application contains RunAs roles, you see the User RunAs roles link during application installation and

also during managing applications as a link in the Additional properties section.

1. Click Applications > Enterprise Applications > application_name.

2. Under Detail Properties, click Security role to user/group mapping. A list of all the RunAs roles that
belong to this application display. If the roles already have users assigned, they display here.

3. To assign a user, select the role. You can select multiple roles at the same time if the same user is
assigned to all the roles.

4. Enter the user's name and password in the designated fields. The user name entered can be either
the short name, which is preferred, or the full name, as seen when getting users and groups from the
user registry.

5. Click Apply. The user is authenticated using the active user registry. If authentication is successful, a
check is made to verify that this user or group is mapped to the role in the Map security roles to users
and groups panel. If authentication fails, verify that the user and password are correct and that the
active registry configuration is correct.

6. To remove a user from a RunAs role, select the roles and click Remove.

Results

The RunAs role user is added to the binding file in the application. This file is used for delegation
purposes when accessing Java EE resources. This step is required to assign users to RunAs roles so that
during delegation the appropriate user is used to invoke the EJB methods.

What to do next

If you are installing the application, complete installation. After the application is installed and running, you
can access your resources according to the RunAS role mapping. Save the configuration.

If you manage applications and modify User RunAs roles, make sure you save, stop, and restart the
application so that the changes become effective. Try accessing your Java Platform, Enterprise Edition

12 Securing WebSphere applications

(Java EE) resources to verify that the new changes are in effect.
Mapping users to RunAs roles using an assembly tool:

RunAs roles are used for delegation. A servlet or enterprise bean component uses the RunAs role to
invoke another enterprise bean by impersonating that role.

Before you begin

Before you perform this task:

» Secure the Web application and enterprise bean applications, including creating and assigning new
roles to enterprise bean and Web resources. For more information, see [‘Securing Web applications|
|using an assembly tool” on page 1|and |“Securing enterprise bean applications” on page 23/

+ Assign users and groups to roles. For more information, see [‘Adding users and groups to roles using an|
|assembly tool” on page 8.| Complete this step during the installation of the application. The environment
or user registry under which the application is going to run is not known until deployment. If you already
know the environment in which the application is going to run and you know the user registry, then you
can use an assembly tool to assign users to RunAs roles.

About this task

Note: This procedure might not match the steps that are required when using your jassembly tool|, or
match the version of the assembly tool that you are using. You should follow the instructions for the
tool and version that you are using.

To define RunAs roles when a servlet or an enterprise bean in an application is configured with RunAs
settings, perform these steps:

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project or
Enterprise Archive (EAR) file and click Open With > Deployment Descriptor Editor. An application
deployment descriptor editor opens on the EAR file. To access information about the editor, press F1
and click Application deployment descriptor editor.

On the Security tab, under Security Role Run As Bindings, click Add.

Click Add under RunAs Bindings.

In the Security Role wizard, select one or more roles and click Finish.

Repeat steps 3 through 5 for all the RunAs roles in the application.

Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

2L A

Results
The ibm-application-bnd.xmi file in the application contains the user to RunAs role mapping table.

What to do next

After securing an application, you can install the application| using the administrative console. You can
change the RunAs role mappings of an installed application. For more information, see
collection” on page 15.|

Ensure all unprotected 1.x methods have the correct level of protection:

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 1.x methods have the
correct level of protection before you map users to roles.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Application > New application > New Enterprise Application . The

Chapter 1. Web applications 13

panel is displayed as Ensure all unprotected 1.x methods have the correct level of protection in the
application deployment steps. On this administrative console panel, you can specify whether users can
access specific EJB modules.

EJB module:

Specifies the EJB module name.

URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Deny all access:

Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Default: Cleared

Ensure all unprotected 2.x methods have the correct level of protection:

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 2.x methods have the
correct level of protection before you map users to roles.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Applications > New application application_name. The panel is
displayed as Ensure all unprotected 2.x methods have the correct level of protection in the application
deployment steps. On this administrative console panel, you can specify whether users can access
specific EJB modules.

To use this administrative console page, select the Uncheck, Exclude, or Role option, the check box next
to the EJB module, and click Apply. If you select Role option, select the appropriate role for the EJB
module before you click Apply.

Uncheck:

Select this option if you do not want the application server to verify the access permissions for the EJB
module. Everyone can access the EJB module.

Default: Selected

Exclude:

Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Default: Deselected

Role:
Specifies the EJB level of protection based on the security role.

The roles listed in this menu are obtained from the application scope. If the selected role is not in the
module, then it is added to the modules or Java archive (JAR) files.

14 Securing WebSphere applications

Default: Deselected

EJB module:

Specifies the name of the module.

If a module name appears in this list, then the module contains unprotected EJB methods.
URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Protection type:
Specifies the level of protection that is assigned to a particular module name.

After you select the Uncheck, Exclude, or Role option and click Apply, the selected protection option is
displayed in this column.

Correct use of the system identity:

Use this page to manage the system identity properties for the Enterprise JavaBeans (EJB) method in
your application.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Application > New application > New Enterprise Application . The
panel is displayed as Correct use of System Identity in the application deployment steps.

To use this panel, complete the following steps:

1. Select the check box next to the EJB method.

2. Select a role that is defined for this enterprise bean.

3. Specify a user name and password for the RunAs role. The user name must be defined in your user
registry.

4. Click Apply.
The specified user will be assigned to the specified RunAs role for the EJB method that you selected.

Role:

Specifies the RunAs role that is used for this EJB method.

Username:

Specifies the user name that is assigned to the RunAs role for this EJB method.

The user name is used in conjunction with the RunAs role that you select for the Role.
Password:

Specifies the password that is associated with the user name in the user registry.

User RunAs collection:

Chapter 1. Web applications 15

Use this page to map a specified user identity and password to a RunAs role. This panel enables you to
specify application-specific privileges for individual users to run specific tasks using another user identity.

To view this administrative console page, complete the following steps:
1. Click Applications > Enterprise applications > application_name.
2. Under Detail properties, click Security role to user/group mapping.

The enterprise beans that you install contain predefined RunAs roles. RunAs roles are used by enterprise
beans that need to run as a particular role for recognition while interacting with another enterprise bean.

Username:
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Data type: String

Password:

Specifies the password for the RunAs user.

Data type: String

Role:
Maps specific capabilities to a user.

The authorization policy is only enforced when global security is enabled.

Updating and redeploying secured applications
This section addresses the way to update existing applications.

Before you begin

Before you perform this task, secure Web applications, secure Enterprise JavaBeans (EJB) applications,
and deploy them in WebSphere Application Server.

1. Use the administrative console to modify the existing users and groups mapping to roles. For
information on the required steps, see |“Assigning users and groups to roles” on page 6.|

2. Use the administrative console to modify the users for the RunAs roles. For information on the required
steps, see |“Assigning users to RunAs roles” on page 11l

Complete and save the changes.
Stop and restart the application for the changes to become effective.
Use an assembly tool. For more information, see|Assembling applications}

Use an assembly tool to modify roles, method permissions, auth-constraints, data-constraints and so
on. For more information, see|Assembling applications}

7. Save the enterprise archive (EAR) file, uninstall the old application, deploy the modified application and
start the application to make the changes effective.

ook~ w

16 Securing WebSphere applications

Results

The applications are modified and redeployed. This step is required to modify existing secured
applications.

What to do next

If information about roles is modified, make sure that you update the user and group information using the
administrative console. After the secured applications are modified and either restarted or redeployed,
verify that the changes are effective by accessing the resources in the application.

Deploying secured applications

Deploying applications that have security constraints (secured applications) is not much different than
deploying applications that do not contain any security constraints. The only difference is that you might
need to assign users and groups to roles for a secured application. The secured application requires that
you have the correct active user registry.

Before you begin

Before you perform this task, verify that you already designed, developed, and assembled an application
with all the relevant security configurations. For more information on these tasks refer to |Deve|oping|
applications that use programmatic security| and [“Securing applications during assembly and deployment’]
on page 5.In this context, deploying and installing an application are considered the same task.

To deploy a newly secured application click Applications > Install New Application and follow the
prompts to complete the installation steps. One of the required steps to deploy secured applications is to
assign users and groups to roles that are defined in the application.

» If you are installing a secured application, roles will be defined in the application.
 |If delegation is required in the application, you will be defining RunAs roles also.

During the installation of a new application, the role definition is completed as part of the step that maps

security roles to users and groups. If this assignment has already been completed by using an assembly
tool, you can still confirm the mapping by going through this installation step. You can add new users and
groups and modify existing information during this step.

If the application supports delegation, a RunAs role will already be defined in the application. If the
delegation policy is set to Specified Identity during assembly, the intermediary invokes a method by
using an identity setup during deployment. Use the RunAs role to specify the identity under which the
downstream invocations are made. For example, if the RunAs role is assigned user bob and the client
alice is invoking a servlet, with delegation set that calls the enterprise beans, the method on the
enterprise beans is invoked with bob as the identity.

As part of the new application installation and deployment process, one of the steps is to map or modify
users to the RunAs roles. Use this step to assign new users or modify existing users to RunAs roles when
the delegation policy is set to Specified Identity.

About this task

Note that the steps are common whether you are installing an application or modifying an existing
application.

To install and deploy the application, complete the following steps.

1. Click Applications > Install New Application. Complete the required steps until you see the step for
mapping security roles to users and groups.

Chapter 1. Web applications 17

2. If RunAs roles exist in the application, assign users to RunAs roles. At this step during the installation,
under Additional Properties, click Map RunAs roles to users. For more information, see
lusers to RunAs roles” on page 11

3. Optional: Click Correct use of System Identity to specify RunAs roles, if needed. Complete this
action if the application has delegation set to use system identity, which is applicable to enterprise
beans only. System identity uses the WebSphere Application Server security server ID to invoke
downstream methods. Using system identity is not recommended as this ID has more privileges than
other identities in accessing WebSphere Application Server internal methods. This task is provided to
make sure that the deployer is aware that the methods listed in the panel have system identity set up
for delegation and to correct them if necessary. When the internalServerld feature is used, runAs with
system identity is not supported; you must specify RunAs roles here.

4. Complete the remaining non-security related steps to finish installing and deploying the application.

What to do next
After a secured application is deployed, verify that you can access the resources in the application with the

correct credentials. For example, if your application has a protected Web module, make sure only the
users that you assigned to the roles can use the application.

18 Securing WebSphere applications

Chapter 2. SIP applications

Securing SIP applications

You can apply digest authentication and Trust Association Interceptor (TAI) for a SIP application by
applying Lightweight Directory Access Protocol (LDAP) security to the application.

Before you begin

Before you can apply security, you must first deploy an application that has been developed to support
security (with the web.xml file configured for security) and roles. The following software must also be
installed:

1. Install a supported LDAP server. For a list of supported LDAP servers, see the IBM Web site for
WebSphere Application Server supported hardware, software, and APIs.

2. Set up and activate Lightweight Third Party Authentication. For more information, see thgConfiguring
[the Lightweight Third Party Authentication mechanism| topic.

About this task

To apply LDAP security to a SIP application, click Applications » Enterprise Applications »
applicationName and complete the following steps:

1. Click Detail Properties » Security role to user/group mapping.
2. Check All Authenticated.

3. Save all changes.

4. Restart the server.

Configuring security for the SIP container
This section provides instructions specific to security for the SIP container.

Before you begin

Before you can configure security for your SIP container, you will need to:

1. Set up and activate Lightweight Third Party Authentication. [For more information, see the Lightweight|
[Third Party Authentication| section.

2. Install a supported LDAP server.

You may also need to:

« Adjust key group settings. Refer to [Lightweight Third Party Authentication key sets and key set groups|
for LTPA key information.

« Establish and configure Trust Association Interceptor (TAI) settings. Refer to[Trust association|
[interceptor settings|

About this task

You must know the name of the key set group and the management scope where the key set group is
defined in order to activate and secure LTPA with keys. Refer to|Activating Lightweight Third Party|
[Authentication key versiong| for the setup and activation procedures.

To configure security based on the Lightweight Directory Access Protocol (LDAP), you can configure digest
authentication for your supported LDAP server.

* To configure digest authentication and TAl on WebSphere Application Server for Tivoli, select
|“Configuring digest authentication and TAI for SIP” on page 20.|

© Copyright IBM Corp. 2008 19

csec_sslltpakeysetgroup.dita
usec_tainterceptordetail.dita
usec_tainterceptordetail.dita
tsec_sslltpakeyversions.dita
tsec_sslltpakeyversions.dita

» To configure digest authentication on WebSphere Application Server for Oracle Internet Directory, select
[‘Configuring digest authentication for Oracle Internet Directory” on page 21.|

To define an LDAP connection between WebSphere Application Server and LDAP, use the security wizard.
It can also be defined by selecting it from available realms and defining the proper connection properties
to connect LDAP.

To set up a TAI, you must specify the trust information for any reverse security proxy servers. See
|association interceptor settingsl to configure TAI settings.

Configuring digest authentication and TAIl for SIP
You can configure digest authentication and Trust Association Interceptor (TAl) for the Session Initiation
Protocol (SIP).

Before you begin

Before you can configure digest authentication and TAIl, you must either install a supported LDAP server,
or configure digest TAI to work without LDAP.

To configure digest TAI to work without LDAP, complete these steps:
1. Create a class that implements the interface: com.ibm.ws.sip.security.digest.DigestPasswordServer.

2. In the administrative console, click Global security > Digest authentication > Custom Properties >
New, and enter DigestPasswordServerClass in the Name field, and the name of the class that you
created in the Value field.

3. Ensure that all users that implement the impl class are declared in the user registry configured for
WebSphere Application Server security.

LDAP servers automatically provide password support. Unless you enable the LDAP server to use hashed
values, the LDAP server stores user passwords and then the request processing component uses these
passwords to validate a request. Because this method of authentication exposes user passwords to
potential internet theft, you should enable the use of hashed credentials to authenticate a request.

When you enable the use of hashed credentials, the LDAP server stores a hash value for the user,
password and realm information. The SIP container then requests this hash value from the LDAP server
instead of asking for a user password. This methodology protects the passwords even if the hash data is
compromised through internet theft. However, this methodology has the following limitations:

* The LDAP attribute must store a byte value or a string value. Other attribute types are not supported.

» All of your applications must share the same realm, or you must define a different attribute for each
realm.

* The hash function might be different than MD5. In this situation, the SIP container sends a algorithm
that is different from the calculated value for the attribute. When this situation occurs, user
authentication might fail even if the user provided the proper credentials.

To enable the LDAP server to use hashed credentials, you must define the following two custom

properties:

* hashedCredentials=value, where value is the name of LDAP attribute which stores the hash value for
user, password, realm

« hashedCredentialsRealms=value, where value is the realm, on which the hashed value is calculated.
About this task

The SIP container supports digest authentication. When this type of authentication is used, the client does
not send a clear text password to the server. Instead, SIP authenticates each request using user data from

20 Securing WebSphere applications

LDAP. Typically, a component that uses LDAP for authentication, verifies that the response that the client
provides equals the response that the component calculates using LDAP data, the component authorizes
the request. However,

Howto define: One should d

Complete the following procedure to configure digest authentication and TAI for the SIP container.

1.

In the administrative console, click Security > Global security > Authentication mechanisms to
verify that Lightweight Third Party Authentication (LTPA) is configured for use on your server.

In the Configuration tab on the Authentication mechanisms and expiration page you should see
the Password field already filled in.

Click Security » Global security.
a. Under Authentication, expand Web security and click Trust association.

b. On the Configuration tab, in the General properties section, verify that the Enable trust
association box is selected, and then click Apply.

On the Interceptors page of the administration console look for
com.ibm.ws.sip.security.digest.DigestTAI in the Interceptor class name list.

a. If this class name in not present, click New to open the Configuration tab and enter
com.ibm.ws.sip.security.digest.DigestTAI in the Interceptor class name field, and then click

Apply.
b. If this interceptor class is present, click com.ibm.ws.sip.security.digest.DigestTAl > Custom
Properties to set up a realm in digest authentication.

c. Click OK.

Click Security > Global security > Authentication mechanisms and expiration, and then click the
Configuration tab.

a. In the Key generation section, click Generate keys. You do not have to import or export the key.

b. In the Cross-cell Single Sign-on section, specify values in the Password fields and the Internal
server ID field.

c. Click OK.
Click Security » Global security.

a. If the box Use Java 2 security to restrict application access to local resources is selected,
click to deselect it.

b. In the User account repository section of the page, select your LDAP registry from the Available
realm definitions list.

c. Click Set as current, and then clickApply.

Save all changes.

Restart the server.

Verify that the following message appears in the SystemOut.log file after the server restarts:
SECJO121I: Trust Association Init class com.ibm.ws.sip.security.digest.DigestTAI loaded successfully

If this message does not appear in the log file, digest authentication is not active

Configuring digest authentication for Oracle Internet Directory
You can configure digest authentication for Oracle Internet Directory, an implementation of the Lightweight
Directory Access Protocol (LDAP) that uses the Oracle database as a repository for directory entries.

Before you begin

To configure digest authentication for Oracle Internet Directory, you will need to:
+ Install Oracle Internet Directory version 9.0.2.

Chapter 2. SIP applications 21

« Set up and activate Lightweight Third Party Authentication. For more information, see the [Lightweight
[Third Party Authentication| section.

About this task

Complete the following procedure to configure digest authentication for Oracle Internet Directory on

WebSphere Application Server:

1. To set up digest authentication, verify that Lightweight Third Party Authentication (LTPA) is
configured for use on your server by selecting Security > Global security > Authentication
mechanisms. In the Configuration tab on the Authentication mechanisms and expiration page
you should see the Password field already filled in.

2. In the administrative console, click Security > Global security.

a. Under Authentication, expand Web security and click on Trust association.

b. On the Configuration tab, under General properties, make sure the Enable trust association
box is checked. Then click Apply.

3. On the Interceptors page of the administration console look for
com.ibm.ws.sip.security.digest.DigestTAI in the Interceptor class name list:

a. If this class name in not present, click New to open the Configuration tab and enter
com.ibm.ws.sip.security.digest.DigestTAI in the Interceptor class name field and click Apply.
Then proceed to the following steps.

b. If this interceptor class is present, you may set up custom properties for it. To do this, click
com.ibm.ws.sip.security.digest.DigestTAl » Custom Properties:
c. Click OK.

4. Navigate through Security > Global security > Authentication mechanisms and expiration to the
Configuration tab.

a. In the Key generation section, click Generate Keys. (No import or export of the key is necessary.)

b. Under the Cross-cell single sign-on section fill in the Password fields.
c. Fill in the Internal server ID field.
d. Click OK.

5. Click to Security » Global security.

a. If the box Use Java 2 security to restrict application access to local resources is checked,
then Java 2 security is enabled. Click the box if you want to disable Java 2 security.

b. In the User account repository section of the page, select your LDAP registry from the Available

realm definitions drop-down box.
c. Click Set as current and then clickApply.
6. Save all changes.
7. Restart the server.
8. Be sure you see the following message appear in the SystemOut.log after the server has restarted:

SECJO121I: Trust Association Init class
com.ibm.ws.sip.security.digest.DigestTAI Toaded successfully

If this message does not appear in the log, digest authentication has not been activated.

22 Securing WebSphere applications

Chapter 3. EJB applications

Securing enterprise bean applications

You can protect enterprise bean methods by assigning security roles to them. Before you assign security
roles, you need to know which Enterprise JavaBeans (EJB) methods need protecting and how to protect
them.

About this task

You can assign a set of EJB methods to a set of roles. When an EJB method is secured by associating a
set of roles, grant at least one role in that set so that you can access that method. To exclude a set of EJB
methods from access, mark the set excluded. You can give everyone access to a set of enterprise beans
methods by clearing those methods. You can run enterprise beans as a different identity, using the runAs
identity, before invoking other enterprise beans.

Note: This procedure might not match the steps that are required when using your jassembly tool, or
match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

To secure enterprise bean applications, follow these steps:

1. In an assembly tool, import your Enterprise JavaBean (EJB) Java Archive (JAR) file or an application
archive (EAR) file that contains one or more Web modules.

See the information about importing an EJB JAR file or importing an enterprise application EAR file in
the Rational Application Developer documentation.

2. In the Project Explorer, click EJB Projects directory and click the name of your application.

3. Right-click the deployment descriptor and click Open with > Deployment Descriptor Editor. If you
selected an enterprise bean .jar file, an EJB deployment descriptor editor opens. If you select an
application .ear file, an application deployment descriptor editor opens. To see online information
about the editor, press F1 and click the editor name.

4. Create security roles. You can create security roles at the application level or at the EJB module level.
If you create a security role at the EJB module level, the role displays in the application level. If a
security role is created at the application level, the role does not display in all the EJB modules. You
can copy and paste one or more EJB module security roles that you create at application level:

» Create a role at an EJB module level. In an EJB deployment descriptor editor, click the Assembly
tab. Under Security Roles, click Add. In the Add Security Role wizard, name and describe the
security role and click Finish.

» Create a role at the application level. In an application deployment descriptor editor, select the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role; then click Finish.

5. Create method permissions. Method permissions map one or more methods to a set of roles. An
enterprise bean has four types of methods: home methods, remote methods, LocalHome methods and
local methods. You can add permissions to enterprise beans on the method level. You cannot add a
method permission to an enterprise bean unless you already have one or more security roles defined.
For Version 2.0 EJB projects, an unselected option specifies that the selected methods from the
selected beans do not require authorization to run. To add a method permission to an enterprise bean:

a. On the Assembly tab of an EJB deployment descriptor editor, under Method Permissions, click
Add. The Add Method Permission wizard is opened.

Select a security role from the list of roles found and click Next.

Select one or more enterprise beans from the list of beans found. You can click Select All or
Deselect All to select or clear all of the enterprise beans in the list. Click Next.

© Copyright IBM Corp. 2008 23

d. Select the methods that you want to bind to your security role. The Method elements page lists all
the methods that are associated with the enterprise beans. You can click Apply to All or Deselect
All to quickly select or clear multiple methods. The selection affects the default (*) method for each
bean only. Creating a method permission for the exact method signature overrides the default (*)
method permission setting. The default (*) method represents all the methods within the bean.
There are default (*) methods for each interface as well. By not selecting all of the individual
methods in the tree, you can set other permissions on the remaining methods.

e. Click Finish.

After the method permission is created, you can see the new method permission in the tree. Expand
the tree to see the bean and the methods that are defined in the method permission.

6. Exclude user access to methods. Users cannot access excluded methods. Any method in the
enterprise beans that is not assigned to a role or that is not excluded, is cleared during the application
installation by the deployer.

a. On the Assembly tab of an EJB deployment descriptor editor, under Excludes List, click Add.
The Exclude List wizard is opened.

b. Select one or more enterprise beans from the list of beans found and click Next.
c. Select one or more of the method elements for the security identity and click Finish.

7. Map the security-role-ref and role-name to the role-link. When developing enterprise beans, you can
create the security-role-ref element. The security-role-ref element contains only the role-name field.
The role-name field determines if the caller is in a specified role(isCallerinRole()) role and contains the
name of the role that is referenced in the code. Because you create security roles during the assembly
stage, the developer uses a logical role name in the role-name field and provides enough information
in the Description field for the assembler to map the actual role (role-link). The security-role-ref
element is located at the EJB level. Enterprise beans can have zero or more security-role-ref elements.

a. On the Reference tab of an EJB deployment descriptor editor, under the list of references, click
Add. The Add Reference wizard is opened.

Select Security role reference and click Next.

Name the security role reference, select a security role to link the reference to, describe the
security role reference, and click Finish.

d. Map every role-name that is used during development to the role (role-link) using the previous
steps.

8. Specify the RunAs identity for enterprise bean components. The RunAs identity of the enterprise bean
is used to invoke the next enterprise beans in the chain of EJB invocations. When the next enterprise
beans are invoked, the RunAsldentity identity passes to the next enterprise beans for performing an
authorization check on the next enterprise bean. If the RunAs identity is not specified, the client identity
is propagated to the next enterprise bean. The RunAs identity can represent each of the enterprise
beans or can represent each method in the enterprise beans.

a. On the Access tab of an EJB deployment descriptor editor, next to the Security Identity (Bean
Level) field, click Add. The Add Security Identity wizard is opened.

b. Select the appropriate run as mode, describe the security identity, and click Next. Select the Use
identity of caller mode to instruct the security service to not make changes to the credential
settings for the principal. Select the Use identity assigned to specific role (below) mode to use
a principal that is assigned to the specified security role for running the bean methods. This
association is part of the application binding in which the role is associated with the user ID and
password of a user who is granted that role. If you select the Use identity assigned to specific
role (below) mode , you must specify a role name and role description.

c. Select one or more enterprise beans from the list of beans found and click Next. If Next is
unavailable, click Finish.

d. Optional: On the Method elements page, select one or more of the method elements for the
security identity and click Finish.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

24 securing WebSphere applications

Results

After securing an EJB application, the resulting . jar file contains security information in its deployment
descriptor. The security information of the EJB modules is stored in the ejb-jar.xml file.

What to do next

After securing an EJB application using an assembly tool, you can install the EJB application using the
administrative console. During the installation of a secured EJB application, follow the steps in the
|“Deploying secured applications” on page 17| article to complete the task of securing the EJB application.

Configuring security for message-driven beans that use listener ports

Use this task to configure resource security and security permissions for message-driven beans.
About this task

There are two special security considerations when using message-driven beans (MDBs). In other
respects, however, the security considerations for an MDB are identical to those of any other enterprise
bean. For instance, access to JDBC resources and Java EE Connector Architecture (JCA) resources (for
example CICS®, IMS™) is handled in the same way as for an entity or session bean.Access to other JMS
resources is also handled in the same way as for other enterprise beans.

However to understand this last point about JMS access correctly, it is important to understand that the
security considerations when configuring the MDB listener, which can be thought of as part of the
application server infrastructure, are unique to MDBs. These considerations which are specific to MDBs
are relevant when configuring authentication and authorization for the server to connect to a JMS provider
and a Destination so that a message can be selected and so that the MDB can pass this message to the
its onMessage() method.

The user’'s MDB onMessage() application code might not make additional JMS calls, however if the MDB
application code accesses additional JMS resources, it is this access which is handled identically to JMS
calls made by an entity or session EJB.

MBD security considerations:

The MDB listener’s security information is established when the MDB listener’s JMS Connection is
created. This is the typical JMS programming pattern. The properties used to configure the MDB listener’s
JMS Connection Factory are also used for specifying these security parameters. By configuring the
Connection Factory mapped to in the Listener Port definition, you can control the security parameters used
by the MDB listener. The JMS Connection used by a given MDB listener is obtained in the order of
precedence based on the configuration of the JMS Connection Factory used by the Message Listener
Service Listener Port onto which a given MDB is mapped. For example, if an MDB, mdb1 is mapped onto
Listener Port mylp1 and mylp1 uses ConnectionFactory qcf1, you would configure qcf1 to control the
configuration of mdb1’s MDB listener. The order of precedence is:

1. If a container-managed alias has been defined for this Connection Factory, the userid associated with
the container-managed alias is used in the Connection creation call, for example
createQueueConnection(userid,password)).

2. If a component-managed alias has been defined for this Connection Factory, the userid associated
with the component-managed alias is used.

3. If neither alias is specified and the Connection Factory is defined in Bindings mode (that is,
TransportType = “BINDINGS”), the server identity is used. The server identity translates more
specifically into the servant identity in the servants, and the controller |dent|ty in the controller. In the
case of listening-in controller, the controller identity is—+e A ant-identity. For

related information about listening-in controllers, see Message Llstener Serwce on z/OS.

Chapter 3. EJB applications 25

Note: The authentication aliases referred to here are those associated with the Connection Factory
defined by the Administrator. No application resource reference is associated with the MDB listener
and so no authentication alias has to be set at that level.

To set the container-managed alias, (if you elect that option), use the administrative console to complete
the following steps:

1. To display the listener port settings, click Servers » Server types > WebSphere application servers
> application_server > [Communications] Messaging » Message listener service » [Additional
properties] Listener ports - listener_port

2. To get the name of the JMS connection factory, look at the Connection factory JNDI name property.

3. Display the JMS connection factory properties. For example, to display the properties of a queue
connection factory, click Resources > JMS » Queue Connection Factoriesconnection_factory.

4. Set the “Container-managed authentication alias” property.
5. Click OK

Results

Considerations for invoking other EJBs:

Messages arriving at a listener port have no client credentials associated with them. The messages are
anonymous. To call secure enterprise beans from a message-driven bean, the message-driven bean must

be configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the
RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see [‘Securing enterprise bean applications” on page 23/ For
more information about configuring security for your application, see[‘Securing applications during
lassembly and deployment” on page 5.

Configuring security for EJB 2.1 message-driven beans

Use this task to configure resource security and security permissions for Enterprise JavaBeans (EJB)
Version 2.1 message-driven beans.

About this task

The association between connection factories, destinations, and message-driven beans is provided by
listener ports. A listener port allows a deployed message-driven bean associated with the port to retrieve
messages from the associated destination. You create listener ports by specifying their administrative
name, the connection factory JNDI name, and the destination name (other optional properties are also
configurable). Listener ports provide simplified administration of the associations between connection
factories, destinations and message-driven beans, and are managed by a listener manager. The listener
manager is provided by the message listener service to control and monitor the JMS listeners that are
monitoring JMS destinations on behalf of deployed message-driven beans. For more information about
listener ports, see |Message-driven beans - listener port components|

Messages handled by message-driven beans have no client credentials associated with them. The
messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be
configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the
RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see [EJB component security] For more information about
configuring security for your application, see |Assembling secured applications|

26 Securing WebSphere applications

Connections used by message-driven beans can benefit from the added security of using J2C
container-managed authentication. To enable the use of J2C container authentication aliases and mapping,
define an authentication alias on the J2C activation specification that the message-driven bean is
configured with. If defined, the message-driven bean uses the authentication alias for its JMSConnection
security credentials instead of any application-managed alias.

To set the authentication alias, you can use the administrative console to complete the following steps.
This task description assumes that you have already created an activation specification. If you want to
create a new activation specification, see the related tasks.

* For a message-driven bean listening on a JMS destination of the default messaging provider, set the
authentication alias on a JMS activation specification.

1.
2.
3.
4
5.

6.
7.

To display the JMS activation specification settings, click Resources » JMS » JMS providers
In the content pane, click the name of a default messaging provider.
In the content pane, under Additional Resources, click Activation specifications.

If you have already created a JMS activation specification, click its name in the list displayed.
Otherwise, click New to create a new JMS activation specification.

Set the Authentication alias property.
Click OK
Save your changes to the master configuration.

» For a message-driven bean listening on a destination (or endpoint) of another Java EE Connector
Architecture (JCA) provider, set the authentication alias on a J2C activation specification.

1.

To display the J2C activation specification settings, click Resources » Resource Adapters -
adapter_name ~» J2C Activation specifications » activation specification_name

Set the Authentication alias property.
Click OK
Save your changes to the master configuration.

Chapter 3. EJB applications 27

28 Securing WebSphere applications

Chapter 4. Client applications

Accessing secure resources using SSL and applet clients

By default, the applet client is configured to have security enabled. If you have administrative security
turned on at the server from which you are accessing resources, then you can use secure sockets layer
(SSL) when needed.

About this task

If you decide that the security requirements for the applet differ from other application client types, then
create a new version of the sas.client.props and ss1.client.props files.

1. Make a copy of the following files so that you can use them for an applet:
* <app client rootp\properties\sas.client.props
e <app client rootp\properties\ssl.client.props
2. Edit the copies of the sas.client.props and ss1.client.props files that you made with your changes.
3. Click Start > Control panel > select the product Java plug-in to open the Java control panel. To use
the files you created in step 1, modify the following values:

. -Dcom.1bm.CORBA.ConfigURL=f11e:45pp client rootF\properties\sas.c]1ent.props
° —Dcom.1bm.SSL.ConfigURL=f11e:4ggg client rootF\properties\ss].c]ient.props

For more information on the sas.client.props and ss1.client.props files and WebSphere Application
Server security, see the section of the information center.

Applet client security requirements

When code is loaded, it is assigned permissions based on the security policy in effect. This policy
specifies the permissions that are available for code from various locations. You can initialize this policy
from an external policy file.

By default, the client uses the dapp server rootp/properties/client.policy file. You must update this file
with the following permission:

SocketPermission grants permission to open a port and make a connection to a host machine, which is
your WebSphere Application Server. In the following example, yourserver.yourcompany.com is the
complete host name of your WebSphere Application Server:

permission java.util.PropertyPermission "*", "read";
permission java.net.SocketPermission "yourserver.yourcompany.com ,"connect";

© Copyright IBM Corp. 2008 29

30 Securing WebSphere applications

Chapter 5. Web services

Configuring a Web services client to access resources using a Web
proxy

You can configure a Web services client to access resources through a Web proxy server.
About this task

You can configure a Web services client to access resources by connecting to a Web proxy server either

with or without requiring authentication, just like other HTTP client applications. You can configure HTTP

transport properties for a Web service acting as a client to another Web service. The HTTP transport

values you configure are used at runtime. Configure the HTTP transport values in one of the following

ways:

» Configure the properties using the Java Virtual Machine (JVM) custom property panel in the
administrative console.

» Configure the properties using the wsadmin command-line tool.

+ Configure the properties with an assembly tool.

» Configure the properties programmatically using the application programming model

If you want to programmatically configure the properties using the Java APl XML-based Remote Procedure
Call (JAX-RPC) programming model or the Java API for XML Web Services (JAX-WS) programming
model, review the JAX-RPC or JAX-WS specifications.

For a complete list of the supported standards and specifications, see the Web services specifications and
API documentation.

For Java API XML-based Remote Procedure Call (JAX-RPC) Web services, the HTTP transport values
take the following precedence order with the programmatic method being the most significant:

1. values specified programmatically on the Call object

2. values defined in the deployment descriptors in each portQNameBinding attribute using an assembly
tool

3. values defined as JVM system properties

For Java API for XML Web Services (JAX-WS) Web services, the HTTP transport values you specify in
your policy set definitions take precedence over the values defined programmatically. Subsequently, the
HTTP transport values you define programmatically take precedence over the values defined as JVM
system properties. For JAX-WS applications, deployment descriptors are not supported. Use annotations
to specify deployment information.

1. Configure the HTTP or HTTPS proxyHost and proxyPort transport properties for the Web services in
one of the following ways:

» using the Java Virtual Machine (JVM) custom property panel in the administrative console
» using the wsadmin command-line tool

* using assembly tools

« programmatically using the application programming model

To access the Web proxy over HTTP:

* http.proxyHost

* http.proxyPort

To access the Web proxy over HTTPS:

* https.proxyHost

© Copyright IBM Corp. 2008 31

* https.proxyPort

2. If HTTP proxy authentication is required for your Web services client, then additionally configure the
HTTP or HTTPS proxyUser and proxyPassword transport properties using one of the methods specified
in the previous step.

To access the Web proxy over HTTP:
* http.proxyUser

* http.proxyPassword

To access the Web proxy over HTTPS:
e https.proxyUser

* https.proxyPassword

3. If you are specifying the HTTP or HTTPS properties programmatically, set the properties in the Stub or
Call instance to configure the HTTP proxy authentication.

a. You can set the HTTP or HTTPS properties programmatically using the following Web services
constants:
com.ibm.wsspi.webservices.Constants.HTTP_PROXYHOST PROPERTY
com.ibm.wsspi.webservices.Constants.HTTP_PROXYPORT_PROPERTY

com.ibm.wsspi.webservices.Constants.HTTP_PROXYUSER_PROPERTY
com.ibm.wsspi.webservices.Constants.HTTP_PROXYPASSWORD_PROPERTY

com.ibm.wsspi.webservices.Constants.HTTPS_PROXYHOST PROPERTY
com.ibm.wsspi.webservices.Constants.HTTPS_PROXYPORT_PROPERTY
com.ibm.wsspi.webservices.Constants.HTTPS PROXYUSER PROPERTY
com.ibm.wsspi.webservices.Constants.HTTPS_PROXYPASSWORD_PROPERTY

Results
You have configured your Web services client to use a Web proxy server to access resources.

You can optionally set the http.nonProxyHosts property to specify the host names of machines to which
requests will not be sent through the proxy server. Any requests invoked by the client application that are
sent to a host whose name is contained in this property will not pass through the proxy server. This
property applies for both HTTP and HTTPS connections. To learn more about the http.nonProxyHosts
property and other HTTP properties that you can configure, read about HTTP transport custom properties
for Web services applications.

Example
Configuring the HTTP proxy programmatically

The following code allows you to configure the HTTP proxy programmatically:

import com.ibm.wsspi.webservices.Constants

Properties prop = new Properties();

InitialContext ctx = new InitialContext(prop);

Service service = (Service)ctx.lookup("java:comp/env/service/StockQuoteService");

QName portQname = new QName("http://httpchannel.test.wsfvt.ws.ibm.com", "StockQuoteHttp");
StockQuote sq = (StockQuote)service.getPort(portQname, StockQuote.class);

((javax.xml.rpc.Stub) sq)._setProperty(Constants.HTTP_PROXYHOST_PROPERTY, "proxyHostl.ibm.com");
((javax.xml.rpc.Stub) sq)._setProperty(Constants.HTTP_PROXYPORT_PROPERTY, "80");

Provide HTTP endpoint URL information

Use this page to specify endpoint URL prefix information for Web services accessed by HTTP. Prefixes are
used to form complete endpoint addresses included in published Web Services Description Language
(WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Provide HTTP endpoint URL information.

32 Securing WebSphere applications

You can specify a portion of the endpoint URL to be used in each Web service module. In a published
WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s
soap:address element.

This administrative console panel applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) Web services.

Specify endpoint URL prefixes for Web services
Specifies the protocol (either http or https), host_name, and port_number to be used in the endpoint URL.

You can select a prefix from a predefined list using the HTTP URL prefix or Custom HTTP URL prefix
field.

The URL prefix format is protocol://host_name:port_number, for example, http://myHost.9045. The actual
endpoint URL that is contained in a published WSDL file consists of the prefix followed by the module’s
context-root and the Web service url-pattern, for example, http://myHost.9045/services/myService.

Select default HTTP URL prefix

Specifies the drop down list associated with a default list of URL prefixes. This list is the intersection of the
set of ports for the module’s virtual host and the set of ports for the module’s application server. Use items
from this list if the Web services application server is accessed directly.

To set an HTTP endpoint URL prefix, select Select default HTTP URL prefix and select a value from the

drop down list. Select the check box of the modules that are to use the prefix and click Apply. When you

click Apply, the entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields,

depending on which is selected, is copied into the HTTP URL prefix field of any module whose check box
is selected.

Select custom HTTP URL prefix

Specifies the protocol, host, and port_number of the intermediate service if the Web services in a module
are accessed through an intermediate node, for example the Web services gateway or an IHS server.

To set a custom HTTP endpoint URL prefix, you must also configure the custom JVM property,
com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true. Setting
this custom JVM property is required so the custom HTTP URL is correctly populated in the URL field of
the WSDL file that is returned to the client. If this custom JVM property is not configured, the custom
HTTP URL prefix is not in the URL field in the copy of the WSDL file that the service returns to the client.
To learn how to configure this custom JVM property, see the documentation on configuring additional
HTTP transport properties using the JVM custom property panel in the administrative console. You must
restart the application server after this custom property has been defined so that this property is used by
the system.

After the com.ibm.ws.webservices.enableHTTPPrefix custom JVM property is configured, select Select
custom HTTP URL prefix and enter a value. Select the check box of the modules that are to use the
prefix and click Apply. When you click Apply, the entry in the Select default HTTP URL prefix or Select
custom HTTP URL prefix fields, depending on which is selected, is copied into the HTTP endpoint URL
prefix field of any module whose check box is selected.

Securing Web services applications at the transport level

Transport-level security is a well-known and often used mechanism to secure HTTP Internet and intranet
communications. Transport level security can be used to secure Web services messages. Transport-level
security functionality is independent from functionality that is provided by message-level security
(WS-Security) or HTTP basic authentication.

Chapter 5. Web services 33

Before you begin

You can use either message-level security (WS-Security) or transport-level security:

» Use message-level security when security is essential to the Web service application. HTTP basic
authentication uses a user name and password to authenticate a service client to a secure endpoint.
The basic authentication is encoded in the HTTP request that carries the SOAP message. When the
application server receives the HTTP request, the user name and password are retrieved and verified
using the authentication mechanism specific to the server.

» Use transport-level security to enable basic authentication. Transport-level security can be enabled or
disabled independently from message-level security. Transport-level security provides minimal security.
You can use this configuration when a Web service is a client to another Web service.

About this task

Transport-level security is based on Secure Sockets Layer (SSL) or Transport Layer Security (TLS) that
runs beneath HTTP. HTTP, the most used Internet communication protocol, is currently also the most
popular protocol for Web services. HTTP is an inherently insecure protocol because all information is sent
in clear text between unauthenticated peers over an insecure network. To secure HTTP, transport-level
security can be applied.

Transport level security can be used to secure Web services messages. However, transport-level security
functionality is independent from functionality that is provided by WS-Security or HTTP Basic
Authentication.

SSL and TLS provide security features including authentication, data protection, and cryptographic token
support for secure HTTP connections. To run with HTTPS, the service port address must be in the form
https://. The integrity and confidentiality of transport data, including SOAP messages and HTTP basic
authentication, is confirmed when you use SSL and TLS.

WebSphere Application Server uses the Java Secure Sockets Extension (JSSE) package to support SSL
and TLS.

This task is one of several ways that you can configure the HTTP outbound transport level security for a
Web service acting as a client to another Web service server. You can also configure the HTTP outbound
transport level security with an assembly tool or by using the Java properties. If you do not configure the
HTTP outbound transport level security, the Web services runtime defers to the Java Platform, Enterprise
Edition (Java EE) security runtime in the WebSphere product for an effective Secure Sockets Layer (SSL)
configuration. If there is no SSL configuration with the Java EE security runtime in the WebSphere product,
the Java Secure Socket Extension (JSSE) system properties are used.

You can define additional HTTP transport properties for Web services applications. Use the additional
properties to manage the connection pool for HTTP outbound connections, configure the content encoding
of the HTTP message, enable HTTP persistent connection, and resend the HTTP request when a timeout
occurs.

» Select one of the following methods to configure HTTP outbound transport level security. There are
three ways that you can configure HTTP outbound transport level security:

Configure HTTP outbound transport level security by using the administrative console.
Configure HTTP outbound transport level security by using an assembly tool.
Configure HTTP outbound transport-level security by using Java properties.

» Select one of the following methods to define additional HTTP transport properties for Web services
applications.

— Configure additional HTTP transport properties by using the JVM custom property panel in the
administrative console.

34 Securing WebSphere applications

— Configure additional HTTP transport properties by using an assembly tool.
Results

By completing these steps, you have secured Web services applications at the transport level.

What to do next

HTTP transport custom properties for Web services applications

Use HTTP transport properties for Java API for XML-Based Web Services (JAX-WS) and Java API for
XML-based RPC (JAX-RPC) Web services to manage the connection pool for HTTP outbound
connections, configure the content encoding of the HTTP message, enable HTTP persistent connection,
and resend the HTTP request when a timeout occurs.

Establishing a connection is an expensive operation. Connection pooling improves performance by
avoiding the overhead of creating and disconnecting connections. When an application invokes a Web
service over an HTTP transport, the HTTP outbound connector for the Web service locates and uses an
existing connection from a pool of connections. When the response is received, the connector returns the
connection to the connection pool for reuse. The overhead to create and disconnect the connection is
avoided.

com.ibm.websphere.webservices.http.connectionTimeout
This property specifies the interval, in seconds, that a connection request times-out and the
WebServicesFault("Connection timed out”) error occurs.

The value affects all of the HTTP connection requests made by the HTTP outbound connector. The wait
time is needed when the maximum number of connections in the connection pool is reached. For example,
if the property is set to 300 and the maximum number of connections is reached, the connector waits for
300 seconds until a connection is available. After 300 seconds, the WebServicesFault("Connection timed
out”) error occurs if a connection is not available. If the property is set to 0 (zero), the connector waits
until a connection is available.

If the WebServicesFault("Connection timed out”) error occurs in the application, set the
com.ibm.websphere.webservices.http.connectionTimeout property value higher. Also, review the application
usage. If the com.ibm.websphere.webservices.http.maxConnection property value is set to 0 (zero), and is
enabled for an unlimited number of connections, the
com.ibm.websphere.webservices.http.connectionTimeout property value is ignored.

Data type Integer

Units Seconds

Default 300

Range 0 (zero) to the maximum integer

For information about how to configure these properties see |Configuring additional HTTP transport|
loroperties using the administrative console}

Note: This property only can be configured as a JVM custom property that manages the connection pool
for HTTP outbound connections for Web services applications.

com.ibm.websphere.webservices.http.maxConnection
This property specifies the maximum number of connections that are created in the HTTP outbound
connector connection pool.

Chapter 5. Web services 35

It affects all of the Web services HTTP connections that are made within one JVM. When the maximum
number of connections is reached, no new connection are created and the HTTP connector waits for a
current connection to return to the connection pool. If the HTTP connector does not wait for a current
connection because of a connection request timeout, the WebServicesFault("Connection timed out”)
error occurs. For example, if the property is set to 5, and there are 5 connections in use, the HTTP
connector waits for the specified time set in the com.ibm.websphere.webservices.http.connectionTimeout
property for a connection to become available.

Note: For performance reasons, it is a best practice to set the maximum size of the
com.ibm.websphere.webservices.http.maxConnection property to less than or equal to half of the
size of Web container threadpool. The default size for the Web container threadpool is 50. As a
result, the default size of the com.ibm.websphere.webservices.http.maxConnection property is set to
25 by the Web services runtime.

Data type Integer

Default 25

Range 5 to the maximum integer, which is less than or equal to
half of the size of Web container threadpool

For information about how to configure these properties see [Configuring additional HTTP transpor
[oroperties using the administrative console}

Note: This property only can be configured as a JVM custom property that manages the connection pool
for HTTP outbound connections for Web services applications.

com.ibm.websphere.webservices.http.connectionPoolCleanUpTime
This property specifies the interval, in seconds, between runs of the connection pool maintenance thread.

You can configure the property only as a JVM custom property. This property affects all HTTP connections
for Web Services made within one JVM. For example, if the property is set to 180, the pool maintenance
thread runs every 180 seconds. When the pool maintenance thread runs, the connector discards any
connections in the clean up queue.

Data type Integer

Units Seconds

Default 180

Range 0 (zero) to the maximum integer

For information about how to configure these properties see [Configuring additional HTTP transport
loroperties using the administrative console}

Note: This property only can be configured as a JVM custom property that manages the connection pool
for HTTP outbound connections for Web services applications.

com.ibm.websphere.webservices.http.connectionldleTimeout
This property specifies the interval, in seconds, after an idle connection is discarded.

The connection is added to the clean up queue only after a new connection is formed. You can configure
the property only as a JVM custom property. For example, if the property is set to 120, the pool
maintenance thread discards any connection that remains idle for 2 minutes. This property affects all Web
services HTTP connections made within one JVM.

Data type Integer

36 Securing WebSphere applications

Units Seconds

Default 5
Range 0 (zero) to the maximum integer

For information about how to configure these properties see |Configuring additional HTTP transport|
loroperties using the administrative console}

Note: This property only can be configured as a JVM custom property that manages the connection pool
for HTTP outbound connections for Web services applications.

com.ibm.websphere.webservices.http.SocketTimeout
This property specifies the amount of time, in seconds, to wait for the outbound socket to be established
with the remote server.

You can configure the property only as a JVM custom property. This property affects all Web services
HTTP connections made within one JVM. If an invalid value is provided, the default value overrides the
invalid value.

Data type Integer

Units Seconds

Default 180

Range 0 (zero) to the maximum integer

For information about how to configure these properties see [Configuring additional HTTP transport]
[oroperties using the administrative console}

Note: This property only can be configured as a JVM custom property that manages the connection pool
for HTTP outbound connections for Web services applications.

com.ibm.websphere.webservices.http.requestContentEncoding
This property specifies the type of encoding to use in the message of each HTTP outbound request. It is
an HTTP transport property you can configure for Web services applications.

Supported encoding formats follow the HTTP 1.1 protocol specification including gzip, x-gzip, and deflate.
If this property is configured, the headers "Content-Encoding” and "Accept-Encoding” in the HTTP request
are also set to the same value. For example, if the property is set to gzip, the headers become
Content-Encoding: gzip and Accept-Encoding: gzip. However, if the property is not set, the HTTP request
message is not encoded. The default is no encoding.

You should check if the target Web server is capable of decoding the configured coding format. For
example, if the property is set to gzip, the target Web server must also support the gzip encoding.
Otherwise, a failure can occur and a status code of 415 Unsupported Media Type might display.

The compress encoding format is not supported and x-gzip encoding is equivalent to gzip encoding.

Data type String
Valid values gzip, x-gzip, and deflate

For information about how to configure this property, see [Configuring additional HTTP transport properties|
[using wsadmin|, and [Configuring additional HTTP transport properties using an assembly tool.

Chapter 5. Web services 37

com.ibm.websphere.webservices.http.responseContentEncoding
This property specifies the type of encoding to be used in the message of each HTTP response. It is an
HTTP transport property you can configure for Web services applications.

Supported encoding formats follow the HTTP 1.1 protocol specification including gzip, x-gzip, and deflate.
If this property is configured, the headers "Content-Encoding” in the HTTP response is set to the same
value. If the property is not set, the HTTP response message content is not encoded. The default value is
no encoding.

If the property is set, the request client must also support the same encoding. Otherwise, a failure can
occur and a WebServicesFault() error displays.

The compress encoding format is not supported and x-gzip encoding is equivalent to gzip encoding.

Data type String

Valid values gzip, x-gzip, or deflate

For information about how to configure this property, see [Configuring additional HTTP transport propertieq
lusing wsadmin|, and [Configuring additional HTTP transport properties using an assembly tool.

com.ibm.websphere.webservices.http.connectionKeepAlive
This property specifies whether the connector should maintain a live or persistent HTTP connection. It is
an HTTP transport property you can configure for Web services applications.

If the property is set to true, the connector keeps the connection in the connection pool and reuses the
connection for subsequent HTTP requests. However, the connection is closed if syncTimeout(Read
timeout) is reached or the server has dropped the connection. Also, an idle connection is closed by the
pool maintenance thread if the idle time has passed the connection idle time-out. If the property is set to
false, the connection is closed after the HTTP request is sent. If a new request is ready to send and the
connection does not exist, the HTTP connector creates one.

Data type String
Default True
Valid values True, false

For information about how to configure this property, see [Configuring additional HTTP transport properties
[using wsadmin|, and [Configuring additional HTTP transport properties using an assembly tool.

com.ibm.websphere.webservices.http.requestResendEnabled

This property tells the HTTP connector to resend the SOAP message over HTTP request after a
java.net.ConnectException: read timed out error is logged. It is an HTTP transport property you can
configure for Web services applications.

This property tells the HTTP connector to resend the SOAP message over HTTP request after a
java.net.ConnectException: read timed out error is logged. The java.net.ConnectException is caused
by a socket time-out, or when a server shuts down while the request is being sent. If the property is
enabled, the connector tries to reconnect one time only and resends the same SOAP message over
HTTP. Otherwise, the connector stops sending the SOAP message and a WebServicesFault error is
logged.

Problems can occur with the application this property is enabled. The HTTP request that is resent can be
received twice by the server and can cause an unexpected result.

38 Securing WebSphere applications

Data type String
Default False

Valid values True, false

For information about how to configure this property, see [Configuring additional HTTP transport properties|
lusing wsadmin, and [Configuring additional HTTP transport properties using an assembly tool,

com.ibm.ws.webservices.enableHTTPPrefix

This property specifies whether the hosthame:port value that is defined as a custom HTTP URL prefix in
the Provide HTTP endpoint URL panel in the administrative console is populated to the URL field in the
copy of the WSDL file that is returned from the service to the client. It is an HTTP transport property you
can configure for Web services applications.

Configure this property with the value of true so the specified custom HTTP URL prefix is correctly
specified in the WSDL file that is returned to the client. If this property is not configured with the value of
true, then the specified custom hosthame:port of the server node that responds to the request is not
populated in the URL field in the copy of the WSDL file that is returned to the client.

You must restart the application server after this custom property has been defined so that this property is
used by the system.

Data type String
Default False
Valid values True, false

For information about how to configure this property, see [Configuring additional HTTP transport properties
[using wsadmin|, and [Configuring additional HTTP transport properties using an assembly tool.

http.proxyHost
desc

This property specifies the host name of an HTTP proxy. It is an HTTP transport property you can
configure for Web services applications.

|Data type | String |

For information about how to configure this property, see [Configuring additional HTTP transport properties
[using wsadmin|, and [Configuring additional HTTP transport properties using an assembly tool.

http.proxyPort
This property specifies the port of an HTTP proxy. It is an HTTP transport property you can configure for
Web services applications.

|Data type | String |

For information about how to configure this property, see [Configuring additional HTTP transport properties|
lusing wsadmin, and [Configuring additional HTTP transport properties using an assembly tool.

https.proxyHost
This property specifies the host name of an HTTPS proxy. It is an HTTP transport property you can
configure for Web services applications.

Chapter 5. Web services 39

|Data type String

For information about how to configure this see |Configuring additional HTTP transport propertie
|using wsadmin|, and [Configuring additional HTTP transport properties using an assembly tool.

https.proxyPort
This property specifies the port of an HTTPS proxy. It is an HTTP transport property you can configure for
Web services applications.

|Data type | String

For information about how to configure this property, see [Configuring additional HTTP transport properties|
lusing wsadminj, and [Configuring additional HTTP transport properties using an assembly tool,

http.nonProxyHosts

This JVM system property acts as an override to the http.proxyHost and https.proxyHost properties and
specifies the host names of machines to which requests will not be sent through the proxy server. It is an
HTTP transport property you can configure for Web services applications.

Any requests invoked by the client application that are sent to a host whose name is contained in this
property will not pass through the proxy server. Separate each host name in the list with a vertical bar
("1"). You can optionally use an asterisk (*) as a wildcard character.

The http.nonProxyHosts property applies for both HTTP and HTTPS connections.

In the following example,

http.proxyHost="myproxy.mycompany.com"
http.nonProxyHosts="host1.companyl.com|host*.company2.com|*.company3.com"

all requests will be routed through the proxy server, myproxy.mycompany.com, except for the HTTP
requests destined for the following hosts:

* a single host named host1.company1.com
* any host in the company2.com domain whose name starts with host
* any host in the company3.com domain

Note: When using a Web services client through a web proxy, it is a best practice to set the
http.nonProxyHosts property to include the local host if any Web services are hosted on the same
system. For example, if the local host is named myHost.myCorp.com, then set the
http.nonProxyHosts property to Tocalhost|myHost.myCorp.com or Tocalhost|*.myCorp.com. If you
do not set the http.nonProxyHosts property to include the local host, then Web services requests
made to the local host will go out to the Web proxy and then return back to the local host.

Data type | String

You can only configure this property as a JVM custom property. For information about how to configure
this property, see [Configuring additional HTTP transport properties using wsadmin|, and [Configuring
|additiona| HTTP transport properties using an assembly tool.

Configuring HTTP outbound transport level security with the

administrative console
You can configure HTTP outbound transport level security with the administrative console.

40 Securing WebSphere applications

Before you begin

This task is one of several ways that you can configure the HTTP outbound transport level security for a
Web service acting as a client to another Web service server. You can also configure the HTTP outbound
transport level security with an assembly tool or by using the Java properties. If you do not configure the
HTTP outbound transport level security, the Web services runtime defers to the Web Services for Java
Platform, Enterprise Edition (Java EE) security runtime in the WebSphere product for an effective Secure
Sockets Layer (SSL) configuration. If there is no SSL configuration with the Java EE security runtime in
the WebSphere product, the Java Secure Socket Extension (JSSE) system properties are used.

About this task

If you choose to configure the HTTP outbound transport level security with the administrative console or
an assembly tool, the Web services security binding information is modified. You can use the
administrative console to configure the Web services client security bindings if you have
|insta||ed the Web services application into WebSphere Application ServerI If you have not installed the
Web services application, you can configure the HTTP SSL configuration with an assembly tool. This task
assumes that you have deployed the Web services application into the WebSphere product.

If you configure the HTTP outbound transport level security using the standard Java properties for JSSE,
the properties are configured as system properties. The configuration specified in the binding takes
precedence over the Java properties. However, the configurations that are specified by the Java EE
security programming model , or that are associated the Dynamic selection , have higher precedence.

Review the topic|Secure communications using Secure Sockets Layer|for more information.

Configure the HTTP outbound transport level security with the following steps provided in this task section.
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >
module_instance . Under Web Services Security Properties, click Web Services: Client security
bindings.

3. Under the heading, HTTP SSL Configuration, click Edit to access the HTTP SSL configuration panel.
Select the Centrally-managed radio button so that the system runtime chooses the SSL configuration
that is based on the current context. Select the Specific to this Web service port radio button if you
want to choose the SSL configuration in the HTTP SSL configuration drop down box.

Results

You have configured the HTTP outbound transport level security for a Web service acting as a client to
another Web service with the administrative console.

HTTP SSL Configuration collection
Use this page to configure transport-level Secure Sockets Layer (SSL) security. You can use this
configuration when a Web service is a client to another Web service.

You can use transport-level security to enable HTTP SSL (or HTTPS). Transport-level security can be
enabled or disabled independently from message-level security. Because transport-level security provides
minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

2. Click Manage modules > URI_file_name > Web Services: Client Security Bindings .
3. Under HTTP SSL Configuration, click Edit.

Chapter 5. Web services 41

This administrative console panel applies only to Java API for XML-based RPC (JAX-RPC) applications.

SSL configuration: Select the Centrally-managed radio button so that the system runtime chooses the
SSL configuration that is based on the current context. Select the Specific to this Web service port radio
button if you want to choose the SSL configuration in the HTTP SSL configuration drop down box.

HTTP SSL configuration: The HTTP SSL configuration drop down box lists the SSL configurations
used with the HTTP transport for a port. Use this drop down box if you want to select the SSL
configuration rather than using the SSL configuration that the runtime automatically selects. To use the
drop down box, select the Specific to the Web service port radio button that is located in the SSL
configuration field. After you select the radio button, you can click the drop down box to view and select
an SSL configuration.

Configuring HTTP outbound transport level security using Java
properties
You can configure the HTTP outbound transport level security for a Web service using Java properties

Before you begin

This task is one of three ways that you can configure HTTP outbound transport-level security for a Web
service that is acting as a client to another Web service. You can also configure the HTTP outbound
transport level security with the administrative console or an assembly tool. However, you can also use
this task to configure the HTTP outbound transport-level security for a Web service client.

About this task

If you choose to configure the HTTP outbound transport-level security with the administrative console or
an assembly tool, the Web services security binding information is modified.

If you configure the HTTP outbound transport-level security using Java properties, the properties are
configured as system properties. However, the configuration specified in the binding takes precedence
over the Java properties.

You can configure the HTTP outbound transport-level security using WebSphere SSL properties or JSSE
SSL properties. However, the WebSphere SSL properties take precedence over the JSSE SSL properties.

Configure the HTTP outbound transport-level security with the following steps provided in this task section.
1. Create a property file that includes the following properties:

com.ibm.ss1.protocol
com.ibm.ss1.keyStoreType
com.ibm.ss1.keyStore
com.ibm.ss1.keyStorePassword
com.ibm.ss1.trustStoreType
com.ibm.ss1.trustStore
com.ibm.ss1.trustStorePassword

2. Set the com.ibm.webservices.ss1ConfigURL Java system property to the absolute path of the created
property file. If no WebSphere SSL properties are defined, the JSSE SSL properties are used. Set the
JSSE SSL properties as JVM custom properties. See [Secure transports with JSSE and JCE]
fprogramming interfaces| for more information about setting the JSSE SSL properties.

Results

You have configured the HTTP outbound transport-level security for a Web service acting as a client to
another Web service.

42 Securing WebSphere applications

Configuring additional HTTP transport properties using the JVM
custom property panel in the administrative console

You can configure additional HTTP transport properties for Java API for XML-Based Web Services
(JAX-WS) and Java API for XML-based RPC (JAX-RPC) Web services with the JVM custom properties
panel in the administrative console.

About this task

This task is one of three ways that you can configure additional HTTP transport properties for a Web
Service acting as a client to another Web service. You can also configure the additional HTTP transport
properties in the following ways:

* [Configure the properties with an assembly tool|
. ‘Configure the properties using the wsadmin command-line tool

If you want to programmatically configure the properties using the Java APl XML-based Remote Procedure
Call (JAX-RPC) programming model or the Java API for XML Web Services (JAX-WS) programming
model, review the JAX-RPC or JAX-WS specifications.

For a complete list of the supported standards and specifications, see the Web services specifications and
API documentation.

For more information about the following HTTP properties that you can configure, read about HTTP
custom properties for Web services applications:

« com.ibm.websphere.webservices.http.requestContentEncoding
* com.ibm.websphere.webservices.http.responseContentEncoding
» com.ibm.websphere.webservices.http.connectionKeepAlive

» com.ibm.websphere.webservices.http.requestResendEnabled

» com.ibm.websphere.webservices.http.SocketTimeout

» com.ibm.ws.webservices.enableHTTPPrefix

 http.proxyHost

* http.proxyPort

* https.proxyHost

 https.proxyPort

» http.nonProxyHosts - You can only configure this property as a JVM custom property. This property
applies for both HTTP and HTTPS connections.

These additional properties are configured for Web services applications that use the HTTP protocol. The
properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP
connection persistence and the behavior of an HTTP request that is resent after a
java.net.ConnectException error occurs when there is a read time-out.

1. Open the administrative console.

a. Click Servers > Application Servers > server > Java and Process Management > Process
Definition > Java Virtual Machine > Custom Properties.

2. (Optional) If the property is not listed, create a new property name.
3. Enter the name and value.
4. (Optional) Accept the redirection of the HTTP request to a different URI in HTTPS.

A redirection of the HTTP request to a different URI in HTTPS can occur if the transport guarantee of
CONFIDENTIAL or INTEGRAL is configured in the application. To accept the redirection, you can do
either of the following tasks:

« Set the com.ibm.ws.webservices.HttpRedirectEnabled Java system property to true.

Chapter 5. Web services 43

* Programmatically set the com.ibm.wsspi.webservices.Constants.HTTP_REDIRECT ENABLED property to
a java.lang.Boolean object in the Stub or Call object before invoking the service. For example, use
any of the following java.lang.Boolean values to set the property to true:

— Boolean.TRUE
— new Boolean(true)
— new Boolean("true")

Results

You have configured HTTP transport properties for a Web services application.

Configuring additional HTTP transport properties using the wsadmin
command-line tool

You can configure additional HTTP transport properties for Java API for XML-based RPC (JAX-RPC) Web
services with the wsadmin command-line tool.

Before you begin

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the
wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application
deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl
and Jython scripting languages. For more information about the wsadmin tool options, review |O tions foﬂ
the AdminApp object install, installinteractive, edit, editinteractive, update, and updatelnteractiv

commands|
About this task

This task is one of three ways that you can configure additional HTTP transport properties for a Web
Service acting as a client to another Web service. You can also configure the additional HTTP transport
properties in the following ways:

« [Configure the properties with an assembly tool|

« [Configuring additional HTTP transport properties using the JVM custom property panel in thel
administrative console]

If you want to programmatically configure the properties using the Java APl XML-based Remote Procedure
Call (JAX-RPC) programming model or the Java API for XML Web Services (JAX-WS) programming
model, review the JAX-RPC or JAX-WS specifications. For a complete list of the supported standards and
specifications, see the Web services specifications and APl documentation.

For more information about the following HTTP properties that you can configure, read about HTTP
custom properties for Web services applications:

« com.ibm.websphere.webservices.http.requestContentEncoding
* com.ibm.websphere.webservices.http.responseContentEncoding
» com.ibm.websphere.webservices.http.connectionKeepAlive

» com.ibm.websphere.webservices.http.requestResendEnabled

« com.ibm.websphere.webservices.http.SocketTimeout

* com.ibm.ws.webservices.enableHTTPPrefix

* http.proxyHost

* http.proxyPort

 https.proxyHost

* https.proxyPort

44 securing WebSphere applications

» http.nonProxyHosts - You can only configure this property as a JVM custom property. This property

applies for both HTTP and HTTPS connections.

These additional properties are configured for Web services applications that use the HTTP protocol. The
properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP
connection persistence and the behavior of an HTTP request that is resent after a
java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with the wsadmin tool by following steps provided in this task
section:

1.

[Launch a scripting command|

2. At the wsadmin command prompt, enter the command syntax. You can use install, installinteractive,
edit, editinteractive, update, and updatelnteractive commands.

3. If you are configuring the com. ibm.websphere.webservices.http.responseContentEncoding property,
use the WebServicesServerCustomProperty command option.

4. Configure all other properties using the WebServicesClientCustomProperty command option.

5. Save the configuration changes with the $AdminConfig save command.

Results

You have configured HTTP transport properties for a Web services application.

Example

The following illustrates an example of the Jython script syntax:

AdminApp.edit ('PlantsByWebSphere', '[-WebServicesClientCustomProperty [[PlantsByWebSphere.war ""
service/FrontGate_SEIService FrontGate http.proxyHost+http.proxyPort myhost+80]]1]")
AdminConfig.save()

AdminApp.edit ('WebServicesSamples', '[-WebServicesServerCustomProperty
[[AddressBookW2JE. jarAddressBookService AddressBook http.proxyHost+http.proxyPort myhost+80]]]")
AdminConfig.save()

The following illustrates an example of the Jacly script syntax:

$AdminApp edit PlantsByWebSphere { -WebServicesClientCustomProperty {{PlantsByWebSphere.war {}
service/FrontGate SEIService FrontGate http.proxyHost+http.proxyPort myhost+80 }}}
$AdminConfig save

$AdminApp edit WebServicesSamples {-WebServicesServerCustomProperty {{AddressBookW2JE.jar
AddressBookService AddressBook http.proxyHost+http.proxyPort myhost+80}}}
$AdminConfig save

To convert these examples from edit to install, add .ear to form a file name, and add any extra keywords
for deployment, like -usedefaultbindings and -deployejb.

Chapter 5. Web services 45

Related tasks

[‘Configuring additional HTTP transport properties for JAX-RPC Web services with an assembly tool”|

This topic explains how to configure additional HTTP transport properties for Java API for XML-based RPC
(JAX-RPC) Web services with an assembly tool. The assembly tool is used to configure the
ibm-webservicesclient-bnd.xmi deployment descriptor binding file.

“Configuring additional HTTP transport properties using the JVM custom property panel in the|
administrative console” on page 43|

You can configure additional HTTP transport properties for Java API for XML-Based Web Services
(JAX-WS) and Java API for XML-based RPC (JAX-RPC) Web services with the JVM custom properties
panel in the administrative console.

|“Configuring a Web services client to access resources using a Web proxy” on page 31|

You can configure a Web services client to access resources through a Web proxy server.

Related reference

|“HTTP transport custom properties for Web services applications” on page 35|

Use HTTP transport properties for Java API for XML-Based Web Services (JAX-WS) and Java API for
XML-based RPC (JAX-RPC) Web services to manage the connection pool for HTTP outbound

connections, configure the content encoding of the HTTP message, enable HTTP persistent connection,
and resend the HTTP request when a timeout occurs.

[Web services specifications and APIs)|

Configuring additional HTTP transport properties for JAX-RPC Web
services with an assembly tool

This topic explains how to configure additional HTTP transport properties for Java API for XML-based RPC
(JAX-RPC) Web services with an assembly tool. The assembly tool is used to configure the
ibm-webservicesclient-bnd.xmi deployment descriptor binding file.

Before you begin

You can configure additional HTTP transport properties with |assembly tools| provided with WebSphere
Application Server.

About this task

This task is one of three ways that you can configure additional HTTP transport properties for a Web
Service acting as a client to another Web service. You can also configure the additional HTTP transport
properties in the following ways:

« [Configuring additional HTTP transport properties using the JVM custom property panel in the|
administrative console]

« [Configure the properties using the wsadmin command-line tool |

If you want to programmatically configure the properties using the Java APl XML-based Remote Procedure
Call (JAX-RPC) programming model or the Java API for XML Web Services (JAX-WS) programming
model, review the JAX-RPC or JAX-WS specifications.

For a complete list of the supported standards and specifications, see the Web services specifications and
API documentation.

For more information about the following HTTP properties that you can configure, read about HTTP
custom properties for Web services applications:

« com.ibm.websphere.webservices.http.requestContentEncoding
» com.ibm.websphere.webservices.http.responseContentEncoding

46 Securing WebSphere applications

» com.ibm.websphere.webservices.http.connectionKeepAlive
» com.ibm.websphere.webservices.http.requestResendEnabled
» com.ibm.websphere.webservices.http.SocketTimeout

» com.ibm.ws.webservices.enableHTTPPrefix

* http.proxyHost

 http.proxyPort

* https.proxyHost

* https.proxyPort

» http.nonProxyHosts - You can only configure this property as a JVM custom property. This property
applies for both HTTP and HTTPS connections.

These additional properties are configured for Web services applications that use the HTTP protocol. The
properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP
connection persistence and the behavior of an HTTP request that is resent after a
java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with an assembly tool with the following steps provided in this
task section:

1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer
documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate the Web archive (WAR) files that are created with the Assembly Toolkit, Application Assembly
Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate files,
import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly tool in
the Rational Application Developer documentation.

4. Configure the additional HTTP transport properties. Create and specify the name/value pair in the Web
Services Client Port Binding page for a Web service client. The Web Services Client Port Binding
page is available after double-clicking the client deployment descriptor file. Read about configuring
HTTP transport properties in the Rational Application Developer documentation.

Results

You have configured additional HTTP transport properties for a Web services application.

Configuring HTTP outbound transport level security with an assembly
tool
You can configure the HTTP outbound transport level security with an assembly tool.

Before you begin

You can configure HTTP outbound transport level security with [assembly tools| provided with WebSphere
Application Server.

This task is one of several ways that you can configure the HTTP outbound transport level security for a
Web Service acting as a client to another Web service server. You can also configure the HTTP outbound
transport level security with the administrative console or by using the Java properties. If you do not
configure the HTTP outbound transport level security, the Web services runtime defers to the Java
Platform, Enterprise Edition (Java EE) security runtime in the WebSphere product for an effective Secure
Sockets Layer (SSL) configuration. If there is no SSL configuration with the Java EE security runtime in
the WebSphere product, the Java Secure Socket Extension (JSSE) system properties are used.

Chapter 5. Web services 47

About this task

If you configure the HTTP outbound transport level security with assembly tool or with the administrative
console, the Web services security binding information is modified. If you have not yet installed the Web
services application into WebSphere Application Server, you can configure the HTTP SSL configuration

with an assembly tool. This task assumes that you have not deployed the Web services application into
the WebSphere product.

If you configure the HTTP outbound transport level security using the standard Java properties for JSSE,
the properties are configured as system properties. The configuration that is specified in the binding takes
precedence over the Java properties. However, the configurations that are specified by the Java EE
security programming model, or are associated with the Dynamic selection, have a higher precedence.

Review the topic|Secure communications using Secure Sockets Layer| for more information.

1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer
documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate the Web archive (WAR) files that are created with the Assembly Toolkit, Application Assembly
Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate files,
import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly tool in
the Rational Application Developer documentation.

4. Configure the HTTP outbound transport level security. Read about enabling Web service endpoints in
the Rational Application Developer documentation.

Results

You have configured the HTTP outbound transport level security for a Web Service acting as a client to
another Web service with an assembly tool.

Authenticating Web services clients using HTTP basic authentication

A simple way to provide authentication data for the service client is to authenticate to the protected service
endpoint by using HTTP basic authentication. HT TP basic authentication uses a user name and password
to authenticate a service client to a secure endpoint.

Before you begin

You can use either message-level security (WS-Security) or transport-level security:

* Use message-level security when security is essential to the Web service application. HTTP basic
authentication uses a user name and password to authenticate a service client to a secure endpoint.
The basic authentication is encoded in the HTTP request that carries the SOAP message. When the
application server receives the HTTP request, the user name and password are retrieved and verified
using the authentication mechanism specific to the server.

» Use transport-level security to enable basic authentication. Transport-level security can be enabled or
disabled independently from message-level security. Transport-level security provides minimal security.
You can use this configuration when a Web service is a client to another Web service.

About this task

WebSphere Application Server can have several resources, including Web services, protected by a Java
Platform, Enterprise Edition (Java EE) security model.

48 Securing WebSphere applications

HTTP basic authentication is orthogonal to the security support provided by WS-Security or HTTP Secure
Sockets Layer (SSL) configuration.

A simple way to provide authentication data for the service client is to authenticate to the protected service
endpoint using HTTP basic authentication. The basic authentication is encoded in the HTTP request that
carries the SOAP message. When the application server receives the HTTP request, the user name and
password are retrieved and verified using the authentication mechanism specific to the server.

Although the basic authentication data is base64-encoded, sending data over HTTPS is recommended.
The integrity and confidentiality of the data can be protected by the SSL protocol.

In some cases, a firewall is present using a pass-through HTTP proxy server. The HTTP proxy server
forwards the basic authentication data into the Java EE application server. The proxy server can also be
protected. Applications can specify the proxy data by setting properties in a stub object.

» Use the assembly tools that are provided with WebSphere Application Server if you have not deployed
the Web services application into the WebSphere product.

» Use the administrative console if you have deployed or installed the Web services application into the
WebSphere Application Serve product. If you choose to configure HTTP basic authentication with the
administrative console, the Web services security binding information is modified.

* Modify the HTTP properties programmatically if you want the values that are set programmatically to
take precedence over the values that are defined in the binding. If you configure HTTP basic
authentication programmatically, the properties are configured in the Stub or Call instance. However,
you only can programmatically configure HTTP proxy authentication.

Configuring HTTP basic authentication for JAX-RPC Web services with
the administrative console

You can configure HTTP basic authentication for Java API for XML-based RPC (JAX-RPC) Web services
with the administrative console.

Before you begin

This task is one of three ways that you can configure HTTP basic authentication. You can also configure
HTTP basic authentication with an assembly tool or by modifying the HTTP properties programmatically.

If you choose to configure HTTP basic authentication with the administrative console or an assembly tool,
the Web services security binding information is modified. You can use the administrative console to
configure HTTP basic authentication if you have |[deployed or installed the Web services application into
[WebSphere Application Server] If you have not installed the Web services application, then you can
configure the security bindings with an assembly tool. This task assumes that you have deployed the Web
services application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or
Call instance. The values set programmatically take precedence over the values defined in the binding.

About this task

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct
from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not
HTTP basic authentication.

Configure HTTP basic authentication with the following steps provided in this task section.

Open the administrative console.

Chapter 5. Web services 49

1. Click Applications > Enterprise Applications > application_instance > Manage Modules >
module_instance > Web services: Client security bindings.

2. Click HTTP Basic Authentication to access the HTTP basic authentication panel. Enter the values in
the HTTP Basic Authentication panel.

Results

You have configured the HTTP basic authentication.

HTTP basic authentication collection
Use this page to specify a user name and password for transport-level basic authentication security for this
port. You can use this configuration when a Web service is a client to another Web service.

You can use transport-level security to enable basic authentication. Transport-level security can be
enabled or disabled independently from message-level security. Because transport-level security provides
minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

2. Click Manage modules > URI_file_name > Web Services: Client Security Bindings .
3. Under HTTP basic authentication, click Edit.

This administrative console panel applies only to Java API for XML-based RPC (JAX-RPC) applications.
Basic authentication ID:
The user name for the HTTP basic authentication for this port is set in this field.

Use the Basic authentication ID field to specify the user name for the HTTP basic authentication for this
port.

Basic authentication password:
The password for the HTTP basic authentication for this port is set in this field.

Use the Basic authentication password field to specify the password for the HTTP basic authentication for
this port.

Configuring HTTP basic authentication for JAX-RPC Web services
programmatically

You can configure HTTP basic authentication for Java API for XML-based RPC (JAX-RPC) Web services
by programmatically modifying HTTP properties.

Before you begin

This task is one of three ways that you can configure HTTP basic authentication. You can also configure
HTTP basic authentication with an assembly tool or with the administrative console.

If you programmatically configure HTTP basic authentication, the properties are configured in the Stub or
Call instance. If you choose to configure HTTP basic authentication with the administrative console or an
assembly tool, the Web services security binding information is modified. The values that are set
programmatically take precedence over the values defined in the binding.

50 Securing WebSphere applications

About this task

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct
from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not
HTTP basic authentication.

Configure HTTP basic authentication programmatically with the following steps.

Set the properties in the Stub or Call instance for a Web service or a Web service client. You can set
properties with the following constant names:

javax.xml.rpc.Call.USERNAME_PROPERTY

javax.xml.rpc.Call.PASSWORD_PROPERTY

javax.xml.rpc.Stub.USERNAME_PROPERTY
javax.xml.rpc.Stub.PASSWORD_PROPERTY

Example

The following code enables you to configure basic authentication programmatically:

Properties prop = new Properties();

InitialContext ctx = new InitialContext(prop);

Service service = (Service)ctx.lookup("java:comp/env/service/StockQuoteService");

QName portQname = new QName("http://httpchannel.test.wsfvt.ws.ibm.com", "StockQuoteHttp");
StockQuote sq = (StockQuote)service.getPort(portQname, StockQuote.class);
((javax.xml.rpc.Stub) sq)._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY, "myUser");
((javax.xml.rpc.Stub) sq)._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY, "myPwd");

Configuring HTTP basic authentication for JAX-RPC Web services with
an assembly tool

You can configure HTTP basic authentication for Java API for XML-based RPC (JAX-RPC) Web services
with an assembly tool.

Before you begin

You can configure HTTP basic authentication with Jassembly tools|provided with WebSphere Application
Server.

About this task

This task is one of three ways that you can configure HTTP basic authentication. You can also configure
HTTP basic authentication with the administrative console or by modifying the HTTP properties
programmatically.

If you choose to configure the HTTP basic authentication with an assembly tool or with the administrative
console , the Web services security binding information is modified. You can use an assembly tool to
configure HTTP basic authentication before you deploy or install the Web services application into
WebSphere Application Server. This task assumes that you have not deployed the Web services
application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or
Call instance. The values set programmatically take precedence over the values defined in the binding.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct
from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not
HTTP basic authentication.

To configure HTTP basic authentication, use the WebSphere Application Server tools to modify the binding
information.

Chapter 5. Web services 51

1. Start an assembly tool. Read about starting the assembly tool in the Rational Application Developer
documentation.

2. If you have not done so already, configure the assembly tool so that it works on Java EE modules. You
need to make sure that the Java EE and Web categories are enabled. Read about configuring the
assembly tool in the Rational Application Developer documentation.

3. Migrate the Web archive (WAR) files that are created with the Assembly Toolkit, Application Assembly
Tool (AAT) or a different tool to the Rational Application Developer assembly tool. To migrate files,
import your WAR files to the assembly tool. Read about migrating code artifacts to an assembly tool in
the Rational Application Developer documentation.

4. Configure the HTTP basic authentication in the Web Services Client Port Binding page for a Web
service or a Web service client. The Web Services Client Port Binding page is available after
double-clicking the client deployment descriptor file. Read about Web Services Client Port Bindings in
the Rational Application Developer documentation.

Custom property settings

Use this page to configure name-value pairs for custom binding properties, where the name is a property
key and the value is a string value that can be used to set internal system configuration properties. You
can specify custom properties that apply to both inbound and outbound messages, or properties that apply
only to inbound messages, or only to outbound messages.

Click New to create a new custom property, or click the check box for an existing property name. Click
Delete to delete an existing property.

Name
Specifies the name, or key, for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property that has that name is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the product.

Value
Specifies the value paired with the specified name.

Securing Web services applications using message level security

Web services security standards and profiles describe how to provide security and protection for SOAP
messages that are exchanged in a Web services environment.

Before you begin

The Organization for the Advancement of Structured Information Standards (OASIS) Web services security
(WS-Security) specification defines the core facilities for protecting the integrity and confidentiality of a
message and provides mechanisms for associating security-related claims with the message. Web
services security is a message-level standard based on securing SOAP messages through XML digital
signature, confidentiality through XML encryption, and credential propagation through security tokens.
WebSphere Application Server Version 7 supports Version 1.1 of the Web Services Security specification,
including features such as encrypted header, thumbprint and signature configuration, username token
profile and X.509 token profile. In addition, limited security scenario support is provided for the Kerberos
Version 1.1 token profile, WS-SecureConversation Version 1.3, WS-Trust Version 1.3, and
WS-SecurityPolicy Version 1.2.

52 securing WebSphere applications

About this task

To secure Web services, you must consider a broad set of security requirements, including authentication,
authorization, privacy, trust, integrity, confidentiality, secure communications channels, delegation, and
auditing across a spectrum of application and business topologies. One of the key requirements for the
security model in today’s business environment is the ability to inter-operate between formerly
incompatible security technologies in heterogeneous environments. The complete Web services security
protocol stack and technology roadmap is described in ISecurity in a Web Services World: A Proposedl
IArchitecture and Roadmap|

The|Web Services Security SOAP Message Security 1.1 specification| outlines a standard set of SOAP 1.1
extensions that you can use to build secure Web services. These standards provide integrity and
confidentiality protection, which are generally implemented with digital signature and encryption
technologies. In addition, Web services security provides a general purpose mechanism for associating
security tokens with messages. A typical example of the security token is a username token, in which a
user name and password are included as text. Web services security defines how to encode binary
security tokens using methods such as X.509 certificates. However, the required security tokens are not
defined in the SOAP Message Security 1.1 specification. Instead, the tokens are defined in separate
profiles such as the Username token profile, the X.509 token profile, and so on.

It is important to note that while Web services security can be used to provide message level integrity and
confidentiality protection for normal SOAP message requests from a client to a service, and normal SOAP
message responses from a service to a client, Web services security cannot be used to protect SOAP
fault messages.

Compatibility between WS-Security Draft 13 and WS-Security standard Versions 1.0 and 1.1

The WS-Security standard has evolved over the years, from a draft to an OASIS standard. WebSphere
Application Server Version 5.02 introduced support for the WS-Security Draft 13, and support for
WS-Security 1.0 was introduced beginning with WebSphere Application Server Version 6.0. WS-Security
Version 1.1 is supported by WebSphere Application Server Version 6.1 Feature Pack for Web Services,
using the JAX-WS runtime only. The topic|Web services security specification - a chronology| provides
more details about the evolution of this support.

It is important to note that a WS-Security Draft 13 client is not compatible with providers that use
WS-Security Version 1.0 or Version 1.1. You must use Draft 13 client to communicate with a Draft 13 Web
services provider. You cannot use a Draft 13 client to communicate with a WS-Security Version 1.0
provider, or a Version 1.1 provider. This issue arises because the SOAP message format for the
WS-Security header and namespace is different between a WS-Security Draft 13—enabled application and
a WS-Security Version 1.0 or Version 1.1—enabled application.

The version of the WS-Security standard that is used also has implications for the required version of the
Java Platform, Enterprise Edition (Java EE) application:

» Java EE Version 1.3 is used only with WS-Security Draft 13.

» Java EE Version 1.4 and later is used with WS-Security Version 1.0 (JAX-RPC and JAX-WS), and also
WS-Security Version 1.1 (JAX-WS).

To secure Web services with WebSphere Application Server, you must specify several different
configurations. Although there is not a specific sequence in which you must specify these different
configurations, some configurations reference other configurations. See ['Web services security|
lconfiguration considerations” on page 83|

Because of the relationship between the different Web services security configurations, it is recommended
that you specify the configurations on each level of the configuration in the order described in the following
sections. You can choose to configure Web services security for the application level, the server level or

Chapter 5. Web services 953

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

the cell level as it depends upon your environment and security needs.

» To secure Web services using the Java API for XML-Based Web Services (JAX-WS) programming
model, begin with the topic [‘Securing JAX-WS Web services using message-level security” on page]

» To secure Web services using the Java API for XML-based RPC (JAX-RPC) programming model, begin
with the topic |“Securing JAX-RPC Web services using message level security” on page 330|

What is new for securing Web services

In WebSphere Application Server Version 7, there are many security enhancements for Web services. The
enhancements include supporting sections of the Web Services Security (WS-Security) specifications and
providing architectural support for plugging in and extending the capabilities of security tokens.

Enhancements from the supported Web Services Security specifications

Since September 2002, the Organization for the Advancement of Structured Information Standards
(OASIS) has been developing the Web Services Security (WS-Security) for SOAP message standard.

In April 2004, OASIS released the Web Services security Version 1.0 specification, which is a major
milestone for securing Web services. In Feburary 2006, the specification was updated to Version 1.1. This
specification is the foundation for other Web services security specifications and is also the basis for the
Basic Security Profile (WS-1 BSP) Version 1.0 specification, which was approved in March 2007.See the
[Basic Security Profilel Web page for more information.

Web Services Security Version 1.1 is a strategic move towards Web services security inter-operability, and
an important part of the Web services security roadmap. For more information on the Web services
security roadmap, see [Security in a Web Services World: A Proposed Architecture and Roadmap|

WebSphere Application Server Version 7 supports the following OASIS specifications and WS-I profiles:
+ [OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)|

[OASIS: Web Services Security: UsernameToken Profile 1.1

[OASIS: Web Services Security: Kerberos Token Profile 1.1

[OASIS: WS-SecurityPolicy 1.2

[OASIS: WS-SecureConversation 1.3|

[OASIS: WS-Trust 1.3|

« [Basic Security Profile (WS-1 BSP) 1.0

For details on what parts of the previous specifications are supported in WebSphere Application Server,
see [‘Supported functionality from OASIS specifications” on page 61

High level features overview in WebSphere Application Server

In WebSphere Application Server, the Web Services Security for SOAP Message Version 1.1 specification
is designed to be flexible and accommodate the requirements of Web services. For example, the
specification does not have a mandatory security token definition. Instead, the specification defines a
generic mechanism to associate the security token with a SOAP message. The use of security tokens is
defined in the various Version 1.0 and 1.1 security token profiles, such as:

* [The Username Token Profile]
* |The X.509 Token Profilg
+ [The Kerberos Token Profile|

For more information on security token profile development at OASIS, see [Organization for the]
[Advancement of Structured Information Standards}

54 securing WebSphere applications

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

The Web Services Security for SOAP Message Version 1.1 updates the Web Services Security for SOAP
Message core specification and the various security token profiles. For this release, WebSphere
Application Server implements the Username Token Profile 1.1 and the X.509 Token Profile 1.1, which
includes support for the Thumbprint type of security token reference. In addition, it supports the signature
confirmation and encrypted header portions of the Web Services Security Version 1.1 standard.

Note: The wire format (such as namespaces) in the WS-SecureConversation and WS-Trust 1.3
specification has changed. WebSphere Application Server version 7 tolerates requests formatted
according to both the Submission Drafts and version 1.3 specifications, but you must ensure that
the correct version is used when version 7 clients are communicating with a Web Services Feature
Pack service provider. You can disable tolerance of the older format for WS-SecureConversation
and WS-Trust 1.3 endpoints. Submission Drafts requests are not interoperable with version 1.3
standards.

Support for pluggable security tokens has been available since WebSphere Application Server Version
5.0.2. However, in WebSphere Application Server Versions 6.x and 7, the pluggable architecture is
enhanced to support the Web services security specifications, other profiles, and other Web services
security specifications. You can learn more about the pluggable security token framework for JAX-RPC
Web Services, and associating custom security tokens with SOAP messages, by reading these articles on
the IBM developerWorks® Web site:

« [Security for JAX-RPC Web services, Part 1: Generating custom tokens|
+ [Security for JAX-RPC Web services, Part 2: Consuming custom tokens|

WebSphere Application Server Version 7 includes the following key enhancements:
» Support for the LTPA version 2 token

» Support for configuration of multiple callers, and an order attribute on the caller to determine which
caller is used for the WebSphere credential

» Support for the published WS-SecurityPolicy version 1.2 specification embedded in WSDL

» Support for the WS-SecureConversation version 1.3 specification and the WS-Trust version 1.3
specification (used by WS-SecureConversation)

» Support for Kerberos token as defined in the WS-Kerberos Token Profile version 1.1 specification

For more information on some of these enhancements, see [‘Web services security enhancements” on|

Configuration of Web services security

WebSphere Application Server uses the policy set model for implementing the Web Services Security
Version 1.1 specification, including the Username token Version 1.1 profile, support for the Kerberos and
LTPA v2 tokens, and the X.509 token version 1.1 profile. Policy sets combine configuration settings,
including those for transport and message level configuration, such as WS-Addressing,
WS-ReliableMessaging, WS-SecureConversation, and WS-Security. For more information on policy sets,
refer to the topic Managing policy sets using the administrative console.

You can use the administrative console to configure the Web services security binding of a deployed
application with Web services security constraints that are defined in the policy set.

For the X.509 Certificate Token Profile, one new type of security token reference is the Thumbprint
reference, which is specified in the binding. WebSphere Application Server now supports creating and
authenticating a security token by using a security token reference (STR) with a key identifier and a
Thumbprint in the <Keylnfo> element. The Thumbprint key information type requires that there be a
keystore with the public and private key pair instead of a shared key. To use the Thumbprint of the
specified certificate, specify the keyInfo type THUMBPRINT in the bindings.

Chapter 5. Web services 95

http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

For example, a decryption key is referenced by means of the thumbprint of an associated certificate. The
certificate is not included in the message. Instead, the <ds:Keylnfo> element contains a
<wsse:SecurityTokenReference> element that specified the thumbprint of the specified certificate by
means of the http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1
attribute of the <wsse:Keyldentifier> element.

To take advantage of implementations associated with the Web services security Version 1.1 specification,
you must:

» Ensure that your applications use the Java API for XML Web Services (JAX-WS) programming model.
* Re-configure the Web services security constraints in the new policy set and binding format.

WebSphere Application Server provides the following tools that you can use to edit the policy set file and
the binding file:

IBM assembly tools
You can use IBM assembly tools to develop Web services and configure the policy set and the
binding file for Web services security. The tools enable you to assemble both Web and Enterprise
JavaBeans (EJB) modules. The assembly tools do not support direct editing of policy sets, but can

import policy sets from the application server, and then attach the modified policy sets to the
service. For more information on assembly tools, see the topic|Assembly tools
Note: You can use policy sets only with Java API for XML-Based Web Services (JAX-WS)

applications. You cannot use policy sets with Java API for XML-based RPC (JAX-RPC)
applications.

WebSphere Application Server administrative console
You can use the administrative console to configure the Web services security binding of a
deployed application with Web services security constraints that are defined in the policy set.

What is not supported

Web service security is still fairly new and some of the standards are still being defined or standardized.
The following functionality is not supported in WebSphere Application Server:

» JSR-183 (Java API for Web Services Security: SOAP Message Security 1.0 specification). See the
standard documentation for more information: JSR-183 (Java API for Web Services Security: SOAP|
[Message Security 1.0 specification)l

» Application programming interfaces (API) do not exist for Web services security in WebSphere
Application Server Versions 6.0.x and later.

» SAML token profile is not supported out of the box.
* REL token profile is not supported.
* SwaA profile is not supported

The following standards exist for the Java application programming interface for XML security and Web
services security:

JSR-105 (Java API for XML-Signature XPath Filter Version 2.0
W3C Recommendation, November 2002
+ |JSR-106 (Java API for XML Encryption Syntax and Processing)|
W3C Recommendation, December 2002

For information on what is supported for Web services security in WebSphere Application Server, see
|“Supported functionality from OASIS specifications” on page 61 |

56 Securing WebSphere applications

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core

Web services security enhancements

Version 6 and later applications

WebSphere Application Server includes a number of enhancements for securing Web services. For
example, policy sets are supported in WebSphere Application Server Version 6.1 Feature Pack for Web
Services, and later, to simplify security configuration for Web services.

Building your applications

The Web services security run time implementation used by WebSphere Application Server Version 7 is
based on the Java API for XML Web Services (JAX-WS) programming model. The JAX-WS run time is
based on Apache Open Source Axis2, and the data model is AXIOM. Instead of deployment descriptor and
bindings, a policy set is used for configuration. You can use the WebSphere Application Server
administrative console to edit the application binding files associated with the policy sets. The JAX-WS run
time is supported for the WebSphere Application Server V6.1 Feature Pack for Web Services, and later.

The JAX-RPC programming model, which uses deployment descriptors and bindings, is still supported.
Read the topic [Securing JAX-RPC Web services using message level security| for more information.

Using policy sets
Use policy sets to simplify your Web service Quality of Service configuration.

Note: Policy sets can only be used with JAX-WS applications, in WebSphere Application Server V6.1
Feature Pack for Web Services, and later. Policy sets cannot be used for JAX-RPC applications.

Policy sets combine configuration settings, including those for transport and message level configuration,
such as Web Services Addressing (WS-Addressing), Web Services Reliable Messaging
(WS-ReliableMessaging), and Web Services Security (WS-Security), which includes Secure Conversation
(WS-SecureConversation).

Managing trust policies

Web Services Security Trust (WS-Trust) provides the ability for an endpoint to issue a security context
token for Web Services Secure Conversation (WS-SecureConversation). The token issuing support is
limited to the security context token. Trust policy management defines a policy for each of the trust service
operations, such as issuing, cancelling, validating, and renewing a token. A client’s bootstrap policies must
correspond to the WebSphere Application Server trust service policies.

Securing session-based messages

Web Services Secure Conversation provides a secured session for long running message exchanges and
leveraging symmetric cryptographic algorithm. WS-SecureConversation provides the basic security for
securing session-based messages exchange patterns, such as Web Services Security Reliable Messaging
(WS-ReliableMessaging).

Updating message-level security

Web Services Security (WS-Security) Version 1.1 supports the following functions that update the
message-level security.

» Signature confirmation
* Encrypted headers

Chapter 5. Web services 57

Signature confirmation enhances the protection of XML digital signature security. The
<SignatureConfirmation> element indicates that the responder has processed the signature in the request,
and the signature confirmation ensures that the signature is indeed processed by the intended recipient.
To process signature confirmation correctly, the initiator must preserve the signatures during the request
generation processing and later must retrieve the signatures for confirmation checks even with the
stateless nature of Web Service and the different message exchange patterns. You enable signature
confirmation by configuring the policy.

The encrypted header element provides a standard way of encrypting SOAP headers, which helps
inter-operability. As defined in the SOAP message security specification, the <EncryptedHeader> element
indicates that a specific SOAP header (or set of headers) must be protected. Encrypting SOAP headers
and parts helps to provide more secure message-level security. The EncryptedHeader element ensures
compliance with the SOAP mustUnderstand processing guidelines and prevents disclosure of information
contained in attributes on a SOAP header block.

Using identity assertion

In a secured environment such as an intranet, a secure sockets layer (SSL) connection or through a
Virtual Private Network (VPN), it is useful to send the requester identity only without credentials, such as
password, with other trusted credentials, such as the server identity. WebSphere Application Server
supports the following types of identity assertions:

* A username token without a password
* An X.509 Token for a X.509 certificate

For more information about identity assertion, read the topic Trusted ID evaluator.
Signing or encrypting data with a custom token

For the JAX-RPC programming model, the key locator, or the
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface, is enhanced to support the flexibility of the
specification. The key locator is responsible for locating the key. The local JAAS Subject is passed into the
KeyLocator.getKey() method in the context. The key locator implementation can derive the key from the
token, which is created by the token generator or the token consumer, to sign a message, to verify the
signature within a message, to encrypt a message, or to decrypt a message. The
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface is different from the version in WebSphere
Application Server Version 5.x. The com.ibm.wsspi.wssecurity.config.KeyLocator interface from Version 5.x
is deprecated. There is no automatic migration for the key locator from Version 5.x to Versions 6 and later.
You must migrate the source code for the Version 5.x key locator implementation to the key locator
programming model for Version 6 and later.

For the JAX-WS programming model, the pluggable token framework reuses the same framework from the
WSS API. The same implementation for creating and validating a security token can be used in both the
Web services security run time and the WSS API application. This simplifies the SPI programming model
and makes it easier to add new or custom security token types. The redesigned SPI consists of the
following interfaces:

* The JAAS CallbackHandler and JAAS Login Module create security tokens on the generator side and
validate, or authenticate, security tokens on the consumer side.

* The Security Token interface, com.ibm.websphere.wssecurity.wssapi.token.SecurityToken, represents
the security token that has methods to get the identity, XML format and cryptographic keys.

When using JAX-WS, the following interfaces are no longer required:

» Token Generator (com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent)

» Token Consumer (com.ibm.wsspi.wssecurity.token.TokenConsumerComponent)

» Key Locator (com.ibm.wsspi.wssecurity.keyinfo.KeyLocator)

58 Securing WebSphere applications

You can learn more about custom security tokens by reading these articles on the IBM developerWorks
Web site:

« [Security for JAX-RPC Web services, Part 1: Generating custom tokens|
- [Security for JAX-RPC Web services, Part 2: Consuming custom tokens|

Signing or encrypting any XML element

An XPath expression is used for selecting which XML element to sign or encrypt. However, an envelope
signature is used when you sign the SOAP envelope, SOAP header, or Web services security header. In
JAX-RPC Web services, the XPath expression is specified in the application deployment descriptor. In
JAX-WS Web services, the XPath expression is specified in the WS-Security policy of the policy set.

The JAX-WS programming model uses policy sets to indicate the message parts where security should be
applied. For example, the <Body> assertion is used to indicate that the body of the SOAP message is
signed or encrypted. Another example is the <Header> assertion, where the QName of the SOAP header
to be signed or encrypted is specified.

Signing or encrypting SOAP headers

The OASIS Web Service Security (WS-Security) Version 1.1 support provides for a standard way of
encrypting and signing SOAP headers. To sign or encrypt SOAP messages, specify the QName to select
header elements in the SOAP header of the SOAP message.

You can configure policy sets for signing or encrypting either by using the administrative console or by
using Web Services Security APIs (WSS APIs). For more details, see the topic Securing message parts
using the administrative console.

For signing, specify the following:

Name This optional attribute indicates the local name of the SOAP header to be integrity protected. If this
attribute is not specified, all SOAP headers whose namespace matches the Namespace attribute
are to be protected.

Namespace
This required attribute indicates the namespace of the SOAP headers to be integrity protected.

For encrypting, specify the following:

Name This optional attribute indicates the local name of the SOAP header to be confidentiality protected.
If this attribute is not specified, all SOAP headers whose namespace matches the Namespace
attribute are to be protected.

Namespace
This required attribute indicates the namespace of the SOAP header(s) to be confidentiality
protected.

This results in an <EncryptedHeader> element that contains the <EncryptedData> element.

For Web Services Security Version 1.0 behavior, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.0 property with a value of true in
Encryptioninfo in the bindings. Specifying this property results in an <EncryptedData> element.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application Server
versions prior to version 7.0, specify the

com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.1.pre.V7 property with a value of true on the
<encryptioninfo> element in the binding. When this property is specified, the <EncryptedHeader> element
includes a wsu:ld parameter and the <EncryptedData> element omits the Id parameter. This property

Chapter 5. Web services 59

http://www.ibm.com/developerworks/websphere/library/techarticles/0803_chung/0803_chung.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0804_chung/0804_chung.html

should only be used if compliance with Basic Security Profile 1.1 is not required and it is necessary to
send <EncryptedHeader> elements to a client or server that uses the WebSphere Application Server
Version 5.1 Feature Pack for Web Services.

Supporting LTPA

Lightweight Third Party Authentication (LTPA) is supported as a binary security token in Web services
security. Web services security supports both LTPA (version 1) and LTPA version 2 tokens. The LTPA
version 2 token, which is more secure than version 1, is supported in WebSphere Application Server
version 7.0.

Extending the support for timestamps

You can insert a timestamp in other elements during the signing process besides the Web services
security header. This timestamp provides a mechanism for adding a time limit to an element. This support
is an extension for WebSphere Application Server. Other vendor implementations might not have the ability
to consume a message that is generated with an additional timestamp that is inserted in the message.

Extending the support for nonce

You can insert a nonce, which is a randomly generated value, in other elements beside the Username
token. The nonce is used to reduce the chance of a replay attack. This support is an extension for
WebSphere Application Server. Other vendor implementations might not have the ability to consume
messages with a nonce that is inserted into elements other than a Username token.

Supporting distributed nonce caching

Distributed nonce caching is a new feature for Web services in WebSphere Application Server Versions 6
and later that enables you to replicate nonce data between servers in a cluster. For example, you might
have application server A and application server B in cluster C. If application server A accepts a nonce
with a value of X, then application server B creates a SoapSecurityException if it receives the nonce with
the same value within a specified period of time.

Note: The distributed nonce caching feature uses the WebSphere Application Server data replication
service (DRS). The data in the local cache is pushed to the cache in other servers in the same
replication domain. The replication is an out-of-process call and, in some cases, is a remote call.
Therefore, there is a possible delay in replication while the content of the cache in each application
server within the cluster is updated. The delay might be due to network traffic, network workload,
machine workload, and so on. For adequate security protection, you must enable appropriate
security for the DRS cache. See the topic Multi-broker replication domains for more information.

Caching the X.509 certificate

WebSphere Application Server caches the X.509 certificates it receives, by default, to avoid certificate path
validation and improve its performance. However, this change might lead to security exposure. You can
disable X.509 certificate caching by using the following steps:

On the cell level:

» Click Security > Web services.

» Under Additional properties, click Properties > New.

* In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.
* In the Property value field, type false.

On the server level:
» Click Servers > Application servers > server_name .

60 Securing WebSphere applications

» Under Security, click Web services: Default bindings for Web services security.

» Under Additional properties, click Properties > New.

* In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.
* In the Property value field, type false.

Providing support for a certificate revocation list

The certificate revocation list (CRL) in WebSphere Application Server is used to enhance certificate path
validation. You can specify a CRL in the collection certificate store for validation. You can also encode a
CRL in an X.509 token using PKCS#7 encoding. However, WebSphere Application Server Version 6 and
later do not support X509PKIPathvi CRL encoding in a X.509 token.

Note: The PKCS#7 encoding was tested with the IBM certificate path (IBM CertPath) provider only. The
encoding is not supported for other certificate path providers.

Supported functionality from OASIS specifications
Version 6 and later applications

The application server supports the Organization for the Advancement of Structured Information (OASIS)
Web Services Security (WS-Security) specifications.

WebSphere Application Server supports these OASIS Web Services Security Version 1.0 specifications.
+ [OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)|

+ [OASIS: Web Services Security: UsernameToken Profile 1.0|

+ [OASIS: Web Services Security X.509 Certificate Token Profile 1.0}

In WebSphere Application Server Version 6.1 Feature Pack for Web Services, and later, support for the
OASIS standards has been updated to the latest versions of Web Service Security (WS-Security)
specifications and tokens. Web Services Security Version 1.1 provides better security verification for
signature, a standard way of encrypting SOAP headers, and meets the requirement from some of the
inter-operability scenarios that use features from Web Service Security Version 1.1.

+ |[OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS Standard|
Specification, 1 February 2006

« [OASIS: Web Services Security UsernameToken Profile 1.1 (Standard Specification, 1 February 2006)|
- |[OASIS: Web Services Security X.509 Certificate Token Profile 1.1 (Standard Specification, 1 February|

2006)]

The following standards are supported only in WebSphere Application Server Version 7.0.
« [WS-Security Kerberos Token Profile 1.1|

+ |WS-SecureConversation Version 1.3|

» [WS-Trust Version 1.3
« |WS-SecurityPolicy Version 1.2

WS-SecurityPolicy support is only available for Web Services Metadata Exchange (WS-
MetadataExchange) scenarios where the assertions are embedded in the WSDL file. For more information,
read the WS-MetadataExchange requests topic.

In 2007, the OASIS Web Services Secure Exchange Technical Committee (WS-SX) produced and
approved the following specifications. Portions of these specifications are supported by WebSphere
Application Server Version 7.

+ [WS-SecureConversation|

Chapter 5. Web services 61

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf

°

* [WS-SecurityPolicy|

OASIS: Web Services Security SOAP Message Security 1.0 and 1.1

The following table shows the aspects of the OASIS: Web Services Security: SOAP Message Security 1.0
and 1.1 specifications that are supported in WebSphere Application Server Versions 6 and later.

Supported topic

Specific aspect that is supported

Security header

* @S11:actor (for an intermediary)
¢ @S11:mustUnderstand
¢ @S12:mustUnderstand

* @S12:role (S12 is the namespace prefix for http://www.w3.0rg/2003/05/soap-envelope when
using SOAP Version 1.2)

Security tokens

* Username token (user name and password)
» Binary security token (X.509 and Lightweight Third Party Authentication (LTPA)
* Custom token

— Other binary security token

— XML token
Note: WebSphere Application Server does not provide an implementation, but you can
use an XML token with plug-in point.

Token references

» Direct reference

* Key identifier

* Key name

* Embedded reference

Signature

Signature confirmation

62 Securing WebSphere applications

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

Supported topic | Specific aspect that is supported

Signature - Digest
algorithms
SHA1 http:// www.w3.0rg/2000/09/xmldsig#sha1

SHA256
http://www.w3.0rg/2001/04/xmlenc#sha256

SHA512
http://www.w3.0rg/2001/04/xmlenc#sha512

* MAC

HMAC-SHA1
http://www.w3.0rg/2000/09/xmldsig#hmac-sha1

» Signature

DSA with SHA1
http://www.w3.0rg/2000/09/xmldsig#dsa-shat

Do not use this algorithm if you want your configured application to be in compliance
with the Basic Security Profile (BSP)

RSA with SHA1
http://www.w3.0rg/2000/09/xmldsig#rsa-sha

* Canonicalization

Canonical XML (with comments)
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315#WithComments

Canonical XML (without comments)
http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

Exclusive XML canonicalization (with comments)
http://www.w3.0rg/2001/10/xml-exc-c14n#WithComments

Exclusive XML canonicalization (without comments)
http://www.w3.0rg/2001/10/xml-exc-c14n#

¢ Transform

STR transform
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-message-security-
1.0#STR-Transform

http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soapmessage-
security-1.0#STR-Transform

XPath http://www.w3.0rg/TR/1999/REC-xpath-19991116

Do not use the original XPATH transform if you want your configured application to
be in compliance with the Basic Security Profile (BSP).

Note: When referring to an element in a SECURE_ENVELOPE that does not carry
an attribute of type ID from a ds:Reference in a SIGNATURE, you must use the
XPATH Filter 2.0 Transform, http://www.w3.0rg/2002/06/xmldsig-filter2

Enveloped signature
http://www.w3.0rg/2000/09/xmldsig#enveloped-signature

XPath Filter2
http://www.w3.0rg/2002/06/xmldsig-filter2
Note: When referring to an element in a SECURE_ENVELOPE that does not carry
an ID attribute type from a ds:Reference in a SIGNATURE, you must use the
XPATH Filter 2.0 Transform, http://www.w3.0rg/2002/06/xmldsig-filter2

Decryption transform
http://www.w3.0rg/2002/07/decrypt#XML

Chapter 5. Web services 63

Supported topic

Specific aspect that is supported

Signature signed
parts for JAX-RPC
only

* WebSphere Application Server key words:

body, which signs the SOAP message body

timestamp, which signs all of the time stamps

securitytoken, which signs all of the security tokens

dsigkey, which signs the signing key

enckey, which signs the encryption key

messageid, which signs the wsa :MessageID element in WS-Addressing.

to, which signs the wsa:To element in WS-Addressing

action, which signs the wsa:Action element in WS-Addressing

relatesto, which signs the wsa:RelatesTo element in WS-Addressing

wsa is the namespace prefix of http://schemas.xmlsoap.org/ws/2004/08/addressing

wscontext, which specifies the WS-Context header for the SOAP header. For more
information, see |Propagating work area context over Web services|

wsafrom, which specifies the <wsa: From> WS-Addressing From element in the SOAP
header.

wsareplyto, which specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the
SOAP header.

wsafaultto, which specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the
SOAP header.

wsaall, which specifies all of the WS-Addressing elements in the SOAP header.

« XPath expression to select an XML element in a SOAP message. For more information, see

[ttp://www.w3.org/TR/1999/REC-xpath-19991116|

Signature message
parts for JAX-WS
only

Body (which signs the SOAP message body)

Header (which signs one or more SOAP headers within the main SOAP header)

» XPath expression to select an XML element in a SOAP message.

For more information, see http://www.w3.0rg/TR/1999/REC-xpath-19991116.

Encryption

EncryptedHeader element

64 Securing WebSphere applications

http://www.w3.org/TR/1999/REC-xpath-19991116

Supported topic

Specific aspect that is supported

Encryption
algorithms

» Data encryption
— Triple DES in CBC: http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc
— AES128 in CBC: http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
— AES192 in CBC: http://www.w3.0rg/2001/04/xmlenc#aes192-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key
encryption algorithm description in the|“Encryption information configuration settings|
[Message parts” on page 387

Do not use the 192-bit data encryption algorithm if you want your configured application to
be in compliance with the Basic Security Profile (BSP).

— AES256 in CBC: http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key
encryption algorithm description in the|“Encryption information configuration settings|
[Message parts” on page 387

= Key encryption
— Key transport (public key cryptography)

- |http://www.w3.0rg/2001/04/xmlenci#rsa-oaep-mgf1p|
Note:

* When running with Software Development Kit (SDK) Version 1.4, the list of
supported key transport algorithms does not include this one. This algorithm appears
in the list of supported key transport algorithms when running with SDK Version 1.5.

» Use of the Federal Information Processing Standard (FIPS)-compliant Java
cryptography engine does not support this transport algorithm.

- RSA Version 1.5: http://www.w3.0rg/2001/04/xmlenc#rsa-1_5
— Symmetric key wrap (private key cryptography)
- Triple DES key wrap: http://www.w3.0rg/2001/04/xmlenc#kw-tripledes
- AES key wrap (aes128): http://www.w3.0rg/2001/04/xmlenc#kw-aes128
- AES key wrap (aes192): http://www.w3.0rg/2001/04/xmlenc#kw-aes192

This algorithm requires the unrestricted JCE policy file. For more information, see the
Key encryption algorithm description in the FEncryption information configuration|
lsettings: Message parts” on page 387.
Do not use the 192-bit data encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

- AES key wrap (aes256): http://www.w3.0rg/2001/04/xmlenc#kw-aes256

This algorithm requires the unrestricted JCE policy file. For more information, see the
Key encryption algorithm description in the [‘Encryption information configuration|
lsettings: Message parts” on page 387.

* Manifests-xenc is the namespace prefix of http://www.w3.org/TR/xmlenc-core

— xenc:ReferencelList
— xenc:EncryptedKey

Advanced Encryption Standard (AES) is designed to provide stronger and better performance
for symmetric key encryption over Triple-DES (data encryption standard). Therefore, it is
recommended that you use AES, if possible, for symmetric key encryption.

Chapter 5. Web services 65

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Supported topic

Specific aspect that is supported

Encryption
message parts for
JAX-RPC only

» WebSphere Application Server keywords
— bodycontent, which is used to encrypt the SOAP body content
— usernametoken, which is used to encrypt the username token
— digestvalue, which is used to encrypt the digest value of the digital signature
— signature, which is used to encrypt the entire digital signature

— wscontextcontent, which encrypts the content in the WS-Context header for the SOAP
header. For more information, see|Propagating work area context over Web services,

» XPath expression to select the XML element in the SOAP message
— XML elements

— XML element contents

Encryption
message parts for
JAX-WS only

» Body (which encrypts the SOAP message body content)

* Header (which encrypts one or more SOAP headers within the main SOAP header, resulting
in the EncryptedHeader element)

» XPath expression to select an XML element in a SOAP message
— For more information, see http://www.w3.0rg/TR/1999/REC-xpath-19991116.

Time stamp

» Within Web services security header

» WebSphere Application Server is extended to allow you to insert time stamps into other
elements so that the age of those elements can be determined.

Error handling

SOAP faults
* New failure SOAP fault with faultcode
* The message has expired text has been added

OASIS: Web Services Security UsernameToken Profile 1.0

The following table shows the aspects of the OASIS: Web Services Security Username Token Profile 1.0
specification that is supported in WebSphere Application Server.

Supported topic

Specific aspect that is supported

Password types

Text

Token references

Direct reference

OASIS: Web Services Security UsernameToken Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security Username Token Profile 1.1
specification that is supported in WebSphere Application Server. ltems that were previously supported for
Web Services Security UsernameToken Profile 1.0 are not listed but are still supported, unless noted

otherwise.

Supported topic

Specific aspect that is supported

Password types

Text

Token references

Direct reference

OASIS: Web Services Security X.509 Certificate Token Profile 1.0

The following table shows the aspects of the OASIS: Web Services Security X.509 Certificate Token
Profile specification that are supported in WebSphere Application Server Versions 6 and later.

66 Securing WebSphere applications

Supported topic

Specific aspect that is supported

Token types

» X.509 Version 3: Single certificate
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509- token-profile-1.0#X509v3
» X.509 Version 3: X509PKIPathv1 without certificate revocation lists (CRL)

http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-x509- token-profile-
1.0#X509PKIPathv1

» X.509 Version 3: PKCS7 with or without CRLs. The IBM software development kit (SDK)
supports both. The Sun Java SE Development Kit 6 (JDK 6) supports PKCS7 without CRL
only.

Token references

» Key identifier — subject key identifier
* Direct reference
e Custom reference — issuer name and serial number

OASIS: Web Services Security X.509 Certificate Token Profile 1.1

The following table shows the aspects of the OASIS: Web Services Security X.509 Certificate Token
Profile 1.1 specification that are supported in WebSphere Application Server. Items that were previously
supported for Web Services Security X.509 Certificate Token Profile 1.0 are not listed but are still
supported, unless noted otherwise.

Supported topic

Specific aspect that is supported

Token types

X.509 Version 1: Single certificate

Token references

Key identifier — subject key identifier
» Can only reference an X.509v3 certificate

« Can specify the thumbprint of the specified certificate by using the http://docs.oasis-open.org/

wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1 attribute of the
wsse:Keyldentifier> element.

OASIS: Web Services Security Kerberos Token Profile 1.1

The following table shows the aspects of the OASIS: Web Services Kerberos Token Profile 1.1
specification that are supported in WebSphere Application Server.

Chapter 5. Web services

67

Supported topic

Specific aspect that is supported

Token types

GSS_API Kerberos v5 token

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_RE
GSS_API Kerberos v5 token per RFC1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_RE
GSS_API Kerberos v5 token per RFC4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_RE
Kerberos v5 token

http://docs.oasis-open.org/wss/oasiswss- kerberos-token-profile-1.1#Kerberosv5_AP_REQ
Kerberos v5 token per RFC1510

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ151(
Kerberos v5 token per RFC4120

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ412

01510

04120

Token references

Security token reference
Key identifier, which is used after the initial Kerberos v5 token is consumed
Derived key token based on the Kerberos key

OASIS: Web Services Security WS-Secure Conversation Draft and Version 1.3

The following table shows the aspects of the OASIS: WS-SecureConversation specification that are
supported in WebSphere Application Server Version 6.1 Feature Pack for Web Services, and later. Support
for Version 1.3 of the specification is provided in WebSphere Application Server Version 7.0.

Supported topic

Specific aspect that is supported

Token types

Security Context Token draft version: http://schemas.xmlsoap.org/ws/2005/02/sc/sct

Security Context Token Version 1.3: http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512/sct

Token references

Direct reference

Security context
establishment

Security context token created by a security token service that is embedded in the WebSphere
Application Server.

Renewing context

Automatic renewal of the token when its about to expire.

Cancelling context

Explicit cancel request support.

Derived keys

The following information is used to derive the keys using a shared secret from a security
context:

/wsc:DerivedKeyToken/wsse:SecurityTokenReference
/wsc:DerivedKeyToken/wsc:Label
/wsc:DerivedKeyToken/wsc:Nonce

/wsc:DerivedKeyToken/wsc:Length

68 Securing WebSphere applications

Supported topic | Specific aspect that is supported

Error handling SOAP faults, including:

» wsc:BadContextToken

» wsc:UnsupportedContextToken
* wsc:RenewNeeded

* wsc:UnableToRenew

OASIS: Web Services Security WS-Trust Version 1.0 Draft and Version 1.3

The following tables show the aspects of the OASIS: Web Services Security: WS-Trust Version 1.0 Draft
and Version 1.3 specifications that are supported in WebSphere Application Server Version 6.1 Feature
Pack for Web Services, and later.

Table 1. Supported topics for WS-Trust Version 1.0 Draft

Supported topic | Specific aspect that is supported

Namespace http://schemas.xmlsoap.org/ws/2005/02/trust

Request header /wsa:Action

Valid options include:

* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue

* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Renew
* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Cancel
* http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Validate

Chapter 5. Web services 69

Table 1. Supported topics for WS-Trust Version 1.0 Draft (continued)

Supported topic

Specific aspect that is supported

Request elements
and attributes

/wst:RequestSecurityToken

/wst:RequestSecurityToken/ @ Context

/wst:RequestSecurity Token/wst:RequestType

« Valid options include:

http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
http://schemas.xmlsoap.org/ws/2005/02/trust/Renew
http://schemas.xmlsoap.org/ws/2005/02/trust/Cancel
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate

/wst:RequestSecurityToken/wst: TokenType

= Valid options include:

— for http://schemas.xmlsoap.org/ws/2005/02/sc/sct

/wst:RequestSecurityToken/wsp:AppliesTo

/wst:RequestSecurity Token/wst:Entropy
/wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret

/wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/ @ Type

— for http://schemas.xmlsoap.org/ws/2005/02/trust/Nonce

/wst:RequestSecurityToken/wst:Lifetime
/wst:RequestSecurity Token/wst:Lifetime/wsu:Created
/wst:RequestSecurityToken/wst:Lifetime/wsu:Expires
/wst:RequestSecurityToken/wst:KeySize
/wst:RequestSecurityToken/wst:KeyType

— for http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

/wst:RequestSecurityToken/wst:RenewTarget
/wst:RequestSecurity Token/wst:Renewing
/wst:RequestSecurityToken/wst:Renewing/ @ Allow
/wst:RequestSecurityToken/wst:Renewing/@ OK
/wst:RequestSecurityToken/wst:CancelTarget
/wst:RequestSecurityToken/wst:ValidateTarget
/wst:RequestSecurity Token/wst:Issuer

Response header

/wsa:Action

Valid options include:

* http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue

* http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Renew
* http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Cancel
* http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate

70 Securing WebSphere applications

Table 1. Supported topics for WS-Trust Version 1.0 Draft (continued)

Supported topic

Specific aspect that is supported

Response elements
and attributes

/wst:RequestSecurityTokenResponse
/wst:RequestSecurityTokenResponse/ @ Context
/wst:RequestSecurityTokenResponse/wst: TokenType
/wst:RequestSecurityTokenResponse/wst:RequestedSecurity Token
/wst:RequestSecurityTokenResponse/wsp:AppliesTo
/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken
/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken
/wst:RequestSecurityTokenResponse/wst:Entropy
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret/ @ Type
/wst:RequestSecurityTokenResponse/wst:Lifetime
/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Created
/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Expires
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey
/wst:RequestSecurityTokenResponse/wst:KeySize
/wst:RequestSecurityTokenResponse/wst:Renewing
/wst:RequestSecurityTokenResponse/wst:Renewing/ @ Allow
/wst:RequestSecurityTokenResponse/wst:Renewing/ @ OK
/wst:RequestSecurityTokenResponse/wst:RequestedTokenCancelled
/wst:RequestSecurityTokenResponse/wst:Status

/wst:RequestSecurityTokenResponse/wst:Status /wst:RequestSecurityTokenResponse/
wst:Status/wst:Code

* Valid responses include:
— http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid
— http://schemas.xmlsoap.org/ws/2005/02/trust/status/invalid

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason

Chapter 5. Web services

71

Table 1. Supported topics for WS-Trust Version 1.0 Draft (continued)

Supported topic Specific aspect that is supported

Error handling wst:InvalidRequest
wst:FailedAuthentication
wst:RequestFailed
wst:InvalidSecurityToken
wst:AuthenticationBadElements
wst:BadRequest
wst:ExpiredData
wst:InvalidTimeRange
wst:InvalidScope

wst:RenewNeeded

wst:UnableToRenew

Table 2. Supported topics for WS-Trust Version 1.3

Supported topic Specific aspect that is supported

Namespace http://docs.oasis-open.org/ws-sx/ws-trust/200512

Request header /wsa:Action

Valid options include:
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew
* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate
» http://docs.oasis-open.org/ws-sx/ws-trust/200512/Batchlssue
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew
* http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

72 Securing WebSphere applications

Table 2. Supported topics for WS-Trust Version 1.3 (continued)

Supported topic

Specific aspect that is supported

Request elements
and attributes

/wst:RequestSecurityToken

/wst:RequestSecurityToken/@ Context

/wst:RequestSecurityToken/wst:RequestType

Valid options include:

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

— http:/docs.oasis-open.org/ws-sx/ws-trust/200512/Renew

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate

— http://docs.oasis-open.org/ws-sx/ws-trust/200512/Batchlssue
— http:/docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew
— http:/docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel
— http:/docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

/wst:RequestSecurityToken/wst: TokenType

Valid options include:
— for http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
- /wst:RequestSecurityToken/wsp:AppliesTo
- /wst:RequestSecurityToken/wst:Entropy
- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret
- /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/ @ Type
— for http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce
- /wst:RequestSecurityToken/wst:Lifetime
- /wst:RequestSecurityToken/wst:Lifetime/wsu:Created
- /wst:RequestSecurityToken/wst:Lifetime/wsu:Expires
- /wst:RequestSecurityToken/wst:KeySize
- /wst:RequestSecurityToken/wst:KeyType
— for http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
- /wst:RequestSecurityToken/wst:RenewTarget
- /wst:RequestSecurityToken/wst:Renewing
- /wst:RequestSecurityToken/wst:Renewing/ @ Allow
- /wst:RequestSecurityToken/wst:Renewing/@OK
- /wst:RequestSecurityToken/wst:CancelTarget
- /wst:RequestSecurityToken/wst:Validate Target
- /wst:RequestSecurityToken/wst:Issuer

Response header

/wsa:Action

Valid options include:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/CancelFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/RenewFinal
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/ValidateFinal

Chapter 5. Web services

73

Table 2. Supported topics for WS-Trust Version 1.3 (continued)

Supported topic

Specific aspect that is supported

Response elements
and attributes

/wst:RequestSecurityTokenResponse
/wst:RequestSecurityTokenResponse/ @ Context
/wst:RequestSecurityTokenResponse/wst: TokenType
/wst:RequestSecurityTokenResponse/wst:RequestedSecurity Token
/wst:RequestSecurityTokenResponse/wsp:AppliesTo
/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken
/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken
/wst:RequestSecurity TokenResponse/wst:Entropy
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret
/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret/ @ Type
/wst:RequestSecurityTokenResponse/wst:Lifetime
/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Created
/wst:RequestSecurityTokenResponse/wst:Lifetime/wsu:Expires
/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey
/wst:RequestSecurityTokenResponse/wst:KeySize
/wst:RequestSecurityTokenResponse/wst:Renewing
/wst:RequestSecurityTokenResponse/wst:Renewing/ @ Allow
/wst:RequestSecurityTokenResponse/wst:Renewing/ @ OK
/wst:RequestSecurityTokenResponse/wst:RequestedTokenCancelled
/wst:RequestSecurityTokenResponse/wst:Status

/wst:RequestSecurityTokenResponse/wst:Status/wst:Code

» Valid responses include:
— http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid
— http:/docs.oasis-open.org/ws-sx/ws-trust/200512/status/invalid

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason

74 Securing WebSphere applications

Table 2. Supported topics for WS-Trust Version 1.3 (continued)

Supported topic Specific aspect that is supported

Error handling wst:InvalidRequest
wst:FailedAuthentication
wst:RequestFailed
wst:InvalidSecurityToken
wst:AuthenticationBadElements
wst:BadRequest
wst:ExpiredData
wst:InvalidTimeRange
wst:InvalidScope

wst:RenewNeeded

wst:UnableToRenew

Functionality that is not supported by WebSphere Application Server

The following list shows the functionality that is supported in the OASIS specifications, OASIS drafts, and
other recommendations but is not supported by WebSphere Application Server Version 6 and later:

» Security Assertion Markup Language (SAML) token profile
* Web services security SOAP Messages with Attachments (SwA) profile 1.0

Note: When using the JAX-WS programming model, securing the SOAP Message Transmission
Optimization Mechanism (MTOM) attachment is supported. See the topic Enabling MTOM for
JAX-WS Web services for more information.

* XrML token profile

« XML enveloping digital signature

» XML enveloping digital encryption

» The following WS-SecureConversation functionality is not supported by WebSphere Application Server:

— Two methods for establishing security context are not supported: 1) security context token created by
one of the communicating parties and propagated with a message; and 2) security context token
created through negotiation or exchanges.

— SCT propagation
— Amending security contexts
» The following transform algorithms for digital signatures are not supported:
— XSLT: http://www.w3.0rg/TR/1999/REC-xslt-19991116
— SOAP Message Normalization

See[SOAP Version 1.2 Message Normalization| for information, such as an empty header or header
entry with mustUnderstand=false is removed, and so forth.

— Decryption transform
» The following key agreement algorithm for encryption is not supported:
— Diffie-Hellman: |http://www.w3.0rg/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-|

|DH KexVaIue|

Chapter 5. Web services 75

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

* The following canonicalization algorithm for encryption, which is optional in the XML encryption
specification, is not supported:

— Canonical XML with or without comments
— Exclusive XML Canonicalization with or without comments
» DSA digital signature is not supported.
* Pre-agreed symmetric key data encryption is not supported.
» Auditing for nonrepudiation for digital signatures is not supported.
* In both versions of the Username Token Profile specification, the digest password type is not supported.
* In the Username Token Version 1.1 Profile specification, the key derivation based on a password is not

supported.

Unsupported function for WS-Trust Version 1.0 Draft and Version 1.3

The following tables show the aspects of the OASIS: Web Services Security: WS-Trust Version 1.0 Draft
and Version 1.3 specifications that are not supported in WebSphere Application Server Version 6.1
Feature Pack for Web Services, and later.

Table 3. Unsupported topics for WS-Trust Version 1.0 Draft

Unsupported
topic

Specific aspect that is not supported

Elements and
attributes

/wst:RequestSecurity Token/wst:Entropy/wst:BinarySecret/ @ Type

Unsupported request options:

« for http://schemas.xmlsoap.org/ws/2005/02/trust/AsymmetricKey and http:/
schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey

— /wst:RequestSecurityToken/wst:Claims
— /wst:RequestSecurityToken/wst:AllowPostdating
— /wst:RequestSecurity Token/wst:OnBehalfOf
— /wst:RequestSecurityToken/wst:AuthenticationType
— /wst:RequestSecurityToken/wst:KeyType
 for http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey
— /wst:RequestSecurity Token/wst:SignatureAlgorithm
— /wst:RequestSecurityToken/wst:EncryptionAlgorithm
— /wst:RequestSecurityToken/wst:CanonicalizationAlgorithm
— /wst:RequestSecurity Token/wst:ComputedKeyAlgorithm
— /wst:RequestSecurity Token/wst:Encryption
— /wst:RequestSecurityToken/wst:ProofEncryption
— /wst:RequestSecurityToken/wst:UseKey
— /wst:RequestSecurityToken/wst:UseKey/ @ Sig
— /wst:RequestSecurity Token/wst:SignWith
— /wst:RequestSecurity Token/wst:EncryptWith
— /wst:RequestSecurityToken/wst:DelegateTo
— /wst:RequestSecurityToken/wst:Forwardable
— /wst:RequestSecurityToken/wst:Delegatable
— /wst:RequestSecurityToken/wsp:Policy
— /wst:RequestSecurityToken/wsp:PolicyReference

Response elements
and attributes

/wst:RequestSecurityTokenResponseCollection

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurity TokenResponse

76 Securing WebSphere applications

Table 4. Unsupported topics for WS-Trust Version 1.3

Unsupported

topic Specific aspect that is not supported

Elements and /wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret/ @ Type
attributes

Unsupported request options:

 for http://docs.oasis-open.org/ws-sx/ws-trust/200512/AsymmetricKey and
http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey

/wst:RequestSecurityToken/wst:Claims
/wst:RequestSecurity Token/wst:AllowPostdating

/wst:RequestSecurity Token/wst:OnBehalfOf

/wst:RequestSecurity Token/wst:AuthenticationType

/wst:RequestSecurityToken/wst:KeyType

« for http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey and http://docs.oasis-
open.org/ws-sx/ws-trust/200512/Bearer

— /wst:RequestSecurityToken/wst:SignatureAlgorithm

— /wst:RequestSecurityToken/wst:EncryptionAlgorithm

— /wst:RequestSecurityToken/wst:CanonicalizationAlgorithm
— /wst:RequestSecurity Token/wst:ComputedKeyAlgorithm
— /wst:RequestSecurityToken/wst:Encryption

— /wst:RequestSecurityToken/wst:ProofEncryption

— /wst:RequestSecurityToken/wst:UseKey

— /wst:RequestSecurityToken/wst:UseKey/ @ Sig

— /wst:RequestSecurity Token/wst:SignWith

— /wst:RequestSecurityToken/wst:EncryptWith

— /wst:RequestSecurityToken/wst:DelegateTo

— /wst:RequestSecurityToken/wst:Forwardable

— /wst:RequestSecurityToken/wst:Delegatable

— /wst:RequestSecurityToken/wsp:Policy

— /wst:RequestSecurityToken/wsp:PolicyReference

Response header |/wsa:Action

Unsupported Responses:

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Issue
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Renew
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Cancel
* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Validate

Web services security specification - a chronology

The development of the Web services security specification includes information on the Organization for
the Advancement of Structured Information Standards (OASIS) Web services security specification. The
OASIS Web services security specification serves as a basis for securing Web services in WebSphere
Application Server.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based

Chapter 5. Web services 77

annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

Advantages of using the JAX-WS programming model in WebSphere Application Server version 7.0
include:

» The configuration of qualities of service (QoS) is simplified when using policy sets. Policy sets combine
configuration settings, including those for transport and message-level configuration. Policy sets and
general bindings can be reused across multiple applications, making Web services QoS more
consumable.

» WS-Security for JAX-WS is supported in both a managed environment, such as a Java EE container,
and unmanaged environments, such as Java Platform, Standard Edition (Java SE 6). In addition, there
is an API for enabling WS-Security in the JAX-WS client.

Non-OASIS activities

Web services is gaining rapid acceptance as a viable technology for interoperability and integration.
However, securing Web services is one of the paramount quality of services that makes the adoption of
Web services a viable industry and commercial solution for businesses. IBM and Microsoft® jointly
published a security white paper on Web services entitled [Security in a Web Services World: A Proposed
|Architecture and Roadmap| The white paper discusses the following initial and subsequent specifications
in the proposed Web services security roadmap:

Web service security
This specification defines how to attach a digital signature, use encryption, and use security tokens
in SOAP messages.

WS-Policy
This specification defines the language that is used to describe security constraints and the policy
of intermediaries or endpoints.

WS-Trust
This specification defines a framework for trust models to establish trust between Web services.

WS-Privacy
This specification defines a model of how to express a privacy policy for a Web service and a
requester.

WS-SecureConversation
This specification defines how to exchange and establish a secured context, which derives session
keys between Web services.

WS-Authorization

This specification defines the authorization policy for a Web service. However, the
WS-Authorization specification has not been published. The existing implementation of Web
services security is based upon the Web Services for Java Platform, Enterprise Edition (Java EE)
or Java Specification Requirements (JSR) 109 specification. The implementation of Web services
security leverages the Java EE role-based authorization checks. For conceptual information on
role-based authorization, see |Ro|e-based authorization|. If you develop a Web service that requires
method-level authorization checks, then you must use stateless session beans to implement your
Web service. For more information, see |“Securing enterprise bean applications” on page 23.|

If you develop a Web service that is implemented as a servlet, you can use coarse-grained or
URL-based authorization in the Web container. However, in this situation, you cannot use the
identity from Web services security for authorization checks. Instead, you can use the identity from
the transport. If you use SOAP over HTTP, then the identity is in the HTTP transport.

This following figure shows the relationship between these specifications:

78 Securing WebSphere applications

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/

WS-SecureConversation WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

Web service security: SOAP message security

SOAP messaging

In April 2002, IBM, Microsoft, and VeriSign proposed the Web Services Security (WS-Security)
specification on their Web sites as depicted by the green box in the previous figure. This specification
included the basic ideas of a security token, XML digital signature, and XML encryption. The specification
also defined the format for user name tokens and encoded binary security tokens. After some discussion
and an interoperability test based on the specification, the following issues were noted:

» The specification requires that the Web services security processors understand the schema correctly
so that the processor distinguishes between the ID attribute for XML digital signature and XML
encryption.

* The freshness of the message, which indicates whether the message complies with predefined time
constraints, cannot be determined.

» Digested password strings do not strengthen security.

In August 2002, IBM, Microsoft, and VeriSign published the Web Services Security Addendum, which
attempted to address the previously listed issues. The following solutions were addressed in the
addendum:

* Require a global ID attribute for XML signature and XML encryption.

» Use time stamp header elements that indicate the time of the creation, receipt, or expiration of the
message.

* Use password strings that are digested with a time stamp and nonce, which is a randomly generated
token.

The specifications for the blue boxes in the previous figure have been proposed by various industry
vendors and various interoperability events have been organized by the vendors to verify and refine the
proposed specifications.

OASIS activities

In June 2002, OASIS received a proposed Web services security specification from IBM, Microsoft, and
VeriSign. The Web Services Security Technical Committee (WSS TC) was organized at OASIS soon after
the submission. The technical committee included many companies including IBM, Microsoft, VeriSign,
Sun Microsystems, and BEA Systems.

In September 2002, WSS TC published its first specification, Web Services Security Core Specification,
Working Draft 01. This specification included the contents of both the original Web services security
specification and its addendum.

The coverage of the technical committee became larger as the discussion proceeded. Because the Web
Services Security Core Specification allows arbitrary types of security tokens, proposals were published as
profiles. The profiles described the method for embedding tokens, including Security Assertion Markup

Chapter 5. Web services 79

Language (SAML) tokens and Kerberos tokens embedded into the Web services security messages.
Subsequently, the definitions of the usage for user name tokens and X.509 binary security tokens, which
were defined in the original Web Services Security Specification, were divided into the profiles.

WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1 support the following specifications:

* Web Services Security: SOAP Message Security Draft 13 (formerly Web Services Security Core
Specification)

* Web Services Security: Username Token Profile Draft 2

In April 2004, the Web service security specification (officially called Web Services Security: SOAP
Message Security Version 1.0) became the Version 1.0 OASIS standard. Also, the Username token and
X.509 token profiles are Version 1.0 specifications. WebSphere Application Server 6 and later support the
following Web services security specifications from OASIS:

» |Web Services Security: SOAP Message Security 1.0 specification|

+ [Web Services Security: Username Token 1.0 Profilg]

« [Web Services Security: X.509 Token 1.0 Profilé]

In February 2006, the core Web service security specification was updated and became the Version 1.1
OASIS standard. Also, the Username token, X.509 token profile, and Kerberos token profile were updated
to the Version 1.1 specifications. Portions of the following Web services security specifications from OASIS
are supported in WebSphere Application Server, specifically signature confirmation, encrypted header, and
thumbprint references:

+ |[OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004) OASIS Standard|
Specification, 1 February 2006
+ |[OASIS: Web Services Security UsernameToken Profile 1.1 OASIS Standard Specification, 1 February|

2006

+ [OASIS: Web Services Security X.509 Certificate Token Profile 1.1 OASIS Standard Specification, 1

February 2006|

The following specification describes the use of Kerberos tokens with respect to the Web services security
message security specifications. The specification defines how to use a Kerberos token to support
authentication and message protection: [OASIS: Web Services Security Kerberos Token Profile 1.1 OASIS|
[Standard Specification, 1 February 2006}

In 2007, the OASIS Web Services Secure Exchange Technical Committee (WS-SX) produced and
approved the following specifications. Portions of these specifications are supported by WebSphere
Application Server Version 7.

+ [WS-SecureConversation|

.

« [WS-SecurityPolicy|

The following figure shows the various Web services security-related specifications.

80 Securing WebSphere applications

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf

April 2002 WS-Security

August 2002 WS-
Security Addendum

September 2002 WS-
Core Draft 1

May 2003 February 2003
Web Services Security: Web Services Security:

SOAP Message Security || Username Token Public
Draft 13 Draft 2

April 2004 April 2004 April 2004
Web Services Security: || Web Services Security: Web Services Security:
SOAP Message Security | | Username Token Public X.509 Token Public
Version 1.0 Version 1.0 Version 1.0

WebSphere Application Server also provides plug-in capability to enable security providers to extend the
runtime capability and implement some of the higher level specifications in the Web service security stack.
The plug-in points are exposed as Service Provider Programming Interfaces (SPI). For more information
on these SPIs, see [‘Default implementations of the Web services security service provider programming|
interfaces” on page 116

Web services security specification 1.0 development

The OASIS Web services security specification is based upon the following World Wide Web Consortium
(W3C) specifications. Most of the W3C specifications are in the standard body recommended status.

+ [XML-Signature Syntax and Processing
W3C recommendation, February 2002 (Also, IETF RFC 3275, March 2002)

« [Canonical XML Version 1.0|

W3C recommendation, March 2001

[Exclusive XML Canonicalization Version 1.0}

W3C recommendation, July 2002

[XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

« XML Encryption Syntax and Processing
W3C Recommendation, December 2002

« |Decryption Transform for XML Signature|
W3C Recommendation, December 2002

These specifications are supported in WebSphere Application Server in the context of Web services
security. For example, you can sign a SOAP message by specifying the integrity option in the deployment
descriptors. There is a client side application programming interface (API) that an application can use to
enable Web services security for securing a SOAP message.

The OASIS Web services security Version 1.0 specification defines the enhancements that are used to
provide message integrity and confidentiality. It also provides a general framework for associating the
security tokens with a SOAP message. The specification is designed to be extensible to support multiple

Chapter 5. Web services 81

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmlenc-decrypt

security token formats. The particular security token usage is addressed with the security token profile.

Specification and profile support in WebSphere Application Server

OASIS is working on various profiles. For more information, see [Organization for the Advancement of
[Structured Information Standards Committees|

The following list includes of the published draft profiles and OASIS Web services security technical
committee work in progress.

WebSphere Application Server does not support these profiles:

* Web Services Security: SAML token profile 1.0

* Web Services Security: Rights Expression Language (REL) token profile 1.0
* Web Services Security: SOAP Messages with Attachments (SwA) profile 1.0

Note: Support for Web services security draft 13 and Username token profile draft 2 is deprecated in
WebSphere Application 5.0.2, 5.1.0 and 5.1.1. For migration information, see [‘Migrating JAX-RPC]
[Web services security applications to Version 7.0 applications” on page 331

The wire format of the SOAP message with Web services security in Web services security Version 1.0
has changed and is not compatible with previous drafts of the OASIS Web services security specification.
Interoperability between OASIS Web services security Version 1.0 and previous Web services security
drafts is not supported. However, it is possible to run an application that is based on Web services security
draft 13 on WebSphere Application Server Version 6 and later. The application can interoperate with an
application that is based on Web services security draft 13 on WebSphere Application Server Version
5.0.2, 5.1 or 5.1.1.

WebSphere Application Server supports both the OASIS Web services security draft 13 and the OASIS
Web services security 1.0 specification. But in WebSphere Application Server Version 6 and later, the
support of OASIS Web services security draft 13 is deprecated. However, applications that were
developed using OASIS Web services security draft 13 on WebSphere Application Server 5.0.2, 5.1.0 and
5.1.1 can run on WebSphere Application Server Version 6 and later. OASIS Web services security Version
1.0 support is available only for Java Platform, Enterprise Edition (Java EE) Version 1.4 and later
applications. The configuration format for the deployment descriptor and the binding is different from
previous versions of WebSphere Application Server. You must migrate the existing applications to Java EE
1.4 and migrate the Web services security configuration to the WebSphere Application Server Version 6
format.

Other Web services security specifications development

The most recently updated versions of the following OASIS Web services security specifications are
supported in WebSphere Application Server Version 7.0 in the context of Web services security:

WS-Trust Version 1.3|

The Web Services Trust Language (WS-Trust) uses the secure messaging mechanisms of Web
services security to define additional primitives and extensions for the issuance, exchange and
validation of security tokens. WS-Trust enables the issuance and dissemination of credentials within
different trust domains. This specification defines ways to establish, assess the presence of, and broker
trust relationships.

» |WS-SecureConversation Version 1.3|

The Web Services Secure Conversation Language (WS-SecureConversation) is built on top of the
WS-Security and WS-Policy models to provide secure communication between services. WS-Security
focuses on the message authentication model but not a security context, and thus is subject several
forms of security attacks. This specification defines mechanisms for establishing and sharing security

82 securing WebSphere applications

http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.pdf

contexts, and deriving keys from security contexts, to enable a secure conversation. By using the SOAP
extensibility model, modular SOAP-based specifications are designed to be composed with each other
to provide a rich messaging environment.

+ [WS-SecurityPolicy Version 1.2

Web Services Security Policy (WS-Policy) provides a general purpose model and syntax to describe
and communicate the policies of a Web service. WS-Policy assertions express the capabilities and
constraints of a particular Web service. WS-PolicyAttachments defines several methods for associating
the WS-Policy expressions with Web services (such as WSDL). The Web services security
specifications have been updated following the re-publication of WS-Security Policy in July 2005, to
reflect the constraints and capabilities of Web services that are using WS-Security, WSTrust and
WS-SecureConversation. WS-ReliableMessaging Policy has also been re-published in 2005 to express
the capabilities and constraints of Web services implementing WS-ReliableMessaging.

Web Services Interoperability Organization (WS-I) activities

Web Services Interoperability Organization (WS-I1) is an open industry effort to promote Web services
interoperability across vendors, platforms, programming languages and applications. The organization is a
consortium of companies across many industries including IBM, Microsoft, Oracle, Sun, Novell, VeriSign,
and Daimler Chrysler. WS- began working on the basic security profile (BSP) in the spring of 2003. BSP
consists of a set of non-proprietary Web services specifications that clarifies and amplifies those
specifications to promote Web services security interoperability across different vendor implementations.
As of June 2004, BSP is a public draft. For more information, see the |Web Services Interoperability|

Web page.

Specifically, see |Basic Security Profile Version 1.0|for details about the BSP. WebSphere Application
Server supports compliance with the BSP draft, but Web services security does not support the BSP
Version 1.1 draft. See [‘Basic Security Profile compliance tips” on page 144 for the details to configure your
application in compliance with the BSP draft.

Web services security configuration considerations

Version 6 and later applications

To secure Web services security for WebSphere Application Server, you must specify several different
configurations. Although there is not a specific sequence in which you must specify these different
configurations, some configurations reference other configurations.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

You can configure Web services security on the application level, server level, and the cell level. The
following table shows an example of the relationships between each of the configurations that apply to just
the application, to an entire server, or to the entire cell. However, the requirements for the bindings depend
upon the deployment descriptor. Some binding information depends upon other information in the binding
or server and cell-level configuration. Within the table, the configurations in the Referenced configurations
column are referenced by the configuration listed in the Configuration name column. For example, the
token generator on the application-level for the request generator references the collection certificate store,
the nonce, time stamp, and callback handler configurations.

Chapter 5. Web services 83

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.pdf
http://www.ws-i.org
http://www.ws-i.org
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Table 5. The relationship between the configurations.

Configuration level

Configuration name

Referenced configurations

Application-level request generator

Token generator

» Collection certificate store
* Nonce

* Timestamp

» Callback handler

Application-level request generator

Key information

* Key locator
* Key name
» Token

Application-level request generator

Signing information

» Key information

Application-level request generator

Encryption information

» Key information

Application-level request consumer

Token consumer

* Trust anchor
» Collection certificate store
* Trusted ID evaluators

» Java Authentication and Authorization
Service (JAAS) configuration

Application-level request consumer

Key information

» Key locator
» Token

Application-level request consumer

Signing information

» Key information

Application-level request consumer

Encryption information

» Key information

Application-level response generator

Token generator

» Collection certificate store
» Callback handler

Application-level response generator

Key information

* Key locator
» Token

Application-level response generator

Signing information

* Key information

Application-level response generator

Encryption information

* Key information

Application-level response consumer

Token consumer

* Trust anchor
» Collection certificate store
* JAAS configuration

Application-level response consumer

Key information

» Key locator
* Key name
» Token

Application-level response consumer

Signing information

» Key information

Application-level response consumer

Encryption information

» Key information

Server-level default generator
bindings

Token generator

» Collection certificate store
» Callback handler

Server-level default generator
bindings

Key information

* Key locator
» Token

Server-level default generator
bindings

Signing information

» Key information

84 Securing WebSphere applications

Table 5. The relationship between the configurations. (continued)

Configuration level Configuration name Referenced configurations
Server-level default generator Encryption information - Key information
bindings
Server-level default consumer Token consumer « Trust anchor
bindings * Collection certificate store
¢ Trusted ID evaluator
» JAAS configuration
Server-level default consumer Key information « Key locator
bindings . Token
Server-level default consumer Signing information + Key information
bindings
Server-level default consumer Encryption information « Key information
bindings
Cell-level default generator bindings | Token generator « Collection certificate store
* Callback handler
Cell-level default generator bindings | Key information « Key locator
 Token
Cell-level default generator bindings | Signing information + Key information
Cell-level default generator bindings | Encryption information « Key information
Cell-level default consumer bindings | Token consumer « Trust anchor
* Collection certificate store
* Trusted ID evaluator
» JAAS configuration
Cell-level default consumer bindings | Key information - Key locator
 Token
Cell-level default consumer bindings | Signing information « Key information
Cell-level default consumer bindings | Encryption information « Key information

When multiple applications will use the same binding information, consider configuring the binding
information on the server or cell level. For example, you might have a global key locator configuration that
is used by multiple applications. Configuration information for the application-level precedes similar
configuration information on the server-level and the cell level.

Default bindings and runtime properties for Web services security

Use this page to configure the settings for nonce on the server level and to manage the default bindings
for the signing information, encryption information, key information, token generators, token consumers,
key locators, collection certificate store, trust anchors, trusted ID evaluators, algorithm mappings, and login
mappings.

Displayed options and the panel title depend on your server configuration and version.

To view this administrative console page for the server level, complete the following steps:
1. Click Servers > Server Types > WebSphere application servers > server_name.
2. Under Security, click JAX-WS and JAX-RPC security runtime.

Chapter 5. Web services 85

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web services security.

Read the Web services documentation before you begin defining the default bindings for Web services
security.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat, unauthorized
attacks of user name tokens.

In WebSphere Application Server and WebSphere Application Server Express, you must specify values for
the Nonce cache timeout, Nonce maximum age, and Nonce clock skew fields for the server level.

Nonce cache timeout

Version 5.x or 6 application

Specifies the timeout value, in seconds, for the nonce cached on the server. Nonce is a randomly
generated value.

The Nonce cache timeout field is not required on the server level, but it is required on the cell level. To
specify a value for the field on the cell level, click Security >+ JAX-WS and JAX-RPC security runtime.

If you make changes to the value for the Nonce cache timeout field, you must restart the application
server for the changes to take effect.

Default 600 seconds
Minimum 300 seconds

Nonce maximum age

Version 5.x or 6 application

Specifies the default time, in seconds, before the nonce timestamp expires. Nonce is a randomly
generated value.

The maximum value cannot exceed the number of seconds that is specified in the Nonce cache timeout
field for the server level.

The Nonce maximum age field is not required on the server level, but it is required on the cell level. The
value set for this Nonce maximum age field on the server level must not exceed the value for the Nonce
maximum age field on the cell level. To specify a value for the Nonce maximum age field on the cell level,
click Security » JAX-WS and JAX-RPC security runtime.

Default 300 seconds
Range 300 to the value that is specified, in seconds, in the
Nonce cache timeout field.

Nonce clock skew

Version 5.x or 6 application

Specifies the default clock skew value, in seconds, to consider when the application server checks the
timeliness of the message. Nonce is a randomly generated value.

86 Securing WebSphere applications

The maximum value cannot exceed the number of seconds that is specified in the Nonce maximum age
field.

The Nonce clock skew field is not required on the server level, but it is required on the cell level. To
specify a value for the Nonce clock skew field on the cell level, click Security » JAX-WS and JAX-RPC
security runtime.

Default 0 seconds
Range 0 to the value that is specified, in seconds, in the Nonce
maximum age field.

Enable cryptographic operations on hardware device
Enables cryptographic operations on hardware devices. Enabling this feature might improve the
performance, depending on the hardware device.

Cryptographic hardware configuration name
Specifies the name of the hardware device configuration name that is defined in the keystore settings in
the secure communications.

This value is necessary only if Hardware acceleration has been selected.

Custom properties
The linked Properties panel specifies additional properties for the security runtime configuration.

Web services security provides message integrity, confidentiality, and
authentication

OASIS Web Services Security (WS-Security) is a flexible standard that is designed to secure Web
services within a wide variety of security models. You can secure SOAP messages through XML digital
signature, confidentiality through XML encryption, and credential propagation through security tokens. Web
services implements security using technology that includes transport-level Secure Sockets Layer (SSL).

The Web services security specification defines the core facilities for protecting the integrity and
confidentiality of a message and provides mechanisms for associating security-related claims with the
message. Message-level security, or securing Web services at the message level, addresses the same
security requirements as for traditional Web security. These security requirements include: identity,
authentication, authorization, integrity, confidentiality, nonrepudiation, basic message exchange, and so
forth. Both traditional Web and message-level security share many of the same mechanisms for handling
security, including digital certificates, encryption, and digital signatures. While HTTPS and SSL
transport-level technology may be used for securing Web services, some security scenarios are addressed
more effectively by message-level security.

Traditional Web security mechanisms, such as HTTPS, might be insufficient to manage the security
requirements of all Web service scenarios. For example, when an application sends a document with
JAX-RPC using HTTPS, the message is secured only for the HTTPS connection, meaning during the
transport of the document between the service requester (the client) and the service. However, the
application might require that the document data be secured beyond the HTTPS connection, or even
beyond the transport layer. By securing Web services at the message level, message-level security is
capable of meeting these expanded requirements.

Message-level security applies to XML documents that are sent as SOAP messages. Message-level
security makes security part of the message itself by embedding all required security information in the
SOAP header of a message. In addition, message-level security can apply security mechanisms, such as
encryption and digital signature, to the data in the message itself.

Chapter 5. Web services 87

With message-level security, the SOAP message itself either contains the information needed to secure
the message or it contains information about where to get that information to handle security needs. The
SOAP message also contains information relevant to the protocols and procedures for processing the
specified message-level security. However, message-level security is not tied to any particular transport
mechanism. Because the security information is part of the message, it is independent of a transport
protocol, such as HTTPS.

The client adds to the SOAP message header security information that applies to that particular message.
When the message is received, the Web service endpoint, using the security information in the header,
verifies the secured message and validates it against the policy. For example, the service endpoint might
verify the message signature and check that the message has not been tampered with. It is possible to
add signature and encryption information to the SOAP message headers, as well as other information
such as security tokens for identity (for example, an X.509 certificate) that are bound to the SOAP
message content.

For WebSphere Application Server Versions 6 and later, Web services security can be applied as
transport-level security and as message-level security. You can architect highly secure client and server
designs by using these security mechanisms. Transport-level security refers to securing the connection
between a client application and a Web service with Secure Sockets Layer (SSL).

You can apply various scenarios of Web services security according to the characteristics of each Web
service application. You have choices of how to protect your information when using Web services
security. The authentication mechanism, integrity, and confidentiality can be applied at the message level
and at the transport level. When message-level security is applied, you can protect the SOAP message
with a security token, digital signature, and encryption.

Without Web services security, the SOAP message is sent in clear text, and personal information such as
a user ID or an account number is not protected. Without applying Web services security, there is only a
SOAP body under the SOAP envelope in the SOAP message. By applying features from the WS-Security
specification, the SOAP security header is inserted under the SOAP envelope in the SOAP message when
the SOAP body is signed and encrypted.

To maintain the integrity or confidentiality of the message, digital signatures and encryption are typically
applied.

» Confidentiality specifies the confidentiality constraints that are applied to generated messages. This
includes specifying which message parts within the generated message must be encrypted, and the
message parts to attach encrypted Nonce and time stamp elements to.

 Integrity is provided by applying a digital signature to a SOAP message. Confidentiality is applied by
SOAP message encryption. Multiple signatures and encryptions are supported. In addition, both signing
and encryption can be applied to the same parts, such as the SOAP body.

You can add an authentication mechanism by inserting various types of security tokens, such as the
Username token (<UsernameToken> element). When the Username token is received by the Web service
server, the user name and password are extracted and verified. Only when the user name and password
combination is valid, will the message be accepted and processed at the server. Using the Username
token is just one of the ways of implementing authentication. This mechanism is also known as basic
authentication.

In addition to digital signatures, encryption, and basic authentication, other forms of authentication include

identity assertion, LTPA tokens, Kerberos tokens, and custom tokens. These other forms of authentication

are also extensions of WebSphere Application Server. You can configure these authentication mechanisms
using the assembly tools to implement authentication.

With updates to Web Services Security in the Version 1.1 specification, it is possible to layer additional
functionality on top of these basic mechanisms. Some Version 1.1 mechanisms are extensions of

88 securing WebSphere applications

WebSphere Application Server, such as signature confirmation and the encrypted header. The security
token profiles that are supported by WebSphere Application Server include the Username token profile, the
X.509 token profile, and the Kerberos profile. In this case, when the message is received, the Web service
endpoint, using the security information in the header, applies the appropriate security mechanisms to the
message. For example, the service endpoint might add signature and encryption information to the SOAP
message headers, as well as other information, such as security tokens, that are bound to the SOAP
message content. You can implement these new mechanisms by using a policy set.

WS-SecureConversation was introduced in WebSphere Application Server Version 6.1 with the Feature
Pack for Web Services. Secure Conversation uses a session key to protect SOAP messages more
efficiently, particularly when multiple SOAP messages are transmitted in a session.

Other enhancements, added in WebSphere Application Server Version 7.0, include:
* The Kerberos token, which is used for both authentication and for subsequent message protection.

« Dynamic policy, which allows the client to retrieve the provider policy through a WSDL request, or using
Web Services MetadataExhange (WS-MEX), to simplify Web services client deployment.

High-level architecture for Web services security

Version 6 and later applications

The Web services security policy is specified in the IBM extension of the Web services deployment
descriptors when using the JAX-RPC programming model, and in policy sets when using the JAX-WS
programming model. A stand-alone JAX-WS client application may specify Web Services security policy
programmatically. Binding data that supports the Web Services security policy are stored in the IBM
extension of the Web services deployment descriptors for both the JAX-RPC and JAX-WS programming
models. The Web Services security run time enforces the security assertions that are specified in the
policy document, or in the application program, in that order.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

WebSphere Application Server uses the Java Platform, Enterprise Edition (Java EE) Version 1.4 or later
Web services deployment model to implement Web services security. One of the advantages of
deployment model is that you can define the Web services security requirements outside of the application
business logic. With the separation of roles, the application developer can focus on the business logic and
the security expert can specify the security requirement.

There are two sets of configurations on both the client side and the server side:

Request generator
This client-side configuration defines the Web services security requirements for the outgoing
SOAP message request. These requirements might involve generating a SOAP message request
that uses a digital signature, incorporates encryption, and attaches security tokens. In WebSphere
Application Server Versions 5.0.2, 5.1, and 5.1.1, the request generator was known as the request
sender.

Request consumer
This server-side configuration defines the Web services security requirements for the incoming
SOAP message request. These requirements might involve verifying that the required integrity

Chapter 5. Web services 89

parts are digitally signed; verifying the digital signature; verifying that the required confidential parts
were encrypted by the request generator; decrypting the required confidential parts; validating the
security tokens, and verifying that the security context is set up with the appropriate identity. In
WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the request consumer was known as
the request receiver.

Response generator
This server-side configuration defines the Web services security requirements for the outgoing
SOAP message response. These requirements might involve generating the SOAP message
response with Web services security; including digital signature; and encrypting and attaching the
security tokens, if necessary. In WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the
response generator was known as the response sender.

Response consumer
This client-side configuration defines the Web services security requirements for the incoming
SOAP response. The requirements might involve verifying that the integrity parts are signed and
the signature is verified; verifying that the required confidential parts are encrypted and that the
parts are decrypted; and validating the security tokens. In WebSphere Application Server Versions
5.0.2, 5.1, and 5.1.1, the response consumer was known as the response receiver.

WebSphere Application Server does not include security policy negotiation or exchange between the client
and server. This security policy negotiation, as defined by the WS-Policy, WS-PolicyAssertion, and
WS-SecurityPolicy specifications, are not supported in WebSphere Application Server.

Note: The Web services security requirements that are defined in the request generator must match the
request consumer. The requirements that are defined in the response generator must match the
response consumer. Otherwise, the request or response is rejected because the Web services
security constraints cannot be met by the request consumer and response consumer.

The format of the Web services security deployment descriptors and bindings are IBM proprietary.
However, the following tools are available to edit the deployment descriptors and bindings:

IBM assembly tools
Use IBM assembly tools to edit the Web services security deployment descriptor and binding. Use
the tools to assemble both Web and Enterprise JavaBeans (EJB) modules. For more information

on assembly tools, see|Assembly tools|.

WebSphere Application Server Administrative Console
Use this tool to edit the Web services security binding of a deployed application.

Security model mixture: Version 6 and later applications

There can be multiple protocols and channels in the WebSphere Application Server Version 6 and later
programming environments. Each of these applications serve different business needs.

For example, you might access:

* A Web-based application through the HTTP transport such as a servlet, JavaServer Pages (JSP) file,
HTML and so on.

* An enterprise application through the Remote Method Invocation (RMI) over the Internet Inter-ORB
(RMI/1IOP) protocaol.

* A Web service application through the SOAP over HTTP, SOAP over the Java Message Service (JMS),
or SOAP over the RMI/IIOP protocol.

More importantly, Web services are often implemented as servlets with a Enterprise JavaBeans (EJB) file.
Therefore, you can mix and match the Web services security model with the Java Platform, Enterprise

90 Securing WebSphere applications

Edition (Java EE) security model for Web and EJB components. It is intended that Web service security

complement the Java EE role-based security and the security run time for WebSphere Application Server
Version 6 and later.

Web services security also can take advantage of the security features in Java EE and the security run
time for WebSphere Application Server Version 6 and later. For example, Web services security can use

the following security features to provide an end-to-end security deployment:

Use the local OS, Lightweight Directory Access Protocol (LDAP), and custom user registries for
authenticating the username token

Propagate the Lightweight Third Party Authentication (LTPA) security token in the SOAP message

Use identity assertion

Use a trust association interceptor (TAI)
Enable security attribute propagation
Use Java EE role-based authorization
Use a Java Authorization Contract for Containers (JACC) authorization provider, such as Tivoli® Access

Manager

The following figure shows that different security protocols are used to send authentication information to

the application server. For a Web service, you might use either HTTP basic authentication with Secure

Sockets Layer (SSL) or a Web services security username token with signing and encryption. In the
following figure, when identity bob from Web services security is authenticated and set as the caller
identity of the SOAP message request, the Java EE Enterprise JavaBeans container performs

authorization using bob before the call is dispatched to the service implementation, which, in this case, is
the enterprise bean.

bob

SOAP
wsse:UsernameToken
<bob:password>

https://www.fabrikam456.com/travelServices

HTTP request

HTTP basic
authentication:
<joe:password>
with SSL

»
>

http://www.fabrikam456.com/travelServices

WebSpHére
Application *-
Server ‘.

< soap L.

-* " authentication By HTTP
end point base
basic authentication

joe J2EEl
e . container|
" joe -

SOAP
run time
R4 T

Authentication

bob
on HTTP

is based on Web
* services security

|

Enterprise bean

Authentication by the ORB

is based on CSIv2

You can secure a Web service using the transport layer security. For example, when you are using SOAP

over HTTP, HTTPS can be used to secure the Web service. However, transport layer security provides

point-to-point security only. This layer of security might be adequate for certain scenarios. However, when

Chapter 5. Web services

91

the SOAP message must travel through intermediary servers (multi-hop) before it is consumed by the
target endpoint, you might use SOAP over the Java Message Service (JMS). The usage scenarios and
security requirements dictate how to secure Web services. The requirements depend upon the operating
environment and the business needs. However, one key advantage of using Web services security is that
it is transport layer independent; the same Web services security constraints can be used for SOAP over
HTTP, SOAP over JMS, or SOAP over RMI/IIOP.

Overview of platform configuration and bindings: Version 6 and later applications

The Web services security policy is specified in the IBM extension of the Web services deployment
descriptors when using the JAX-RPC programming model, and in policy sets when using the JAX-WS
programming model. Binding information to support the Web Services security policy is stored in the IBM
extension of the Web services deployment descriptors for both the JAX-RPC and JAX-WS programming
models.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

Due to the complexity of these files, it is not recommended that you edit the deployment descriptor and
binding files manually with a text editor because they might cause errors. It is recommended, however,
that you use the tools provided by IBM to configure the Web services security constraints for an

application. These tools are the WebSphere Application Server administrative console, or an assembly

tool. For more information about IBM assembly tools, see the topic|[Assembly tools|

You can use the policy set function of the WebSphere Application Server to simplify your Web services
configuration because policy sets group security and other Web services settings into reusable units.
Policy sets are assertions about how quality of services is defined. A policy set incorporates policy types,
and their settings.

In addition to the application deployment descriptor and binding files, WebSphere Application Server
Versions 6 and later have a cell level and a server level configuration. These configurations are global for
all applications. Because WebSphere Application Server Version 6 and later support 5.x applications, some
of the configurations are valid for Version 5.x applications only and some are valid for Version 6 and later
applications only.

The following figure represents the relationship of the application deployment descriptor and binding files
to the cell (Network Deployment only) or server level configuration.

92 Securing WebSphere applications

Deployment descriptor:
—Signs the body
—Encrypts the body content

Binding:
Application A —X.509 for signing
— —Key for encryption

Platform configuration (cell or server):
-Key information (key locator)
— -Nonce cache timeout

WebSphere Application Server

Platform configuration

The following options are available in the administrative console:

Nonce cache timeout
This option, which is found on the cell level (Network Deployment only) and server level, specifies
the cache timeout value for a nonce in seconds.

Nonce maximum age
This option, which is found on the cell level (Network Deployment only) and server level, specifies
the default life span for the nonce in seconds.

Nonce clock skew
This option, which is found on the cell level (Network Deployment only) and server level, specifies
the default clock skew to account for network delay, processing delay, and so on. It is used to
calculate when the nonce expires. Its unit of measurement is seconds.

Distribute nonce caching
This feature enables you to distribute the cache for the nonce to different servers in a cluster. It is
available for WebSphere Application Server Version 6.0.x and later.

The following features can be referenced in the application binding:

Key locator
This feature specifies how the keys are retrieved for signing, encryption, and decryption. The
implementation classes for the key locator are different in WebSphere Application Server Versions
6 and later and Version 5.x.

Collection certificate store
This feature specifies the certificate store for certificate path validation. It is typically used for
validating X.509 tokens during signature verification or constructing the X.509 token with a
certificate revocation list that is encoded in the PKCS#7 format. The certificate revocation list is
supported for WebSphere Application Server Version 6.x and later applications only.

Trust anchors
This feature specifies the trust level for the signer certificate and is typically used in the X.509
token validation during signature verification.

Chapter 5. Web services 93

Trusted ID evaluators
This feature specifies how to verify the trust level for the identity. The feature is used with identity
assertion.

Login mappings
This feature specifies the login configuration binding to the authentication methods. This feature is
used by WebSphere Application Server Version 5.x applications only and it is deprecated.

Default bindings

The configuration of the default cell level and default server level bindings has changed in WebSphere
Application Server version 7.0. Previously, you could configure only one set of default bindings for the cell,
and optionally configure one set of default bindings for each server. In version 7.0, you can configure one
or more general provider bindings and one or more general client bindings. However, only one general
provider binding and one general client binding can be designated as the default.

The following figure shows the relationship between the application enterprise archive (EAR) file and the
ws-security.xml file.

Enterprise archive (EAR) 1

‘ Deployment descriptor

‘ Binding ‘

EAR 2 ws-security.xml

‘ Deployment descriptor Default consumer binding

‘ Binding ‘

Default generator binding

A4

EAR 3

‘ Deployment descriptor)

EAR 4

‘ Deployment descriptor

Applications EAR 1 and EAR 2 have specific bindings in the application binding file. However, applications
EAR 3 and EAR 4 do not have a binding in the application binding file; it must be referenced to use the
default bindings defined in the ws-security.xml file. The configuration is resolved by nearest configuration
in the hierarchy. For example, there might be three key locators named mykeyTlocator that is defined in the
application binding file, the server level, and the cell level.

If mykeylocator is referenced in the application binding, then the key locator that is defined in the
application binding is used. The visibility scope of the data depends upon where the data is defined. If the
data is defined in the application binding, then its visibility is scoped to that particular application. If the
data is defined on the server level, then the visibility scope is all of the applications deployed on that
server. If the data is defined on the cell level, then the visibility scope is all of the applications deployed on
servers in the cell. In general, if data is not meant to be shared by other applications, define the
configuration in the application binding level.

94 Securing WebSphere applications

The following figure shows the relationship of the bindings on the application, server, and cell (Network
Deployment only) levels.

"1 ws-security.xml

A

Overrides

.1 ws-security.xml

' . f
1] . * .
. . Overrides
f
f

‘. Enterprise archive (EAR) 2

l Binding ‘

‘ Deployment descriptor

General bindings

General bindings are used as the default bindings at the cell level or server level. The general bindings
that are shipped with WebSphere Application Server are initially set as the default bindings, but you can
choose a different binding as the default, or change the level of binding that should be used as the default,
for example, from cell level binding to server level binding.

In version 7.0, there are two types of bindings: application specific bindings, and general bindings. Both
types of bindings are supported for WS-Security policy sets. General bindings can be shared across
multiple applications and for trust service attachments. There are two types of general bindings: one for
service providers and one for service clients. Multiple general bindings can be defined for the provider and
also for the client.

Keys: Version 6 and later applications

Use keys for XML digital signature and encryption.

There are two predominant kinds of keys used in the current Web services security implementation:

» Public key - such as Rivest Shamir Adleman (RSA) encryption and Digital Signature Algorithm (DSA)
encryption

» Secret key - such as triple-strength DES (3DES) encryption

In public key-based signature, a message is signed using the sender private key and is verified using the
sender public key. In public key-based encryption, a message is encrypted using the receiver public key
and is decrypted using the receiver private key. In secret key-based signature and encryption, the same
key is used by both parties.

While the current implementation of Web services security can support both kinds of keys, the format of
the message differs slightly between public key-based encryption and secret key-based encryption.

Chapter 5. Web services 95

Key locator: Version 6 and later applications

A key locator is an abstraction of the mechanism that retrieves the key for digital signature and encryption.
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to create
the security token on the generator side and to validate (authenticate) the security token on the consumer
side.

Retrieve keys from one of the following sources, depending upon your implementation:
» Java keystore file

» Database

» Kerberos KDC server (WebSphere Application Server Version 7 using JAX-WS only)

» Trust service can provide a security context token and key (WebSphere Application Server Version 7
using JAX-WS only)

Key locators search for the key using some type of a clue. The following types of clues are supported:
» A string label of the key, which is explicitly passed through the application programming interface (API).
The relationship between each key and its name (string label) is maintained inside the key locator.

* The implementation context of the key locator; explicit information is not passed to the key locator. A
key locator determines the appropriate key according to the implementation context.

WebSphere Application Server Versions 6 and later support a secret key-based signature called
HMAC-SHA1. If you use HMAC-SHA1, the SOAP message does not contain a binary security token. In
this case, it is assumed that the key information within the message contains the key name that is used to
specify the secret key within the keystore.

Because the key locators support the public key-based signature, the key for verification is embedded in
the X.509 certificate as a <BinarySecurityToken> element in the incoming message. For example, key
locators can obtain the identity of the caller from the context and can retrieve the public key of the caller
for response encryption.

This section describes the usage scenarios for key locators.
Signing

The name of the signing key is specified in the Web services security configuration. This value is passed
to the key locator and the actual key is returned. The corresponding X.509 certificate also can be returned.

Verification
By default, WebSphere Application Server Versions 6 and later supports the following types of key

locators:

KeyStoreKeyLocator
Uses the keystore to retrieve the key that is used for digital signature and verification or encryption
and decryption.

X509CertKeyLocator
Uses an X.509 certificate within a message to retrieve the key for verification or decryption.

SignerCertKeyLocator
Uses the X.509 certificate within the request message to retrieve the key that is used for
encryption in the response message.

Encryption

96 Securing WebSphere applications

The name of the encryption key is specified in the Web services security configuration. This value is
passed to the key locator and the actual key is returned. On the server side, you can use the
SignerCertKeyLocator to retrieve the key for encryption in the response message from the X.509 certificate
in the request message.

Decryption

The Web services security specification recommends using the key identifier instead of the key name.
However, while the algorithm for computing the identifier for the public keys is defined in Internet
Engineering Task Force (IETF) Request for Comment (RFC) 3280, there is no agreed-upon algorithm for
the secret keys. Therefore, the current implementation of Web services security uses the identifier only
when public key-based encryption is performed. Otherwise, the ordinal key name is used.

When you use public key-based encryption, the value of the key identifier is embedded in the incoming
encrypted message. Then, the Web services security implementation searches for all of the keys managed
by the key locator and decrypts the message using the key whose identifier value matches the one in the
message.

When you use secret key-based encryption, the value of the key name is embedded in the incoming
encrypted message. The Web services security implementation asks the key locator for the key with the
name that matches the name in the message and decrypts the message using the key.

Trust anchor: Version 6 and later applications

A trust anchor specifies the key stores that contain trusted root certificates. These certificates are used to
validate the X.509 certificate that is embedded in the SOAP message.

When using WebSphere Application Server with the JAX-RPC programming model, key stores are
implemented with the following message points to validate the X.509 certificate that is used for digital
signature or XML encryption:

* Request consumer, as defined in the ibm-webservices-bnd.xmi file.

* Response consumer, as defined in the ibm-webservicesclient-bnd.xmi file when a Web service is
acting as a client to another Web service.

For WebSphere Application Server Version 7.0, using JAX-WS, key stores are used by the following
message points to validate the X.509 certificate that is used for digital signature or XML encryption:

* Request consumer, as defined in the inbound keys and certificates of the WS-Security bindings.

* Response consumer, as defined in the inbound keys and certificates of the WS-Security bindings when
a Web service is acting as a client to another Web service.

Key stores are critical to the integrity of the digital signature validation. If the key stores are tampered with,
the result of the digital signature verification is doubtful and compromised. Therefore, it is recommended
that you secure the key stores. The binding configuration specified for the consumer must match the
binding configuration for the generator.

The trust anchor is defined as java.security.cert. TrustAnchor in the Java CertPath application programming
interface (API). The Java CertPath API uses the trust anchor and the certificate store to validate the
incoming X.509 certificate that is embedded in the SOAP message. The Web services security
implementation in WebSphere Application Server supports this trust anchor. In WebSphere Application
Server, the trust anchor is represented as a Java key store object. The type, path, and password of the
key store are passed to the implementation through the administrative console or by scripting.

Trusted ID evaluator: Version 6 and later applications

Chapter 5. Web services 97

A trusted ID evaluator is the mechanism that evaluates whether a given ID name is trusted.
Using the trusted ID evaluator with the JAX-RPC programming model

In the JAX-RPC programming model, the trusted ID evaluator,

com.ibm.wsspi.wssecurity.id. TrustedIDEvaluatorimpl, is an abstraction of the mechanism that evaluates
whether a given ID name is trusted. There are two trust modes for validating the trust of the upstream
server when using JAX-RPC:

Basic authentication (username token)
The upstream server sends a username token with a user name and password to a downstream
server. The consumer or receiver of the message authenticates the username token and validates
the trust based upon the TrustedIDEvaluator implementation. The TrustedIDEvaluator
implementation must implement the com.ibm.wsspi.wssecurity.id. TrustedIDEvaluator Java
interface.

Signature
The upstream server signs the message, which can be any message part such as the SOAP
body. The upstream server sends the X.509 token to a downstream server. The consumer or
receiver of the message verifies the signature and validates the X.509 token. The identity or the
distinguished name from the X.509 token that is used in the digital signature is validated based on
the TrustedIDEvaluator implementation. The TrustedIDEvaluator implementation must implement
the com.ibm.wsspi.wssecurity.id. TrustedIDEvaluator Java interface. For the X.509 certificate,
WebSphere Application Server uses the distinguished name in the certificate as a requester
identity.

The following figure demonstrates the identity assertion trust process.

AAS logi
cJonfigu;gt:gn Trusted ID evaluator
_ [4
Identity/Passwond Idgntity
v 7 :
A} .
Server s1 Servers2 ,
Web services Identity (username token): bob W e

Trust mode (username token):

security run time Identity/Password

security run time
4

Request Secured SOAP message Request bob

generator > consumer »
Response P Secured SOAP message Response
consumer - generator

In this figure, server sl is the upstream server and identity assertion is set up between server s1 and
server s2. The sl server authenticates the identity called bob. Server s1 wants to send bob to the s2
server with a password. The trust mode is an sl credential that contains the identity and a password.
Server s2 receives the request, authenticates the user using a Java Authentication and Authorization
Service (JAAS) login module, and uses the trusted ID evaluator to determine whether to trust the identity.
If the identity is trusted, bob is used as the caller that invokes the service. If authorization is required, bob
is the identity that is used for authorization verification.

Downstream
call

The identity can be asserted as the RunAs (invocation) identity of the current security context. For
example, the Web services gateway authenticates a requester using a secure method such as password

98 Securing WebSphere applications

authentication and then sends the requester identity only to a back-end server. You might also use identity
assertion for interoperability with another Web services security implementation.

Depending upon the implementation of JAX-RPC, you can use various types of infrastructure to store a list
of the trusted IDs, such as:

* Plain text file
» Database
» Lightweight Directory Access Protocol (LDAP) server

The trusted ID evaluator is typically used by the eventual receiver in a multi-hop environment. The Web
services security implementation invokes the trusted ID evaluator and passes the identity name of the
intermediary as a parameter. If the identity is evaluated and deemed trustworthy, the procedure continues.
Otherwise, an exception is created and the procedure is stopped.

Using the trusted ID evaluator with the JAX-WS programming model

In the JAX-WS programming model, the same concepts are supported for the trusted ID evaluator,
although the implementation is different. For the JAX-WS run time, use the administrative console to select
the Use identity assertion option on the caller binding panel. This defines the trusted identity token type,
and then defines a list of one or more trusted identities. The trusted ID evaluator validates the trusted
identity token against the list of trusted identities. For more information about the list of trusted identities,
read the topic Changing the order of the callers for a token or message part.

For WebSphere Application Server Version 6.1 and later, the Caller and TrustMethod elements are used to
support the requestor login. The requestor sends a message to an intermediary, and the message is
dispatched to the service. Based on the security information, the service performs a login for the requestor.
In some cases, there are multiple security tokens, so the service has to decide which one to use. When
the requestor ID is included as an ID assertion, the service can specify how to trust the intermediary. The
following intermediary scenarios are supported:

<BasicAuth, null, null>
The requestor username and password is used for authentication. In this case, authentication is
performed with requestor properties, therefore a password is required for authentication.

<Signature, null, null>
The requestor signature is used for authentication.

<IDAssertion, Username, null>
The requestor username (without a password) is used to identify the requestor. The
UsernameToken token is used as the ID assertion, therefore no password is required to
accompany the username. In this case, the service trusts the intermediary unconditionally.

<IDAssertion, Username, Username>
The requestor username (without a password) is used to identify the requestor, and the username
and password of the intermediary is used to authenticate the intermediary. The UsernameToken
token, when used to establish trusted identity, always requires a password because the purpose of
the token is to establish trust between the intermediary and the service.

<IDAssertion, Username, X509>
The requestor username (without a password) is used to identify the requestor, and the signature
of the intermediary is used to authenticate the intermediary. In this case, the trusted identity for the
signature of the intermediary must be established using an X.509 certificate.

<IDAssertion, X509, null>
The identity of the requestor is established using an X.509 certificate. In this case, the X.509
certificate from the requestor does not provide a signature to prove possession of the certificate,
and therefore the service trusts the intermediary unconditionally.

Chapter 5. Web services 99

<IDAssertion, X509, Username>
The identity of the requestor is established using an X.509 certificate, and the username and
password of the intermediary is used to authenticate the intermediary. The UsernameToken token,
when used to establish trusted identity, always requires a password because the purpose of the
token is to establish trust between the intermediary and the service.

<IDAssertion, X509, X509>
The identity of the requestor is established using an X.509 certificate, and the signature of
intermediary is used to authenticate the intermediary.

Hardware cryptographic device support for Web Services Security:

Version 6 and later applications

In IBM WebSphere Application Server Version 6.1 or later, Web services security supports the use of
cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with
Web services security.

Enabling cryptographic operations on hardware devices

You can enable cryptographic operations on hardware devices. The keys that are used can be stored in a
Java keystore file; it is not necessary to store them on the hardware device. The decision to use enable
cryptographic operations on hardware devices is made at the server level only, not at the application level.

If cryptographic operations on hardware device is enabled, the Web service security run time first attempts
to use the hardware device for cryptographic operations. If the attempt to use the hardware device fails or
if the algorithm is not supported by the hardware device, the run time uses a software provider from the
security providers list.

Enabling this feature might improve the performance, depending on the hardware device. For more
information on how to enable cryptographic operations on hardware devices, see [‘Configuring hardware
lcryptographic devices for Web Services Security” on page 514

Secure keys

Cryptographic keys can be stored on the hardware cryptographic device and never leave the device.
These secure keys are confined to the hardware cryptographic device for security considerations rather
than performance considerations. The option to select whether to use keys that are stored in a hardware
cryptographic device or a Java keystore file can be made at the application level.

If the keystore reference is specified to be a hardware device configuration, the Web services security run
time first attempts to obtain the cryptographic algorithm from the hardware device. If the algorithm is not
supported or fails, the run time uses a software provider from the security providers list.

See further information about how to enable secure keys, see |“Enabling cryptographic keys stored in|
lhardware devices in Web Services Security” on page 516

Limitations

The hardware cryptographic device support for Web Services Security currently has the following
limitations:

» There is no support for a Web services client running as a Java Platform, Enterprise Edition (Java EE)
Application Client.

+ There is no support for hardware cryptographic devices on iSeries®.

100 Securing WebSphere applications

* Only Version 6.1 and later, Web services security applications can take advantage of the hardware
cryptographic support.

Note: Versions 5.x and 6.0.x Web services security applications can run in a Version 6.1 WebSphere
Application Server, but these versions cannot take advantage of the hardware cryptographic
support.

Long-term usage of session keys

You can configure WebSphere Application Server to use the hardware keystore, or you can configure the
hardware acceleration card to allow the long-term usage of session keys. Session keys might be insecure.

If you are concerned about insecure session keys, configure WebSphere Application Server to use the
hardware keystore. See the information about how to enable cryptographic keys that are stored in
hardware devices in Web services security.

To configure the hardware acceleration card to allow the long-term usage of session keys, see the
manufacturer’s documentation for the specific hardware acceleration card. For example:

1. For the nCipher nforce 1600 server Version 2.23.6, follow the nCipher documentation instructions.

2. You can set the CKNFAST_SECURITY_ASSURANCES OVERRIDE=1ongterm parameter in the cknfastrc
configuration file. This configuration change eliminates the time limit that is associated with session
keys.

3. Follow the documentation for Cipher to restart the nCipher server.

4. Restart WebSphere Application Server.

Default configuration: Version 6 and later applications

You can use sample configurations with the administrative console for testing purposes. The configurations
that you specify are reflected on the cell or server level.

The information in the following sections describes sample default bindings, sample general bindings, and
samples for key stores, key locators, collection certificate store, trust anchors, and trusted ID evaluators.
You can develop Web services using the Java API for XML-based RPC (JAX-RPC) programming model,
or for WebSphere Application Server Version 7, using the Java API for XML-Based Web Services
(JAX-WS) programming model. Samples that are provided with WebSphere Application Server differ
depending on which programming model you use.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

Do not use these sample configurations in a production environment as they are for sample and testing
purposes only. To make modifications to these sample configurations, it is recommended that you use the
administrative console provided by WebSphere Application Server.

Detailed information on the sample general bindings for the JAX-WS programming model is available in
the topic|GeneraI sample bindings for JAX-WS applicationsl

Chapter 5. Web services 101

Information on configuring default bindings, key stores, key locators, collection certificate store, trust
anchors, and trusted ID evaluators for the JAX-RPC programming model is available in the topic
lsample configurations for JAX-RPC|

General sample bindings for JAX-WS applications:

You can use sample bindings with the administrative console for testing purposes. The configurations that
you specify are reflected on the cell or server level.

WebSphere Application Server Version 7.0 includes provider and client sample bindings for testing
purposes. In the bindings, the product provides sample values for supporting tokens for different token
types, such as the X.509 token, the username token, the LTPA token, and the Kerberos token. The
bindings also include sample values for message protection information for token types such as X.509 and
secure conversation. Both provider and client sample bindings can be applied to the applications attached
with a system policy set, or application policy set, from the default local repository.

This information describes the general sample bindings for the Java API for XML-Based Web Services
(JAX-WS) programming model. You can develop Web services using the Java API for XML-based RPC
(JAX-RPC) programming model, or for WebSphere Application Server Version 7.0, using the Java API for
XML-Based Web Services (JAX-WS) programming model. Sample general bindings may differ depending
on which programming model you use.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

Do not use these provider and client sample bindings in their default state in a production environment.
You must modify the bindings to meet your security needs before using them in a production environment
by making a copy of the bindings and then modifying the copy. For example, you must change the key
and keystore settings to ensure security, and modify the binding settings to match your environment.

One set of general default bindings is shared by the applications to make application deployment easier.
You can specify default bindings for your service provider or client that are used at the global security
(cell) level, for a security domain, or for a particular server. The default bindings are used in the absence
of an overriding binding specified at a lower scope. The order of precedence from lowest to highest that
the application server uses to determine which default bindings to use is as follows:

1. Server level default
2. Security domain level default
3. Gilobal security (cell) default

General client sample bindings

» The sample configuration for signing information generation, called asymmetric-signingInfoRequest,
contains the following configuration:

— References the gen_signkeyinfo signing key information.

— The part reference configuration, which contains the transform configuration using the
http://www.w3.0rg/2001/10/xm1-exc-cl4n# algorithm.

— The signing key information, gen_signkeyinfo, which contains this configuration:
- The security token reference.
- The gen_signx509token protection token asymmetric signature generator, as follows:

102 Securing WebSphere applications

Contains the X.509 V3 Token v1.0 token type.

Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

Contains the wss.generate.x509 JAAS login

The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL ROOT}/etc/ws-security/samples/dsigsender.ks, with these characteristics:

The keystore type is JKS.

The keystore password is client.

The alias name of the trusted certificate is soapca.

The alias name of the personal certificate is soaprequester.

The key password client issued by the intermediary certificate authority Int CA2, which is in
issued by soapca.

— The signature method http://www.w3.0rg/2000/09/xm1dsig#rsa-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

The sample configuration for signing information generation called symmetric-signingInfoRequest
contains the following configuration:

— References the gen_signsctkeyinfo signing key information.

— The part reference configuration, which contains the transform configuration using the
http://www.w3.0rg/2001/10/xm1-exc-cl4n# algorithm.

— The signing key information, gen_signsctkeyinfo, which contains this configuration:
The security token reference.
The derived key, as follows:

Requires explicit derived key token.
WS-SecureConversation as the client label.
WS-SecureConversation as the service label.
Key length of 16 bytes.

Nonce length of 16 bytes.

The gen_scttoken protection token generator, as follows:

Contains the Secure Conversation Token Version 1.3 token type.

Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type as the local part value.

Contains wss.generate.sct JAAS login

The WS-Trust Callback Handler.
— The signature method http://www.w3.0rg/2000/09/xm1dsig#hmac-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

The sample configuration for encryption information generation, called asymmetric-
encryptionInfoRequest, contains the following configuration:

— References the gen_enckeyinfo encryption key information.

— Encryption key information, named gen_enckeyinfo, which contains this configuration:
- The key identifier.
- The gen_encx509token protection token asymmetric encryption generator, as follows:

Keystore type is JCEKS.

Keystore password is client.

Alias name of the trusted certificate is soapca.
Alias name of the personal certificate is bob.

Chapter 5. Web services

turn

103

» Key password client issued by intermediary certificate authority Int CA2, which is in turn issued
by soapca.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL ROOT}/etc/ws-security/samples/enc-sender.jceks.

— The key encryption method http://www.w3.0rg/2001/04/xmlenc#rsa-1_5.

* The sample configuration for encryption information generation, called symmetric-
encryptionInfoRequest, contains the following configuration:

— References the gen_encsctkeyinfo encryption key information.
— The encryption key information, gen_encsctkeyinfo, which contains this configuration:
- The security token reference.
- The derived key, as follows:
* Requires explicit derived key token.
* WS-SecureConversation as the client label.
+ WS-SecureConversation as the service label.
» Key length of 16 bytes.
* Nonce length of 16 bytes.
- The gen_scttoken protection token generator, which contains the following configuration:
» Contains the Secure Conversation Token v1.3 token type.

» Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

» Contains wss.generate.sct JAAS login.
- The WS-Trust Callback Handler.
— The data encryption method http://www.w3.0rg/2001/04/xmlenc#aes128-chc.

* The sample configuration for signing information consumption, called asymmetric-signingInfoResponse,
contains the following configuration:

— References the con_signkeyinfo signing key information.

— The part reference configuration, which uses the transform configuration http://www.w3.0rg/2001/
10/xm1-exc-clan# algorithm.

— The signing key information, named con_signkeyinfo, which contains the following configuration:
- The con_signx509token protection token asymmetric signature consumer, as follows:
+ Contains the X.509 V3 Token v1.0 token type.

» Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

» Contains the wss.consume.x509 JAAS login.
- The X.509 Callback Handler, as follows:
* References a certificate store named DigSigCertStore.
* References a trusted anchor store named DigSigTrustAnchor.
— The signature method http://www.w3.0rg/2000/09/xmldsig#rsa-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xml-exc-cl4n#.

* The sample configuration for signing information consumption, called symmetric-signingInfoResponse,
contains the following configuration:

— References the con_sctsignkeyinfo signing key information.

— The part reference configuration, which uses the transform configuration http://www.w3.0rg/2001/
10/xm1-exc-cl4n# algorithm.

— The signing key information, named con_sctsignkeyinfo, which contains the following configuration:
- The derived key, as follows:
* Requires explicit derived key token.

104 Securing WebSphere applications

WS-SecureConversation as the client label.
WS-SecureConversation as the service label.
Key length of 16 bytes.

Nonce length of 16 bytes.

- The con_scttoken protection token consumer, as follows:

Contains the Secure Conversation Token v1.3 token type.

Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

Contains the wss.consume.sct JAAS login.

The WS-SecureConversation Callback Handler.
— The signature method http://www.w3.0rg/2000/09/xm1dsig#hmac-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

* The sample configuration for encryption information consumption, called asymmetric-
encryptionInfoResponse, which contains the following configuration:

— References the dec_keyinfo encryption key information.
— The encryption key information, named dec_keyinfo, which contains the following configuration:
- The con_encx509token protection token asymmetric encryption consumer, as follows:

Contains the X.509 V3 Token v1.0 token type.

Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

Contains the wss.consume.x509 JAAS login.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER INSTALL ROOT}/etc/ws-security/samples/enc-sender.jceks, with the follow
characteristics:

The keystore type is JCEKS.

The keystore password is client.

The alias name of the trusted certificate is soapca.
The alias name of the personal certificate is alice.

The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

— The key encryption method http://www.w3.0rg/2001/04/xmlenc#rsa-1_5.

* The sample configuration for encryption information consumption, called symmetric-
encryptionInfoResponse, contains the following configuration:

— References the dec_sctkeyinfo encryption key information.
— The encryption key information, named dec_sctkeyinfo, contains the following configuration:
The derived key, as follows:

Requires explicit derived key token.
WS-SecureConversation as the client label.
WS-SecureConversation as the service label.
Key length of 16 bytes.

Nonce length of 16 bytes.

The con_scttoken protection token consumer, as follows:

Contains the Secure Conversation Token v1.3 token type.

Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

Contains the wss.consume.sct JAAS login.

Chapter 5. Web services 105

- The WS-SecureConversation Callback Handler.
— The data encryption method http://www.w3.0rg/2001/04/xmlenc#aes128-chc.

» The sample configuration for authentication token generation, called gen_signkrb5token, contains the
following configuration:

— The custom token type for the Kerberos v5 token, which uses http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

— The wss.generate.KRB5BST JAAS login.
— The following custom properties:
- com.ibm.wsspi.wssecurity.krbtoken.targetServiceName, the target Kerberos service name.

- com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost, the host name associated with the
target Kerberos service name,

You must provide the correct values for your environment before using this configuration.

The custom Kerberos token callback handler. You must provide the correct values for the Kerberos
client principal and password.

« The sample configuration for authentication token generation, called gen_signltpaproptoken, contains
the following configuration:

— The token type LTPA propagation token, as follows:

- Contains LTPA_PROPAGATION for the local part value.

- Contains http://www.ibm.com/websphere/appserver/tokentype for the Namespace URI value.
— Contains the wss.generate.1tpaProp JAAS login.
— Uses the LTPA token callback handler.

* The sample configuration for authentication token generation, called gen_signltpatoken, contains the
following configuration:

— The token type of LTPA Token v2.0, as follows:

- Contains LTPA_PROPAGATION for the local part value.

- Contains http://www.ibm.com/websphere/appserver/tokentype for the Namespace URI value.
— The wss.generate.1tpa JAAS login.
— The LTPA token callback handler.

« The sample configuration for authentication token generation, called gen_signunametoken, contains the
following configuration:

— The token type of Username Token v1.0, which uses http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-username-token-profile-1.0#UsernameToken for the local part value.

— The wss.generate.unt JAAS login.
— The Username token callback handler, as follows:

- Contains basic authentication fields. You must provide the correct values for your environment for
client principal and password.

- Contains the following custom properties:

* com.ibm.wsspi.wssecurity.token.username.addNonce for adding the nonce value.
e com.ibm.wsspi.wssecurity.token.username.addTimestamp for adding the time stamp value.

General provider sample bindings

* The sample configuration for signing information consumption, called asymmetric-signingInfoRequest,
contains the following configuration:

— References the con_signkeyinfo signing key information.

— The part reference configuration, which uses the transform configuration http://www.w3.0rg/2001/
10/xm1-exc-clan# algorithm.

— The signing key information, named con_signkeyinfo, which contains the following configuration:

106 Securing WebSphere applications

The con_signx509token protection token asymmetric signature consumer, as follows:
» Contains the X.509 V3 Token v1.0 token type.

» Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

* Contains the wss.consume.x509 JAAS login.

The X.509 Callback Handler, as follows:

» References a certificate store named DigSigCertStore.

* References a trusted anchor store named DigSigTrustAnchor.

— The signature method http://www.w3.0rg/2000/09/xmldsig#rsa-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

The sample configuration for signing information consumption, called symmetric-signingInfoRequest,
contains the following configuration:

— References the con_sctsignkeyinfo signing key information.

— The part reference configuration, which uses the transform configuration http://www.w3.0rg/2001/
10/xm1-exc-cl4n# algorithm.

— The signing key information, named con_sctsignkeyinfo, which contains the following configuration:

The derived key, as follows:

* Requires explicit derived key token.

* WS-SecureConversation as the client label.

» WS-SecureConversation as the service label.

* Key length of 16 bytes.

* Nonce length of 16 bytes.

The con_scttoken protection token generator, as follows:

» Contains the Secure Conversation Token v1.3 token type.

» Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

+ Contains the wss.consume.sct JAAS login.
The WS-SecureConversation Callback Handler.

— The signature method http://www.w3.0rg/2000/09/xm1dsig#hmac-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

The sample configuration for encryption information consumption, called asymmetric-
encryptionInfoRequest, contains the following configurations:

— References the dec_keyinfo encryption key information.
— The encryption key information, named dec_keyinfo, which contains the following configuration:

The con_encx509token protection token asymmetric encryption consumer, as follows:
» Contains the X.509 V3 Token v1.0 token type.

» Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

* Contains the wss.consume.x509 JAAS login.

The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL ROOT}/etc/ws-security/samples/enc-receiver.jceks, with the following
characteristics:

* The keystore type is JCEKS.

* The keystore password is client.

* The alias name of the trusted certificate is soapca.
* The alias name of the personal certificate is bob.

Chapter 5. Web services 107

* The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

— The key encryption method http://www.w3.0rg/2001/04/xmlenc#rsa-1_5.

» The sample configuration for encryption information consumption, called symmetric-
encryptionInfoRequest, contains the following configuration:

— References the dec_sctkeyinfo encryption key information.
— The encryption key information, named dec_sctkeyinfo, which contains the following configuration:
- The derived key, as follows:
* Requires explicit derived key token.
» WS-SecureConversation as the client label.
» WS-SecureConversation as the service label.
» Key length of 16 bytes.
* Nonce length of 16 bytes.
- The con_scttoken protection token consumer, as follows:
» Contains the Secure Conversation Token v1.3 token type.

» Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

» Contains the wss.consume.sct JAAS login.
- The WS-SecureConversation Callback Handler.
— The data encryption method http://www.w3.0rg/2001/04/xmlenc#aes128-chc.

* The sample configuration for signing information generation, called asymmetric-signingInfoResponse,
contains the following configuration:

— References the gen_signkeyinfo signing key information.

— The part reference configuration, which uses the transform configuration http://www.w3.0rg/2001/
10/xm1-exc-cl4n# algorithm.

— The signing key information, named gen_signkeyinfo, which contains the following configuration:
- The security token reference.
- The gen_signx509token protection token asymmetric signature generator, as follows:
» Contains the X.509 V3 Token v1.0 token type.

» Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

+ Contains the wss.generate.x509 JAAS login.

- The X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL ROOT}/etc/ws-security/samples/dsig-receiver.ks, with the following
characteristics:

* The keystore type is JKS.

* The keystore password is client.

* The alias name of the trusted certificate is soapca.

* The alias name of the personal certificate is soapprovider.

* The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

— The signature method http://www.w3.0rg/2000/09/xmldsig#rsa-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

* The sample configuration for signing information generation, called symmetric-signingInfoResponse,
contains the following configuration:

— References the gen_signsctkeyinfo signing key information.

108 Securing WebSphere applications

— The part reference configuration, which uses the transform configuration http://www.w3.0rg/2001/
10/xm1-exc-cl4n# algorithm.

— The signing key information, named gen_signsctkeyinfo, which contains the following configuration:
- The security token reference.
- The derived key, as follows:
* Requires explicit derived key token.
» WS-SecureConversation as the client label.
* WS-SecureConversation as the service label.
» Key length of 16 bytes.
* Nonce length of 16 bytes.
- The gen_scttoken protection token generator, as follows:
» Contains the Secure Conversation Token v1.3 token type.

» Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

» Contains the wss.generate.sct JAAS login.
- The WS-Trust Callback Handler.
— The signature method http://www.w3.0rg/2000/09/xm1dsig#hmac-shal.
— The canonicalization method http://www.w3.0rg/2001/10/xm1-exc-cl4n#.

* The sample configuration for encryption information generation, called asymmetric-
encryptionInfoResponse, contains the following configuration:

— References the gen_enckeyinfo encryption key information.
— The encryption key information, named gen_enckeyinfo, contains the following configuration
- The key identifier.
- The gen_encx509token protection token asymmetric encryption generator, as follows:
» Contains the X.509 V3 Token v1.0 token type.

» Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-
profile-1.0#X509v3 value type for the local part value.

» Contains the wss.generate.x509 JAAS login.

- Uses X.509 Callback Handler. The callback handler calls the custom keystore in
${USER_INSTALL ROOT}/etc/ws-security/samples/enc-receiver.jceks, with the following
characteristics:

* The keystore type is JCEKS.

* The keystore password is client.

* The alias name of the trusted certificate is soapca.
* The alias name of the personal certificate is alice.

* The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

— The key encryption method http://www.w3.0rg/2001/04/xmlenc#rsa-1_5.

* The sample configuration for encryption information generation, called symmetric-
encryptionInfoResponse, contains the following configuration:

— References the gen_encsctkeyinfo encryption key information.
— The encryption key information, named gen_encsctkeyinfo, contains the following configuration:
- The security token reference.
- The derived key, as follows:
* Requires explicit derived key token.
+ WS-SecureConversation as the client label.

Chapter 5. Web services 109

* WS-SecureConversation as the service label.
» Key length of 16 bytes.
* Nonce length of 16 bytes.
- The gen_scttoken protection token generator, as follows:
» Contains the Secure Conversation Token v1.3 token type.

» Contains the http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct value
type for the local part value.

» Contains the wss.generate.sct JAAS login.
- The WS-Trust Callback Handler.
— The data encryption method http://www.w3.0rg/2001/04/xmlenc#aes128-chc.

* The sample configuration for authentication token consumption, called con_krb5token, contains the
following configuration:

— The custom token type for Kerberos v5 token, which uses http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ for the local part value.

— The wss.consume.KRB5BST JAAS login.
— The custom Kerberos token callback handler.

* The sample configuration for authentication token consumption, called con_1tpaproptoken, contains the
following configuration:

— The token type LTPA propagation token.
— The wss.consume.ltpaProp JAAS login.
— The LTPA token callback handler.

* The sample configuration for authentication token consumption, called con_1tpatoken, contains the
following configuration:

— The token type LTPA Token v2.0, with the following characteristics:

- Contains LTPAv2 for the local part value.

- Contains http://www.ibm.com/websphere/appserver/tokentype for the Namespace URI value.
— The wss.consume.ltpa JAAS login
— The LTPA token callback handler.

* The sample configuration for authentication token consumption, called con_unametoken, contains the
following configuration:

— Token type Username Token v1.0, which uses http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken for the local part value.

— The wss.consume.unt JAAS login.
— The Username token callback handler, with the following custom properties:
- com.ibm.wsspi.wssecurity.token.username.verifyNonce for verifying the nonce value.
- com.ibm.wsspi.wssecurity.token.username.verifyTimestamp for verifying the time stamp value.

Default sample configurations for JAX-RPC: Version 6 and later applications

Use sample configurations with the administrative console for testing purposes. The configurations that
you specify are reflected on the cell or server level.

This information describes the sample default bindings, key stores, key locators, collection certificate store,
trust anchors, and trusted ID evaluators for WebSphere Application Server using the API for XML-based
RPC (JAX-RPC) programming model. You can develop Web services using the Java API for XML-based
RPC (JAX-RPC) programming model, or for WebSphere Application Server Version 7, using the Java API

110 Securing WebSphere applications

for XML-Based Web Services (JAX-WS) programming model. Sample default bindings, key stores, key
locators, collection certificate store, trust anchors, and trusted ID evaluator may differ depending on which
programming model you use.

Note: IBM WebSphere Application Server supports the Java APl for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,
development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

Do not use these configurations in a production environment as they are for sample and testing purposes
only. To make modifications to these sample configurations, it is recommended that you use the
administrative console provided by WebSphere Application Server.

For a Web services security-enabled application, you must correctly configure a deployment descriptor and
a binding. In WebSphere Application Server, one set of default bindings is shared by the applications to
make application deployment easier. The default binding information for the cell level and the server level
can be overridden by the binding information on the application level. The Application Server searches for
binding information for an application on the application level before searching the server level, and then
the cell level.

The following sample configurations are for WebSphere Application Server using the API for XML-based
RPC (JAX-RPC) programming model.

Default generator binding

WebSphere Application Server provides a sample set of default generator bindings. The default generator
bindings contain both signing information and encryption information.

The sample signing information configuration is called gen_signinfo and contains the following
configurations:

» Uses the following algorithms for the gen_signinfo configuration:
— Signature method: http://www.w3.0rg/2000/09/xmldsig#rsa-shal
— Canonicalization method: http://www.w3.0rg/2001/10/xml-exc-cl4n#

» References the gen_signkeyinfo signing key information. The following information pertains to the
gen_signkeyinfo configuration:

— Contains a part reference configuration that is called gen_signpart. The part reference is not used in
default binding. The signing information applies to all of the Integrity or Required Integrity elements
within the deployment descriptors and the information is used for naming purposes only. The
following information pertains to the gen_signpart configuration:

- Uses the transform configuration called transforml. The following transforms are configured for
the default signing information:

* Uses the http://www.w3.0rg/2001/10/xm1-exc-cl4n# algorithm
* Uses the http://www.w3.0rg/2000/09/xmldsig#shal digest method
— Uses the security token reference, which is the configured default key information.

— Uses the SampleGeneratorSignatureKeyStoreKeyLocator key locator. For more information on this
key locator, see [‘Default sample configurations for JAX-RPC” on page 110

— Uses the gen_signtgen token generator, which contains the following configuration:
- Contains the X.509 token generator, which generates the X.509 token of the signer.
- Contains the gen_signtgen_vtype value type URI.

Chapter 5. Web services 111

- Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

— Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL ROOT}/etc/ws-
security/samples/dsig-sender.ks key store.

- The key store password is client.
- The alias name of the trusted certificate is soapca.
- The alias name of the personal certificate is soaprequester.

- The key password client issued by intermediary certificate authority Int CA2, which is in turn
issued by soapca.

The sample encryption information configuration is called gen_encinfo and contains the following
configurations:

» Uses the following algorithms for the gen_encinfo configuration:
— Data encryption method: http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc
— Key encryption method: http://www.w3.0rg/2001/04/xmlenc#rsa-1_5

» References the gen_enckeyinfo encryption key information. The following information pertains to the
gen_enckeyinfo configuration:

— Uses the key identifier as the default key information.

— Contains a reference to the SampleGeneratorEncryptionKeyStoreKeylLocator key locator. For more
information on this key locator, see [‘Default sample configurations for JAX-RPC” on page 110

— Uses the gen_signtgen token generator, which has the following configuration:
- Contains the X.509 token generator, which generates the X.509 token of the signer.
- Contains the gen_enctgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

— Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-sender. jceks key store.

- The key store password is storepass.
- The secret key CN=Groupl has an alias name of Groupl and a key password of keypass.
- The public key CN=Bob, 0=IBM, C=US has an alias name of bob and a key password of keypass.

- The private key CN=ATice, 0=IBM, C=US has an alias name of alice and a key password of
keypass.

Default consumer binding

WebSphere Application Server provides a sample set of default consumer binding. The default consumer
binding contain both signing information and encryption information.

The sample signing information configuration is called con_signinfo and contains the following
configurations:

» Uses the following algorithms for the con_signinfo configuration:
— Signature method: http://www.w3.0rg/2000/09/xmldsig#rsa-shal
— Canonicalization method: http://www.w3.0rg/2001/10/xm1-exc-cl4n#

» Uses the con_signkeyinfo signing key information reference. The following information pertains to the
con_signkeyinfo configuration:

— Contains a part reference configuration that is called con_signpart. The part reference is not used in
default binding. The signing information applies to all of the Integrity or Requiredintegrity elements
within the deployment descriptors and the information is used for naming purposes only. The
following information pertains to the con_signpart configuration:

112 Securing WebSphere applications

- Uses the transform configuration called reqint_body transforml. The following transforms are
configured for the default signing information:

* Uses the http://www.w3.0rg/2001/10/xm1-exc-cl4n# algorithm.
* Uses the http://www.w3.0rg/2000/09/xmldsig#shal digest method.
Uses the security token reference, which is the configured default key information.

Uses the SampleX509TokenKeyLocator key locator. For more information on this key locator, see
[‘Default sample configurations for JAX-RPC” on page 110/

References the con_signtcon token consumer configuration. The following information pertains to the
con_signtcon configuration:

- Uses the X.509 Token Consumer, which is configured as the consumer for the default signing
information.

- Contains the signtconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

Contains a JAAS configuration called system.wssecurity.X509BST that references the following
information:

- Trust anchor: SampleClientTrustAnchor
- Collection certificate store: SampleCollectionCertStore

The encryption information configuration is called con_encinfo and contains the following configurations:
» Uses the following algorithms for the con_encinfo configuration:

— Data encryption method: http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

— Key encryption method: http://www.w3.0rg/2001/04/xmlenc#rsa-1_5

» References the con_enckeyinfo encryption key information. This key actually decrypts the message.
The following information pertains to the con_enckeyinfo configuration:

— Uses the key identifier, which is configured as the key information for the default encryption
information.

— Contains a reference to the SampleConsumerEncryptionKeyStoreKeylLocator key locator. For more
information on this key locator, see [‘Default sample configurations for JAX-RPC” on page 110/

— References the con_enctcon token consumer configuration. The following information pertains to the
con_enctcon configuration:

- Uses the X.509 token consumer, which is configured for the default encryption information.
- Contains the enctconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

— Contains a JAAS configuration called system.wssecurity.X509BST.

Sample key store configurations

The following sample key stores are for testing purposes only; do not use these key stores in a production
environment:

* ${USER_INSTALL ROOT}/etc/ws-security/samples/dsig-sender.ks
The key store format is JKS.

The key store password is client.

The trusted certificate has a soapca alias name.

The personal certificate has a soaprequester alias name and a client key password that is issued
by the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

e ${USER_INSTALL ROOT}/etc/ws-security/samples/dsig-receiver.ks
— The key store format is JKS.

Chapter 5. Web services 113

— The key store password is server.
— The trusted certificate has a soapca alias name.

— The personal certificate has a soapprovider alias name and a server key password that is issued by
the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

* ${USER_INSTALL ROOT}/etc/ws-security/samples/enc-sender.jceks

— The key store format is JCEKS.
The key store password is storepass.
The CN=Groupl DES secret key has a Groupl alias name and a keypass key password.
The CN=Bob, 0=IBM, C=US public key has a bob alias name and a keypass key password.
The CN=Alice, 0=IBM, C=US private key has a alice alias name and a keypass key password.
e ${USER_INSTALL ROOT}/etc/ws-security/samples/enc-receiver.jceks

— The key store format is JCEKS.
The key store password is storepass.
The CN=Groupl DES secret key has a Groupl alias name and a keypass key password.
The CN=Bob, 0=IBM, C=US private key has a bob alias name and a keypass key password.
The CN=Alice, 0=IBM, C=US public key has a alice alias name and a keypass key password.
e ${USER_INSTALL ROOT}/etc/ws-security/samples/intca2.cer

— The intermediary certificate is signed by soapca and it signs both the soaprequester and the
soapprovider.

Sample key locators

Key locators are used to locate the key for digital signature, encryption, and decryption. For information on
how to modify these sample key locator configurations, see the following articles:

+ [“Configuring the key locator using JAX-RPC for the generator binding on the application level” on page]
474

« [“Configuring the key locator using JAX-RPC for the consumer binding on the application level” on page]
482

+ [“Configuring the key locator using JAX-RPC on the server or cell level” on page 484

Version 5.x application

SampleClientSignerKey
This key locator is used by the request sender for a Version 5.x application to sign the SOAP
message. The signing key name is clientsignerkey, which is referenced in the signing
information as the signing key name.

SampleServerSignerKey
This key locator is used by the response sender for a Version 5.x application to sign the SOAP
message. The signing key name is serversignerkey, which can be referenced in the signing
information as the signing key name.

SampleSenderEncryptionKeyLocator
This key locator is used by the sender for a Version 5.x application to encrypt the SOAP message.
It is configured to use the ${USER_INSTALL ROOT}/etc/ws-security/samples/enc-sender.jceks key
store and the com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator key store key locator. The
implementation is configured for the DES secret key. To use asymmetric encryption (RSA), you
must add the appropriate RSA keys.

SampleReceiverEncryptionKeyLocator
This key locator is used by the receiver for a Version 5.x application to decrypt the encrypted
SOAP message. The implementation is configured to use the ${USER_INSTALL ROOT}/etc/ws-

114 Securing WebSphere applications

security/samples/enc-receiver.jceks key store and the
com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator key store key locator. The implementation is
configured for symmetric encryption (DES or TRIPLEDES). To use RSA, you must add the private
key CN=Bob, 0=IBM, C=US, alias hame bob, and key password keypass.

SampleResponseSenderEncryptionKeyLocator
This key locator is used by the response sender for a Version 5.x application to encrypt the SOAP
response message. It is configured to use the ${USER_INSTALL ROOT}/etc/ws-security/samples/
enc-receiver. jceks key store and the
com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator key store key locator. This key
locator maps an authenticated identity (of the current thread) to a public key for encryption. By
default, WebSphere Application Server is configured to map to public key alice, and you must
change WebSphere Application Server to the appropriate user. The
SampleResponseSenderEncryptionKeyLocator key locator also can set a default key for
encryption. By default, this key locator is configured to use public key alice.

Version 6 and later applications

SampleGeneratorSignatureKeyStoreKeyLocator
This key locator is used by generator to sign the SOAP message. The signing key name is
SOAPRequester, which is referenced in the signing information as the signing key name. It is
configured to use the ${USER_INSTALL ROOT}/etc/ws-security/samples/dsig-sender.ks key store
and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleConsumerSignatureKeyStoreKeyLocator
This key locator is used by the consumer to verify the digital signature in the SOAP message. The
signing key is SOAPProvider, which is referenced in the signing information. It is configured to use
the ${USER_INSTALL ROOT}/etc/ws-security/samples/dsig-receiver.ks key store and the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleGeneratorEncryptionKeyStoreKeyLocator
This key locator is used by the generator to encrypt the SOAP message. It is configured to use
the ${USER_INSTALL ROOT}/etc/ws-security/samples/enc-sender.jceks key store and the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleConsumerEncryptionKeyStoreKeyLocator
This key locator is used by the consumer to decrypt an encrypted SOAP message. It is configured
to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks key store and
the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

SampleX509TokenKeyLocator
This key locator is used by the consumer to verify a digital certificate in an X.509 certificate. It is
configured to use the ${USER_INSTALL ROOT}/etc/ws-security/samples/enc-receiver.jceks key
store and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key store key locator.

Sample collection certificate store

Collection certificate stores are used to validate the certificate path. For information on how to modify this
sample collection certificate store, see the following articles:

» |“Configuring the collection certificate store for the generator binding on the application level” on page|
494]

 |“Configuring the collection certificate store for the consumer binding on the application level” on page|
504]

* [‘Configuring the collection certificate on the server or cell level” on page 506|

Chapter 5. Web services 115

SampleCollectionCertStore
This collection certificate store is used by the response consumer and the request generator to
validate the signer certificate path.

Sample trust anchors

Trust anchors are used to validate the trust of the signer certificate. For information on how to modify the
sample trust anchor configurations, see the following articles:

* [‘Configuring trust anchors for the generator binding on the application level” on page 486|
« [“Configuring trust anchors for the consumer binding on the application level” on page 491
“Configuring trust anchors on the server or cell level” on page 492|

Version 5.x application

SampleClientTrustAnchor
This trust anchor is used by the response consumer to validate the signer certificate. This trust
anchor is configure to access the ${USER_INSTALL R0OOT}/etc/ws-security/samples/dsig-
sender.ks key store.

SampleServerTrustAnchor
This trust anchor is used by the request consumer to validate the signer certificate. This trust
anchor is configure to access the ${USER_INSTALL ROOT}/etc/ws-security/samples/dsig-
sender. ks key store.

Sample trusted ID evaluators
Trusted ID evaluators are used to establish trust before asserting the identity in identity assertion. For

information on how to modify the sample trusted ID evaluator configuration, see [‘Configuring trusted IDJ
levaluators on the server or cell level” on page 508.|

SampleTrustedIDEvaluator
This trusted ID evaluator uses the com.ibm.wsspi.wssecurity.id. TrustedIDEvaluatorimpl
implementation. The default implementation of com.ibm.wsspi.wssecurity.id. TrustedIDEvaluator
contains a list of trusted identities. This list, which is used for identity assertion, defines the key
name and value pair for the trusted identity. The key name is in the form trustedld_* and the value
is the trusted identity. For more information, see the example in [‘Configuring trusted ID evaluatorg
fon the server or cell level” on page 508

Complete the following steps to define this information for the cell level in the administrative
console:

1. Click Security > Web services.
2. Under Additional properties, click Trusted ID evaluators > SampleTrustedIDEvaluator.

Default implementations of the Web services security service provider programming interfaces:

Version 6 and later applications

This information describes the default implementations of the service provider interfaces (SPI) for Web
services security within WebSphere Application Server. The default implementation classes and their
functionality for both the JAX-RPC run time and the JAX-WS run time are discussed. You can use this
information to create or modify the Web services security binding configuration.

Note: IBM WebSphere Application Server supports the Java API for XML-Based Web Services (JAX-WS)
programming model and the Java API for XML-based RPC (JAX-RPC) programming model.
JAX-WS is the next generation Web services programming model extending the foundation
provided by the JAX-RPC programming model. Using the strategic JAX-WS programming model,

116 Securing WebSphere applications

development of Web services and clients is simplified through support of a standards-based
annotations model. Although the JAX-RPC programming model and applications are still supported,
take advantage of the easy-to-implement JAX-WS programming model to develop new Web
services applications and clients.

The default implementations of the service provider interfaces for WebSphere Application Server Version
5.x are not described in this document. Instead, see [‘Securing Web services for Version 5.x applications]
|based on WS-Security” on page 517| for the Version 5.x implementations that are deprecated in Version
6.0.x and later.

Default implementations for the JAX-RPC run time

com.ibm.wsspi.wssecurity.token.X509TokenGenerator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. It is responsible for creating the X.509 token
object from the X.509 certificate, which is returned by the
com.ibm.wsspi.wssecurity.auth.callback.{X509,PKCS7,PkiPath}CallbackHandler interface. Encode
the token using the base 64 format and insert its XML representation into the SOAP message, if
necessary.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and it retrieves
the X.509 certificate from the keystore file.

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. It is responsible for creating the username token
object from user name and password that is returned by a
javax.security.auth.callback.CallbackHandler implementation such as the following callback
handler:

com.ibm.wsspi.wssecurity.auth.callback{GUIPrompt,NonPrompt,StdinPrompt}CallbackHandler.
It also inserts the XML representation of the token into the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token on
the consumer side. This class retrieves the keys from the keystore files for digital signature and
encryption.

com.ibm.wsspi.wssecurity.token.X509TokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the X.509
token from the binary security token. This class decodes the Base64 encryption within the X.509
token and then invokes the system.wssecurity.X509BST Java Authentication and Authorization
Service (JAAS) Login Configuration with the
com.ibm.wsspi.wssecurity.auth.module.X509LoginModule login module to validate the X.509 token.
An object of the com.ibm.wsspi.wssecurity.auth.token.X509Token is created for the validated X.509
token and stored in JAAS Subject.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the
username token for identity assertion (IDAssertion), which does not have a password element.
This interface invokes the system.wssecurity.IDAssertionUsernameToken JAAS login configuration
with the com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernamelLoginModule login module to
validate the IDAssertion user name token. An object of the
com.ibm.wsspi.wssecurity.auth.token.UsernameToken class is created for the validated username
token and stored in the JAAS Subject.

Chapter 5. Web services 117

com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernamelLoginModule
This class implements the javax.security.auth.spi.LoginModule interface and checks whether the
username value is not empty. The login module assumes that the UsernameToken is valid if the
username value is not empty.

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. This class is responsible for Base 64 encoding the
LTPA token object obtained from the
com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler callback handler. The object is
inserted into the Web services security header within the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the LTPA
token from the binary security token, and decodes the Base64 encoding within the LTPA token. An
object of the com.ibm.wsspi.wssecurity.auth.token.LTPAToken class is created for the validated
LTPA token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.X509LoginModule
This class implements the javax.security.auth.spi.LoginModule interface and validates the X.509
Certificate based on the trust anchor and the collection certification store configuration.

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side. This class processes the
username token, extracts the user name and password, and then invokes the
system.wssecurity.UsernameToken JAAS login configuration using the
com.ibm.wsspi.wssecurity.auth.module.UsernamelLoginModule login module to validate the user
name and password. An object of the com.ibm.wsspi.wssecurity.auth.token.UsernameToken class
is created for the validated username token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token on
the consumer side. This class is used to retrieve a public key from a X.509 certificate. The X.509
certificate is stored in the X.509 token (com.ibm.wsspi.wssecurity.auth.token.X509Token) in the
JAAS Subject. The X.509 token is created by the X.509 Token Consumer
(com.ibm.wsspi.wssecurity.tokenX509TokenConsumer).

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token on
the consumer side. This class is used to retrieve a public key from the X.509 certificate of the
request signer and encrypt the response. You can use this key locator in the response generator
binding configuration only.

Note: This implementation assumes that only one signer certificate is used in the request.

com.ibm.wsspi.wssecurity.auth.token.UsernameToken
This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to
represent the username token.

com.ibm.wsspi.wssecurity.auth.token.X509Token
This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to
represent the X.509 binary security token (X.509 certificate).

com.ibm.wsspi.wssecurity.auth.token.LTPAToken
This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class as
a wrapper to the LTPA token that is extracted from the binary security token.

118 Securing WebSphere applications

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and is responsible
for creating a certificate and binary data with or without a certificate revocation list (CRL) using the
PKCS#7 encoding. The certificate and the binary data is passed back to the
com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the
com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and it is
responsible for creating a certificate and binary data without a CRL using the PkiPath encoding.
The certificate and binary data is passed back to the
com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the
com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface and it is
responsible for creating a certificate from the keystore file. The X.509 token certificate is passed
back to the com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the
com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler
This implementation generates a Lightweight Third Party Authentication (LTPA) token in the Web
services security header as a binary security token. If basic authentication data is defined in the
application binding file, it is used to perform a login, to extract the LTPA token from the
WebSphere Application Server credentials, and to insert the token in the Web services security
header. Otherwise, it extracts the LTPA security token from the invocation credentials (run as
identity) and inserts the token in the Web services security header.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation reads the basic authentication data from the application binding file. You
might use this implementation on the server side to generate a username token.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler
This implementation presents you with a login prompt to gather the basic authentication data. Use
this implementation on the client side only.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This implementation collects the basic authentication data using a standard in (stdin) prompt. Use
this implementation on the client side only.

com.ibm.wsspi.wssecurity.id.TrustediDEvaluator
This interface is used to evaluate the level of trust for identity assertion. The default
implementation is com.ibm.wsspi.wssecurity.id. TrustedIDEvaluatorImpl, which enables you to
define a list of trusted identities.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorimpl
This default implementation enables you to define a list of trusted identities for identity assertion.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorException
This exception class is used by an implementation of the
com.ibm.wsspi.wssecurity.id. TrustedIDEvaluator to communicate the exception and errors to the
Web services security run time.

Default implementations for the JAX-WS run time

com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenGenerator
This implementation invokes the JAAS CallbackHandler and JAAS login configuration that are
specified in the binding to create the SecurityToken at run time on the outbound SOAP message.

Chapter 5. Web services 119

com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and retrieves the X.509 certificate. The following properties may be specified:

» com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed. This property takes a boolean value, and
the default value is false.

» com.ibm.wsspi.wssecurity.token.cert.useRequestorCert. This property takes a boolean value,
and the default value is false.

com.ibm.ws.wssecurity.wssapi.token.impl.X509GenerateLoginModule
The wss.generate.x509 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.X509GenerateLoginModule. X509GenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML Username token structure, and also a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7GenerateLoginModule
The wss.generate.pkcs7 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7GenerateLoginModule.
PKCS7GenerateLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for generating an XML token structure and a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathGenerateLoginModule
The wss.generate.pkiPath JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathGenerateLoginModule.
PkiPathGenerateLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for generating an XML token structure and a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the token at run time.

com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the binding configuration and user name and password
authentication data. The following properties may be specified. These properties take a boolean
value, and the default value is false.

» com.ibm.wsspi.wssecurity.token.username.addNonce

* com.ibm.wsspi.wssecurity.token.username.addTimestamp

» com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed

» com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsldentity
* com.ibm.wsspi.wssecurity.token.IDAssertion.sendRealm

* com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm

com.ibm.ws.wssecurity.wssapi.token.impl.UNTGenerateLoginModule
The wss.generate.unt JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl. UNTGenerateLoginModule implements the
javax.security.auth.spi.LoginModule interface and is responsible for generating an XML Username
token structure and also a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time. When com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed has a
the value of true, the generated username token does not contain a password. When
com.ibm.wsspi.wssecurity.token.IDAssertion.sendRealm has the value of true, the user name is
qualified by the local realm name. When com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm
has the value of true, the user name field contains both the user name and a registry-dependent
unique identifier for the user. Both the user name and the unique identifier are qualified by the
local realm name.

com.ibm.websphere.wssecurity.callbackhandler. KRBTokenGenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound

120 Securing WebSphere applications

SOAP message, and it retrieves the Kerberos user name and password, along with other binding
configuration properties. The following properties may be specified. The properties take a string
that specifies the target service name as part of a service principal name (SPN), in the form of
service_name/host_name @ Kerberos_realm_name.

« com.ibm.wsspi.wssecurity.krbtoken.targetServiceName
» com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost
» com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm

com.ibm.ws.wssecurity.wssapi.token.impl.KRBGenerateLoginModule
The wss.generate. KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl. KRBGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. KRBGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule
The wss.generate. KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl. KRBGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. DKTGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time when the Requires derived keys option is enabled.

com.ibm.websphere.wssecurity.callbackhandler._LTPAGenerateCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the user name and password binding data if they are specified.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAGenerateLoginModule
The wss.generate.ltpa JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAGenerateLoginModule. LTPAGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time. The security token contains an LTPA token that is generated from
the user name and password if they are defined in the binding data, or the LTPA authentication
token from the RunAs Subiject, in that order.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationGenerateLoginModule
The wss.generate.ltpaProp JAAS system login configuration contains
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationGenerateLoginModule.
LTPAPropagationGenerateLoginModule implements the javax.security.auth.spi.LoginModule
interface and is responsible for generating an XML token structure and a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the token at run time.
The security token contains the serialized RunAs Subject.

com.ibm.ws.wssecurity.impl.auth.callback.WSTrustCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves security context token configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.SCTGenerateLoginModule
The wss.generate.sct JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.SCTGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. SCTGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the security context token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule
The wss.generate.sct JAAS system login configuration contains the classes

Chapter 5. Web services 121

com.ibm.ws.wssecurity.wssapi.token.impl.SCTGenerateLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTGenerateLoginModule. DKTGenerateLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for generating an
XML token structure and a com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that
represents the token at run time when the Requires derived keys option is enabled.

com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenConsumer
This implementation invokes the JAAS CallbackHandler and JAAS login configuration that are
specified in the binding to extract the security token from the inbound SOAP message and to
create the SecurityToken object at run time.

com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on SOAP
message inbound to retrieve the trust store and certificate file information that are required to
validate the X.509 certificate.

com.ibm.ws.wssecurity.wssapi.token.impl.X509ConsumeLoginModule
The wss.consume.x509 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.X509ConsumeLoginModule. X509ConsumelLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the X.509 certificate. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7ConsumeLoginModule
The wss.consume.pkcs7 JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PKCS7ConsumeLoginModule
PKCS7ConsumeLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for retrieving and validating the X.509 certificate. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathConsumeLoginModule
The wss.consume.pkiPath JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.PkiPathConsumeLoginModule.
PkiPathConsumeLoginModule implements the javax.security.auth.spi.LoginModule interface and is
responsible for retrieving and validating the X.509 certificate. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the X.509 token at run
time.

com.ibm.websphere.wssecurity.callbackhandler.UNTConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on SOAP
message inbound to retrieve binding configuration data. The following properties may be specified.
These properties take a boolean value and the default value is false.

» com.ibm.wsspi.wssecurity.token.username.verify Timestamp
» com.ibm.wsspi.wssecurity.token.username.verifyNonce

« com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed

» com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm

com.ibm.ws.wssecurity.wssapi.token.impl.UNTConsumeLoginModule
The wss.consume.unt JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.UNTConsumeLoginModule. UNTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the username token. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the username token at
run time. When com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed has the value of false,
UNTConsumeLoginModule validates the username and password against the local user registry.
An incorrect user name or incorrect or missing password will cause the token validation to fail.

122 Securing WebSphere applications

When com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed has a value of true, and
com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm has a value of false, the user name is
validated against the local user registry. There should be no password in the username token.
When both com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed and
com.ibm.wsspi.wssecurity.token.IDAssertion.trustedRealm have a value of true, the user name
field must contain a realm-qualified user name and unique user identifier data, and the realm must
be one of the trusted realms in the multiple security domain inbound trust configuration.

com.ibm.websphere.wssecurity.callbackhandler. KRBTokenConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the inbound
SOAP message, and it retrieves the binding configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.KRBConsu
The wss.consume.KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl. KRBConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. KRBConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the Kerberos AP_REQ token. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the AP_REQ token at
run time.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule
The wss.consume.KRB5BST JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl. KRBConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. DKTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving the
derived key when a derived key is required.

com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the inbound
SOAP message, and it retrieves the binding configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAConsumelLoginModule
The wss.consume.ltpa JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAConsumeLoginModule. LTPAConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the LTPA v2 or LTPA token. It creates a
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken that represents the LTPA v2 or LTPA
token at run time.

com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationConsumeLoginModule
The wss.consume.ltpaProp JAAS system login configuration contains the class
com.ibm.ws.wssecurity.wssapi.token.impl.LTPAPropagationConsumeLoginModule.
LTPAPropagationConsumeLoginModule implements the javax.security.auth.spi.LoginModule
interface and is responsible for retrieving, deserializing, and validating the propagation token and
reconstructing the security context.

com.ibm.ws.wssecurity.impl.auth.callback.SCTConsumeCallbackHandler
This class implements the javax.security.auth.callback.CallbackHandler interface on the outbound
SOAP message, and it retrieves the binding configuration data.

com.ibm.ws.wssecurity.wssapi.token.impl.SCTConsumeLoginModule
The wss.consume.sct JAAS system login configuration contains the classes
com.ibm.ws.wssecurity.wssapi.token.impl.SCTConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. SCTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving and
validating the security context token.

com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule
The wss.consume.sct JAAS system login configuration contains the classes

Chapter 5. Web services 123

com.ibm.ws.wssecurity.wssapi.token.impl.SCTConsumeLoginModule, and
com.ibm.ws.wssecurity.wssapi.token.impl.DKTConsumeLoginModule. DKTConsumeLoginModule
implements the javax.security.auth.spi.LoginModule interface and is responsible for retrieving the
derived key when a derived key is required.

com.ibm.ws.wssecurity.impl.auth.module.PreCallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.PreCallerLoginModule. PreCallerLoginModule implements
the javax.security.auth.spi.LoginModule interface and is responsible for validating whether it has
received any security token that may be used to establish caller identity or trusted identity.

com.ibm.ws.wssecurity.impl.auth.module.UNTCallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.UNTCallerLoginModule. UNTCallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. UNTCallerLoginModule also
determines if the user identity is authorized to make an identity assertion if the username is
configured to be a trusted identity, or if there is exactly one caller identity if the username token is
configured to be a caller identity. It sets the validated caller and trusted identity into the shared
state.

com.ibm.ws.wssecurity.impl.auth.module.X509CallerLoginModule
The wss.caller JAAS system login configuration contains
com.ibm.ws.wssecurity.impl.auth.module. X509CallerLoginModule. X509CallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. X509CallerLoginModule checks to
see if the user identity is authorized to make an identity assertion if the X509 token is configured
to be a trusted identity, or if there is exactly one caller identity if the X509 token is configured to be
a caller identity. It sets the validated caller and trusted identity into the shared state.

com.ibm.ws.wssecurity.impl.auth.module.LTPACallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.LTPACallerLoginModule. LTPACallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. LTPACallerLoginModule also checks
to see if the user identity is an authorized to make an identity assertion if the LTPA token is
configured to be a trusted identity, or if there is exactly one caller identity if the LTPA token is
configured to be a caller identity. It sets the validated caller and trusted identity into the shared
state.

com.ibm.ws.wssecurity.impl.auth.module.LTPAPropagationCallerLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module.LTPAPropagationCallerLoginModule.
LTPAPropagationCallerLoginModule implements the javax.security.auth.spi.LoginModule interface.
LTPAPropagationCallerLoginModule also checks to see if the user identity is an authorized to
make an identity assertion if the propagation token is configured to be a trusted identity, or if there
is exactly one caller identity if the propagation token is configured to be a caller identity. It sets the
validated caller and trusted identity into the shared state.

com.ibm.ws.wssecurity.impl.auth.module.KRBCallerLoginModule
The wss.caller JAAS system login configuration contains
com.ibm.ws.wssecurity.impl.auth.module. KRBCallerLoginModule. KRBCallerLoginModule
implements the javax.security.auth.spi.LoginModule interface. KRBCallerLoginModule also checks
to see if the user identity is an authorized to make an identity assertion if the Kerberos token is
configured to be a trusted identity, or if there is exactly one caller identity if the Kerberos token is
configured to be a caller identity. It sets the validated caller and trusted identity into the shared
state.

com.ibm.ws.wssecurity.impl.auth.module. WSWSSLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.wssecurity.impl.auth.module. WSWSSLoginModule. WSWSSLoginModule implements

124 Securing WebSphere applications

the javax.security.auth.spi.LoginModule interface and is responsible for asserting the caller identity
to the ItpaLoginModule and the wsMapDefaultinboundLoginModule to establish the caller security
context.

com.ibm.ws.security.server.Im.ltpaLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.security.server.Im.ltpaLoginModule.

com.ibm.ws.security.server.Im.wsMapDefaultinboundLoginModule
The wss.caller JAAS system login configuration contains the class
com.ibm.ws.security.server.Im.wsMapDefaultinboundLoginModule.

XML digital signature

Version 6 and later applications

XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML syntax
and processing rules to sign and verify digital signatures for digital content. The specification was
developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force
(IETF).

XML digital signature does not introduce new cryptographic algorithms. WebSphere Application Server
uses XML digital signature with existing algorithms such as RSA, HMAC, and SHA1. XML signature
defines many methods for describing key information and enables the definition of a new method.

XML canonicalization (c14n) is often needed when you use XML signature. Information can be represented
in various ways within serialized XML documents. For example, although their octet representations are
different, the following examples are identical:

e <person first="John" last="Smith"/>
e <person last="Smith" first="John"></person>

C14n is a process that is used to canonicalize XML information. Select an appropriate c14n algorithm
because the information that is canonicalized is dependent upon this algorithm. One of the major c14n
algorithms, Exclusive XML Canonicalization, canonicalizes the character encoding scheme, attribute order,
namespace declarations, and so on. The algorithm does not canonicalize white space outside tags,
namespace prefixes, or data type representation.

XML signature in the Web Services Security-Core specification

The Web Services Security-Core (WSS-Core) specification defines a standard way for SOAP messages to
incorporate an XML signature. You can use almost all of the XML signature features in WSS-Core except
enveloped signature and enveloping signature. However, WSS-Core has some recommendations such as
exclusive canonicalization for the c14n algorithm and some additional features such as
SecurityTokenReference and Keyldentifier.

The Keyldentifier is the value of the SubjectKeyldentifier field within the X.509 certificate. For more
information on the Keyldentifier, see "Reference to a Subject Key Identifier” within the |[OASIS Web
[Services Security X.509 Certificate Token Profilgl documentation.

By including XML signature in SOAP messages, the following issues are realized:

Message integrity
A message receiver can confirm that attackers or accidents have not altered parts of the message
after these parts are signed by a key.

Authentication
You can assume that a valid signature is proof of possession. A message with a digital certificate

Chapter 5. Web services 125

http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf

that is issued by a certificate authority and a signature in the message that is validated
successfully by a public key in the certificate, is proof that the signer has the corresponding private
key. The receiver can authenticate the signer by checking the trustworthiness of the certificate.

Collection certificate store

Version 6 and later applications

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a
digitally signed SOAP message.

A collection certificate store is used when WebSphere Application Server is processing a received SOAP
message. For JAX-RPC applications, this collection is configured in the Request Consumer Service
Configuration Details section of the binding file for servers and in the Response Consumer Configuration
section of the binding file for clients. You can configure these two sections using one of the assembly tools
provided by WebSphere Application Server. See the assembly tools information in the topic Assembly
tools.

For JAX-WS applications, this collection is configured using the administrative console in the Keys and
certificates panel of the WS-Security policy set bindings.

A collection certificate store is one kind of certificate store. A certificate store is defined as
javax.security.cert.CertStore in the Java CertPath application programming interface (API). The Java
CertPath API defines the following types of certificate stores:

Collection certificate store
A collection certificate store accepts the certificates and CRLs as Java collection objects.

Lightweight Directory Access Protocol certificate store
The Lightweight Directory Access Protocol (LDAP) certificate store accepts certificates and CRLs
as LDAP entries.

The CertPath API uses the certificate store and the trust anchor to validate the incoming X.509 certificate
that is embedded in the SOAP message. The Web services security implementation in the WebSphere
Application Server supports the collection certificate store. Each certificate and CRL is passed as an
encoded file.

Certificate revocation list

Version 6 and later applications

A certificate revocation list is a time-stamped list of certificates that have been revoked by a certificate
authority (CA).

A certificate that is found in a certificate revocation list (CRL) might not be expired, but is no longer trusted
by the certificate authority that issued the certificate. The certificate authority creates the CRL that contains
the serial number and issuing CA distinguished name of the certificate that has been revoked. The CA
might add the certificate to the certificate revocation list if it believes that the client certificate is
compromised. The certificate revocation list is maintained and issued by the certificate authority.

XML encryption

Version 6 and later applications

126 Securing WebSphere applications

XML encryption is a specification that was developed by World Wide Web (WWW) Consortium (W3C) in
2002 and that contains the steps to encrypt data, the steps to decrypt encrypted data, the XML syntax to
represent encrypted data, the information to be used to decrypt the data, and a list of encryption
algorithms, such as triple DES, AES, and RSA.

You can apply XML encryption to an XML element, XML element content, and arbitrary data, including an
XML document. For example, suppose that you need to encrypt the <CreditCard> element that is shown in
example 1.

Example 1: Sample XML document

<PaymentInfo xmins="http://example.org/paymentv2'>
<Name>John Smith</Name>
<CreditCard Limit='5,000" Currency='USD'>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo>

Example 2: XML document with a common secret key

Example 2 shows the XML document after encryption. The <EncryptedData> element represents the
encrypted <CreditCard> element. The <EncryptionMethod> element describes the applied encryption
algorithm, which is triple DES in this example. The <Keylnfo> element contains the information that is
needed to retrieve a decryption key, which is a <KeyName> element in this example. The <CipherValue>
element contains the cipher text that is obtained by serializing and encrypting the <CreditCard> element.

<PaymentInfo xmins='http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Type='http://www.w3.0rg/2001/04/xmlenc#Element"’
xmlns="http://www.w3.0rg/2001/04/xmlenc#'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc'/>
<KeyInfo xmins="http://www.w3.0rg/2000/09/xmldsig#"'>
<KeyName>John Smith</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>ydUNgHkMrD...</CipherValue>
</CipherData>
</EncryptedData>
</PaymentInfo>

Example 3: XML document encrypted with the public key of the recipient

In example 2, it is assumed that both the sender and recipient have a common secret key. If the recipient
has a public and private key pair, which is commonly the case, the <CreditCard> element can be
encrypted as shown in example 3. The <EncryptedData> element is the same as the <EncryptedData>
element found in Example 2. However, the <KeylInfo> element contains an <EncryptedKey> element.

<PaymentInfo xmins='http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Type='http://www.w3.0rg/2001/04/xmlenc#Element’
xmins="http://www.w3.0rg/2001/04/xmlenc#'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc'/>
<KeyInfo xmlns='http://www.w3.0rg/2000/09/xmldsig#"'>
<EncryptedKey xmins="http://www.w3.0rg/2001/04/xmlenc#'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1 5'/>
<KeyInfo xmins='http://www.w3.0rg/2000/09/xmldsig#"'>
<KeyName>Sally Doe</KeyName>
</KeyInfo>
<CipherData>

Chapter 5. Web services 127

<CipherValue>yMTEyOTAIM...</CipherValue>
</CipherData>
</EncryptedKey>
</KeyInfo>
<CipherData>
<CipherValue>ydUNgHkMrD...</CipherValue>
</CipherData>
</EncryptedData>
</PaymentInfo>

XML Encryption in the WSS-Core

The WSS-Core specification is under development by Organization for the Advancement of Structured
Information Standards (OASIS). The specification describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message confidentiality, and single message
authentication. The message confidentiality is realized by encryption based on XML Encryption.

The WSS-Core specification supports encryption of any combination of body blocks, header blocks, their
substructures, and attachments of a SOAP message. When you encrypt parts of a SOAP message, the
specification also requires that you prepend a reference from the security header block to the encrypted
parts of the message. The reference can be a clue for a recipient to identify which encrypted parts of the
message to decrypt.

The XML syntax of the reference varies according to what information is encrypted and how it is
encrypted. For example, suppose that the <CreditCard> element in example 4 is encrypted with either a
common secret key or the public key of the recipient.

Example 4: Sample SOAP Version 1.1 message

<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/'
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/'>
<SOAP-ENV:Body>
<PaymentInfo xmins='http://example.org/paymentv2'>
<Name>John Smith</Name>
<CreditCard Limit='5,000"' Currency='USD'>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

SOAP Version 1.2 does not support encodingStyle so the example changes to the following:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/'>
<SOAP-ENV:Body>
<PaymentInfo xmlIns="http://example.org/paymentv2'>
<Name>John Smith</Name>
<CreditCard Limit='5,000"' Currency='USD'>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The resulting SOAP messages are shown in Examples 5 and 6. In these example, the <ReferenceList>
and <EncryptedKey> elements are used as references, respectively.

128 Securing WebSphere applications

Example 5: SOAP Version 1.1 message encrypted with a common secret key

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/'>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand='1"
xmins="http://schemas.xmlsoap.org/ws/2003/06/secext'>
<ReferencelList xmins='http://www.w3.0rg/2001/04/xmlenc#"'>
<DataReference URI='#edl'/>
</ReferencelList>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PaymentInfo xmins='http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Id='edl'
Type="http://www.w3.0rg/2001/04/xmlenc#Element’
xmins="http://www.w3.0rg/2001/04/xmlenc#"'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc'/>
<KeyInfo xmins='http://www.w3.0rg/2000/09/xmldsig#'>
<KeyName>John Smith</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>ydUNgHkMrD. . .</CipherValue>
</CipherData>
</EncryptedData>
</PaymentInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Version 1.2 does not support encodingStyle and the example changes to the following:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/'>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand='1"
xmins="http://schemas.xmlsoap.org/ws/2003/06/secext"'>
<ReferencelList xmins="http://www.w3.0rg/2001/04/xmlenc#'>
<DataReference URI='#edl'/>
</Referencelist>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV: Body>
<PaymentInfo xmlins="'http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Id='edl'
Type="http://www.w3.0rg/2001/04/xmlenc#Element’
xmins="http://www.w3.0rg/2001/04/xmlenc#"'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc'/>
<KeyInfo xmins='http://www.w3.0rg/2000/09/xmldsig#"'>
<KeyName>John Smith</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>ydUNgHkMrD. ..</CipherValue>
</CipherData>
</EncryptedData>
</PaymentInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 6: SOAP message encrypted with the public key of the recipient

<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/’
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/'>
<SOAP-ENV:Header>

Chapter 5. Web services

129

<Security SOAP-ENV:mustUnderstand='1"
xmins="http://schemas.xmlsoap.org/ws/2003/06/secext'>
<EncryptedKey xmins="'http://www.w3.0rg/2001/04/xmlenc#'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5'/>
<KeyInfo xmIns="http://www.w3.0rg/2000/09/xmldsig#"'>
<KeyName>Sally Doe</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>yMTEyOTAIM. ..</CipherValue>
</CipherData>
<Referencelist>
<DataReference URI='#edl'/>
</Referencelist>
</EncryptedKey>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<PaymentInfo xmins="http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Id='edl'
Type="http://www.w3.0rg/2001/04/xmlenc#Element’
xmlns="http://www.w3.0rg/2001/04/xmlenc# ">
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc'/>
<CipherData>
<CipherValue>ydUNgHkMrD. ..</CipherValue>
</CipherData>
</EncryptedData>
</PaymentInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Version 1.2 does not support encodingStyle and the example changes to the following:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/'>
<SOAP-ENV:Header>
<Security SOAP-ENV:mustUnderstand='1"
xmins="http://schemas.xmlsoap.org/ws/2003/06/secext'>
<EncryptedKey xmlins="http://www.w3.0rg/2001/04/xmlenc#'>
<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1 5'/>
<KeyInfo xmlns='http://www.w3.0rg/2000/09/xmldsig#"'>
<KeyName>Sally Doe</KeyName>
</KeyInfo>
<CipherData>
<CipherValue>yMTEyOTAIM...</CipherValue>
</CipherData>
<Referencelist>
<DataReference URI='#edl'/>
</Referencelist>
</EncryptedKey>
</Security>
</SOAP-ENV:Header>
<SOAP-ENV : Body>
<PaymentInfo xmins="http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Id='edl'
Type="http://www.w3.0rg/2001/04/xmlenc#Element’
xmins="http://www.w3.0rg/2001/04/xmlenc#"'>

<EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-chc'/>
<CipherData>
<CipherValue>ydUNgHkMrD. ..</CipherValue>
</CipherData>

130 Securing WebSphere applications

</EncryptedData>
</PaymentInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Relationship to digital signature

The WSS-Core specification also provides message integrity, which is realized by a digital signature that is
based on the XML-Signature specification.

A combination of encryption and digital signature over common data introduces cryptographic
vulnerabilities.

Symmetric versus asymmetric encryption

For XML encryption, the application server supports two types of encryption:
* Symmetric encryption

In releases of the application server prior to WebSphere Application Server Version 7, including the IBM
WebSphere Application Server Version 6.1 Feature Pack for Web Services, by default the KeyName
reference was used to refer to the shared key outside of the SOAP message. However, the Web
Services Security (WS-Security) Version 1.1 standard does not recommend using the KeyName
reference. Because KeyName is not supported by the security policy, it is not supported in the
application server.

The Web Services Secure Conversation (WS-SecureConversation) standard defines how to exchange
the shared key between the client and the service and how to refer to the shared key in the message.
The use of Kerberos with Web Services Security, as described in the Kerberos Token Profile, also
defines how to use a Kerberos session key or key derived from the session key to perform symmetric
encryption. Therefore, you can use symmetric encryption by using WS-SecureConversation or Kerberos.
WebSphere Application Server supports DerivedKeyToken when using WS-SecureConversation. When
using Kerberos, WebSphere Application Server supports both the use of DerivedKeyToken and the use
of the Kerberos session key direcily.

* Asymmetric encryption

For asymmetric encryption, XML Encryption introduces the idea of key wrapping. The data, such as the
contents of the SOAP body element, is encrypted with a shared key that is dynamically generated while
processing. Then, the generated shared key is encrypted with the public key of the receiver.
WebSphere Application Server supports the X509Token for asymmetric encryption.

Security token

Version 6 and later applications

Web services security provides a general-purpose mechanism to associate security tokens with messages
for single message authentication. A security token represents a set of claims made by a client that might
include a name, password, identity, key, certificate, group, privilege, and so on.

A specific type of security token is not required by Web services security. Web services security is
designed to be extensible and support multiple security token formats to accommodate a variety of
authentication mechanisms. For example, a client might provide proof of identity and proof of a particular
business certification. However, the security token usage for Web services security is defined in separate
profiles such as the Username token profile, the X.509 token profile, the Security Assertion Markup
Language (SAML) token profile, the eXtensible rights Markup Language (XrML) token profile, the Kerberos
token profile, and so on.

A security token is embedded in the SOAP message within the SOAP header. The security token within
the SOAP header is propagated from the message sender to the intended message receiver. On the

Chapter 5. Web services 131

receiving side, the WebSphere Application Server Web Services security handler authenticates the security
token and sets up the caller identity on the running thread.

WebSphere Application Server contains an enhanced security token that has the following features:
* The client can send multiple tokens to downstream servers.

* The receiver can determine which security token to use for authorization based upon the type or signed
part for X.509 tokens.

* You can use the custom token or derived key token for digital signing or encryption.

LTPA and LTPA Version 2 tokens
Web services security supports both LTPA (Version 1) and LTPA Version 2 tokens. The LTPA Version 2
token, which is more secure than Version 1, is supported in WebSphere Application Server Version 7.0.

The Lightweight Third Party Authentication (LTPA) token is a specific type of binary security token. The
Web services security implementation for WebSphere Application Server, Version 6 and later supports the
Version 1 level of LTPA token, while WebSphere Application Server Version 7 added support for Version 2
of LTPA.

Although the same LTPAToken assertion is used in the policy for both LTPA Version 1 and LTPA Version 2,
the URI for the Version 2 token is different than Version 1. When LTPA Token v2.0 is selected as the token
type for the default policy set bindings, the URI value is set to http://www.ibm.com/websphere/appserver/
tokentype, and this value is not editable.

To allow interoperability between servers running different versions of WebSphere Application Server, Web
services security can successfully consume an LTPA Version 1 token when the policy is configured to
expect an LTPA Version 2 token. Likewise, if a LTPA Version 1 token is expected, a Version 2 token can
be consumed. A custom property can be configured to enforce a specific version of the LTPA token. If an
LTPA Version 1 token is configured for the token generator, the single sign-on interoperability mode must
be enabled in global security. For more information on the custom property or the single sign-on
interoperability mode, see the topic Enabling single-sign on interoperability mode for the LTPA token.

Related concepts

[‘Binary security token” on page 135|

The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party
Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for
example, Base64Binary. The BinarySecurityToken element defines a security token that is binary encoded.
The encoding is specified using the EncodingType attribute. The value type and space are specified using
the ValueType attribute. The Web services security implementation for WebSphere Application Server,
Version 6 and later supports LTPA,, LTPA version 2, and X.509 certificate binary security tokens.

Related tasks

[‘Enabling or disabling single sign-on interoperability mode for the LTPA token” on page 431|
You can set an interoperability flag on the token generator to determine whether an LTPA Version 1 token
or an LTPA Version 2 token is retrieved when a request message is received.

Username token

You can use the <UsernameToken> element to propagate a user name and, optionally, password
information. Also, you can use this token type to carry basic authentication information. Both a user name
and a password are used to authenticate the SOAP message.

OASIS: Web Services Security UsernameToken Profile 1.0

A UsernameToken element containing the user name is used in identity assertion. Identity assertion
establishes the identity of the user based on the trust relationship.

The following example shows the syntax of the <UsernameToken> element:

132 Securing WebSphere applications

<wsse:UsernameToken wsu:Id="Example-1">
<wsse:Username>

</wsse:Username>
<wsse:Password Type="...">

</wsse:Password>
<wsse:Nonce EncodingType="...">

</wsse:Nonce>
<wsu:Created>

</wsu:Created>
</wsse:UsernameToken>

The Web services security specification defines the following password types:

wsse:PasswordText (default)
This type is the actual password for the user name.

wsse:PasswordDigest
The type is the digest of the password for the user name. The value is a base64-encoded SHA1
hash value of the UTF8-encoded password.

WebSphere Application Server supports the default PasswordText type. However, it does not support
password digest because most user registry security policies do not expose the password to the
application software.

The following example illustrates the use of the <UsernameToken> element:

<S:Envelope
xmins:S="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<S:Header>

<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>Joe</wsse:Username>
<wsse:Password>ILoveJava</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</S:Header>
</S:Envelope>

OASIS: Web Services Security UsernameToken Profile 1.1
WebSphere Application Server supports both Username Token Profile 1.0 and Version 1.1 standards.

WebSphere Application Server does not support the following functions:
* In both versions of the Username Token Profile specification, the digest password type is not supported

* In both versions of the Username Token Profile specification, key derivation based on a password is not
supported.

You can use policy sets to configure the UsernameToken using the administrative console. Also, you can

use the Web Services Security APIs to attach the Username token to the SOAP message. The following
figure describes the creation and validation of the Username token:

Chapter 5. Web services 133

JAAS JAAS
JAAS JAAS Login Module Callback Handler
Login Module <= -~ = * * Login Module A user1/pwd
user1/pwd

<wsse:Username Token>
<wsse:Username>user1</wsse:Username>

' <wsse:Username>useri</wsse:Username> <wsse:Password>pwd</wsse:Password>

' <wsse:Password>pwd</wsse:Password> </wsse:Username Token>

: </wsse:Username Token>
T

Initiator Recipiént

' <wsse:Username Token>

WSS Runtime <wsse:Username Token> WSS Ruhtime
<wsse:Username>user1</wsse:Username> '

<wsse:Password>pwd</wsse:Password> /—\ cert
: u
Request </wsse:Username Token> Request

Generator Secured SOAP message W
Response Response
Consumer Secured SOAP message Consumer

Laa)
L

, IETTEEN - [[seantyioen]
JAAS JAAS JAAS JAAS
Login Module Callback Handler Login Module [= 1 callback Handler

Figure 1. Creating and validating the Username token using the JAAS Login Module and the JAAS CallbackHandler

\ 4

Note: The WSS API is available only when you are using the Java API for XML-Based Web Services
(JAX-WS) programming model.

On the generator side, the Username token is created by using the JAAS LoginModule and by using the
JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the
UsernameToken object and passes it to the Web Service Security run time.

On the consumer side, the Username Token XML format is passed to the JAAS LoginModule for validation
or authentication, and the JAAS CallbackHandler is used to pass the authentication data from the Web
Service Security run time to the JAAS LoginModule. After the token is authenticated, a UsernameToken
object is created and is passed to the Web service security run time.

The following example provides sample code for creating Username tokens:

WSSFactory factory = WSSFactory.getInstance();
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Attach the username token to the message.
UNTGenerationCallbackHandTer ugCallbackHandler =
newUNTGenerationCallbackHandler("alice", "ecila");
SecurityToken ut = factory.newSecurityToken(ugCallbackHandler,
UsernameToken.class);
gencont.add(ut);

// Generate the WS-Security header
gencont.process(msgctx) ;

XML token

Version 6 and later applications

134 Securing WebSphere applications

XML tokens are offered in two well-known formats called Security Assertion Markup Language (SAML) and
eXtensible rights Markup Language (XrML).

In WebSphere Application Server Versions 6 and later, you can plug in your own implementation. By using
extensibility of the <wsse:Security> header in XML-based security tokens, you can directly insert these
security tokens into the header. SAML assertions are attached to Web services security messages using
by placing assertion elements inside the <wsse:Security> header. The following example
illustrates a Web services security message with a SAML assertion token.

<S:Envelope xmlns:S="...">
<S:Header>
<wsse:Security xmlns:wsse="...">

<saml:Assertion
MajorVersion="1"
MinorVersion="0"
AssertionID="SecurityToken-ef375268"
Issuer="elliotwl"
Issuelnstant="2002-07-23T711:32:05.6228146-07:00"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

</saml :Assertion>
</wsse:Security>
</S:Header>
<S:Body>

</S:Body>
</S:Envelope>

For a complete list of the supported standards and specifications, see the Web services specifications and
API documentation.

Binary security token

Version 6 and later applications

The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party
Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for
example, Base64Binary. The BinarySecurityToken element defines a security token that is binary encoded.
The encoding is specified using the EncodingType attribute. The value type and space are specified using
the ValueType attribute. The Web services security implementation for WebSphere Application Server,
Version 6 and later supports LTPA,, LTPA version 2, and X.509 certificate binary security tokens.

A binary security token has the following attributes that are used for interpretation:
* Value type
* Encoding type

The following example depicts an LTPA binary security token in a Web services security message header:

<wsse:BinarySecurityToken xmlns:ns7902342339871340177=

"http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"

EncodingType="wsse:Base64Binary"

ValueType="ns7902342339871340177:LTPA">
MIZ6LGPt2CzXBQfio9wZTolVotWovONW3Za6TU5K7Li78DSnIK61Hj3hxXgrUnbpdwZI
8Xg26havepvmSJI8XxiACMihTJuhlt3ufsrjbFQJOgh5VcRvI+AKEaNmnEgGEV65jUYACI
C/iwBBWk5U/6DIk7LfXcTTOZPAd+3D3nCSOf+6tngMou8EGIMtMeTKccz/pJVTZjaRSo
msu@sewsOKf1/WPsjWObR/2g3NaVvBy18VI1TFBpUbGFVGgzHRjBKAGo+ctk180nTVLIk
TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5Usoq1pfXwN4KG9as=

</wsse:BinarySecurityToken>
</wsse:Security>
</soapenv:Header>

As shown in the example, the token is Base64Binary encoded.

Chapter 5. Web services 135

The following example depicts an LTPA version 2 binary security token:

<wsse:BinarySecurityToken xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmins:wsst="http://www.ibm.com/websphere/appserver/tokentype" wsu:Id="Ttpa 20"
ValueType="wsst:LTPAv2">bRYI0Z59k/P1gIlkgSaxeJIQoI1BdojxjdoD+6qMmiH371qS6U9OWX6EArMAO5FHVY TmxvIJACGD
UVfqVcPDQCAPTWAN9Brhz/bXwIOEVXOwx/eNYQuiBVEVNam7urd8SxZkqpp0ZyeN6APZ4Z4Rox0OMjqQvI1FIB/AKBpJyak8v9Z9
gF08k6J5HME/G9jdBovISu6hX1fF50Bhy6tx8BEmMAZn/pkeNc1H1d+t0xwDOfSOORWHOt jzDCTFpAMPjMmfRO/0703D1vONtZG61
y1bcwB4hx011iQC/FN5DJwrEy8kCwCeFywubKVVt5pyM1k6uVXI18ik5Pjf9allei86y5iXc9CirhvqosXiZvjObHTYKZSjtGiMYw3
q9INKbZxsSzfCuAdht8sjGfaVo43i0iz7CuFYAywgV1dUPjwSTvCGNtmWB/3MRtBDrmg3fqYSomjw5ZWDFex/n98Za0z8mUjNHinJ
C4APTtEXx6S10CxUkUc8b8hoCdqbc0GdZcGqYF7xgcFXvsezsXwOeRmhra54x6gCJs1skMMNviOvF2piclcg4GC1Q74NKxV1oTrDZ
PaQPTikYGJOLKHBPYnbPdaOhPkX+iCOYNOIIRBaVwjj1TOG+Y/MgokiNJRGWUQ7 VHXE00+Q2HsmCkmAFrIp41Zc9fGeFyVY/EUBB
pkGchLOekNv4DoVJWGEhFXWZdeiVk8

</wsse:BinarySecurityToken>

Kerberos token

IBM WebSphere Application Server provides Kerberos token support for Web services message-level
security. The support is based on the Organization for the Advancement of Structured Information
Standards (OASIS) Web Services Security Kerberos Token Profile Version 1.1. Use this topic to
understand the Kerberos support that is available for Web services.

Kerberos token profile version 1.1

Kerberos Version 5 is a mature, open standard that provides a secure third-party authentication
mechanism. The OASIS Web Services SOAP Message Security specification references the Kerberos
token in the SOAP message. Web services applications can use the Kerberos token to send identities and
protect messages more securely. Overall, Kerberos support involves Kerberos support in Java Platform,
Enterprise Edition (Java EE) security and the Kerberos token support in Web services security. This topic
covers the Kerberos token support in Web services security only.

In WebSphere Application Server Version 7.0, Web services security introduces support for the Kerberos
token, which is based on OASIS WS-Security Kerberos Token Profile Version 1.1 specification. The
Kerberos token is a binary security token for Web services message-level security. Web services security
provides SOAP message-level security, such as security token propagation, message signature, and
message encryption. The Kerberos token is used for message security, specifically with the SOAP
message security specification for Web services, and is another supported token, such as the username
token and the secure conversation token.

For more information, see the Web Services Security Kerberos Token Profile Version 1.1 specification. The
specification explains how to use Kerberos security with the Web services security and how the Kerberos
token is propagated and used to secure the SOAP message through signing and encryption.

Kerberos token profile enablement

The WebSphere Application Server configuration model leverages existing tools and frameworks for the
Kerberos token profile configuration of authentication and message protection, such as:

» Policy set and binding configuration to enable the Kerberos token profile for Java API for XML-Based
Web Services (JAX-WS) applications

» Deployment descriptor and binding configuration to enable the Kerberos token profile for JAX-RPC
applications

» Token profile enablement with a Kerberos token for JAX-WS applications

* Minimal client configuration to enable the Kerberos token profile using the JAX-WS programming model

For JAX-WS client applications, the design updates the application programming interfaces (APIs) for Web
services security and enforces a Web services security policy with a Kerberos token, which is based on
the OASIS token profile. To enable a Kerberos token profile by using a policy set, you must first establish
the Web services security policy and binding files by using a custom token. For more information, see the
"Kerberos configuration models for Web services” topic.

136 Securing WebSphere applications

Kerberos support

The following Kerberos-related function is supported by Web services in WebSphere Application Server:
» Client programming models for JAX-WS applications with Web services security APIs

* Interoperability with Web Services Enhancements (WSE) Version 3.5 and Windows Communication
Foundation (WCF) Version 3.5 for Microsoft .NET

* Recovery of Web services message security tokens for JAX-WS applications

» Kerberos token profile enablement

* Integration with the base security for the application server

» Kerberos token generation for the client and service

» Kerberos consumption at the service

+ Clustering and high-availability for JAX-WS applications

» Kerberos token profile configuration of authentication and message protection for JAX-WS applications

* Integration in a single realm with either a Microsoft or z/OS operating system Key Distribution Center
(KDC).

» Kerberos token profile configuration of authentication for JAX-RPC applications

The application server does not support the following function:

» Key name references

* Message protection using session keys for JAX-RPC applications
» Message protection using derived keys for JAX-RPC applications
* Generation of SHA1 keys for JAX-RPC applications

Kerberos message protection for Web services:

Message-level security is based on the Organization for the Advancement of Structured Information
Standards (OASIS) Web Services Security Kerberos Token Profile Version 1.1 specification. Use this topic
to gain an overall understanding of how message protection is implemented with a Kerberos token for
Web services.

Message protection

The application server can interoperate with other Web services technology because of the implementation
of the OASIS Web services Kerberos token profile. This specification defines the standards for securing a
SOAP message with the Kerberos token. However, mutual authentication is not defined by the token
profile. The OASIS Web Services SOAP Message Security specification describes how to secure a SOAP
message through signing and encryption by using and referencing a Kerberos token. Specifically, the
OASIS specification defines how the Kerberos token, as a wrapped or unwrapped AP_REQ packet, is
encoded and attached to the SOAP message. The token that is described in the OASIS Kerberos token
profile is limited to the AP_REQ packet, which consists of a service ticket and an authenticator. The
AP_REQ packet is obtained from the Key Distribution Center (KDC), which serves as the third-party
authentication service.

Multiple formats exist for the Kerberos token, as defined in the OASIS Web Services Security Kerberos
Token Profile 1.1. The @ValueType attribute is used to specify the token format. You must specify one of
the following <@ValueType> attributes for the element:

* http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ
 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ

* http:/docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

* http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ1510

Chapter 5. Web services 137

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120
 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ4120

The resulting AP_REQ token can be either GSS-API framed (wrapped) or raw (unwrapped). The token
must be Base-64 encoded.

Kerberos usage overview for Web services:

You can use a Kerberos token to complete similar functions that you might currently complete with other
binary security tokens, such as Lightweight Third Party Authentication (LTPA) and Secure Conversation
tokens.

Token generator

After the Kerberos token is created from the Key Distribution Center (KDC), the Web services security
generator encodes and inserts the token into the SOAP message and propagates the token for token
consumption or acceptance. If a message integrity or confidentiality key is required, a Kerberos sub-key or
a Kerberos session key from the Kerberos ticket is used. A key can be derived from either the Kerberos
sub-key or the Kerberos session key. Web services security uses the key from the Kerberos token to sign
and encrypt the message parts as described in the OASIS Web Services Security Kerberos Token Profile
Version 1.1 specification. The type of key to use is predetermined by the Web services security
configuration or policy. Also, the size of the derived key is configurable.

The value of the signature or encryption key is constructed from the value of one of the following keys:
* The Kerberos sub-key when it is present in the authenticator

» A session key directly from the ticket if the sub-key is absent

* A key that is derived from either of the previous keys

When the Kerberos token is referenced as a signature key, the signature algorithm must be a hashed
message authentication code, which is http://www.w3.0rg/2000/09/xmldsig#hmac-shal. When the Kerberos
token is referenced as an encryption key, you must use one of the following symmetric encryption
algorithms:

* http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
* http://www.w3.0rg/2001/04/xmlenc#aes256-cbc
* http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

Note:
* The Application Server supports Kerberos Version 5 only.

* You can use a AES-type symmetric algorithm suite in Web services security when the Kerberos
ticket complies with RFC-4120 only.

* A Kerberos key with the RC4-HMAC 128-bit key type only is used when the KDC is on a
Microsoft Windows 2003 server.

* A Kerberos key with AES 128-bit or 256-bit key types is used when the KDC is on a Microsoft
Windows 2008 server.

* A Kerberos ticket must be forwardable and not contain an address when the service provider is
running in a cluster.

* You must import an unrestricted Java security policy when you use an AES 256—bit encryption
algorithm.

Token consumer

The Web services security consumer receives and extracts the Kerberos token from the SOAP message.
The consumer then accepts the Kerberos token by validating the token with its own secret key. The secret

138 Securing WebSphere applications

key of the service is stored in an exported keytab file. After acceptance, the Web services security
consumer stores the associated request token information into the context Subject. You can also derive
the corresponding key to the request token. The key is used to verify and decrypt the message. If the
request token is forwardable and does not contain an address, the application server can use the stored
token for downstream calls.

Token format and reference

For JAX-WS applications, use the existing custom policy set or administrative command scripts for the
custom policy to specify the Kerberos token type, the message signing, and message encryption. The
JAX-WS programming model for WebSphere Application Server provides minimal configuration to enable
the Kerberos token profile with the Kerberos token.

For JAX-RPC applications, use the deployment descriptor to specify that the custom token use the
Kerberos token. You can use the Kerberos token for authentication, but you cannot use it for message
signing or encryption.

WebSphere Application Server supports the following callback handler classes for the Kerberos Version 5
token:

« com.ibm.websphere.wssecurity.callbackhandler. KRBTokenConsumeCallbackHandler

This class is a callback handler for Kerberos Version 5 token on the consumer side. This instance is
used to generate the WSSVerification and WSSDecryption objects to validate a Kerberos binary security
token.

» com.ibm.websphere.wssecurity.callbackhandler. KRBTokenGenerateCallbackHandler

This class is a callback handler for Kerberos Version 5 token on the generator side. This instance is
used to generate the WSSSignature object and the WSSEncryption object to generate a Kerberos
binary security token.

The OASIS Web Services Security Kerberos Token Profile Version 1.1 specification states that the
Kerberos token is attached to the SOAP message with the <wsse:BinarySecurityToken> element. The
following example shows the message format. The boldface type shows delineates the binary security
token information from the other parts of the example.

<S1l:Envelope xmlns:S11="..." xmIns:wsu="...">
<S11:Header>
<wsse:Security xmIns:wsse="...">

<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType=" http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ"
wsu:Id="MyToken">boIBxDCCAcCgAwIBBaEDAgEQo0gcD. ..
</wsse:BinarySecurityToken>

</wsse:Security>
</S11:Header>
<S11:Body>

</S11:Body>
</S1l:Envelope>

The Kerberos token is referenced by the <wsse:SecurityTokenReference> element. The <wsu:Id> element,
which is specified within the <wsse:BinarySecurityToken> element and is shown within the following
example in boldface type, directly references the token in the <wsse:SecurityTokenReference> element.

The @wsse:TokenType attribute value within the <wsse:SecurityTokenReference> element matches the
ValueType attribute value of the <wsse:BinarySecurityToken> element. The Reference/@ValueType attribute
is not required. However, if the attribute is specified, its value must be equivalent to the @wssell:TokenType
attribute.

Chapter 5. Web services 139

The following example shows the message format, the correlation between the<wsu:I1d> and
<wsse:SecurityTokenReference> elements, and the relationship between the @wsse:TokenType and
ValueType attribute values.

<Sll:Envelope xmIns:S11="..." xmIns:wsu="...">
<S11:Header>
<wsse:Security xmIns:wsse="...">

<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType=" http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosvb AP_REQ"
wsu:Id="MyToken">boIBxDCCAcCgAwIBBaEDAgEOo0gcD. ..
</wsse:BinarySecurityToken>
</wsse:Security>
</S11:Header>
</S1l:Envelope>
<wsse:Security>
</wsse:Security>
<wsse:SecurityTokenReference
TokenType="http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosvs AP_REQ">
<wsse:Reference URI="#MyToken"
ValueType="http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosvb_AP_REQ">
</wsse:Reference>
</wsse:SecurityTokenReference>

<wsse:Security>

</wsse:Security>
<S11:Header>
</S11:Header>
<S11:Body>

</S11:Body>
<S1ll:Envelope>
</S1l:Envelope>

The <wsse:KeylIdentifier> element is used to specify an identifier for the Kerberos token. The value of the
identifier is a SHA1 hash value of the encoded Kerberos token in the previous message. The element
must have a ValueType attribute with a #Kerberosv5APREQSHAL value. The Keyldentifier reference
mechanism is used on subsequent message exchanges after the initial Kerberos token is accepted. The
following example shows the key identifier information in boldface type:

<S1l:Envelope xmIns:S11="..." xmIns:wsse="..." xmIns:wsu="...">

<S11l:Header>
<wsse:Security>

<wsse:SecurityTokenReference
wssell:TokenType=http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosv5 AP_REQ>
<wsse:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/
oasis-wss-kerberos-token-profile-1.1#Kerberosv5APREQSHA1">
GbsDt+WmDIXTnUUWbY/nhBveW8I=
</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>

</wsse:Security>
</S11:Header>
<S11:Body>

</S11:Body>
</S1l:Envelope>

Multiple references to the Kerberos token

The client is not required to send a Kerberos token in every request after the Kerberos identity is validated
and accepted by the service. The OASIS Web Services Security Kerberos Token Profile Version 1.1

140 Securing WebSphere applications

specification suggests that you use a SHA1 encoded key with the <wsse:KeyIdentifier> element within
the <wsse:SecurityTokenReference> element for every subsequent message after the initial AP_REQ
packet is accepted. However, the runtime environment for Web services security must map the key
identifier to a cached Kerberos token for further processing. IBM WebSphere Application Server 7.0
supports this SHA1 caching as described in the profile, by default. However, the application server also
provides the ability to generate new AP_REQ tokens for each request with the existing service Kerberos
ticket. When you interoperate with Microsoft .NET, do not use pSHA1 caching; generate an AP_REQ
packet for each request.

Kerberos configuration models for Web services:
The IBM WebSphere Application Server configuration model leverages existing frameworks.

The configuration model features include:

» Deployment descriptors and bindings configuration to enable the Kerberos token profile for Java API for
XML-based RPC (JAX-RPC) applications

» Policy sets and bindings configuration to enable the Kerberos token profile for Java Architecture for XML
Web Services (JAX-WS) applications

* Web Services Security APIs for JAX-WS applications
* Administrative command scripts
* Interoperability with Microsoft Web Services Enhancements (WSE) Version 3.5

Following are some examples of possible configurations when using the Kerberos token:
* A JAX-WS client on Windows operating systems

* A JAX-RPC client on Windows operating systems

* A Windows JAX-RPC client on z/OS operating systems

» Web services security APIs on Windows operating systems

* A Microsoft .NET WSE 3.5 client on Windows operating systems

* A Microsoft .NET WSE 3.5 client on z/OS operating systems

JAX-WS configuration model

For JAX-WS applications, the WebSphere Application Server client configuration model uses the policy set
and leverages a custom policy set for the Kerberos token. You can specify the Kerberos token type and
message signing and the encryption by using the custom policy set. The Web Services Security
(WS-Security) policy is the security policy that is used to secure the application messages.

Using the administrative console, you can specify the Kerberos token type, message signing, and
message encryption by using an existing custom policy set. Kerberos token generation and consumption
includes the Kerberos token generation for unmanaged JAX-WS clients.

The JAX-WS programming model also provides capabilities to enable the Kerberos token profile and
identity assertion by configuring the Kerberos token using policy sets, Web services security APIs, and
administrative command scripts.

For JAX-WS applications, you can use administrative commands to configure the policy set as an
alternative to using the administrative console.

JAX-RPC configuration model

JAX-RPC applications are configured using a deployment model. The deployment descriptor specifies the
custom token to use for the Kerberos token. A JAX-RPC client can generate the specified Kerberos token.

Chapter 5. Web services 141

A JAX-RPC Web service can successfully authenticate the Kerberos token by using a custom or the
default Kerberos identity mapping login module.

API configuration model

A set of APlIs is provided by WebSphere Application Server. To successfully use these APls, application
developers must have knowledge about the OASIS Web Services Security Version 1.0 and 1.1
specifications. When you use these APlIs, the application server assumes that a policy set is not attached
to the client resources; however, a warning is still issued when the application server detects any policy
set information.

For JAX-WS client applications, the APIs include and enforce Web services security policy for the
Kerberos token, which is based on the OASIS token profile. To enable the Kerberos token profile with the
policy set, you must first configure the WS-Security policy and the binding files with the custom token.

For JAX-RPC applications, APIs for Web services security are not provided. You must use the deployment
descriptor to specify the custom token to use the Kerberos token. You can use the custom token panels
within an assembly tool, such as Rational Application Developer, to configure the deployment information.

Kerberos clustering for Web services:
Clusters are groups of servers that are managed together and participate in workload management.

In a clustered environment, the Kerberos token needs to be distributed and recoverable. The Web services
security configuration saves and distributes Kerberos tokens among the cluster members. The Kerberos
tokens that are created or validated in one server are available to the other cluster members. The
distributed cache or database repository need to be configured as the caching mechanism.

Security considerations for Web services

Version 6 and later applications

When you configure Web services security, you should make every effort to verify that the result is not
vulnerable to a wide range of attack mechanisms. There are possible security concerns that arise when
you are securing Web services.

In WebSphere Application Server, when you enable integrity, confidentiality, and the associated tokens
within a SOAP message, security is not guaranteed. This list of security concerns is not complete. You
must conduct your own security analysis for your environment.

* Ensuring the message freshness

Message freshness involves protecting resources from a replay attack in which a message is captured
and resent. Digital signatures, by themselves, cannot prevent a replay attack because a signed
message can be captured and resent. It is recommended that you allow message recipients to detect
message replay attacks when messages are exchanged through an open network. You can use the
following elements, which are described in the Web services security specifications, for this purpose:

Timestamp
You can use the timestamp element to keep track of messages and to detect replays of
previous messages. The WS-Security 2004 specification recommends that you cache time
stamps for a given period of time. As a guideline, you can use five minutes as a minimum
period of time to detect replays. Messages that contain an expired timestamp are rejected.

Nonce
A nonce is a child element of the <UsernameToken> element in the UsernameToken profile.
Because each nonce element has a unique value, recipients can detect replay attacks with
relative ease.

142 Securing WebSphere applications

Note: Both the time stamp and nonce element must be signed. Otherwise, these elements can be
altered easily and, therefore, cannot prevent replay attacks.

» Using XML digital signature and XML encryption properly to avoid a potential security hole

The Web Services Security 2004 specification defines how to use XML digital signature and XML
encryption in SOAP headers. Therefore, users must understand XML digital signature and XML
encryption in the context of other security mechanisms and their possible threats to an entity. For XML
digital signature, you must be aware of all of the security implications resulting from the use of digital
signatures in general and XML digital signature in particular. When you build trust into an application
based on a digital signature, you must incorporate other technologies such as certification trust
validation based upon the Public Key Infrastructure (PKI). For XML encryption, the combination of digital
signing and encryption over a common data item might introduce some cryptographic vulnerabilities. For
example, when you encrypt digitally signed data, you might leave the digital signature in plain text and
leave your message vulnerable to plain text guessing attacks. As a general practice, when data is
encrypted, encrypt any digest or signature over the data. For more information, see
[http://www.w3.0rg/TR/xmlenc-core/#sec-Sign-with-Encrypt]

* Protecting the integrity of security tokens

The possibility of a token substitution attack exists. In this scenario, a digital signature is verified with a
key that is often derived from a security token and is included in a message. If the token is substituted,
a recipient might accept the message based on the substituted key, which might not be what you
expect. One possible solution to this problem is to sign the security token (or the unique identifying data
from which the signing key is derived) together with the signed data. In some situations, the token that
is issued by a trusted authority is signed. In this case, there might not be an integrity issue. However,
because application semantics and the environment might change over time, the best practice is to
prevent this attack. You must assess the risk assessment based upon the deployed environment.

» Verifying the certificate to leverage the certificate path verification and the certificate revocation list

It is recommended that you verify that the authenticity or validity of the token identity that is used for
digital signature is properly trusted. Especially for an X.509 token, this issue involves verifying the
certificate path and using a certificate revocation list (CRL). In the Web services security implementation
in WebSphere Application Server Version 6 and later, the certificate is verified by the <TokenConsumer>
element. WebSphere Application Server provides a default implementation for the X.509 certificate that
uses the Java CertPath library to verify and validate the certificate. In the implementation, there is no
explicit concept of a CRL. Rather, proper root certificates and intermediate certificates are prepared in
files only. For a sophisticated solution, you might develop your own TokenConsumer implementation that
performs certificate and CRL verification using the online CRL database or the Online Certificate Status
Protocol (OCSP).

* Protecting the username token with a password

It is recommended that you do not send a password in a username token to a downstream server
without protection. You can use transport-level security such as SSL (for example, HTTPS) or use XML
encryption within Web services security to protect the password. The preferred method of protection
depends upon your environment. However, you might be able to send a password to a downstream
server as plain text in some special environments where you are positive that you are not vulnerable to
an attack.

Securing Web services involves more work than just enabling XML digital signature and XML encryption.
To properly secure a Web service, you must have knowledge about the PKI. The amount of security that
you need depends upon the deployed environment and the usage patterns. However, there are some
basic rules and best practices for securing Web services. It is recommended that you read some books on
PKI and also read information on the Web Services Interoperability Organization (WS-I) Basic Security
Profile (BSP).

Nonce, a randomly generated token: Version 6 and later applications

Chapter 5. Web services 143

http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt

Nonce is a randomly-generated, cryptographic token that is used to prevent replay attacks. Although nonce
can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken> element.

Without nonce, when a UsernameToken is passed from one machine to another machine using a
nonsecure transport, such as HTTP, the token might be intercepted and used in a replay attack. The same
password might be reused when the user name token is transmitted between the client and the server,
which leaves it vulnerable to attack. The user name token can be stolen even if you use XML digital
signature and XML encryption. However, nonce alone, used in a non-secure transport, cannot adequately
address the replay problem. Nonce is most useful when the SOAP message is transmitted via a
communication channel that is secured, either at the transport level, or at the message level.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated
within the <wsse:UsernameToken> element and used to validate the message. The server checks the
freshness of the message by verifying that the difference between the nonce creation time, which is
specified by the <wsu:Created> element, and the current time falls within a specified time period. Also, the
server checks a cache of used nonces to verify that the user name token in the received SOAP message
has not been processed within the specified time period. These two features are used to lessen the
chance that a user name token is used for a replay attack.

To add a nonce for the UsernameToken, you can specify it in the token generator for the user name token.
When the token generator for the UsernameToken is specified, you can select the Add nonce option if
you want to include nonce in the user name token.

Basic Security Profile compliance tips: Version 6 and later applications

The Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP) 1.0 promotes
interoperability by providing clarifications and amplifications to a set of nonproprietary Web services
specifications. WebSphere Application Server Web Services Security provides configuration options to
ensure that the BSP recommendations and security considerations can be enabled to ensure
interoperability. The degree to which you follow these recommendations is then a measure of how well the
application you are configuring complies with the Basic Security Profile (BSP).

Support for applications to comply to the Basic Security Profile (BSP) is new in WebSphere Application
Server Version 7.0. For more information on the Basic Security Profile, see Web Services Interoperability
Organization (WS-I) Basic Security Profile (BSP), [Basic Security Profile Version 1.0}

You can use either a predefined list of keywords or XPath expressions to comply to the BSP. Both the
keywords and the XPath expressions are specified in the deployment descriptor configuration file and are
configured using an assembly tool.

Basic Security Profile recommendations

Follow these recommendations to ensure that your configured applications are Basic Security Profile
(BSP) compliant.

+ Do not use the original XPath transform, jttp://www.w3.0rg/TR/1999/REC-xpath-19991116|

When you refer to an element in a SECURE_ENVELOPE that does not carry an ID attribute type from a
ds:Reference in a SIGNATURE element, you must use the XPath Filter 2.0 transform,
[http://www.w3.0rg/2002/06/xmldsig-filter2| to refer to that element.

Any ds:Transform/@ Algorithm attribute in a SIGNATURE element must have one of these values:
— |http://www.w3.0rg/2001/10/xml-exc-c14n#|
— |http://www.w3.0rg/2002/06/xmldsig-filter2]

— http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

144 Securing WebSphere applications

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/2002/06/xmldsig-filter2
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2002/06/xmldsig-filter2

— |nttp://www.w3.0rg/2000/09/xmldsig#enveloped-signature]

— http://docs.oasis-open.org/wss/2004/XX/oasis-2004 X X-wss-swa-profile-1.0#Attachment-Content-Only-
Transform

— http://docs.oasis-open.org/wss/2004/XX/oasis-2004 X X-wss-swa-profile-1.0#Attachment-Complete-
Transform

Do not use the |http://www.w3.0rg/2000/09/xmldsig#dsa-sha1| signature algorithm.

Any ds:SignatureMethod/@ Algorithm element in a SIGNATURE that is based on a symmetric key must
have one of the following values:

— |http://www.w3.0rg/2000/09/xmldsigt#rsa-sha1
— |http://www.w3.0rg/2000/09/xmldsig#hmac-sha |

Do not specify the digestvalue keyword for the message part to encrypt. Instead, use the signature
keyword.

If the value of a ds:DigestValue element in a SIGNATURE element requires encryption, the entire parent
ds:Signature element must be encrypted. A SIGNATURE must not have any xenc:EncryptedData
elements among its descendants.

Do not use the KEYNAME key information type
KEYNAME references can be ambiguous and compliance with the BSP disallows the use of KEYNAME.

A SECURITY_TOKEN_REFERENCE must not use a key name to reference a SECURITY_TOKEN. The
child element of a ds:KeyInfo element in an ENCRYPTED_KEY must be either a
SECURITY_TOKEN_REFERENCE or a ds:MgmtData element. Using a KEYNAME key information type
for an encryption key results in a KeyName child element of a ds:KeyInfo element and is disallowed for
BSP compliance.

Do not use the |http://www.w3.0rg/2001/04/xmlenc#aes192-cbd bit data encryption algorithm.

Any xenc:EncryptionMethod/ @ Algorithm attribute in an ENCRYPTED_DATA element must have one of
these values:

— |nttp://www.w3.0rg/2001/04/xmlenc#tripledes-cbd
— |nttp://www.w3.0rg/2001/04/xmlenc#aes128-cbd]
— |nttp://www.w3.0rg/2001/04/xmlenc#aes256-cbd

Do not use the advanced encryption standard (AES) key wrap (aes192): |nttp://www.w3.0rg/2001/04/|
[xmlenc#kw-aes192| key encryption algorithm.

When used for key wrap, any xenc:EncryptionMethod/ @ Algorithm attribute in an ENCRYPTED_KEY
element must have one of these values:

— |nttp://www.w3.0rg/2001/04/xmlenc#kw-tripledes|
— |nttp://www.w3.0rg/2001/04/xmlenc#kw-aes128|
— |nttp://www.w3.0rg/2001/04/xmlenc#kw-aes256|

Configuration Options for BSP Compliance

You achieve BSP compliance when certain configuration choices are made. The assembly tool assists you
in using appropriate choices when configuring the application by issuing warning messages. The following
configuration descriptions comprise these warnings:

When configuring the ds:Transforms element in a signature, the list of transforms must include as its
last child element |http://www.w3.org/2001/1 0/xm|-exc-c14n#| or http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform

Add a wsse:Nonce or wsse:Created element to a Username token to prevent replay. After the element
is added, sign the Username token to prevent undetected alteration of these fields; otherwise, replay
can occur.

Distributed nonce cache:

Chapter 5. Web services 145

http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/10/xml-exc-c14n#

In previous releases of WebSphere Application Server, the nonce was cached locally. WebSphere
Application Server Versions 6 and later use distributed nonce caching. The distributed nonce cache makes
it possible to replicate nonce data among servers in a WebSphere Application Server cluster.

If nonce elements are in a SOAP header, all nonce values are cached by the server in the cluster. If the
distributed nonce cache is enabled, the cached nonce values are copied to other servers in the same
cluster. Then, if the message with the same nonce value is sent to (one of) other servers, the message is
rejected. A received nonce cache value is cached and replicated in a push manner among other servers in
the cluster with the same replication domain. The replication is an out-of-process call and, in some cases,
is a remote call. Therefore, there is latency when the content of the cache in the cluster is updated.

For example, you might have application server A and application server B in cluster C.
* A SOAP client sends a message with nonce abc to application server A.
* The server caches the value and pushes it to the other application server B.

« If the client sends the message with nonce abc to application server B after a certain time frame, the
message is rejected and if the application server B receives the nonce with the same value within a
specified period of time, a SoapSecurityException is thrown by application server B.

For more information, see the information that explains nonce cache timeout, nonce maximum age, and
nonce clock skew in[“Token generator configuration settings” on page 423

 If the client sends the message with another nonce value of xyz, the message is accepted, the value is
cached by application server B and is copied into the other application servers within the same cluster.

Note: The distributed nonce caching feature uses the WebSphere Application Server data replication
service (DRS). The data in the local cache is pushed to the cache in other servers in the same
replication domain. The replication is an out-of-process call and, in some cases, is a remote call.
Therefore, there is a possible delay in replication while the content of the cache in each application
server within the cluster is updated. The delay might be due to network traffic, network workload,
machine workload, and so on.

Custom security token propagation

Version 6 and later applications

Web services security has the ability to send security tokens in the security header of a SOAP message.
These security tokens can be used to sign, verify, encrypt or decrypt message parts. These security
tokens can also be sent as standalone security tokens and set as the caller on the request consumer.
Custom security token propagation is used to propagate these custom security tokens by using Web
services security.

Web services security supports the Username, X.509 and Lightweight Third-Party Authentication (LTPA)
security token types. When you use security token propagation, the propagation token is sent in the
wsse:BinarySecurityToken element in the security header of the SOAP message. Web services security
uses the same propagation token format as used by the|Security attribute propagation| feature.

Configuring this option is similar to the configuration for sending and receiving LTPA tokens. The same
token generator and token consumer implementations are used, for example:

* com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

» com.ibm.wsspi.wssecurity.token.LTPATokenConsumer

But, the token type Uniform Resource Identifier (URI) and local name for the token generator and token
consumer are different. For custom token properties, use the following values:

* Token type URI: http://www.ibm.com/websphere/appserver/tokentype

* Token type local name: LTPA_PROPAGATION

By default, the custom token propagation uses the following JAAS login configuration entries:

146 Securing WebSphere applications

* Inbound: WSS_INBOUND
e Qutbound: WSS_OUTBOUND

You can use the com.ibm.ws.webservices.wssecurity.constants.jaasConfig custom property to specify a
different JAAS login configuration for the generator. You can do this configuration on the CallbackHandler
configuration panel. To specify a different JAAS login configuration on the consumer side, use the JAAS
configuration name field in the Token consumer panel.

Securing JAX-WS Web services using message-level security

Web services security standards and profiles address how to provide message-level protection for
messages that are exchanged in a Web service environment.

Before you begin

Before you begin this task, you must develop and deploy a JAX-WS application. See the [JAX-WS|topic for
more information.

About this task

Java API for XML-Based Web Services (JAX-WS) is the next generation Web services programming
model complimenting the foundation provided by the Java API for XML-based RPC (JAX-RPC)
programming model. Using JAX-WS, development of Web services and clients is simplified with greater
platform independence for Java applications through the use of dynamic proxies and Java annotations.
JAX-WS simplifies application development through support of a standard, annotation-based model to
develop Web service applications and clients. A required part of the Java Platform, Enterprise Edition 5
(Java EE 5), JAX-WS is also known as JSR 224.

JAX-WS applications can be secured with Web services security in one of two ways. The application can
be secured using policy sets, or through the use of the Web Services Security APl (WSS API). The WSS
API can only be used to secure a JAX-WS client application. The following sections describe both
methods.

Securing JAX-WS applications using the WSS API

To secure JAX-WS client applications with message-level security programmatically, using the WSS API,
see the topic [Securing Web services applications using the WSS APIs at the message level.

Securing JAX-WS applications using policy sets

1. [Select, create, or copy and modify a policy set to specify the message-level protection required. The
policy specifies what protection will be applied, for example, what message parts to sign or encrypt
and the token types and algorithms to use.

a. |Signing and encrypting message artsl
b. Specify |security token§| using the [token type settings|, such as:
* [Kerberos token

* |Username tokerj
* [LTPA tokeﬂ

e X.509 token

For complete information about policy sets, read the topic |Managing policy sets using the|
administrative console|

2. [Configure the default Web services security bindings}
a. |Configure the token consumer|
b. [Configure the token generator

Chapter 5. Web services 147

For more information about bindings, read the topic [Defining and managing policy set bindings.

Configuring policy sets through metadata exchange (WS-MetadataExchange)

In WebSphere Application Server Version 7.0, using JAX-WS, you can enable the Web Services Metadata
Exchange (WS-MetadataExchange) protocol so that the policy configuration of the service provider is
included in the WSDL and is available to a WS-MetadataExchange GetMetadata request. One advantage
of using the WS-MetadataExhange protocol is that you can apply message-level security to
WS-MetadataExchange GetMetadata requests by using a suitable system policy set. Another advantage is
that the client does not have to match the provider configuration, or have a policy set attached. The client
only needs the binding information, and then the client can operate based on the provider policy, or based
on the intersection of the client and provider policies. You can configure a service provider to share its
policy configuration using the administrative console. For more information, read the following topics:

» |Configuring security for a WS-MetadataExchange request]
+ [Configuring a service provider to share its policy configuration|
« [Transformation of policy and binding assertions for WSDL|

Migration of JAX-WS Web services security bindings from Version 6.1 to Version
7.0

You can migrate Web services security bindings from an older version to Version 7.0 of WebSphere
Application Server. Migration of the JAX-WS bindings in Version 6.1 Feature Pack for Web Services takes
place during the product migration to Version 7.0.

The product migration handles most of the WS-Security migration process, but your input and action is
required for specific configurations in order to complete the migration. Following are some examples of
configurations that require manual migration steps:

» Using callers on Version 6.1 Feature Pack for Web Services.

WebSphere Application Server Version 7.0 introduces the capability to specify a preference order for
callers. In the situation where only a single caller is present in the bindings, product migration
automatically assigns an order of 1 to the single caller that is present. However, if there are multiple
callers, warnings are logged during migration, and you must manually assign the caller preference
order. Set the order attribute for each caller using the administrative console, or the administration
commands, after product migration is completed. See the topics [Caller collection|and [Configuring the]
[callers for general and default bindings|for instructions on setting the caller order using the
administrative console. See the topic|WS-Security policy and bindings properties| for information on
using the administration commands.

* Using multiple username tokens in the default bindings.

During product migration for Version 6.1 default bindings, all UsernameToken generators and
consumers in the bindings will be migrated. However, if multiple username token generators, or
consumers, are used, a warning is logged during migration. The warning states that a maximum of two
username token generators and two username token consumers are allowed, and that one of each pair
of token generators or consumers must have the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed
property set to true. You must manually select which username token consumer or generator to keep,
and which token has the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property, using the
administrative console, or administration commands.

— To use the administrative console to set the property, access the WS-Security 6.1 default bindings
as instructed in the |Po|icy set bindings settings for WS—Security| topic and click the Authentication
and Protection link. Add, remove or edit the username token consumers and generators as needed,
following the instructions in the [WS-Security authentication and protection for general bindings| topic.

— To use the administration commands to set the property, and to add, delete and edit the username
token generators or consumers as needed, refer to the [WS-Security policy and bindings properties|
topic for instructions.

» Using multiple token generators and token consumers of the same type in Version 6.1 default bindings.

148 Securing WebSphere applications

During product migration for Version 6.1 default bindings, all token generators and token consumers for
supporting tokens are migrated. In the situation where multiple token generators and token consumers
of the same supporting token type are found a warning is logged during migration. This warning states
that only a single token consumer and token generator for each supporting token type must be present.
You must manually select which token consumer or generator to use for the repeating supporting token
type, using the administrative console or administration commands. To use the administrative console to
select the token, access the WS-Security 6.1 default bindings as instructed in the|PoIicy set bindings|
|settings for WS-Security| topic, and select the Authentication and Protection link. Add, edit or remove
token consumers and generators as needed, following the instructions in the [WS-Security authentication|
[and protection for general bindings] topic.

Securing Web services using policy sets
Policy sets are assertions about how services are defined. They are used to simplify the quality of service
configuration for Web services.

About this task

Policy sets combine configuration settings, including those for transport and message level configuration,
such as WS-Addressing, WS-ReliableMessaging, and WS-Security. There are two main types of policy
sets; application policy sets and system policy sets. Application policy sets are used for business-related
assertions. These assertions are related to the business operations that are defined in the Web Services
Description Language (WSDL) file. System policy sets, on the other hand, are used for
non-business-related system messages. These messages are not related to the business operations that
are defined in the WSDL, but instead refer to messages that are defined in other specifications which
apply qualities of service (Qo0S). Such QoS are the request security token (RST) messages that are
defined in WS-Trust, or create sequence messages that are defined in WS-Reliable Messaging metadata
exchange messages of the WS-MetadataExchange.

Note: You can use policy sets only with Java™ API for XML-Based Web Services (JAX-WS) applications.
You cannot use policy sets with Java API for XML-based RPC (JAX-RPC) applications.

Policies are defined based on a quality of service. Policy definition is typically based on WS-Policy
standard language, for example, the WS-Security policy is based on the current WS-SecurityPolicy from
the Organization for the Advancement of Structured Information Standards (OASIS) standards.

Policy sets do not include environment or platform-specific information, such as keys for signing, keystore
information, or persistent store information. This type of information is defined in the binding. A policy set
attachment defines how a policy set is attached to service resources and bindings. The attachment

definition is outside the policy set definition and is defined as meta-data associated with application data.

To secure JAX-WS Web services with message-level security using policy sets, follow these steps:

1. Select, create, or copy and modify a policy set to specify the message-level protection required. The
policy specifies what protection will be applied, for example, what message parts to sign or encrypt
and the token types and algorithms to use.

+ Select one of the [default policy sets|

Manage policy sets using the administrative consolel. Create, copy, modify, import, export or delete

policy sets.

2. |Attach the policy set to the application|.

3. |Create or select the policy set bindings to be used| The bindings are then attached to the application
along with the policy set. The bindings used can either be general bindings that can be shared among
applications or application specific bindings.

4. If WS-SecureConversation is being used, |specify the trust service system policy sets and bindings od
[the application server

Example: Configuring the message-level WS-Security policy set and bindings:

Chapter 5. Web services 149

This example shows how to configure the message-level WS-Security policy set and bindings to send a
Username token in a JAX-WS request, and to encrypt the Username token using asymmetric encryption.

Before you begin
Make a copy of the Username WSSecurity default policy set and give it a unique name. This example

illustrates how to modify a copy of the default policy set. For more information on how to copy a policy set,
see the topic |Copy of default policy set and bindings settingsl

About this task

By default, the Username WSSecurity policy set signs the WS-Addressing headers and body in the
request and the response, and encrypts the body and signature in the request and the response. However,
in this example, the goal is to encrypt only the Username token in the request from the client to the
service, but not to encrypt any part of the response from the service to the client. In addition, no part of
the request or the response will be signed. Therefore, the policy set must be modified to remove several
message protection parts. You must also configure the client and server bindings.

First, configure the policy set by modifying your copy of the Username WSSecurity default policy set.

1. From the administrative console, click Services > Policy sets > Application policy sets >
policy_set_name. In the Policy set settings panel, you can specify information about the policy set,
such as the description.

2. Remove the following message protection parts: request:app_signparts, response:app_signparts and
response:app_encparts.

a. Click Application policy sets > policy _set_name > WS-Security > Main policy > Response
message part protection.

b. Click on app_encparts in the Encrypted parts box, then click the Delete button.
c. Click on app_signparts in the Signed parts box, then click the Delete button.

d. Click Application policy sets > policy_set_name > WS-Security > Main policy > Request
message part protection.

e. Click on app_signparts in the Signed parts box, then click the Delete button.

3. Update the protection part specified for request:app_encparts. By default, this message protection part
encrypts the body and signature elements, and must be modified to encrypt the Username token.

a. Click Application policy sets > policy_set name > WS-Security > Main policy > Request
message part protection > Encrypted part - app_encparts > Edit.

b. Delete the existing elements in the Elements in part panel, then add two XPath expressions for
encrypting the Username token.

Expression 1:

/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/"
and local-name()="Envelope']/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/’
and local-name()="Header']/+[namespace-uri()="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()="'Security']/*[namespace-uri()="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
and local-name()="'UsernameToken']

Expression 2:

/*[namespace-uri()="http://www.w3.0rg/2003/05/soap-envelope’
and Tocal-name()="Envelope']/*[namespace-uri()="http://www.w3.0rg/2003/05/soap-envelope’
and local-name()="Header']/+[namespace-uri()="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd’
and Tocal-name()="'Security']/*[namespace-uri()="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
and local-name()="'UsernameToken']

What to do next

The second part of the process is to configure the client and server bindings.
1. Configure the client binding, as follows:
a. Attach the policy to a service resource and create a new binding for that resource that includes the
WSSecurity policy.

150 Securing WebSphere applications

b. Click on WSSecurity in the new binding to display the main WSSecurity binding panel. For
example, click Enterprise Applications > WSSampleServiceSei > Service provider policy sets
and bindings > binding_name > WS-Security.

Click Authentication and protection.

Click AsymmetricBindingRecipientEncryptionToken0 under Protection tokens.
Click Apply.

Click Callback handler.

Select Custom from the Keystore menu.

Click Custom keystore configuration.

Enter the keystore path. For example: ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-
receiver.jceks.

j- Select JCEKS for the Type.

k. Enter the password in the Password and Confirm password fields. For example, storepass.
I. Enter a Key Name. For example, CN=Bob, O=IBM, C=US.

m. Enter a Key Alias. For example, bob.

n. Enter the password for the keypass in the Password and Confirm password fields.
o. Click OK.
p
q

sa o0 ao

Click OK again.

Click OK one more time to return to the Enterprise Applications > WSSampleServicesSei >
Service provider policy sets and bindings > binding_name > WS-Security > Authentication
and protection panel.

r. The status of AsymmetricBindingRecipientEncryptionToken0 should display as Configured.
2. Modify the encrypted parts settings for the client binding, as follows:
Click request:app_encparts under Request message signature and encryption protection.
Enter a Name. For example, MyEncPart.
Click New under Key information.
Fill in a Name. For example, MyEncKeylnfo.
Click OK.

Select MyEncKeylnfo (or the name that you specified for the encrypted part) from the Available
box and click Add. MyEncKeyInfo appears in the Assigned box.

g. Click OK to return to the Enterprise Applications > WSSampleServicesSei > Service provider
policy sets and bindings > binding_name > WS-Security > Authentication and protection
panel.

h. The status of request:app_encparts should display as Configured.
3. Configure the Username token settings in the client binding, as follows:
a. Click request:myUserNameToken under Authentication tokens.
b. Click Apply.
c. Click Callback handler.
d. Specify the User name. For example, LDAPSunuser6.
e
f.
g
h

~® o0 oTp

. Specify the password, and confirm the password.
Click OK.
Click OK again.
The status of request:myUserNameToken should now display as Configured.
i. Click Save to save your client bindings.
4. Configure the server binding, as follows:

a. Attach the policy to a service resource and create a new binding for that resource that includes the
WSSecurity policy.

Chapter 5. Web services 151

b. Click on WSSecurity in the new binding to display the main WSSecurity binding panel. For
example, click Enterprise Applications > WSSampleServiceSei > Service provider policy sets
and bindings > binding_name > WS-Security.

Click Authentication and protection.

Click AsymmetricBindingRecipientEncryptionToken0 under Protection tokens.
Click Apply.

Click Callback handler.

Select Custom from the Keystore menu.

Click Custom keystore configuration.

Enter the keystore path. For example: ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-
receiver.jceks.

j- Select JCEKS for the Type.

k. Enter the password in the Password and Confirm password fields. For example, storepass.
I. Enter a Key Name. For example, CN=Bob, O=IBM, C=US.

m. Enter a Key Alias. For example, bob.

n. Enter the password for the keypass in the Password and Confirm password fields.
o. Click OK.
p
q

S@ ™0 oo

Click OK again.

Click OK one more time to get return to the Enterprise Applications > WSSampleServicesSei >
Service provider policy sets and bindings > binding_name > WS-Security > Authentication
and protection panel.

r. The status of AsymmetricBindingRecipientEncryptionTokenO should display as Configured.
5. Modify the encrypted parts settings for the server binding, as follows:
Click request:app_encparts under Request message signature and encryption protection.
Enter a Name. For example, MyEncPart.
Click New under Key information.
Fill in a Name. For example, MyEncKeylnfo.
Click OK.

Select MyEncKeylnfo (or the name that you specified for the encrypted part) from the Available
box and click Add. MyEncKeyInfo appears in the Assigned box.

g. Click OK to return to the Enterprise Applications > WSSampleServicesSei > Service provider
policy sets and bindings > binding_name > WS-Security > Authentication and protection
panel.

h. The status of request:app_encparts should display as Configured.
6. Configure the Username token settings in the server binding, as follows:
a. Click request:myUserNameToken under Authentication tokens.
b. Click Apply.
c. Click Callback handler.
d
e
f.

~®o a0 oTp

Click OK.

Click OK again.

The status of request:myUserNameToken should display as Configured.
g. Click Save to save the server bindings.

Configuring the username and password for WS-Security Username or LTPA token
authentication

When using the Username WSSecurity default policy set, you must configure the username and password
for username token authentication separately from the security settings defined in the bindings.

152 Securing WebSphere applications

About this task

When you install a JAX-WS application and attach the default Username WSSecurity default policy set,
the next step is to configure the general provider sample binding for the JAX-WS provider, and the general
client sample binding for the JAX-WS client. However, the binding file for the default client sample binding
does not include a username or password for token authentication. Since the username and password is
not available from the target deployed system, you must specify a valid username and password in your
environment using the administrative console.

1. Log in to the administrative console, then click Services » Policy sets > General client policy set
bindings.

2. Click Client sample to edit the binding.
3. Click WS-Security.

Add basic authentication information, such as username and password, to the general client sample
bindings for any policy set that uses a Username token or LTPA token, including:

* Username SecureConversation
* Username WS-l RSP

* LTPA SecureConversation
LTPA WS-l RSP

LTPA WSSecurity default

4. Click Authentication and protection.

5. In the Authentication tokens table, click gen_signunametoken to edit the username token settings.

6. Click Callback handler in the Additional Bindings section.

7. Enter the appropriate username and password information for your environment in the User name and
Password fields.

8. Enter the password a second time in the Confirm Password field, then click Apply.

9. Repeat steps 5 through 8 for the gen_signltpatoken LTPA token generator.

Results

Note: This administrative console panel applies only to Java™ API for XML Web Services (JAX-WS) Web
services.

Related reference

[Callback handler settings]
Use this page to configure callback handler settings, which determine how security tokens are acquired
from messages headers.

Configuring default Web services security bindings

WebSphere Application Server provides support for a set of default Web services security bindings for
applications. A set of bindings is a named object that is associated with a specific policy set and service
resource attached to the policy set.

About this task

Bindings contain environment and platform specific information, such as the following types of information:
» Keys used for signature and encryption

» Keystore information

* Authentication information

» Persistent information

Chapter 5. Web services 153

In WebSphere Application Server Version 7.0, there are two types of bindings, application specific bindings
and general bindings. Typically, bindings are specific to the application or the platform, and they are not
shared.

General bindings can be configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Though general bindings are highly reusable, they are not
able to provide configuration for advanced policy requirements, such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings. The
general bindings that are shipped with WebSphere Application Server are initially set as the default
bindings, but you can choose a different binding as the default, or change the level of binding that should
be used as the default, for example, from cell level binding to server level binding. Default bindings are
used when no application specific binding or trust service binding has been assigned to a policy set
attachment. For more information, see the topic General JAX-WS default bindings for Web services
security. For a description of the general sample bindings that are included with WebSphere Application
Server, and used with the JAX-WS programming model, read the topic General sample bindings for
JAX-WS applications.

To create general bindings:

1. Log in to the administrative console and navigate to the general provider policy set and bindings panel,
or the general client policy set and bindings panel

» Click Services > Policy sets > General provider policy set bindings.
» Click Services > Policy sets > General client policy set bindings.
2. Click New.

Results

Policy set bindings contain platform-specific information, like keystore, authentication information or
persistent information, required by a policy set attachment. Each policy set attachment to a service
provider or service client must have exactly one binding. When you create a policy set attachment, the
general default bindings are used initially. When general bindings are used in association with a policy set
attachment, the cell-level general bindings are applied at run time. If application server level bindings exist,
the server-level general bindings override the cell-level definition. General bindings specify configuration
for both service client and service provider attachments and the general bindings are not tailored to a
specific policy set or application. When you define server-level general bindings, the binding begins in a
completely unconfigured state. You must add the policy, and then fully configure the bindings for each
added policy.

An application specific binding is a named binding that you create. Application specific bindings enable you
to provide platform-specific configuration information for specific policy set attachments. When you create
an application specific binding, the available binding configuration options are tailored to the definitions in
the attached policy set. You can reuse application specific bindings for multiple service resources within an
application. For example, if you create a trust service specific binding, that binding can be reused only for
trust service attachments. When you create an application specific binding for a policy set attachment, the
binding begins in a completely unconfigured state. For each policy, such as WS-Security or HTTP
Transport, where you want to override the general binding, you must add the policy, and then fully
configure the bindings for each added policy.

Note: Only use the sample default bindings in a testing environment. Do not use sample default bindings
in a production environment. Default bindings contain sample key files that must be customized
before use in a production environment.

See the topic Defining and managing service client or provider bindings for more information about
bindings.

154 Securing WebSphere applications

General JAX-WS default bindings for Web services security

General bindings are used as the default bindings at the cell level or server level, or for multiple domains,
at the domain level. The general bindings that are included with WebSphere Application Server are initially
set as the default bindings. However, you can choose a different binding as the default, or change the
level of binding that is used as the default, for example, from cell-level binding to server-level binding.

Policy set bindings contain platform-specific information, such as keystore, authentication information or
persistent information, required by a policy set attachment. In WebSphere Application Server Version 7.0,
there are two types of bindings: application-specific bindings, and general bindings. Both types of bindings
are supported for WS-Security policy sets. General bindings can be used as default bindings, and can also
be shared across multiple applications and for trust service attachments. There are two types of general
bindings: one for service providers and one for service clients. You can define multiple general bindings for
the provider and also for the client.

Note: The configuration of the default cell level and default server level bindings has changed in
WebSphere Application Server Version 7.0. Previously, you could configure only one set of default
bindings for the cell, and optionally configure one set of default bindings for each server. In Version
7.0, you can configure one or more general provider bindings and one or more general client
bindings. However, only one general provider binding and one general client binding can be
designated as the default.

Default bindings are used when no application-specific binding or trust service binding has been assigned
to a policy set attachment. You can choose the general provider and general client bindings, which are
used as the default bindings for the cell. These are the global security settings. Likewise, you can choose
the general provider and general client bindings, which are used as the default bindings for a server. For
specific information about selecting bindings, see the topic Defining and managing policy set bindings.

In an environment with multiple security domains, you can also choose the general provider and general
client bindings, which are used as the default bindings for a domain. If you do not choose a binding to be
the default for a server, the default bindings for the domain in which the server resides are used. If you do
not choose a binding to be the default for a domain, the default bindings for the cell (global security) are
used. You must choose default provider and default client bindings for the cell.

The general bindings that are included with WebSphere Application Server are initially set as the cell
default bindings. You cannot delete a binding that has been selected as the default binding for server, a
domain, or the cell. Before you delete a binding that is selected as the default, you must select a different
default binding, or specify that the defaults for the cell (global security) should be used.

The following default bindings shipped are included with WebSphere Application Server Version 7.0:
* Provider sample
» Client sample
» Version 6.1 default policy set bindings
The Version 6.1 bindings are used only if a WebSphere Application Server Version 6.1 Feature Pack for

Web Services application is installed within the WebSphere Application Server Version 7.0 environment.
For more information on these bindings, see the topic Version 6.1 default policy set bindings.

Note: Do not use the provider and client sample bindings that are included with WebSphere Application
Server in their current state in a production environment. You must modify these bindings to meet
your security needs before using them in a production environment by making a copy of the
bindings and then modifying the copy. For example, change the key and keystore settings to ensure
security, and modify the binding settings to match your environment.

For a detailed description of the general sample bindings, see the topic [General sample bindings for|
WAX-WS applications|

Chapter 5. Web services 155

To define and manage general bindings, in the administrative console click Services > Policy sets >
General provider policy set bindings or Services > Policy sets > General client policy set bindings.
To manage bindings for the cell or the domain, click Services > Policy sets > Default policy set
bindings. The general service provider and client bindings have independent settings that you can
customize to meet the needs of your environment. To learn more about general bindings, read the topic
Defining and managing policy set bindings.

In addition to choosing default bindings for the cell (global security), you can also choose the general
provider and general client bindings that you want to use as the default bindings for a server. When are
using the JAX-WS programming model and want to specify the server default bindings, log on to the
administrative console and click Servers > Server Types > WebSphere application servers >
server_name. In the Security section of the console page, click Default policy set bindings.

Web services security APl programming model
The application server programming model provides Web Services Security programming application
programming interfaces (WSS API) for securing SOAP messages.

The API programming model is an interface-based programming model that is based on Web Services
Security Version 1.1 standards, but the design also includes support for Web Services Security Version 1.0
for securing SOAP messages. The WSS API programming model implementation is a simplified version,
which is based on an early draft proposal of JSR-183, which is the JSR for defining Java API binding for
Web Service Security. By design, because the application code is programmed to the interface, any
application code that is programmed with the open source implementation should be able to run on the
WebSphere Application Server with minimal changes or no changes at all.

The configuration model for Web services has also been redesigned from a deployment descriptor model
to a policy set model. Web Service Security can be enabled by either using a policy set that is configured
by using the administrative console, or by using the WSS API for configuration. The functions provided by
the policy set configurations are the same as the functions supported by the WSS API for the Web Service
Security run time. However, the security policy that is defined using policy sets has a higher priority over
the WSS API. When the WSS API and the policy set are both used in the application, the default behavior
is for the security policy from the policy set to be enforced and the WSS API to be ignored. To use the
WSS API in the application, you must make sure that there is no policy set attached to the application or
to the application resources, or make sure there is no security policy in the attached policy set.

You can still use your existing JAX-RPC applications with Web Service Security; however, those
applications cannot take advantage of the Web Services Security Version 1.1 functions, such as
configuring the security policy using a policy set, OM filter performance improvements, WSS API, Web
Services Secure Conversation (WS-SecureConversation), Kerberos token and the associated SHA-1 key
for message protection and identity propagation, and Web Services Trust (WS-Trust) features.

In order to take advantage of the Web Services Security Version 1.1 functions, you must rewrite an
existing JAX-RPC application as a JAX-WS application, manually re-configure the security constraints to a
policy set, and perform code migration of the DOM-based SPIs to the OM-based SPlIs.

For example, when using the JAX-WS programming model, the improved design of the pluggable token
framework allows the same security implementation to be used for both the APl and policy sets. The
framework uses the JAAS Login Module and JAAS Callback Handler for token creation and token
validation.

What is supported when using the WSS APIs
The WSS API can only be used on the client. You can use the Java SE 6 client, the J2EE Application

client, or a server client (a service provider acting as client) using the API to secure SOAP message with
message-level security.

156 Securing WebSphere applications

You should have Web Services Security (WSS) knowledge to use the WSS APIs. Before using the WSS
API, keep in mind that the WSS API:

* Are Java-based interfaces.
* Are implemented by using a factory model (WSSFactory).

» Supports the WS-Security Version 1.0 and 1.1 standards, which include the Username and X.509 token
profiles, Versions 1.0 and 1.1.

* Are very XML centric.
* Include an object-oriented design which simplifies the APlIs.

» Are task oriented and allow common usage scenarios, such as: signing the body and encrypting the
SOAP message body content.

» Are flexible and extensible, and they let you to extend the token type support.

» Are based on the provider framework and allow the use of different data models to be used, such as:
AXIOM or DOM.

» Provides application programmer with better control and flexibility in applying WSS in their applications.

The default values for the WSS API are predefined and are part of the Web services security run time.
Default values are provided for:

* The duration of the timestamp

» The signing algorithm, canonicalization algorithm, digest method, transform algorithm, security token
reference method and signed parts such as the SOAP body, Web Services Addressing headers and the
time stamp.

* The key encryption algorithm, data encryption algorithm, security token reference method, and
encrypted parts such as the SOAP body content.

The signature validation has similar default values as the signature (signing information). Similarly,
decryption has similar default values as encryption.

What is not supported when using the WSS APIs

The WSS API provided with the application server does not support the following function:

* The application programming model is JAX-WS, meaning JAX-RPC (JSR-109) applications are not
supported.

* The WSS API is available in the synchronous message exchange of the JAX-WS client application.
However, the WSS API are not supported for the asynchronous client.

* WSS API support is available only for the requester and not for the provider.

* The identity assertion semantic programming model is not supported in the WSS API because identity
assertion is not part of the Web Service Security Version 1.0 standard. However, you can use the WSS
API to add Identity Assertion semantic in the token processing.

WS-Trust and WS-SecureConversation scenarios

There are several ways to secure the WS-Trust SOAP messages:
* Using the bootstrap policy defined in the policy set.
» Using the WSS API, which supports WS-SecureConversation.

» Enabling dynamic policy for the provider so that the client can retrieve the provider-side policy at run
time.

An application would use the WSS API to acquire a security context token for programmatic API-based
secure conversation. The WebSphere Application Server trust service provides an application the ability to
request a security token for access to a service. The scope and focus of the trust service is only for a
WebSphere Application Server Security Context Token (SCT) for WS-SecureConversation.

Chapter 5. Web services 157

The WS-SecureConversation and WS-Trust scenarios focus on the inter-operability functions, such as the
configuration and runtime interaction of various components. You would use the WSS API to secure the
bootstrap RST and RSTR to acquire the security context token from the trust service. After acquiring the
security context token, a Derived Key Token is created by using the WSS API. Then the Derived Key
Token can be used for signature and encryption.

See the examples that describe the following security context token usage scenarios:
» [How to establish the security context token to secure WS-SecureConveration|
* |How to establish the security context token to secure WS-ReIiabIeMessagingl

There are two conditions when using the WSS API to secure the SOAP message with Web Service
Security:

* Generation of the secure SOAP message, which is in the request generator application code.
» Consuming of the secured SOAP message, which is in the response consumer application code.

In both cases, a Java exception class com.ibm.websphere.wssecurity.wssapi.WSSException is provided if
an error is encountered.

Web services client security context

When the JAX-WS client invokes Web services, the current security context that is constructed by the
security handler is stored in the RequestContext object. By default, the security context in the JAX-WS
Web services client runtime environment is reconstructed for the next Web services request invocation.
You can preserve the security context for subsequent Web services invocations. An example of this is a
scenario where the security policy requires the client to send a username security token with the user
name and password. When the client sends the first request to invoke the service, you are prompted to
enter the required user name and password. The user name and password is saved in a Username
SecurityToken token in a Subject in the security context. To avoid being prompted to enter the same user
name and password again in subsequent request invocations, you can preserve the security context.
There are two methods to preserve the security context: 1) configure the client run time to automatically
preserve the client security context for subsequent request invocations; or 2) preserve the security context
manually.

To configure the JAX-WS client run time environment to automatically preserve the security context, set
the Java system property com.ibm.websphere.wssecurity.context.management to true. When this system
property is true, the JAX-WS client run time copies the security context constructed by the security handler
to the RequestContext automatically, and the context is used for subsequent request invocations.

To manually preserve the security context, use the following sample code:

// First request

Service svc = Service.create(...);

svc.addPort(...);

Dispatch<String> dispatch = svc.createDispatch(...);

Map<String, Object> requestContext = dispatch.getRequestContext();
String response = dispatch.invoke(body.toString());

Object securityContext = requestContext.get(com.ibm.wsspi.websvcs.Constants.WEBSPHERE_SECURITY_CONTEXT);
// Subsequent request
Dispatch<String> dispatch = svc.createDispatch(...);

Map<String, Object> requestContext = dispatch.getRequestContext();
Object securityContext = requestContext.put(com.ibm.wsspi.websvcs.Constants.WEBSPHERE_SECURITY_CONTEXT, securityContext);

Service Programming Interfaces (SPI)
The Web Services Security service programming interface (WSS SPI) provides programming interfaces for
securing Web services security.

The Web services security specification provides a flexible framework for building secure Web services to
implement message content integrity and confidentiality. The specification does not define specific token

158 Securing WebSphere applications

formats, but instead associates separate profile documents that define various security token formats and
semantics for using those tokens. The Web services security service programming model supports the
flexible framework by providing extension points to integrate with new token formats, and with methods to
obtains keys needed for message protection. Web services security uses this programming model to
implement support for the standard X.509 token profile, the Username token profile, and the Kerberos
token profiles. The programming model is also used to implement support for the LTPA security token, and
for new security token types.

The Web service security run time token generation and token consuming Service Programming Interfaces
(SPI) have been redesigned so that the same security token interface and JAAS Login Module
implementation can be used for both the WSS API and the SPI. The WSS SPI for the service provider
extends the security token types and provides keys and deriving keys for signing, signature verification,
encryption and decryption.

The Web services security service programming model provides mechanisms to process custom security
tokens, to use custom token in signing and encryption, and to retrieve encryption and signing keys. The
Web services security service programming interfaces for the JAX-RPC run time, and for the JAX-WS run
time, are similar, but not identical.

JAX-RPC run time

The plug-in programming interfaces for the JAX-RPC run time consist of the TokenGenerator, KeyLocator,
and JAAS CallbackHandler for outbound message processing, and the TokenConsumer, KeyLocator, and
JAAS LoginModule for inbound message processing.

Token Generator, KeyLocator, and Callback Handler
The TokenGenerator class is responsible for formatting the security token to the XML element.
This class calls the CallbackHandler class that is specified in the TokenGeneratorConfig object,
which obtains the security token input data, and then stores the resulting security token in the
Subject object private credentials.

Token Consumer, KeyLocator and JAAS LoginModule
The KeyLocator class is responsible for obtaining the required key for signing and encrypting
SOAP message elements from a key store that is specified by the KeyStoreConfig and the
KeyLocatorConfig configuration. The TokenConsumer class extracts the token data from the XML
security token representation, and stores it in the JAAS Subject using a JAAS LoginModule. The
specified KeyLocator class is invoked to find the required key for verifying the digital signature and
decrypting the SOAP message elements.

JAX-WS run time

The plug-in programming interfaces for the JAX-WS run time are based on the JAAS programming model
for both inbound and outbound SOAP message processing. The JAAS LoginModule and CallbackHandler
are responsible for processing the security tokens in SOAP messages. The Login Module and Callback
Handler both retrieve and generate tokens, and store the SecurityToken objects in the run time. They
replace the functionality of the TokenGenerator, TokenConsumer, and KeyLocator interfaces.

Due to the differences in the programming models, any WebSphere Application Server or custom SPI
implementation from the Web Service Security Version 6.1 run time is not supported to run on the Web
Service Security run time with the Version 6.1 Feature Pack for Web Services, or the Version 7.0 Web
Service Security runtime. However, the Web Service Security Version 6.1 run time is supported
simultaneously with the Version 6.1 Feature Pack for Web Services, meaning the Version 6.1 SPI
implementations are still supported through the original run time. Before using the new Web Service
Security run time, a code migration is required to reprogram the Version 6.1 DOM-based SPIs to the
AXIOM-based SPIs in the Feature Pack for Web Services, before the SPI can be used.

Chapter 5. Web services 159

Securing Web services applications using the WSS APIs at the message level
Standards and profiles address how to provide protection for messages that are exchanged in a Web
service environment. Web services security is a message-level standard that is based on securing SOAP
messages through XML digital signature, confidentiality through XML encryption, and credential
propagation through security tokens.

Before you begin

To secure Web services, you must consider a broad set of security requirements, including authentication,
authorization, privacy, trust, integrity, confidentiality, secure communications channels, delegation, and
auditing across a spectrum of application and business topologies. One of the key requirements for the
security model in today’s business environment is the ability to interoperate between formerly incompatible
security technologies in heterogeneous environments. The complete Web services security protocol stack
and technology roadmap is described in the Web services roadmap.

About this task

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services
Security: SOAP Message Security Version 1.1 specification is the basic messaging transport for all Web
services. SOAP 1.2 adds extensions to the existing SOAP 1.1 extensions so that you can build secure
Web services. Attachments can be added to SOAP messages by using Message Transmission
Optimization Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) instead of the SOAP with
Attachments (SWA) profile.

The OASIS Web Services Security (WS-Security) Version 1.1 specification is the building block that is
used in conjunction with other Web service and application-specific protocols to accommodate a wide
variety of security models. Web services security for WebSphere Application Server is based on specific
standards that are included in the OASIS Web Services Security Version 1.1 specification and profiles.

The Version 1.1 specification defines additional facilities for protecting the integrity and confidentiality of a
message. The Version 1.1 specification also provides the mechanisms for associating security-related
claims with the message. The Web Services Security Version 1.1 standards that are supported by
WebSphere Application Server include the signature confirmation, encrypted header elements, the
Username Token Profile and the X.509 Token Profile. The Username Token Profile and the X.509 Token
Profile have been updated as Version 1.1 profiles. For the X.509 Certificate Token Profile, one new type of
security token reference is the Thumbprint reference, which is specified in the binding.

XML Schema, Part 1 and Part 2 are specifications that explain how schemas are organized in XML
documents. The two WS-Security Version 1.0 schemas have been updated to the Version 1.1
specifications plus a new Version 1.1 schema has been added. Note that the Version 1.1 schema does not
replace the Version 1.0 schema but instead builds upon it by defining an additional set of capabilities
within a Version 1.1 namespace.

You can use the following methods to configure Web services security and to define policy types to secure
the SOAP messages:

* Use the administrative console to configure policy sets.

This method uses the bootstrap policy that is defined in the policy set. You can use policy sets, or
assertions about how services are defined, to simplify your security configuration for Web services. You
can use the administrative console to create, modify, and delete custom policy sets. A set of default
policy sets are available.

For example, you can define the bootstrap policy in the policy set to secure the Web Services Trust
(WS-Trust) SOAP messages.

You can also use the administrative console to perform policy set management tasks and to secure
Web Services using encryption, signing information, and security tokens.

160 Securing WebSphere applications

The following steps high-level steps describe how to configure WebSphere Application Server to use
WS-Security and to secure the SOAP messages using the administrative console. The generator and
consumer tasks that are discussed in the following steps use WS-Security Versions 1.0 and 1.1.

— Create and configure the application policy sets or the system policy sets for trust service.

— Define the policy types to be used to secure the SOAP messages when creating and configuring the
policy sets.

— Configure the policy set binding. Select either the symmetric or asymmetric binding assertion to
describe the token type and the algorithm to be used for message protection.

— Assemble your Web services security-enabled application by using an assembly tool.

Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for
the client)

WebSphere Application Server uses a new APl programming model. In addition to the existing
JAX-RPC programming model, a new programming model, Java API for XML Web Services (JAX-WS),
has been added. The JAX-WS programming standard aligns with the document-centric messaging
model and replaces the remote procedure call programming model defined by the Java API for
XML-based RPC (JAX-RPC) specification.

For example, an application could create system policy sets and then use the WebSphere Application
Server WSS API to acquire the security context token for programmatic APIl-based Web Services
Secure Conversation (WS-SecureConversation).

You can also use the administrative console to perform the encryption, signing, and token configuration
tasks that the WSS APIs perform to secure Web services.

The following high-level steps describe how to configure WebSphere Application Server to use
WS-Security and to secure the SOAP messages using the WSS APIs. The generator and consumer
tasks that are discussed in the following steps use WS-Security Versions 1.0 and 1.1.

— Use the WSSSignature API to configure the signing information for the request generator (client side)
binding.
Different message parts can be specified in the message protection for a request on the generator
side. The default required parts are BODY, ADDRESSING_HEADERS and TIMESTAMP.

The WSSSignature API also specifies the different algorithm methods to be used with the signature
for message protection. The default signature method is RSA_SHA1. The default canonicalization
method is EXC_C14N.

— Use the WSSSignPart API if you want to change the digest method and the transform method.

The default signed parts are WSSSignature.BODY, WSSSignature. ADDRESSING_HEADERS and
WSSSignature. TIMESTAMP.

The WSSSignPart API also specifies the different algorithm methods to be used if you added or
changed the signed parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N. For example, use the WSSSignPart API if you want to generate the
signature for the SOAP message using the SHA256 digest method instead of the default value of
SHAT1.

— Use the WSSEncryption API to configure the encryption information on the request generator side.

The encryption information on the generator side is used for encrypting an outgoing SOAP message
for the request generator (client side) bindings. The default targets of encryption are
BODY_CONTENT and SIGNATURE.

The WSSEncryption API also specifies the different algorithm methods to be used to protect
message confidentiality. The default data encryption method is AES128. The default key encryption
method is KW_RSA_OAEP.

— Use the WSSEncryptPart API if you want to set the transform method only.

For example, if you want to change the data encryption method from the default value of AES128 to
TRIPLE_DES.

No algorithm methods are required for encrypted parts.

Chapter 5. Web services 161

— Use the WSS API to configure the token on the generator side.

The requirements for the security token depend on the token type. The JAAS Login Module and the
JAAS CallbackHandler are responsible for creating the security token on the generator side. Different
standalone tokens can be sent in request and response. The default token is the X509Token. The
other token that can be used for signing is the DerivedKeyToken, which is used only with Web
Services Secure Conversation (WS-SecureConversation).

— Use the WSSVerification API to verify the signature for the response consumer (client side) binding.

Different message parts can be specified in the message protection for a response on the consumer
side. The required targets for verification are BODY, ADDRESSING_HEADERS and TIMESTAMP.

The WSSVerification API also specifies the different algorithm methods to be used for verifying the
signature and for message protection. The default signature method is RSA_SHA1. The default
canonicalization method is EXC_C14N.

— Use the WSSVerifyPart API to change the digest method and the transform method. The required
verify parts are WSSVerification.BODY, WSSVerification. ADDRESSING_HEADERS and
WSSVerification. TIMESTAMP.

The WSSVerifyPart API also specifies the different algorithm methods to be used if you added or
changed the verification parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N.

— Use the WSSDecryption API to configure the decryption information for the response consumer
(client side) binding.
The decryption information on the consumer side is used for decrypting an incoming SOAP

message. The targets of decryption are BODY_CONTENT and SIGNATURE. The default key
encryption method is KW_RSA_OAEP.

No algorithm methods are required for decryption.
— Use the WSSDecryptPart API if you want to set the transform method only.

For example, if you want to change the data encryption method from the default value of AES128 to
TRIPLE_DES.

No algorithm methods are required for decrypted parts.
— Use the WSS API to configure the token on the consumer side.

The requirements for the security token depend on the token type. The JAAS Login Module and the
JAAS CallbackHandler are responsible for validating (authenticating) the security token on the
consumer side. Different standalone tokens can be sent in request or response.

The WSS API adds the information for the candidate token that is used for decryption. The default
token is X509Token.

» Use the wsadmin administrative scripting tool to configure policy sets.

This method allows you to create, manage, and delete policy sets from the command-line or to create
scripts to automate your tasks. You can use the wsadmin tool and the PolicySetManagement command
group to manage default policy sets, create custom policy sets, configure policies, and manage
attachments and bindings. For more information, use the policy set scripting topics in the information
center.

To secure Web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. You must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

Results
After completing these high-level steps for WebSphere Application Server, you have secured Web services

by configuring policy sets and by using the WSS API to configure encryption and decryption, the signature
and signature verification information, and the consumer and generator tokens.

162 Securing WebSphere applications

Securing messages at the request generator using WSS APIs:

You can secure SOAP messages by configuring signing information, encryption, and generator tokens to
protect message integrity, confidentiality, and authenticity, respectively. This request (client-side) generator
configuration defines the Web services security requirements for the outgoing SOAP message request.

Before you begin

To secure Web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. Therefore, in addition to securing messages at the request generator level,
you must also secure messages at the response consumer level.

About this task

The request (client-side) generator configuration requirements involve generating a SOAP message
request that uses a digital signature, incorporates encryption, and attaches security tokens.

To secure Web service applications, you must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

You can use the following interfaces to configure Web services security and to define policy types to
secure the SOAP messages:

» Use the administrative console to configure policy sets.

» Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client)

The following high-level steps use the WSS APIs:

« [Configure generator signing to protect message integrityl
« [Configure encryption to protect message confidentiality}
« [Attach generator tokens to protect message authenticity}

Results
After completing these procedures, you have secured messages at the request generator level.
What to do next

Next, if not already configured, secure messages with signature verification, decryption, and consumer
tokens at the response consumer (client-side) level.

Configuring encryption to protect message confidentiality using the WSS APIs:

You can configure encryption information for the client-side request generator (sender) bindings.
Encryption information is used to specify how the generators (senders) encrypt outgoing SOAP messages.
To configure encryption, specify which message parts to encrypt and specify which algorithm methods and
security tokens are to be used for encryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of
someone understanding the message flowing across the Internet. With confidentiality specifications, the

message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to
configuring encryption, familiarize yourself with

Chapter 5. Web services 163

About this task

For encryption, you must specify the following:
* Which parts of the message are to be encrypted.
» Which encryption algorithms to specify.

To configure encryption and encrypted parts on the client side, use the WSSEncryption and
WSSEncryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

WebSphere Application Server uses encryption information for the default generator to encrypt parts of the
SOAP message. The WSSEncryption API configures the following required parts as encrypted parts.

Table 6. Required encrypted parts

Encryption parts Description

Keywords Keywords are used to add the encrypted parts to the SOAP message.

XPath expression An XPath expression is used to add the encrypted parts to the SOAP
message.

WSSEncryptPart object This object adds the encrypted parts to the SOAP message.

WSSSignature object This object adds the signature component as an encrypted part.

Header This part adds the header in the SOAP header, specified by QName,
as an encryption part.

Security token object This object adds the security token as an encryption part.

Web Services Security API (WSS API) supports symmetric encryption, by using a shared key, only when
Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the
message that are to be encrypted. WebSphere Application Server supports the use of the following
keywords:

Table 7. Supported encryption keywords

Keyword References

BODY_CONTENT The keyword for the contents of the SOAP message body as an
encryption target.

SIGNATURE The keyword for the signature component as an encryption target.

If configuring using the WSS APIs, the WSSEncryption and WSSEncryptPart APls complete these

high-level steps:

1. Use the WSSEncryption API to configure encryption. The WSSEncryption API performs these tasks by
default:

a. Generates the callback handler.

Generates the generator security token object.
Adds the security token reference type.

Adds the signature component.

Adds the WSSEncryptPart object.

Adds the parts to be encrypted. Adds the default parts as targets of encryption by using keywords
and XPath expressions.

~®ooov

164 Securing WebSphere applications

g. Adds the header in the SOAP message, specified by QName.

h. Sets the default data encryption method.

i. Specifies whether the key is to be encrypted using a Boolean value.
j- Sets the default key encryption method.

k. Selects a part reference.

|. Sets the MTOM optimization Boolean value.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The
WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.
Sets the encrypted parts specified by an XPath expression.

Sets the signature component object, WSSSignature.

Sets the header in the SOAP message, specified by QName.

Sets the generator security token.

Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could
change one or more of the following items:

* Change the data encryption algorithm from the default value of AES 128.

» Change the key encryption algorithm from the default value of KW_RSA_OAEP.

« Specify to not encrypt the key (false).

» Change the security token type from default of X.509 token.

* Change the security token reference type from the default value of SecurityToken.REF_STR.
* Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

e Turn MTOM optimization on (true).

~®ooo0

Results

The encryption information is configured for the generator binding.
Example

The following is an example of the WSSEncryption API:

WSSFactory factory = WSSFactory.getInstance();
WSSGenerationContext gencont = factory.newWSSGenerationContext();

X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);
WSSEncryption enc = factory.newWSSEncryption(token);

gencont.add(enc);
What to do next

You must configure similar decryption information for the client-side response consumer (receiver)
bindings, if you have not already configured the information.

Next, review the WSSEncryption API process.
Encrypting the SOAP message using the WSSEncryption API:
You can secure the SOAP messages, without using policy sets for configuration, by using the Web

Services Security APIs (WSS API). To configure the client for request encryption on the generator side,

Chapter 5. Web services 165

use the WSSEncryption API to encrypt the SOAP message. The WSSEncryption API specifies which
request SOAP message parts to encrypt when configuring the client.

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable encryption and add
generator security tokens in the SOAP message. To secure SOAP messages, use the WSS APIs to
complete the following encryption tasks, as needed:

» Configure encryption and choose the encryption methods using the WSSEncryption API.
» Configure the encrypted parts, as needed, using the WSSEncryptPart API.

About this task
The encryption information on the generator side is used for encrypting an outgoing SOAP message for

the request generator (client side) bindings. The client generator configuration must match the
configuration for the provider consumer.

Encrypt
the body
content
WSSAPI
<s11:Header>
<wsse: Security>
<EncryptedKey>
A ¢ </EncryptedKey>
</wsse:Security>
</s11:Header>
WSS <s11:Body> >
Generation <EncryptedData>
Contex! </EncryptedData>
</s11:Body> -
Client Runtime Runtime Provider
Application Application

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted, and
which message parts to attach encrypted Nonce and timestamp elements to.

The following encryption parts can be configured:

Table 8. Encryption parts

Encryption parts Description
part Adds the WSSEncryptPart object as a target of the encryption part.
keyword Adds the encryption parts using keywords. WebSphere Application Server supports
the following keywords:
+ BODY_CONTENT
+ SIGNATURE
xpath Adds the encryption part using an XPath expression.
signature Adds the WSSignature component as a target of the encrypted part.
header Adds the SOAP header, specified by QName, as a target of the encrypted part.
securityToken Adds the SecurityToken object as a target of the encrypted part.

166 Securing WebSphere applications

For encryption, certain default behaviors occur. The simplest way to use the WSSEncryption APl is to use
the default behavior (see the example code).

WSSEncryption provides defaults for the key encryption algorithm, the data encryption algorithm, the
security token reference method, and the encryption parts such as the SOAP body content and the
signature. The encryption default behaviors include:

Table 9. Encryption decisions

Encryption decisions

Default behavior

Which SOAP message parts to
encrypt using keywords

Sets the encryption parts that you can add using keywords. The default
encryption parts are the BODY_CONTENT and SIGNATURE. WebSphere
Application Server supports using these keywords:

* WSSEncryption.BODY_CONTENT

* WSSEncryption.SIGNATURE

Which data encryption method to
choose (algorithm)

Sets the data encryption method. Both data and key encryption methods can be
specified. The default data encryption algorithm method is AES 128. WebSphere
Application Server supports these data encryption methods:

* WSSEncryption.AES128: http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
* WSSEncryption.AES192: http://www.w3.0rg/2001/04/xmlenc#aes192-cbc
* WSSEncryption.AES256: http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

* WSSEncryption. TRIPLE_DES: hitp://www.w3.0rg.2001/04/xmlenc#tripledes-
cbc

Whether to encrypt the key
(isEncrypt)

Specifies whether to encrypt the key. The values are true or false. The default
value is to encrypt the key (true).

Which key encryption method to
choose (algorithm)

Sets the key encryption method. Both data and key encryption methods can be
specified. The default key encryption algorithm method is key wrap RSA OAEP.
WebSphere Application Server supports these key encryption methods:

* WSSEncryption.KW_AES128: http://www.w3.0rg/2001/04/xmlenc#kw-aes128

* WSSEncryption.KW_AES192: http://www.w3.0rg/2001/04/xmlenc#kw-aes192

* WSSEncryption.KW_AES256: http://www.w3.0rg/2001/04/xmlenc#kw-aes256

* WSSEncryption.KW_RSA_OAEP: http://www.w3.0rg/2001/04/xmlenc#rsa-
oaep-mgfip

* WSSEncryption.KW_RSA15: http://www.w3.0rg/2001/04/xmlenc#rsa-1_5

* WSSEncryption.KW_TRIPLE_DES: http://www.w3.0rg/2001/04/xmlenc#kw-
tripledes

Which security token to specify
(securityToken)

Sets the SecurityToken. The default security token type is the X509Token.
WebSphere Application Server provides the following pre-configured consumer
token types:

» Derived key token
» X.509 tokens

Which token reference to use
(refType)

Sets the type of the security token reference. The default token reference is
SecurityToken.REF_KEYID. WebSphere Application Server supports the
following token reference types:

» SecurityToken.REF_KEYID

» SecurityToken.REF_STR

» SecurityToken.REF_EMBEDDED
» SecurityToken.REF_THUMBPRINT

Whether to use MTOM
(mtomOptimize)

Sets Message Transmission Optimization Mechanism (MTOM) optimization for
the encrypted part.

1. To encrypt the SOAP message using the WSSEncryption API, first ensure that the application server is

installed.

167

Chapter 5. Web services

2. The WSS API process for encryption performs these process steps:
a. Uses WSSFactory.getinstance() to get the WSS API implementation instance
b. Creates the WSSGenerationContext instance from the WSSFactory instance.
c. Creates the SecurityToken from WSSFactory used for encryption.
d

Creates WSSEncryption from the WSSFactory instance using the SecurityToken. The default
behavior of WSSEncryption is to encrypt the body content and the signature.

e. Adds a new part to be encrypted in WSSEncryption if the existing part is not appropriate. After
addEncryptPart(), addEncryptHeader(), or addEncryptPartByXPath() is called, the default part is
cleared.

f. Calls the encryptKey(false) if the key is not to be encrypted.

g. Sets the data encryption method if the default method is not appropriate.
h. Sets the key encryption method if the default method is not appropriate.
i. Sets the token reference if the default token reference is not appropriate.
j.- Adds WSSEncryption to WSSConsumingContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption, a WSSException is provided. If successful, the API calls the
WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now
secured using Web services security.

Example

The following example provides sample code using methods that are defined in WSSEncryption:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler
X509GenerateCallbackHandler callbackHandler = new
X509GenerateCallbackHandTer(

"enc-sender.jceks",

"jCEkS" s

"storepass".toCharArray(),

Ilbobll .

null,

"CN=Bob, 0=IBM, C=US",

null);

// Generate the security token used for encryption (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance (step: d)
WSSEncryption enc = factory.newWSSEncryption(token);

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)
enc.addEncryptPart (WSSEncryption.BODY_CONTENT);

// Set the part in the SOAP Header specified by QName (step: e)

enc.addEncryptHeader(new QName("http://www.w3.0rg/2005/08/addressing",
"MessagelID"));

168 Securing WebSphere applications

// Set the part specified by WSSSignature (step: e)
SecurityToken sigToken = getSecurityToken();
WSSSignature sig = factory.newWSSSignature(sigToken);
enc.addEncryptPart(sig);

// Set the part specified by SecurityToken (step: e)
UNTGenerateCallbackHandler untCallbackHandler =
new UNTGenerateCallbackHandler("Chris", "sirhC");
SecurityToken unt = factory.newSecurityToken(UsernameToken.class,
untCallbackHandler);
enc.addEncryptPart (unt, false);

// sSt the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();
sh.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/’
and local-name()="'Envelope']");
sh.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/’
and local-name()="'Body']");
sh.append("/*[namespace-uri()="http://xmlsoap.org/Ping'
and Tocal-name()='Ping']");
sb.append("/*[namespace-uri()="http://xmlsoap.org/Ping’
and local-name()='Text']");
enc.addEncryptPartByXPath(sh.toString());

// Set whether the key is encrypted (step: f)

// DEFAULT: true
enc.encryptKey(true);

// Set the data encryption method (step: g)

// DEFAULT: WSSEncryption.AES128
enc.setEncryptionMethod (WSSEncryption.TRIPLE DES);

// Set the key encryption method (step: h)

// DEFAULT: WSSEncryption.KW_RSA_OAEP
enc.setEncryptionMethod (WSSEncryption.KW_RSA15);

// Set the token reference (step: i)

// DEFAULT: SecurityToken.REF_KEYID

enc.setTokenReference(SecurityToken.REF_STR);

// Add the WSSEncryption to the WSSGenerationContext (step: j)
gencont.add(enc);

// Process the WS-Security header (step: k)
gencont.process (msgcontext);

Note: The X509GenerationCallbackHandler does not need the key password because the public key is
used for encryption. You do not need a password to obtain the public key from the Java keystore.

What to do next

If you have not previously specified which encryption methods to choose, use the WSS API or configure
the policy sets using the administrative console to choose the data and key encryption algorithm methods.

Choosing the encryption methods for the generator binding:

To configure the client for request encryption for the generator binding, you must specify which encryption
methods to use when the client encrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting
and decrypting SOAP messages.

Chapter 5. Web services 169

To specify which algorithm methods are to be used when the client encrypts the SOAP messages,
complete the following tasks:

* Use the WSSEncryption API to configure the data encryption algorithm and the key encryption algorithm
methods.

* Use the WSSEncryptPart API to configure a transform algorithm method, if needed. The default is no
transform algorithm.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following
information defines some data encryption-related terms:

Data encryption method algorithm
Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data
encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength
ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,
you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™
Cryptography Extension (JCE) policy files from the following Web site: fhttp://www.ibm.com/|
[developerworks/java/jdk/security/index.html|

Key encryption method algorithm
Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the method to
encrypt the key that is used to encrypt data. The algorithm represents public key encryption
algorithms that are specified for encrypting and decrypting keys.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or
SHA512 message digest algorithm by specifying a key encryption algorithm property.

The property name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is
one of the following URIs of the digest method:

* http://www.w3.0rg/2001/04/xmlenc#sha256
* http://www.w3.0rg/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.0AEPparams. The property value is the base 64-encoded
value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only.
On the consumer side, these properties are read from the incoming SOAP message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the
unrestricted JCE policy files from the following Web site: |http://www.ibm.com/developerworks/java/|
lidk/security/index.html}

Table 10. Encryption usage types

Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data.
Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the
encryption key.

170 Securing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Data encryption

WebSphere Application Server supports the following pre-configured data encryption algorithms:

Table 11. Data encryption algorithms

Data encryption name

Algorithm URI

WSSEncryption.AES128 (the default
value)

A URI of data encryption algorithm, AES 128: http://www.w3.0rg/2001/04/
xmlenc#aes128-cbc

WSSEncryption.AES192

A URI of data encryption algorithm, AES 192: http://www.w3.0rg/2001/04/
xmlenc#aes192-cbc

WSSEncryption.AES256

A URI of data encryption algorithm, AES 256: http://www.w3.0rg/2001/04/
xmlenc#aes256-cbc

WSSEncryption. TRIPLE_DES

A URI of data encryption algorithm, 3DES: http://www.w3.0rg.2001/04/
xmlenct#tripledes-cbc

Key encryption

WebSphere Application Server supports the following pre-configured key encryption algorithms:

Table 12. Key encryption algorithms

Key encryption hame

Algorithm URI

WSSEncryption.KW_AES128

A URI of key encryption algorithm, key wrap AES 128:
http://www.w3.0rg/2001/04/xmlenc#kw-aes128

WSSEncryption.KW_AES192

A URI of key encryption algorithm, key wrap AES 192:
http://www.w3.0rg/2001/04/xmlenc#kw-aes192

Note: Do not use the 192-bit key encryption algorithm if you want your
configured application to be in compliance with the Basic Security Profile
(BSP).

WSSEncryption.KW_AES256

A URI of key encryption algorithm, key wrap AES 256:
http://www.w3.0rg/2001/04/xmlenc#kw-aes256

WSSEncryption.KW_RSA_OAEP (the
default value)

A URI of key encryption algorithm, key wrap RSA OAEP:
http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgfip

WSSEncryption.KW_RSA15

A URI of key encryption algorithm, key wrap RSA 1.5:
http://www.w3.0rg/2001/04/xmlenc#rsa-1_5

WSSEncryption.KW_TRIPLE_DES

http://www.w3.0rg/2001/04/xmlenc#kw-tripledes

To configure the encryption and encrypted part algorithm methods, use the WSSEncryption API, or
configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with Web services endpoints that use policy

sets.

The WSS API process completes the following high-level steps to specify which encryption methods to use

when configuring the client for request encryption:

1. Using the WSSEncryption API, adds the required data encryption algorithm. The data encryption
algorithm is used for encrypting or decrypting parts of a SOAP message. Data encryption algorithms
specify the algorithm uniform resource identifier (URI) of the data encryption method.

The client generator configuration must match the configuration for the provider consumer.

Chapter 5. Web services 171

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI
of the data encryption algorithm, is http://www.w3.0rg/2001/04/xmlenc#aes128-cbc. WebSphere
Application Server supports the following pre-configured data encryption algorithms:

* AES 128: http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
The AES 128 algorithm is the default data algorithm method.
* AES 192: hitp://www.w3.0rg/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following Web site: jttp://www.ibm.com/developerworks/java/jdk/
[security/index.htmi|

* AES 256: hitp://www.w3.0rg/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following Web site: |http://www.ibm.com/developerworks/java/jdk/|
[security/index.html|

* TRIPLEDES: http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

2. As needed, changes the WSSEncryption APl method to specify another data encryption algorithm. For
example, you might add the following code to change from the default AES 128 algorithm to the Triple
DES algorithm:

// Default data encryption algorithm: AES128

WSSEncryption enc = factory.newWSSEncryption(x509t);
enc.setEncryptionMethod (EncryptionMethod.TRIPLEDES CBC);

gencont.add(enc);

3. Using the WSSEncryption API, adds the required key encryption algorithm. The key encryption
algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP
message. If the encryption key, which is the key that is used for encrypting the message parts, is not
encrypted, then the decryption API selects false to match the encryption key.

The client generator configuration must match the configuration for the provider consumer.
The default key encryption algorithm value is key wrap RSA OAP. The key encryption name is
KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.0rg/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key
encryption algorithms:
* KW AES128: http://www.w3.0rg/2001/04/xmlenc#kw-aes128
« KW AES192: http://www.w3.0rg/2001/04/xmlenc#kw-aes192

To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: |http://www.ibm.com/developerworks/java/jdk/
[security/index.html|

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).KW AES 256: http://www.w3.0rg/2001/04/
xmlenc#kw-aes256
To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java
Cryptography Extension (JCE) policy file from the following Web site: |nttp://www.ibm.com/
[developerworks/java/jdk/security/index.htmi}

* KW RSA OAEP: http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgf1p.
The KW RSA OAEP algorithm is the default key algorithm method.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this algorithm. This algorithm appears in the list of supported key
transport algorithms when running with SDK Version 1.5. See more information at
[http://www.w3.0rg/2001/04/xmlenct#rsa-oaep-mgf1p]|

« KW RSA15: http://www.w3.0rg/2001/04/xmlenc#rsa-1_5

* KW TRIPLE DES: http://www.w3.0rg/2001/04/xmlenc#kw-tripledes

172 Securing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Note: For Web Services Secure Conversation, the WSSEncryption APl might specify addition
key-related information, such as the:
 algorithmName
* keyLength

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the
WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now
secured using Web services security.

Example

The following example provides sample WSS API code using WSSEncryption.setEncryptionMethod() and
WSSEncryption.setKeyEncryptionMethod)().

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate callback handler
X509GenerateCallbackHandTer callbackHandler = new
X509GenerateCallbackHandler(
"enc-sender.jceks",
"jceks" s
"storepass".toCharArray(),
Ilbobll .
null,
"CN=Bob, 0=IBM, C=US",
null);

// Generate the security token used for encryption
SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance
WSSEncryption enc = factory.newWSSEncryption(token);

// Set the data encryption method

// DEFAULT: WSSEncryption.AES128
enc.setEncryptionMethod (WSSEncryption.TRIPLE DES);

// Set the key encryption method

// DEFAULT: WSSEncryption.KW_RSA_OAEP
enc.setEncryptionMethod (WSSEncryption.KW_RSA15);

// Add the WSSEncryption to the WSSGenerationContext
gencont.add(enc);

// Generate the WS-Security header
gencont.process(msgcontext);

What to do next
Next, if you want to add a transform algorithm, review the WSSEncryptPart API process task.
Encryption methods:

For request generator binding settings, the encryption methods include specifying the data and key
encryption algorithms to use to encrypt the SOAP message. The WSS API for encryption (WSSEncryption)

Chapter 5. Web services 173

specifies the algorithm name and the matching algorithm uniform resource identifier (URI) for the data and
key encryption methods. If the data and key encryption algorithms are specified, only elements that are
encrypted with those algorithms are accepted.

Data encryption algorithms
The data encryption algorithm is used to encrypt parts of the SOAP message, including the body and the
signature. Data encryption algorithms specify the algorithm uniform resource identifier (URI) for each type

of data encryption algorithms.

The following pre-configured data encryption algorithms are supported:

Table 13. Data encryption algorithms

Data encryption algorithm name Algorithm URI

WSSEncryption.AES128 (the default value) A URI of data encryption algorithm, AES 128:
http://www.w3.0rg/2001/04/xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192:
http://www.w3.0rg/2001/04/xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256:
http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

WSSEncryption. TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES:
http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-CBC algorithms, you must download the unrestricted Java™
Cryptography Extension (JCE) policy files from the following Web site: |http://www.ibm.com/developerworks/|
liava/jdk/security/index.html|

The data encryption algorithm configured for encryption for the generator side must match the data
encryption algorithm that is configured for decryption for the consumer side.

Key encryption algorithms

This algorithm is used to encrypt and decrypt keys. This key information is used to specify the
configuration that is needed to generate the key for digital signature and encryption. The signing
information and encryption information configurations can share the key information. The key information
on the consumer side is used for specifying the information about the key that is used for validating the
digital signature in the received message or for decrypting the encrypted parts of the message. The
request generator is configured for the client.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with Web services endpoints using the policy
sets.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption
method. The following pre-configured key encryption algorithms are supported:

Table 14. Supported pre-configured key encryption algorithms
WSS API URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128:
http://www.w3.0rg/2001/04/xmlenc#kw-aes128

174 Securing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Table 14. Supported pre-configured key encryption algorithms (continued)
WSS API URI

WSSEncryption. KW_AES192 A URI of key encryption algorithm, key wrap AES 192:
http://www.w3.0rg/2001/04/xmlenc#kw-aes192

Note: Do not use the 192-bit key encryption algorithm if you want
your configured application to be in compliance with the Basic
Security Profile (BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256:
http://www.w3.0rg/2001/04/xmlenc#kw-aes256

WSSEncryption.KW_RSA_OAEP (the default A URI of key encryption algorithm, key wrap RSA OAEP:
value) http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5:
http://www.w3.0rg/2001/04/xmlenct#rsa-1_5

WSSEncryption.KW_TRIPLE_DES A URI of key encryption algorithm, key wrap TRIPLE DES:
http://www.w3.0rg/2001/04/xmlenc#kw-tripledes

For Secure Conversation, additional key-related information must be specified, such as:
« algorithmName
* keyLength

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest
algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of
the digest method:

* http://www.w3.0rg/2001/04/xmlenc#sha256

* http:// www.w3.0rg/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm
property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.0AEPparams.
The property value is the base 64-encoded value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only. On the
consumer side, these properties are read from the incoming SOAP message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the unrestricted
JCE iolici/ files from the following Web site: |http://www.ibm.com/developerworks/java/jdk/security/

index.html.

The key encryption algorithm for the generator must match the key decryption algorithm that is configured
for the consumer.

This example provides sample code for encryption to use the Triple DES for the data encryption method
and to use RSA1.5 for the key encryption method:

// get the message context
Object msgcontext = getMessageContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

Chapter 5. Web services 175

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

// generate callback handler
X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(

"enc-sender. jceks",
"jceks" s
"storepass".toCharArray(),
"bob",

null,

"CN=Bob, 0=IBM, C=US",
null);

// generate the security token used to the encryption
SecurityToken token = factory.newSecurityToken(X509Token.class,
callbackHandler);

// generate WSSEncryption instance to encrypt the SOAP body content
WSSEncryption enc = factory.newWSSEncryption(token);
enc.addEncryptPart (WSSEncryption.BODY_CONTENT);

// set the data encryption method
// DEFAULT: WSSEncryption.AES128
enc.setEncryptionMethod (WSSEncryption.TRIPLE DES);

// set the key encryption method
// DEFAULT: WSSEncryption.KW_RSA_OAEP
enc.setEncryptionMethod (WSSEncryption.KW_RSA15);

// add the WSSEncryption to the WSSGenerationContext
gencont.add(enc);

// generate the WS-Security header
gencont.process (msgcontext);

Adding encrypted parts using the WSSEncryptPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure encrypted parts for the request generator (client side)
bindings, use the WSSEncryptPart API to define and add to the listing of elements in the encrypted part.
WSSEncryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.encryption
package.

Before you begin

You can use the WSS APIs or configure policy sets using the administrative console to enable the
encrypted parts. To secure SOAP messages, use the WSS APIs to complete the following encryption
tasks, as needed:

» Configure encryption and choose the encryption methods using the WSSEncryption API.
» Configure the encrypted parts using the WSSEncryptpart API, as needed.

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted, and
which message parts to attach encrypted elements to. The encryption information on the generator side is
used for encrypting an outgoing SOAP message. The request generator is configured for the client.

The WSSEncryptPart API specifies information related to encrypted parts and sets the encrypted parts that
have been added for message confidentiality protection. Use the WSSEncryptPart to set the transform
method and to specify the part to which the transform method is to be applied. Sets the transform method
only if using SOAP with Attachments. The WSSEncryptPart is usually not needed except, in some case for
tasks such as setting the transform method.

176 Securing WebSphere applications

The encrypted parts and related information displayed in the following table are used to protect the

confidentiality of messages.

Table 15. Encrypted parts

Encrypted parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encrypted parts using keywords. The default encryption parts that you can
add using keywords are the BODY_CONTENT and SIGNATURE. WebSphere
Application Server supports using these keywords:
+ BODY_CONTENT
+ SIGNATURE

xpath Adds the encrypted part by using an XPath expression.

signature Adds the WSSSignature component as a target of the encrypted part.
WSSSignature is applicable only if the SOAP message contains a signature
element.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

For encrypted parts, certain default behaviors occur. The simplest way to use the WSSEncryptPart APl is
to use the default behavior. The WSSEncryptPart API provides defaults for specifying the transform
algorithm, setting objects as targets, specifying the encrypted parts, such as: the SOAP body content and

the signature.

The encryption default behaviors include:

Table 16. Encrypted part decisions

Encrypted part decisions

Default behavior

using keywords

Which SOAP message parts to encrypt | Specifies which keywords to use for the encrypted parts. WebSphere

Application Server sets the following SOAP message parts by default for
encryption:

* WSSEncryption.BODY_CONTENT
» WSSEncryption.SIGNATURE

Which transform method to add

WebSphere Application Server does not specify any transform method by
default. Specify a transform method only if using SOAP with Attachments.

1. To encrypt the SOAP message parts using the WSSEncryptPart API, first ensure that the application

server is installed.

2. The WSS API process using WSSEncryptPart follows these process steps:

~ @ a0 op

Uses WSSFactory.getinstance() to get the WSS API implementation instance.

Creates the WSSGenerationContext instance from the WSSFactory instance.

Creates the SecurityToken from WSSFactory to configure the encryption.

Creates WSSEncryption from the WSSFactory instance using SecurityToken.

Creates WSSEncryptPart from WSSFactory.

Adds the parts to be encrypted and to be applied with the transform in WSSEncryptPart.

WebSphere Application Server sets these encrypted parts by default for WSSEncryptPart: the

BODY_CONTENT and SIGNATURE. After you add other encrypted parts, the default values are no
longer valid. For example, if you call addEncryptPart(securityToken, false), only the security token is
encrypted, and not the signature and body content. So if you want to encrypt the security token, the
signature, and the body content, you must call addEncryptPart(securityToken, false),

Chapter 5. Web services 177

addEncryptPart(WSSEncryption.SIGNATURE), and
addEncryptPart(WSSEncrypyion.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSEncryptPart to WSSEncryption.

i. Adds WSSEncryption to WSSGenerationContext.

j- Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption of the message parts, a WSSException is provided. If
successful, the API calls the WSSGenerationContext.process(), the WS-Security header is generated, and
the SOAP message is now secured using Web services security.

What to do next

After enabling encrypted parts for the request generator (client side) binding, you must specify the same
parts to be decrypted for the response consumer (client side) bindings. Next, to configure decryption and
decrypted parts, use the WSS APIs or configure policy sets using the administrative console.

Configuring generator signing information to protect message integrity using the WSS APIs:

You can configure the signing information to protect message integrity for the request (client side)
generator binding. Signing information includes the signature and the signed parts. To keep the integrity of
the message, digital signatures are typically applied.

Before you begin

In addition to using a digital signature and configuring the signing information, the following tasks should
also be performed:

» Verify the signing information.
* Incorporate encryption.
» Attach security tokens.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying
a digital signature to a SOAP message. To configure the signing information to protect message integrity,
you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the
risk of data modification when you transmit data across a network.

Also, message integrity is provided by digitally signing the body, time stamp, and WS-Addressing headers
using the signature algorithm methods. The WSS APIs specify which algorithm is to be used to sign the
certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the signature
method. WebSphere Application Server supports several pre-configured request signing algorithm
methods.

You can use the following interfaces to configure Web services security and to protect SOAP message
integrity:
» Use the administrative console to configure policy sets for the signing information.

+ Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client).

Perform the following signing tasks, using the WSS APIs, to configure the signing information and to
protect message integrity for the generator binding.

178 Securing WebSphere applications

« [Configure the signing information using the WSSSignature API. Configure the signing information for the
generator binding using the WSSSignature API. Signing information is used to sign parts of a message
including the SOAP body, the time stamp, and the WS-Addressing headers. Both signing and encryption
can be applied to the same message parts, such as the SOAP body.

« |Add or change signed parts using the WSSSignPart AP

« [Configure the client for request signing methods using the WSSSignature or WSSSignPart APls| To
configure the client for request signing, choose the signing methods. The request signing methods
include the signature, the canonicalization, the digest, and the transform methods. Use the
WSSSignature API to configure the signature and canonicalization methods. Use the WSSSignPart API
to configure the digest and transform methods.

Results

The WSS APIs also specify the security token for the generator (client) binding and set the type of token
reference to protect message authenticity. By completing the steps in these tasks, you have configured
generator signing to protect the integrity of the SOAP message.

What to do next

Next, verify the consumer signing information by using the WSS APIs or by configuring policy sets using
the administrative console.

Configuring the signing information using the WSS APIs:

You can configure the signing information for the client-side request generator (sender) bindings. Signing
information is used to sign and validate parts of a message including the SOAP body, the timestamp
information, and the Username token. To configure the client for request signing, specify which message
parts to digitally sign when configuring the client.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,
and SHA1. XML signature defines many methods for describing key information and enables the definition
of a new method. Prior to completing these steps, familiarize yourself with [XML digital signature|for signing
and verifying digital signatures for digital content.

About this task

By including XML signature in SOAP messages, the following issues are realized: message integrity and
authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity
decreases the risk of data modification while the data is transmitted across the Internet. WebSphere
Application Server uses the signing information for the default generator to sign parts of the message,
such as the body, time stamp, and Username token.

For the signing information, you must specify the following:

* Which parts of the message are to be signed.

* The key information that is referenced by the key information for the signing keys.
* The signing algorithms.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

Chapter 5. Web services 179

The WSSSignature API configures the following parts as signature parts:

Table 17. Pre-configured signature parts

Security token object This object authenticates the client. If this option is specified, then the message
is signed. You can digitally sign the message using a security token if a login
configuration authentication method is selected.

WSSTimestamp object This object adds a time stamp to a message. The time stamp determines if the
message is valid based on the time that the message is sent and then received.

WSSSignature Part object This object adds the signature parts to a message.

SOAP header and the QName as | This signature part adds the header, specified by QName, as a verification part.
a target

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the message
are to be signed. WebSphere Application Server supports the use of the following keywords:

Table 18. Supported signature keywords

Keyword References

ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.

BODY The SOAP message body. The body is the user data portion of the message.
TIMESTAMP The creation and expiration timestamp information.

The Web Services Security APl (WSS API) are used to configure the signing information for the request
generator (client side) section of the bindings file. To configure the signing information on the client side,
use the WSS APIs or configure policy sets for signing using the administrative console.

If configuring using the WSS APIs, the WSSSignature and WSSSignPart APIs complete the following steps
to specify which message parts to digitally sign when configuring the client for request generator signing:

1. The WSSSignature API adds the required parts of the SOAP message to digitally sign. Either a
keyword or an XPath expression can be used to specify the required encryption parts.

2. The WSSSignature API sets the signature method algorithm. The default signature method is
RSA_SHA1. WebSphere Application Server supports the following pre-configured algorithms:
» RSA SHA1: |nttp://www.w3.0rg/2000/09/xmldsig#rsa-sha1|
« HMAC SHA1http://www.w3.0rg/2000/09/xmldsig#hmac-shai|
WebSphere Application Server does not support the following algorithm for DSA-SHA1:
http://www.w3.0rg/2000/09/xmldsig#dsa-shal. You cannot use the DSA-SHA1 algorithm if you want to
be compliant with the Basic Security Profile (BSP).
Any ds:SignatureMethod/ @ Algorithm element in a signature is based on a symmetric key and must
have a value of RSA-SHA1 or HMAC-SHA1.
The algorithm that is specified for the request generator configuration must match the algorithm that
is specified for the request consumer configuration.

3. The WSSSignature API sets the canonicalization method. The default signature method is
EXC_C14N. WebSphere Application Server supports the following pre-configured algorithms:
« The URI of the exclusive canonicalization algorithm, EXC_C14N: http://www.w3.0rg/2001/10/xml-

exc-c14n#.

* The URI of the inclusive canonicalization algorithm, C14N: http://www.w3.0rg/2001/10/xml-c14n#.
The canonicalization algorithm that you specify for the generator must match the algorithm for the
consumer.

4. The WSSSignature APl adds a security token. The API adds information about the security token that
is to be used for the signature, such as:

180 Securing WebSphere applications

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

5.

10.

* The class for security token.
* The callback handler
* The name of the JAAS login configuration.

The WSSSignature API sets the type of security token and sets the type of token reference.
WebSphere Application Server supports the following pre-configured token references:

» SecurityToken.REF_STR

Represents the security token reference as a token reference type.
» SecurityToken.REF_KEYID

Represents the key identifier reference as a token reference type.
« SecurityToken.REF_EMBEDDED

Represents the embedded reference as a token reference type.
« SecurityToken.REF_THUMBPRINT

Represents the thumbprint reference as a token reference type.

If SecurityToken.REF_KEYID is set as the type of token reference, the WSSSignature API sets the
key information signature type and configures the key information that is referenced by the key
information references. WebSphere Application Server supports the following:

« Specifying that the KeyInfo element is not signed.
» Specifying that the entire <Keylnfo> element is signed.
» Specifying that the child elements <Keyinfochildelements> of the <KeyInfo> element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server specifies
that the entire <KeyInfo> element is signed, by default.

If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.04#STR-Transform as the transform algorithm in a
subsequent step, WebSphere Application Server also signs the referenced token.

The key information signature type for the generator must match the signature type for the consumer.

The WSSSignature API specifies whether to require signature confirmation. The OASIS Web Services
Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If you are
using WS-Security Version 1.0, this function is not available.

The signature confirmation value is stored in order to validate the signature confirmation with it after
the receiving message is returned. This method is called if the response message is expected to
attach the signature confirmation into the SOAP message.

The WSSSignPart API specifies the part reference. The part reference specifies which parts of the
message to digitally sign.

The part reference refers to the message part that is digitally signed. The part attribute refers to the
name of the <Integrity> element when the <PartReference> element is specified for the signature.
You can specify multiple <PartReference> elements within the <Signinginfo> element. The
<PartReference> element has two child elements when it is specified for the signature verification:
<DigestTransform> and <Transform>.

The WSSSignPart API specifies the digest method algorithm. The digest method algorithm specified
within the <DigestMethod> element is used in the <Signinglnfo> element.

WebSphere Application Server supports the following pre-configured digest algorithms:
* hitp://www.w3.0rg/2000/09/xmldsig#sha1

e hitp://www.w3.0rg/2001/04/xmlenc#sha256
 http://www.w3.0rg/2001/04/xmlenc#sha512

The WSSSignPart API specifies the transform algorithm. The transform algorithm is that is specified
within the <Transform> element and specifies the transform algorithm for the signature. WebSphere
Application Server supports the following pre-configured transform algorithms:

* hitp://www.w3.0rg/2001/10/xml-exc-c14n#

Chapter 5. Web services 181

* http://www.w3.0rg/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want to be compliant with the Basic Security Profile
(BSP). Instead use http://www.w3.0rg/2002/06/xmldsig-filter2 to ensure compliance.

* hitp://www.w3.0rg/2002/06/xmldsig-filter2

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.04#STR-
Transform

* hittp://www.w3.0rg/2002/07/decrypt#XML
* http://www.w3.0rg/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that you
select for the consumer.

Note: If both of the following conditions are true, WebSphere Application Server signs the referenced
token:

* You previously selected the Keyinfo or the Keyinfochildelements option

* You select http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-message-
security-1.0#STR-Transform as the transform algorithm.

11. If you configure the client and server signing information correctly, but receive a Soap body not
signed error when running the client, you might need to configure the actor. Configure policy sets
using the administrative console to configure the same actor strings for the Web service on the
server, which processes the request and sends the response back.

The actor information on both the client and server must refer to the same exact string. When the
actor fields on the client and server match, the request or response is acted upon instead of being
forwarded downstream. The actor might be different when you have Web services acting as a
gateway to other Web services. However, in all other cases, make sure that the actor information
matches on the client and server. When Web services are acting as a gateway and they do not have
the same actor configured as the request passing through the gateway, Web services do not process
the message from a client. Instead, these Web services send the request downstream. The
downstream process that contains the correct actor string processes the request. The same situation
occurs for the response. Therefore, it is important that you verify that the appropriate client and server
actor fields are synchronized.

Results

After the WSSSignature and WSSSignPart APIs complete these steps, the signing information is
configured for the generator sections of the bindings files.

Example

The following example shows WSS API sample code to configure the signature, to generate the callback
handler, and to specify the X.509 token type as the security token:

WSSFactory factory = WSSFactory.getInstance();
// Instantiate a generation context
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler and specify the X.509 token
X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();
SecurityToken token = factory.newSecurityToken(X509Token.class,

callbackHandler);

// Set the signature information

WSSSignature sig = factory.newWSSSignature(token);

// Add the header using QName
sig.addSignHeader(new QName("http://www.w3.0rg/2005/08/addressing", "To"));
sig.addSignHeader (new QName("http://www.w3.0rg/2005/08/addressing", "MessageID"));
sig.addSignHeader(new QName("http://www.w3.0rg/2005/08/addressing", "Action"));

// Apply the signature

182 Securing WebSphere applications

gencont.add(sig);

// Secure the message
gencont.process(msgctx);

What to do next

You must configure similar signature information for the client-side request consumer (receiver) bindings
by completing the following verification tasks:

» Verify the signature
» Choose the signature algorithm methods.
* Change or add signed parts, as needed.

If signature verification is already configured, configure the encryption and decryption information, or
configure the consumer and generator tokens.

Configuring the signature information using the WSSSignature API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
services security APls (WSS API). To configure the signature information for the generator binding sections
for the client-side request, use the WSSSignature APl. The WSSSignature API is part of the
com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console
to enable the signing information. To secure SOAP messages, you must complete the following signature
tasks:

» Configure the signature information.
* Choose the signature methods.
* Add or change signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHA1.

XML signature defines many methods for describing key information and enables the definition of a new
method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be
represented in various ways within serialized XML documents. The C14N process is used to canonicalize
XML information. Select an appropriate C14N algorithm because the information that is canonicalized
depends on this algorithm.

The signing information specifies the integrity constraints that are applied to generated messages. The
constraints include specifying which message parts within the generated message must be digitally signed,
and the message parts to attach digitally signed Nonce and timestamp elements to. The following
signature and related signature part information are configured:

Chapter 5. Web services 183

Table 19. signature parts information

signature parts

Description

keyword Adds a signature part using keywords. Use the following keywords for the
signature parts:
» ADDRESSING_HEADERS
+ BODY
* TIMESTAMP
The WS-Addressing headers are not encrypted but can be signed.
xpath Adds a signature part by using an XPath expression.
part Adds a WSSSignPart object as a target of the signature part.
timestamp Adds a WSSTimestamp object as a target of the signature part. When
specified, the timestamp information also specifies when the message is
generated and when it expires.
header Adds the header, specified by QName, as a target of the signature part.
securityToken Adds a SecurityToken object as a target of the signature part.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignature API is
to use the default behavior (see the example code). The default values are defined by the WSS API for
the signing method, the canonicalization method, the security token references, and the signature parts.

Table 20. Signature default behaviors

Signature decisions

Default behavior

Which keywords to use

Sets the keywords. WebSphere Application Server supports the following
keywords by default:

* ADDRESSING_HEADERS
+ BODY
* TIMESTAMP

Which signature method to use

Sets the signature algorithm. The default signature method is RSA SHA1.

WebSphere Application Server supports the following pre-configured

signature methods:

» WSSSignature.RSA_SHA1: http://www.w3.0rg/2000/09/xmldsig#rsa-
shai

» WSSSignature. HMAC_SHA1: http://www.w3.0rg/2000/09/xmldsig#hmac-
shai

The DSA-SHAT1 digital signature method (http://www.w3.0rg/2000/09/
xmldsig#dsa-sha1) is not supported.

Which canonicalization method to use

Sets the canonicalization algorithm. The default canonicalization method is
EXC C14N. WebSphere Application Server supports the following
pre-configured canonicalization methods:

» WSSSignature.EXC_C14N; http://www.w3.0rg/2001/10/xml-exc-c14n#
» WSSSignature.C14N: http://www.w3.0rg/2001/10/xml-c14n#

Whether signature confirmation is
required

Sets whether to require signature confirmation. The default value is false.
Signature confirmation is defined in the OASIS Web Services Security
Version 1.1 specification. If required, the value of your signature
confirmation is stored in order to use it to validate the signature
confirmation after receiving back the message that generated the signature
confirmation in the response message. This method is for the requestor
side.

184 Securing WebSphere applications

Table 20. Signature default behaviors (continued)

Signature decisions Default behavior

Which security token to use Sets the SecurityToken. The token type specifies which type of token to
use for signing and validating messages. The X.509 token is the default
token type.

WebSphere Application Server provides the following pre-configured
consumer token types:

» Derived Key Token
» X509 tokens

You can also create custom token types, as needed.

Which token reference to set Sets the refType. SecurityToken.REF_STR is the default value for the type
of token reference. WebSphere Application Server supports these
pre-configured token references types:

» SecurityToken.REF_STR

» SecurityToken.REF_KEYID

» SecurityToken.REF_EMBEDDED
» SecurityToken.REF_THUMBPRINT

If WSSSignature.requireSignatureConfirmation() is called, then the WSSSignature API expects that the
response message will include the signature confirmation.

1. To configure the signing information in a SOAP message by using the WSS API, first ensure that the
application server is installed.

2. Use the WSSSignature API to sign the message parts and specify the algorithms in a SOAP message.
The WSS API process for signature follows these process steps:

a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.
WSSGenerationContext must be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken. The default
behavior of WSSSignature is to sign these signature parts: BODY, ADDRESSING_HEADERS, and
TIMESTAMP.

e. Adds the part to be signed, if the default part is not appropriate. If the digest method or transform
method is changed, creates WSSSignPart and add it to WSSSignature.

f. Creates WSSSignaturePart to WSSSignature. Calls the requiredSignatureConfirmation() method, if
the signature confirmation is to be applied.

g. Sets the canonicalization method, if the default is not appropriate.

h. Sets the signature method, if the default is not appropriate.

i. Sets the token reference, if the default is not appropriate.

j- Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results
You have completed the steps to configure the signature for the generator section of the bindings. If there

is an error condition when signing the message parts, a WSSException is provided. If successful, the
WSSGenerationContext.process() is called, and Web Services Security is applied to the SOAP message.

Chapter 5. Web services 185

Example

The following example provides sample code that uses methods that are defined in the WSSignature API.

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler
X509GenerateCallbackHandler callbackHandler = new

X509GenerateCallbackHandler(
"dsig-sender.ks",
"ij",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, 0=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token to be used for the signature (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class,
callbackHandler);

// Generate the WSSSignature instance (step: d)
WSSSignature sig = factory.newWSSSignature(token);

// Set the part to be signed (step: e)
// DEFAULT: WSSSignature.BODY, WSSSignature.ADDRESSING_HEADERS,
// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP Header specified by QName (step: e)
sig.addSignHeader (new
QName("http://www.w3.0rg/2005/08/addressing",
"MessageID"));

// Set the part specified by the keyword (step: e)
sig.addSignPart (WSSSignature.BODY);

// Set the part specified by SecurityToken (step: e)
UNTGenerateCallbackHandTer untCallbackHandler = new
UNTGenerateCallbackHandler("Chris", "sirhC");
SecurityToken unt = factory.newSecurityToken(UsernameToken.class,
untCallbackHandler);
sig.addSignPart (unt);

// Set the part specified by WSSSignPart (step: e)
WSSSignPart sigPart = factory.newWSSSignPart();
sigPart.setSignPart (WSSSignature.TIMESTAMP) ;
sigPart.setDigestMethod (WSSSignPart.SHA256) ;
sig.addSignPart(sigPart);

// Set the part specified by WSSTimestamp (step: e)
WSSTimestamp timestamp = factory.newWSSTimestamp();
sig.addSignPart (timestamp);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();
sh.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/"
and Tocal-name()="'Envelope']");
sb.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/'
and Tocal-name()="'Body']");
sh.append("/*[namespace-uri()="http://xmlsoap.org/Ping'
and local-name()='Ping']");
sbh.append("/*[namespace-uri()="http://xmlsoap.org/Ping’
and Tlocal-name()='Text']");
sig.addSignPartByXPath(sh.toString());

186 Securing WebSphere applications

// Set to apply the signature confirmation (step: f)
sig.requireSignatureConfirmation();

// Set the canonicalization method (step: g)
// DEFAULT: WSSSignature.EXC_C14N
sig.setCanonicalizationMethod (WSSSignature.C14N);

// Set the signature method (step: h)
// DEFAULT: WSSSignature.RSA_SHA1
sig.setSignatureMethod (WSSSignature.HMAC_SHAL);

// Set the token reference (step: i)
// DEFAULT: SecurityToken.REF_STR
sig.setTokenReference(SecurityToken.REF_KEYID);

// Add the WSSSignature to WSSGenerationContext (step: j)
gencont.add(sig);

// Generate the WS-Security header (step: k)
gencont.process (msgctx) ;

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for
signing.

What to do next

Next, chose the algorithm methods if you want a method that is different from the default values. If the
algorithm methods do not need to be changed, next use the WSSVerification API to verify the signature
and specify the algorithm methods in the consumer section of the binding. Note that the WSSVerification
APl is only supported on the response consumer (client side).

Adding signed parts using the WSSSignPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure parts to be signed for the request generator (client side)
bindings, use the WSSSignPart API to protect the integrity of messages and to configure the digest and
transform algorithm methods. The WSSSignPart API is part of the
com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console
to configure the signing information. To secure SOAP messages using the signing information, you must
complete one of the following tasks:

» Configure the signature information
» Configure signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing digest and transform algorithms (for example,

SHA1 or TRANSFORM_EXC_C14N).

The signing information specifies the integrity constraints that are applied to generated messages. The
signed parts are used to protect the integrity of messages. You can specify the signed parts to add for
message integrity protection.

The following table shows the required signed parts when the digital signature security constraint (integrity)

is defined:

Chapter 5. Web services 187

Table 21. Signed parts information

Signed parts

Description

keyword

Adds signed parts using keywords. WebSphere Application Server
supports the following keywords for signed parts:

- BODY
» ADDRESSING_HEADERS
* TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath

Adds the required signed parts by using an XPath expression.

header

Adds the header, specified by QName, as a signed part.

timestamp

Adds a WSSTimestamp object as a signed part. If specified, the
timestamp information specifies when the message is generated and when
it expires.

Different message parts can be specified in the message protection for request on the generator side.
WSSSignPart allows for adding a transform algorithm, setting a digest method, setting objects as targets,
specifying whether an element, and the signed parts, such as: the SOAP body, the WS-Addressing

header, and timestamp information.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignPart API is
to use the default behavior (see the example code). The signed parts default behaviors include:

Signature decisions

Default behavior

Which SOAP message parts to sign

WebSphere Application Server supports the following SOAP message
parts to be signed and used for message protection:

» WSSSignature.BODY
» WSSSignature. ADDRESSING_HEADERS
» WSSSignature. TIMESTAMP

Which digest method to use

Sets the digest algorithm method. The digest method algorithm that is
specified within the <DigestMethod> element is used in the <Signinginfo>
element.

WebSphere Application Server supports the following pre-configured digest
methods:

» WSSSignPart.SHA1 (the default value): http://www.w3.0rg/2000/09/
xmldsig#sha1

» WSSSignPart.SHA256: http://www.w3.0rg/2001/04/xmlenc#sha256
» WSSSignPart.SHA512: http://www.w3.0rg/2001/04/xmlenc#sha512

188 Securing WebSphere applications

Signature decisions Default behavior

Which transform algorithms to use Adds the transform method. The transform algorithm is specified within the
<Transform> element and specifies the transform algorithm for the
signature.

WebSphere Application Server supports the following pre-configured
transform algorithms:

» WSSSignPart. TRANSFORM_EXC_C14N (the default value):
http://www.w3.0rg/2001/10/xml-exc-c14n#

* WSSSignPart. TRANSFORM_XPATH2_FILTER: http://www.w3.0rg/2002/
06/xmldsig-filter2
Use this transform method to ensure compliance with the Basic Security
Profile (BSP).

* WSSSignPart. TRANSFORM_STRT10: http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

+ WSSSignPart. TRANSFORM_ENVELOPED_SIGNATURE:
http://www.w3.0rg/2000/09/xmldsig#enveloped-signature

1. To enable Web Service Security by using the WSS API (WSSSignPart), first ensure that the application
server is installed.

2. Use the WSSSignPart API to sign the message parts and specify the algorithms in a SOAP message.
The WSS API process for signed parts follows these process steps:

a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.
Creates the WSSGenerationContext instance from the WSSFactory instance.
Creates the SecurityToken from WSSFactory to configure the key for signing.
Creates WSSSignature from the WSSFactory instance using the SecurityToken.
Creates WSSSignPart from the WSSFactory instance.

Sets the part to be signed and the digest method or transform method specified by step g or step h
if the default is not appropriate.

Sets the digest method if the default is not appropriate.
h. Sets the transform method if the default is not appropriate.

i. Adds WSSSignPart to WSSSignature. After any WSSSignPart is set to WSSSignature, the default
parts to be signed, which are specified in WSSSignature, are ignored.

j- Adds WSSSignature to WSSGenerationContext.
k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

~0ooo0v

@

Results

You have completed the steps to configure the signed parts for the generator section of the bindings files.
If there is an error condition, a WSSException is provided. If successful, the
WSSGenerationContext.process() is called, and Web services security is applied to the SOAP message.

Example

The following example provides sample code that uses all of methods that are defined in the WSSSignPart
API:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate WSSGenerationContext instance (step: b)
WSSGenerationContext gencont = factory.newWSSGenerationContext();

Chapter 5. Web services 189

// Generate callback handler
X509GenerateCallbackHandTer callbackHandler = new
X509GenerateCallbackHandler

"dsig-sender.ks",

Iljksll’

"client".toCharArray(),

"soaprequester",

"client".toCharArray(),

"CN=SOAPRequester, OU=TRL, 0=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token used to the signature (step: c)
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

// Generate WSSSignature instance (step: d)
WSSSignature sig = factory.newWSSSignature(token);

// Set the part specified by WSSSignPart (step: e)
WSSSignPart sigPart = factory.newWSSSignPart();

// Set the part specified by WSSSignPart (step: f)
sigPart.setSignPart (WSSSignature.BODY);

// Set the digest method specified by WSSSignPart (step: g)
sigPart.setDigestMethod (WSSSignPart.SHA256) ;

// Set the transform method specified by WSSSignPart (step: h)
sigPart.setTransformMethod (WSSSignPart.TRANSFORM_STRT10);

// Add the part specified by WSSSignPart (step: i)
sig.addSignPart(sigPart);

// Add the WSSSignature to the WSSGenerationContext (step: j)
gencont.add(sig);

// Generate the WS-Security header (step: k)
gencont.process (msgcontext);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for
signing.

What to do next

Use the WSSVerifyPart API or configure policy sets using the administrative console to verify the signed
parts on the consumer side.

Configuring the client for request signing methods:

Use the WSSSignature and WSSSignPart APIs to choose the signing methods. The request signing
methods include the signature, canonicalization, digest, and transform methods.

Before you begin

First, you must have specified which parts of the message sent by the client must be digitally signed using
the WSS APIs or configuring policy sets using the administrative console.

About this task

The following table describes the purpose of this information. Some of these definitions are based on the
XML-Signature specification, which is located at the following Web site |http://www.w3.org/TR/xmldsig-core}

190 Securing WebSphere applications

http://www.w3.org/TR/xmldsig-core

Table 22. Signing methods

Name of method Description

Canonicalization algorithm Canonicalizes the <SignedInfo> element before the information is
digested as part of the signature operation.

Signature algorithm Calculates the signature value of the canonicalized <SignedInfo>
element. The algorithm selected for the client request sender
configuration must match the algorithm selected in the server request
receiver configuration.

Transform method Transforms the parts to be signed before the information is digested as
part of the signature operation.

Digest method Calculates the digest value of the transformed parts. The algorithm
selected for the client request sender configuration must match the
algorithms selected in the server request receiver configuration.

You can use the WSS APIs or configure policy sets using the administrative console to configure the
signing algorithm methods. If using the WSS APIs, use the WSSSignature and WSSSignPart APIs to
specify which message parts to digitally sign when configuring the client for request signing.

The WSSSignature and WSSSignPart APIs complete the following steps to configure the signature and
signed part algorithm methods:

1. For the generator binding, the WSSSignature API specifies the signature method. WebSphere
Application Server supports the following pre-configured signature methods:

» WSSSignature.RSA_SHAT1 (the default value): http://www.w3.0rg/2000/09/xmldsig#rsa-sha1l

* WSSSignature. HMAC_SHA1: http://www.w3.0rg/2000/09/xmldsig#hmac-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 digital signature
method, http://www.w3.0rg/2000/09/xmldsig#dsa-shai.

2. For the generator binding, the WSSSignature API specifies the canonicalization method. WebSphere
Application Server supports the following pre-configured canonicalization algorithms:

* WSSSignature.EXC_C14N (the default value): The exclusive canonicalization algorithm,
http://www.w3.0rg/2001/10/xml-exc-c14n#

* WSSSignature.C14N: The inclusive canonicalization algorithm, http:/www.w3.0rg/2001/10/xml-c14n#

3. For the generator binding, the WSSSignPart API specifies the digest method. WebSphere Application
Server supports the following pre-configured digest methods:

* WSSSignPart.SHA1 (the default value): http://www.w3.0rg/2000/09/xmldsig#sha1
* WSSSignPart.SHA256: http://www.w3.0rg/2001/04/xmlenc#sha256
« WSSSignPart.SHA512: http://www.w3.0rg/2001/04/xmlenc#sha512

4. For the generator binding, the WSSSignPart API specifies the transform method. WebSphere
Application Server supports the following pre-configured transform algorithms:

* WSSSignPart. TRANSFORM_EXC_C14N (the default value): http://www.w3.0rg/2001/10/xml-exc-
cldn#

* WSSSignPart. TRANSFORM_XPATH2_FILTER: http://www.w3.0rg/2002/06/xmldsig-filter2

* WSSSignPart. TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
soap-message-security-1.0#STR-Transform

» WSSSignPart. TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:
* http://www.w3.0rg/TR/1999/REC-xpath-19991116
* http://www.w3.0rg/2002/07/decrypt#XML

Chapter 5. Web services 191

Results

Using the WSS APIs, you have specified which algorithm methods are used to digitally sign a message
when the client sends a message to a server.

Example

The following example is sample code for specifying the signature information, HMAC_SHA1 as signature
method, C14N as a canonicalizaion method, SHA256 as a digest method, and EXC_C14N and
TRANSFORM_STRT10 as the transform methods:

//get the message context
Object msgcontext = getMessageContext();

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(
"dsig-sender.ks",
"ij",
"client".toCharArray(),
"soaprequester",
"client".toCharArray(),
"CN=SOAPRequester, OU=TRL, 0=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the canonicalization method
// DEFAULT: WSSSignature.EXC_C14N
sig.setCanonicalizationMethod (WSSSignature.C14N);

//set the signature method
// DEFAULT: WSSSignature.RSA_SHAL
sig.setSignatureMethod (WSSSignature.HMAC_SHA1);

//set the part specified by WSSSignPart
WSSSignPart sigPart = factory.newWSSSignPart();

//set the digest method
// DEFAULT: WSSSignPart.SHA1
sigPart.setDigestMethod (WSSSignPart.SHA256) ;

//add the transform method

// DEFAULT: WSSSignPart.TRANSFORM_EXC_C14N
sigPart.addTransformMethod (WSSSignPart.TRANSFORM_EXC_C14N);
sigPart.addTransformMethod (WSSSignPart.TRANSFORM_STRT10);

// add the WSSSignPart to the WSSSignature
sig.addSignPart(sigPart);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

192 Securing WebSphere applications

What to do next

After you configure the client to digitally sign the message and to choose the algorithm methods, you must
configure the server to verify the digital signature for request signing and to choose the algorithm methods.

Configure policy sets using the administrative console to configure the signature verification information
and methods on the server.

Digital signing methods using the WSSSignature API:

You can configure the signing information for the generator binding using the WSS API. To configure the
client for request signing, choose the digital signing methods. The algorithm methods include the signing
and canonicalization methods.

You must configure generator signing information to protect message integrity by digitally signing SOAP
messages. Integrity refers to digital signature while confidentiality refers to encryption. Integrity decreases
the risk of data modification when you transmit data across a network.

After you have specified which message parts to digitally sign, you must specify which method is used to
digitally sign the message.

Methods

Methods that are used for the signing information include the:

Signature method
Sets the signature algorithm method.

Canonicalization method
Sets the canonicalization algorithm method.

Signature algorithms

The signature algorithms specify the algorithm that is used to sign the certificate. The signature algorithms
specify the Uniform Resource Identifiers (URI) of the signature method. WebSphere Application Server
supports the following pre-configured algorithms:

Table 23. Signature algorithms

Algorithm Description

WSSSignature. HMAC_SHA1 A URI of the signature algorithm, HMAC:
http:// www.w3.0rg/2000/09/xmldsig#hmac-sha1

WSSSignature.RSA_SHAT1 (the default value) A URI of the signature algorithm, RSA:
http://www.w3.0rg/2000/09/xmldsig#rsa-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 algorithm,
http://www.w3.0rg/2000/09/xmldsig#dsa-sha1

The signing algorithm that is specified for the request generator configuration must match the algorithm
that is specified for the request consumer configuration.

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization
method. WebSphere Application Server supports the following pre-configured algorithms:

Chapter 5. Web services 193

Table 24. Signature canonicalization algorithms

Algorithm Description

WSSSignature.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm
EXC_C14N: http://www.w3.0rg/2001/10/xml-exc-c14n#

WSSSignature.C14N A URI of the inclusive canonicalization algorithm, C14N:
http://www.w3.0rg/2001/10/xml-c14n#

The canonicalization algorithm that is specified for the request generator configuration must match the
algorithm that is specified for the request consumer configuration.

The following example provides sample WSS API code that specifies the HMAC_SHA1 as a signature
method and C14n as a canonicalization method:

//generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandTer callbackHandler = new
X509GenerateCallbackHandler(

"dsig-sender.ks",

"ij",

"client".toCharArray(),

"soaprequester",

"client".toCharArray(),

"CN=SOAPRequester, OU=TRL, 0=IBM, ST=Kanagawa, C=JP",

null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class,
callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the canonicalization method
// DEFAULT: WSSSignature.EXC C14N
sig.setCanonicalizationMethod (WSSSignature.C14N);

//set the signature method
// DEFAULT: WSSSignature.RSA_SHA1
sig.setSignatureMethod (WSSSignature.HMAC_SHAL);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process (msgcontext);

Signed parts methods using the WSSSignPart API:

You can configure the signed parts information for the generator binding using the WSS API. The
algorithms include the digest and transform methods.

You can protect message integrity by configuring signed parts and key information. Integrity refers to

digital signature while confidentiality refers to encryption. Integrity decreases the risk of data modification
when you transmit data across a network.

194 Securing WebSphere applications

Methods

Methods that are used for the signed parts include the:

Digest method
Sets the digest algorithm method.

Transform algorithm
Sets the transform algorithm method.

Digest algorithms

The digest method algorithm specified within the element is used in the element. WebSphere Application
Server supports the following pre-configured algorithms:

Table 25. Signed parts digest methods

Digest method Description

WSSSignPart.SHA1 (the default value) A URI of the digest algorithm, SHA1:
http://www.w3.0rg/2000/09/xmldsig#sha1

WSSSignPart. SHA256 A URI of the digest algorithm, SHA256:

http://www.w3.0rg/2001/04/xmlenc#sha256

WSSSignPart.SHA512 A URI of the digest algorithm, SHA256:
http://www.w3.0rg/2001/04/xmlenc#sha512

Transform algorithms

The transform method algorithm specified within the element is used in the element. WebSphere
Application Server supports the following pre-configured algorithms:
Table 26. Signed parts transform methods

Digest method Description

WSSSignPart. TRANSFORM_ENVELOPED_SIGNATURE | A URI of the transform algorithm, enveloped signature:
http://www.w3.0rg/2000/09/xmldsig#enveloped-signature

WSSSignPart. TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform:
http:/docs.oasis-open.org/wss/2004/01/o0asis-200401-

wss-soap-message-security-1.04STR-Transform

WSSSignPart. TRANSFORM_EXC_C14N (the default A URI of the transform algorithm, Exc-C14N:
value) http://www.w3.0rg/2001/10/xml-exc-c14n#
WSSSignPart. TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter:

http://www.w3.0rg/2002/06/xmldsig-filter2

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm
for the signed part.

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:
* http:// www.w3.0rg/TR/1999/REC-xpath-19991116
 http://www.w3.0rg/2002/07/decrypt#XML

The following example provides sample WSS API code for specifying the signature and signed parts,
setting the signing key and adding the STR-Transform transform algorithm as signed parts:

//get the message context
Object msgcontext = getMessageContext();

//generate WSSFactory instance

Chapter 5. Web services 195

WSSFactory factory = WSSFactory.getInstance();

//generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

//generate callback handler
X509GenerateCallbackHandler callbackHandler = new
X509GenerateCallbackHandler(

"dsig-sender.ks",

"ij",

"client".toCharArray(),

"soaprequester",

"client".toCharArray(),

"CN=SOAPRequester, OU=TRL, 0=IBM, ST=Kanagawa, C=JP",
null);

//generate the security token used to the signature
SecurityToken token = factory.newSecurityToken(X509Token.class,
callbackHandler);

//generate WSSSignature instance
WSSSignature sig = factory.newWSSSignature(token);

//set the part specified by WSSSignPart
WSSSignPart sigPart = factory.newWSSSignPart();

//set the part specified by WSSSignPart
sigPart.setSignPart (WSSSignature.BODY);

//set the digest method specified by WSSSignPart
sigPart.setDigestMethod (WSSSignPart.SHA256) ;

//set the transform method specified by WSSSignPart
sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10) ;

//set the part specified by WSSSignPart
sig.addSignPart(sigPart);

//add the WSSSignature to the WSSGenerationContext
gencont.add(sig);

//generate the WS-Security header
gencont.process(msgcontext);

Attaching the generator token using WSS APlIs to protect message authenticity:

When you specify the token generator, the information is used on the generator side to generate the
security token.

Before you begin

The token processing and pluggable token architecture in the Web Service Security run time reuses the
same security token interface and Java Authentication and Authorization Service (JAAS) Login Module
from the Web Services Security APIs (WSS API). The same implementation of token creation and
validation can be used in both the WSS API and the WSS SPI in the Web Service Security run time.

Note: The com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface is not used with JAX-WS
Web services. If you are using JAX-RPC Web services, this interface is still valid.

Note that the key name (KeyName) element is not supported in the application server because there is no

KeyName policy assertion defined in the current OASIS Web Services Security draft specification. For
similar reasons, a SAML token is not supported out of the box.

196 Securing WebSphere applications

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible
for creating the security token on the generator side and validating (authenticating) the security token on
the consumer side.

For example, on the generator side, the Username token is created by the JAAS LoginModule and using
the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username
SecurityToken object and passes it to the Web services security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for
validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the
Web services security run time to the LoginModule. After the token is authenticated, a Username
SecurityToken object is created and passed it to the Web Service Security run time.

Note: WebSphere Application Server does not support a stackable login module with the WebSphere
Application Server default login module implementation, meaning adding the login module before or
after the WebSphere Application Server login module implementation. If you want to stack the login
module implementations, you must develop the required login modules because there is no default
implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server
includes support for these classes:

» Security token (SecurityTokenImpl)
* Binary security token (BinarySecurityTokenlmpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security
tokens:

* Derived key token

» Security context token (SCT)
* Username token

* LTPA token propagation

* LTPA token

* X509PKCS?7 token

* X509PKIPath token

* X509v3 token

» Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message
authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS APl and WSS SPI are only supported on the client. To specify the security token type on the
generator side, you can also configure policy sets using the administrative console. You can also use the
WSS APIs or policy sets for matching consumer security tokens.

The default Login Module and Callback implementations are designed to be used as a pair, meaning both
a generator and a consumer part. To use the default implementations, select the appropriate generator
and consumer security token in a pair. For example, select system.wss.generate.x509 in the token
generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the generator-side security token, use the appropriate pre-configured token generator
interface from the WSS APIs to complete the following token configuration process steps:

1. Generate the wssFactory instance.

Chapter 5. Web services 197

2. Generate the wssGenerationContext instance.

The WSSGenerationContext interface stores the components for generating Web Services Security
(WS-Security), such as the signing and encryption information, the security token, and the time
stamp. When the generate() method is called, all of these components are generated.

3. Create the generator-side components, such as the WSSSignature and the WSSEncryption objects.

4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java
Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS
configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not
remove the predefined system or application login configurations. However, within these
configurations, you can add module class names and specify the order in which WebSphere
Application Server loads each module.

5. Specifiy a token generator class name. The token generator class name specifies the required
information to generate the SecurityToken. The Username token, the X.509 tokens, and the LTPA
tokens are used by default for message authenticity.

6. Specifiy the settings for the callback handler by specifying a callback handler class name and also
specifies the callback handler keys. This class name is the name of the callback handler
implementation class that is used for the plug-in to the security token framework.

The callback handler implementation obtains the required security token and passes it to the token
generator. The token generator inserts the security token in the Web services security header within
the SOAP message. Also, the token generator is a plug-in point for the pluggable security token
framework. Service providers can provide their own implementation, but the implementation must use
the WSSGenerationContext interface.

WebSphere Application Server provides the following default callback handler implementations for the
generator side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback
This class is a callback for handling the name-value pair in elements in the Web Services
Security (WS-Security) configuration XMl files.

com.ibm.websphere.wssecurity.callbackhandler.UNTGUIPromptCallbackHandler
This class is a callback handler for the Username token with the GUI prompt on the generator
side. This instance is used to set the WSSGenerationContext object to generate a Username
token.

com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler
This class is a callback handler for the Username token on the generator side. This instance
is used to set into WSSGenerationContext object to attach a Username token. Use this
implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler
This class is a callback handler that is used to generate the X.509 certificate that is inserted
in the Web services security header within the SOAP message as a binary security token on
the generator side. This instance is used to generate the WSSSignature and WSSEncryption
objects, set the objects into the WSSGenerationContext object to generate the X.509 binary
security tokens. A keystore and a key definition are required for this callback handler. If you
use this implementation, a key store password, path, and type must be provided on the
generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler
This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens
on the generator side. This instance is used to generate WSSSignature object and
WSSEncryption object to generate a LTPA token.

This callback handler is used to validate the LTPA security token inserted in the Web services
security header within the SOAP message as a binary security token. However, if the user
name and password are specified, WebSphere Application Server authenticates the user
name and password to obtain the LTPA security token rather than obtaining it from the Run

198 Securing WebSphere applications

As Subject. Use this callback handler only when the Web service is acting as a client on the
application server. It is recommended that you do not use this callback handler on a Java EE
application client. If you use this implementation, a basic authentication user ID and password
must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler. KRBTokenConsumeCallbackHandler
This class is a callback handler for the Kerberos v5 token on the generator side. This
instance is used to set the WSSGenerationContext object to generate the Kerberos v5
AP-REQ as a binary security token. The instance is also used to generate the WSSSignature
and WSSEncryption objects to use the Kerberos session key or derived key in the SOAP
message signature and encryption.

7. If a X.509 token is specified, additional token information is also specified.

storeRef

The reference name of the keystore.

storePath

The keystore file path from which the keystore is loaded, if needed. It is
recommended that you use the ${USER_INSTALL ROOT} in the path name as this
variable expands to the WebSphere Application Server path on your machine. This
path is required when you use the X.509 tokens callback handler implementations.

storePassword

The password that is used to check the integrity of the keystore, or the keystore
password that is used to unlock the keystore and to access the keystore file. The
keystore and its configuration are used for some of the default callback handler
implementations that are provided by WebSphere Application Server.

storeType

The keystore type of keystore that is used for the key locator. This selection
indicates the format that is used by the keystore file. The following values are
available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the
software development kit (SDK). The default IBM JCE is configured in
WebSphere Application Server. This option provides stronger protection for
stored private keys by using Triple DES encryption.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS
only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores
using this format might contain RSA keys on cryptographic hardware or
might encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

alias

The key alias name. The key alias is used by the key locator to find the key within
the keystore file.

keyPassword

The key password that is used for recovering the key. This password is needed to
access the key object within the keystore file.

keyName

The name of the key. For digital signatures, the key name is used by the request
generator or response consumer signing information to determine which key is
used to digitally sign the message. For encryption, the key name is used to
determine the key used for encryption. The key name must be a fully qualified,
distinguished name (DN). For example, CN=Bob,0=1BM,C=US.

certStores

A list of certificate stores. A collection certificate store includes a list of untrusted,
intermediary certificates and certificate revocation lists (CRLs). This step configures
a collection certificate store and certificate revocation lists for the generator
bindings.

Chapter 5. Web services 199

identityAssertion Specifies whether identity assertion is used. Selects this item if identity assertion is

defined. This option indicates that only the identity of the initial sender is required
and inserted into the Web services security header within the SOAP message. For
an X.509 token generator, the application server sends the original signer
certification only.

requestorCertificate Specifies whether the certificate of the requestor is used.

The following can be specified for a X.509 token:

a.
b.

Without any keystore.

With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted
root certificates. These configurations are used to validate the certificate path of incoming
X.509-formatted security tokens. For example, when you select the trust anchor or the certificate
store of a trusted certificate, you must configure the trust anchor and the certificate store before
setting the certificate path.

With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The
keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to
access the keystore file. Keystore objects within trust anchors contain trusted root certificates that
are used by the CertPath API to validate the trustworthiness of a certificate chain.

With keystore that is used for the key locator and the trust anchor.

With a map that includes key-value pairs. For example, you might specify the value type name
and the value type Uniform Resource Identifier (URI). The value type specifies the namespace
URI of the value type for the generated token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509
Specifies an X.509 certificate token.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-

1.0#X509PKIPathv1
Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler
is used to create X.509 certificates encoded with the PkiPath format. The certificate is
inserted in the Web services security header within the SOAP message as a binary
security token. A keystore is required for this callback handler. A CRL is not supported by
the callback handler; therefore, the collection certificate store is not required or used. If
you use this implementation, you must provide a key store password, path, and type on
this panel.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-

1.0#PKCS7
Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.
This callback handler is used to create X.509 certificates encoded with the PKCS#7
format. The certificate is inserted in the Web services security header in the SOAP
message as a binary security token. A keystore is required for this callback handler. You
can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is
encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,
you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value
type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For an LTPA token, you can use LTPA for the value type local name. This local name
causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for
the value type Uniform Resource Identifier (URI).

200 Ssecuring WebSphere applications

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local
name. This local name causeshttp://www.ibm.com/websphere/appserver/tokentype to be
specified for the value type Uniform Resource Identifier (URI).

8. If the Username token is specified as the token generator class name, the following token information

can be specified:

a. Whether to use IdentityAssertion option. This option is selected if identity assertion is defined.
This option indicates that only the identity of the initial sender is required and inserted into the
Web services security header within the SOAP message. For example, WebSphere Application
Server sends only the user name of the original caller for a Username token generator.

b. Whether to use RunAsSubject identity option. This option is used if an identity assertion is defined
and you want to use the Run As identity instead of the initial caller identity for identity assertion in
a downstream call. This option is valid only if you have configured the Username token as the

token generator.

c. Whether to use sendRealm.
d. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token generator. Nonce is a unique,

cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of
Username tokens. Nonce is valid only when the generated token type is a Username token, and it
is available only for the request generator binding.

e. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in
the Username token. The time stamp is valid only when the incorporated token type is a

Username token.

f. Specifies a map that includes key-value pairs. For example, you might specify the value type
name and the value type Uniform Resource Identifier (URI). The value type specifies the
namespace URI of the value type for the generated token, and represents the token type of this

class:

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken
Specifies a Username token.

9. If the Kerberos v5 token is specified as the token generator class name, the following token

information can be specified:

Token Information Description Default Value
name Kerberos client principal name
password Kerberos client password
realm Kerberos realm associated with the Default realm name in Kerberos
Kerberos client configuration file.
Specify null to use the default value.
targetService Kerberos service name associated
with the target Web Services.
targetHost Kerberos realm name associated with
the Kerberos service name.
tokenValueType Kerberos token value type in QName | http://docs.oasis-open.org/wss/oasis-

defined by Oasis Kerberos Token
Profile v1.1 specification.

wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ

targetRealm

Kerberos realm name associated with
the Kerberos service name.

Default realm name in the Kerberos
configuration file

prompt

A boolean value to enable the login
prompt.

false

201

Chapter 5. Web services

Token Information

Description

Default Value

supportTokenRequireSHA1

A boolean value to require a SHA1
key that is used in subsequent
request messages when the Kerberos
token is used as a supporting token.

false

SHA1 key is consumed only if the
supporting Kerberos token is
protected. If set to true, the SHA1 key
is always consumed.

alwaysAPREQ A boolean value to indicate that the false
client should always send the
Kerberos AP_REQ token in the The SHA1 key is used instead in the
request messages. subsequent messages. If set to true,
the Kerberos AP_REQ token is
always used.
requireDKT A boolean value to require a derived |false
key for message protection.
clabel The client label for the derived key. WS-SecureConversation
Specify null to use the default value.
slabel The service label for the derived key. | WS-SecureConversation
Specify null to use the default value.
keylen The length of the derived key. 16
Specify zero to use the default value
noncelen The length of the nonce. 16
Specify zero to use the default value
encComponent An instance of WSSEncryption. Set encComponent and

sigComponent to null to initialize this
first for either the encryption or
signature component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

sigComponent

An instance of WSSSignature.

Set encComponent and
sigComponent to null to initialize this
first for either the encryption or
signature component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.
Specify the token value type as the local name. It is not necessary to specify the value type URI for

the Kerberos v5 token.

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosvs_AP_REQ
 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

* http:/docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-

1.1#GSS_Kerberosv5_AP_REQ1510
 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosvs_AP_REQ4120

* http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-

1.1#GSS_Kerberosvs_AP_REQ4120

202 Securing WebSphere applications

10. If Secure Conversation is used for message protection, the following information must be specified:

Information Description

bootstrapWSSGenerationContext The bootstrap configuration used to secure the
RequestSecurityToken (RST) token.

bootstrapWSSConmingContext The bootstrap configuration used for consuming a
secured RequestSecurityTokenResponse (RSTR).

ENDPOINT_URL The service end point URL.

EncryptionAlgorithm This determines the key size.

cLabel The client label used when creating the derived key.

sLabel The server label used when creating the derived key.

11. Set the components into the wssGenerationContext object.
12. Invoke the wssGenerationContext.process() method.

Results

Using the Web Services Security APl (WSS API) process, you can configured the token generator.

What to do next

Next, you must specify a similar token consumer configuration.

Configuring the generator security tokens using the WSS API:

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APls.
To configure the token on the generator side, use the Web Services Security APIs (WSS API). The
generator security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.
Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same
framework from the WSS API can be reused. The same implementation of creating and validating security
token can be used both for the Web Services Security runtime and for the WSS API application code. The
redesigned framework also simplifies the SPI programming model and will make it easier to add security

token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To
configure tokens, you must complete the following token tasks:

» Configure the generator tokens.
» Configure the consumer tokens.

About this task

The JAAS CallbackHandler and JAAS LoginModule are responsible for creating the security token on the
generator side.

On the generator side, the token is created by using the JAAS LoginModule and by using JAAS

CallbackHandler to pass authentication data. Then, the JAAS LoginModule creates the securityToken
object, such as the UsernameToken, and passes it to the Web Service Security run time.

Chapter 5. Web services 203

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.
then the JAAS CallbackHandler is used to pass authentication data from the Web Service Security runtime
to the LoginModule. After the token is authenticated, a security token object is created, and the token is
passed it to the Web Service Security runtime.

When using the WSS API for generator token creation, certain default behaviors occur. The simplest way
to use the WSS API is to use the default behavior (see the example code). The WSS API provide default
values for the token type, the token value, and the JAAS confirmation name. The default token behaviors
include:

Generator token decisions Default behavior

Which token type to use The token type specifies which type of token to use for message integrity,
message confidentiality, or message authenticity.

WebSphere Application Server provides the following pre-configured generator
token types for message integrity and message confidentiality:

» Derived key token
» X509 tokens

You can also create custom token types, as needed.

WebSphere Application Server also provides the following pre-configured
generator token types for the message authenticity:

e Username token
e LTPA tokens
* X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration The JAAS login configuration name specifies which JAAS login configuration
name to specify name to use.
Which configuration type to use The JAAS login module specifies the configuration type. Only the pre-configured

generator configuration types can be used for generator token types.

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token
class and represents the security token that has methods to get the identity, the XML format, and the
cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the
SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature
and one for encryption, respectively.

The following tokens types are subclasses of the generic security token class:

Table 27. Subclasses of the SecurityToken

Token type JAAS login configuration name
Username token system.wss.generate.unt
Security context token system.wss.generate.sct
Derived key token system.wss.generate.dkt

The following tokens types are subclasses of the binary security token class:

Table 28. Subclasses of the BinarySecurityToken

Token type JAAS login configuration name
LTPA token system.wss.generate.ltpa
LTPA propagation token system.wss.generate.ltpaProp

204 securing WebSphere applications

Table 28. Subclasses of the BinarySecurityToken (continued)

Token type JAAS login configuration name
X.509 token system.wss.generate.x509

X.509 PKI Path token system.wss.generate.pkiPath
X.509 PKCS?7 token system.wss.generate.pkcs7
Notes®:

1.

For each JAAS login token generator configuration name, there is a respective token consumer
configuration name. For example, for the Username token, the respective token consumer configuration
name is system.wss.consume.unt.

The LTPA and LTPA propagation tokens are only available to a requester that is running as a
server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6 or
Java EE application client.

To configure the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure that
the application server is installed.

Use the Web Services Security token generator process to configure the tokens. For each token type,
the process is similar to the following process that demonstrates the UsernameToken token generator
process:

a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.
b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates a JAAS CallbackHandler. The authentication data, such as the user name and password
are specified as part of the CallbackHandler. For example, the following code specifies Chris as the
user name and sirhC as the password: UNTGenerationCallbackHandler("Chris”, "sirhC");

d. Calls any JAAS CallbackHandler parameters and reviews the token class information for which
parameters are required or optional. For example, for the UsernameToken, the following
parameters can be configured also:

Nonce
Indicates whether a nonce is included in the user name token for the token generator.
Nonce is a unique, cryptographic number that is embedded in a message to help stop
repeat, unauthorized attacks of user name tokens. The nonce value is valid only when the
generated token type is a UsernameToken and only when it applies to the request
generator binding.

Created timestamp
Indicates whether to insert a time stamp into the UsernameToken. The timestamp value is
valid only when the generated token type is a UsernameToken and only when it applies to
the request generator binding.

e. Creates the SecurityToken from WSSFactory.

By default, the UsernameToken API specifies the ValueType as: "http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-username-token-profile-1.0#UsernameToken”

By default, the UsernameToken API provides the QName of this class and specifies the
NamespaceURI as http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-
1.0.xsd and also specifies the LocalPart as UsernameToken.

f. Optional: Specifies the JAAS login module configuration name. On the generator side, the
configuration type is always generate (for example, system.wss.generate.unt).

g. Adds the SecurityToken to the WSSGenerationContext.
h. Calls WSSGenerationContext.process() and generates the WS-Security header.

Chapter 5. Web services 205

Results

If there is an error condition, a WSSException is provided. If successful, the WSSGenerationContext
process() is called, and the security token for the generator binding is attached.

Example

The following example code shows how the WSS API process creates a Username security token,
attaches the Username token to the SOAP message, and configures the Username token in the generator
binding.
// get the message context

Object msgcontext = getMessageContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance
WSSGenerationContext gencont = factory.newWSSGenerationContext();

// generate callback handler
UNTGenerateCallbackHandler untCallbackHandler =
new UNTGenerateCallbackHandler("Chris", "sirhC");

// generate the username token
SecurityToken unt = factory.newSecurityToken(UsernameToken.class, untCallbackHandler);

// add the SecurityToken to the WSSGenerationContext
gencont.add(unt);

// generate the WS-Security header
gencont.process (msgcontext);

The following example shows how to use secure conversation with the WSS APIs to configure the
generator tokens, as well as the consumer tokens. In this example, the SecurityContextToken token is
created using the WS-SecureConversation draft namespace: http://schemas.xmlsoap.org/ws/2005/02/
sc/sct. To use the WS-SecureConversation version 1.3 namespace, http://docs.oasis-open.org/ws-sx/
ws-secureconversation/200512/sct, specify SecurityContextToken13.class instead of
SecurityContextToken.class.

WSSGenerationContext bootstrapGenCon =
wssFactory.newWSSGenerationContext();

// Create a Timestamp

//add Timestamp

// Sign the SOAP Body, WS-Addressing headers, and Timestamp
X509GenerateCallbackHandler btspReqSigChHandler = new X509GenerateCallbackHandler(

L))
SecurityToken btspReqSigToken = wssFactory.newSecurityToken(

X509Token.class, btspReqSigCbHandler);
WSSSignature bootstrapReqSig = wssFactory.newhWSSSignature(btspReqSigToken);
bootstrapReqSig.setCanonicalizationMethod (WSSSignature.EXC_C14N);

//add Sign Parts

bootstrapGenCon.add(bootstrapReqSig);

// Encrypt the SOAP Body and the Signature
X509GenerateCallbackHandler btspRegEncChHandler = new X509GenerateCallbackHandler(

SecurityToken btspReqEncToken = wssFactory.newSecurityToken(X509Token.class, btspRegEncCbHandler);
WSSEncryption bootstrapRegEnc = wssFactory.newWSSEncryption(btspRegEncToken);
bootstrapReqEnc.setEncryptionMethod (WSSEncryption.AES128);
bootstrapRegEnc.setKeyEncryptionMethod (WSSEncryption.KW_RSA15);

// add Encryption parts

bootstrapGenCon.add(bootstrapReqgEnc);

WSSConsumingContext bootstrapConCon = wssFactory.newWSSConsumingContext();
X509ConsumeCallbackHandler btspRspVfyCbHandler = new X509ConsumeCallbackHandler(....);

206 Securing WebSphere applications

WSSVerification bootstrapRspVfy = wssFactory.newWSSVerification(X509Token.class, btspRspVfyCbHandler);
bootstrapRspVfy.addA11owedCanonicalizationMethod(WSSVerification.EXC_C14N);

//add Verify parts

bootstrapConCon.add (bootstrapRspVfy);

X509ConsumeCallbackHandler btspRspDecCbHandler = new X509ConsumeCallbackHandler(...);

WSSDecryption bootstrapRspDec = wssFactory.newWSSDecryption(X509Token.class, btspRspDecCbHandler);

bootstrapRspDec.addAl1owedEncryptionMethod (WSSDecryption.AES128);
bootstrapRspDec.addA11owedKeyEncryptionMethod (WSSDecryption.KW_RSA15) ;

// add Decryption parts

bootstrapConCon.add (bootstrapRspDec);

SCTGenerateCallbackHandler sctgch =
new SCTGenerateCallbackHandler(bootstrapGenCon, bootstrapConCon,
ENDPOINT_URL, WSSEncryption.AES128);

SecurityToken[] scts = wssFactory.newSecurityTokens(new Class[]{SecurityContextToken.class}, sctgch);
SecurityContextToken sct = (SecurityContextToken)scts[0];

// Use the SCT to generate DKTs for Secure Conversation
//Signature algorithm and client and service labels

DerivedKeyToken dktSig = sct.getDerivedKeyToken(WSSSignature.HMAC_SHA1, "WS-SecureConversation", "WS-SecureConversation");
//Encryption algorithm and client and service labels

DerivedKeyToken dktEnc = sct.getDerivedKeyToken(WSSEncryption.AES128, "WS-SecureConversation", "WS-SecureConversation");

// Create the application generation context for the request message
WSSGenerationContext applicationGenCon = wssFactory.newWSSGenerationContext();
// Create and add Timestamp

// add the derived key token and Sign the SOAP Body and WS-Addressing headers
WSSSignature appReqSig = wssFactory.newWSSSignature(dktSig);

appReqSig.setSignatureMethod (WSSSignature.HMAC_SHA1) ;
appReqSig.setCanonicalizationMethod (WSSSignature.EXC_C14N);

applicationGenCon.add(appReqSig);
// add the derived key token and Encrypt the SOAP Body and the Signature
WSSEncryption appReqEnc = wssFactory.newWSSEncryption(dktEnc);

appRegEnc.setEncryptionMethod (WSSEncryption.AES128);
appReqgEnc.setTokenReference(SecurityToken.REF_STR);
appRegEnc.encryptKey(false);

applicationGenCon.add(appRegEnc);

// Create the application consuming context for the response message
WSSConsumingContext applicationConCon = wssFactory.newWSSConsumingContext();

//client and service labels and decryption algorithm
SCTConsumeCallbackHandler sctCbHandler =

new SCTConsumeCallbackHandler("WS-SecureConversation", "WS-SecureConversation", WSSDecryption.AES128);
// Derive the token from SCT and use it to Decrypt the SOAP Body and the Signature
WSSDecryption appRspDec = wssFactory.newWSSDecryption(SecurityContextToken.class, sctChHandler);
appRspDec.addAl1owedEncryptionMethod (WSSDecryption.AES128) ;
appRspDec.encryptKey(false);

applicationConCon.add(appRspDec);
//Derived the token from SCT and use it to Verify the signature on the SOAP Body, WS-Addressing headers, and Timestamp
WSSVerification appRspVfy = wssFactory.newWSSVerification(SecurityContextToken.class, sctCbHandler);

applicationConCon.add(appRspVfy);

applicationGenCon.process(messageContext);
applicationConCon.process(messageContext);

What to do next

For each token type, configure the token using the WSS APIs or using the administrative console. Next,
specify the similar consumer tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages either by

signing the SOAP message or by encrypting the message, as needed. You can use either the WSS APIs
or the administrative console to secure the SOAP messages.

Chapter 5. Web services 207

Securing messages at the response consumer using WSS APlIs:

You can secure SOAP messages with signature verification, decryption, and consumer tokens to protect
message integrity, confidentiality, and authenticity, respectively. The response consumer (client-side)
configuration defines the Web services security requirements for the incoming SOAP response.

About this task

To secure Web services with WebSphere Application Server, you must configure the generator and the
consumer security constraints. You must specify several different configurations. Although there is no
specific sequence to specify these different configurations, some configurations reference other
configurations. For example, decryption configurations reference encryption configurations.

The response consumer (client-side) configuration requirements involve verifying that the integrity parts are
signed and that the signature is verified, verifying that the required confidential parts are encrypted and
that the parts are decrypted; and validating the security tokens.

You can use the following methods to configure Web services security and to define policy types to secure
the SOAP messages:

* Use the administrative console to configure policy sets.

» Use the Web Services Security APls (WSS API) to configure the SOAP message context (only for the
client)

The following high-level steps use the WSS APIs:

» Verify consumer signing information to protect message integrity.
» Configure decryption to protect message confidentiality.

» Validate consumer tokens to protect message authenticity.

Results
After completing these procedures, you have secured messages at the response consumer level.
What to do next

Next, if not already configured, secure messages with signing information, encryption, and generator
tokens at the response (client-side) generator level.

Configuring decryption to protect message confidentiality using the WSS APIs:

You can configure decryption information for the response consumer (client side) section of the binding
file. Decryption information is used to specify how the consumers (receivers) decrypt incoming SOAP
messages. To configure decryption, specify which message parts to decrypt and specify which algorithm
methods and security tokens are to be used for decryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of
someone understanding the message flowing across the Internet. With confidentiality specifications, the

message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to
configuring decryption, familiarize yourself with XML encryption
About this task

For decryption, you must specify the following:
* Which parts of the message are to be decrypted.

208 Ssecuring WebSphere applications

» Which decryption algorithms to specify.

To configure decryption and decrypted parts on the client side, use the WSSDecryption and
WSSDecryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

WebSphere Application Server uses decryption information for the default consumer to decrypt parts of the
SOAP message. The WSSDecryption API configures the following required parts as decrypted parts.

Table 29. Required decrypted parts

Decryption parts Description

Keywords Keywords are used to add the decrypted parts to the SOAP message.

XPath expression XPath expressions are used to add the decrypted parts to the SOAP
message.

WSSDencryptPart object This object adds the decrypted parts to the SOAP message.

WSS Verification object This object adds the signature verification component as a decrypted
part.

Header This part adds the header in the SOAP header, specified by QName,
as a decrypted part.

Security token object This object adds the security token as a decrypted part.

Web Services Security APl (WSS API) supports symmetric encryption, by using a shared key, only when
Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the SOAP
message that are to be decrypted. WebSphere Application Server supports the use of the following
keywords:

Table 30. Supported decryption keywords

Keyword References

BODY_CONTENT The keyword for the body contents of the SOAP message body as a
decryption target.

SIGNATURE The keyword for the signature element as a decryption target.

USERNAME_TOKEN, The keyword for the Username token element as a decryption target.

If configuring using the WSS APIs, the WSSDecryption and WSSDecryptPart APls complete these
high-level steps:
1. Use the WSSDecryption API to configure encryption. The WSSDecryption API performs these tasks by
default:
a. Generates the callback handler.
Generates the consumer security token object.
Adds the security token reference type.
Adds the WSSEncryptPart object.
Adds the parts to be encrypted. Adds the default parts for decryption by using keywords and XPath
expressions.
Adds the verification component.
g. Adds the header in the SOAP message, specified by QName.

©® oo

—

Chapter 5. Web services 209

h. Sets the default data encryption method.

i. Specifies whether the key is to be decrypted using a Boolean value. Calls this method when the
shared key is encrypted.

j- Sets the default key encryption method.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The
WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.
Sets the encrypted parts specified by an XPath expression.

Sets the signature component object, WSSSignature.

Sets the header in the SOAP message, specified by QName.

Sets the generator security token.

Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could
change one or more of the following items:

* Add USERNAME_TOKEN as a target of decryption.

* Change the data encryption algorithm from the default value of AES 128.

« Change the key encryption algorithm from the default value of KW_RSA_OAEP.

» Specify to not encrypt the encryption key (false).

* Change the security token type from the default value of X.509 token.

* Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

~®ooov

Results
The decryption information is configured for the consumer binding.
Example

The following is an example of the WSSDecryption API:

WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();
X509ConsumeCallbackHandler callbackhandler = generateCallbackHandler();
// see X509ConsumeCallbackHandler
WSSDecryption dec = factory.newWSSDecryption(X509Token.class,
callbackhandler);

concont.add(dec);
What to do next

You must configure similar encryption information for the client-side request generator (sender) bindings, if
you have not already configured the information.

Next, review the WSSDecryption API process.

Decrypting the SOAP message using the WSSDecryption API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
Services Security APIs (WSS API). To configure the client for decryption on the response (client) consumer

side, use the WSSDecryption API to decrypt the SOAP messages. The WSSDecryption API specifies
which request SOAP message parts to decrypt when configuring the client.

210 Securing WebSphere applications

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable decryption and add
consumer security tokens in the SOAP message. To secure SOAP messages, you must have completed
the following decryption tasks:

* Encrypted the SOAP message.
* Chosen the decryption method.

About this task

The decryption information on the consumer side is used for decrypting an incoming SOAP message for
the response consumer (client side) bindings. The client consumer configuration must match the
configuration for the provider generator.

Confidentiality settings require that confidentiality constraints be applied to generated messages.

The following decryption parts can be configured:

Table 31. Decryption parts

Decryption parts Description
part Adds the WSSDecryptPart object as a target of the decryption part.
keyword Adds the decryption part using keywords. WebSphere Application Server supports

the following keywords:
« BODY_CONTENT

+ SIGNATURE
+ USERNAME_TOKEN
xpath Adds the decryption part using an XPath expression.
verification Adds the WSSVerification instance as a target of the decryption part.
header Adds the SOAP header, specified by QName, as a target of the decryption part.

For decryption, certain default behaviors occur. The simplest way to use the WSS API for decryption is to

use the default behavior (see the example code). WSSDecryption provides defaults for the key encryption
algorithm, the data encryption algorithm, and the decryption parts such as the SOAP body content and the
signature. The decryption default behaviors include:

Table 32. Decryption decisions

Decryption decisions Default behavior

Which parts to decrypt The default decryption parts are the BODY_CONTENT and SIGNATURE.
WebSphere Application Server supports using these keywords:

* WSSDecryption.BODY_CONTENT
» WSSDecryption.SIGNATURE
» WSSDecryption.USERNAME_TOKEN

After you specify which message parts to decrypt, you must specify which
method to use when decrypting the consumer request message. For
example, if both signature and body content are applied for encryption,
then the SOAP message parts that are decrypted include the same parts.

Whether to encrypt the key (isEncrypt) | The default value is to encrypt the key (true).

Chapter 5. Web services 211

Table 32. Decryption decisions (continued)

Decryption decisions

Default behavior

Which data decryption algorithm to
choose (method)

The default data decryption algorithm method is AES128. WebSphere
Application Server supports these data encryption methods:

* WSSDecryption.AES128: http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
* WSSDecryption.AES192: http://www.w3.0rg/2001/04/xmlenc#aes192-cbc
* WSSDecryption.AES256: http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

» WSSDecryption. TRIPLE_DES: http://www.w3.0rg/2001/04/
xmlenc#tripledes-cbc

Which key decryption method to choose
(algorithm)

The default key decryption algorithm method is key wrap RSA OAEP.
WebSphere Application Server supports these key encryption methods:

* WSSDecryption.KW_AES128: http://www.w3.0rg/2001/04/xmlenc#kw-
aes128

WSSDecryption.KW_AES192: http://www.w3.0rg/2001/04/xmlenc#kw-
aes192

+ WSSDecryption.KW_AES256: http://www.w3.0rg/2001/04/xmlenc#kw-
aes256

* WSSDecryption.KW_RSA_OAEP: http://www.w3.0rg/2001/04/
xmlenc#rsa-oaep-mgfip

* WSSDecryption.KW_RSA15: http://www.w3.0rg/2001/04/xmlenct#rsa-1_5

* WSSDecryption.KW_TRIPLE_DES: http://www.w3.0rg/2001/04/
xmlenc#kw-tripledes

Which security token to specify

The default security token type is the X509 token. WebSphere Application
Server provides the following pre-configured consumer token types:

* Derived key token
* X509 tokens

1. To decrypt the SOAP message using the WSSDecryption API, first ensure that the application server is

installed.

2. The WSS API process for decryption performs these process steps:
a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. The
WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates the callback handler for the consumer side.

d. Creates WSSDecryption with the class for the security token and the callback handler from the
WSSFactory instance. The default behavior of WSSDecryption is to assume that the body content
and the signature are encrypted.

e. Adds the parts to be decrypted, if the default is not appropriate.

f. Adds the candidates of the data encryption methods to use for decryption.

g. Adds the candidates of the key encryption methods to use for decryption.

h. Adds the candidates of the security token to use for decryption.

i. Calls WSSDecryption.encryptKey(false) if the application does not want the key to be encrypted in

the incoming message.

j- Adds WSSDecryption to WSSConsumingContext.
k. Calls WSSConsumingContext.process() with the SOAPMessageContext

Results

If there is an error condition during decryption, a WSSException is provided. If successful, the
WSSConsumingContext.process() is called, and Web services security is applied to the SOAP message.

212 Securing WebSphere applications

Example

The following example provides sample code for decrypting the SOAP message body content:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler (step: c)
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler(
"enc-sender. jceks",
"jCEkS" S
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=Alice, 0=IBM, C=US");

// Generate the WSSDecryption instance (step: d)
WSSDecryption dec = factory.newWSSDecryption(X509Token.class,
callbackHandler);

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part to be encrypted (step: e)
// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)
dec.addRequiredDecryptPart (WSSDecryption.BODY_CONTENT);

// Set the part in the SOAP Header specified by QName (step: e)
dec.addRequiredDecryptHeader(new
QName ("http://www.w3.0rg/2005/08/addressing",
"MessageID"));

// Set the part specified by WSSVerification (step: e)
X509ConsumeCallbackHandler verifyCallbackHandler =
getCallbackHandler();

WSSVerification ver = factory.newWSSVerification(X509Token.class,
verifyCallbackHandler);

dec.addRequiredDecryptPart(ver);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();

sh.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/’

and Tocal-name()="'Envelope']");

sb.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/"

and local-name()="'Body']");
sb.append("/*[namespace-uri()="http://xmlsoap.org/Ping’
and local-name()='Ping']");
sb.append("/*[namespace-uri()="http://xmlsoap.org/Ping'
and Tocal-name()='Text']");
dec.addRequiredDecryptPartByXPath(sb.toString());

// Set the part in the SOAP header to be decrypted specified by QName (step: e)

dec.addRequiredDecryptHeader(new
QName ("http://www.w3.0rg/2005/08/addressing",
"MessageID"));

// Set the candidates for the data encryption method (step: f)

// DEFAULT : WSSDecryption.AES128
dec.addAlTowedEncryptionMethod (WSSDecryption.AES128);
dec.addAlTowedEncryptionMethod (WSSDecryption.AES192);

// Set the candidates for the key encryption method (step: g)

Chapter 5. Web services

213

// DEFAULT : WSSDecryption.KW_RSA_OAEP
dec.addA1TowedKeyEncryptionMethod (WSSDecryption.KW_TRIPLE_DES);

// Set the candidate security token to used for the decryption (step: h)
X509ConsumeCallbackHandler callbackHandler2 = getCallbackHandler2();
dec.addToken (X509Token.class, callbackHandler2);

// Set whether or not the key should be encrypted in the incoming SOAP message (step: 1)
// DEFAULT: true
dec.encryptKey(true);

// Add the WSSDecryption to the WSSConsumingContext (step: j)
concont.add(dec);

// Validate the WS-Security header (step: k)
concont.process(msgcontext);

What to do next

Next, use the WSSDecryptPart API or configure the policy sets using the administrative console to add
decrypted parts for the consumer message.

Choosing the decryption methods for the consumer binding:

To configure the client for response decryption for the consumer binding, specify which data and transform
algorithm methods to use when the client decrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting
and decrypting SOAP messages.

To complete decryption configuration to secure SOAP messages, you must complete the following tasks:
» Configure decryption of the SOAP message parts
» Specify the decryption methods.

You can configure the decryption methods using the WSSDecryption and WSSDecryptPart APIs. Or you
can also configure policy sets using the administrative console to configure the decryption methods.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following
information defines some data encryption-related terms:

Data encryption method algorithm
Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data
encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength
ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,
you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™
Cryptography Extension (JCE) policy files from the following Web site: fhttp://www.ibm.com/|
[developerworks/java/jdk/security/index.html|

Key encryption method algorithm
Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key
encryption method. The algorithm represents public key encryption algorithms that are specified for
encrypting and decrypting keys.

214 Securing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

By default, the RSA_OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or
SHA512 message digest algorithm by specifying a key encryption algorithm property. The property
name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the
following URIs of the digest method:

* http://www.w3.0rg/2001/04/xmlenc#sha256
* http://www.w3.0rg/2001/04/xmlenc#sha512

By default, the RSA_OAEP algorithm uses a null string for the optional encoding octet string for
the OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.0AEPparams. The property value is the base 64-encoded
value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only.
On the consumer side, these properties are read from the incoming SOAP message.

For the KW_AES256 and the KW_AES192 key encryption algorithms, you must download the
unrestricted JCE policy files from the following Web site: |http://www.ibm.com/developerworks/java/
lidk/security/index.html|

To complete the decryption configuration, you must specify the algorithm uniform resource identifier (URI)
and its usage type. If the URI is used for multiple usage types, then you must define the URI to each
usage type. WebSphere Application Server supports the following decryption usage types:

Table 33. Decryption usage types

Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data.
Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the
encryption key.

To configure the decryption and decrypted part algorithms, use the WSSDecryption and WSSDecryptPart
APIs, or configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric
key encryption, you will not be able to interoperate with Web services endpoints that use policy
sets.

If you are using the WSS APIs, the WSSDecryption and WSSDecryptPart APIs specify which algorithm
methods are used when the client decrypts the SOAP messages.

» Use the WSSDecryption API to configure the data encryption algorithm and the key encryption algorithm
methods.

* Use the WSSDecryptPart API to configure a transform algorithm method.

The WSS API process completes the following high-level steps to specify which decryption and decrypted

part algorithm methods to use when configuring the client for response decryption:

1. Using the WSSDecryption API, adds the required data encryption algorithm. The data encryption
algorithm is used for encrypting or decrypting parts of a SOAP message. Data decryption algorithms
specify the algorithm uniform resource identifier (URI) of the data encryption method.

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI
of the data encryption algorithm, is http://www.w3.0rg/2001/04/xmlenc#aes128-cbc. WebSphere
Application Server supports the following pre-configured data decryption algorithms:

* AES128: http://www.w3.0rg/2001/04/xmlenc#aes128-cbc

Chapter 5. Web services 215

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

The AES 128 algorithm is the default data algorithm method.
« AES256: http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following Web site: [ttp://www.ibm.com/developerworks/java/jdk/
[security/index.html|

* AES192: http://www.w3.0rg/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit key encryption algorithm if you want your configured application to be in
compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following Web site: jttp://www.ibm.com/developerworks/java/jdk/
[security/index.htmi|

* TRIPLE_DES: http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

2. As needed, changes the WSSEncryption APl method to specify another data encryption algorithm. For
example, you might add the following code to change from the default AES 128 algorithm to the Triple
DES algorithm:
dec.addATTowedKeyEncryptionMethod (WSSDecryption.TRIPLE DES);

3. Using the WSSDecryption API, adds the required key encryption algorithm. The key encryption
algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP
message. If no key for encrypting the data is needed, then you must specify
WSSDecryption.encryptKey(false).

The key encryption algorithm that you select for the consumer side must match the key encryption
method that you select for the generator side.
The default key encryption algorithm value is key wrap RSA_OAEP. The key encryption name is
KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.0rg/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key
encryption algorithms:
« KW_AES128: http://www.w3.0rg/2001/04/xmlenc#kw-aes128
« KW_AES192: http://www.w3.0rg/2001/04/xmlenc#kw-aes192
To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography
Extension (JCE) policy file from the following Web site: |http://www.ibm.com/developerworks/java/jdk/
[security/index.html]

Note: Do not use the 192-bit key encryption algorithm if you want your configured application to be
in compliance with the Basic Security Profile (BSP).

« KW_AES256: http://www.w3.0rg/2001/04/xmlenc#kw-aes256
To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java
Cryptography Extension (JCE) policy file from the following Web site: |nttp://www.ibm.com/
[developerworks/java/jdk/security/index.htmi}

« KW_RSA_OAEP: http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgfip.
The KW_RSA_OAEP algorithm is the default key algorithm method.
When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this algorithm. This algorithm appears in the list of supported key
transport algorithms when running with SDK Version 1.5. See more information at
[ttp://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgfip|

« KW_RSA_15: http://www.w3.0rg/2001/04/xmlenc#rsa-1_5

KW_TRIPLE_DES: http://www.w3.0rg/2001/04/xmlenc#kw-tripledes

Note: For Web Services Secure Conversation, the WSSEncryption API might specify addition
key-related information, such as the:
 algorithmName
* keyLength

216 Securing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

4. As needed, uses the WSSDecryption APl method to change to other key encryption algorithms. For
example, you might add the following code to change from the default key encryption algorithm
KW_RSA_OAEP to the TRIPLE_DES algorithm:

dec.addATTowedKeyEncryptionMethod (WSSDecryption.KW_TRIPLE DES);

5. Using the WSSDecryptPart API, adds a transform algorithm, as needed. There is no default transform
algorithm. However, WebSphere Application Server provides a pre-configured decrypted part,
WSSDecryptPart. TRANSFORM_ATTACHMENT_CIPHERTEXT, that can be added.

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the
WSSConsumerContext.process(), the WS-Security header is validated, and the SOAP message is now
secured using Web services security.

Example

The following example provides sample WSS API code for decrypting the body content as well as
changing the data encryption and key encryption algorithms from the default values:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance
WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler(

"enc-sender.jceks",
"jCekS" s
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=ATice, 0=IBM, C=US");

// Generate WSSDecryption instance
WSSDecryption dec = factory.newWSSDecryption(X509Token.class,
callbackHandler);

// Set the candidates for the data encryption method

// DEFAULT : WSSDecryption.AES128
dec.addA1TowedEncryptionMethod (WSSDecryption.AES128);
dec.addAl1owedEncryptionMethod (WSSDecryption.AES192);

// Set the candidates for the key encryption method
// DEFAULT : WSSDecryption.KW_RSA_OAEP
dec.addA11owedKeyEncryptionMethod (WSSDecryption.KW_TRIPLE_DES);

// Add the WSSDecryption to WSSConsumingContext
concont.add(dec);

// Validate the WS-Security header
concont.process(msgcontext) ;

Adding decrypted parts using the WSSDecryptPart API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
services security APls (WSS API). To configure decrypted parts for the response consumer (client side)
bindings, use the WSSDecryptPart API to define and add to the listing of elements in the decrypted part.
WSSDecryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.decryption
package.

Chapter 5. Web services 217

Before you begin

You can use either the WSS APIs or configure the policy sets using the administrative console to configure
and add new encrypted parts. To secure SOAP messages using the WSSDecryptPart APls, you must
configure the decrypted parts for the response consumer bindings.

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These
constraints include specifying which message parts within the generated message must be encrypted and
decrypted, and which message parts to attach encrypted elements to.

The WSSDecryptPart API specifies information related to decryption and sets the decrypted parts that
have been added for message confidentiality protection. Use the WSSDecryptPart to set the transform
method and to specify the part to which the transform method is to be applied. Sets the transform method
only if using SOAP with Attachments. The WSSDecryptPart is usually not needed except, in some case for
tasks such as setting the transform method.

The decrypted parts displayed in the following table are used to protect the confidentiality of messages.

Table 34. Decrypted Parts

Decrypted parts Description

keyword Sets the decrypted part using keywords. The default decrypted parts that you can
add using keywords are the BODY_CONTENT and SIGNATURE. WebSphere
Application Server supports the following keywords:

+ BODY_CONTENT

» SIGNATURE

« USERNAME_TOKEN
xpath Sets the decrypted part by using an XPath expression.
verification Sets the WSSVerification component as a decrypted part.

The WSSVerification part is applicable only if the SOAP message contains a
signature element.

header Sets the header, specified by QName, as a decrypted part.

For decrypted parts, certain default behaviors occur. The simplest way to use the WSSDecryptPart API is
to use the default behavior (see the example code).

WSSDecryptPart provides defaults for setting the transform algorithm, adding a transform method, setting
objects as targets, whether an element, and the encrypted parts, such as: the SOAP body content and the
signature.

Table 35. Decrypted part decisions

Decryption decisions Default behavior

Which SOAP message parts to decrypt Specifies which keywords to use for the decrypted parts. WebSphere

using keywords Application Server sets the following SOAP message parts by default for
decryption:

* WSSDecryption.BODY_CONTENT
» WSSDecryption.SIGNATURE

Which transform algorithm to use WebSphere Application Server does not specify any transform algorithm
(algorithm) by default. Specify a transform method only if using SOAP with
Attachments.

218 Securing WebSphere applications

1. To decrypt the SOAP message parts using the WSSDecryptPart API, first ensure that the application
server is installed.

2. The WSS API process using WSSDecryptPart follows these steps:

a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the
WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure decryption.
Creates WSSDecryption from the WSSFactory instance using SecurityToken.
Creates WSSDecryptPart from the WSSFactory instance. The default behavior of WSSDecryptPart
is to assume that the body content and signature are encrypted.

f. Adds the parts to be decrypted and to be applied with the transform in WSSDecryptPart.
WebSphere Application Server sets these encrypted parts by default for WSSDecryptPart: the
BODY_CONTENT and SIGNATURE. After you add other decrypted parts, the default values are no
longer valid. For example, if you call addDecryptPart(securityToken, false), only the security token is
encrypted, and not the signature and body content. So if you want to decrypt the security token, the
signature, and the body content, you must call addDecryptPart(securityToken, false),
addDecryptPart(WSSDecryption.SIGNATURE), and
addDecryptPart(WSSDecryption.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSDecryptPart to WSSDecryption.

i. Adds WSSDecryption to WSSConsumingContext.

j- Calls WSSConsumingContext.process() with the SOAPMessageContext
Results
If there is an error condition when decrypting the message, a WSSException is provided. If successful, the
API calls the WSSConsumingContext.process(), the WS-Security header is generated, and the SOAP
message is now secured using Web services security.

What to do next

After enabling decrypted parts for the response consumer (client side) binding, specify the generator and
consumer tokens, if the security tokens have not already been specified.

Decryption methods:

The decryption algorithms specify the data and key encryption algorithms that are used to decrypt the
SOAP message. The WSS API for decryption (WSSDecryption) specifies the algorithm uniform resource
identifier (URI) of the data and key encryption methods. The WSSDecryption interface is part of the
com.ibm.websphere.wssecurity.wssapi.decryption package.

Data encryption algorithms

The data encryption algorithms are the algorithms that are used to encrypt and decrypt data. This
algorithm type is used for encrypting data to encrypt and decrypt various parts of the message, including

the body content and the signature.

Data decryption algorithms specify the algorithm uniform resource identifier (URI) of the data encryption
method. WebSphere Application Server supports the following pre-configured data decryption algorithms:

Chapter 5. Web services 219

Table 36. Supported pre-configured data decryption algorithms

WSS API URI

WSSDecryption.AES128 (the default value) A URI of data encryption algorithm, AES 128:
http://www.w3.0rg/2001/04/xmlenc#aes128-cbc

WSSDecryption.AES192 A URI of data encryption algorithm, AES 192:
http://www.w3.0rg/2001/04/xmlenc#aes192-cbc

WSSDecryption.AES256 A URI of data encryption algorithm, AES 256:
http://www.w3.0rg/2001/04/xmlenc#aes256-cbc

WSSDecryption. TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES:
http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™
Cryptography Extension (JCE) policy files from the following Web site: |http://www.ibm.com/developerworks/|
[lava/jdk/security/index.html|

The data encryption algorithm must match the data decryption algorithm that is configured for the
consumer.

Key encryption algorithms
The key encryption algorithms are the algorithms that are used to encrypt and decrypt keys.

This key information is used to specify the configuration that is needed to generate the key for digital
signature and encryption. The signing information and encryption information configurations can share the
key information. The key information on the consumer side is used for specifying the information about the
key that is used for validating the digital signature in the received message or for decrypting the encrypted
parts of the message. The request generator is configured for the client.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption
method. WebSphere Application Server supports the following pre-configured key encryption algorithms:

Table 37. Supported pre-configured key encryption algorithms

WSS API URI

WSSDecryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128:
http://www.w3.0rg/2001/04/xmlenc#kw-aes128

WSSDecryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192:

http://www.w3.0rg/2001/04/xmlenc#kw-aes192

Note: Do not use the 192-bit key encryption algorithm if you
want your configured application to be in compliance with the
Basic Security Profile (BSP).

WSSDecryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256:
http://www.w3.0rg/2001/04/xmlenc#kw-aes256
WSSDecryption.KW_RSA_OAEP (the default A URI of key encryption algorithm, key wrap RSA OAEP:
value) http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgf1p
WSSDecryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5:
http://www.w3.0rg/2001/04/xmlenc#rsa-1_5
WSSDecryption.KW_TRIPLE_DES A URI of data encryption algorithm, key wrap TRIPLE DES:

http://www.w3.0rg/2001/04/xmlenci#kw-tripledes

220 Securing WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest
algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of
the digest method: http://www.w3.0rg/2001/04/xmlenc#sha256 http://www.w3.0rg/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm
property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.0AEPparams.
The property value is the base 64-encoded value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only. On the
consumer side, these properties are read from the incoming SOAP message.

For the kw-aes256 and the kw-aes192 key encryption algorithms, you must download the unrestricted JCE
policy files from the following Web site: |http://www.ibm.com/developerworks/java/jdk/security/index.htmi}

The key encryption algorithm for the generator and the consumer must match.

The following example provides a sample of the WSS API code for the default algorithms that are used for
WebSphere Application Server decryption:

WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Required to attach username token into the message.
X509ConsumeCallbackHandler callbackHandler =
new X509ConsumeCallbackHandler("",

"enc-sender.jceks",
"JCEKS",
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=Alice, 0=IBM, C=US");

// Set the decrypt component.

// Default encrypted part: Body-Content

// Default data encryption algorithm: AES128

// Default key encryption algorithm: KW-RSA-OAEP

WSSDecryption dec = factory.newWSSDecryption(X509Token.Type,

callbackHandler);

concont.add(dec);

// validate the WS-Security header.
concont.process(msgctx) ;

Verifying consumer signing information to protect message integrity using WSS APIs:

You can verify the signing information to protect message integrity for the response (client side) consumer
binding. Signing information includes the signature and the signed parts for the generator side as well as
signature verification and verify parts for the consumer side. To keep the integrity of the message, digital
signatures are typically applied.

Before you begin

Ensure that the signature and signed parts information has been configured. The signature verification
information must match what was configured on the generator side.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying
a digital signature to a SOAP message. To configure the signing information to protect message integrity,

Chapter 5. Web services 221

http://www.ibm.com/developerworks/java/jdk/security/index.html

you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the
risk of data modification when you transmit data across a network.

Also, message integrity is provided by verifying the digitally signed body, time stamp, and WS-Addressing
headers using the signature verification algorithm methods. The WSS APIs specify which algorithm is to be
used to verify the certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the
signature verification method. WebSphere Application Server supports several pre-configured verification
algorithm methods.

You can use the following interfaces to configure Web services security and to protect SOAP message
integrity:
» Use the administrative console to configure policy sets for signature verification.

* Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the
client)

Perform the following verification tasks, using the WSS APIs, to configure the signing information and to
protect message integrity for the consumer binding.

« [Configure the signing information using the WSSSignature API. Configure the signature verification
information for the consumer binding using the WSSVerification API. Signature verification information is
used to verify parts of a message including the SOAP body, the time stamp, and the WS-Addressing
headers. Both verifying and decryption can be applied to the same message parts, such as the SOAP
body.

+ [Add or change verify parts using the WSSVerifyPart API|

+ [Configure the client for request signing methods using the WSSVerification or WSSVerifyPart APls| To
configure the client for response verification, choose the verification methods. Use the WSSVerification
API to configure the canonicalization and signature methods. Use the WSSVerifyPart API to configure
the digest and transform methods.

Results

By completing the steps in these tasks, you have configured the consumer verification information to
protect the integrity of messages.

Verifying the signature information for the consumer binding using the WSS APIs:

You can configure the signing information for the client-side response consumer (receiver) bindings.
Signing information is used to sign and validate parts of a message including the SOAP body, the
timestamp information, and the Username token.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,
and SHA1. XML signature defines many methods for describing key information and enables the definition
of a new method. Prior to completing these steps, read the information about XML digital signature to
become familiar with signing and verifying digital signatures for digital content.

By including XML signature in SOAP messages, the following issues are realized: message integrity and
authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity
decreases the risk of data modification while the data is transmitted across the Internet.

Before you can verify the signature and SOAP message signed parts, you must have completed the
following tasks:

» Configured the signature.
» Added signed parts, as needed.

222 Securing WebSphere applications

» Chosen the signature and signed parts methods.
About this task

Use the Web Services Security APIs (WSS API) to configure the signing verification information for the
response consumer (client side) section of the bindings file. Use the WSSVerification or WSSVerifyPart
APIs to configure the client for request signature verification and to specify which digitally signed message
parts to verify.

WebSphere Application Server uses the signing information on the consumer side to verify the integrity of
the received SOAP message by validating that the message parts (such as the body, time stamp, and
Username token) are signed.

On the client side, use the WSS APIs, or configure policy sets using the administrative console to specify
which parts of the message are signed and to configure the key information that is referenced by the key
information references. To verify the signature and signed parts, use the WSSVerification and
WSSVerifyPart APIs.

WebSphere Application Server provides default values for bindings. However, an administrator must
modify the defaults for a production environment.

The WSSVerification and WSSVerifyPart APIs complete the following steps to specify which digitally

sighed message parts to verify when configuring the client for response consumer signing:

1. The WSSVerification API adds the required verify parts of the SOAP message.
The part reference refers to the message part that is digitally signed. The part attribute refers to the
name of the <Integrity> element when the <PartReference> element is specified for the signature. You
can specify multiple <PartReference> elements within the <Signinginfo> element. The
<PartReference> element has two child elements when it is specified for the signature:
<DigestTransform> and <Transform>.

The WSSVerification API configures the following parts as verification parts:

Security token Adds information for the security token that is used for
the signature verification.

SOAP header and the QName as a target Adds the SOAP header, specified by QName, as a
verification part.

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the
message are to be verified. WebSphere Application Server supports the use of the following keywords:

Keyword References
WSS Verification. ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.
WSSVerification.BODY The SOAP message body. The body is the user data

portion of the message.

WSSVerification. TIMESTAMP The creation and expiration timestamp information.

2. The WSSVerification APl adds the required header to the SOAP message. The header, specified by
QName, is a required verification header.

3. The WSSVerification APl adds a security token. Adds information about the security token that is to be
used for the signature verification, such as:

* The class for security token.
* The callback handler
* The name of the JAAS login configuration.

Chapter 5. Web services 223

4. The WSSVerification API adds the signature method algorithm. The signature method is the algorithm
that is used to convert the canonicalized <Signedinfo> element in the binding file into the
<SignatureValue> element. The algorithm that is specified for the consumer, which is the response
consumer configuration, must match the algorithm specified for the request generator configuration.
WebSphere Application Server supports the following pre-configured signature algorithms:

+ WSSVerification.RSA_SHA1 |http://www.w3.0rg/2000/09/xmldsig#rsa-sha1
+ WSSVerification.HMAC_SHA1 }http://www.w3.0rg/2000/09/xmldsig#hmac-sha1|

WebSphere Application Server does not support the following algorithm for DSA-SHA1:
http://www.w3.0rg/2000/09/xmldsig#dsa-shal. You cannot use the DSA-SHA1 algorithm if you want to
be compliant with the Basic Security Profile (BSP).

5. The WSSVerification APIl adds a canonicalization method. The canonicalization method algorithm is
used to canonicalize the <Signedinfo> element before it is incorporated as part of the digital signature
operation. The canonicalization algorithm that you specify for the generator must match the algorithm
for the consumer.

WebSphere Application Server supports the following pre-configured canonicalization algorithms:
+ WSSVerification.EXC_C14N: [http://www.w3.0rg/2001/10/xml-exc-c14n#]
+ WSSVerification.C14N: |http://www.w3.org/TR/xml-c14n|

6. The WSSVerification API verifies whether a signature confirmation is required. The OASIS Web
Services Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If
you are using WS-Security Version 1.0, this function is not available.

The signature confirmation value is stored in order to validate the signature confirmation with it after
the receiving message is returned. This method is called if the response message is expected to
attach the signature confirmation into the SOAP message.

7. The WSSVerifyPart APl adds a digest method. For each part reference in the signing information, the
API specifies both a digest method algorithm and a transform algorithm.

WebSphere Application Server supports the following pre-configured digest algorithms:
* WSSVerifyPart. SHA1: http://www.w3.0rg/2000/09/xmldsig#sha1

* WSSVerifyPart. SHA256: http://www.w3.0rg/2001/04/xmlenc#sha256

* WSSVerifyPart.SHA512: http://www.w3.0rg/2001/04/xmlenc#sha512

8. The WSSVerifyPart API adds a transform method. For each part reference in the signing information,
the API specifies both a digest method algorithm and a transform algorithm.

WebSphere Application Server supports the following pre-configured transform algorithms:

* WSSVerifyPart. TRANSFORM_EXC_C14N (the default value): http://www.w3.0rg/2001/10/xml-exc-
cldn#

* WSSVerifyPart. TRANSFORM_XPATH2_FILTER: http://www.w3.0rg/2002/06/xmldsig-filter2

* WSSVerifyPart. TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
soap-message-security-1.0#STR-Transform

* WSSVerifyPart. TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support these algorithms:

* http://www.w3.0rg/2002/07/decrypt#XML

e hitp://www.w3.0rg/TR/1999/REC-xpath-19991116

The transform algorithm for the consumer must match the transform algorithm for the generator.

Results

You have completed the steps to configure the signing information for the client-side response consumer
sections of the bindings files.

224 securing WebSphere applications

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/TR/xml-c14n

Example

The following example shows WSS API sample code to verify the signature and to verify the X.509 token
type as the security token:
WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();
// Generate the X.509 Callback Handler on the consumer side

X509ConsumeCallbackHandler callbackhandler = generateCallbackHandler();

WSSVerification ver = factory.newWSSVerification(X509Token.class,

callbackhandler);

concont.add(ver);

What to do next
If not already configured, specify a similar signing information configuration for the generator bindings.

Next, if already configured, configure the encryption and decryption information, or configure the consumer
and generator tokens.

Verifying the signature using the WSS Verification API:

You can secure the SOAP messages, without using policy sets for configuration, by using the Web
services security APIs (WSS API). To verify the signing information for the consumer binding sections for
the client side request, use the WSSVerification API. You must also specify which algorithm methods and
which signature parts of the SOAP message are to be verified. The WSSVerification APl is part of the
com.ibm.websphere.wssecurity.wssapi.verification package.

Before you begin

Use the WSS APIs, or configure the policy sets by using the administrative console to verify the signing
information. To secure SOAP messages, you must complete the following signature tasks:

» Configure the signature information.
» Choose the algorithm methods for signature and signature verification.
» Verify the signature information.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the
message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHAA1.

XML signature defines many methods for describing key information and enables the definition of a new
method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be
represented in various ways within serialized XML documents. The C14N process is used to canonicalize
XML information. Select an appropriate C14N algorithm because the information that is canonicalized
depends on this algorithm.

The following table shows the required and optional binding information when the digital signature security
constraint (integrity) is defined.

Chapter 5. Web services 225

Table 38. Signature verification parts

Verification parts

Description

keywords

Adds required signature parts as targets of verification by using keywords .
Different message parts can be specified in the message protection for
request on the generator side. Use the following keywords for the required
signature verification parts:

- ADDRESSING_HEADERS
- BODY
« TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath

Adds verification parts by using an XPath expression.

part

Adds the WSSVerifyPart object as a verification part.

header

Adds the header, specified by QName, as a verification part.

For signature verification information, certain default behaviors occur. The simplest way to use the
WSSVerification APl is to use the default behavior.

The default values are defined by the WSS API for the digest method, the transform method, the security
token, and the required verification parts.

Table 39. Signature verification default behaviors

Signature verification decisions

Default behavior

Which signature method to use
(algorithm)

Sets the signature algorithm method. Both the data encryption and the

signature and the canonicalization can be specified. The default signature

method is RSA SHA1. WebSphere Application Server supports the

following pre-configured signature methods:

» WSSVerification.RSA_SHAT1: http://www.w3.0rg/2000/09/xmldsig#rsa-
shai

» WSSVerification.HMAC_SHAT1: http://www.w3.0rg/2000/09/
xmldsig#hmac-shat

The DSA-SHA1 digital signature method (http://www.w3.0rg/2000/09/
xmldsig#dsa-shal) is not supported.

Which canonicalization method to use
(algorithm)

Sets the canonicalization algorithm method. Both the data encryption and
the signature and the canonicalization can be specified. The default
signature method is EXC_C14N. WebSphere Application Server supports
the following pre-configured canonicalization methods:

» WSSVerification.EXC_C14N: http://www.w3.0rg/2001/10/xml-exc-c14n#

» WSSVerification.C14N: http://www.w3.0rg/2001/10/xml-c14n#

Whether signature confirmation is
required

If the WSSSignature API specifies that signature confirmation is required,
then the WSSVerification API verifies the signature confirmation value in
the response message that has the signature confirmation value attached
to it when received. Signature confirmation is defined in the OASIS Web
Services Security Version 1.1 specification.

The default signature confirmation is false.

226 Securing WebSphere applications

Table 39. Signature verification default behaviors (continued)

Signature verification decisions Default behavior
Which security token to specify Adds the securityToken object as a signature part. WebSphere Application
(securityToken) Server sets the token information to use for verification.

WebSphere Application Server supports the following pre-configured
tokens for signing:

» X.509 Token
* Derived Key Token

Information required for tokens include the class for the token, the callback
handler information, and the name of the JAAS login module.

1. To verify the signature in a SOAP message by using the WSSVerification API, first ensure that the
application server is installed.

2. Use the WSSVerification API to set the message parts to be verified and to specify the algorithms in a
SOAP message. The WSS API process for signature verification follows these process steps:

a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.
b. Creates the WSSConsumingContext instance from the WSSFactory instance.

c. Ensures that WSSConsumingContext is called in the JAX-WS Provider implementation class. Due
to the nature of the JAX-WS programming model, a JAX-WS provider needs to be implemented
and must call the WSSConsumingContext to verify the SOAP message signature.

Creates WSSVerification from the WSSFactory instance.

Adds the part to be verified. If the digest method or the transform method are changed, create
WSSVerifyPart and set it into WSSVerification.

Sets the candidates of the canonicalization method, if the default is not appropriate.
Sets the candidates of the signature method, if the default is not appropriate.

Sets the candidate security token, if the default is not appropriate.

i. Calls the requireSignatureConfirmation(), if the signature confirmation is applied.

j- Adds WSSVerification to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAP message context.

sa =

Results

You have completed the steps to verify the signature for the consumer section of the bindings. If there is
an error condition, a WSSException is provided. If successful, the WSSConsumingContext.process() is
called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses methods that are defined in the WSSVerification
API:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list

String certpath = "c:/WebSphere/AppServer/etc/ws-security/samples/intca2.cer";
// The location of the X509 certificate file

X509Certificate x509cert = null;

Chapter 5. Web services 227

try {
InputStream is = new FilelInputStream(certpath);

CertificateFactory cf = CertificateFactory.getInstance("X.509");

x509cert = (X509Certificate)cf.generateCertificate(is);
} catch(FileNotFoundException el){
throw new WSSException(el);
} catch (CertificateException e2) {
throw new WSSException(e2);

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);
// Create the certificate store
java.util.List<CertStore> certList = new java.util.ArraylList<CertStore>();
CollectionCertStoreParameters certparam = new CollectionCertStoreParameters (eeCerts);
CertStore cert = null;
try
cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");
} catch (NoSuchProviderException el) {
throw new WSSException(el);
} catch (InvalidAlgorithmParameterkException e2) {
throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3)
throw new WSSException (e3);
1
if(certList != null){
certList.add(cert);
1
// Generate the callback handler
X509ConsumeCallbackHandler callbackHandler = new X509ConsumeCallbackHandler(
"dsig-receiver.ks",
"ij",
"server".toCharArray(),
certlList,
java.security.Security.getProvider("IBMCertPath")
)s

// Generate the WSSVerification instance (step: d)
WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandler);

// Set the part to be verified (step: e)
// DEFAULT: WSSVerification.BODY, WSSSignature.ADDRESSING HEADERS,
// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP header to be specified by QName (step: e)
ver.addRequiredVerifyHeader(new QName("http://www.w3.0rg/2005/08/addressing", "MessageID"));

// Set the part to be specified by the keyword (step: e)
ver.addRequiredVerifyPart (WSSVerification.BODY);

// Set the part to be specified by WSSVerifyPart (step: e)
WSSVerifyPart verPart = factory.newWSSVerifyPart();
verPart.setRequiredVerifyPart (WSSVerification.BODY);
verPart.addAllowedDigestMethod (WSSVerifyPart.SHA256) ;
ver.addRequiredVerifyPart (verPart);

// Set the part specified by XPath expression (step: e)
StringBuffer sb = new StringBuffer();
sh.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/"
and Tocal-name()="'Envelope']");
sb.append("/*[namespace-uri()="http://schemas.xmlsoap.org/soap/envelope/'
and Tocal-name()='Body']");
sh.append("/*[namespace-uri()="http://xmlsoap.org/Ping'
and Tocal-name()='Ping']");
sbh.append("/*[namespace-uri()="http://xmlsoap.org/Ping’
and local-name()='Text']");
ver.addRequiredVerifyPartByXPath(sb.toString());

// Set one or more canonicalization method candidates for verification (step: f)
// DEFAULT : WSSVerification.EXC_C14N
ver.addAllowedCanonicalizationMethod (WSSVerification.C14N);
ver.addAllowedCanonicalizationMethod (WSSVerification.EXC_C14N);

228 Securing WebSphere applications

// Set one or more signature method candidates for verification (step: g)
// DEFAULT : WSSVerification.RSA SHAl
ver.addAllowedSignatureMethod (WSSVerification.HMAC_SHA1);

// Set the candidate security token to used for the verification (step: h)
X509ConsumeCallbackHandler callbackHandler2 = getCallbackHandler2();
ver.addToken (X509Token.class, callbackHandler2);

// Set the flag to require the signature confirmation (step: i)
ver.requireSignatureConfirmation();

// Add the WSSVerification to the WSSConsumingContext (step: j)
concont.add(ver);

//Validate the WS-Security header (step: k)
concont.process(msgcontext);

What to do next

After verifying the signature and setting algorithm methods for the SOAP message, you can set either the
digest method or the transform method. If you want to set these methods, use the WSSVerifyPart API, or
configure policy sets using the administrative console.

Verifying the signed parts using the WSSVerifyPart API:

To secure SOAP messages on the consumer side, use the Web Services Security APls (WSS API) to
configure the verify parts information for the consumer binding on the response consumer (client side). You
can specify which algorithm methods and which parts of the SOAP message are to be verified. Use the
WSSVerifyPart API to change the digest method or the transform method. The WSSVerifyPart API is part
of the com.ibm.websphere.wssecurity.wssapi.verification package.

Before you begin

To secure SOAP messages using the signing verification information, you must complete one of the
following tasks:

» Configure the signature verification information using the WSSVerification API.
» Configure verify parts using the WSSVerifyPart API, as needed.

The WSSVerifyPart is used for specify the transform or digest methods for the verification. Use the
WSSVerifyPart API or configure policy sets using the administrative console.

About this task

WebSphere Application Server uses the signing information for the default consumer to verify the signed
parts of the message. The WSSVerifyPart API is only supported on the response consumer (requester).

The following table shows the required verification parts when the digital signature security constraint
(integrity) is defined:

Chapter 5. Web services 229

Table 40. Verify parts information

Verify parts information

Description

keyword

Sets the verify parts using the following keywords:
+ BODY

+ ADDRESSING_HEADERS

* TIMESTAMP

The WS-Addressing headers are not decrypted but can be signed and
verified.

xpath

Sets the verify parts using an XPath expression.

header

Sets the header, specified by QName, as a required verify part.

For signature verification, certain default behaviors occur. The simplest way to use the WSSVerification
API is to use the default behavior (see the example code). The default values are defined by the WSS API
for the signing algorithm and the canonicalization algorithm, and the verify parts.

Table 41. Verify parts default behaviors

Verify parts decisions

Default behavior

Which keywords to specify

The different SOAP message parts to be signed and used for message
protection. WebSphere Application Server supports the following keywords:

* WSSVerification.BODY
* WSSVerification. ADDRESSING_HEADERS
* WSSVerification. TIMESTAMP

Which transform method to use
(algorithm)

Adds the transform method. The transform algorithm is specified within the
<Transform> element and specifies the transform algorithm for the
signature. The default transform method is TRANSFORM_EXC_C14N.

WebSphere Application Server supports the following pre-configured

transform algorithms:

» WSSVerifyPart. TRANSFORM_EXC_C14N (the default value):
http://www.w3.0rg/2001/10/xml-exc-c14n#

» WSSVerifyPart. TRANSFORM_XPATH2_FILTER: http://www.w3.org/
2002/06/xmldsig-filter2
Use this transform method to ensure compliance with the Basic Security
Profile (BSP).

* WSSVerifyPart. TRANSFORM_STRT10: http:/docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

* WSSVerifyPart. TRANSFORM_ENVELOPED_SIGNATURE:
http://www.w3.0rg/2000/09/xmldsig#enveloped-signature

Which digest method to use (algorithm)

Sets the digest algorithm method. The digest method algorithm that is
specified within the <DigestMethod> element is used in the <Signinglnfo>
element. The default digest method is SHAT.

WebSphere Application Server supports the following digest method
algorithms:

» WSSVerifyPart.SHA1: http://www.w3.0rg/2000/09/xmldsig#sha1
» WSSVerifyPart. SHA256: http://www.w3.0rg/2001/04/xmlenc#sha256
» WSSVerifyPart. SHA512: http://www.w3.0rg/2001/04/xmlenc#sha512

1. To verify signed parts by using the WSSVerifyPart AP, first ensure that the application server is

installed.

230 Securing WebSphere applications

2. Use the Web Services Security API to verify the verification in a SOAP message. The WSS API
process for verifying the signature follows these process steps:

a. Uses WSSFactory.getinstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Ensures that
WSSConsumingContext is called in the JAX-WS Provider implementation class. Due to the nature
of the JAX-WS programming model, a JAX-WS provider needs to be implemented and must call
the WSSConsumingContext to verify the SOAP message signature.

Creates the CallbackHandler to use for verification.

Create the WSSVerification object from the WSSFactory instance.

Creates WSSVerifyPart from the WSSFactory instance.

Sets the part to be verified, if the default is not appropriate.

Sets the candidates for the digest method, if the default is not appropriate.
Sets the candidates for the transform method, if the default is not appropriate.
i. Adds WSSVerifyPart to WSSVerification.

j- Adds WSSVerification to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAPMessageContext.

@ o a0

Results

You have completed the steps to verify to verify the signed parts on the consumer side. If there is an error
condition when verifying the signing information, a WSSException is provided. If successful, the
WSSConsumingContext.process() is called, and Web Services Security is verified for the SOAP message.

Example

The following example provides sample code for the WSSVerification API process for verifying the signing
information in a SOAP message:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list
String certpath =
"c:/WebSphere/AppServer/etc/ws-security/samples/intca2.cer";
// The location of the X509 certificate file
X509Certificate x509cert = null;
try {
InputStream is = new FileInputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);
} catch(FileNotFoundException el){
throw new WSSException(el);
} catch (CertificateException e2) {
throw new WSSException(e2);
}

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);
// create certStore

java.util.List<CertStore> certList = new
java.util.ArrayList<CertStore>();

CollectionCertStoreParameters certparam = new
CollectionCertStoreParameters(eeCerts);

CertStore cert = null;

try {

Chapter 5. Web services 231

cert = CertStore.getInstance("Collection”,
certparam, "IBMCertPath");
} catch (NoSuchProviderException el) {
throw new WSSException(el);
} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);

if(certlist != null){
certList.add(cert);
1

// generate callback handler (step: c)
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler(
"dsig-receiver.ks",
Iljksll’
"server".toCharArray(),
certlList,
java.security.Security.getProvider("IBMCertPath")
)s
// Generate the WSSVerification instance (step: d)
WSSVerification ver = factory.newWSSVerification(X509Token.class,
callbackHandler);

// Set the part to be specified by WSSVerifyPart (step: e)
WSSVerifyPart verPart = factory.newWSSVerifyPart();

// Set the part to be specified by the keyword (step: f)
verPart.setRequiredVerifyPart (WSSVerification.BODY);

// Set the candidates for the digest method for verification (step: g)
// DEFAULT : WSSVerifyPart.SHA1
verPart.addAllowedDigestMethod (WSSVerifyPart.SHA256) ;
// Set the candidates for the transform method for verification (step: h)
// DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N : String
verPart.addA1lowedTransform(WSSVerifyPart.TRANSFORM STRT10);

// Set WSSVerifyPart to WSSVerification (step: i)
ver.addRequiredVerifyPart (verPart);

// Add WSSVerification to WSSConsumingContext (step: j)
concont.add(ver);

//Validate the WS-Security header (step: k)
concont.process(msgcontext) ;

What to do next
You have completed configuring the signed part to be verified.
Configuring the client for response signature verification methods:

Use the WSSVerification and WSSVerifyPart APIs to choose the signing verification methods. The request
signing verification methods include the digest algorithm and the transport methods.

Before you begin

To complete configuration of the signature verification information to secure SOAP messages, you must
perform the following algorithm tasks:

* Use the WSSVerification API to configure the canonicalization and signature methods.
* Use the WSSVerifyPart API to configure the digest and transform methods.

to configure the algorithm methods to use when configuring the client for request signing.

232 Securing WebSphere applications

About this task

The following table describes the purpose of this information. Some of these definitions are based on the
XML-Signature specification, which is located at the following Web site |nttp://www.w3.org/TR/xmldsig-core}

Name of method Purpose

Digest algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. Signing the
<DigestValue> element binds the resource content to the
signer key. The algorithm selected for the client request
sender configuration must match the algorithm selected in
the client request receiver configuration.

Transform algorithm Applies to the <Transform> element.

Signature algorithm Specifies the Uniform Resource Identifiers (URI) of the

signature verification method.

Canonicalization algorithm Specifies the Uniform Resource Identifiers (URI) of the

canonicalization method.

After configuring the client to digitally sign the message, you must configure the client to verify the digital
signature. You can use the WSS APIs or configure policy sets using the administrative console to verify
the digital signature and to choose the verification and verify part algorithms. If using the WSS APIs to
configure, use the WSSVerification and WSSVerifyPart APIs to specify which digitally signed message
parts to verify and to specify which algorithm methods to use when configuring the client for request
signing.

The WSSVerification and WSSVerifyPart APIs perform the following steps to configure the signature
verification and verify parts algorithm methods:

1.

For the consumer binding, the WSSVerification API specifies the signature methods to allow for the
signature verification. WebSphere Application Server supports the following pre-configured signature
methods:

* WSSVerification.RSA_SHA1 (the default value): http://www.w3.0rg/2000/09/xmldsig#rsa-sha1
* WSSVerification.HMAC_SHA1: http://www.w3.0rg/2000/09/xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.0rg/2000/09/xmldsig#dsa-sha1) is not
supported.

For the consumer binding, the WSSVerification API specifies the canonicalization method to allow for
the signature verification. WebSphere Application Server supports the following pre-configured
canonicalization methods by default:

* WSSVerification.EXC_C14N (the default value): http://www.w3.0rg/2001/10/xml-exc-c14n#
* WSSVerification.C14N: http://www.w3.0rg/2001/10/xml-c14n#

For the consumer binding, the WSSVerifyPart API specifies the digest method, as needed. WebSphere
Application Server supports the following digest method algorithms for signed parts verification:

* WSSVerifyPart.SHA1 (the default value): http://www.w3.0rg/2000/09/xmldsig#sha1
* WSSVerifyPart.SHA256: http://www.w3.0rg/2001/04/xmlenc#sha256
* WSSVerifyPart.SHA512: http://www.w3.0rg/2001/04/xmlenc#sha512

For the consumer binding, the WSSVerifyPart API specifies the transform method. WebSphere
Application Server supports the following transform algorithms for verify parts:

* WSSVerifyPart. TRANSFORM_EXC_C14N (the default value): http://www.w3.0rg/2001/10/xml-exc-
cldn#

* WSSVerifyPart. TRANSFORM_XPATH2_FILTER: http://www.w3.0rg/2002/06/xmldsig-filter2
* WSSVerifyPart. TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

Chapter 5. Web services 233

http://www.w3.org/TR/xmldsig-core

» WSSVerifyPart. TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.0rg/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support these algorithms:
* http://www.w3.0rg/2002/07/decrypt#XML
o hitp://www.w3.0rg/TR/1999/REC-xpath-19991116

Results

You have specified which method to use when verifying a digital signature when the client sends a
message.

Example

The following example provides sample WSS API code that specifies the verification information, the body
as a part to be verified, the HMAC_SHAT1 as a signature method, C14N and EXC_C14N as the candidates
of canonicalization methods, TRANSFORM_STRT10 as a transform method, and SHA256 as a digest
method.

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance
WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list
String certpath = "intca2.cer";
// The location of the X509 certificate file
X509Certificate x509cert = null;
try {
InputStream is = new FilelnputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);
} catch(FileNotFoundException el){
throw new WSSException(el);
} catch (CertificateException e2) {
throw new WSSException(e2);
1

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert) ;
// Create the certStore
java.util.List<CertStore> certList = new
java.util.ArrayList<CertStore>();
CollectionCertStoreParameters certparam = new
CollectionCertStoreParameters(eeCerts);
CertStore cert = null;
try {
cert = CertStore.getInstance("Collection",
certparam,
"IBMCertPath");
} catch (NoSuchProviderException el) {
throw new WSSException(el);
} catch (InvalidAlgorithmParameterkException e2) {
throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);

if(certList != null){
certList.add(cert);
}

// Generate the callback handler
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler(

234 Securing WebSphere applications

"dsig-receiver.ks",

"ij",

"server".toCharArray(),

certlList,

java.security.Security.getProvider(
"IBMCertPath")

)s

// Generate the WSSVerification instance
WSSVerification ver = factory.newhWSSVerification(X509Token.class,
callbackHandler);

// Set one or more candidates of the signature method used for

// verification (step. 1)

// DEFAULT : WSSVerification.RSA_SHA1
ver.addAllowedSignatureMethod (WSSVerification.HMAC_SHAL);

// Set one or more candidates of the canonicalization method used for

// verification (step. 2)

// DEFAULT : WSSVerification.EXC_C14N
ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);
ver.addAllowedCanonicalizationMethod (WSSVerification.EXC_C14N);

// Set the part to be specified by WSSVerifyPart
WSSVerifyPart verPart = factory.newWSSVerifyPart();

// Set the part to be specified by the keyword
verPart.setRequiredVerifyPart (WSSVerification.BODY);

// Set the candidates of digest methods to use for verification (step. 3)
// DEFAULT : WSSVerifypart.TRANSFORM EXC C14N : String
verPart.addA11owedTransform(WSSVerifyPart.TRANSFORM _STRT10);
// Set the candidates of digest methods to use for verification (step. 4)
// DEFAULT : WSSVerifyPart.SHA1
verPart.addAllowedDigestMethod (WSSVerifyPart.SHA256) ;

// Set WSSVerifyPart to WSSVerification
ver.addRequiredVerifyPart (verPart);

// Add the WSSVerification to the WSSConsumingContext
concont.add(ver);

// Validate the WS-Security header
concont.process(msgcontext);

What to do next

You have completed configuring the signature verification algorithms. Next, configure the encryption or
decryption algorithms, if not already configured. Or, configure the security token information, as needed.

Signature verification methods using the WSS Verification API:

You can verify the signing or signature information using the WSS API for the consumer binding. The
signature and canonicalization algorithm methods are used for the generator binding. The WSSVerification
APl is provided in the com.ibm.websphere.wssecurity.wssapi.verification package.

To configure consumer signing information to protect message integrity, you must first digitally sign and
then verify the signature for the SOAP messages. Integrity refers to digital signature while confidentiality
refers to encryption. Integrity decreases the risk of data modification when you transmit data across a
network.

Methods

Methods that are used for the signature verification include the:

Chapter 5. Web services 235

Signature method
Sets the signature algorithm method.

Canonicalization method
Sets the canonicalization algorithm method.

The algorithm that is specified for the request generator configuration must match the algorithm that is
specified for the response consumer configuration.

Signature algorithms

The signature algorithms specify the signature verification algorithm that is used to sign the certificate. The
signature algorithms specify the Uniform Resource Identifiers (URI) of the signature verification method.
WebSphere Application Server supports the following pre-configured algorithms:

Table 42. Signature verification algorithms

Algorithm Description

WSSVerification. HMAC_SHA1 A URI of the signature algorithm, HMAC:
http://www.w3.0rg/2000/09/xmldsig#hmac-sha1

WSSVerification.RSA_SHA1 (the default value) A URI of the signature algorithm, RSA:
http://www.w3.0rg/2000/09/xmldsig#rsa-sha1

WebSphere Application Server does not support the algorithm for DSA-SHA1: http://www.w3.0rg/2000/09/
xmldsig#dsa-shaf

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization
method. WebSphere Application Server supports the following pre-configured algorithms:

Table 43. Verification canonicalization algorithms

Algorithm Description

WSSVerification.C14N A URI of the inclusive canonicalization algorithm, C14N:
http://www.w3.0rg/2001/10/xml-c14n#

WSSVerification.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm
EXC_C14N: http://www.w3.0rg/2001/10/xml-exc-c14n#

The following example provides sample WSS API code that specifies the X.509 token security token for
signature verification:

WSSFactory factory = WSSFactory.getInstance();
WSSConsumingContext concont = factory.newWSSConsumingContext();

// X509ConsumeCallbackHandler
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler("dsig-receiver.ks",
"ij",
"server".toCharArray(),
certlList,
java.security.Security.getProvider("IBMCertPath")46);

// Set the verification component

// DEFAULT verification parts: Body, WS-Addressing header, and Timestamp

// DEFAULT data encryption algorithm: RSA-SHA1

// DEFAULT digest algorithm: SHA1

// DEFAULT canonicalization algorithm: exc-clé4n

WSSVerification ver = factory.newWSSVerification(X509Token.class,
callbackhandler);

236 Securing WebSphere applications

concont.add(ver);

// Validate the WS-Security header
concont.validate(msgctx);

Choosing the verify parts methods using the WSSVerifyPart API:

You can configure the signing verification information for the consumer binding using the WSS API. The
transform algorithm and digest methods are used for the consumer binding. Use the WSSVerifyPart API to
configure the algorithm methods. The WSSVerifyPart API is provided in the
com.ibm.websphere.wssecurity.wssapi.verification package.

To configure consumer verify parts information to protect message integrity, you must first digitally sign and
then verify the signature and signed parts for the SOAP messages. Integrity refers to digital signature
while confidentiality refers to encryption. Integrity decreases the risk of data modification when you
transmit data across a network.

Methods

Methods that are used for the signing information include the:

Digest method
Sets the digest method.

Transform method
Sets the transform algorithm method.

Digest algorithms

The digest method algorithm is specified within the element is used in the <Digest> element. WebSphere
Application Server supports the following pre-configured digest algorithms:

Table 44. Verify parts digest methods

Digest method Description

WSSVerifyPart. SHA1 (the default value) A URI of the digest algorithm, SHA1:
http://www.w3.0rg/2000/09/xmldsig#sha1

WSSVerifyPart. SHA256 A URI of the digest algorithm, SHA256:

http://www.w3.0rg/2001/04/xmlenc#sha256

WSSVerifyPart.SHA512 A URI of the digest algorithm, SHA256:
http://www.w3.0rg/2001/04/xmlenc#sha512

Transform algorithms

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm
for the signed part. WebSphere Application Server supports the following pre-configured transform
algorithms:

Table 45. Verify parts transform methods

Digest method Description

WSSVerifyPart. TRANSFORM_ENVELOPED_SIGNATURE| A URI of the transform algorithm, enveloped signature:
http:// www.w3.0rg/2000/09/xmldsig#enveloped-signature

WSSVerifyPart. TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform:
http://docs.oasis-open.org/wss/2004/01/o0asis-200401-
wss-soap-message-security-1.0#STR-Transform

Chapter 5. Web services 237

Table 45. Verify parts transform methods (continued)

Digest method Description

WSSVerifyPart. TRANSFORM_EXC_C14N (the default A URI of the transform algorithm, Exc-C14N:

value) http://www.w3.0rg/2001/10/xml-exc-c14n#

WSSVerifyPart. TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter:
http://www.w3.0rg/2002/06/xmldsig-filter2

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:
* http:// www.w3.0rg/TR/1999/REC-xpath-19991116
* http://www.w3.0rg/2002/07/decrypt#XML

The following example provides sample WSS API code that verifies the body using SHA256 as the digest
method and TRANSFORM_EXC_14N and TRANSFORM_STRT10 as the transform methods:

// get the message context
Object msgcontext = getMessageContext();

// generate WSSFactory instance
WSSFactory factory = WSSFactory.getInstance();

// generate WSSConsumingContext instance
WSSConsumingContext concont = factory.newWSSConsumingContext();

// generate the cert list
String certpath = "intca2.cer";// The location of the X509
certificate file X509Certificate x509cert = null;
try {
InputStream is = new FilelInputStream(certpath);
CertificateFactory cf = CertificateFactory.getInstance("X.509");
x509cert = (X509Certificate)cf.generateCertificate(is);
} catch(FileNotFoundException el){
throw new WSSException(el);
} catch (CertificateException e2) {
throw new WSSException(e2);
1

Set<Object> eeCerts = new HashSet<Object>();
eeCerts.add(x509cert);
// create certStore
java.util.List<CertStore> certList = new java.util.ArraylList<CertStore>();
CollectionCertStoreParameters certparam = new
CollectionCertStoreParameters (eeCerts);
CertStore cert = null;
try
cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");
} catch (NoSuchProviderException el) {
throw new WSSException(el);
} catch (InvalidAlgorithmParameterException e2) {
throw new WSSException(e2);
} catch (NoSuchAlgorithmException e3) {
throw new WSSException (e3);
1
if(certList != null){
certList.add(cert);

}

// generate callback handler
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler(
"dsig-receiver.ks",
"ij",
"server".toCharArray(),
certlList,
java.security.Security.getProvider("IBMCertPath")
)s

238 Securing WebSphere applications

//generate WSSVerification instance
WSSVerification ver = factory.newWSSVerification(X509Token.class,
callbackHandler);

//set one or more candidates of the signature method used for the
//verification (step. 1)

// DEFAULT : WSSVerification.RSA_SHAl

ver.addAllowedSignatureMethod (WSSVerification.HMAC_SHAL);

//set one or more candidates of the canonicalization method used
//for the verification (step. 2)

// DEFAULT : WSSVerification.EXC C14N

ver.addAllowedCanonicalizationMethod (WSSVerification.C14N);

ver.addAllowedCanonicalizationMethod (WSSVerification.EXC_C14N);

//set the part to be specified by WSSVerifyPart
WSSVerifyPart verPart = factory.newWSSVerifyPart();

//set the part to be specified by the keyword
verPart.setRequiredVerifyPart(WSSVerification.BODY);

//set the candidates of digest methods to use for verification (step. 3)
// DEFAULT : WSSVerifypart.TRANSFORM_EXC C14N
verPart.addA1TowedTransform(WSSVerifyPart. TRANSFORM_EXC_C14N);
verPart.addA1TowedTransform(WSSVerifyPart.TRANSFORM_STRT10) ;

//set the candidates of digest methods to use for verification (step. 4)
// DEFAULT : WSSVerifyPart.SHA1
verPart.addAlTowedDigestMethod (WSSVerifyPart.SHA256) ;

//set WSSVerifyPart to WSSVerification
ver.addRequiredVerifyPart(verPart);

//add the WSSVerification to the WSSConsumingContext
concont.add(ver);

//validate the WS-Security header
concont.process(msgcontext);

Validating the consumer token to protect message authenticity:

The token consumer information is used on the consumer side to incorporate and validate the security
token. The Username token, X509 tokens, and LTPA tokens by default are used for message authenticity.

Before you begin

The token processing and pluggable token architecture in the Web Service Security run time reuses the
same security token interface and Java Authentication and Authorization Service (JAAS) Login Module
from the Web Services Security APIs (WSS API). The same implementation of token creation and
validation can be used in both the WSS API and the WSS SPI in the Web Service Security run time.

Note: The com.ibm.wsspi.wssecurity.token.TokenConsumingComponent interface is not used with
JAX-WS Web services. If you are using JAX-RPC Web services, this interface is still valid.

Note that the key name (KeyName) element is not supported because there is no KeyName policy
assertion defined in the current OASIS Web Services Security draft specification. For similar reasons, a
SAML token is not supported.

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible

for creating the security token on the generator side and validating (authenticating) the security token on
the consumer side.

Chapter 5. Web services 239

For example, on the generator side, the Username token is created by the JAAS LoginModule and using
the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username
SecurityToken object and passes it to the Web services security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for
validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the
Web services security run time to the LoginModule. After the token is authenticated, a Username
SecurityToken object is created and passed it to the Web Service Security run time.

Note: WebSphere Application Server does not support a stackable login module with the WebSphere
Application Server default login module implementation, meaning adding the login module before or
after the WebSphere Application Server login module implementation. If you want to stack the login
module implementations, you must develop the required login modules because there is no default
implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server
includes support for these classes:

» Security token (SecurityTokenlmpl)
» Binary security token (BinarySecurityTokenimpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security
tokens:

» Derived key token

» Security context token (SCT)
* Username token

* LTPA token propagation

* LTPA token

* X509PKCS7 token

* X509PKIPath token

* X509v3 token

» Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message
authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS APl and WSS SPI are only supported on the client. To specify the security token type on the
consumer side, you can also configure policy sets using the administrative console. You can also use the
WSS APIs or policy sets for matching generator security tokens.

The default Login Module and Callback implementations are designed to be used as a pair, meaning both
a generator and a consumer part. To use the default implementations, select the appropriate generator
and consumer security token in a pair. For example, select system.wss.generate.x509 in the token
generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the consumer-side security token, use the appropriate pre-configured token consumer
interface from the WSS APIs to complete the following token configuration process steps:

1. Generate the wssFactory instance.
2. Generate the wssConsumingContext instance.

The WSSConsumingContext interface stores the components for consuming Web Services Security
(WS-Security), such as verification, decryption, the security token, and the time stamp. When the
validate() method is called, all of these components are validated.

3. Create the consumer-side components, such as the WSSVerification and the WSSDecryption objects.

240 Securing WebSphere applications

4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java
Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS
configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not
remove the predefined system or application login configurations. However, within these
configurations, you can add module class names and specify the order in which WebSphere
Application Server loads each module.

5. Specify a token consumer class name. The token consumer class name specifies the required
information to validate the SecurityToken. The Username token, the X.509 tokens, and the LTPA
tokens are used by default for message authenticity.

6. Specify the settings for the callback handler by specifying a callback handler class name and also
specifies the callback handler keys. This class name is the name of the callback handler
implementation class that is used for the plug-in to the security token framework.

WebSphere Application Server provides the following default callback handler implementations for the
consumer side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback
This class is a callback for handling the name-value pair in elements in the Web Services
Security (WS-Security) configuration XMl files.

ccom.ibm.websphere.wssecurity.callbackhandler.UNTConsumeCallbackHandler
This class is a callback handler for the Username token on the consumer side. This instance
is used to set into WSSConsumingContext object to validate a Username token. Use this
implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler
This class is a callback handler that is used to validate the X.509 certificate that is inserted in
the Web services security header within the SOAP message as a binary security token on the
consumer side. This instance is used to generate the WSSVerification object and
WSSDecryption objects, set the objects into WSSConsumingContext object to validate the
X.509 binary security tokens. A keystore and a key definition are required for this callback
handler. If you use this implementation, a key store password, path, and type must have been
provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler
This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens
on the consumer side. This instance is used to generate the WSSVerification and
WSSDecryption objects to validate an LTPA token.

This callback handler is used to validate the LTPA security token inserted in the Web services
security header within the SOAP message as a binary security token. However, if the user
name and password are specified, WebSphere Application Server authenticates the user
name and password to obtain the LTPA security token rather than obtaining it from the Run
As Subject. Use this callback handler only when the Web service is acting as a client on the
application server. It is recommended that you do not use this callback handler on a Java EE
application client. If you use this implementation, a basic authentication user ID and password
must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler. KRBTokenConsumeCallbackHandler
This class is a callback handler for the Kerberos v5 token on the consumer side. This
instance is used to set the WSSConsumingContext object to consume the Kerberos v5
AP-REQ as a binary security token. The instance is also used to generate the
WSSVerification and WSSDecryption objects to use the Kerberos session key or derived key
in the SOAP message verification and decryption.

7. If a X.509 token is specified, additional token information is also specified.

keyStoreRef The reference name of the keystore that is used for the key locator.

Chapter 5. Web services 241

keyStorePath

The keystore file path from which the keystore is loaded, if needed. It is
recommended that you use the ${USER_INSTALL_ROOT} in the path name as this
variable expands to the WebSphere Application Server path on your machine. This
path is required when you use the X.509 tokens callback handler implementations.

keyStorePassword

The password that is used to check the integrity of the keystore, or the keystore
password that is used to unlock the keystore and to access the keystore file. The
keystore and its configuration are used for some of the default callback handler
implementations that are provided by WebSphere Application Server.

keyStoreType

The keystore type of keystore that is used for the key locator. This selection
indicates the format that is used by the keystore file. The following values are
available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the
software development kit (SDK). The default IBM JCE is configured in
WebSphere Application Server. This option provides stronger protection for
stored private keys by using Triple DES encryption.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS
only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores
using this format might contain RSA keys on cryptographic hardware or
might contain encrypt keys that use cryptographic hardware to ensure
protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

alias

The key alias name. The key alias is used by the key locator to find the key within
the keystore file.

keyPassword

The key password that is used for recovering the key. This password is needed to
access the key object within the keystore file.

keyName

The name of the key. For digital signatures, the key name is used by the request
generator or response consumer signing information to determine which key is
used to digitally sign the message. For encryption, the key name is used to
determine the key used for encryption. The key name must be a fully qualified,
distinguished name (DN). For example, CN=Bob,0=1BM, C=US.

trustAnchorPath

The file path from which the trust anchor is loaded.

trustAnchorType

The type of trust anchor.

trustAnchorPassword

The password that is used to check the integrity of the trust anchor or the password
used to unlock the keystore.

certStores

A list of certificate stores. A collection certificate store includes a list of untrusted,
intermediary certificates and certificate revocation lists (CRLs). The collection
certificate store is used to validate the certificate path of the incoming
X.509-formatted security tokens.

provider

The security provider.

The following can be specified for a X.509 token:
a. Without any keystore.

b. With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted
root certificates. These configurations are used to validate the certificate path of incoming
X.509-formatted security tokens. For example, when you select the trust anchor or the certificate
store of a trusted certificate, you must configure the trust anchor and the certificate store before
setting the certificate path.

242 Securing WebSphere applications

c. With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The
keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to
access the keystore file. Keystore objects within trust anchors contain trusted root certificates that
are used by the CertPath API to validate the trustworthiness of a certificate chain. The names of
the trust anchor and the collection certificate store are created in the certificate path under your
token consumer.

With a keystore that is used for the key locator and the trust anchor.

With a map that includes key-value pairs. For example, you might specify the value type name
and the value type Uniform Resource Identifier (URI). The value type specifies the namespace
URI of the value type for the consumer token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509
Specifies an X.509 certificate token.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-

1.0#X509PKIPathv1
Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler
is used to create X.509 certificates encoded with the PkiPath format. The certificate is
inserted in the Web services security header within the SOAP message as a binary
security token. A keystore is required for this callback handler. A CRL is not supported by
the callback handler; therefore, the collection certificate store is not required or used. If
you use this implementation, you must provide a key store password, path, and type on
this panel.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-

1.0#PKCS7
Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.
This callback handler is used to create X.509 certificates encoded with the PKCS#7
format. The certificate is inserted in the Web services security header in the SOAP
message as a binary security token. A keystore is required for this callback handler. You
can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is
encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,
you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value
type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For an LTPA token, you can use LTPA for the value type local name. This local name
causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for
the value type Uniform Resource Identifier (URI).

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2
For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local
name. This local name causeshttp://www.ibm.com/websphere/appserver/tokentype to be
specified for the value type Uniform Resource Identifier (URI).

8. If the Username token is specified as the token consumer class name, the following token information
can be specified:

a. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token consumer. Nonce is a unique,
cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of
Username tokens. Nonce is valid only when the validating token type is a Username token, and it
is available only for the response consumer binding.

Chapter 5. Web services 243

b. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in
the Username token. The time stamp is valid only when the incorporated token type is a

Username token.

c. Specifies a map that includes key-value pairs. For example, you might specify the value type
name and the value type Uniform Resource Identifier (URI). The value type specifies the
namespace URI of the value type for the consumer token, and represents the token type of this

class:

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken
Specifies a Username token.

9. If a Kerberos v5 token is specified as the token generator class name, the following token information

can be specified:

Token Information

Description

Default Value

tokenValueType Kerberos token value type in QName | http://docs.oasis-open.org/wss/oasis-
defined by Oasis Kerberos Token wss-kerberos-token-profile-
Profile v1.1 specification. 1.1#GSS_Kerberosv5_AP_REQ
requireDKT A boolean value to require a derived |false
key for message protection.
clabel The client label for the derived key. WS-SecureConversation
Specify null to use the default value.
slabel The service label for the derived key. | WS-SecureConversation
Specify null to use the default value.
keylen The length of the derived key. 16

Specify zero to use the default value

supportTokenRequireSHA1

A boolean value to require a SHA1
key that is used in subsequent
request messages when the Kerberos
token is used as a supporting token.

false

SHA1 key is consumed only if the
supporting Kerberos token is
protected. If set to true, the SHA1 key
is always consumed.

decComponent

An instance of WSSDecryption .

Set decComponent and
verComponent to null to initialize this
first for either the decryption or
verification component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

verComponent

An instance of WSSVerfication.

Set decComponent and
verComponent to null to initialize this
first for either the decryption or
verification component. Then, use the
initialized component only in the
callback handler constructor for the
second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.
Specify the token value type as the local name. It is not necessary to specify the value type URI for

the Kerberos v5 token.

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ
 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

244 securing WebSphere applications

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

 http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

* http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

10. If secure conversation is used for message protection, then the following information must be

specified:
Information Description
EncryptionAlgorithm This determines the key size.
cLabel The client label used when creating the derived key.
sLabel The server label used when creating the derived key.

11. Set the components into the wssConsumingContext object.
12. Invoke the wssConsumingContext.process() method.

Results

Using the WSS APIs, you have configured the token consumer.

What to do next

You must specify a similar token generator configuration, if not already completed.
Configuring the consumer security tokens using the WSS API:

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APIs.
To configure the token on the consumer side, use the Web Services Security APIs (WSS API). The
consumer security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.

Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same
framework from the WSS API can be reused. The same implementation of creating and validating security
token can be used both for the Web Service Security run time and for the WSS API application code. The
redesigned framework also simplifies the SPI programming model and will make it easier to add security
token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To
configure tokens, you must have completed the following token task: configure the generator tokens, as
needed.

About this task

On the generator side, the JAAS CallbackHandler and JAAS LoginModule are responsible for creating the
security token. The token is created by using the JAAS LoginModule and by using JAAS CallbackHandler
to pass authentication data. Then, the JAAS LoginModule creates the securityToken object, such as the
UsernameToken, and passes it to the Web Service Security run time.

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.
then the JAAS CallbackHandler is used to pass authentication data from the Web Service Security run
time to the LoginModule. After the token is authenticated and a security token object is created, then the
token is passed it to the Web Service Security run time.

Chapter 5. Web services 245

When using the WSS API for consumer token validation, certain default behaviors occur. The simplest way
to use the WSS API is to use the default JAAS login module and callback handler. The example uses the
default for them so the example does not specify the JAAS login module name.

The simplest way to use the WSS API is to use the default behavior (see the example code). The WSS
API provide defaults for the token type, the token value, and the JAAS configuration name. The default

token behaviors include:
Table 46. Default token behaviors

Consumer token decisions Default behavior

Which token type to use The token type specifies which type of token to use for signing and
validating messages. The X.509 token is the default token type.

WebSphere Application Server provides the following pre-configured
consumer token types:

» Security context token
» Derived key token
» X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration name to | The JAAS login configuration name specifies which JAAS login
specify configuration name to use.

Which configuration type to use The JAAS login module configuration type. Only the pre-configured
consumer configuration types can be used for consumer token types.

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token
class and represents the security token that has methods to get the identity, XML format, and

cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the
SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature

and one for encryption, respectively.

The following token types are subclasses of the generic security token class:

Table 47. Subclasses of the SecurityToken

Token type JAAS login configuration name
Security context token system.wss.consume.sct
Derived key token system.wss.consume.dkt

The following token types are subclasses of the binary security token class:

Table 48. Subclasses to the BinarySecurityToken

Token type JAAS login configuration name
X.509 token system.wss.consume.x509

X.509 PKI Path token system.wss.consume.pkiPath
X.509 PKCS?7 token system.wss.consume.pkcs7
Notes:

» For each JAAS login token consumer configuration name, there is a respective token generator
configuration name. For example, for the X509Token, the respective token generator configuration name

is system.wss.generate.x509.

246 Securing WebSphere applications

* The LTPA and LTPA propagation tokens are only available to a requester that is running as a
server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6 or
Java EE application client.

To validate the X509Token to the SOAP message on the consumer side, the <X509Token> element must
be in the <wsse:Security> element.

To validate the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure that
the application server is installed.

If using the default values, configures the tokens for the Web Services Security token consumer
process. , for each token type, the process is similar to the following token consumer process:

1.

a.
b.

f.

Uses WSSFactory.getinstance() to get the WSS API implementation instance.

Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the
WSSConsumingContext must always be called in a JAX-WS client application.

Creates a JAAS CallbackHandler with information that is required to validate the security token.
Review the token class information for which parameters are required or optional. For example, for
an X.509 token, you could configure the following:

keyStoreRef Indicates the reference name of the keystore that is stored in the
cryptographic card. It can be specified when the card is set to the
hardware.

keyStorePath Indicates the path of the keystore file. It is not necessary to specify the
keyStorePath if the keyStoreRef is set.

keyStorePassword Indicates the password of the keystore file.

keyStoreType Indicates the type of keystore file.

alias Indicates the alias of the key.

keyPassword Indicates the password of the key.

keyName Indicates the subject name of the key.

Sets the callback handler into WSSDecryption, WSSVerification, or WSSConsumingContext.

If the callback handler is set into the WSSDecryption or WSSVerification, adds either one into
WSSConsumingContext.

Calls WSSConsumingContext.process().

If using other than the default values, configures the tokens for the Web Services Security token
consumer process. For each token type, the process is similar to the following token consumer
process:

a.

If you do not use the default JAAS login module and callback handler, you need to prepare a
custom one and register the name of JAAS login configuration using the administrative console in
advance.

Uses WSSFactory.getinstance() to get the WSS API implementation instance.

Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the
WSSConsumingContext must always be called in a JAX-WS client application.

Creates a callback handler with information that is required to validate the security token. Review
the token class information for which parameters are required or optional. For example, for a X.509
token, you can configure the following:

keyStoreRef Indicates the reference name of the keystore that is stored in the
cryptographic card. It can be specified when the card is set to the
hardware.

keyStorePath Indicates the path of the keystore file. It is not necessary to specify the

keyStorePath if the keyStoreRef is set.

keyStorePassword Indicates the password of the keystore file.

Chapter 5. Web services 247

keyStoreType Indicates the type of keystore file.
alias Indicates the alias of the key.
keyPassword Indicates the password of the key.
keyName Indicates the subject name of the key.

e. Sets JAAS configuration name and callback handler into WSSDecryption or WSSVerification, or
WSSConsumingContext.

f. If JAAS configuration name and callback handler are set into the WSSDecryption or
WSSVerification, adds either one into WSSConsumingContext.

g. Calls WSSConsumingContext.process().
Results

If there is an error condition, a WSSException is provided. If successful, the
WSSConsumingContext.process() is called, and the security token on the consumer side is validated
(authenticated).

Example

The following sample code provides the WSS API example code for decryption using the default JAAS
login module and callback handler:

// Get the message context
Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)
WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)
WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler (step: c)
X509ConsumeCallbackHandler callbackHandler = new
X509ConsumeCallbackHandler(

"enc-sender.jceks",
"jCekS" s
"storepass".toCharArray(),
"alice",
"keypass".toCharArray(),
"CN=Alice, 0=IBM, C=US");

// Generate the WSSDecryption instance (step: d)

WSSDecryption dec = factory.newWSSDecryption(X509Token.class,
callbackHandler);

// Add WSSDecryption to WSSConsumingContext (step: e)
concont.add(dec);

// Validate the WS-Security header (step: f)
concont.process (msgcontext) ;

What to do next

For each token type, configure the token using the WSS APlIs or using the administrative console. Next,
specify the similar generator tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages at the
response consumer using the WSS APIs or configure the tokens using the administrative console.

248 Securing WebSphere applications

If both the generator and consumer tokens are configured, continue securing SOAP messages either by
verifying the signature or by decrypting the message, as needed. You can use either the WSS APIs or the
administrative console to secure the SOAP messages.

Configuring Web services security using the WSS APIs:

The Web Services Security application programming interfaces (WSS API) provide support for securing
SOAP message.

Before you begin

Web Service Security supports the following programming models:
» Programming API for securing SOAP message with Web Service Security (WSS API).

The APl programming model design has been redesigned. The new design is an interface-based
programming model and is based on Web Services Security Version 1.1 standards but the design also
includes support for Web Services Security Version 1.0 for securing the SOAP message. The WSS API
programming model implementation is a simplified version, which is based on an early draft proposal of
JSR-183, which is the JSR for defining Java API binding for Web Service Security. By design, because
the application code is programmed to the interface, any application code that is programmed with the
open source implementation should be able to run on the WebSphere Application Server with minimal
changes or no changes at all.

» Service Programming Interfaces (SPI) for a service provider

Similarly, the Web Service Security run time token generation and token consuming SPI have been
redesign so that the same security token interface and JAAS Login Module implementation can be used
for both the WSS API and the SPI. The WSS SPI for the service provider extend the security token
types and provide keys and deriving keys for signing, signature verification, encryption and decryption.

About this task

These programming models extend the following functions :
» Security token types and deriving keys for signing

+ Signature and verification

* Encryption and decryption

The following figure demonstrates how to use the simplified WSS APIs to secure a SOAP message by
using XML digital signature and XML encryption.

The configuration model for Web services has also been redesigned from a deployment descriptor model
to a policy set model. The configuration programming model is based on configuring policy sets using a
security policy to specify security constraints.

The functions provided by the policy set configurations are the same as the functions supported by the
WSS API for the Web Service Security run time. However, the security policy that is defined using policy
sets has a higher priority over the WSS APIl. When the WSS API and the policy set are both used in the
application, the default behavior is for the security policy from the policy set to be enforced and the WSS
API to be ignored. To use the WSS API in the application, you must make sure that there is no policy set
attached to the application or to the application resources, or make sure there is no security policy in the
attached policy set.

Web Service Security can be enabled by either using a policy set that is configured by using the
administrative console, or by using the WSS API for configuration.

Using the WSS API, complete the following high-level steps to secure the SOAP message:

Chapter 5. Web services 249

1. |Use the WSSSignature API to configure the signing information for the request generator (client side)|
binding} Different message parts can be specified in the message protection for a request on the
generator side. The default required parts are BODY, ADDRESSING_HEADERS, and TIMESTAMP.

The WSSSignature API also specifies the different algorithm methods to be used with the signature
for message protection. The default signature method is RSA_SHA1. The default canonicalization
method is EXC_C14N.

2. |Use the WSSSignPart API if you want to add or change the signed parts to be used for message|
protection| The default signed parts are WSSSignature.BODY,
WSSSignature. ADDRESSING_HEADERS, and WSSSignature. TIMESTAMP.

The WSSSignPart API also specifies the different algorithm methods to be used if you added or
changed the signed parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N. For example, use the WSSSignPart API if you want to generate the
signature for the SOAP message using the SHA256 digest method instead of the default value of
SHA1.

3. |Use the WSSEncryption API to configure the encryption information on the request generator sidel
The encryption information on the generator side is used for encrypting an outgoing SOAP message
for the request generator (client side) bindings. The default targets of encryption are
BODY_CONTENT and SIGNATURE

The WSSEncryption API also specifies the different algorithm methods to be used to protect message
confidentiality. The default data encryption method is AES128. The default key encryption method is
KW_RSA_OAEP.

4. |Use the WSSEncryptPart API if you want to add or change the encrypted parts to be used for|
message confidentiality] For example, if you want to change the data encryption method from the
default value of AES128 to TRIPLE_DES.

No algorithm methods are required for encrypted parts.

5. |Use the WSS API to attach the token on the generator side] The requirements for the security token
depend on the token type. The JAAS Login Module and the JAAS CallbackHandler are responsible
for creating the security token on the generator side. Different standalone tokens can be sent in
request or response. The default token is the X509Token. The other token that can be used for
signing is the DerivedKeyToken, which is used only with Web Services Secure Conversation
(WS-SecureConversation).

6. [Use the WSSVerification API to verify the signature for the response consumer (client side) bindingl
Different message parts can be specified in the message protection for a response on the consumer
side. The required targets for verification are BODY, ADDRESSING_HEADERS, and TIMESTAMP.

The WSSVerification API also specifies the different algorithm methods to be used for verifying the
signature and for message protection. The default signature method is RSA_SHA1. The default
canonicalization method is EXC_C14N.

7. |Use the WSSVerifyPart API to add or change the verify signed parts to be used for message]
protectionl The required verify parts are WSSVerification.BODY,
WSSVerification. ADDRESSING_HEADERS, and WSSVerification. TIMESTAMP.

The WSSVerifyPart API also specifies the different algorithm methods to be used if you added or
changed the verification parts. The default digest method is SHA1. The default transform method is
TRANSFORM_EXC_C14N.

8. |Use the WSSDecryption API to configure the decryption information for the response consumer (clientl
side) binding[The decryption information on the consumer side is used for decrypting an incoming
SOAP message. The default targets of decryption are BODY_CONTENT and SIGNATURE. The
default data encryption method is AES128. The default key encryption method is KW_RSA_OAEP.

No algorithm methods are required for decryption.

9. |Use the WSSDecryptPart API if you want to add or change the decrypted parts to be used f0|1
message confidentiality] For example, if you want to change the data encryption method from the
default value of AES128 to TRIPLE_DES.

No algorithm methods are required for decrypted parts.

250 Securing WebSphere applications

10. [Use the WSS API to configure the token on the consumer sidel The requirements for the security
token depend on the token type. The JAAS Login Module and the JAAS CallbackHandler are
responsible for validating (authenticating) the security token on the consumer side. Different
standalone tokens can be sent in request or response.

The WSS API adds the information for the candidate token that is used for decryption. The default
token is X509Token.

Results
What to do next

The Web Service Security run time token generation and token consuming Service Programming
Interfaces (SPI) have been redesign so that the same Security Token interface and JAAS Login Module
implementation can be used in both the WSS API and the SPI. See the SPI information for detail
descriptions.

Web services security APIs:

The Web services security programming model provides application programming interfaces (WSS API) for
securing the SOAP message. The WSS API model is based on Web Services Security Version 1.1
standards but also includes support for Web Services Security Version 1.0.

The Web services security APIs (WSS APIs) can generate and process the following SOAP-related
bindings for XML security:

« XML signature and signature verification
» XML encryption and decryption

The token processing and pluggable token architecture in the Web service security run time has been
redesign to reuse the same Security Token interface and the JAAS Login Module as those used for the
WSS APlIs.

The following table lists the WSS API interfaces that are provided with WebSphere Application Server and
used to configure signing and encryption information in the SOAP bindings for the generator and
consumer bindings.

Table 49. WSS API interfaces
WSS API interfaces Description

WSSDecryption Package: com.ibm.websphere.wssecurity.wssapi.decryption

This interface is responsible for specifying decryption. The default values for
decryption include:

» Targets: BODY_CONTENT, SIGNATURE
» Data encryption method: AES128

» Key encryption method: KW_RSA_OAEP
» Security token: X.509

WSSDecryptPart Package: com.ibm.websphere.wssecurity.wssapi.decryption

This interface is responsible for adding decrypted parts, as needed. If specified, the
default values for decrypted parts include:

» Security token: X.509
» Transform method: N/A (not applicable)

Chapter 5. Web services 251

Table 49. WSS API interfaces (continued)

WSS API interfaces

Description

WSSEncryption

Package: com.ibm.websphere.wssecurity.wssapi.encryption

This interface is responsible for the encryption component. The default values for
encryption include:

» Targets: BODY_CONTENT, SIGNATURE
« Data encryption method: AES128

» Key encryption method: KW_RSA_OAEP
» Security token: X.509

» refType: SecurityToken.REF_KEYID

* mtomOptimize: false

WSSEncryptPart

Package: com.ibm.websphere.wssecurity.wssapi.encryption

This interface is responsible for adding encrypted parts, as needed. If specified, the
default values for encrypted parts include:

» Transform method: N/A (not applicable)

WSSSignature

Package: com.ibm.websphere.wssecurity.wssapi.signature

This interface is responsible for specifying the signature. The default values for
signature include:

» Targets: BODY, ADDRESSING_HEADERS, TIMESTAMP
» Signature method: RSA_SHA1

¢ Canonicalization method: EXC_C14N

e Security token: X.509

» Type of token reference: SecurityToken.REF_STR

WSSSignPart

Package: com.ibm.websphere.wssecurity.wssapi.signature

This interface is responsible for adding signed parts, as needed. If specified, the
default values for signed parts include:

¢ Transform method : TRANSFORM_EXC_C14N
» Digest method: SHA1

WSS Verification

Package: com.ibm.websphere.wssecurity.wssapi.verification

This interface is responsible for specifying the signature verification. The default
values for verification include:

» Targets: BODY, ADDRESSING_HEADERS, TIMESTAMP
» Signature method: RSA_SHA1

» Canonicalization method: EXC_C14N

» Security token: X.509

WSSVerifyPart

Package: com.ibm.websphere.wssecurity.wssapi.verification

This interface is responsible for adding verify parts, as needed. If specified, the
default values for verify parts include:

» Digest method: SHA1
¢ Transform method: TRANSFORM_EXC_C14N

Also see the information about pre-configured generator and consumer tokens.

Web services security configuration considerations when using the WSS API:

252 Securing WebSphere applications

To secure Web services security for WebSphere Application Server, you can specify several different
configurations using the Web Services Security APIs (WSS API). The Web services security specification
provides a flexible way to secure Web services messages using XML digital signature, XML encryption,
and attaching security tokens. You can enable Web services security by either configuring a policy set or
by using the Web services security APIs (WSS API). The implementation for WSS API has default values
for which message parts are to be signed or encrypted. The default values for the WSS APlIs help end
users to enable Web services security quickly.

Different message parts can be specified in the message protection for request or response, and different
standalone tokens can be sent in request or response. However, there is only one symmetric or one
asymmetric binding assertion to describe the token type and the algorithm that is used for message
protection.

Using the WSS API, you can override any default values. However, when you alter the protection parts,
note that all the default protection parts are cleared. For example, if you specify that you want to encrypt
the Username token instead of the default X.509 token, all the default values of the encrypting protection
parts are cleared.

The following table shows an example of the relationships between each of the configurations:

Table 50. Request generator and response consumer configurations

Type of Configuration
configuration name Configurations and default values
Request generator Signing information |. canonicalization method: WSSSignature.EXC_C14N
« Signature method: WSSSignature.RSA_SHA1
» Digest method: WSSSignPart.SHA1
* Transform method: WSSSignPart. TRANSFORM_EXC_C14N
» Signed part - Body: WSSSignature.BODY
» Signed part - Addressing: WSSSignature. ADDRESSING_HEADERS
» Signed part - Timestamp: WSSSignature. TIMESTAMP
» Token reference: SecurityToken.REF_STR
» Token - Value type: X509Token.ValueType
» Token - JAAS login configuration name: system.wss.generate.x509
Response consumer | Signature » Canonicalization method: WSSVerification.EXC_C14N
;/nefgl;ﬁ:tli?; » Signature method: WSSVerification.RSA_SHA1

* Transform method: WSSVerifyPart. TRANSFORM_EXC_C14N
* Signed part - Body: WSSVerification.BODY

» Signed part - Addressing:
WSSVerification. ADDRESSING_HEADERS

» Signed part - Timestamp: WSSVerification. TIMESTAMP
* Token - Value type: X509Token.ValueType
» Token - JAAS login configuration name: system.wss.consume.x509

Request generator Encryption - Encrypted key: true
information . .
* Key encryption method: WSSEncryption.KW_RSA_OAEP
» Data encryption method: WSSEncryption.AES128
» Encryption part: WSSEncryption.BODY_CONTENT
» Token reference: SecurityToken.REF_KEYID
» Token - Value type: X509Token.ValueType
« Token - JAAS login configuration name: system.wss.generate.x509

Chapter 5. Web services 253

Table 50. Request generator and response consumer configurations (continued)

Type of Configuration
configuration name Configurations and default values
Response consumer | Decryption « Encrypted key: true
information » Key decryption method: WSSDecryption.KW_RSA_OAEP

» Data decryption method: WSSDecryption.AES128

* Decryption part: WSSDecryption.BODY_CONTENT

» Token - Value type: 509Token.ValueType

» Token - JAAS login configuration name: system.wss.consume.x509
Encrypted SOAP headers:

The encrypted header element provides a standard way of encrypting SOAP headers. As one of the
extensions to the OASIS SOAP message security specification, the encrypted header element indicates
that the responder has processed the request. Encrypting SOAP headers and parts help to provide more
secure message-level security.

The EncryptedHeader or <wsse11:EncryptedHeader> element is a part of the updated Web Services
Security Version 1.1 standard and enables interoperability with other vendors that support the Version 1.1
standards, such as Microsoft .NET and DataPower®.

Use the EncryptedHeader element for encrypting SOAP header blocks. The EncryptedHeader element
allows Web Services Security to be compliant with the SOAP mustUnderstand processing guidelines and
to prevent disclosure of information that is contained in attributes on a SOAP header block.

The <wsse11:EncryptedHeader> element must contain one <xenc:EncryptedData> element. Only one
<xenc:EncryptedData> element per encrypted header element is permitted.

Encrypted data element

Normally, the programming model, such as JAX-WS, deserializes the SOAP message to a Java binding
object before dispatching the call to the application code. However, if the SOAP message is encrypted, the
deserialization fails because, before encryption, the original content is replaced with the EncryptedData
XML element from the XML Encryption standard.

In certain cases, it might be desirable for the token that is included in the <wsse:Security> header to be
encrypted for the recipient processing role.

Follow these guidelines when using the EncryptedData element:
* The EncryptedHeader element must contain one EncryptedData element.

* The <xenc:EncryptedData> element may be used to contain a security token and include it in the
<wsse:Security> header.

* The <xenc:EncryptedData> must not include an XML ID for referencing the contained security token.

» All <xenc:EncryptedData> tokens must either have an embedded encryption key or must be referenced
by a separate encryption key.

» If compliance with Basic Security Profile 1.1 is desired, the <xenc:EncryptedData> element must have
an |d attribute.

Policy assertion for encrypted parts

The EncryptedParts policy assertion specifies which header is to be encrypted in the security policy. The
following table describes the elements and attributes that can be used for EncryptedParts.

254 Securing WebSphere applications

Table 51. Attributes and elements of the EncryptedParts element

Element or attribute Description

/sp:EncryptedParts/sp:Header Optional. Presence of this optional element indicates that a specific SOAP
header (or set of such headers) must be protected. You can have multiple
sp:Header elements within a single EncryptedParts element.

Each header (or set of headers) must be encrypted, and this encryption will
encrypt the elements by using Web Services Security Version 1.1 encrypted
headers. As such, if WS-Secuirty 1.1 Encrypted Headers are not supported
by a service, then the headers cannot be encrypted by using message-level
security.

If multiple SOAP headers with the same local name but different
namespace names are to be encrypted, multiple sp:Header elements are
required, either as part of a single sp:EncryptedParts assertion or as part of
separate sp:EncryptedParts assertions.

/sp:EncryptedParts/sp:Header/@Name | Optional. This attribute indicates the local name of the SOAP header to be
confidentiality protected. If this attribute is not specified, all SOAP headers
whose namespace matches the Namespace attribute are to be protected.

/sp:EncryptedParts/sp:Header/ Required. This attribute indicates the namespace of the SOAP headers to
@Namespace be confidentiality protected.

The following message example shows what the EncryptedHeader element looks like on a message
where the EncryptedParts policy assertion for the encrypted header has been specified on the policy:

<S:Envelope xmIns:S="..." xmIns:wsse="..." xmlns:wssell="..." xmIns:wsu="...
xmins:xenc="..." xmlns:ds="...">
<S:Header>
<wsse:Security>
<!-- Tokens etc. -->
<xenc:EncryptedKey>
<xenc:EncryptionMethod Algorithm="..."/>
<ds:KeyInfo>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>
</xenc:CipherData>
<xenc:ReferencelList>
<xenc:DataReference URI="#hdrID"/>
</xenc:Referencelist>
</xenc:EncryptedKey>
</wsse:Security>
<wssell:EncryptedHeader wsu:Id="hdrID">
<xenc:EncryptedData Id="encDatalID">
<xenc:CipherData>
<xenc:CipherValue>...</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
</wssell:EncryptedHeader>
</S:Header>
<S:Body>

</S:Body>
</S:Envelope>

To encrypt headers in the Web Services Security Version 1.0 specification format, specify the
com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.0 property with a value of true on the

Chapter 5. Web services 255

<encryptioninfo> element in the binding. When this property is specified, the target header for encryption is
replaced by an <EncryptedData> element, instead of an <EncryptedHeader> element that contains an
<EncryptedData> element.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application Server
versions prior to version 7.0, specify the

com.ibm.wsspi.wssecurity.encryptedHeader.generate. WSS1.1.pre.V7 property with a value of true on the
<encryptioninfo> element in the binding. When this property is specified, the <EncryptedHeader> element
includes a wsu:ld parameter and the <EncryptedData> element omits the Id parameter. This property
should only be used if compliance with Basic Security Profile 1.1 is not required.

For complete information about the EncryptedHeader element and the EncryptedData element, see the
Web Services Security Version 1.1 specification.

Signature confirmation:

Web services security signature confirmation is an enhanced XML digital signature, and it is included in
the Web services security standard. XML digital signature is used for signing elements of the SOAP
envelope.

As one of the extensions to the OASIS SOAP message security specification, the signature confirmation
element incorporates the elements that are needed within the response message in order to confirm the
signature that is contained in a request message. XML digital signature and signature confirmation help to
provide more secure message-level security.

Web Services Security Version 1.0 for SOAP message security did not provide any guidance on how to
confirm mutual understanding of the request that prompted this response. The SignatureConfirmation or
<wsse11:SignatureConfirmation> element has been added to the Web Services Security Version 1.1
specification. The <wsse11:SignatureConfirmation> element ensures that the signature is processed by the
intended recipient and indicates that the responder has processed the signature in the request. The
signature confirmation element is part of the updated Web Services Security standard and enables
interoperability with other vendors that support the Version 1.1 standards, such as Microsoft .NET and
DataPower.

Because of the stateless nature of Web services and due to different message exchange patterns (MEPs),
consider the following assumptions:

» Assume that session affinity is enabled if a cluster is enabled for the clients that are running in
WebSphere Application Server. When session affinity is enabled, it implies that the response is sent
back to the initiating client of the server.

« Assume WS-Addressing is enabled for asynchronous message exchange patterns. When
WS-Addressing is enabled, it allows the run time to relate the response back to the request. An
asynchronous response is sent back to the application of the initiating WebSphere Application Server.

Syntax
The SignatureConfirmation element indicates that the responder has processed the signature in the
request. When this element is not present in a response, the initiator interprets that the responder is not

compliant.

The format for the signature confirmation element is as follows:
<wssell:SignatureConfirmation wsu:Id="..." Value="..." />

where:

wsu:ld
The identifier that is used when referencing this element in the <ds:Signedinfo> reference list of

256 Securing WebSphere applications

the signature of the associated response message. This attribute is required so that unambiguous
references are made to this <wsse11:SignatureConfirmation> element.

Value This attribute is optional and contains the contents of a <ds:SignatureValue> that is copied from
the associated request. If the request is unsigned, this attribute must not be present. If this
attribute is specified without a value (empty), the initiator interprets this as incorrect behavior and
processes it accordingly. When this attribute is not present, the initiator interprets this to mean that
the response is based on a request that was not signed.

Configuration

To configure signature confirmation, configure the policy file using the administrative console, and select
Require signature confirmation. To process Signature Confirmation correctly, the initiator of the request
needs to preserve the signatures during request generator processing and later needs to retrieve the
signatures for confirmation checks.

Response generation rules

Additional SOAP security elements for the SOAP responder are used to confirm that the response is in
relationship to a particular request. The responder must include the contents of the <ds:SignatureValue>
element of the request signature as the value of the @Value attribute of the
<wsse11:SignatureConfirmation> element.

The following response generation rules apply when using the SignatureConfirmation policy assertion:

 If there are no signatures on the request, the response contains one SignatureConfirmation element,
without a value. For MEPs where there are multiple requests (all without signatures) and one response,
the response contains one SignatureConfirmation element without a value.

 If there are signatures on the request, the response contains a SignatureConfirmation element for each
signature, with a value that matches the signature value on the request. For MEPs where there are
multiple requests, with at least one containing a signature, and one response, the response contains a
SignatureConfirmation element for each signature that is found on the requests, with a value that
matches the signature value on the request.

» For MEPs where there is one request and multiple responses, each response contains the appropriate
SignatureConfirmation elements as noted in the first and second bullets.

» |If the SOAP request contains multiple signatures, the requester will find all of the signature confirmation
elements contained in the response, and will check the values of the value fields of the signature
confirmation elements against the values of the signatures in the original SOAP request.

Securing requests to the trust service using system policy sets

WebSphere Application Server provides message-level protection for its security token service, known as
the WebSphere Application Server trust service. For the trust service, you must use a special class of
policy sets known as system policy sets.

Before you begin

You can secure requests to the trust service by using two different configuration methods:

» Use the administrative console to define and attach a system policy set and binding to a trust service
operation that is associated with an endpoint.

* Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure system
policy sets for the trust service. You can manage the policies for the Quality of Service (QoS) by
creating policy sets and managing associated policies.

Chapter 5. Web services 257

About this task

For WebSphere Application Server trust service security, you must configure the system policy sets, the
bindings, the trust service attachments, and the security cache.

Perform the following high-level steps. The order of the tasks is not important but all high-level required
steps must be performed to complete the trust configuration.

1. Define a new system policy set or manage existing system policy sets. To manage system policy sets,
you can perform the following tasks:

a. |Define the system policy set and binding| The system policy set can be a new or existing policy
set. If you create a new system policy set, you must specify and configure the policy types. A
default binding configuration is associated with each policy type.

b. [Modify the system policy set, as needed,

Other optional policy set-related tasks that you can perform include:
* Add, edit, or remove policy set attachments.
« Edit, enable, disable or remove policy types

» Create a system policy set by selecting and copying an existing system policy set. When
copying an existing system policy set, you also specify whether to move the existing
attachments to this new system policy set.

» Delete system policy sets. You cannot delete pre-configured system policy sets that are provided
by WebSphere Application Server by default.

« Archive a system policy set by selecting and exporting an existing system policy set. When
exporting an existing system policy set, you create a .zip archive file. The .zip file for exporting
the policy set is provided for downloading. For example, if you have a policy set named ABC_ps
and you want to export and move the archive file from ServerA to ServerB, first use the export
function to create the .zip file. Then, manually transfer the archive file to ServerB.

2. Create and manage explicit attachments. You can perform the following trust service attachment tasks:

a. [Attach the system policy set and assign a binding to an endpoint. For an endpoint, you can create
explicit attachments for each of the four trust service operations to the respective Trust Service
Defaults policy sets and bindings. After you have created these initial attachments, you can view
and further modify existing policy set and binding configurations.

b. [Modify existing policy set attachment and binding configurations, as needed.| The system policy set
can be a new or existing policy set. If you create a new system policy set, you must specify and
configure the policy types. A default binding configuration is associated with each policy type.

The system policy set that is attached to issue and renew must correspond to the client and
endpoint’s bootstrap policy set and the system policy set attached to validate and cancel must
correspond to the client and endpoint’s application policy set. The bootstrap policy set for the
endpoint service is only required if the endpoint service makes issue and renew requests to the
trust service.

Other optional attachment-related tasks that you can perform include:

» Change the system policy set and binding configurations.

» Create custom system policy sets and bindings.

» Attach each of the four default trust service operations to a system policy set and binding.

» Attach each of the four trust service operations associated with a specific endpoint to a system
policy set and binding.

» Specify that the selected trust service operations for an endpoint inherit the respective default
trust service policy set and binding.

» Assign the Default binding or a custom binding configuration to the selected policy set
attachment.

» Update the trust service runtime configuration.

258 Securing WebSphere applications

3. Manage the security context token provider that the trust service provides. You can perform the
following trust service token provider tasks:

a. |Modify the configuration of the Security Context Token provider, as needed).
Other optional token provider-related tasks that you can perform include:
» Update the trust service runtime configuration for any token provider configuration changes.

4. Manage the trust service default token provider and any endpoints that have an explicitly assigned
token (rather than inheriting from the default). Targets are endpoints that are assigned a specific token
provider. You can perform the following trust service target tasks:

a. [Create a new trust service target by explicitly assigning a service endpoint URL to the default|
|'£oken provider.|. Performing this task creates an explicit assignment to the default trust service
token provider, the Security Context Token. All other endpoints inherit the trust service default token
provider.

b. |Configure a targetl WebSphere Application Server defines one default supported token provider,
the Security Context Token. Other tasks that you can perform for existing targets include:

» Modifying one or more endpoints that have a security context token provider explicitly assigned.

» Changing the token provider for an endpoint from inherited to explicitly assigned. Therefore, the
token provider for the endpoint does not change as the default trust service token provider
changes.

» Changing the token provider for an endpoint from explicitly assigned to inherited. Therefore, the
token provider for the endpoint is the default trust service token provider and changes as the
default changes.

» Updating the trust service runtime configuration.
5. |Configure the security cache| You can change the behavior of client-side security caching.

6. |Update the trust service runtime configuration, You must update the runtime configuration whenever
one or all of the following trust-related items are created or changed:

e Trust service attachments
» Token providers
» Targets

Results

After the configurations are completed and the trust service runtime configuration has been updated, you
have used the administrative console to secure requests to the trust service by using system policy sets.

Enabling secure conversation:

Use secure conversation to secure Web services application messages.

Before you begin

Applications that contain Web services must have been deployed.

About this task

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services Secure
Conversation (WS-SecureConversation) draft specification describes ways to establish a secure session
between the initiator and recipient of SOAP messages. The WS-SecureConversation draft specification

also defines how to use the OASIS Web Services Trust (WS-Trust) protocol to establish a security context
token (SCT). For complete information, see the OASIS Web Services Secure Conversation specification.

Chapter 5. Web services 259

WebSphere Application Server supports the ability of an endpoint to issue a security context token for
WS-SecureConversation, and thereby provides a secure session between the initiator and recipient of
SOAP messages.

The following figure describes the flow that is required to establish a secured context and to use
session-based security.

RST (1)

P RSTR (2)
< STS (WS-Trust)

Client Request securgd using SCT (3)
Response secuyred using SCT (4)
< Web Service

Request securgd using SCT (5)
»

Response secyred using SCT (6)

Figure 2. Displaying the flow between the client and the Web service and security token service

In the WS-SecureConversation specification, a security context is represented by the
<wsc:SecurityContextToken> security token. The following example represents the assertion syntax for a
<wsc:SecurityContextToken> element.
<wsc:SecurityContextToken wsu:Id="..." ...>

<wsc:Identifier>...</wsc:Identifier>

<wsc:Instance>...</wsc:Instance>

</wsc:SecurityContextToken>

The security context token does not support references to it by using key identifiers or key names. All
references must either use an ID (to a wsu:ld attribute) or a <wsse:Reference> to the <wsc:ldentifier>
element.

WebSphere Application Server provides these pre-configured secure conversation-related polices:

* The SecureConveration policy set follows the WS-SecureConversation and WS-Security specifications
and provides a policy set with secure conversation enabled and using keys derived from security
context token for signing and encrypting the application messages.

* The Username SecureConversation policy set follows the WS-SecureConversation and WS-Security
specifications and adds authentication using the Username token.

* The LTPA SecureConversation policy follows the WS-SecureConversation and WS-Security
specifications and provides authentication using the Lightweight Third Party Authentication (LTPA)
tokens.

In this example, the default SecureConversation policy set, and the default WS-Security binding and
TrustServiceSecurityDefault binding are used to achieve the task of enabling secure conversation. The
default SecureConversation policy set has both the application policy (symmetricBinding) and the bootstrap
policy (asymmetricBinding). The application policy is used to secure application messages and the
bootstrap policy is used to secure the RequestSecurityToken (RST) messages.

260 Securing WebSphere applications

A trust service that issues a security context token is configured with the TrustServiceSecurityDefault
system policy and the TrustServiceSecurityDefault binding. The trust policy is responsible for securing
RequestSecurityTokenResponse (RSTR) messages. If the bootstrap policy is modified, the trust policy has
to be modified to match both of the configurations.

Note: The following steps are to be used only in development and test environments.

The Web Services Security (WS-Security) default bindings that are used here contain sample key files and
must be customized before use in a production. For the production environment, use of custom bindings is
advised. Also note that, if the profile is created by using the choice of Create the server using the
development template, you can skip steps 2 and 3.

To configure secure conversation, configure the policy set, and add a policy assertion to the policy,
complete the following steps:

1. Make a copy of a default secure conversation policy so you can customize the policy set for your own
environment.

a. Launch the administrative console, and click Services > Policy sets > Application policy sets.

b. Select the check box next to an existing policy set that follows the WS-SecureConversation
specifications. For example, you might click the check box next to SecureConversation. This
policy set is one of the pre-configured secure conversation-related application policy sets that is
listed in the table. The SecureConversation policy set has a bootstrap policy to match the default
policy set for the trust service to issue and renew tokens.

c. Click Copy.

d. Enter a unique name for the new copy of the SecureConversation application policy set. For
example: CopyOfSCPolicySet

e. Optional: Change the description, as needed, for your customized version of this policy set.
2. Attach the policy set and binding to the application.

a. Click Applications » Application Types » WebSphere enterprise applications » application
name.

b. Click either Service provider policy sets and bindings or Service client policy sets and
bindings to attach resources to the CopyOfSCPolicySet policy set. The general binding is
assigned automatically as the default.

c. You can use the Attach Policy Set and Assign Binding menu lists to select a different policy set
or binding.

Results
After completing these steps, you have configured secure conversation.
What to do next

Next, review the example scenario about how to establish a security context token to secure a secure
conversation.

Enable distributed cache and session affinity when using Secure Conversation:

WebSphere Application Server provides message-level protection in a cluster environment. You can use
Web Services Secure Conversation (WS-SecureConversation) for message-level protection of Java API for
XML Web Services 2.0 (JAX-WS) Web services in a cluster environment.

Before you begin

A Web services request that is protected with a Security Context Token (SCT) is routed to one server in a
cluster, but that SCT might have been issued or renewed by a different server in the cluster. If the

Chapter 5. Web services 261

WebSphere Application Server distributed cache is not configured to replicate or does not replicate quickly
enough, the server processing the request might not have access to the SCT.

About this task

Perform the following high-level steps to enable distributed cache and session affinity when using secure
conversation for message-level protection in a cluster environment.

1. Enable the distributed cache for the Security Context Token. Perform the following steps:

a. In the Administrative Console for IBM WebSphere Application Server, click Services > Trust
service > Trust Providers > Security Context Token.

b. Select the Distributed cache check box.
c. Click OK and then click Save to save the configuration.
2. Create a replication domain. Perform the following steps:
a. In the Administrative Console, click Environment > Replication domains > New.
b. Enter a name. For example, ABCDomain.
c. Under Number of replicas, select the Entire Domain option.
d. Click OK and then click Save to save the configuration.
3. Enable the dynamic cache. Perform the following steps for each server in the cluster:

a. In the Administrative Console, click Servers > Server Types > WebSphere application servers -
server_name ~» Container Services » Dynamic Cache Service.

b. Select the Enable service at server startup option.

c. Select the Enable cache replication option.

d. Select the replication domain name that you created. For example, ABCDomain.
e. Select the replication type as Both push and pull.

f. Click OK and then click Save to save the configuration.

4. Specify the distributed cache batch update interval as 100 milliseconds. Perform the following steps for
each server in the cluster:

a. In the Administrative Console, click Servers » Server Types > WebSphere application servers -
server_name - Java and Process Management > Process Definition » Java Virtual Machine -
Custom Properties > New.

b. Enter the com.ibm.ws.cache.CacheConfig.batchUpdateInterval property name.
c. Enter 100 as the property value.
d. Click OK and then click Save to save the configuration.

5. Install and configure a Web server or proxy server that supports session affinity. The IBM HTTP Server
and WebSphere Application Server proxy server support session affinity. In the WebSphere Application
Server Information Center, see [Communicating with Web servers| for information on installing and
configuring the IBM HTTP Server.

6. Configure the client systems to send the Web services requests to the host and port where the Web
server or proxy server is running. The Web server or proxy server then routes the requests to the
proper cluster member.

7. On the services that are receiving the Web services requests, which are protected by using Web
Services Secure Conversation, select the HTTP transport Session enabled policy option. Complete the
policy set configuration by following these steps:

a. Add the HTTP Transport policy to the policy set that is being used by the services.
b. In the configuration panel for the HTTP Transport policy, select Session enabled.
c. Click OK and then click Save to save the configuration.

262 Securing WebSphere applications

8. On the client systems that are sending the Web services requests and are protected by Secure
Conversation, enable the HTTP transport Maintain session property. Complete the policy set
configuration or set the property programmatically. If you are using a policy set with your configuration,
follow these steps:

a. Add the HTTP Transport policy to the policy set that is being used by the clients.
b. Atthe HTTP Transport policy configuration panel, select the Session enabled option.
c. Click OK and then click Save to save the configuration.

Results

After the configurations are completed, you have enabled the distributed cache and session affinity when
using secure conversation in a cluster environment. If the server processing the request does not have
access to the SCT, it will fail the request with the error of Either null SCT or invalid SCT.

Example

The following example, which is a code snippet, demonstrates how to programmatically set the Maintain
session property on the correct JAX-WS object:

Map<String> rc = ((BindingProvider) port).getRequestContext();

rc.put(BindingProvider.SESSION MAINTAIN PROPERTY, Boolean.TRUE);
. </String>

Example: Establishing a security context token to secure a secure conversation:

This example describes the flow of how the initiator establishes the security context token (SCT) by using
the WS-Trust protocol for session-based security with the recipient. After establishing the security context
token, derived keys from the security context token are used to sign and encrypt the SOAP message to
provide message-level protection. This examples focuses on the message exchanges using the security
context token in the overall flow of the SOAP messages.

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services Secure
Conversation (WS-SecureConversation) specification describes ways to establish a secure session
between the initiator and recipient of SOAP messages. The WS-SecureConversation specification also
defines how to use Web Services Trust (WS-Trust) protocol to establish a security context token.
WebSphere Application Server Version 7 supports both Version 1.3, and the draft version, of the
WS-SecureConversation specification.

WebSphere Application Server supports the ability of an endpoint to issue a security context token for
WS-SecureConversation and thereby provides a secure session between the initiator and recipient of
SOAP messages.

The following figure describes the flow that is required to establish a secured context and to use
session-based security.

Chapter 5. Web services 263

RST (1)

P RSTR (2)
- STS (WS-Trust)

Component

Client Request securgd using SCT (3)
»

Response secyred using SCT (4)
-

Request securgd using SCT (5)
»

Response secyred using SCT (6)

Figure 3. Displaying the flow between the client and the Web service and security token service
Exchanging messages between the initiator and the recipient

The following figure shows how the messages are exchanged between the initiator and the recipient to
establish the security context token. The two WS-Trust protocols, RequestSecurityToken (RST) and
RequestSecurityTokenResponse (RSTR), are used to request the security context token from the recipient

endpoint.

The bootstrap policy is used to secure the RST and validate the RSTR request, which is typically different
from the application security policy.

Web Services Client Web Service Runtime

D RST Trust Module

A

4

RSTR (with SCT) Web Services

Bootstrap security policy WSS runtime Provider

WS-SC Client
1. Sign WS-Addressing headers, Timestamp and Body are
signed using CLIENT's private key
2. Body Content and Signature element are encrypted using
SERVICE's public key

WS-Trust Module Bootstrap is different from
1. Sign WS-Addressing headers, Timestamp and Body are applicatign policy and
signed using the SERVER's private key Cancelling operation.
2. Body Content, Signature and SignatureConfirmation

elements are encrypted with CLIENT's public key
(signer certificate)

Figure 4. Using WS-Trust protocols RST and RSTR to establish the SCT between the initiator and the recipient

Scenario describing how to use secure conversation

Typically, to use secure conversation, the following steps are involved;

1. The client sends a RequestSecurityToken (RST) trust request for a security context token to an
application endpoint with its secret key (entropy and target key size) and requests the target service
secret key.

264 Securing WebSphere applications

This request is typically secured with asymmetric Web service security that is defined in the bootstrap

policy.

2. The RST is processed by the trust service and, if the request is trusted based on the security policy,
the trust service returns the security context token with the target service secret key by using a
WS-Trust RequestSecurityTokenResponse (RSTR).

This request is typically secured with asymmetric Web service security. The client verifies whether the
RSTR can be trusted, based on the bootstrap policy.

3. If the RequestSecurityTokenResponse is trusted, the client secures (signs and encrypts) the
subsequent application messages by using the session keys.

The session keys are derived from secret of the security context token that is obtained from the initial
WS-Trust RequestSecurityToken and RequestSecurityTokenResponse messages that are exchanged

between the initiator and the recipient.

4. The specification defines an algorithm of how to derive the key based on the initial secret. The target
Web service calculates the derive key from the metadata contained in the security header of the SOAP

message and the initial secret.

5. The target Web service uses the derived key to verify and decrypt the message based on the

application security policy.

6. The target Web Service uses the derived key from the secret to sign and encrypt the response based

on the application security policy.

7. Repeat of steps 3 through 6 until the message exchange has completed.

Using keys that are derived from the secret of the security context token

After the security context token is established, the application messages are secured with message
protection by using keys that are derived from the secret of the security context token. The derived keys
are used to secure the application messages by signing and encrypting the application messages. The
security context token contains a UUID, which is used as identification of a shared secret. The token UUID
can be used in the SOAP message to identify the security context token for the message exchanges. The
secret must be kept in memory by the session participants (in this case the initiator and the recipient) and
protected. Compromising the secret undermines the secure conversation between the participants.

Web Services Client

D SecureRequest (with SCT)

SecureRequest (with SCT)

Application security policy

Client

1. Sign WS-Addressing headers, Timestamp and Body with
Sx1 (delivered key from SCT) using HMAC

2. Signature Element and Body Content are encrypted with
Sx2 (delivered key from SCT) using AES

Service
1. Sign WS-Addressing headers, Timestamp and Body with
Sx3 (delivered key from SCT) using HMAC
2. Body Content, Signature and SignatureConfirmation
elements are encrypted with Sx4
(delivered key from SCT) using AES

2

Web Service Runtime

Trust Module

Web Services
WSS runtime Provider

Application policy based on
SCT (symmetric
cryptographic algorithm)

Figure 5. Securing application messages with keys derived from secret of the security context token

Chapter 5. Web services 265

A similar scenario except with Web Services Reliable Messaging (WS-ReliableMessaging) is possible from
the WS-SecureConversation prospective. See the example for establishing a security context token to
secure reliable messaging.

Example: Establishing a security context token to secure reliable messaging:

This example scenario includes functions that are required for the composite scenario of Web Services
Reliable Messaging (WS-ReliableMessaging), WS-SecureConversation, and WS-Trust. The scenario
describes how to use WS-SecureConversation with WS-ReliableMessaging, the scenario is described from
the WS-SecureConversation perspective.

The flow of this Web Services Reliable Messaging (WS-ReliableMessaging) scenario is very similar to the
flow of the WS-SecureConversation scenario, and the exchange of the application messages is very
similar to the Secure Conversation scenarios. The main difference in the two example scenarios is that the
WS-ReliableMessaging sequence is secured with the security context token and scopes the
WS-ReliableMessaging sequence to the security context token.

The following figure describes a summary of the message flows that are required to establish a security
context token to secure reliable messaging.

Client

RST (1)

RSTR (2)

<
<

CrreatSequencg using SCT (3)
g STS (WS-Trust)

CreateSequenceRepgponse using SCT (4) Component
WSS Request securgd using SCT (5)
Runtime -
Response secured using SCT (6) WSS
< Runtime

SequenceAcknowlefigement using SCT (7)

WS-Trust

Client Request securgd using SCTéB)

Response secyred using SCT (9) Web Service

SequenceAcknowlefigement using SCT (10)

TerminateSequerice using SCT (11)

Figure 6. Messages exchange for the SCT and reliable messaging

Scenario

The WS-ReliableMessaging sequence is secured with the security context token and is scoping the
WS-ReliableMessaging sequence to the security context token. This scenario focuses on the message
exchanges that are using the security context token in the overall flow.

Note: The exact detail of how WS-ReliableMessaging is validating the WS-ReliableMessaging sequence,
with respect to the security context token scoping, is not described.

Typically, to use secure conversation and a security context token to secure reliable messaging, the
following steps are involved;

» The WS-ReliableMessaging run time calls APIs from the Web Services Security run time to get the
UUID of the security context token for the session and also the API for serializing and deserializing the
security context token for managed persistent for reliable recovery.

Because of the security nature of the security context token, the WS-ReliableMessaging protocol makes
sure that the serialized security context token in persistent store is protected.

266 Securing WebSphere applications

» |If there is already a security context token established the UUID of the existing security context token is
returned to WS-ReliableMessaging. If there is no security context token already established, the Web
Services Security run time initiates a call to the recipient to establish the security context token.

The latter case is similar to the Secure Conversation scenario.

» After the WS-ReliableMessaging run time acquires the UUID of the security context token, the
WS-ReliableMessaging run time scopes the CreateSequence message to the security context token by
using the SecurityTokenReference (STR) argument in the CreateSequence message and responds with
the CreateSequenceResponse message.

The exchange of the application messages is very similar to the WS-SecureConversation scenario.
» The WS-ReliableMessaging run time responds with the CreateSequenceResponse message.
The exchange of the messages is very similar to the exchange in the WS-SecureConversation scenario.

* The WS-ReliableMessaging run time sends a SequenceAcknowledgement message to acknowledge
that the message is properly delivered and secured by the security context token.

» Finally, the WS-ReliableMessaging run time sends a TerminateSequence message to terminate the
sequence and is secured by the security context token.

Enabling the distributed cache using synchronous update and token recovery:

To support Secure Conversation in a cluster environment, the distributed cache stores the shared state
information. Version 7.0 of WebSphere Application Server uses MBeans to improve synchronous update of
the cache across the cluster. In addition, persistent token support is provided by storing the token data in a
database.

About this task

Synchronous update of shared information in the distributed cache is implemented in version 7.0 of
WebSphere Application Server using an MBean solution. When update of the shared state information
across cluster members is required, a synchronous blocking call is issued to replicate the token state
changes to all the servers in the cluster. This solution removes the limitations of using session affinity for
secure conversation in a cluster environment.

Perform the following high-level steps to enable distributed cache and session affinity when using secure
conversation for message-level protection in a cluster environment. To enable the distributed cache for the
Security Context Token:

1. In the administrative console for WebSphere Application Server, click Services » Security cache.
2. Click the check box to select the Distributed cache option.

3. Synchronous update of cluster members is automatically selected. This enables the runtime to
update all the cluster members with the updated token information synchronously. If this is selected,
then session affinity does not have to be enabled.

4. If Asynchronous update is selected, then you must enable session affinity.
a. Click the radio button to select Token recovery support.

b. Select a data source (database) from the Cell level data sources menu list. If you need to add a
database, click the Manage data sources link.

c. Click Apply to enable token recovery support.
5. Click OK, then Save, to save the modified configuration.

Results

Token recovery support uses a JDBC database to store the token state. This provides failover support for
high availability of the token.

Chapter 5. Web services 267

Related tasks

[‘Enable distributed cache and session affinity when using Secure Conversation” on page 261|

WebSphere Application Server provides message-level protection in a cluster environment. You can use
Web Services Secure Conversation (WS-SecureConversation) for message-level protection of Java API for
XML Web Services 2.0 (JAX-WS) Web services in a cluster environment.

Related reference
|WSSCacheManagement command group for the AdminTask object|
Use this topic as a reference for the commands for the WSSCacheManagement group of the AdminTask

object. Use these commands with your administrative scripts to query, update, and remove distributed
cache configuration data.

Secure conversation client cache:

For both distributed and local clients, the WebSphere Application Server secure conversation client cache
stores tokens on the client.

WebSphere Application Server supports caching of the security context token for both the distributed client
and local client. If the security context token is distributed, a client in the same replication domain uses the
same security context token. Distributed caching also supports disk offload to save the security context
token to disk for recovery.

To use the administrative console to modify the cache settings, click Services » Security Cache.

You can configure the cache settings, such as the following.

* Set the time that the token remains in the cache after timeout. The default value is 10 minutes. This
value is a time window to renew an expired token.

» Set the renewal interval before the token expires. The default value is 10 minutes, and the minimum
value is 3 minutes. Entering a number less than 3 minutes causes an error.

Note: This setting is critical. This setting represents the maximum roundtrip time for a client to make a
request, the transport request to go to the server, the server to process the request, and the
transport response (if applicable) back to the client. If the time specified is too small and there is
not enough time specified, then the token might expire during the roundtrip, and the client
receives a failure response. If the time specified is too large, then performance diminishes.

If the security context token is renewed too often, it might cause Web Services Secure Conversation
(WS-SecureConversation) to fail or even cause an out-of-memory error to occur. It is required that you
set the renewal interval before the token expires value for the Secure conversation client cache to a
value less than the token timeout value for the security context token. It is also suggested that the token
timeout value be at least two times the renewal interval before the token expires value.

» Select the distributed caching check box to support distributed clients. You must ensure that the
WebSphere Application Server dynamic cache service, and cache replication, are enabled. For more
information on enabling the dynamic cache service, refer to the topic Enable distributed cache and
session affinity when using Secure Conversation.

» Define a custom property, edit, or remove existing custom properties.

The WS-SecureConversation client rejects a security context token that is issued at a future time. If you
cannot synchronize the clock between the client machine and service machine, the clock skew could be
configured to prevent the rejection of a valid token. The default clock skew is 3 minutes. To modify the
default clock skew setting, add the following custom property to the desired minutes:

clockSkewTolerancelnMinutes

Alternatively, use the wsadmin commands to manage secure conversation client cache configurations.

268 Securing WebSphere applications

Thin client

For a Web Service application client running outside WebSphere Application Server, the security context
token is cached only in the local Java process. The following system properties can be used to override
the default cache setting on the thin client:

com.ibm.wsspi.wssecurity.SC.cache.cushion
Specifies the time in minutes to renew a security context token to be used with
WS-SecureConversation on the client side so that the security context token has enough time to
complete the downstream call. The default value is 10 minutes, and the minimum value is 3
minutes.

com.ibm.wsspi.wssecurity.SC.token.clockSkewTolerance
Specifies the tolerant clock skew time for a token between two machines. The default value is 3
minutes.

Web Services Secure Conversation:

Web Services Secure Conversation (WS-SecureConversation) provides a secured session for long running
message exchanges and leveraging of the symmetric cryptographic algorithm.

WS-SecureConversation provides session-based security. Session-based security optimizes long message
exchanges, as symmetric cryptography can be used to sign and encrypt the message. Typically, symmetric
cryptographic algorithm is less CPU intensive than the asymmetric cryptography. Symmetric cryptographic
algorithms should provide better performance and throughput when compared to the asymmetric
cryptographic algorithms.

The symmetric cryptographic algorithm also provides a means to secure other session-based protocol and
exchange patterns, such as Web Services Reliable Messaging (WS-ReliableMessaging).

Security context token for secure conversation

The Web Services Security specification defines the basic mechanisms for providing secure messaging.
The Web Services Trust (WS-Trust) specification defines extensions to Web Services Security that provide
ways to establish and broker trust relationships between two parties. The WS-Trust protocol defines the
syntax of the request that can be sent to a security token service and the corresponding or subsequent
response of the security token service. The security token service provided with WebSphere Application
Server is called the trust service.

Using the WS-Trust protocol, a party can request the trust service issue a security context token (SCT).
Then, this token can be used to establish a secure conversation (WS-SecureConversation). The request
for a security token is sent to an application endpoint. The request is intercepted by the WebSphere
Application Server and routed to the trust service.

A policy can be defined as the default for all trust issue operations, renew operations, validate operations,
or cancel operations. Additionally, a policy can be attached to a specific URL and operation pair.

WS-SecureConversation defines extensions to allow security context establishment and sharing, and
session key derivation, which allows contexts to be established and, potentially, more efficient keys, or
new key material, to be exchanged. The WebSphere Application Server support for WS-Trust and
WS-SecureConversation focuses on the issuing, renewing, validating, and cancelling of the security
context token for secure conversation.

Chapter 5. Web services 269

Policy set and bootstrap policy

In addition to describing these functions, the OASIS WS-SecureConversation draft submission describes
multiple methods of establishing a secure session between the initiator and the recipient of the SOAP
messages.

The bootstrap security policy is the security policy for the initiating party to acquire the security token for
secure conversation from the trust service by using a token-issuing WS-Trust or WS-SecureConversation
protocol message. The policy set configuration consists of the security policy for communication with the
application service, and the bootstrap policy for communication with the trust service.

If sharing of a policy configuration (using WS-Policy) containing the secure conversation bootstrap policy
fails, it may be because the bootstrap request and response policies differ. The message part protection
for the bootstrap policy must be the same for both request and response bootstrap messages, because a
single policy is published for both request and response.

What is supported for Web Services Secure Conversation

The following list highlights some of the key functions that are supported in WebSphere Application Server.
The list is not exhaustive.

» A security context token (SCT) established between the initiating party and the recipient party.

* The WS-SecureConversation operations that are supported on the security context token (SCT), such
as Issue token, Renew token, and Cancel token. Validate token is supported using WS-Trust protocol.

» A derived key (explicit and implied)
What is not supported for Web Services Secure Conversation

The following list highlights some of the key functions that are not supported in WebSphere Application
Server. The list is not exhaustive.

» WS-SecureConversation does not support establishing a security context through the security context
token that is created by an external security token service (trust component). However, WebSphere
Application Server supports an internal security token service.

* WebSphere Application Server does not support establishing a security context through the security
context token that is created by one of the communicating parties and propagated with a message.

* WebSphere Application Server does not support amending a security context token.
» WebSphere Application Server does not support a client creating the security context token.
» WebSphere Application Server provides no support for exchange and negotiation.

Secure conversation scenarios

The following scenarios describe the WS-SecureConversation functions that WebSphere Application
Server supports:

+ |WS-SecureConversation|

This scenario is based on establishing a security context token with the recipient and using the derived
key to sign and encrypt the message. It describes how to establish a security context by using
session-based security. Session-based security is where the flow of the initiator establishes the security
context token by using the WS-SecureConversation protocol with the recipient.

WS-SecureConversation with WS-ReliableMessaging

This scenario is a composite scenario that includes functions that are required for the composition
scenario of Web Services Reliable Messaging (WS-ReliableMessaging), WS-SecureConversation, and
WS-Trust. This scenario describes how to use WS-SecureConversation with WS-ReliableMessaging
where the flow is similar to the previous scenario, but which is from the secure conversation
prospective. However, the main difference is that the WS-ReliableMessaging sequence is secured with

270 Securing WebSphere applications

the security context token and scopes the WS-ReliableMessaging sequence to the security context
token. This description focuses on the message exchanges that are using the security context token in
the overall flow.

Scoping of Web Services Secure Conversation:

Web Services Secure Conversation supports two scoping mechanisms: the default and the Java API for
XML Web Services (JAX-WS) client service level.

Review the following information about the two scoping mechanisms to ensure the proper scoping of
secure conversation and policy set for WebSphere Application Server.

Default

The default scope is based on a cluster, an application, a module, and a target service endpoint. For a
client running in a thin client environment, it is considered to be a single application, cluster, and module.

In this scoping mode, all the instances of the JAX-WS client within a particular application, cluster, and
module to the same target service endpoint share the same secure conversation. For example, in the
following figure, the two client instances (Client 1 and Client 2) are in the same module. Client 1 and Client
2 share the same secured conversation with Service 1. The other two client instances (Client 3 and Client
4), which are in a different module than Clients 1 and 2 and which share a secured conversation with each
other but not with Clients 1 and 2.

Application A

Secured conversation 1

Client 1

Service1

A

Client 2 1

Application B

Client 3

Secured conversation 2

Client 4

JAX-WS client service level

Scope at the JAX-WS client service level is enabled by specifying a property in the token generator
binding configuration of the Secure Conversation Token (SCT)in the client application request (application
outbound). The binding is located in the META-INF of the deployed application.

For example, if the application is WSSampleClientBeta.ear and the binding directory is
SecureConversationl23binding, the binding file would be located at:

$PROFILE DIR/config/cells/<cellname>/WSSampleClientBeta.ear/deployments/WSSampleClientBeta
/META-INF/SecureConversationl123binding/PolicyTypes/WSSecurity/bindings.xml.

An example of the configuration follows:

Chapter 5. Web services 271

<tokenGenerator name='"gen_enctgen"
classname="com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenGenerator">
<valueType TocalName="http://schemas.xmlsoap.org/ws/2005/02/sc/sct" uri="" />
<callbackHandler classname="com.ibm.ws.wssecurity.impl.auth.callback.WSTrustCallbackHandler">
<properties name="com.ibm.ws.wssecurity.sc.SCTScope" value="SERVICE SCOPE"/>
</callbackHandler>
<properties name="com.ibm.ws.wssecurity.sc.dkt.ServiceLabel" value="WSC"/>
<properties name="com.ibm.ws.wssecurity.sc.dkt.ClientLabel" value="WSC"/>
<jAASConfig configName="system.wss.generate.sct"/>
</tokenGenerator>

The following code example demonstrate the behavior after the property in the token generator binding
configuration of the SCT in the client application request (application outbound) is enabled. In this mode,
Web Services Secure Conversation is scoped at the JAX-WS client service instance.

QName serviceQname = new QName("http://ws.apache.org/axis2", "EchoService");

QName portQname = new QName("http://ws.apache.org/axis2", "EchoServicePort");

String endpointUrl = "http://myhost/...... "

Service svcl = Service.create(serviceQname);

svcl.addPort (portQname, null, endpointUrl);

Dispatch<Source> dispatch = svcl.createDispatch(portQname, Source.class, null);

......

Service svc2 = Service.create(serviceQname);
svc2.addPort (portQname, null, endpointUrl);
Dispatch<Source> dispatch = svc2.createDispatch(portQname, Source.class, null);

where svcl and svc2 are in two different secure conversations with the target service endpoint.

You can change the scope by using either the administrative console or by using scripting to add a
property.

Derived key token:

After establishing the security context and after the secret have been established (authenticated), derived
keys can be used to sign and encrypt the SOAP message to provide message level protection. You can
then use derived keys for each key that is used in the security context.

You can enable Web Services Secure Conversation (WS-SecureConversation) by using symmetric keys
that are derived from the security token for signing and encrypting the application messages.

Using WS-SecureConversation, the initiator can establish a security context token using the Web Services
Trust (WS-Trust) protocol with the recipient. A security context token implies or contains a shared secret.
Using a common secret, different key derivations can be defined. Then, using the security context token,
the <wsc:DerivedKeyToken> token can be used to derive keys from any security token that has a shared
secret, key, or key material. This secret can be used for signing or encrypting messages, but it is
recommended that derived keys be used for signing and encrypting messages that are associated only
with the security context.

Syntax for the <wsc:DerivedKeyToken> element

The <wsc:DerivedKeyToken> element is used to indicate that the key for a specific reference is generated
from the function so that explicit security tokens, secrets, or key material need not be exchanged as often.
The derived key token does not support references to it using key identifiers or key names. All references
must use an ID to a wsu:ld attribute or use a URI reference, <wsse:Reference>, to the <wsc:Identifier>
element in the security context token.

The syntax for <wsc:DerivedKeyToken> element is as follows:

272 Securing WebSphere applications

<wsc:DerivedKeyToken wsu:Id="...">
<wsse:SecurityTokenReference>...</wsse:SecurityTokenReference>
<wsc:Label>...</wsc:Label>
<wsc:Nonce>...</wsc:Nonce>
</wsc:DerivedKeyToken>

Derived keys are expressed as security tokens and use different algorithms for deriving keys. The
following URI is used to represent the derived key token type:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk

The nonce is processed as a binary octet sequence (the value prior to base64 encoding). The nonce seed
is required, and must be generated by one or more of the communicating parties. Use separate nonces
and have independently generated keys for signing and encrypting for request and response. New keys
should be derived for each message, meaning that a previous nonce should not be reused.

Implied derived key generation

Implied derived keys define a shortcut mechanism for referencing certain types of derived keys.
Specifically, an @wsc:Nonce attribute can be added to the security token reference (STR) that is defined
in the WS-Security specification. When present, an implied derived key indicates that the key is not in the
referenced token but, instead, is a key that is derived from the key or secret of the referenced token. It is
recommended that you do not use implied derived Keys in the <wsc:DerivedKeyToken> element.

The following example illustrates a message that is sent using two derived keys, one for signing and one
for encrypting:

<S1l:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="...
xmins:xenc="..." xmIns:wsc="..." xmlns:ds="...">
<S1l:Header>
<wsse:Security>
<wsc:SecurityContextToken wsu:Id="ctx2">
<wsc:Identifier>uuid:...UUID2...</wsc:Identifier>
</wsc:SecurityContextToken>
<wsc:DerivedKeyToken wsu:Id="dk2">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#ctx2"/>
</wsse:SecurityTokenReference>
<wsc:Nonce>KJHFRE. . .</wsc:Nonce>
</wsc:DerivedKeyToken>
<xenc:Referencelist>

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#dk2"/>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

</xenc:Referencelist>
<wsc:SecurityContextToken wsu:Id="ctx1">
<wsc:Identifier>uuid:...UUID1...</wsc:Identifier>
</wsc:SecurityContextToken>
<wsc:DerivedKeyToken wsu:Id="dkl1">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#ctx1"/>
</wsse:SecurityTokenReference>
<wsc:Nonce>KJHFRE. . .</wsc:Nonce>
</wsc:DerivedKeyToken>
<xenc:Referencelist>

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#dk1"/>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

</xenc:ReferencelList>

Chapter 5. Web services 273

</wsse:Security>

</S11:Header>
<S11:Body>

</S11:Body>
</S1l:Envelope>

Web Services Secure Conversation standard:

Web Services Secure Conversation (WS-SecureConversation) is a proposed Organization for the
Advancement of Structured Information Standards (OASIS) standard that defines mechanisms for
establishing and sharing security contexts, and deriving keys from security contexts, to enable a secure
conversation.

The base Web Services Security (WS-Security) standard from OASIS defines how to digitally sign and
encrypt the SOAP message to provide message level protection. The standard also defines how to attach
and reference a security token for digital signature and encryption. However, it does not provide
session-based protection when a long series of related messages were exchanged. The WS-Security
specification focuses on the message authentication model. This approach, while useful in many
situations, could be subject to several forms of attack.

The WS-SecureConversation specification introduces the concept of a security context and its usage. The
security context token is a new WS-Security token type that represents the security context abstract
concept. The token is identified by a URI and consists of negotiated keys as well as other security related
properties. The context authentication model authenticates a series of messages and, therefore, addresses
these concerns. The context authentication model increases the overall performance and security of the
subsequent exchanges, but it requires additional communications when authentication happens prior to
normal application exchanges.

Version 1.0 of the OASIS WS-SecureConversation specification defines extensions that build on the Web
Services Security (WS-Security) and Web Services Trust (WS-Trust) standards to provide secure
communication across one or more messages.

IBM, Microsoft, and other vendors have been working on the WS-SecureConversation specification since
2004. A draft of this document was jointly published in February, 2005. The WS-SecureConversation draft
was submitted to the OASIS Web Service Secure Exchange Technical Committee (WS-SX TC), which was
formed in December 2005, along with Web Services Trust (WS-Trust) and Web Services Security Policy
(WS-SecurityPolicy) drafts in order to begin the standardization process.

A revised Version 1.1 draft version of the WS-SecureConversation specification standard was submitted to
OASIS in February 2005 and further defines the extensions in Version 1.0. This specification defines
extensions to allow security context establishment and sharing, and session key derivation. These
extensions allow contexts to be established and potentially more efficient keys or new key material to be
exchanged.

The most recent version of the specification standard is version 1.3, which was approved by the WS-SX
TC on March 1, 2007. Key requirements in this level of the specification include derived keys and
per-message keys, and extensible security contexts. Version 7.0 of WebSphere Application Server adds
support for version 1.3 of WS-SecureConversation, providing improved error handling using the standard
fault codes as defined in the specification.

The Web Services Secure Conversation (WS-SecureConversation) standard is a building block that is
used in conjunction with the other Web service and application-specific protocols such as Web Services
Security and Web Services Trust to accommodate a wide variety of security models and technologies.
WS-SecureConversation is built on top of the WS-Security and WS-Trust models to provide secure

274 Securing WebSphere applications

communication between services. The WS-SecureConversation draft specification describes how to
establish a security context token between two parties, and the WS-Trust specification describes how to
issue and exchange security tokens.

This WS-SecureConversation draft specification includes extensions to Web services security and:
» Describes the security context token.
» Defines how security contexts are established.

» Describes how security contexts are amended, renewed, and cancelled. Amending context is not
supported by WebSphere Application Server.

» Specifies how derived keys are computed.
» Specifies how to associate a specific security context with an action, if multiple security contexts exist.

WebSphere Application Server supports the client establishing a secured conversation with the target
service endpoint.

WebSphere Application Server supports the OASIS Version 1.1 submission draft, which became available
in February 2005. The WebSphere Application Server does not support all of the functions in the
submission draft. WebSphere Application Server support of WS-SecureConversation focuses on:

» A security context token that is established between the initiating party and the recipient party.

» The operations that are supported on security context token, such as Issue token, Renew token, and
Cancel token.

* The derived key (both explicit and implied)

Secure conversation provided with WebSphere Application Server does not provide support for a security
context token (SCT) that is acquired from a third-party trust server, and does not provide support for a
security context token that is created by the client.

For information about WS-SecureConversation:
+ See the [[BM DeveloperWorks Web sitel
+ See the schema for this specification: WS-SecureConversation schema|

» Refer to the following namespace prefixes that are used for WS-SecureConversation:
http://schemas.xmlsoap.org/ws/2005/02/sc| and |http://docs.oasis-open.org/ws-sx/ws-secureconversation/|

200512

Configuring the token generator and token consumer to use a specific level of WS-SecureConversation:

Use the administrative console to configure the token generator or token consumer to use a specific level
of the WS-SecureConversation OASIS specification standard. Select one of the two levels of token types
supported: Secure Conversation Token v200502, or Secure Conversation Token v1.3.

About this task

WebSphere Application Server supports two levels of the OASIS standard for WS-SecureConversation
including both the submission draft version (February 2005 draft specification) and version 1.3 of the
standard, which was approved on March 1, 2007. Using the administrative console, configure the token
generator so that the appropriate token type for a specific level of the standard is issued when a security
token is requested.

1. Log on to the administrative console and navigate to the panel where the token generator is configured
by clicking Services ~» Policy sets > General provider policy set bindings or General client policy
set bindings.

2. Click on the name of the binding you want to edit.
3. Click the WS-Security policy in the Policies table.

Chapter 5. Web services 275

http://www.ibm.com/developerworks/library/specification/ws-secon/
http://schemas.xmlsoap.org/ws/2005/02/sc/ws-secureconversation.xsd
http://schemas.xmlsoap.org/ws/2005/02/sc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

4. Click the Authentication and protection link in the Main message security policy bindings section.

5. Click New token to create a new token generator or consumer, or click an existing token link from the
Protection Tokens table.

6. Enter a token name, then use the Token type drop-down menu to select a secure conversation token
type.
» To specify a submission draft token type, select Secure Conversation Token v200502.
» To specify a version 1.3 token type, select Secure Conversation Token v1.3.
7. The local name is populated according to the token type you selected, as follows:
* Local name for the submission draft token type: http://schemas.xmlsoap.org/ws/2005/02/sc/sct
» Local name for the version 1.3 token type: http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512
The URI field is also filled in based on the token type.

8. Click to deselect the option Tolerate Secure Conversation Token v200502 if you want to enforce use
of only the version 1.3 tokens. This option specifies whether the provider should handle both Secure
Conversation Token version 1.3 and Secure Conversation Token v200502. By default, the provider
handles both versions.

9. Click Apply to create a secure conversation token of the selected type.
Related reference

[Protection token settings (generator or consumer)|
Use this page to configure protection tokens. Protection tokens sign messages to protect integrity or
encrypt messages to provide confidentiality.

Trust service:

The security token service that is provided by WebSphere Application Server is called the trust service.
The WebSphere Application Server trust service uses the secure messaging mechanisms of Web Services
Trust (WS-Trust) to define additional extensions for the issuance, exchange, and validation of security
tokens.

Web Services Trust (WS-Trust) is an OASIS standard that enables security token interoperability by
defining a request/response protocol. This protocol allows SOAP actors, such as a Web services client, to
request of some trusted authority that a particular security token be exchanged for another.

WebSphere Application Server is not providing a full security token service that implements all the
contents of the WS-Trust draft specification. The WebSphere Application Server support of WS-Trust
focuses on establishing a security context token for secure conversation. Version 7.0 of WebSphere
Application Server supports many of the security features described in version 1.3 of the WS-Trust OASIS
standard, dated March 19, 2007.

Third party WS-Trust client

WebSphere Application Server does not provide a WS-Trust client implementation. You can choose to use
a third-party WS-Trust-enabled client but, if you do, WebSphere Application Server does not support a
third-party trust-enabled client. A trust client can facilitate the generation of these soap messages and the
processing of the response, but the client is not required.

WebSphere Application Server focuses on the issuing, renewing, and canceling of the security context
token for Web Services Secure Conversation (WS-SecureConversation).

The WS-Trust specification must be followed to make requests of the trust service. This specification

includes the use of Web Services Addressing (WS-Addressing) headers. The WS-Addressing headers are
specified in both the August 2004 or the August 2005 specifications. Per the specification, the SOAP body

276 Securing WebSphere applications

must consist of a single RequestSecurityToken (RST) element. This element can contain sub-elements as
defined in the WS-Trust and WS-SecureConversation specifications.

You can secure the WS-Trust SOAP messages by using the bootstrap policy that is defined in the policy
set. The bootstrap security policy is invoked in the process of an initiator establishing communication with
an application service. Initial requests to services other than the application service are secured by using
the bootstrap policy. These initial requests typically involve one or more requests to a security token
service (STS), such as the WebSphere Application Server trust service. An example of a request might be
acquiring the security context token necessary for WS-SecureConversation. An initiator is the role that
initiates the original request and, in most cases, it is the client. The client bootstrap policy set must
correspond to the trust service issue and renew attached policy sets for the endpoint. The trust service
cancel and validate attached policy sets for the endpoint must correspond to the client’s application policy
set.

Websphere Application Server provides two ways to secure SOAP messages that are destined for the
trust service. One way is to use the bootstrap policy that is defined in the policy set. A second way is to
use the Web Services Security APl (WSS API). Your application might use the WSS API to acquire the
security context token for the programmatic, APIl-based WS-SecureConversation.

For Secure Conversation, a request from the client to an endpoint service is suspended while a new
(second) request is generated and processed by the trust service. The security context token returned with
the second request is used to derive keys that secure communications with the service.

High-level trust service functions

The following list includes WS-Trust-related functions that are currently supported in WebSphere
Application Server. The list is not exhaustive and it focuses only on the high-level functions.

* The trust service component is embedded into and available on each WebSphere Application Server
that processes the WS-Trust protocol messages.

» Communication is accomplished through the RequestSecurityToken (RST),
RequestSecurityTokenCollection (RSTC), RequestSecurityTokenResponse (RSTR), and
RequestSecurityTokenResponseCollection (RSTRC).

Note: An RST request can be made to an external security token service (trust service). However, the
restriction is that security context token, which is needed for WS-SecureConversation, must be
provided by the WebSphere Application Server trust service.

» A security policy for each of the WS-Trust operations (issue, cancel, validate, and renew).
» Pre-configured Security Context Token provider which issues tokens for specific URL.

» Specification of a token provider’'s token-specific parameters (for example, expiration time).
» A security context token for WS-SecureConversation.

» Caching support for the security context token in both cluster and non-cluster environments. WebSphere
Application Server issues security context tokens when requested if the request meets the security
requirements. However, WS-SecureConversation provided by WebSphere Application Server only
processes security context tokens that are issued by WebSphere Application Server.

* Note that WebSphere Application Server trust service only supports the security context token.

» Trust service supports both the Submission specification (2004/08) and the final specification (2005/08)
versions of WS-Addressing.

» Trust service uses a default policy set called TrustServiceSecurityDefault, which includes WS-Security
and WS-Addressing and provides default security for the issue and renew operations.

» Trust service uses a second default policy set called TrustServiceSymmetricDefault, which includes
WS-Security and WS-Addressing and provides default security for the cancel and validate operations.

Chapter 5. Web services 277

Trust service functions that are not supported

The following high-level WS-Trust functions that are not supported in WebSphere Application Server. The
list is not exhaustive, and the list focuses only on key functions:

* No negotiation and exchange protocols are supported.

* No other token types are currently supported out of the box; only the security context token is
supported.

* No Trust10 specifications from WS-SecurityPolicySet are supported.
* No unsolicited RequestSecurityTokenResponse (RSTR) is supported.

* A Request Security Token (RST) request cannot be issued to an external security token service (STS)
to establish a secure conversation; only the embedded trust service is currently supported.

* Policy requests that are contained in the RST are not honored.
* The ability to amend a token (the amend operation) is not supported.

» A dedicated external endpoint for access to the token service is not supported; only the embedded trust
service is currently supported.

» The trust services does not support the entropy element that contains an EncryptedKey.
» Delegation and forwarding are not supported.

* The OnBehalfOf element is not supported.

* The Key Exchange Token (KET) binding is not supported.

Trust service operations

WebSphere Application Server specifically supports the ability of the trust service, on behalf of the
endpoint, to issue a security context token for WS-SecureConversation. The token-issuing support is
currently limited only to the security context token. There is also trust policy management for defining a
policy for the trust service to issue, cancel, validate, or renew tokens.

The token service supports the [WS-Trust schema namespace} Within this namespace the following actions
are supported:

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel
* http:/docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew

The token service also supports the WS-SecureConversation schema namespace. Within this namespace
the following actions are supported:

* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT
* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Cancel
* http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Renew

An inbound RST for the security context token issue operation must contain an Entropy element. The
Entropy element must contain a BinarySecret. The trust services does not support the Entropy element
that contains an EncryptedKey.

Note that the trust service does not support unsolicited RSTR actions. In addition, the ability to amend a

token is not supported by WebSphere Application Server. Also, see the section titled Trust service
functions that are not supported.

278 Securing WebSphere applications

http://schemas.xmlsoap.org/ws/2005/02/trust/

Trust policy set-related files

The default trust service policy set for issue and renew is TrustServiceSecurityDefault. You can set up the
corresponding policy set and binding for each service endpoint URL.

Security context token:

Web Services Trust (WS-Trust) and Web Services Secure Conversation (WS-SecureConversation) support
in the application server provides the ability to issue a security context token (SCT). Requests for a
security context token are processed by the security token service.

The security token service for WebSphere Application Server is called the trust service. However, the
application server does not provide a full security token service that implements all the contents of the
WS-Trust specification.

The secure session is referred to as secure conversation because the message protocols that are used
are defined by WS-SecureConversation and WS-Trust. WebSphere Application Server supports secure
conversation.

To request a security context token, a RequestSecurityToken (RST), which is defined by WS-Trust and
WS-SecureConversation protocols, is sent to the service endpoint to which you are setting up a secure
conversation. These requests are transparently rerouted to the trust service. The trust service processes
the RST and responds with a RequestSecurityTokenResponse (RSTR). This response is returned to the
requestor as if it was generated by the endpoint service.

The WebSphere Application Server token provider support is limited to the Security Context Token
provider. WS-SecureConversation in the application server focuses on the establishing of the security
context token between the initiating party and the recipient party for secure conversation.

WebSphere Application Server includes caching support for the Security Context Token in both cluster and
non-cluster environments as well as on both the client and server. WebSphere Application Server also
provides trust policy set management for each of the trust service operations: issue, cancel, validate, and
renew. Trust system policy sets can be managed for each of these trust operations relative to an explicit
service endpoint or the trust service default. The default trust service policy set for a trust operation is
enforced when there is not an explicit attachment.

See the information about Web Services Trust for the WS-Trust functions that are supported.

For the security context token, you can:

» Configure the security context token provider for WS-SecureConversation, providing issue, renew and
cancel operations.

» Configure the trust service to issue a security context token for access to a specific endpoint service
(target).

» Configure the security requirements for access to the trust service and applications. WebSphere
Application Server provides pre-configured application policy sets and trust service policy sets to assist
with this configuration.

» Define a system policy for each of the four trust service operations: issue, cancel, validate, and renew.
These policies are configured for the default or a specific endpoint service. Note that the amend
operation is not supported.

The Security Context Token provider does not support the following operations:
* WS-SecureConversation amend

* Negotation to establish Secure Conversation

* WS-Trust key exchange requests

Chapter 5. Web services 279

» Client-initiated RequestSecurityTokenResponse (RSTR) and RequestSecurityTokenResponseCollection
(RSTRC) requests

* WS-SecurityPolicy trust assertions
Definitions

To better understand security tokens, the following terms are defined:

security token
A security token represents a collection of claims.

security context
A security context is an abstract concept that refers to an established authentication state and
negotiated key or keys that can have additional security-related properties. A security context
needs to be created and shared by the communicating parties before being used. A security
context is shared among the communicating parties for the lifetime of a communications session
and a security context token is the wire representation of this abstract security context.

WebSphere Application Server does not support a security context token created by one of the
communicating parties and propagated with a messageWebSphere Application Server does not
support creating a security context token through negotiation and exchanges.

security context token
A security context token is a wire representation of that security context abstract concept, which
allows a context to be named by a URI and to be used with Web services security. A secured
communication with a security context token between two parties is realized with WS-Trust and
WS-SecureConversation.

security token service
A security token service (STS) is a Web service that issues security tokens, meaning it makes
assertions that are based on evidence that it trusts, to whoever trusts it (or to specific recipients).

Trust service
The trust service is the security token service and supporting code that is provided by Websphere
Application Server.

RequestSecurityToken (RST)
A RST is a message sent to a security token service to request a security token.

RequestSecurityToken Response (RSTR)
A RSTR is a response to a request for a security token from a security token service to a
requestor after receiving an RST message.

To communicate trust, a service requires proof, such as a signature, to prove knowledge of a security
token or set of security tokens. A service itself can generate tokens or it can rely on a separate security
token service to issue a security token with its own trust statement. Note that, for some security token
formats, communicating trust can just be a re-issuance or a co-signature that forms the basis of trust
brokering.

Syntax for the <wsc:SecurityContextToken> element

A security context is shared among the communicating parties for the lifetime of a communications session
and a security context token is the wire representation of this abstract security context.

In the WS-SecureConversation specification, a security context is represented by the
<wsc:SecurityContextToken> security token. The following URI represents the security context token type
that is required to establish a secure conversation.

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

The syntax for <wsc:SecurityContextToken> element is as follows:

280 Securing WebSphere applications

<wsc:SecurityContextToken wsu:Id="..." ...>
<wsc:Identifier>...</wsc:Identifier>
<wsc:Instance>...</wsc:Instance>

</wsc:SecurityContextToken>

The security context token does not support references to it by using key identifiers or key names. All

references must use an ID (to a wsu:/d attribute) or use a URI reference, <wsse:Reference>, to the

<wsc:ldentifier> element in the security context token.

RST and RSTR examples to issue a security token

This example shows a RST request to issue a security token. The URI http://docs.oasis-open.org/ws-
sx/ws-secureconversation/200512/sct, which is used in this example, represents the token type:

<wsc:SecurityContextToken>

<soapenv:Envelope
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<soapenv:Header>
<wsse:Security
xmins:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="1">
<wsse:UsernameToken><wsse:Username>userl</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-username-token-profile-1.0#PasswordText">security
</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
<wsa:To>http://Tocalhost:8080/WSSample/services/EchoService
</wsa:To>
<wsa:ReplyTo>
<wsa:Address>http://www.w3.0rg/2005/08/addressing/anonymous
</wsa:Address>
</wsa:ReplyTo>
<wsa:MessageID>urn:uuid:646268CB30A01B89D811537688997954
</wsa:MessagelD>
<wsa:Action>http://schemas.xmlsoap.org/ws/2005/02/trust/RST/SCT
</wsa:Action>
</soapenv:Header>
<soapenv:Body>
<wst:RequestSecurityToken Context="http://www.ibm.com/login/">
<wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Issue</wst:RequestType>
<wst:TokenType>http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct</wst:TokenType>
<wst:Entropy>
<wst:BinarySecret>swYVsjsi75fB+RksmDdWKQ==</wst:BinarySecret>
</wst:Entropy>
<wsp:AppliesTo xmins:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference>
<wsa:Address>WSSample/services/EchoService</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to issue a security token:

<soapenv:Envelope xmins:wsa="http://www.w3.0rg/2005/08/addressing"
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>
<wsa:Action xmlins:wsa="http://www.w3.0rg/2005/08/addressing">
http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/SCT
</wsa:Action>
<wsa:RelatesTo>
97fd1ce790c257f0:1ea9f29c:1129642ebel:-7fff
</wsa:RelatesTo>
</soapenv:Header>
<soapenv:Body>
<wst:RequestSecurityTokenResponse
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
Context="http://www.ibm.com/login/">
<wst:RequestedSecurityToken
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

Chapter 5. Web services

281

<wsc:SecurityContextToken
xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc"
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/

0asis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuid:617A2281DAD3C3EC211179342073467">
<wsc:Identifier xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc">
uuid:617A2281DAD3C3EC211179342073466
</wsc:Identifier>
<wsc:Instance xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc">
uuid:617A2281DAD3C3EC211179342073465

</wsc:Instance>

</wsc:SecurityContextToken>

</wst:RequestedSecurityToken>

<wsp:AppliesTo xmins:wsp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsa:EndpointReference xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<wsa:Address xmins:wsa="http://www.w3.0rg/2005/08/addressing">
http://localhost:9080/WSSampleSei/EchoService
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:RequestedProofToken xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:ComputedKey xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://schemas.xmlsoap.org/ws/2005/02/trust/CK/PSHAL
</wst:ComputedKey>
</wst:RequestedProofToken>
<wst:Entropy xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:BinarySecret xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
Type="http://schemas.xmlsoap.org/ws/2005/02/trust/Nonce">
00K29up5fifaCkPiSX3GZg==
</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wsu:Created
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
2007-05-16T19:01:12.625Z
</wsu:Created>
<wsu:Expires
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
2007-05- 16T21:01:12.625Z
</wsu:Expires>
</wst:Lifetime>
<wst:RequestedAttachedReference
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wsse:SecurityTokenReference
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd"
URI="#uuid:617A2281DAD3C3EC211179342073467"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct">
</wsse:Reference>
</wsse:SecurityTokenReference>
</wst:RequestedAttachedReference>
<wst:RequestedUnattachedReference
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wsse:SecurityTokenReference
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd"
<wsse:Reference
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd"
URI="uuid:617A2281DAD3C3EC211179342073466"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct">
</wsse:Reference>
</wsse:SecurityTokenReference>
</wst:RequestedUnattachedReference>
<wst:Renewing
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
Allow="true" OK="false">
</wst:Renewing>
<wst:KeySize
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
128
</wst:KeySize>
</wst:RequestSecurityTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

282 Securing WebSphere applications

RST and RSTR examples to cancel a security token

This example shows a RST request to cancel a security token.

<soapenv:Envelope xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>
<wsa:To>
http://newchina.austin.ibm.com:9080/WSSecConvApis03/FVTVersionSecConvApis03Service
</wsa:To>
<wsa:MessagelD>
f20b218a24bf43df:-57ea847:112b47ead6d: -7 ffc
</wsa:MessagelD>
<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Cancel
</wsa:Action>
</soapenv:Header>
<soapenv:Body>
<wst:RequestSecurityToken
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
Context="http://www.ibm.com/login/">
<wst:RequestType
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://schemas.xmlsoap.org/ws/2005/02/trust/Cancel
</wst:RequestType>
<wst:CancelTarget
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wsc:SecurityContextToken
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmins:Id="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc"
Id:Id="uuid:3FF175272DA6F83A291179849257996">
<wsc:Identifier
xmlins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc">
uuid:3FF175272DA6F83A291179849257985
</wsc:Identifier>
<wsc:Instance
xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc">
uuid:3FF175272DA6F83A291179849257984
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:CancelTarget>
<wst:TokenType
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
<wsp:AppliesTo
xmins:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<wsa:Address
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
http://newchina.austin.ibm.com:9080/WSSecConvApis03
/FVTVersionSecConvApis03Service
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:Entropy
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:BinarySecret
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
Type="http://schemas.xmlsoap.org/ws/2005/02/trust/Nonce">
Tv6pDe60r3grjd7t+GGCZg==
</wst:BinarySecret>
</wst:Entropy>
<wst:KeySize
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
128
</wst:KeySize>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to cancel a security token:

<soapenv:Envelope
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<soapenv:Header>
<wsa:Action>

Chapter 5. Web services

283

http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Cancel
</wsa:Action>
<wsa:RelatesTo>
f20b218a24bf43df:-57ea847:112b47ead6bd: -7 ffc
</wsa:RelatesTo>
</soapenv:Header>
<soapenv:Body>
<RequestSecurityTokenResponse
Context="http://www.ibm.com/Togin/">
<wst:RequestedTokenCancelled
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
</wst:RequestedTokenCancelled>
</RequestSecurityTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

RST and RSTR examples to renew a security token

This example shows a RST request to renew a security token.

<soapenv:Envelope
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<soapenv:Header>
<wsa:To>
http://synctest.austin.ibm.com:9080/WSTrust03/FVTVersionTrust03Service
</wsa:To>
<wsa:MessagelD>
urn:uuid:85f87aad1772f485:-5f8ede69:112bbel5ec7:-7ffd
</wsa:MessagelD>
<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/trust/RST/SCT/Renew
</wsa:Action>
</soapenv:Header>
<soapenv:Body>
<wst:RequestSecurityToken Context="http://www.ibm.com/login/"
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:RequestType>
http://schemas.xmlsoap.org/ws/2005/02/trust/Renew
</wst:RequestType>
<wst:RenewTarget>
<wsc:SecurityContextToken
Id:Id="uuid:CAE1EB7F485526962E1179973151233"
xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc"
xmins:Id="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsc:Identifier>
uuid:C4ELIEB7F485526962E1179973151216
</wsc:Identifier>
<wsc:Instance>
uuid:C4ELIEB7F485526962E1179973151215
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:RenewTarget>
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to renew a security token:

<soapenv:Envelope
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<soapenv:Header>
<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/SCT/Renew
</wsa:Action>
<wsa:RelatesTo>
urn:uuid:85f87aad1772f485:-5f8ede69:112bbel5ec7:-7ffd
</wsa:RelatesTo>
</soapenv:Header>
<soapenv:Body>
<wst:RequestSecurityTokenResponse
Context="http://www.ibm.com/login/"
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:RequestedSecurityToken>
<wsc:SecurityContextToken

284 Securing WebSphere applications

wsu:Id="uuid:C4E1EB7F485526962E1179974951825"
xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc"
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsc:Identifier>
uuid:C4E1EB7F485526962E1179973151216
</wsc:Identifier>
<wsc:Instance>
uuid:C4E1EB7F485526962E1179974951824
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:RequestedSecurityToken>
<wst:Entropy>
<wst:BinarySecret>
zGIWpvalzZ55+W11GroEWHA==
</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>
<wsu:Created
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
2007-05-24T702:49:10.187Z
</wsu:Created>
<wsu:Expires
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
2007-05-24702:59:10.187Z
</wsu:Expires>
</wst:Lifetime>
<wst:RequestedAttachedReference>
<wsse:SecurityTokenReference
xmins:wsse="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference
URI="#uuid:C4E1EB7F485526962E1179974951825"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct">
</wsse:Reference>
</wsse:SecurityTokenReference>
</wst:RequestedAttachedReference>
<wst:Renewing Allow="true" OK="true"></wst:Renewing>
</wst:RequestSecurityTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

RST and RSTR examples to validate a security token

This example shows a RST request to validate a security token.

<soapenv:Envelope
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<soapenv:Header>
<wsa:To>
http://synctest.austin.ibm.com:9080/WSTrust®3/FVTVersionTrust03Service
</wsa:To>
<wsa:MessagelD>
urn:uuid:85f87aad1772f485:-5f8ede69:112bbel5ec7:-7fff
</wsa:MessagelD>
<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Validate
</wsa:Action>
</soapenv:Header>
<soapenv:Body>
<wst:RequestSecurityToken Context="http://www.ibm.com/Togin/"
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:RequestType>
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate
</wst:RequestType>
<wst:ValidateTarget>
<wsc:SecurityContextToken
Id:Id="uuid:C4E1EB7F485526962E1179973151233"
xmins:wsc="http://schemas.xmlsoap.org/ws/2005/02/sc"
xmins:Id="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmins:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsc:Identifier>
uuid:C4E1EB7F485526962E1179973151216
</wsc:Identifier>
<wsc:Instance>
uuid:C4E1EB7F485526962E1179973151215
</wsc:Instance>

Chapter 5. Web services

285

</wsc:SecurityContextToken>
</wst:ValidateTarget>
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to validate a security token:

<soapenv:Envelope
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:wsa="http://www.w3.0rg/2005/08/addressing">
<soapenv:Header>
<wsa:Action>
http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate
</wsa:Action>
<wsa:RelatesTo>
urn:uuid:85f87aad1772f485:-5f8ede69:112bbelsec7:-7fff
</wsa:RelatesTo>
</soapenv:Header>
<soapenv:Body>
<RequestSecurityTokenResponse
Context="http://www.ibm.com/Togin/">
<wst:Status
xmins:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wst:Code>
http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid
</wst:Code>
</wst:Status>
</RequestSecurityTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

Review the two example scenarios that discuss establishing the security context token.
System policy sets:

A policy set is a named collection of Quality of Service (QoS) policies. You can use either the
administrative console or the wsadmin commands to manage system policy sets. Policy sets can be
created, deleted, copied, imported or exported.

A policy set can be shared by multiple resources, such as applications, services, inbound or outbound
service endpoints, and operations. Default policy sets are installed using profile augmentation. A policy set
can also be imported. A policy set does not have its own bindings. You must attach a policy set to a
resource, and then assign a binding to the attachment.

Note: When attempting to connect to a Web service from a thin client, verify that the resources that you
are specifying are valid before running the updatePolicySetAttachment command. No configuration
changes are made if the requested resource does not match a resource in the attachment file for
the application.

A client application can dynamically select a policy suite (reference by name from an application-level
policy suites list). Options shown in the administrative console list are based on the type of template that is
selected to create the policy set. For example, the SecureConversation policy type is made up of policies
for both WSSecurity and WSAddressing.

There are two types of policy sets:
» Application policy sets
» System/trust policy sets

WebSphere Application Server provides predefined system policy sets. For example, WebSphere
Application Server provides the following system policy sets by default for the security trust service:

» TrustServiceSecurityDefault

286 Securing WebSphere applications

This trust policy set specifies the asymmetric algorithm as well as the public and private keys to provide
message security. Message integrity is provided by digitally signing the body, time stamp, and
WS-Addressing headers using RSA. Message confidentiality is provided by encrypting the body and
signature using RSA. This policy set follows the WS-Security specifications for the issue and renew trust
operation requests.

* TrustServiceSymmetricDefault

This policy set specifies the symmetric algorithm as well as the derived keys to provide message
security. Message integrity is provided by digitally signing the body, time stamp, and WS-Addressing
headers using HMAC-SHA1. Message confidentiality is provided by encrypting the body and signature
using AES. This policy set follows the WS-Security and Secure Conversation specifications for validate
and cancel trust operation requests.

» SystemWSSecurityDefault

This policy set specifies the asymmetric algorithm and both the public and private keys to provide
message security. Message integrity is provided by digitally signing the body, time stamp, and
WS-Addressing headers using RSA encryption. Message confidentiality is provided by encrypting the
body and signature using RSA encryption

You cannot edit default system policy sets. However, you can create your own custom system policy set,
which can be edited later. Copy or export a default or existing custom system policy set to create the new
custom policy set. System policy sets can also be imported from a predefined location, or from the default
repository. Add one or more policies to each policy set. For example, add any of the following existing
policies:

e HTTP transport

+ WS-Addressing

» WS-Security

» SSL transport

* JMS Transport

The HTTP transport policy can be used for HTTPS, basic authorization, compression, and binary encoding
transport methods.

Web Services Trust standard:

Web Services Trust (WS-Trust) is a proposed Organization for the Advancement of Structured Information
Standards (OASIS) standard that enables security token interoperability by defining a request/response
protocol. This protocol allows SOAP actors, such as a Web services client, to request of some trusted
authority that a particular security token be exchanged for another. The trust service, which is provided
with WebSphere Application Service, uses the secure messaging mechanisms of WS-Trust to define
additional extensions for the issuance, exchange, and validation of security tokens.

WS-Trust defines a request and response protocol for security token exchange. A client sends a
RequestSecurityToken (RST) to a security token service. The request includes the security token that the
client is asking to be exchanged. The security token service responds back with a
RequestSecurityTokenResponse (RSTR) that contains the new token.

In addition to the token exchange, the WS-Trust request/response protocol is general enough to support
token issuance, where the client presents a claim to the trust service for the service to authorize through
the issuance of a corresponding security token. Token validation is where the client presents a token to the
trust service and asks that its validity be determined.

Also, WS-Trust enables the issuance and dissemination of credentials within different trust domains. To
secure a communication between two parties, the two parties must exchange security credentials (either
directly or indirectly). Each party must first determine if they can trust the asserted credentials of the other

party.

Chapter 5. Web services 287

The OASIS WS-Trust specification defines extensions to Web Services Security (WS-Security) for issuing
and exchanging security tokens and for providing ways to establish and access the presence of trust
relationships. Using these extensions, applications can engage in secure communication, and these
extensions are designed to work with the general Web Services framework. The general Web Services
framework includes the WSDL service descriptions, UDDI businessServices and bindingTemplates, and
SOAP messages.

The WebSphere Application Server support of WS-Trust focuses on establishing a security context token
for Web Services Secure Conversation (WS-SecureConversation). The WS-Trust support focuses on the
four actions for the security context token: issue, renew, validate, and cancel. Also supported for WS-Trust
Version 1.3 are collection requests for the same actions: issue, renew, validate and cancel. The major
component for WS-Trust that WebSphere Application Server supports is the security token service, which
is referred to as the trust service.

Support for submission draft and approved levels of the WS-Trust standard

Version 6.1 and later of WebSphere Application Server supports the WS-Trust 2005 Submission Draft
specification (Version 1.1). However, WebSphere Application Server does not provide a full security token
service that implements all the contents of the WS-Trust draft specification.

Support for the approved version 1.3 specification, which is dated March 2007, is provided for WebSphere
Application Server version 7.0. The Security Context Token (SCT) provider supports the OASIS version 1.3
specifications for WS-Trust and WS-SecureConversation. There is a configuration option that allows
support for the two different levels of the WS-Trust standard to co-exist on the same server. This provides
interoperability between systems and products that support different specification levels. See the topic
Configuring the security context token provider for the trust service using the administrative console for
details.

A setting is also provided to specifically disable support for the WS-Trust 2005 Submission Draft
specification (Version 1.1) for the Security Context Token provider. For more information about this
property, refer to the topic Disabling the draft standard level for the Security Context Token.

Processing a trust service request depends on the specifications referenced in the request. Also, the trust
service response is determined by the level of the specification used in the request.

For more information about WS-Trust:
+ See the [IBM DeveloperWorks Web site]
 See the schema for the specification: |nttp://docs.oasis-open.org/ws-sx/ws-trust/200512]

* Refer to the wst namespace prefix that is used for WS-Trust in the Web Services Trust Language
(WS-Trust) specification dated March 2007.

Configuring system policy sets using the administrative console:

By defining a custom policy set or defining assertions about how services are defined, you can configure
Web services security. You can use the administrative console to manage custom policy sets.

Before you begin

A policy set specifies a set of common message policy assertions that can be specified within a policy. For
example, a policy set can define general security policy assertions that apply to other protocols, such as
Web Services Security (WS-Security), SOAP messages, Web Services Secure Conversation (WS-Secure
Conversation) and Web Services Trust (WS-Trust).

There are two main types of policy sets; application policy sets and system policy sets. Application policy
sets are used for business-related assertions. These assertions are related to the business operations that

288 Securing WebSphere applications

http://www.ibm.com/developerworks/library/specification/ws-trust/
http://docs.oasis-open.org/ws-sx/ws-trust/200512

are defined in the Web Services Description Language (WSDL) file. System policy sets, on the other hand,
are used for non-business-related system messages. These messages are defined in other specifications
which apply qualities of service (QoS). Examples of QoS are the request security token (RST) messages
that are defined in WS-Trust, the create sequence messages that are defined in WS-Reliable Messaging,
and the metadata exchange messages defined by WS-MetadataExchange.

Note: Use system policy sets with the trust service, or Web Services MetadataExhange (WS-MEX). The
requestor (client) must utilize Java API for XML-Based Web Services (JAX-WS) only. Requestors
which use Java API for XML-based remote procedure calls (JAX-RPC) are incompatible with the
policy set QOS.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

About this task

Only custom policy sets can be modified. Default system policy sets are read only and cannot be changed.
1. To define system policy sets, click Services > Policy sets > System policy sets.
2. Click one of the following actions to work with the system policy set configurations:

New To create a system policy set configuration. Enter a unique name for the system policy set

configuration in the Name field. For example, you might specify
EcommerceTrustServiceSecurity.

Delete To delete an existing configuration. Select the check box next to an existing policy set name,
and click Delete.

Copy To copy an existing configuration. Select the check box next to an existing policy set name,
and click Copy.

Import
To import an existing configuration. Select the check box next to an existing policy set name,
and click Import. See [Importing policy sets using the administrative consolel

Export
To export an existing configuration. Select the check box next to an existing policy set name,
and click Export. See [Exporting policy sets using the administrative console|

3. To edit the settings of an existing policy set configuration, click the link for the existing custom system
policy set that you want to change. Use the administrative console to modify existing custom policy
sets that have been created.

4. Optional: If creating a policy set, enter a short description for the new policy set. Default policy sets
can only be viewed. For a custom policy set, edit the brief description of the policy set in the
Description field. This description displays in the list on the System policy sets panel. The description
should be meaningful to you and other potential users of this policy set.

5. If creating a new policy set, click Apply. The policy set name must be applied before you can add
policy types to the new policy set.

6. Optional: If needed, add the policy type information, or change the policy types for an existing system
policy set. You can add, delete, enable, or disable policy types for the selected policy set. You can add
any valid policy types to the policy set collection. The following are available policy types for system
policy sets:

e HTTP transport - for HTTP transport policies

» SSL transport - for HTTPS transport policies

* WS-Addressing - for endpoint addressing policies
» WS-Security - for secure SOAP messages policies

7. Click OK and then click Save to save the information directly to the master configuration.

Chapter 5. Web services 289

Results

You have provided the basic information to create a system policy set. You can also create a new or
update an existing system policy set for the WebSphere Application Server trust service, or Web Services
MetadataExhange (WS-MEX), using the wsadmin tool. The wsadmin tool examples are written in the
Jython scripting language.

What to do next

After creating a system policy set and adding the policy types, attach the system policy set to a trust
service operation for an endpoint, or attach it to one of the trust service default operations.

Defining a new system policy set using the administrative console:

Use policy sets, or assertions, to define system service operations, for your Web services security
configuration. Whenever you create a new policy set, you must add policy types to the policy set. You can
add HTTP Transport, WS-Addressing, WS-Security, and SSL Transport policy types to the system policy
set collection.

Before you begin

A policy set specifies a set of common message policy assertions that can be specified within a policy. For
example, a policy set can define general security policy assertions that apply to other protocols such as
Web Services Security (WS-Security), SOAP messages, Web Services Trust (WS-Trust), and Web
Services Secure Conversation (WS-SecureConversation).

Note: Use system policy sets with the trust service only. The requestor (client) must utilize Java API for
XML-Based Web Services (JAX-WS) only. Requestors which use Java API for XML-based remote
procedure calls (JAX-RPC) are incompatible with the policy set QOS.

About this task

Use the system policy sets to configure access to the WebSphere Application Server trust service. You
can create and define a custom system policy set.

1. Using the administrative console, click Services > Policy sets > System policy sets .
2. To create a system policy set and add a policy type, click New.

3. Enter a name for the policy set in the Name field. The name must be unique for the new system policy
set. For example: EcommerceTrustServiceSecurity

4. Enter a brief description of the policy set in the Description field. This description displays in the
System Policy Sets collection. The description should be descriptive enough for you and other potential
users to identify the policy set.

5. Click Apply to apply the name and description information.

6. Click Add to add a trust policy by selecting one from the policies listed. The following policies are
available to use for system policy sets:

e HTTP transport - for HTTP transport policies

e SSL transport - for HTTPS transport policies

* WS-Addressing - for endpoint addressing policies

* WS-Security - for secure SOAP messages policies
7. Click Save to save directly to the master configuration.

290 Securing WebSphere applications

Results

You have provided the basic information to create or modify a policy set. You can also create a new or
update an existing policy set for the WebSphere Application Server trust service using the wsadmin tool.
The wsadmin tool examples are written in the Jython scripting language.

What to do next

After creating or modifying a system policy set and adding the policy types, attach the policy set to an
endpoint operation or attach it to one of the trust service default operations.

System policy set collection:

Use this panel to create and manage policy sets. A policy set is a named collection of policies. System
policy sets, or assertions about how services are defined, are used to configure access to the trust
service.

There are two main types of policy sets; application policy sets and system policy sets. Application policy
sets are used for business-related assertions. These assertions are related to the business operations that
are defined in the Web Services Description Language (WSDL) file. System policy sets, on the other hand,
are used for non-business-related system messages. These messages are defined in other specifications
which apply qualities of service (QoS). Examples of QoS are the request security token (RST) messages
that are defined in WS-Trust, the create sequence messages that are defined in WS-Reliable Messaging,
and the metadata exchange messages defined by WS-MetadataExchange.

To view this administrative console page, click Services > Policy sets > System policy sets.
Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Select:

Provides a check box next to the name of an existing system policy set that you want to select for further
actions.

To manage existing system policy sets, select the check box for a system policy set and then select one of
the following actions:

Actions Description
Delete Removes one or more selected system policy sets.
Copy Opens a new panel where you can create a copy of the

selected existing policy set. Provide a unique name and,
optionally, a description for the copied policy set. You must
also specify whether to transfer the attachment and
binding from the original version to the copy. You can
select only one policy set to be copied at one time.

Import Imports a policy set. This is a menu item with the option of
importing a policy set from a default repository or a
selected location. You can select and import the default
policy sets from the default repository. The default
repository for the import function in the administrative
console is the directory which contains the default policy
sets. The administrative console also displays the default
policy sets in a list which includes descriptions, to allow
you to select the desired policy set that you want to
import.

Chapter 5. Web services 291

Actions Description

Export Opens a new panel where you can export the selected
policy set. You can select only one policy set to be
exported at one time.

New:

Specifies to create and define a custom system policy set.
Name:

Provides a list of available system policy sets.

This column displays a list of default and custom system policy set names. WebSphere Application Server
provides several default system policy sets:

» TrustServiceSecurityDefault is a default trust policy set. This trust policy set specifies the asymmetric
algorithm as well as the public and private keys to provide message security. Message integrity is
provided by digitally signing the body, time stamp, and WS-Addressing headers using RSA. Message
confidentiality is provided by encrypting the body and signature using RSA. This policy set follows the
WS-Security specifications for the issue and renew trust operation requests.

» TrustServiceSymmetricDefault is a default trust policy set. This trust policy set specifies the symmetric
algorithm as well as the derived key algorithms to provide message security. Message integrity is
provided by digitally signing the body, time stamp, and WS-Addressing headers using HMAC-SHA1.
Message confidentiality is provided by encrypting the body and signature using AES. This policy set
follows the WS-Security and WS-SecureConversation specifications for the validate and cancel trust
operation requests.

» SystemWSSecurityDefault is a default system policy set that specifies the asymmetric algorithm and
both the public and private keys to provide message security. Message integrity is provided by digitally
signing the body, time stamp, and WS-Addressing headers using RSA encryption. Message
confidentiality is provided by encrypting the body and signature using RSA encryption.

All custom system policy sets (for example, EcommerceTrustServiceSecurity) are also displayed in the list.
Click the system policy set name to view additional details about the selected policy set.

Data type: String

Defaults: TrustServiceSecurityDefault,
TrustServiceSymmetricDefault or
SystemWSSecurityDefault

Editable:
Provides information as to whether the system policy set can be edited.

This column shows whether the policy set is a user-defined, custom policy set that can be edited or
whether the policy set is a default policy set that is not editable. Values displayed in this field are: Editable
or Not editable. You can change the properties for a default, not editable policy set by copying it, and
then modifying the properties of the copy. For more information on modifying a default policy set, see the
topic [Copy of default policy set and bindings settings}

Note: Even though a policy set is identified as not editable, it is deletable. For example, you cannot edit
information for the default system policy set, but you can delete the policy set.

Data type: String
Default: Not editable

292 Securing WebSphere applications

Description:
Provides brief descriptions of the system policy sets that currently exist.

This column provides a brief description of the policy sets that are available. You cannot edit information
for the default system policy sets. For custom policy sets that you create, you can create the description
when you create the policy set. Or, you can edit any custom policy set and modify the description on the
details panel at any time. The description field is optional.

Related reference

[Copy of default policy set and bindings settings|
Use this page to copy a policy set that you select from a list of available policy sets.

System policy set settings:

Use this panel to create a new system policy set or to edit information about an existing custom system
policy set. System policy sets, or assertions about how services are defined, are used to configure access
to the trust service.

To view this administrative console page, complete one of the following procedures:

» Services > Policy sets > System policy sets > policyset_name

» Services > Policy sets > System policy sets > New

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Note: You can edit the fields on this page only if the policy set is a custom trust policy set. You cannot
edit default trust policy sets.

Name:
Specifies the name of the trust policy set.

This field displays the name of the existing custom policy set that you selected. If a new policy set is being
created, this field is blank. Enter a policy set name.

Data type: String

Description:
Specifies a brief description of the new or existing custom policy set.
This field provides a brief description for the existing policy set that is displayed in the Name field. If a new

policy set is being created, this field is blank. Enter a brief policy set description to help distinguish it from
other policy sets. You cannot change the descriptions of the default policy sets.

Data type: String

Policies:
Specifies a collection of trust-related policies.

The Policies section displays a list of pre-configured system-level trust policies. If the system policy set is
a default trust policy set, policies cannot be added, deleted, enabled, or disabled. If the system policy set

Chapter 5. Web services 293

is an existing custom trust policy set, you can change the policies. If you are creating a new custom trust
policy set, you can add new policies. You can also delete, enable, or disable any policies that are added.

Select:
Specifies that you want to select an existing policy for further actions.
Click Add to display a list of valid policies that you can add to the named trust policy set.

To manage existing system policies, select the check box for a policy and select one of the following
actions:

Actions Description

Delete Removes one or more policies from the named custom
policy set.

Enable Specifies that the policy is enabled for the policy set and

displays Enabled in the State column.

Disable Specifies that the policy is disabled for the policy set. The
policy remains in the list but displays Disabled in the
State column.

Policy:
Specifies the name of the policy.

This column displays one or more of these pre-configured trust policies:
* HTTP transport — for HTTP transport policies

» SSL transport — for HTTPS transport policies

* WS-Addressing — for endpoint addressing policies

» WS-Security — for secure SOAP messages policies

State:

Specifies an enabled or disabled state for each policy.

This column displays whether the policy is enabled or disabled for each of the policies that are listed in the
Policy column. For example, to change the state of the policy from enabled to disabled, select the check
box for the policy, and click Disable.

Description:

Displays a brief description of the policy.

You can view these descriptions only.

Configuring attachments for the trust service using the administrative console:

You can attach the trust service operations for a service endpoint to a system policy set and binding. Each
new endpoint that is specified initially has the following four operations: issue, renew, cancel, and validate.

By default, all endpoints inherit the policy set and binding that are attached to the respective trust service
operation under Trust Service Defaults. However, you can explicitly attach a different policy set.

294 securing WebSphere applications

Before you begin

First you must define your policy sets and bindings. Policies describe the protection or quality of service
that is provided (such as message security, transport and so forth). Bindings specify some details about
how to implement the policy, such as: the path for the keystore file, the class name of the token generator,
or the JAAS configuration name.

Note: Use system policy sets with the trust service only. The requestor (client) must utilize Java API for
XML-Based Web Services (JAX-WS) only. Requestors which use Java API for XML-based remote
procedure calls (JAX-RPC) are incompatible with the policy set QOS.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

About this task

You can attach the trust service operations for a new endpoint to an existing policy set and binding. For
each new service endpoint that is specified, four trust service operations (cancel, renew, validate and
issue) change from having inherited attachments to being explicitly attached. The four operations are
attached to the respective policy set and binding as specified in Trust Service Defaults. Then you can
change the attachment to the desired existing policy set and binding.

An endpoint policy set consists of two sections: a bootstrap section and an application section. The system
policy set attached to the Issue and renew trust service operations for a specific endpoint must correspond
to the bootstrap section of the policy set for that endpoint. The system policy set attached to the Cancel
and Validate trust service operations for a specific endpoint must correspond to the application section of
the policy set for that endpoint.

This task describes how to manage trust service operations for service endpoint URLs that you want to
attach to a system policy set and binding. To complete the configuration of the WebSphere Application
Server trust service, you must also complete the following task:

« Create or manage targets. You can create explicit assignments for new service endpoints (targets) or
manage endpoints that have a security token explicitly assigned or that inherit the Trust Service Default
token.

The sample general bindings that are provided with the product are initially set as the global security (cell)
default bindings. The default service provider binding and the default service client bindings are used when
no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust
service attachments, the default bindings are used when no trust specific bindings are assigned. If you do
not want to use the provided Provider sample as the default service provider binding, you can select an
existing general provider binding or create a new general provider binding to meet your business needs.
Likewise, if you do not want to use the provided Client sample as the default service client binding, you
can select an existing general client binding or create a new general client binding. To specify your global
security (cell) default bindings, use the administrative console and click Services > Policy sets > Default
policy set bindings. For environments with multiple security domains, you can optionally choose the
general provider and general client bindings that you want to use as the default bindings for a domain. For
more information about default bindings see the topic Setting default policy set bindings.

1. To manage system policy set attachments for trust service operations, click Services > Trust service
> Trust service attachments. The list displays all endpoints that have at least one operation with a
policy set attached as well as Trust Service Defaults. The list also displays the system policy set and
the binding for each operation.

2. Select one or more of the following actions to configure the trust service attachments:

New Attachment
Opens a new panel where you can specify the service endpoint URL. For each new service

Chapter 5. Web services 295

endpoint that is specified, four trust service operations (cancel, renew, validate and issue)
change from having inherited attachments to being explicitly attached. The four operations are
attached to the respective policy set and binding as specified in Trust Service Defaults. These
initial attachments can be changed.

Attach
Displays a list of existing system policy sets, including the default trust-related system policy
sets, to which each of the four trust service operations for a service endpoint can be attached.
First, select the operation (for example, Cancel token) and then click Attach to display the list
of available system policy sets. Select a default or custom system policy set to attach. When
you change the policy set attachment, the binding automatically changes to Default. Select the
operation and click Assignh Binding to change the binding.

The pre-configured system policy sets that you can select include:
* TrustServiceSecurityDefault

This trust policy set specifies the asymmetric algorithm as well as the public and private
keys to provide message security. Message integrity is provided by digitally signing the
body, time stamp, and WS-Addressing headers using RSA. Message confidentiality is
provided by encrypting the body and signature using RSA. This policy set follows the
WS-Security specification for the issue and renew trust operation requests.

* TrustServiceSymmetricDefault

This trust policy set specifies the symmetric algorithm as well as the derived key algorithms
to provide message security. Message integrity is provided by digitally signing the body, time
stamp, and WS-Addressing headers using HMAC-SHA1. Message confidentiality is provided
by encrypting the body and signature using AES. This policy set follows the WS-Security
and WS-SecureConversation specifications for the validate and cancel trust operation
requests.

+ SystemWSSecurityDefault

This system policy set specifies the asymmetric algorithm and both the public and private
keys to provide message security. Message integrity is provided by digitally signing the
body, time stamp, and WS-Addressing headers using RSA encryption. Message
confidentiality is provided by encrypting the body and signature using RSA encryption.

Inherit Operation Defaults
Sets the operation to inherit the respective trust service default trust service policy set
attachment and binding. If you select the attachments to modify and then click Inherit
Operation Defaults, the explicit attachment for both the policy set and the binding is removed.
Thereafter, the operation inherits any change to the default trust service policy set and binding.

Assign Binding
Changes the existing binding. You can create and assign a new binding, assign the Default
binding, or assign an existing trust service specific binding to each of the selected trust service
attachments.

Update Runtime
Updates the trust service runtime with any configuration changes that are made to the trust
service attachments, token providers, and targets.
3. Optional: Modify the custom policy set by clicking the name of a custom policy set from the list. Edit
the settings for custom policy sets, as needed. Default trust service policy set information can only be
viewed.

You cannot edit the default policy sets: TrustServiceSecurityDefault and TrustServiceSymmetricDefault,
or SystemWSSecurityDefault. TrustServiceSecurityDefault is the default for the issue and renew
operations. TrustServiceSymmetricDefault is the default for the cancel and validate operations.

296 Securing WebSphere applications

At least one trust service operation for the endpoint service URL must be explicitly attached for the
endpoint service URL to be displayed. If an operation is explicitly attached, the system policy set name
appears. If no policy set is explicitly attached, the respective default trust service policy set appears,
followed by the text (inherited).

4. Optional: Modify the trust service specific binding by clicking the name of a binding from the list, as
needed. Edit the settings for the trust service specific binding, as needed. Any modifications to a trust
service binding affect all trust service attachments that reference the binding.

If the resource has a policy set directly attached, either the bindings name appears or Default
appears.

5. Save your changes before applying the changes to the trust service runtime configuration.

6. Click Update Runtime to update the trust service runtime configuration with any data changes for
token providers, trust service attachments, and targets. Whether the confirmation window appears
depends on whether you select the Show confirmation for update runtime command check box.
Expand Preferences to view the check box.

7. Optional: Confirm or cancel if the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

You have provided the basic information to create or update a trust service attachment. You have
configured trust service operation attachments to system policy sets and bindings.

What to do next

You can also create a new attachment for the WebSphere Application Server trust service using the
wsadmin tool. The wsadmin tool examples are written in the Jython scripting language.

Creating a service endpoint attachment using the administrative console:

You can attach the trust service operations for a new service endpoint URL to system policy sets and
bindings. The operations for each new endpoint are attached to the Trust Service Default policy sets and
bindings. Each new endpoint initially has the following four operations: issue, renew, cancel, and validate.

Before you begin

First you must define your policy sets and their bindings. Policy sets describe the protection or quality of
service that is provided (such as message security, transport and so forth). Bindings specify some details
about how to implement the policy set, such as: the path for the keystore file, the class name of the token
generator, or the JAAS configuration name.

Note: Only use system policy sets with the trust service. The requestor (client) must utilize only Java API
for XML-Based Web Services (JAX-WS). Requestors that use Java API for XML-based remote
procedure calls (JAX-RPC) are incompatible with the policy set QOS.

About this task

Attaching the trust service operations for a new endpoint to existing policy sets and bindings requires two
steps. After initially attaching the endpoint, the following four operations are configured: issue, renew,
cancel, and validate. These four operations explicitly attach to Trust Service Defaults. You can then modify
these attachments to existing policy sets and bindings.

This task describes how to create or manage service endpoint URLs that you want to attach to the policy
set and binding. To complete the configuration for the WebSphere Application Server trust service, you
must also create or manage targets.

Chapter 5. Web services 297

If no explicit bindings are attached, WebSphere Application Server uses the cell-level default binding,
referred to as Default.

1.

To view existing trust service attachments, click Services > Trust service > Trust service
attachments. Until you create the first attachment, only the default attachments for each operation are
displayed.

To create an attachment, click New Attachment.

Enter the service endpoint URL in a valid format. Note that when the URL in the trust service
attachment does not match the URL, including matching the case, to which the trust service request is
sent, the policy set that is defined in the attachment is not applied. Instead, IBM WebSphere
Application Server uses the policy set that is attached to the default for the trust operation.

For example, where demo is the endpoint, you might enter: http://localhost:9080/wssamplebeta/demo

Click Attach to attach the URL and to return to the Trust service attachments panel. After you click
Attach, the Trust service attachments panel displays the new service endpoint URL and the initial four
operations. The service endpoint URL that you specified is listed in the Trust service attachments
collection. These four token operations (cancel, renew, validate and issue) for the specified endpoint
are initially attached to Trust Service Defaults.

On the Trust service attachments panel, change the policy set or binding attachment, as needed. You
can return any operation to its initial state by inheriting Trust Service Defaults.

Note: Changing the policy set forces the binding to change to Default.
Save your changes before applying the changes to the Web services security runtime configuration.

Click Update Runtime to update the Web services security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
appears depends on whether you selected the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

Optional: Confirm or cancel if the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

You have provided the basic information to create a trust service attachment and to configure a policy set,
a binding, and the operation information.

What to do next

You can also create a new attachment for the trust service using the wsadmin tool. The wsadmin tool
examples are written in the Jython scripting language.

Next, configure the security context token provider or configure targets to complete the trust service
configuration.

Trust service attachments collection:

Use this page to view information about or manage system policy set attachments and bindings. Endpoints
with at least one operation directly attached to a policy set are displayed.

This page displays each endpoint that has at least one operation that is directly attached to a system
policy set. The operations for other endpoints inherit the trust service default policy set and binding data.
You can click New Attachment to create explicit attachments for endpoints not displayed, or click Attach
to change the policy set for an operation. Changing the system policy set for an operation removes the
binding data for that operation, and resets that data to the system default binding settings. You can also
click Assign Binding to create a new binding configuration or change the existing binding configuration for
the selected operation.

298 Securing WebSphere applications

To view this administrative console page, click Services > Trust service > Trust service attachments.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Show confirmation for update runtime command:

Specifies whether to enable or disable the display of the confirmation window before the Web services
security runtime configuration is updated for supported tokens, targets, and trust service attachments.

Click Preferences to expand the information. You can select or clear the Show confirmation for update
runtime command check box. If you do not select this check box, updates to the security runtime
configuration are made without first displaying a confirmation window. If you select the check box, the
confirmation window is displayed before updates to the security runtime configuration are made.

Data type: Check box
Default: Enabled (check box is selected)

Retain filter criteria:
Specifies whether to retain the filter criteria.

Click Preferences to expand the information. You can select or deselect the Retain filter criteria check
box. This check box determines whether Endpoint URL is used as the filter criteria to reduce the
displayed list of endpoints.

Data type: String
Default: All (check box is not selected)

Search terms:
Specifies the search criteria to use to reduce the displayed list of endpoints.

Click Preferences to expand the information. Type the search term you want to use in the Search terms
field. Use the asterisk (*) as a wildcard character for all terms. You can also search for multiple unknown
or partial characters within the term. For example, typing the search term par=* returns partly,
participate, partial, and all other terms beginning with the letters par.

Data type: String
Default: * (search for all)
Select:

Specifies that you want to select an existing resource, such as an endpoint or an operation, for further
actions.

For existing endpoints, select the check box next to an operation, and then select one of the following
actions:

Chapter 5. Web services 299

Actions Description

Attach Displays a list of policy sets that are available to be
attached to an endpoint operation (cancel, reset, validate,
or issue) or to one of the trust service default operations.
Highlight and click the policy set to attach the policy set
to the selected operation. You cannot attach a policy set
to an endpoint.

Inherit operation defaults Detaches the currently attached policy set and binding for
each selected operation and sets the operation to inherit
the trust service default policy set and binding for each
operation.

Assign binding Lists the bindings that are available to select for the
policy set to which you want to attach the binding. You
can also create a new binding.

» Select Default to create and assign the system default
binding to the selected policy set attachment. When
you select this binding the runtime uses the default
binding for the server, cell or in the multiple security
domain environment to which the service resource is
deployed.

» Select New Trust Service Specific Binding to create
a binding that is specific to the policy set and shares
the characteristics of the policy set. This type of
binding is reusable only for trust service attachments.

» Select an existing general binding to assign the binding
to the selected policy set attachment.

Multiple selection is valid only when all the resources
have the same policy set attached.

New attachment:
Specifies that you want to create an explicit policy set attachment.
Click New Attachment to access a new panel where you can enter an endpoint URL to create

attachments for each of the four endpoint operations of the provided URL. Initially, the attachment consists
of the policy set and binding that are listed as the Trust Service Default for that operation.

Data type: Button

Update runtime:
Updates the trust service configuration for any changed attachments, targets, and token information.
If the Show confirmation for update runtime command preference is enabled, then a panel is displayed

where you can confirm that you want to update the trust service configuration. If the preference is
disabled, the trust service configuration is updated immediately without any confirmation.

Data type: Button

Service endpoint URL / Operation:

Displays a list of the trust service default operation attachments and every service endpoint URL that has
at least one operation with a policy set attached.

300 Ssecuring WebSphere applications

Each endpoint has four operations: issue, cancel, renew, and validate. Each of the operations for all other
endpoints inherits the trust service default policy set and binding.

When the URL in the trust service attachment does not match the URL to which the trust service request
is sent, the policy set that is defined in the attachment is not applied. Instead, IBM WebSphere Application
Server uses the policy set that is attached to the default for the trust operation.

Data type: String
Default: Trust Service Default
Policy set:

Displays the attached or inherited policy set for each operation of all endpoint URLs. Any endpoint URL
that is not displayed inherits the trust service default policy set for each operation. Provides a list of default
and custom system policy sets that are attached to the service endpoint URL.

The policy set names are displayed in this column for each operation. If the policy set is inherited from the
trust service default, rather than being explicitly attached, inherited is displayed in parentheses following
the policy set name. Because only operations can have a policy set attachment, the Policy Set column for
each endpoint URL row displays Not applicable.

Click the system policy set name to view or edit the policy set details information. Note that you can view,
but not edit, the default policy sets. Default policy sets cannot be changed.

Data type: String

Defaults: TrustServiceSecurityDefault,
TrustServiceSymmetricDefault or
SystemWSSecurityDefault

Binding:

Displays the binding that is assigned to each policy set attachment for each operation of the listed
endpoint URLs. Any endpoint URL that is not displayed inherits the trust service default binding for each of
the four operations.

The name of the assigned binding for each policy set attachment is displayed in this column for each
operation. If the attachment is inherited from the trust service default, inherited is displayed in
parentheses following the binding name. If you select Assign Binding > Default, the system default
binding is applied to the policy set attachment, and the word Default is displayed in this column. If the
system default binding is inherited, then inherited is displayed in parentheses following Default.

The system default binding is also assigned when you attach a new policy set to an operation. Because
only operations can have policy set attachments, the binding column for each endpoint URL row displays
Not applicable. Rows that are not directly related to a token and display the trust service default, display
the text, Not applicable, for the binding. Additionally, rows that are not directly related to a token and
display only the service endpoint URL display the text, Not applicable, for the binding.

Click the trust service specific binding name to view or edit the binding information. You can view, but not
edit, the TrustServiceSecurityDefault, TrustServiceSymmetricDefault or SystemWSSecurityDefault bindings.

Data type: String

Default: TrustServiceSecurityDefault,
TrustServiceSymmetricDefault or
SystemWSSecurityDefault

Chapter 5. Web services 301

Trust service attachments settings:

Use this page to create a new attachment to the current Trust Service Defaults policy set and binding for
the four token operations: cancel, issue, renew, and validate.

To view this administrative console page, complete the following procedure:
» Click Services > Trust service > Trust service attachments > New Attachment .

Service endpoint URL:

Specifies the service endpoint URL that you want to attach to the policy set and binding for the trust
service default operations.

Use this field to specify a service endpoint URL. The URL must be specified in a valid format, such as
http://www.mybusiness.com.

Note that when the URL in the trust service attachment does not match the URL to which the trust service
request is sent, the policy set that is defined in the attachment is not applied. Instead, IBM WebSphere
Application Server uses the policy set that is attached to the default for the trust operation.

After you enter the URL and click Attach, the custom service endpoint URL is displayed in a list of
explicitly attached service endpoint URLs on the Trust service attachments panel. In addition to the new
service endpoint URL, the Trust service attachments panel displays a list of the corresponding four
operations (cancel, issue, renew and validate).

On the Trust service attachments panel, you can change the Trust Service Default policy set and binding
attachments for any of the four operations. These policy sets apply to any URL not displayed, and
therefore not explicitly attached to a policy set and binding. Changing the policy set for a URL operation
resets a custom binding setting to the default value.

On the Trust service attachments panel, if you want to remove the explicit policy set attachments and
binding assignments, select each of the URL operations, and click Inherit Operation Defaults. If all four

operations are changed to inherit the Trust Service Default policy set and binding, then the URL no longer
displays on this panel.

Data type: String (URL format)

New general binding settings:

Use this page to create a provider binding which is reusable across policy sets and applications. Use the
Add button to select policy bindings and then provide configuration settings. Empty bindings are deleted.

To view this administrative console page, click Services > Trust service > Trust service attachments >
Assign Bindings > New General Binding.

Bindings configuration name:

Enter a name for the new binding.
Description:

Enter a description for the new binding.

Select policy bindings:

302 Ssecuring WebSphere applications

Click Add, then select an existing policy set binding. To delete a binding, click the checkbox next to the
binding name, then click Delete.

Actions Description

Add Select a policy set binding. Configure binding settings
using the panel that appears after you add the binding.

Delete Click the checkbox next to the binding name, then click
Delete.

Configuring the security context token provider for the trust service using the administrative
console:

Configure the WebSphere Application Server trust service to issue a specific security token to the
requestor for communication with an endpoint. Use the administrative console to configure the security
context token provider that the trust service provides.

Before you begin

WebSphere Application Server provides a trust service. The trust service provides both a security token

service and additional WebSphere Application Server trust-related functionality. To configure the trust

service, in addition to managing the security context token provider, you must first complete the following

tasks:

» Create or manage supported targets. You can create explicit assignments for new service endpoints
(targets) or manage endpoints that have the security context token provider explicitly assigned or that
inherit the token provider designated as the Trust Service default.

» Create or manage the attachment of token operations for service endpoints to policy sets and bindings.
The order in which you complete these tasks is not important.
About this task

This task describes how to manage the security context token provider and how to define or modify the
properties of the security context token provider.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

1. To manage the security context token provider, click Services > Trust service > Token providers.

2. To edit the settings of the security context token provider configuration, click the link for the token
provider name. You cannot edit the name, class name, or token type schema URI when modifying the
token provider information.

a. The format of the token type schema Uniform Resource Identifier (URI) is in the standard URI
format. For example, for a version 1.3 security context token, the URI is: http://docs.oasis-open.org/
ws-sx/ws-secureconversation/200512/sct

b. Change the amount of time, in minutes, in the Time in cache after timeout field that the expired
token is kept in cache and where the token can still be renewed. The default value is 120 minutes.
This value cannot be less than 10 minutes.

c. Change the amount of time, in minutes, in the Token timeout field that the issued token is valid.
The default value is 10 minutes. This value cannot be less than 10 minutes.

d. Select the Allow renewal after timeout check box to enable the renewal of a token after the token
has expired. If selected, the amount of time, within which an expired token can still be renewed, is
specified in minutes in the Time in cache after expiration field.

Chapter 5. Web services 303

e. Select the Allow postdated tokens check box to enable postdated tokens. Use postdated tokens
to specify whether a client can request a token to become valid at a later time.

f. Select the Support Secure Conversation Token v200502 to enable use of the older draft
submission specification level of the security context token. The correct URI for this level of the
token type schema appears in the field under the check box: http://schemas.xmlsoap.org/ws/2005/
02/sc/sct.

g. Click New to define a new custom property or click Edit to modify the custom property. Specify
these settings using the Custom Properties setting. Custom properties are used to set internal
system configuration properties. Custom properties are arbitrary name-value pairs of data, where
the name might be a property key or a class implementation, and where the value might be a
string or the value might be a true or false value.

h. If you define a custom property, type a name. Refer to the documentation for the token provider for
valid custom property names.

i. If you define a custom property, type a value. Refer to the documentation for the token provider for
the values for a property name.

j- Repeat defining the name and the value for each custom property that you add.
k. Click OK. You are returned to the Token providers panel.
3. Save your changes before applying the changes to the Web services security runtime configuration.

4. Click Update Runtime to update the Web services security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
is displayed depends on whether you select the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

5. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

You have completed the required steps to modify the security context token provider configuration and to
update the Web services security runtime configuration. You can also update the security context token
provider configuration for the trust service using the wsadmin tool. The wsadmin tool examples are written
in the Jython scripting language.

What to do next

Next, if you have not done so already, you must also configure targets or configure attachments to
complete the trust service configuration.

Modifying the security context token provider configuration for the trust service using the administrative
console:

WebSphere Application Server provides a pre-configured token, the Security Context Token (SCT). Use
the administrative console to modify the configuration of the security context token provider.

Before you begin

WebSphere Application Server provides a trust service. The trust service provides both a security token
service and additional WebSphere Application Server trust-related functionality. To configure the trust
service, in addition to managing the security context token provider, you must first complete the following
tasks:

» Create or manage supported targets. You can create explicit assignments for new service endpoints
(targets) or manage endpoints that have a security token provider explicitly assigned or that inherit the
token provider designated as the Trust Service default.

304 Ssecuring WebSphere applications

» Create or manage the attachment of token operations for service endpoints to policy sets and bindings.
The order in which you complete these tasks is not important.
About this task

This task describes how to configure the security context token provider and how to define the token
provider properties.

1. To configure the security context token provider, click Services > Trust services > Token providers.

2. To change the configuration of the security context token provider, click the link for the token provider
name (Security Context Token). For an existing token, the token name, class name and URI are
displayed, but are not editable.

3. Optional: Change the amount of time, in minutes, in the Time in cache after expiration field that the
expired token is kept in cache and where the token can still be renewed. The default value is 120
minutes, and you cannot type a value that is less than 10 minutes.

4. Optional: Change the amount of time, in minutes, in the Token timeout field that the issued token is
valid. The default value is 120 minutes, and you cannot type a value that is less than 10 minutes.

5. Optional: Select the Allow renewal after timeout check box to enable the renewal of a token, after
the timeout time has expired. If selected, the amount of time, within which an expired token can still
be renewed, is specified in the Time in cache after expiration field.

6. Optional: Select the Allow postdated tokens check box to enable postdated tokens. Use postdated
tokens to specify whether a client can request a token to become valid at a later time.

7. Optional: Select the Support Secure Conversation Token v200502 check box to enable use of the
older draft submission specification level of the security context token. The correct URI for this level
of the token type schema appears in the field under the check box: http://schemas.xmlsoap.org/ws/
2005/02/sc/sct.

8. Click New if you want to define a new custom property. Specify additional configuration using the
Custom Properties setting. Custom properties are used to set internal system configuration
properties. Custom properties are arbitrary name-value pairs of data, where the name might be a
property key or a class implementation, and where the value might be a string or Boolean value.

a. If defining a new custom property, type a name. For example, for a custom property, type:
com.ibm.wsspi.wssecurity.trust.keySize

b. If defining a new custom property, type a value. For example, the following value: 128

c. Repeat the name and value steps for each new custom property.

9. Click OK. You are returned to the Token provider panel.

10. Save your changes before applying the changes to the Web services security runtime configuration.

11. On the Token provider panel, click Update Runtime to update the Web services security runtime
configuration with any data changes for token providers, trust service attachments, and targets.
Whether the confirmation window is displayed depends on whether you select the Show
confirmation for update runtime command check box. Expand Preferences to view the check box.

12. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results
You have completed the required steps to modify the configuration of the security context token provider
and to update the Web services security runtime configuration. You can also modify the configuration of

the security context token provider for the trust service using the wsadmin tool. The wsadmin tool
examples are written in the Jython scripting language.

Chapter 5. Web services 305

What to do next

If you have not done so already, you must also configure targets or configure attachments to complete the
trust service configuration.

Trust service token custom properties:

WebSphere Application Server trust service provides several custom properties by default to define the
default security context token (SCT).

Custom properties are name-value pairs of data that are passed to the token provider during configuration.
The Property name column displays the name of the custom property. The name must match the name of

a configuration property or setting that the provider understands and expects. The Property value column
displays the configuration setting that is passed to the provider during configuration.

These custom properties are provided by default by WebSphere Application Server, for you to configure
when using the Services > Trust service > Token providers > Security Context Token page.

algorithm:

The value is AES.

keySize:

The value is 128.

Provider:

The value is IBMJCE.

Disabling the submission draft level for the security context token provider:

Use the administrative console to configure the security context token provider that the trust service
provides. Two levels of the token are supported on WebSphere Application Server: the token defined by
the WS-Trust February 2005 Submission Draft specification, and the token defined by the OASIS
WS-Trust Standard version 1.3. You can disable a setting so that the server will not accept a trust request
that specifies the submission draft level of the token.

About this task

Disable the Security Context Token provider support for the submission draft specification using the
administrative console.

1. Log on to the administrative console and navigate to the Token providers panel by clicking Services -
Trust service » Token providers.

2. Click on Security Context Token.
3. Click to clear the Support Secure Conversation Token v200502 check box.
4. Click Apply to save the changed setting.

Results

For more information , see the topic Modifying the security context token provider configuration for the
trust service using the administrative console.

306 Securing WebSphere applications

Related tasks

“Modifying the security context token provider configuration for the trust service using the administrative]
console” on page 304

WebSphere Application Server provides a pre-configured token, the Security Context Token (SCT). Use
the administrative console to modify the configuration of the security context token provider.

Trust service token provider settings:
Use this page to modify information for an existing token provider.

To view this administrative console page, complete the following actions:
» Services > Trust service > Token providers > token_provider_name

Name:
Specifies the name of the token provider.

This field displays the unique name of the token provider (for example, Security Context Token). You
cannot change the name for any existing token provider.

Data type: String

Class name:
Specifies the package and class name of the trust service’s Security Context Token provider.

This field displays the configuration class name, including the package information (for example,
com.ibm.ws.wssecurity.trust.server.sts.ext.sct.SCTHandlerFactory).

You cannot change the class name for any existing token provider.

Data type: String

Token type schema URI:
Specifies the Uniform Resource Identifier (URI) for the token type schema.

This field displays the unique token type schema URI. Use a valid URI format, such as:
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct.

You cannot change the schema URI for any existing token provider.

Data type: String

Time in cache after expiration:
Specifies the number of minutes that a token remains in the token cache after the token expires.

This field displays the time, in minutes, that the expired token is kept cached and can still be renewed.

Data type: Integer
Default: 120
Minimum: 10
Maximum: 2147483647

Chapter 5. Web services 307

Token timeout:
Specifies the amount of time, in minutes, that the issued token is valid.

This field displays the maximum timeout, in minutes, for a token to be considered valid.

Data type: Integer
Default: 120
Minimum: 10
Maximum: 2147483647

Allow renewal after timeout:
Specifies to enable or disable the renewal of a token.

This check box specifies whether to allow a client to renew an expired token. Note the Time in cache
after expiration field specifies the amount of time within which an expired token can still be renewed.

Data type: Check box
Default: Do not allow (unchecked)

Allow postdated tokens:
Specifies to enable or disable the use of postdated tokens.

This check box specifies whether a client can request a token to become valid at some point in the future.

Data type: Check box
Default: Do not allow (unchecked)

Support Secure Conversation Token v200502: This check box specifies whether support for the WS-Trust
and WS-Secure Conversation Feb 2005 Submission Draft OASIS specification is enabled. The default URI
for the token type schema is provided in the non-editable field below the check box.

Data type: Check box
Default: Enabled (checked)

Custom Properties:
Specifies additional configuration settings that the token provider might require.
This table lists custom properties. Use custom properties to set internal system configuration properties.

The Secure Context Token default configuration settings are :

Property Name Property Value
com.ibm.wsspi.wssecurity.trust.algorithm AES
com.ibm.wsspi.wssecurity.trust.keySize 128
com.ibm.wsspi.wssecurity.trust.provider IBMJCE
Select:

308 Securing WebSphere applications

Specifies custom properties that you can add to, edit, or delete from the token provider.
Click New to add and define a new custom property.

For existing custom properties, first select the check box for the name of the custom property, and click
one of the following actions:

Actions Description

Edit Specifies whether to modify existing custom properties.
This action requires one or more custom properties to be
selected.

Delete Removes the selected existing property from the listing in

the Name column. This action requires one or more
custom properties to be selected.
Name:
Displays the names of the custom properties that have been defined for the token provider.
This column displays the name of the custom property (for example,
com.ibm.wsspi.wssecurity.trust.keySize). Custom properties are name-value pairs of data that are

passed to the token provider during configuration. The name that you specify must match the name of a
configuration property or setting that the provider understands and expects.

Data type: String

Value:
Specifies the value for the custom property.
This column displays the value for the custom property (for example, true). Custom properties are

name-value pairs of data. The value, which is represented as a string, is a configuration setting that is
passed to the provider during configuration.

Data type: String or Boolean

Trust service token providers collection:

Use this page to view information about or manage token providers for the trust service.

To view this administrative console page, click Services > Trust service > Token providers.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Show confirmation for update runtime command:

Specifies to enable or disable the display of the confirmation window before the trust service configuration
is updated when you click Update Runtime.

Click Preferences and then select the Show confirmation for update runtime command check box. If
you select this check box, the confirmation window is displayed before updates to the security trust service
configuration are made. If you do not select this check box, clicking Update Runtime updates the security
trust service configuration without first displaying a confirmation window.

Chapter 5. Web services 309

Data type: Check box

Default: Enabled (checked)

Update Runtime:

Updates the trust service configuration for any changed attachments, targets, and token information.

If the Show confirmation for update runtime command preference is enabled, then a panel is displayed

where you can confirm that you want to update the trust service configuration. If the preference is
disabled, updates to the trust service configuration are applied immediately without any confirmation.

Data type: Button

Token Provider Name:
Lists available token providers.

This column displays the names of the pre-configured token providers. The pre-configured token provider
is the Security Context Token (SCT). Click a token provider name link to view additional details.

Data type: String

Default: Security Context Token
Token Type Schema URI:

Provides the Uniform Resource Identifier (URI) for the token type schema.

This column displays the URIs of all pre-configured token providers.

Data type: String

Configuring trust service endpoint targets using the administrative console:

The Trust Service manages tokens on behalf of service endpoints. A token provider is either explicitly or
implicitly associated with each service endpoint. A specific token can be explicitly assigned to be issued
when access to an endpoint is requested. Otherwise, the Trust Service Default token is issued.

Before you begin

The Web Services Secure Conversation specification defines the protocol for a client to establish a secure
session with a target service. The security token service that WebSphere Application Server provides,
referred to as the trust service, issues only the Security Context Token (SCT). The security context token
is used for Web Services Secure Conversation (WS-SecureConversation).

About this task
This task describes how to create new or manage existing assignments of tokens to be issued for
endpoint targets. You can create explicit assignments for new service endpoints (targets) or manage

existing token assignments.

To complete the configuration for the trust service, you must have performed the following tasks:
* Manage the security context token provider.
» Create or manage service endpoint URLs that you want to attach to the policy set and binding.

310 Securing WebSphere applications

The order in which you complete these tasks is not important.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

1. To configure new and existing trust service endpoint targets, click Services > Trust service > Targets.
A list of all service endpoints that have a security token provider explicitly defined is displayed. The
token provider assigned to the Trust Service Default by default handles requests to issue tokens to
access an endpoint.

2. Click one of the following actions to manage a new or existing endpoint target configuration:

New Assighment
Opens a new panel where you can specify a custom service endpoint URL and explicitly
assign the token provider, which is specified as the Trust Service Default, to be issued for
access to the endpoint.

Change Token
Changes an explicitly assigned token to be issued for the service endpoint to the security
context token. Select an endpoint and then click Change Token. Select the Security Context
Token.

Also, removes the explicit assignment of a token to be issued; therefore, the token that is
issued is inherited from the Trust Service Default. Select an endpoint and then click Change
Token. Click Inherit Default to remove a token provider assignment for the selected endpoint
and to return the issued token to be the token that is specified as the Trust Service Default. If
the token that is issued is inherited, the endpoint is no longer displayed in the list because the
token provider is no longer explicitly assigned to the endpoint.

3. Click the token name link for an existing endpoint target to modify the token provider configuration
information. You can modify the token type schema URI, or change custom properties.

4. Save your changes before applying the changes to the Web services security runtime configuration.

5. Click Update Runtime to update the Web services security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
is displayed depends on whether you select the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

6. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

When you complete these steps, the service endpoint URL displays in the Targets collection, unless you
changed the token to inherit the default value. You can also configure the trust service to issue tokens for
individual endpoint targets using the wsadmin tool. The wsadmin tool examples are written in the Jython
scripting language.

What to do next

You have completed the required steps to create or manage existing trust service targets, to assign the
security token provider to an endpoint target, and to update the Web services security runtime
configuration. Next, if you have not competed these tasks already, configure the security context token
provider or configure attachments to the policy set and binding to complete the trust service configuration.

Assigning a new target for the trust service using the administrative console:

Chapter 5. Web services 311

You can associate a security token provider with a service endpoint using the administrative console. After
entering the service endpoint URL, the token provider configured as the Trust Service Default is explicitly
associated with the service endpoint.

Before you begin

The Web Services Secure Conversation specification defines the protocol for a client to establish a secure
session with a target service. The security token service that WebSphere Application Server provides,
referred to as the trust service, issues the Security Context Token (SCT). The security context token is
required for Web Services Secure Conversation (WS-SecureConversation).

About this task

This task describes how to register a service endpoint (target) with the trust service. Registration of an
service endpoint with the trust service initially associates the token provider configured as the Trust
Service Default with that service endpoint.

To complete the configuration for the trust service, you must have completed the following tasks:
* Manage the Security Context Token.
« Create or manage service endpoint URLs that you want to attach to the policy set and binding.

The order in which you complete these tasks is not important.
1. To configure a custom endpoint target, click Services > Trust service > Targets > New Assignment.

2. At the New assignment panel, enter the Universal Resource Locator (URL) for the service endpoint,
and click Assign. You are returned to the Targets panel where the custom service endpoint URL is
displayed in the list. Initially, the token that is explicitly assigned to the custom endpoint is the token
that is assigned as the Trust Service Default.

3. At the Targets panel, select the check box for a service endpoint, click Change Token, and select one
of the following:

a. Security Context Token (SCT). A security context token is defined by the WS-SecureConversation
specification.

b. Inherit Default if you want the token that is issued to be the token assigned as the Trust Service
Default. The endpoint is not displayed in the list when the assignment is inherited because the
token is no longer explicitly assigned to the endpoint.

4. At the targets panel, click the token name link for an existing endpoint target to modify the token
provider configuration information.

5. Save your changes before applying the changes to the Web services security runtime configuration.

6. Click Update Runtime to update the Web services security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
is displayed depends on whether you select the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

7. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

When you complete these steps, service endpoints explicitly associated with a token provider are
displayed in the Targets collection. Service endpoints that have been changed to inherit the token provider
configured as the Trust Service Default are not displayed. You can also configure the security token
service to issue a specific token for access to a target using the wsadmin tool. The wsadmin tool
examples are written in the Jython scripting language.

312 Securing WebSphere applications

What to do next

You have completed the required steps to create a service endpoint URL, to assign the token to be issued
for access to the target, and to update the Web services security runtime configuration. Next, if you have
not completed these tasks already, configure the Security Context Token provider or configure attachments
to the policy set and binding to complete the trust service configuration.

Trust service targets collection:

Use this page to view a list of targets, which are application server service endpoints. You can manage
tokens by specifying which token is to be issued when access to a specific endpoint is requested.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To view this administrative console page, click Services > Trust service > Targets.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Show confirmation for update runtime command:

Specifies to enable or disable the display of the confirmation window before the WebSphere Application
Server trust service configuration is updated when you click Update Runtime.

Click Preferences and then select the Show confirmation for update runtime command check box. If
you select this check box, the confirmation window is displayed before updates to the trust service
configuration are made. If you do not select this check box, clicking Update Runtime updates the trust
service configuration without first displaying a confirmation window.

Data type: Check box
Default: Enabled (checked)
Select:

Specifies a check box for the service endpoint Universal Resource Locator (URL) that you want to select
for further actions.

For existing endpoints, select the checkbox for the service endpoint and select one of the following
actions:

Chapter 5. Web services 313

Actions Description

Change Token Changes the token that is issued when access to an
endpoint is requested. Selecting Inherit Default in the
Change Token menu causes the following actions to
occur:

» The security token assignment is removed for the
endpoint.

» The token assigned as the Trust Service Default is
issued for access to the endpoint.

» The endpoint is no longer displayed in the list of
endpoints that have tokens explicitly assigned.

Only endpoints that are explicitly assigned a security
token are displayed in the list. Endpoints that inherit the
default do not display in the list.

New Assignment:
Defines a new service endpoint.

Initially, each endpoint is explicitly assigned the Trust Service Default token. By default, the pre-configured
Security Context Token (SCT) is assigned, but that can be changed.

Data type: Button

Update Runtime:
Updates the trust service configuration for any changed attachments, targets, and token information.
If the Show confirmation for update runtime command preference is enabled, then a panel is displayed

where you can confirm that you want to update the trust service configuration. If the preference is
disabled, updates the trust service configuration immediately without any confirmation.

Data type: Button

Service Endpoint URL:
Specifies the Universal Resource Locator (URL) of the service endpoint for the explicitly assigned token.
This column lists the default service endpoint, Trust Service Default, and any custom service endpoints

that have a token that is explicitly assigned to the endpoint, such as: http://1ocalhost:9080/
EcommerceSTS.

Data type: String
Default: Trust Service Default
Token Name:

Displays the name of the token to be issued when access to the endpoint is requested.

To inherit the default token, select the check box for a custom service endpoint URL, click Change Token
> Inherit Default.

314 Securing WebSphere applications

You can change the token type that is explicitly assigned as the Trust Service Default, but the token type
cannot be left unassigned. If the token is not explicitly assigned, then the endpoint inherits the token that is
assigned as the Trust Service Default token.

Click a token name link to access detailed information about the token. You can modify the token
information, except for the token name. It is recommended that you do not modify the class name or the
token type schema URI for the default token type, Security Context Token.

Changes to token properties apply to all tokens of this type that are issued for any endpoint.

Data type: String
Default: Security Context Token

Token Type Schema URI:
Specifies the schema Uniform Resource Identifier (URI) for the token type.
This column displays the schema URI for the explicitly assigned token type (for example, Security Context

Token) in a valid URI format. The token type schema URI is a property of the token name and describes
the version of the specification that is implemented for the security token.

Data type: String
Default value: http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512/sct

Trust service targets settings:

Use this page to specify a custom service endpoint Universal Resource Locator (URL) and to assign a
custom token type to the endpoint URL.

To view this administrative console page, click Services > Trust service > Targets > New Assignment.
Service endpoint URL:
Specifies the URL for the service endpoint.

Use this field to specify a custom service endpoint URL. The URL must be specified in a valid format, such
as http://localhost:9080/EcommerceSTS. After you enter the URL and click Assign, the endpoint URL is
explicitly assigned to the security token that is assigned the Trust Service Default.

The service endpoint URL is added to the list that displays on the Targets panel. Only endpoints that are
explicitly assigned a security token are displayed in the list. Endpoints that inherit the default do not
display in the list.

By default, the Trust Service Default token is the Security Context Token (SCT).

After clicking Assign and returning to the Targets panel, if you want to remove the explicit token
assignment (and thereby change the token to be issued back to the default value), select the custom
endpoint URL, and click Inherit Default. Then the following